1 Preliminaries

Welcome to the study of intermediate algebra. In this first chapter, we will quickly
review the skills that are prerequisite for a successful completion of a course in inter-
mediate algebra.

We begin by defining the various number systems that are an integral part of the
study of intermediate algebra, then we move to review the skills and tools that are used
to solve linear equations and formulae. Finally, we’ll spend some serious effort on the
logic of the words “ and” and “or,” and their application to linear inequalities.

As all of the material in this “preliminary” chapter is prerequisite material, the
pace with which we travel these opening pages will be much quicker than that spent on
the chapters that follow. Indeed, if you have an opportunity to work on this material
before the first day of classes, it will be time well spent.
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Copyright

All parts of this intermediate algebra textbook are copyrighted in the name of
Department of Mathematics, College of the Redwoods. They are not in the public
domain. However, they are being made available free for use in educational in-
stitutions. This offer does not extend to any application that is made for profit.
Users who have such applications in mind should contact David Arnold at david-
arnold@redwoods.edu or Bruce Wagner at bruce-wagner@redwoods.edu.

This work (including all text, Portable Document Format files, and any other orig-
inal works), except where otherwise noted, is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 2.5 License, and is copyrighted (©2006,
Department of Mathematics, College of the Redwoods. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/ or send a letter
to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
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Number Systems

In this section we introduce the number systems that we will work with in the remainder
of this text.

The Natural Numbers

We begin with a definition of the natural numbers, or the counting numbers.

Definition 1. The set of natural numbers is the set

N=1{1,2,3,...}. (2)

The notation in equation (2)? is read “N is the set whose members are 1, 2, 3, and
so on.” The ellipsis (the three dots) at the end in equation (2) is a mathematician’s
way of saying “et-cetera.” We list just enough numbers to establish a recognizable pat-
tern, then write “and so on,” assuming that a pattern has been sufficiently established
so that the reader can intuit the rest of the numbers in the set. Thus, the next few
numbers in the set N are 4, 5, 6, 7, “and so on.”

Note that there are an infinite number of natural numbers. Other examples of nat-
ural numbers are 578,736 and 55,617,778. The set N of natural numbers is unbounded;
i.e., there is no largest natural number. For any natural number you choose, adding
one to your choice produces a larger natural number.

For any natural number n, we call m a divisor or factor of n if there is another
natural number k so that n = mk. For example, 4 is a divisor of 12 (because 12 = 4x 3),
but 5 is not. In like manner, 6 is a divisor of 12 (because 12 = 6 x 2), but 8 is not.

We next define a very special subset of the natural numbers.

Definition 3. If the only divisors of a natural number p are 1 and itself, then p
is said to be prime.

For example, because its only divisors are 1 and itself, 11 is a prime number. On
the other hand, 14 is not prime (it has divisors other than 1 and itself, i.e., 2 and 7). In
like manner, each of the natural numbers 2, 3, 5, 7, 11, 13, 17, and 19 is prime. Note
that 2 is the only even natural number that is prime.?

If a natural number other than 1 is not prime, then we say that it is composite.
Note that any natural number (except 1) falls into one of two classes; it is either prime,
or it is composite.

1 Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/

In this textbook, definitions, equations, and other labeled parts of the text are numbered consecutively,
regardless of the type of information. Figures are numbered separately, as are Tables.

Although the natural number 1 has only 1 and itself as divisors, mathematicians, particularly number
theorists, don’t consider 1 to be prime. There are good reasons for this, but that might take us too far
afield. For now, just note that 1 is not a prime number. Any number that is prime has exactly two
factors, namely itself and 1.

Version: Fall 2007



4 CHAPTER 1 PRELIMINARIES

We can factor the composite number 36 as a product of prime factors, namely
36 =2x2x3x3.
Other than rearranging the factors, this is the only way that we can express 36 as a

product of prime factors.

Theorem 4. The Fundamental Theorem of Arithmetic says that every natural
number has a unique prime factorization.

No matter how you begin the factorization process, all roads lead to the same prime
factorization. For example, consider two different approaches for obtaining the prime
factorization of 72.

72=8x9 72 =4 x18
=(4x2)x(3x3) =(2x2)x(2x9)
=2x2x2x3x%x3 =2x2x2x3x%x3

In each case, the result is the same, 72 =2 x 2 x 2 x 3 x 3.

Zero

The use of zero as a placeholder and as a number has a rich and storied history. The
ancient Babylonians recorded their work on clay tablets, pressing into the soft clay
with a stylus. Consequently, tablets from as early as 1700 BC exist today in museums
around the world. A photo of the famous Plimpton_ 322 is shown in Figure 1, where
the markings are considered by some to be Pythagorean triples, or the measures of the
sides of right triangles.

Figure 1. Plimpton 322

The people of this ancient culture had a sexagesimal (base 60) numbering system that
survived without the use of zero as a placeholder for over 1000 years. In the early
Babylonian system, the numbers 216 and 2106 had identical recordings on the clay
tablets of the authors. One could only tell the difference between the two numbers
based upon the context in which they were used. Somewhere around the year 400 BC,
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SECTION 1.1 NUMBER SYSTEMS 5

the Babylonians started using two wedge symbols to denote a zero as a placeholder
(some tablets show a single or a double-hook for this placeholder).

The ancient Greeks were well aware of the Babylonian positional system, but most of
the emphasis of Greek mathematics was geometrical, so the use of zero as a placeholder
was not as important. However, there is some evidence that the Greeks used a symbol
resembling a large omicron in some of their astronomical tables.

It was not until about 650 AD that the use of zero as a number began to creep into
the mathematics of India. Brahmagupta (598-6707), in his work Brahmasphutasid-
dhanta, was one of the first recorded mathematicians who attempted arithmetic oper-
ations with the number zero. Still, he didn’t quite know what to do with division by
zero when he wrote

Positive or negative numbers when divided by zero is a fraction with zero as
denominator.

Note that he states that the result of division by zero is a fraction with zero in the
denominator. Not very informative. Nearly 200 years later, Mahavira (800-870) didn’t
do much better when he wrote

A number remains unchanged when divided by zero.

It seems that the Indian mathematicians could not admit that division by zero was
impossible.

The Mayan culture (250-900 AD) had a base 20 positional system and a symbol
they used as a zero placeholder. The work of the Indian mathematicians spread into
the Arabic and Islamic world and was improved upon. This work eventually made
its way to the far east and also into Europe. Still, as late as the 1500s European
mathematicians were still not using zero as a number on a regular basis. It was not
until the 1600s that the use of zero as a number became widespread.

Of course, today we know that adding zero to a number leaves that number un-
changed and that division by zero is meaningless,* but as we struggle with these con-
cepts, we should keep in mind how long it took humanity to come to grips with this
powerful abstraction (zero as a number).

If we add the number zero to the set of natural numbers, we have a new set of
numbers which are called the whole numbers.

Definition 5. The set of whole numbers is the set

W =1{0,1,2,3,...}.

The Integers

Today, much as we take for granted the fact that there exists a number zero, denoted
by 0, such that

4 Tt makes no sense to ask how many groups of zero are in five. Thus, 5 /0 is undefined.
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6 CHAPTER 1 PRELIMINARIES

a+0=a (6)

for any whole number a, we similarly take for granted that for any whole number a
there exists a unique number —a, called the “negative” or “opposite” of a, so that

a+ (—a)=0. (7)

In a natural way, or so it seems to modern-day mathematicians, this easily introduces
the concept of a negative number. However, history teaches us that the concept of neg-
ative numbers was not embraced wholeheartedly by mathematicians until somewhere
around the 17th century.

In his work Arithmetica (c. 250 AD?), the Greek mathematician Diophantus
(c. 200-284 AD?), who some call the “Father of Algebra,” described the equation
4 = 4z + 20 as “absurd,” for how could one talk about an answer less than nothing?
Girolamo Cardano (1501-1576), in his seminal work Ars Magna (c. 1545 AD) referred
to negative numbers as “numeri ficti,” while the German mathematician Michael Stifel
(1487-1567) referred to them as “numeri absurdi.” John Napier (1550-1617) (the cre-
ator of logarithms) called negative numbers “defectivi,” and Rene Descartes (1596-1650)
(the creator of analytic geometry) labeled negative solutions of algebraic equations as
“false roots.”

On the other hand, there were mathematicians whose treatment of negative numbers
resembled somewhat our modern notions of the properties held by negative numbers.
The Indian mathematician Brahmagupta, whose work with zero we’ve already men-
tioned, described arithmetical rules in terms of fortunes (positive number) and debts
(negative numbers). Indeed, in his work Brahmasphutasiddhanta, he writes “a fortune
subtracted from zero is a debt,” which in modern notation would resemble 0 — 4 = —4.
Further, “a debt subtracted from zero is a fortune,” which resonates as 0 — (—4) = 4.
Further, Brahmagupta describes rules for multiplication and division of positive and
negative numbers:

e The product or quotient of two fortunes is one fortune.

e The product or quotient of two debts is one fortune.

e The product or quotient of a debt and a fortune is a debt.
e The product or quotient of a fortune and a debt is a debt.

In modern-day use we might say that “like signs give a positive answer,” while
“unlike signs give a negative answer.” Modern examples of Brahmagupta’s first two
rules are (5)(4) = 20 and (—5)(—4) = 20, while examples of the latter two are (—5)(4) =
—20 and (5)(—4) = —20. The rules are similar for division.

In any event, if we begin with the set of natural numbers N = {1,2,3,...}, add
zero, then add the negative of each natural number, we obtain the set of integers.
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SECTION 1.1 NUMBER SYSTEMS 7

Definition 8. The set of integers is the set

Z={...,-3-2-1,01,23,.. .} (9)

The letter Z comes from the word Zahl, which is a German word for “number.”

It is important to note that an integer is a “whole” number, either positive, negative,
or zero. Thus, —11456, —57, 0, 235, and 41 234 576 are integers, but the numbers —2/5,
0.125, v/2 and 7 are not. We’ll have more to say about the classification of the latter
numbers in the sections that follow.

Rational Numbers

You might have noticed that every natural number is also a whole number. That is,
every number in the set N = {1,2,3,...} is also a number in the set W = {0,1,2,3,...}.
Mathematicians say that “N is a subset of W,” meaning that each member of the set N
is also a member of the set W. In a similar vein, each whole number is also an integer,
so the set W is a subset of the set Z={...,—2,-2,-1,0,1,2,3,...}.

We will now add fractions to our growing set of numbers. Fractions have been used
since ancient times. They were well known and used by the ancient Babylonians and
Egyptians.

In modern times, we use the phrase rational number to describe any number that
is the ratio of two integers. We will denote the set of rational numbers with the letter

Q.

Definition 10. The set of rational numbers is the set

m

Q= {z : m,n are integers, n;«éO}. (11)

This notation is read “the set of all ratios m/n, such that m and n are integers, and
n is not 0.” The restriction on n is required because division by zero is undefined.

Clearly, numbers such as —221/31, —8/9, and 447/119, being the ratios of two
integers, are rational numbers (fractions). However, if we think of the integer 6 as
the ratio 6/1 (or alternately, as 24/4, —48/ — 8, etc.), then we note that 6 is also a
rational number. In this way, any integer can be thought of as a rational number (e.g.,
12 =12/1, —13 = —13/1, etc.). Therefore, the set Z of integers is a subset of the set
Q of rational numbers.

But wait, there is more. Any decimal that terminates is also a rational number.
For example,

25 125 76642
25 = 22 125 = —=2 d — 7.6642 = — 2022
0.25=1000 0125= 15090  nd 766 10000

The process for converting a terminating decimal to a fraction is clear; count the number
of decimal places, then write 1 followed by that number of zeros for the denominator.
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8 CHAPTER 1 PRELIMINARIES

For example, in 7.638 there are three decimal places, so place the number over 1000,
as in

7638
1000°

But wait, there is still more, for any decimal that repeats can also be expressed as the
ratio of two integers. Consider, for example, the repeating decimal

0.021 = 0.0212121.....

Note that the sequence of integers under the “repeating bar” are repeated over and
over indefinitely. Further, in the case of 0.021, there are precisely two digits® under the
repeating bar. Thus, if we let z = 0.021, then

x =0.0212121...,
and multiplying by 100 moves the decimal two places to the right.
100x = 2.12121.....

If we align these two results

100z = 2.12121 . ..

—x =0.02121...
and subtract, then the result is
99z = 2.1
2.1
r=—.
99

However, this last result is not a ratio of two integers. This is easily rectified by
multiplying both numerator and denominator by 10.

_21
7 990

We can reduce this last result by dividing both numerator and denominator by 3. Thus,
0.021 = 7/330, being the ratio of two integers, is a rational number.

Let’s look at another example.
» Example 12. Show that 0.621 is a rational number.

In this case, there are three digits under the repeating bar. If we let x = 0.621, then
multiply by 1000 (three zeros), this will move the decimal three places to the right.

10002 = 621.621621 ...
r= 0.621621...

Subtracting,

5 The singletons 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 are called digits.
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SECTION 1.1 NUMBER SYSTEMS 9

999z = 621
_ 621
7 999"

Dividing numerator and denominator by 27 (or first by 9 then by 3), we find that
0.621 = 23/37. Thus, 0.621, being the ratio of two integers, is a rational number.

_<>_

At this point, it is natural to wonder, “Are all numbers rational?” Or, “Are there
other types of numbers we haven’t discussed as yet?” Let’s investigate further.

The Irrational Numbers

If a number is not rational, mathematicians say that it is irrational.

Definition 13. Any number that cannot be expressed as a ratio of two integers
is called an irrational number.

Mathematicians have struggled with the concept of irrational numbers throughout
history. Pictured in Figure 2 is an ancient Babylonian artifact called The Square Root
of Two Tablet.

Vale Babylonian Collction
e TR
Ll

Figure 2. The Square
Root of Two Tablet.

There is an ancient fable that tells of a disciple of Pythagoras who provided a geo-
metrical proof of the irrationality of v/2. However, the Pythagoreans believed in the
absoluteness of numbers, and could not abide the thought of numbers that were not
rational. As a punishment, Pythagoras sentenced his disciple to death by drowning, or
so the story goes.

But what about v/2? Is it rational or not? A classic proof, known in the time of
Euclid (the “Father of Geometry,” c¢. 300 BC), uses proof by contradiction. Let us
assume that v/2 is indeed rational, which means that v/2 can be expressed as the ratio
of two integers p and g as follows.

va="
q

Square both sides,
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10 CHAPTER 1 PRELIMINARIES

2
P
2 =",

L=

then clear the equation of fractions by multiplying both sides by ¢2.
p* = 2¢* (14)

Now p and ¢ each have their own unique prime factorizations. Both p? and ¢? have an
even number of factors in their prime factorizations.® But this contradicts equation 14,
because the left side would have an even number of factors in its prime factorization,
while the right side would have an odd number of factors in its prime factorization
(there’s one extra 2 on the right side).

Therefore, our assumption that v/2 was rational is false. Thus, v/2 is irrational.

There are many other examples of irrational numbers. For example, 7 is an irra-
tional number, as is the number e, which we will encounter when we study exponential
functions. Decimals that neither repeat nor terminate, such as

0.1411411141114.. ..,

are also irrational. Proofs of the irrationality of such numbers are beyond the scope
of this course, but if you decide on a career in mathematics, you will someday look
closely at these proofs. Suffice it to say, there are a lot of irrational numbers out there.
Indeed, there are many more irrational numbers than there are rational numbers.

The Real Numbers

If we take all of the numbers that we have discussed in this section, the natural numbers,
the whole numbers, the integers, the rational numbers, and the irrational numbers, and
lump them all into one giant set of numbers, then we have what is known as the set of
real numbers. We will use the letter R to denote the set of all real numbers.

Definition 15.

R ={z: =z is a real number}.

This notation is read “the set of all z such that x is a real number.” The set of real
numbers R encompasses all of the numbers that we will encounter in this course.

6 For example, if p=2x3x3 x5, then p? =2 x2x 3 X 3x3x3x5x 5, which has an even number of
factors.
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SECTION 1.1 NUMBER SYSTEMS 11

1.1 Exercises

In Exercises 1-8, find the prime factor- 18. 0.171
ization of the given natural number.

19. 0.24
1. 80

20. 0.882
2. 108

21. 0.84
3. 180

22. 0.384
4. 160

23. 0.63
5. 128

24. 0.60
6. 192
7. 32 25. Prove that v/3 is irrational.
8. T2

26. Prove that v/5 is irrational.

In Exercises 9-16, convert the given dec-

. : In Exercises 27-30, copy the given ta-
imal to a fraction.

ble onto your homework paper. In each
row, place a check mark in each column

9. 0648 that is appropriate. That is, if the num-
10. 0.62 ber at the start of the row is rational,

place a check mark in the rational col-
11.  0.240 umn. Note: Most (but not all) rows will

have more than one check mark.
12. 0.90

27.
13. 0.14

N W Z Q R

14. 0.760 0
15. 0.888 -

—2/3
16. 0.104 0.15

0.2

In Exercises 17-24, convert the given NG

repeating decimal to a fraction.

17. 0.27

" Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/
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12 CHAPTER 1 PRELIMINARIES

28. 32. All whole numbers are rational num-
bers.
N W Z Q R
10/2 33. All rational numbers are integers.
m 34. All rational numbers are whole num-
—6 bers.
0.9
NG 35. Some natural numbers are irrational.
0.37 36. Some whole numbers are irrational.

37. Some real numbers are irrational.

29.
38. All integers are real numbers.
N W Z Q R
—4/3 39. All integers are rational numbers.
102 40. No rational numbers are natural num-
Wi bers.
1.3 41. No real numbers are integers.
6/2
42. All whole numbers are natural num-
bers.
30.
N W Z Q R
-3/5
V10
1.625
10/2
0/5
11

In Exercises 31-42, consider the given
statement and determine whether it is
true or false. Write a sentence explaining
your answer. In particular, if the state-
ment is false, try to give an example that
contradicts the statement.

31. All natural numbers are whole num-
bers.
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1. 2.2-2-2-5

3. 2-2-3-3-5

5. 2-2.2.2-2-2-2

7. 2-2.-2.2-2

81
9. —
125
n 8
25
13. l
50
111
15. —
125
i 2
11
0. &
33
2
21. —8
33
7
23. —
11

25. Suppose that v/3 is rational. Then
it can be expressed as the ratio of two
integers p and ¢ as follows:

vV3="?
q

Square both sides,
P
q*’

3=

then clear the equation of fractions by
multiplying both sides by ¢:

p® =3¢ (16)

Now p and ¢ each have their own unique
prime factorizations. Both p? and ¢® have
an even number of factors in their prime
factorizations. But this contradicts equa-
tion (14), because the left side would
have an even number of factors in its
prime factorization, while the right side
would have an odd number of factors in
its prime factorization (there’s one extra
3 on the right side).

Therefore, our assumption that /3 was
rational is false. Thus, v/3 is irrational.

27.
N Q R
0 X X X
—2 X X
—2/3 X X
0.15 X X
0.2 X X
NG X
29.
N W Z Q R
—4/3 X X
12 X X X
0 X b
V11 X
1.3 X
6/2 X X X X

31. True. The only difference between
the two sets is that the set of whole num-
bers contains the number 0.
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14 CHAPTER 1 PRELIMINARIES

33. False. For example, % is not an in-
teger.

35. False. All natural numbers are ra-
tional, and therefore not irrational.

37. True. For example, 7 and /2 are
real numbers which are irrational.

39. True. Every integer b can be writ-
ten as a fraction b/1.

41. False. For example, 2 is a real num-
ber that is also an integer.
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SECTION 1.2 SOLVING EQUATIONS 15

1.2 Solving Equations

In this section, we review the equation-solving skills that are prerequisite for successful
completion of the material in this text. Before we list the tools used in the equation-
solving process, let’s make sure that we understand what is meant by the phrase “solve
for x

Solve for z. Using the properties that we provide, you must “isolate x,” so that
your final solution takes the form

z = “Stuff,”

where “Stuff” can be an expression containing numbers, constants, other variables,
and mathematical operators such as addition, subtraction, multiplication, division,
square root, and the like.

“Stuff” can even contain other mathematical functions, such as exponentials, loga-
rithms, or trigonometric functions. However, it is essential that you understand that
there is one thing “Stuff” must not contain, and that is the variable you are solving
for, in this case, x. So, in a sense, you want to isolate x on one side of the equation,
and put all the other “Stuff” on the other side of the equation.

Now, let’s provide the tools to help you with this task.

Property 1. Let a and b be any numbers such that ¢ = b. Then, if ¢ is any
number,

a+c=b+c,
and,
a—c=0b-—c
In words, the first of these tools allows us to add the same quantity to both sides

of an equation without affecting equality. The second statement tells us that we can
subtract the same quantity from both sides of an equation and still have equality.

Let’s look at an example.
» Example 2. Solve the equation x +5 =7 for x.

The goal is to “isolate x on one side of the equation. To that end, let’s subtract 5
from both sides of the equation, then simplify.

8 Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/
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16 CHAPTER 1 PRELIMINARIES

rT+5=7
rT+5—-5=7-5
x = 2.

It is important to check your solution by showing that x = 2 “satisfies” the original
equation. To that end, substitute x = 2 in the original equation and simplify both
sides of the result.

r+5=7
245=17
T="7

This last statement (i.e., 7 = 7) is a true statement, so x = 2 is a solution of the
equation x +5 = 7.

_<>_

An important concept is the idea of equivalent equations.

Equivalent Equations. Two equations are said to be equivalent if and only if
they have the same solution set. That is, two equations are equivalent if each of
the solutions of the first equation is also a solution of the second equation, and
vice-versa.

Thus, in Example 2, the equations x+5 = 7 and x = 2 are equivalent, because they
both have the same solution set {2}. It is no coincidence that the tools in Property 1
produce equivalent equations. Whenever you add the same amount to both sides of
an equation, the resulting equation is equivalent to the original equation (they have
the same solution set). This is also true for subtraction. When you subtract the same
amount from both sides of an equation, the resulting equation has the same solutions
as the original equation.

Let’s look at another example.
» Example 3. Solve the equation x — 7 = 12 for x.

We want to “isolate z” on one side of the equation, so we add 7 to both sides of the
equation and simplify.

z—7=12
r—7+7=12+7
r=19

We will leave it to our readers to check that z = 19 is a solution of z — 7 = 12.
——

Let’s pause for a moment and define what is meant by a monomial.
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SECTION 1.2 SOLVING EQUATIONS 17

Definition 4. A monomial is an algebraic expression that is the product of a
number and zero or more variables, each raised to some arbitrary exponent.

Examples of monomials are:
322, or — 4ab?, or 25231, or 17, or —1lz.

Monomials are commonly referred to as “terms.” We often use algebraic expressions
that are the sum of two or more terms. For example, the expression

323 + 222 — Tz +8  or equivalently 32 + 222 + (—7x) + 8,
is the sum of four terms, namely, 322, 222, —7z, and 8. Note that the terms are thos

parts of the expression that are separated by addition symbols.

Some mathematicians prefer use the word “term” in a more relaxed manner, simply
stating that the terms of an algebraic expression are those components of the expression
that are separated by addition symbols. For example, the terms of the expression

. 2 1 2.ﬁU 2
or equivalenty 3z + | —— | + ,
x z+3

are 3x2, —1/z, and 222 /(z + 3). This is the meaning we will use in this text.

Having made the definition of what is meant by a “term,” let’s return to our dis-
cussion of solving equations.

» Example 5. Solve the equation 3x — 3 = 2x + 4 for z.

We will isolate all terms containing an = on the left side of this equation (we could
just as well have chosen to isolate terms containing x on the right side of the equation).
To this end, we don’t want the —3 on the left side of the equation (we want it on the
right), so we add 3 to both sides of the equation and simplify.

dr—3=2x+4
3r—3+3=2x+44+3
3r=2x+7
Remember that we have chosen to isolate all terms containing x on the left side of

the equation. So, for our next step, we choose to subtract 2z from both sides of the
equation (this will “move” it from the right over to the left), then simplify.

3r =22 +7
3 —2x=2x+7-—2x
r=17

To check the solution, substitute x = 7 in the original equation to obtain
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32 —3=2r+4
3(7)—3=2(7)+4
21-3=14+4
18 = 18

The last line is a true statement, so x = 7 checks and is a solution of 3z — 3 = 2z + 4.
——

If you use the technique of Example 5 repeatedly, there comes a point when you
tire of showing the addition or subtraction of the same amount on both sides of your
equation. Here is a tool, which, if carefully used, will greatly simplify your work.?

Useful Shortcut. When you move a term from one side of an equation to the
other, that is, when you move a term from one side of the equal sign to the other
side, simply change its sign.

Let’s see how we would apply this shortcut to the equation of Example 5. Start
with the original equation,

3xr — 3 =2x+4,

then move all terms containing an x to the left side of the equation, and move all other
terms to the right side of the equation. Remember to change the sign of a term if it
moves from one side of the equals sign to the other. If a term does not move from one
side of the equation to the other, leave its sign alone. The result would be

3z —2x =4+ 3.

Thus, x = 7 and you are finished.

It is important to note that when we move the —3 from the left-hand side of the
above equation to the right-hand side of the equation and change its sign, what we are
actually doing is adding 3 to both sides of the equation. A similar statement explains
that moving 2z from the right-hand side to the left-hand side and changing its sign is
simply a shortcut for subtracting 2z from both sides of the equation.

Here are two more useful tools for solving equations.

You should be aware that mathematics educators seemingly divide into two distinct camps regarding
this tool: some refuse to let their students use it, others are comfortable with their students using it.
There are good reasons for this dichotomy which we won’t go into here, but you should check to see
how your teacher feels about your use of this tool in your work.
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SECTION 1.2 SOLVING EQUATIONS 19

Property 6. Let a and b be any numbers such that a = b. Then, if ¢ is any
number other than zero,

ac = be.

If ¢ is any number other than zero, then

In words, the first of these tools allows us to multiply both sides of an equation by
the same number. A similar statement holds for division, provided we do not divide by
zero (division by zero is meaningless). Both of these tools produce equivalent equations.

Let’s look at an example.
» Example 7. Solve the equation 5x = 15 for x.

In this case, only one term contains the variable z and this term is already isolated
on one side of the equation. We will divide both sides of this equation by 5, then
simplify, obtaining

br =15
S5r 15
5 5
r=3

We'll leave it to our readers to check this solution.

» Example 8. Solve the equation x/2 =17 for x.

Again, there is only one term containing x and it is already isolated on one side of
the equation. We will multiply both sides of the equation by 2, then simplify, obtaining

3:7
:(2) =20
x = 14.

Again, we will leave it to our readers to check this solution.

Let’s apply everything we’ve learned in the next example.
» Example 9. Solve the equation 7x —4 =5 — 3x for x.

Note that we have terms containing x on both sides of the equation. Thus, the
first step is to isolate the terms containing = on one side of the equation (left or right,
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your choice).’® We will move the terms containing x to the left side of the equation,
everything else will be moved to the right side of the equation. Remember the rule, if
a term moves from one side of the equal sign to the other, change the sign of the term
you are moving. Thus,

Tr—4=5—-3z
Tr+3x=5+4.

Simplify.
10z =9

Divide both sides of this last result by 10.

10z =9
10z 9
10 10
9
710

To check this solution, substitute £ = 9/10 into both sides of the original equation and
simplify.

Tr—4=5—-3x

(ORI

0 TP

We'll need a common denominator to verify that our solution is correct. That is,

63 40 50 27

10 10 10 10
2 _ 23
10 10°
Thus, z = 9/10 checks and is a solution of 7z —4 =5 — 3z.

Note that the check can sometimes be more difficult than solving the equation. This
is one of the reasons that we tend to get lazy and not check our solutions. However, we
shouldn’t need to tell you what will probably happen if you do not check your work.

There is a workaround that involves the use of the graphing calculator. We first
store the solution for x in our calculator, then calculate each side of the original equation
and compare results.

1. Enter 9/10 in your calculator window, then
2. push the STO» key, then
3. push the X key followed by the ENTER key.

Although moving all the terms containing x to the right side is alright, it is often preferable to have
the x terms on the left side of the equation in order to end up with x = “Stuff”
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SECTION 1.2 SOLVING EQuATIONS 21

The result is shown in Figure 1(a).

Now that we’ve stored z = 9/10 in the calculator’s memory, let’s evaluate each side
of the equation 7x — 4 = 5 — 3z at this value of . Enter 7*X-4 in your calculator and
press ENTER. The result is shown in Figure 1(b), where we see that 7z — 4, evaluated
at z = 9/10, equals 2.3.

Next, enter 5-3*X and press ENTER. The result is shown in Figure 1(c), where we
see that 5 — 3z, evaluated at x = 9/10, also equals 2.3 (by the way, this is equivalent
to the 23/10 we found in our hand check above).

Because the expressions on each side of the equation are equal when x = 9/10 (both
equal 2.3), the solution checks.

ER =R El 5o 1= R

[ ] 9 L} 9 L} 9

|| 7 —d #—d
2.5 2.5

|| =3k
2.3

(a) (b) (c)
Figure 1. Checking the solution of 7x — 4 = 5 — 3z with the graphing calculator.
——

If you need to solve an equation that contains fractions, one very useful strategy
is to clear the equations of fractions by multiplying both sides of the equation by the
least common denominator.

» Example 10. Solve the equation
2 3 1 3

S T——=——_-x

3 4 4 2

for x.

The least common denominator is 12, so we multiply both sides of this equation by

12.
2 3 1 3
12l-az—-)=12| - — =
<3 o 4) (4 2 x)
Distribute the 12 and simplify.
2 3 1 3
8r—9=3-—18x

Move all terms containing x to the left side of the equation, everything else to the right,
then simplify.
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8r+18r=34+9
26 = 12

Divide both sides of this last result by 26 and simplify (always reduce to lowest terms
— in this case we can divide both numerator and denominator by 2).

2633_12
26 26
x—g

13

We leave it to our readers to check this solution. Use your graphing calculator as
demonstrated in Example 9.

_<>_

You can clear decimals from an equation by multiplying by the appropriate power
of 10.1*

» Example 11. Solve the equation 1.23x — 5.46 = 3.72x for x.

Let’s multiply both sides of this equation by 100, which moves the decimal two
places to the right, which is enough to clear the decimals from this problem.

100(1.23z — 5.46) = 100(3.72)

Distribute and simplify.

100(1.23z) — 100(5.46) = 100(3.72z)
123x — 546 = 372x
Move each term containing an z to the right side of the equation (the first time we’ve

chosen to do this — it avoids a negative sign in the coefficient of ) and simplify.

—546 = 372x — 123z
—546 = 249z

Divide both sides of the equation by 249 and simplify (in this case we can reduce,
dividing numerator and denominator by 3).

—546 249z
249 249
182
_ 2t
83
Rewrite your answer, placing x on the left side of the equation.
182
r=—-——
83

Check your result with your calculator. It is important to be sure that you always use
the original problem when you check your result. The steps are shown in Figure 2(a),

(b), and (c).

Multiplying by 10 moves the decimal one place to the right, multiplying by 100 moves the decimal two
places to the right, etc.
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"l giw s “liZlsgld s “liE2s gl
-2, 192771854 “2. 192771854 -2, 192771854
1.23#5-0.46 1.23#5-0.46
-8. 137183434 'E.15F158434

2%
-8. 137182434

(a) (e) (f)

Figure 2. Checking that x = —182/83 is a solution of 1.23x — 5.46 = 3.72z.

_<>_

Formulae

Science is filled with formulae that involve more than one variable and a number of
constants. In chemistry and physics, the instructor will expect that you can manipulate
these equations, solving for one variable or constant in terms of the others in the
equation.

There is nothing new to say here, as you should follow the same rules that we’ve
given heretofore when the only variable was x. However, students usually find these
a bit intimidating because of the presence of multiple variables and constants, so let’s
take our time and walk through a couple of examples.

» Example 12. Isaac Newton is credited with the formula that determines the
magnitude F' of the force of attraction between two planets. The formula is
GmM

F==

Y

where m is the mass of the smaller planet, M is the mass of the larger planet, r is the
distance between the two planets, and G is a universal gravitational constant. Solve
this equation for G.

First, a word of caution.

Warning 13. When using formulae of science, never change the case of a variable
or constant. If it is uppercase, write it in uppercase on your homework. The same
directive applies if the variable or constant is presented in lowercase. Write it in
lowercase on your homework.

This equation has fractions in it, so we will begin by multiplying both sides of the
equation by the common denominator, which in this case is 2.

ﬁ@ﬁ:ﬂ(GmM>

r2

This gives us
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24 CHAPTER 1 PRELIMINARIES

r’F = GmM.

In this case, there is only one term with G, and that term is already isolated on one side
of the equation. The next step is to divide both sides of the equation by the coefficient
of G, then simplify.

r2F _ GmM
mM — mM
r2F _
mM
Hence,
2
r°F
G = .
mM
Note that we have G = “Stuftf”; and most importantly, the “Stuff” has no occurrence

of the variable G. This is what it means to “solve for G.”
——

Let’s look at a final example.

» Example 14. Water freezes at 0° Celsius and boils at 100° Celsius. Americans
are probably more familiar with Fahrenheit temperature, where water freezes at 32°
Fahrenheit and boils at 212° Fahrenheit. The formula to convert Celsius temperature
C' into Fahrenheit temperature F' is

F:§c+m.

Solve this equation for C.

Once again, the equation has fractions in it, so our first move will be to eliminate
the fractions by multiplying both sides of the equation by the common denominator (5
in this case).

5F:5<§C+32>

5F =5 (g C> +5(32)
5F = 9C + 160

We’re solving for C, so move all terms containing a C' to one side of the equation, and
all other terms to the other side of the equation.

5F — 160 = 9C

Divide both sides of this last equation by 9.
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SECTION 1.2 SOLVING EQUATIONS 25

5F —160 _ 9C
9 9
5F — 160
— =C
9
Thus,
5F — 160
C=—"—.
9
Note that we have C' = “Stuff,” and most importantly, the “Stuff” has no occurrence

of the variable C. This is what it means to solve for C.
——

Once you've solved a formula from science for a particular variable, you can use the
result to make conversions or predictions.

» Example 15. In Example 14, the relationship between Fahrenheit and Celsius
temperatures is given by the result

_ 5F — 160

C 5 (16)

Above the bank in Eureka, California, a sign proclaims that the Fahrenheit temperature
is 40° F. What is the Celsius temperature?

Substitute the Fahrenheit temperature into formula (16). That is, substitute F' =
40.

_ BF —160  5(40) — 160 _ 40

C = = — ~4.44

9 9 9
Hence, the Celsius temperature is approximately 4.44° C. Note that you should always
include units with your final answer. ——
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In Exercises 1-12, solve each of the given
equations for x.

1. 45x+12=0
2. 76z —-55=0

3. z—7T=—-6x+4
4. —26x 484 =48
5. 37z +39=0

6. —4824+95=0
7. Tdr—6=091

8 —Tr+4=-6
9. —88r+13=-21
10. —14x—-81=0
11. 192 +4+35=10

12. —22+3=-5z—-2

In Exercises 13-24, solve each of the
given equations for x.

13. 6—3(x+1)=—4(zx+6)+2
14. Bz +3)—(22+6)=—-5x+38
15. —7—(bx —3) =4(Tx +2)

16. —3—4(z+1)=2(x+4)+8
17. 9— (6z —8) = —8(6x — 8)

18. —9—(7Tx—9)=—-2(-3z+1)

19. Bz—-1)—(T7x—9)=—-2x—-6

20. —8—8(x—3)=5(z+9)+7
21. (7w —9) — (92 +4) = —3z 42
22. (—4x —6) + (~9z+5) =0
23. —5— (9 +4) =8(~Tx —7)

24. 8z —3)+ (-3z+9) =—-4zx -7

In Exercises 25-36, solve each of the
given equations for x. Check your solu-
tions using your calculator.

25. —-37xr—1=82x—-5

26. 8.48r —2.6=-T.17x—"7.1

27. —2x+8=12x+4

28. —84r=—-48x+2

29. —%x—i—Qz%x—i—?

30. 29xr—4=03x—38

31. 545x+44=1.12x+1.6

32. —%x+5:—%x—4

33. —3zx-8=%x-2

34. —3r—-8=—12+5

35. —4.34x — 5.3 =5.4bx — 8.1

36. %x—3:—%x—1

12 Copyrighted material. See: http://msenux.redwoods.edu/Int AlgText/
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In Exercises 37-50, solve each of the
given equations for the indicated vari-
able.

37. P=1IRT for R

38. d=uwtfort

39. v=uvg+atfora

40. x =wvy + vt for v

41. Az + By =C fory

42. y=mx+b for x

43. A=nr?forn

44. S = 2xr? + 27wrh for h
k
45. F = # for k
r

46. C:iforT

m1

47. %zkfort

48. )\:iforv

muv
PV RV,
49. = for V5
anl n2T2 or 2
nRT
50. = £
™ % 71I0rn

51. Tie a ball to a string and whirl it
around in a circle with constant speed.
It is known that the acceleration of the
ball is directly toward the center of the
circle and given by the formula

a=-—, (17)

where a is acceleration, v is the speed of
the ball, and r is the radius of the circle

Version: Fall 2007

of motion.

i. Solve formula (17) for r.

ii. Given that the acceleration of the ball
is 12m/s? and the speed is 8 m/s, find
the radius of the circle of motion.

52. A particle moves along a line with
constant acceleration. It is known the
velocity of the particle, as a function of
the amount of time that has passed, is
given by the equation

v = + at, (18)

where v is the velocity at time t, vg is the
initial velocity of the particle (at time
t = 0), and a is the acceleration of the
particle.

i. Solve formula (18) for t.
ii. You know that the current velocity
of the particle is 120m/s. You also

know that the initial velocity was 40 m/s

and the acceleration has been a con-
stant @ = 2m/s?. How long did it
take the particle to reach its current
velocity?

53. Like Newton’s Universal Law of Grav-

itation, the force of attraction (repulsion)
between two unlike (like) charged parti-
cles is proportional to the product of the
charges and inversely proportional to the
distance between them.

q192
r2

In this formula, k¢ ~ 8.988x10° Nm? /C?

and is called the electrostatic constant.

F = ke (19)

The variables ¢; and g represent the charges

(in Coulombs) on the particles (which
could either be positive or negative num-
bers) and r represents the distance (in
meters) between the charges. Finally, F
represents the force of the charge, mea-
sured in Newtons.



ii.

Solve formula (19) for r.

Given a force F' = 2.0 x 102N, two
equal charges q1 = ¢o = 1 C, find the
approximate distance between the two
charged particles.

SECTION 1.2 SOLVING EQUATIONS 29
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11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

33.

39
37

97
74

17
44

25
19

—25

11

47
42

15

40
119

30
11

250
433

60
19
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35.

37.

39.

41.

43.

45.

47.

49.

51.

53.

no PV1iTh
Vo= —F——
n1P2T1

r =v%/a, r = 16/3 meters.

r =~ 0.067 meters.
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1.3 Logic

Two of the most subtle words in the English language are the words “and” and “or.”
One has only three letters, the other two, but it is absolutely amazing how much
confusion these two tiny words can cause. Our intent in this section is to clear the
mystery surrounding these words and prepare you for the mathematics that depends
upon a thorough understanding of the words “and” and “or.”

Set Notation

We begin with the definition of a set.
Definition 1. A set is a collection of objects.

The objects in the set could be anything at all: numbers, letters, first names, cities,
you name it. In this section we will focus on sets of numbers, but it is important to
understand that the objects in a set can be whatever you choose them to be.

If the number of objects in a set is finite and small enough, we can describe the set
simply by listing the elements (objects) in the set. This is usually done by enclosing
the list of objects in the set with curly braces. For example, let

A=1{1,3,57,9,11}. 2)

Now, when we refer to the set A in the narrative, everyone should know we’re talking
about the set of numbers 1, 3, 5, 7, 9, and 11.

It is also possible to describe the set A with words. Although there are many ways
to do this, one possible description might be “Let A be the set of odd natural numbers
between 1 and 11, inclusive.” This descriptive technique is particularly efficient when
the set you are describing is either infinite or too large to enumerate in a list.

For example, we might say “let A be the set of all real numbers that are greater
than 4. This is much better than trying to list each of the numbers in the set A, which
would be futile in this case. Another possibility is to combine the curly brace notation
with a textual description and write something like

A = {real numbers that are greater than 4}.

If we're called upon to read this notation aloud, we would say “A is the set of all real
numbers that are greater than 4,” or something similar.

There are a number of more sophisticated methods we can use to describe a set.
One description that we will often employ is called set-builder notation and has the
following appearance.

A = {z : some statement describing x}

13 Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/
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It is standard to read the notation {z : } aloud as follows: “The set of all x
such that” That is, the colon is pronounced “such that.” Then you would read the
description that follows the colon. For example, the set

A={z:2<3}

is read aloud “A is the set of all z such that x is less than 3.” Some people prefer to
use a “bar” instead of a colon and they write

A = {z|some statement describing x}.

This is also pronounced “A is the set of all x such that,” and then you would read the
text description that follows the “bar.” Thus, the notation

A={z|z <3}

is identical to the notation A = {z : = < 3} used above and is read in exactly the same
manner, “A is the set of all x such that z is less than 3.” We prefer the colon notation,
but feel free to use the “bar” if you like it better. It means the same thing.

A moment’s thought will reveal the fact that the notation A = {z : = < 3} is
not quite descriptive enough. It’s probably safe to say, since the description of x is
“x < 3,” that this notation is referring to numbers that are less than 3, but what kind
of numbers? Natural numbers? Integers? Rational numbers? Irrational numbers?
Real numbers? The notation A = {z : z < 3} doesn’t really tell the whole story.

We'll fix this deficiency in a moment, but first recall that in our preliminary chapter,
we used specific symbols to represent certain sets of numbers. Indeed, we used the
following:

N = {natural numbers}
Z = {integers}
Q = {rational numbers}

R = {real numbers}

We can use these symbols to help denote the type of number described with our set-
builder notation. For example, if we write

A={xeN: z <3},

then we say “A is the set of all  in the natural numbers such that z is less than 3,”
or more simply, “the set of all natural numbers that are less than 3.” The symbol €
is the Greek letter “epsilon,” and when used in set-builder notation, it is pronounced
“is an element of,” or “is in.” Of course, the only natural numbers N = {1,2,3,...}
that are less than 3 are the natural numbers 1 and 2. Thus, A = {1, 2}, the “set whose
members are 1 and 2.

On the other hand, if we write

A={ze€Z: x <3},
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then we say that “A is the set of x in the set of integers such that x is less than 3,”
or more informally, “A is the set of all integers less than 3.” Of course, the integers
7Z ={0,+1,42,+3,...}'* less than 3 are infinite in number. We cannot list all of them
unless we appeal to the imagination with something like

A={..,-3,-2,-1,0,1,2}.

The ellipsis . .. means “etc.” We've listed enough of the numbers to establish a pattern,
so we're permitted to say “and so on.” The reader intuits that the earlier numbers in
the list are —4, —5, etc.

Let’s look at another example. Suppose that we write
A={zeR: z <3}

Then we say “A is the set of all x in the set of real numbers such that z is less than
3,” or more informally, “A is the set of all real numbers less than 3.” Of course, this
is another infinite set and it’s not hard to imagine that the notation {z € R: z < 3}
used above is already optimal for describing this set of real numbers.

In this text, we will mostly deal with sets of real numbers. Thus, from this point
forward, if we write

A={z: 2z <3}

we will assume that we mean to say that “A is the set of all real numbers less than 3.
That is, if we write A = {x : x < 3}, we understand this to mean A = {x € R: =z < 3}.
In the case when we want to use a specific set of numbers, we will indicate that as we
did above, for example, in A = {x € N: z < 3}.

The Real Line and Interval Notation

Suppose that we draw a line (affectionately known as the “real line”), then plot a point
anywhere on that line, then map the number zero to that point (called the “origin”),
as shown in Figure 1. Secondly, decide on a unit distance and map the number 1 to
that point, again shown in Figure 1.

< 1 1 >
< T T >

0 1

Figure 1. Establishing the origin and a unit length
on the real line.

Now that we’ve established a unit distance, every real number corresponds to a point on
the real line. Vice-versa, every point on the real line corresponds to a real number. This
defines a one-to-one correspondence between the real numbers in R and the points on
the real line. In this manner, the point on the line and the real number can be thought
of as synonymous. Figure 2 shows several real numbers plotted on the real line.

The notation + is shorthand for “plus or minus”. For example, the sets {£1,+2} and {-2, -1, 1,2} are
identical.
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34 CHAPTER 1 PRELIMINARIES

Figure 2. Sample numbers on the real line.

Now, suppose that we’re asked to shade all real numbers in the set {x : > 3}. Because
this requires that we shade every real number that is greater than 3 (to the right of 3),
we use the shading shown in Figure 3 to represent the set {z : x > 3}.

<! Il Il Il Il Il Il Il Il
il T T T

-5 0 3 5
Figure 3. Shading all real
numbers greater than 3.

o

Although technically correct, the image in Figure 3 contains more information than
is really needed. The picture is acceptable, but crowded. The really important infor-
mation is the fact that the shading starts at 3, then moves to the right. Also, because
3 is not in the set {z : = > 3}, that is, 3 is not greater than 3, we do not shade the
point corresponding to the real number 3. Note that we’ve indicated this fact with an
“empty” circle at 3 on the real line.

Thus, when shading the set {x : > 3} on the real line, we need only label the
endpoint at 3, use an “empty” circle at 3, and shade all the real numbers to the right
of 3, as shown in Figure 4.

< >

3
Figure 4. Shading all real numbers greater than
3. The endpoint is the only information that needs
to be labeled. It is not necessary to show any other
tickpoints and/or labels.

Because we’re shading all numbers from 3 to positive infinity in Figure 4, we’ll use the
following interval notation to represent this “interval” of numbers (everything between
3 and positive infinity).

(3,00) ={z: >3}

Similarly, Table 1 lists the set-builder and interval notations, as well as shading of the
sets on the real line, for several situations, including the one just discussed.

There are several points of emphasis regarding the intervals in Table 1.

1. When we want to emphasize that we are not including a point on the real line, we
use an “empty circle.” Conversely, a “filled circle” means that we are including the
point on the real line. Thus, the real lines in the first two rows of Table 1 do not
include the number 3, but the real lines in the last two rows in Table 1 do include
the number 3.

2. The use of a parenthesis in interval notation means that we are not including that
endpoint in the interval. Thus, the parenthesis use in (—o0, 3) in the second row of
Table 1 means that we are not including the number 3 in the interval.
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Number line Set-builder Interval

notation notation
) 3 " {z: z >3} (3,00)
) 3 g {z: 2z <3} (=00, 3)
: 3 | {zre23) [3,00)
< g > {2z <3} (—00, 3]

Table 1. Number lines, set-builder notation, and interval notation.

3. The use of a bracket in interval notation means that we are including the bracketed
number in the interval. Thus, the bracket used in [3,00), as seen in the third row
of Table 1, means that we are including the number 3 in the interval.

4. The use of co in (3,00) in row one of Table 1 means that we are including every
real number greater than 3. The use of —oo in (—o0, 3] means that we are including
every real number less than or equal to 3. As —oo and oo are not actual numbers,
it makes no sense to include them with a bracket. Consequently, you must always
use a parenthesis with —oo or oo.

Union and Intersection

The intersection of two sets A and B is defined as follows.

Definition 3. The intersection of the sets A and B is the set of all objects that
are in A and in B. In symbols, we write

ANB={z: 2z € A and z € B}. (4)

In order to understand this definition, it’s absolutely crucial that we understand the
meaning of the word “and.” The word “and” is a conjunction, used between statements
P and @, as in “It is raining today and my best friend is the Lone Ranger.” In order
to determine the truth or falsehood of this statement, you must first examine the truth
or falsehood of the statements P and () on each side of the word “and.”

The only way that the speaker is telling the truth is if both statements P and @
are true. In other words, the statement “It is raining today and my best friend is the
Lone Ranger” is true if and only if the statement “It is raining today” is true and the
statement “my best friend is the Lone Ranger” is also true. Logicians like to make up
a construct called a truth table, like the one shown in Table 2.

Points in Table 2 to consider:
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P Q P and Q
T T T
T F F
F T F
F F F

Table 2. Truth table for
the conjunction “and.”

e In the first row (after the header row) of Table 2, if statements P and @) are both
true (indicated with a T), then the statement “P and Q” is also true.

e In the remaining rows of Table 2, one or the other of statements P or () are false
(indicated with an F), so the statement “P and Q” is also false.

Therefore, the statement “P and Q7 is true if and only if P is true and @ is true.

» Example 5. IfA=1{1,3,5,7,9} and B = {2,5,7,8,11}, find the intersection of
A and B.

As a reminder, the intersection of A and B is
ANB={z: 2 € Aandz € B}.

Thus, we are looking for the objects that are in A and in B. The only objects that are
in A and in B (remember, both statements “in A” and “in B” must be true) are 5 and
7, so we write:

ANB= {57}

Mathematicians and logicians both use a visual aid called a Venn Diagram to represent
sets. John Venn was an English mathematician who devised this visualization of logical
relationships. Consider the ellipse A in Figure 5. Everything inside the boundary of
this ellipse constitutes the set A = {1,3,5,7,9}. That’s why you see these numbers
inside the boundary of this ellipse.

Consider the ellipse B in Figure 5. Everything inside the boundary of this ellipse
constitutes the set B = {2,5,7,8,11}. That’s why you see these numbers inside the

boundary of this ellipse.
| E

Figure 5. Venn Diagram
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Now, note that only two numbers, 5 and 7, are contained within the boundaries of both
A and B. These are the numbers that are in the intersection of the sets A and B.

_<>_

The shaded region in Figure 6 is the area that belongs to both of the sets A and
B. Note how this shaded region is aptly named “the intersection of the sets A and B.
This is the region that is in common to the sets A and B, the region where the sets A
and B overlap or “intersect.”

Figure 6. The shaded region is the
intersection of the sets A and B. That
is, the shaded region is AN B.

This leads to the following important piece of advice.

Tip 6. When asked to find the intersection of two sets A and B, look to see
where the sets intersect or overlap. That is, look to see the elements that are in
both sets A and B.

Let’s move on to the definition of the union of two sets A and B.

Definition 7. The union of the sets A and B is the set of all objects that are
in A or in B. In symbols, we write

AUB={z:z€ Aorzec B}. (8)

In order to understand this definition, it’s critical that we understand the meaning
of the word “or.” The word “or” is a disjunction, used between statements P and @),
as in “It is raining today or my best friend is the Lone Ranger.” In order to determine
the truth or falsehood of this statement, you must first examine the truth or falsehood
of the statements P and () on each side of the word “or.”

The speaker is telling the truth if either statement P is true or statement @ is true.
In other words, the statement “It is raining today or my best friend is the Lone Ranger”
is true if and only if the statement “It is raining today” is true or the statement “my
best friend is the Lone Ranger” is true. Logicians like to make up a construct called a
truth table, like the one shown in Table 3.
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P Q P or @
T T T
T F T
F T T
F F F

Table 3. Truth table
for the disjunction “or.”

Points in Table 3 to consider:

e In the last row of Table 3, both statements P and @ are false (indicated with an
F), so the statement P or @) is also false.

e In the first three rows (after the header row) of Table 3, either statement P is true
or statement @ is true (indicated with a T), so the statement P or @ is also true.

Therefore, the statement “P or Q) is true if and only if either statement, P or @,
is true.

» Example 9. If A=1{1,3,5,7,9} and B = {2,5,7,8,11}, find the union of A and
B.

As a reminder, the union of A and B is
AUB={z:z € Aorx € B}.

Thus, an object is in the union of A and B if and only if it is in either set. The numbers
that are in either set are the numbers

AUB=1{1,2,3,5,7,8,9,11}.

If we look again at the Venn Diagram in Figure 5, we see that this union AU B =
{1,2,3,5,7,8,9,11} lists every number that is in either set in Figure 5.

_<>_

Thus, the shaded region in Figure 7 is the union of sets A and B. Note how this
region is well-named, as that’s what you're actually doing, taking the “union” of the
two sets A and B. That is, the union contains all elements that belong to either A or
B. Less formally, the union is a way of combining everything that occurs in either set.

A B

Figure 7. The shaded region is the
union of sets A and B. That is, the
shaded region is AU B.
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This leads to the following important piece of advice.

Tip 10. When asked to find the union of two sets A and B, in your answer,
include everything from both sets.

Simple Compound Inequalities

Let’s apply what we’ve learned to find the unions and/or intersections of intervals of
real numbers. The easiest approach is through a series of examples. Let’s begin.

» Example 11. On the real line, sketch the set of real numbers in the set {z : x <
3 or x < 5}. Use interval notation to describe your final answer.

First, let’s sketch two sets, {z : © < 3} and {x : x < 5}, on separate real lines, one
atop the other as shown in Figure 8.

2

v

WO

2 ~
< %

5
Figure 8. Sketch each set separately.

v

Now, to sketch the solution, note the word “or” in the set {x : * < 3 or x < 5}. Thus,
we need to take the union of the two shaded real lines in Figure 8. That is, we need
to shade everything that is shaded on either of the two number lines. Of course, this
would be everything less than 5, as shown in Figure 9.

< ) >
¢ @, >

)

Figure 9. The final solution is the union of the
two shaded sets in Figure 8.

Thus, the final solution is {z : < 5}, which in interval notation, is (—oo, 5).
——

Let’s look at another example.

» Example 12. On the real line, sketch the set of real numbers in the set {z : x <
3 and x < 5}. Use interval notation to describe your final answer.

In Example 11, you were asked to shade the set {z : © < 3 or z < 5} on the real
line. In this example, we're asked to sketch the set {z : < 3 and x < 5}. Note that
the set-builder notations are identical except for one change, the “or” of Example 11
has been replaced with the word “and.”

Again, sketch two sets, {x : x < 3} and {z : = < 5}, on separate real lines, one
atop the other as shown in Figure 10.
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WO

5!
Figure 10. Sketch each set separately.

Now, to sketch the solution, note the word “and” in the set {z : z < 3 and z < 5}.
Thus, we need to take the intersection of the two shaded real lines in Figure 10. That
is, we need to shade everything that is common to the two number lines. Of course,
this would be everything less than 3, as shown in Figure 11.

- ) »
< 9 >

3

Figure 11. The final solution is the intersection
of the two shaded sets in Figure 10.

Thus, the final solution is {z : x < 3}, which in interval notation, is (—o0, 3).

_<>_

Warning 13. If you answer “or” when the answer requires “and,” or vice-versa,
you have not made a minor mistake. Indeed, this is a huge error, as demonstrated
in Example 11 and Example 12.

Before attempting another example, we pause to define a bit of notation that will
be extremely important in our upcoming work.

Definition 14. The notation
a<x<b
is interpreted to mean

x> a and x < b.

Alternatively, we could have said that a < z < b is identical to saying “a <
x and x < b,” but saying “a < x” is the same as saying “x > a” We prefer to
say “r > a and x < b,” and will use this order throughout our work, but the form
“a <z and x < b” is equally valid.

The really key point to make here is the fact that the statement a < x < b is an
“and” statement. If it is used properly, it’s a good way to describe the numbers that
lie between a and b.

Let’s look at an example.

» Example 15. On the real line, sketch the set of real numbers in the set {x : 3 <
x < 5}. Use interval notation to describe your answer.

First, let’s write what’s meant by the notation {z : 3 < = < 5}. By definition, this
set is the same as the set
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{z: 2 >3 and x < 5}.

Thus, the first step is to sketch the sets {z : © > 3} and {z : # < 5} on individual real
lines, stacked one atop the other, as shown in Figure 12.

<« >

¢ >

)
Figure 12. Sketch each set separately.

Now, to sketch the solution, note the word “and” in the set {x : * > 3 and = < 5}.
Thus, we need to take the intersection of the two lines in Figure 12. That is, we need
to shade the numbers on the real line that are in common to the two lines shown in
Figure 12. The numbers 3 and 5 are not shaded in both sets in Figure 12, so they
will not be shaded in our final solution. However, all real numbers between 3 and 5 are
shaded in both sets in Figure 12, so these numbers will be shaded in the final solution
shown in Figure 13.

< >

3 )

Figure 13. The final solution is the intersection
of the two shaded sets in Figure 12.

In a most natural way, the interval notation for the shaded solution in Figure 13 is
(3,5). That is,

(3,5)={z:3<x <5}
——

Similarly, here are the set-builder and interval notations, as well as shading of the
sets on the real line, for several situations, including the one just discussed.

Number line Set-builder Interval

notation notation
) % % " {z:3<z<5} (3,5)
) g 2 "I {z:3<x<5} [3, 5]
) 8 5 | {z:3<x<5} 3,5)
) % 2 | {z:3<2<5} (3, 5]

Table 4. Number lines, set-builder notation, and interval notation.

There are several points of emphasis regarding the intervals in Table 4.
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1. When we want to emphasize that we are not including a point on the real line,
we use an “empty circle” Conversely, a “filled circle” means that we are including
the point on the real line. Thus, the interval in the first row of Table 4 does not
include the endpoints at 3 and 5, but the interval in the second row of Table 4
does include the endpoints at 3 and 5.

2. The use of a parenthesis in interval notation means that we are not including that
endpoint in the interval. Thus, the parentheses used in (3,5) in the first row of
Table 4 means that we are not including the numbers 3 and 5 in that interval.

3. The use of a bracket in interval notation means that we are including the bracketed
number in the interval. Thus, the brackets used in [3, 5], as seen in the second row
of Table 4, means that we are including the numbers 3 and 5 in the interval.

4. Finally, note that some of our intervals are “open” on one end but “closed” (filled)
on the other end, such as those in rows 3 and 4 of Table 4.

Definition 16. Some terminology:

e The interval (3,5) is open at each end. Therefore, we call the interval (3,5) an
open interval.

e The interval [3,5] is closed (filled) at each end. Therefore, we call the interval
[3,5] a closed interval.

e The intervals (3,5] and [3,5) are neither open nor closed.

Let’s look at another example.

» Example 17. On the real line, sketch the set of all real numbers in the set
{z: © >3 or x < 5}. Use interval notation to describe your answer.

Note that the only difference between this current example and the set shaded in
Example 15 is the fact that we’ve replaced the word “and” in {x : * > 3 and = < 5}
with the word “or” in {z : x > 3 or x < 5}. But, as we’ve seen before, this can make
a world of difference.

Thus, the first step is to sketch the sets {z : x > 3} and {z : z < 5} on individual
real lines, stacked one atop the other, as shown in Figure 14.

i >

) 5
Figure 14. Sketch each set separately.

Now, to sketch the solution, note the word “or” in the set { : * > 3 or x < 5}. Thus,
we need to take the union of the two lines in Figure 14. That is, we need to shade the
numbers on the real line that are shaded on either of the two lines shown in Figure 14.
However, this means that we will have to shade every number on the line, as shown in
Figure 15. You’ll note no labels for 3 and 5 on the real line in Figure 15, as there are
no endpoints in this solution. The endpoints, if you will, are at negative and positive
infinity.
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< >

Figure 15. The final solution is the union of the
two shaded sets in Figure 14.

Thus, in a most natural way, the interval notation for the shaded solution in Figure 15
is (—00, 00).

_<>_

Let’s look at another example.

» Example 18. On the real line, sketch the set of all real numbers in the set
{z:x < —1 or x > 3}. Use interval notation to describe your answer.

The first step is to sketch the sets {x : * < —1} and {x : = > 3} on separate real
lines, stacked one atop the other, as shown in Figure 16.

¢ >

-1

M)
N
3

Figure 16. Sketch each set separately.

To sketch the solution, note the word “or” in the set {x : * < —1 or > 3}. Thus, we
need to take the union of the two shaded real lines in Figure 16. That is, we need to
shade the numbers on the real line that are shaded on either real line in Figure 16.
Thus, every number smaller than —1 is shaded, as well as every number greater than
3. The result is shown in Figure 17.

1 3
Figure 17. The final solution is the union of the
shaded real lines in Figure 16.

Here is an important tip.

Tip 19. If you wish to use interval notation correctly, follow one simple rule:
Always sweep your eyes from left to right describing what you see shaded on the
real line.

If we follow this advice, as we sweep our eyes from left to right across the real line
shaded in Figure 17, we see that numbers are shaded from negative infinity to —1,
and from 3 to positive infinity. Thus, in a most natural way, the interval notation for
the shaded solution set in Figure 17 is

(=00, —1) U (3,00).

There are several important points to make here:
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e Note how we used the union symbol U to join the two intervals in (—oo, —1)U(3, c0)
in a natural manner.

e The union symbol is used between sets of numbers, while the word “or” is used
between statements about numbers. It is incorrect to exchange the roles of the
union symbol and the word “or.” Thus, writing {z : * < —1 Uz > 3} is incorrect,
as it would also be to write (—oo, —1) or (3, 00).

We reinforce earlier discussion about the difference between “filled” and “open”
circles, brackets, and parentheses in Table 5, where we include several comparisons of
interval and set-builder notation, including the current solution to Example 18.

Number line Set-builder notation | Interval notation
_31 3 {zr:xz<—-lorz>3} | (—o0,—1)U(3,00)
_.1 g {z:xz<—-1lorzx >3} | (—o0,—1]U|[3,00)
_.1 5 {r:z<—-lorxz>3} | (—o0,—1]U(3,00)
_31 g {x:xz<—-lorx>3} | (—oo0,—1)U([3,00)

Table 5. Number lines, set-builder notation, and interval notation.
Again, we reinforce the following points.

e Note how sweeping your eyes from left to right, describing what is shaded on the
real line, insures that you write the interval notation in the correct order.

e A bracket is equivalent to a filled dot and includes the endpoint, while a parenthesis
is equivalent to an open dot and does not include the endpoint.

Let’s do one last example that should forever cement the notion that there is a huge
difference between the words “and” and “or.”

» Example 20. On the real line, sketch the set of all real numbers in the set
{z: © < —1 and x > 3}. Describe your solution.

First and foremost, note that the only difference between this example and Example 18
is the fact that we changed the “or” in {z : =z < —lorz > 3} to an “and” in
{z: x < —1 and = > 3}. The preliminary sketches are identical to those in Figure 16.

- -

—1

- et o
< 9, >

3
Figure 18. Sketch {z : z < —1} and {z : =z >
3} on separate real lines.

Now, note the word “and” in {z : * < —1 and = > 3}. Thus, we need to take the
intersection of the shaded real lines in Figure 18. That is, we need to shade on a
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single real line all of the numbers that are shaded on both real lines in Figure 18.
However, there are no points shaded in common on the real lines in Figure 18, so the
solution set is empty, as shown in Figure 19.

Figure 19. The solution is empty so we leave
the real line blank.

_<>_

Pretty impressive! The last two examples clearly demonstrate that if you inter-
change the roles of “and” and “or,” you have not made a minor mistake. Indeed,
you've changed the whole meaning of the problem. So, be careful with your “ands”
and “ors.”
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1.3 Exercises

Perform each of the following tasks in 10.
Exercises 1-4. - -
i. Write out in words the meaning of 0

the symbols which are written in set-

builder notation. 11.
ii. Write some of the elements of this set. _ R
iii. Draw a real line and plot some of the - —7

points that are in this set.
1. A={zeN:z>10} 12.
2. B={zeN:z>10} ) i .

. = tx <
3. C={zxe€Z:2<2} 13.
4. D={z€Z: x> -3} o >
0
In Exercises 5-8, use the sets A, B, C,
and D that were defined in Exercises 1- 14.
4. Describe the following sets using set - ° _
notation, and draw the corresponding Venn 1
Diagram.
5. ANB 15.
6. AUB -8
7. AUC. 16.
8. CnD. < O >
9
In Exercises 9-16, use both interval and
set notation to describe the interval shown In Exercises 17-24, sketch the graph of
on the graph. the given interval.
9. 17. [2,5)
- b * 18. (=3,1]
19. [1,00)

15 Copyrighted material. See: http://msenux.redwoods.edu/Int AlgText/
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20. (—o0,2) 30.
21. {z: -4<z<1} - % >
22. {z:1<x<5} ° g -
23. {z:z< -2}
31.
24. x> —1
{w:w=-1} - - &
5
In Exercises 25-32, use both interval N 5 >
and set notation to describe the inter-
section of the two intervals shown on the
graph. Also, sketch the graph of the in- 32.
tersection on the real number line. B ° R
—6
25. - .
< PY . —14
1
-3 In Exercises 33-40, use both interval
and set notation to describe the union
26. of the two intervals shown on the graph.
Also, sketch the graph of the union on
* —.6 > the real number line.
* ) g 33.
< . >
27. —10
< O »
< O > -8
2
< 9 >
4 34.
28. -2
< O > ) :3 i
11
) 8 i 35.
< < >
29. 9
> e > - 1 *
5 5
< @ >
—6
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37.

38.

39.

40.

@

11

Rel )

O)
S

-2

In Exercises 41-56, use interval nota-
tion to describe the given set. Also, sketch
the graph of the set on the real number

line.

41.

42.

43.

44.

45.

{z:

cx<6andzx >4}

x> —6and z > —5}

x> —1lorx<3}
x> —T7and x > —4}

cx>—lorx>6}

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

SEcTION 1.3 Locic 49

cx>Torx<—2}
cx>6o0rx>—3}
cx<loraxz>0}
cx<2and x < —T}
:x < —3and x < —5}
cx < —3orx>4}
cx<l1lorxz<8}
cx>5and x <1}
cx<5orax<l10}
cx<5and x> -1}

x> —-3and x < —6}
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1.3 Answers

1.

i. A is the set of all x in the natural
numbers such that x is greater than
10.

i A={11,12,13,14,...}

iii.

-~ 0000w
11 17
3.

i. C is the set of all x in the set of inte-
gers such that x is less than or equal
to 2.

i, C={...,—4,-3,-2,-1,0,1,2}

iii.

4—0—_04—0—0—0—0—0—5—>

5. ANB ={z € N: z > 10} =
(11,12,13,...}

B

7. AUC={zx€Z:xz<2o0rz>
10} ={...,—3,-2-1,0,1,2,11,12,13...}

(

9. [3,00)={x:x >3}

11. (—oo,—7)={z: < -7}
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13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

(0,00) ={z: z >0}

(—8,00) ={z: x> -8}

A
@

v

A

v




33. (—o0,-8]={z: 2z < -8} 53.

v

¢

®
-8

35. (—00,9] U (15, 00)
={z: x<9orz>15}

[ 3
v

jg=le)

®
9

37. (—00,3)={x: x <3}

39. [9,00)={z:2>9}

- C >
9
41. (—5,00)
< _5 >
43. (—o0, )
45. [—1,00)
- @ >
-1
47. (—3,00)
< _3 >
49. (—o0,—7)
> < >

51. (—o0,—3]U[4,00)

v

I
w
N

the set is empty
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v

55.

A
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Compound Inequalities

This section discusses a technique that is used to solve compound inequalities, which is
a phrase that usually refers to a pair of inequalities connected either by the word “and”
or the word “or.” Before we begin with the advanced work of solving these inequalities,
let’s first spend a word or two (for purposes of review) discussing the solution of simple
linear inequalities.

Simple Linear Inequalities
As in solving equations, you may add or subtract the same amount from both sides of
an inequality.
Property 1. Let a and b be real numbers with a < b. If ¢ is any real number,
then
at+c<b+c
and

a—c<b-—ec

This utility is equally valid if you replace the “less than” symbol with >, <, or >.
» Example 2. Solve the inequality = 4+ 3 < 8 for x.

Subtract 3 from both sides of the inequality and simplify.

r+3<8
r+3—-3<8-3
r<5h

Thus, all real numbers less than 5 are solutions of the inequality. It is traditional to
sketch the solution set of inequalities on a number line.

2 -

- 5

We can describe the solution set using set-builder and interval notation. The solu-
tion is

(—00,b) ={z: = <5}.

An important concept is the idea of equivalent inequalities.

16 Copyrighted material. See: http://msenux.redwoods.edu/Int AlgText/
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Equivalent Inequalities. Two inequalities are said to be equivalent if and only
if they have the same solution set.

Note that this definition is similar to the definition of equivalent equations. That
is, two inequalities are equivalent if all of the solutions of the first inequality are also
solutions of the second inequality, and vice-versa.

Thus, in Example 2, subtracting three from both sides of the original inequality
produced an equivalent inequality. That is, the inequalities x4+3 < 8 and = < 5 have the
same solution set, namely, all real numbers that are less than 5. It is no coincidence
that the tools in Property 1 produce equivalent inequalities. Whenver you add or
subtract the same amount from both sides of an inequality, the resulting inequality is
equivalent to the original (they have the same solution set).

Let’s look at another example.
» Example 3. Solve the inequality x — 5 > 4 for x.

Add 5 to both sides of the inequality and simplify.

r—5>4
r—54+5>4+5
r>9
Shade the solution on a number line.
< ® >
9

In set-builder and interval notation, the solution is
[9,00) = {z: x> 9}
——

You can also multiply or divide both sides by the same positive number.

Property 4. Let a and b be real numbers with a < b. If ¢ is a real positive
number, then

ac < be

and

ole

ol

Again, this utility is equally valid if you replace the “less than” symbol by >, <, or
>. The tools in Property 4 always produce equivalent inequalities.
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» Example 5. Solve the inequality 3z < —18 for x

Divide both sides of the inequality by 3 and simplify.

3z < —18

3r _ —18

e
3~ 3
< —6

Sketch the solution on a number line.
< @ >
—6

In set-builder and interval notation, the solution is
(=00, —6] = {z: x < —6}.
——

Thus far, there is seemingly no difference between the technique employed for solv-
ing inequalities and that used to solve equations. However, there is one important
exception. Consider for a moment the true statement

—2 < 6. (6)
If you multiply both sides of (6) by 3, you still have a true statement; i.e.,
—6 < 18

But if you multiply both sides of (6) by —3, you need to “reverse the inequality symbol”
to maintain a true statement; i.e.,

6 > —18.

This discussion leads to the following property.

Property 7. Let a and b be real numbers with a < b. If ¢ is any real negative
number, then

ac > be

and

ole

o

Note that you “reverse the inequality symbol” when you multiply or divide both
sides of an inequality by a negative number. Again, this utility is equally valid if you
replace the “less than” symbol by >, <, or >. The tools in Property 7 always produce
equivalent inequalities.
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» Example 8. Solve the inequality —bx > 10 for x.

Divide both sides of the inequality by —5 and reverse the inequality symbol. Sim-
plify.
-5z > 10
=5z 10
5 "5
T < =2

Sketch the solution on a number line.

¢ >

—2

In set-builder and interval notation, the solution is

(—o0,—2) ={a: z < —2}.

Compound Inequalities

We now turn our attention to the business of solving compound inequalities. In the
previous section, we studied the subtleties of “and” and “or,” intersection and union,
and looked at some simple compound inequalities. In this section, we build on those
fundamentals and turn our attention to more intricate examples.

In this case, the best way of learning is by doing. Let’s start with an example.
» Example 9. Solve the following compound inequality for x.
3—2r<—-1 or 3—-2z>1 (10)

First, solve each of the inequalities independently. With the first inequality, add —3
to both sides of the inequality, then divide by —2, reversing the inequality sign.

3—2rx < -1
—2x < —4
T > 2

Shade the solution on a number line.

- o

2

The exact same sequence of operations can be used to solve the second inequality.

3—2x>1
—2x > —2
r <1
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S J >

Although you solve each side of the inequality independently, you will want to arrange
your work as follows, stacking the number line solution for the first inequality above
that of the second inequality.

3—2rx < -1 or 3—2x>1

—2rx < —4 —2x > —2

x> 2 r <1
- 5 >
< . >

Because the inequalities are connected with the word “or,” we need to take the union
of these two number lines. That is, you want to shade every number from either set on
a single number line, as shown in Figure 1

2 et o

U

1 2

Figure 1. The solution of the compound in-
equality 3 — 2z < —1 or 3 — 2z > 1.

The solution, in interval and set-builder notation, is

(=00, 1)U (2,00) ={x: z < 1orzxz>2}

Let’s look at another example.
» Example 11. Solve the following compound inequality for x.
-1<3-2z<1 (12)

Recall that a < = < b is identical to the statement z > a and = < b. Thus, we can
write the compound inequality —1 < 3 — 22 < 1 in the form

3—2r>-1 and 3-2x<1. (13)

Solve each inequality independently, arranging your work as follows.

3—2x>-1 and 3-2z<1 (14)
—2x > —4 —2r < =2 (15)
T <2 z>1

Shade the solution of each inequality on separate real lines, one atop the other.
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1

Note the word “and” in our final statement x < 2 and x > 1. Thus, we must find the
intersection of the two shaded solutions. These are the numbers that fall between 1
and 2, as shaded in Figure 2.

< »>

1 2
Figure 2. The solution of the compound in-
equality —1 < 3 — 2z < 1.

The solution, in both interval and set-builder notation, is
(L,2)={z: 1<z<2}.

Note that we used the compact form of the compound inequality in our answer. We
could just as well have used

(1,2) ={z: z>1and z < 2}.
Both forms of set-builder notation are equally valid. You may use either one, but you

must understand both.

Alternative approach. You might have noted that in solving the second inequality
in (14), you found yourself repeating the identical operations used to solve the first
inequality. That is, you subtracted 3 from both sides of the inequality, then divided
both sides of the inequality by —2, reversing the inequality sign.

This repetition is annoying and suggests a possible shortcut in this particular situ-
ation. Instead of splitting the compound inequality (12) in two parts (as in (13)), let’s
keep the inequality together, as in

~1<3—-2z<1. (16)

Now, here are the rules for working with this form.
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Property 17. When working with a compound inequality having the form
a<xz<b, (18)

you may add (or subtract) the same amount to (from) all three parts of the in-
equality, as in

at+c<z+c<b+c (19)

or
a—c<zx—c<b-—ec (20)
You may also multiply all three parts by the same positive number ¢ > 0, as in
ca < cx < cb. (21)

However, if you multiply all three parts by the same negative number ¢ < 0, then
don’t forget to reverse the inequality signs, as in

ca > cx > cb. (22)
The rules for division are identical to the multiplication rules. If ¢ > 0 (positive),
then
a x b
o e (23)
c ¢ c
If ¢ < 0 (negative), then reverse the inequality signs when you divide.
a x b
-—>—->- (24)
c ¢ ¢
Each of the tools in Property 17 always produce equivalent inequalities.
So, let’s return to the compound inequality (16) and subtract 3 from all three
members of the inequality.
-1<3-2z<1
-1-3<3-2z—-3<1-3
—4 <2< -2

Next, divide all three members by —2, reversing the inequality signs as you do so.

—4 < 2r< -2

—4>—2:1:>—2
-2 -2 -2
2>x>1

It is conventional to change the order of this last inequality. By reading the inequality
from right to left, we get
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1<z <2,

which describes the real numbers that are greater than 1 and less than 2. The solution
is drawn on the following real line.

N . : >
Figure 3. The solution of the compound in-
equality —1 < 3 — 2z < 1.

Note that this is identical to the solution set on the real line in Figure 2. Note also
that this second alternative method is more efficient, particularly if you do a bit of
work in your head. Consider the following sequence where we subtract three from all
three members, then divide all three members by —2, reversing the inequality signs,
then finally read the inequality in the opposite direction.

-1<3-2z<1
—4 < 2xr< =2
2>x>1
1< <2
——
Let’s look at another example.
» Example 25. Solve the following compound inequality for x.
1
ezt oy (26)

First, let’s multiply all three members by 2, in order to clear the fractions.

_2<2(a:)—2<x;1> <4

Cancel. Note the use of parentheses, which is crucial when a minus sign is involved.

—2<2a:—2’<x;1) <4

—2<2z—(x+1)<4
Distribute the minus sign and simplify.

—2<2x—x—-1<4
—2<rx—-1<4

Add 1 to all three members.
—1l<x<5b

This solution describes the real numbers that are greater than -1 and less than 5,
including 5. That is, the real numbers that fall between -1 and 5, including 5, shaded
on the real line in Figure 4.
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- @ >
-1 )
Figure 4. The solution set
of —-l<z—(x+1)/2 <2
The answer, described in both interval and set-builder notation, follows.
(-1,5]={z: -1<a <5}
——

Let’s look at another example.

» Example 27. Solve the following compound inequality for x.

r<2r—3<5H

Suppose that we try to isolate x as we did in Example 25. Perhaps we would try

adding —z to all three members.

r<2r—3<5H
r—rz<2r—3—zxz<5—=x
0<zr—-3<5—2x

The solution is we split the inequality (with the word “and,” of course).

z<2r—3 and 2z -3<5

r<2r—3
—x <=3
x> 3

To solve the second inequality, add 3 to both sides, then divide both sides by 2.

20 —3 <5
20 < 8
r <4

Of course, you’ll probably want to arrange your work as follows.

r<2r—3 and 20 —3<5H
—rx< -3 20 < 8
r>3 r <4

WEell, that didn’t help much, just transferring the problem with x to the other end of
the inequality. Similar attempts will not help in isolating x. So, what do we do?

We can solve the first inequality by subtracting 2z from both sides of the inequality,
then multiplying both sides by —1, reversing the inequality in the process.

Thus, we need to shade on a number line all real numbers that are greater than or
equal to 3 and less than or equal to 4, as shown in Figure 5.
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< - - >
3 4

Figure 5. When shading the solution
of x <2x — 3 <5, we “fill-in” the end-
points.

The solution, described in both interval and set-builder notation, is

[3,4] ={x: 3 <z <4}
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1.4 Exercises

In Exercises 1-12, solve the inequality.
Express your answer in both interval and
set notations, and shade the solution on
a number line.

1.

2.

10.

11.

12.

-8z —-3< —16z -1

6z —6>3x+3
—122+5< -3z —4
Tr+3<—-2x—8
—1llz-9< -3z +1
dor —8 > —4x —5
dr —5>bdx -7
—14x4+4> —6x + 8

20 —1 > T7x+2

—3r—2>—-4r -9

—3z+3<—-1lx -3

6r+3 <8 —+8

In Exercises 13-50, solve the compound
inequality. Express your answer in both
interval and set notations, and shade the
solution on a number line.

13.

14.

15.

16.

2r—1<4 or Tx+1>—4

—8r+9< -3 and —T7x+1>3
—6xr—4< -4 and —3z+7> -5
—3r+3<8 and —3x—6> —6

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

8r+5< -1 and 42 —-2> -1
—x—1<7 and —6x—9>28
—3z+8< -5 or —2xr—4> -3
—6r—7< -3 and —8xr >3
92 —9<9 and 5z > —1
—Tr+3< -3 or —8x>2
3r—5<4 and —x+9>3
—8rx—6<5 or dr—12>3
9 +3< -5 or —2x—4>9
—T7r+6<—4 or —Tx—5>7
dr —2<2 or 3r—9>3
—bSr+5<—4 or —br—5>-5
5c+1<—6 and 3x+9> —4
Tr+2< -5 or 606 —9> -7
—Tx—7< -2 and 3z >3
4dr+1<0 or 8 +6>9
Tr+8< -3 and 8¢ +3> -9
3r<?2 and —T7x—8>3
—br+2< -2 and —6x+2>3
dr —1<8 or 3x—9>0

20 —5 <1 and 4o +7>7

3cr+1<0 or bx +5> —8

17 Copyrighted material. See: http://msenux.redwoods.edu/Int AlgText/
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39. Rx+7<9 or —Hxr+6>-2
40. z—-6< -5 and 6x—2> -3
41. —4dr—-8<4 or —4x+2>3
42. 9r—5<2 or —8xr—5> —6
43. —-9xr—-5< -3 or z+1>3
44. —-5xr—3<6 and 2r—1>6
45. -1 < —-7Tx—3<L2

46. 0<bdzr—5<9

47. 5<9r—-3<6

48. —6<Tr+3<2

49. -2<-Tr+6<6

50. -9<-2z+5<1

In Exercises 51-62, solve the given in-
equality for z. Graph the solution set on
a number line, then use interval and set-
builder notation to describe the solution
set.

51, 121 1
’ 3 72 4 3
1 2 1 1
52, ——<Z_ 2.2
5327155
53, L.t @ 1
’ 2 "3 2 2
2 1 =z 2
54, _S<-_T_ =
39 53
1
55, —1<z— 2T o9
5
2 — 1
56. -2 <z L 4
3
1 1
57. —a<Ttl_THL o
2 3
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r—1 2x-—1
- <

58. —-3< 2
3 5

59. z<4—zxz<5h
60. —ax<2x4+3<7
61. —rx<zxz+5<11

62. 2r<3—x<8

63. Aeron has arranged for a demon-
stration of “How to make a Comet” by
Professor O’Commel. The wise profes-
sor has asked Aeron to make sure the
auditorium stays between 15 and 20 de-
grees Celsius (C). Aeron knows the ther-
mostat is in Fahrenheit (F) and he also
knows that the conversion formula be-

tween the two temperature scales is C =
(5/9)(F — 32).

a) Setting up the compound inequality
for the requested temperature range
in Celsius, we get 15 < C < 20. Us-
ing the conversion formula above, set
up the corresponding compound in-
equality in Fahrenheit.

b) Solve the compound inequality in part
(a) for F. Write your answer in set
notation.

c¢) What are the possible temperatures
(integers only) that Aeron can set the
thermostat to in Fahrenheit?
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11.

13.

15.

17.

[

(—o00,00) = {all real numbers}

(0,4] = {z|0 < z < 4}

<

0

no solution

®
4

v

21.

23.

25.

27.

4}

29.

31.

33.

< @ >
_1 13
2 3
(=32l ={z| -3 <z <2}
- O O >
_1 2
5
(—00,3) = {alz < 3}
< : >
(~o0, ~8] = {ole < -3
< @ >
_8
9
(=00, 1] J[4,00) ={zjlz <1lorz>
< O C >
1 4
(-8, -D={e| - <ae<-D}
) N
3 5
[1,00) = {z|z > 1}
< C >
1
no solution

A

v
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35. mno solution 53. (—1/3,5/3) = {z : -1/3 <z <
5/3}

A
v

O >
N g

~1/3 5/3

37. (0,3] ={z|0 < x <3}

> . . - 55. (—1,11/4) = {z: —1 <z <11/4}
N 1/4

39. (—o00,00) = {all real numbers}

* . 57. (—13,11] ={z: —13 <z < 11}

>

41. (—o00,00) = {all real numbers} ~13 1.1

>

[ 3

59. (-1,2)={zx: -1<z<2}

43. [-2,00) = {z|z > -2 < Cl 8 >
- C >
_2
9 61. (—5/2,6]={z: —5/2 <z <6}
- O - »
45. [—%,—%]:{ﬂ—%ﬁxﬁ—%} —5/2 6
< - - »
_5 _2
7 7 63.

5(F _
47. (5,10 ={z[§ <z <1} a) 15 < 3(F—32)<20

b) {F:59<F <68

—@
v

c) {59, 60, 61, 62, 63, 64, 65, 66, 67, 68}

49. (0,%) ={zl0 <z <&}

<

v

0

~31000)

51. (=7/6,1/6) = {z : —7/6 < z <
1/6}

—7/6 1/6
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S
set-builder 31
set-builder notation 44

solution
check 17,21, 44
empty 45

solve for x 15
u

union 37, 38
uppercase 23
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2 Functions

The concept of a function is a unifying theme in the study of mathematics and it has
a rich and storied history. The word “function” was first coined by Gottfried Wilhelm
Leibniz (c. 1694) (one of the co-founders of calculus with Sir Isaac Newton). Leibniz’s
concept of function was relegated to how geometrical properties of a curve (e.g., subtan-
gents and subnormals) depended on the shape of the curve. Johann Bernoulli (c. 1718)
described a function of a variable as a quantity that is constructed from that variable
and some constants. Indeed, even Leonard Euler (1707-1793), who was a former student
of Bernoulli, described the dependence of one variable on another through the means
of an analytical expression. In his Introductio in Analysin Infinitorum (Introduction
to infinite analyses) (1748), Euler states

The nature of the curve, provided it is continuous, is expressed through the
quality of the function y, that is, the rule of formation whereby the value of y
is obtained from the composition of constants and the variable x.

Euler equated the word function with an analytic equation describing the rela-
tionship between the independent and dependent variables. This is not the modern
definition of a function, but it is precisely how many of today’s students think about
the concept of a function; i.e., a function is an equation.

Fuler’s definition of function did not change much until mathematicians began
studying the equation of the vibrating string, an equation known as the wave equation.
Jean Baptiste Fourier (1768-1830), in his classic work on heat transfer, claimed that
any function could be expressed as an infinite series of trigonometric functions. It
turned out that he was wrong, and it was up to Johann Peter Gustav Lejeune Dirichlet
(1805-1859) to set sufficient conditions on functions to correct Fourier’s error. In order
to do that, Dirichlet had to separate the concept of function from its dependence on
an analytic expression. Dirichlet’s definition of a function closely mirrors the modern
day definition.
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SECTION 2.1 INTRODUCTION TO FUNCTIONS 73

Introduction to Functions

Our development of the function concept is a modern one, but quite quick, particularly
in light of the fact that today’s definition took over 300 years to reach its present state.
We begin with the definition of a relation.

Relations

We use the notation (2,4) to denote what is called an ordered
pair. If you think of the positions taken by the ordered pairs 55

(4,2) and (2,4) in the coordinate plane (see Figure 1), then it is .(
immediately apparent why order is important. The ordered pair
(4,2) is simply not the same as the ordered pair (2,4).

The first element of an ordered pair is called its abscissa. The (4.2)
second element of an ordered pair is called its ordinate. Thus, for >
example, the abscissa of (4,2) is 4, while the ordinate of (4,2) is D
9. Figure 1.

Definition 1. A collection of ordered pairs is called a relation.

For example, the collection of ordered pairs

R ={(0,1),(0,2),(3,4)} (2)

is a relation.

Definition 3. The domain of a relation is the collection of all abscissas of each
ordered pair.

Thus, the domain of the relation R in (2) is
Domain = {0, 3}.

Note that we list each abscissa only once.

Definition 4. The range of a relation is the collection of all ordinates of each
ordered pair.

Thus, the range of the relation R in (2) is
Range = {1,2,4}.

Let’s look at an example.

! Copyrighted material. See: http://msenux.redwoods.edu/Int AlgText/
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» Example 5. Consider the relation I' defined by
T ={(1,2),(3,2),(4,5)}. (6)
What are the domain and range of this relation?

The domain is the collection of abscissas of each ordered pair. Hence, the domain
of T is

Domain = {1, 3,4}.
The range is the collection of ordinates of each ordered pair. Hence, the range of T is
Range = {2,5}.

Note that we list each ordinate in the range only once.

_<>_

In Example 5, the relation is described by listing the ordered pairs. This is not the
only way that one can describe a relation. For example, a graph certainly represents a
collection of ordered pairs.

» Example 7. Consider the graph of the relation S shown in Figure 2.

5

Figure 2. The
graph of a relation.

What are the domain and range of the relation S?
There are five ordered pairs (points) plotted in Figure 2. They are
S ={(1,2),(2,1),(2,4),(3,3), (4,4) }.

Therefore, the relation S has Domain = {1,2,3,4} and Range = {1,2,3,4}. In the
case of the range, note how we’ve sorted the ordinates of each ordered pair in ascending
order, taking care not to list any ordinate more than once.

_<>_
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Functions

A function is a very special type of relation. We begin with a formal definition.

Definition 8. A relation is a function if and only if each object in its domain is
paired with one and only one object in its range.

This is not an easy definition, so let’s take our time and consider a few examples.
Consider, if you will, the relation R in (2), repeated here again for convenience.

R={(0,1),(0,2),(3,4)}

The domain is {0,3} and the range is {1,2,4}. Note that the number 0 in the domain
of R is paired with two numbers from the range, namely, 1 and 2. Therefore, R is not
a function.

There is a construct, called a mapping diagram, which can be helpful in determining
whether a relation is a function. To craft a mapping diagram, first list the domain on
the left, then the range on the right, then use arrows to indicate the ordered pairs in
your relation, as shown in Figure 3.

Figure 3. A mapping
diagram for R.

It’s clear from the mapping diagram in Figure 3 that the number 0 in the domain
is being paired (mapped) with two different range objects, namely, 1 and 2. Thus, R
is not a function.

Let’s look at another example.
» Example 9. Is the relation described in Example 5 a function?

First, let’s repeat the listing of the relation 7" here for convenience.

T=1{(1,2),(3,2),(4,5)}
Next, construct a mapping diagram for the relation T'. List the domain on the left, the
range on the right, then use arrows to indicate the pairings, as shown in Figure 4.

From the mapping diagram in Figure 4, we can see that each domain object on the
left is paired (mapped) with exactly one range object on the right. Hence, the relation
T is a function.

_<>_
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T
172
3/5
4

Figure 4. A mapping
diagram for T'.

Let’s look at another example.
» Example 10. Is the relation of Example 7, pictured in Figure 2, a function?

First, we repeat the graph of the relation from Example 7 here for convenience.
This is shown in Figure 5(a). Next, we list the ordered pairs of the relation S.

S ={(1,2),(2,1),(2,4),(3,3), (4,4)}

Then we create a mapping diagram by first listing the domain on the left, the range
on the right, then using arrows to indicate the pairings, as shown in Figure 5(b).

5
L ] L] S
1 1
1 2 9
! 3 3
1 4 4
5T

(a) (b)
Figure 5. A graph of the relation S and its corresponding
mapping diagram

Each object in the domain of S gets mapped to exactly one range object with one
exception. The domain object 2 is paired with two range objects, namely, 1 and 4.
Consequently, S is not a function.

_<>_

This is a good point to summarize what we’ve learned about functions thus far.
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Summary 11. A function consists of three parts:

~

a set of objects which mathematicians call the domain,

a second set of objects which mathematicians call the range,

3. and a rule that describes how to assign a unique range object to each object
in the domain.

o

The rule can take many forms. For example, we can use sets of ordered pairs,
graphs, and mapping diagrams to describe the function. In the sections that follow,
we will explore other ways of describing a function, for example, through the use of
equations and simple word descriptions.

Function Notation

We’ve used the word “mapping” several times in the previous examples. This is not a
word to be taken lightly; it is an important concept. In the case of the mapping diagram
in Figure 5(b), we would say that the number 1 in the domain of S is “mapped” (or
“sent”) to the number 2 in the range of S.

There are a number of different notations we could use to indicate that the number
1 in the domain is “mapped” or “sent” to the number 2 in the range. One possible
notation is

S:1 — 2

which we would read as follows: “The relation S maps (sends) 1 to 2. In a similar
vein, we see in Figure 5(b) that the domain objects 3 and 4 are mapped (sent) to the
range objects 3 and 4, respectively. In symbols, we would write

S:3 — 3, and

S:4 — 4

A difficulty arises when we examine what happens to the domain object 2. There
are two possibilities, either

S:2 — 1,
or
S:2 — 4.

Which should we choose? The 17 Or the 47 Thus, S is not well-defined and is not a
function, since we don’t know which range object to pair with the domain object 1.

The idea of mapping gives us an alternative way to describe a function. We could
say that a function is a rule that assigns a unique object in its range to each object in
its domain. Take for example, the function that maps each real number to its square.
If we name the function f, then f maps 5 to 25, 6 to 36, —7 to 49, and so on. In
symbols, we would write
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f:5— 25 f:6— 36, and f:—=7—49.

In general, we could write

f:z— 2%
Note that each real number z gets mapped to a unique number in the range of f,
namely, 22. Consequently, the function f is well defined. We’ve succeeded in writing a
rule that completely defines the function f.

As another example, let’s define a function that takes a real number, doubles it,
then adds 3. If we name the function g, then g would take the number 7, double it,
then add 3. That is,

g:7T—2(7)+3

Simplifying, g : 7 — 17. Similarly, g would take the number 9, double it, then add 3.
That is,

g:9—2(9)+3

Simplifying, g : 9 — 21. In general, g takes a real number x, doubles it, then adds
three. In symbols, we would write

g:x— 2z 4+ 3.

Notice that each real number z is mapped by g to a unique number in its range.
Therefore, we’ve again defined a rule that completely defines the function g.

It is helpful to think of a function as a machine. The machine receives input,
processes it according to some rule, then outputs a result. Something goes in (input),
then something comes out (output). In the case of the function described by the rule
f: x — 22, the “f-machine” receives input z, then applies its “square rule” to the
input and outputs x2, as shown in Figure 6(a). In the case of the function described
by the rule g : * — 2z + 3, the “g-machine” receives input x, then applies the rules
“double,” then “add 3,” in that order, then outputs 2z + 3, as shown in Figure 6(b).

i T

| |

1. Scuare 1. Double
d ! / 2. Add 3
x2 21‘ + 3
(a) The f-machine. (b) The g-machine.

Figure 6. Function machines.
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Let’s look at another example.

» Example 12. Suppose that f is defined by the following rule. For each real
number x,

f:ax— a?—2z—3.

Where does f map the number —37 Is f a function?
We substitute —3 for « in the rule for f and obtain
f:—3— (=3)2—-2(-3)-3.

Simplifying,

f:—-3—9+6-3,
or,

f:-3—12

Thus, f maps (sends) the number —3 to the number 12. It should be clear that each
real number = will be mapped (sent) to a unique real number, as defined by the rule
f: x — 2% — 22 — 3. Therefore, f is a function.

_<>_

Let’s look at another example.

» Example 13. Suppose that g is defined by the following rule. For each real
number x that is greater than or equal to zero,

g:r— .
Where does g map the number 47 Is g a function?
Again, we substitute 4 for z in the rule for ¢ and obtain
g:4— =+ V4.
Simplifying,
g:4— +2.

Thus, g maps (sends) the number 4 to two different objects in its range, namely, 2 and
—2. Consequently, g is not well-defined and is not a function.

_<>_

Let’s look at another example.
» Example 14. Suppose that we have functions f and g, defined by

frx—2at4+11 and g:x— (x+2)>%
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Where does g send 57

In this example, we see a clear advantage of function notation. Because our functions
have distinct names, we can simply reference the name of the function we want our
readers to use. In this case, we are asked where the function g sends the number 5, so
we substitute 5 for z in

g:x— (z+2)>%
That is,
g:5— (5+2)2

Simplifying, g : 5 — 49.

Modern Notation

Function notation is relatively new, with some of the earliest symbolism first occurring
in the 17th century. In a letter to Leibniz (1698), Johann Bernoulli wrote “For denoting
any function of a variable quantity «x, I rather prefer to use the capital letter having the
same name X or the Greek &, for it appears at once of what variable it is a function;
this relieves the memory.”

Mathematicians are fond of the notation
f:ax— -2z,

because it conveys a sense of what a function does; namely, it “maps” or “sends” the
number z to the number 2 — 2z. This is what functions do, they pair each object in
their domain with a unique object in their range. Equivalently, functions “send” each
object in their domain to a unique object in their range.

However, in common computational situations, the “arrow” notation can be a bit
clumsy, so mathematicians tend to favor a slightly different notation. Instead of writing
f:az— 2%— 22,

mathematicians tend to favor the notation

f(z) = 2? — 2z.

It is important to understand from the outset that these two different notations are
equivalent; they represent the same function f, one that pairs each real number z in
its domain with the real number 2% — 2z in its range.

The first notation, f : # — x? — 2z, conveys the sense that the function f is a
mapping. If we read this notation aloud, we should pronounce it as “f sends (or maps)
x to 22 — 22" The second notation, f(x) = x? — 2z, is pronounced “f of x equals

2 ’
T4 — 2.
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Warning 15. The phrase “f of x” is unfortunate, as our readers might recall
being trained from a very early age to pair the word “of” with the operation of
multiplication. For example, 1/2 of 12 is 6, as in 1/2 x 12 = 6. However, in
the context of function notation, even though f(x) is read aloud as “f of x,” it
does not mean “f times x.” Indeed, if we remind ourselves that the notation
f(x) = x? — 2z is equivalent to the notation f : x — x> — 2z, then even though
we might say “f of x,” we should be thinking “f sends x” or “f maps x.” We
should not be thinking “f times x.”

Now, let’s see how each of these notations operates on the number 5. In the first
case, using the “arrow” notation,

f:x— 2?—2az.
To find where f sends 5, we substitute 5 for z as follows.
f:5— (5)2—2(5).

Simplifying, f : 5 — 15. Now, because both notations are equivalent, to compute
f(5), we again substitute 5 for = in

f(z) = 2% —2z.

Thus,

Simplifying, f(5) = 15. This result is read aloud as “f of 5 equals 15,” but we want to
be thinking “f sends 5 to 15.

Let’s look at examples that use this modern notation.
» Example 16. Given f(z) = 23 + 322 — 5, determine f(—2).

Simply substitute —2 for z. That is,
f(=2) = (=2 +3(-2)* = 5

= —8+43(4)—5

=-8+12-5

= 1.
Thus, f(—2) = —1. Again, even though this is pronounced “f of —2 equals —1,” we
still should be thinking “f sends —2 to —1.”

——
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» Example 17. Given

z+3
f) = 2z —5’
determine f(6).
Simply substitute 6 for 2. That is,
6+ 3
6) =
9
S 12-5
_9
7

Thus, f(6) = 9/7. Again, even though this is pronounced “f of 6 equals 9/7,” we
should still be thinking “f sends 6 to 9/7.

——
» Example 18. Given f(x) = bz — 3, determine f(a + 2).
If we’re thinking in terms of mapping notation, then
f:rx—bx—3.

Think of this mapping as a “machine.” Whatever we put into the machine, it first
is multiplied by 5, then 3 is subtracted from the result, as shown in Figure 7. For
example, if we put a 4 into the machine, then the function rule requires that we multiply
input 4 by 5, then subtract 3 from the result. That is,

f:4—5(4)-3.

Simplifying, f: 4 — 17.

1. Multiply by 5
2. Subtract 3

|

5r — 3
Figure 7. The multiply by 5 then
subtract 3 machine.

Version: Fall 2007



SECTION 2.1 INTRODUCTION TO FUNCTIONS 83

Similarly, if we put an a + 2 into the machine, then the function rule requires that
we multiply the input a + 2 by 5, then subtract 3 from the result. That is,

f:a+2—5(a+2)-3.
Using modern function notation, we would write
fla+2)=5(a+2)—3.

Note that this is again a simple substitution, where we replace each occurrence of x
in the formula f(z) = 5z — 3 with the expression a + 2. Finally, use the distributive
property to first multiply by 5, then subtract 3.
fla+2)=5a+10-3
=b5a+ 7.

_<>_

We will often need to substitute the result of one function evaluation into a second
function for evaluation. Let’s look at an example.

» Example 19. Given two functions defined by f(x) = 3z + 2 and g(x) = 5 — 4z,
find f(g(2))-

The nested parentheses in the expression f(g(2)) work in the same manner that
they do with nested expressions. The rule is to work the innermost grouping symbols
first, proceeding outward as you work. We’ll first evaluate g(2), then evaluate f at the
result.

We begin. First, evaluate ¢g(2) by substituting 2 for x in the defining equation
g(x) =5 — 4x. Note that g(2) = 5 — 4(2), then simplify.

f(9(2)) = f(5-4(2)) = f(5-8) = f(=3)

To complete the evaluation, we substitute —3 for x in the defining equation f(x) =
3z + 2, then simplify.

f(-3)=3(-3)+2=-9+2=-T.
Hence, f(g(2)) = —T7.

It is conventional to arrange the work in one contiguous block, as follows.

f(9(2)) = f(5—4(2))
= f(=3)

=3(-3) +2

=7

You can shorten the task even further if you are willing to do the function substitution
and simplification in your head. First, evaluate g at 2, then f at the result.

f(9(2) = f(=3)=—7

Version: Fall 2007



84 CHAPTER 2 FUNCTIONS

_<>_

Let’s look at another example of this unique way of combining functions.

» Example 20. Given f(x) = 5z + 2 and g(z) = 3 — 2z, evaluate g(f(a)) and
simplify the result.

We work the inner function evaluation in the expression g(f(a)) first. Thus, to
evaluate f(a), we substitute a for x in the definition f(z) = 5x + 2 to get

9(f(a)) = g(5a + 2).

Now we need to evaluate g(5a + 2). To do this, we substitute 5a + 2 for z in the
definition g(x) = 3 — 2x to get

g(ba +2) =3 —2(5a + 2).
We can expand this last result and simplify. Thus,
g(f(a)) =3—-10a —4 = —10a — 1.

Again, it is conventional to arrange the work in one continuous block, as follows.

9(f(a)) = g(5a + 2)

=3 —2(ba +2)
=3—10a — 4
= —10a —1

Hence, g(f(a)) = —10a — 1.

Extracting the Domain of a Function

We’ve seen that the domain of a relation or function is the set of all the first coordinates
of its ordered pairs. However, if a functional relationship is defined by an equation
such as f(z) = 3z — 4, then it is not practical to list all ordered pairs defined by this
relationship. For any real z-value, you get an ordered pair. For example, if z = 5,
then f(5) = 3(5) — 4 = 11, leading to the ordered pair (5, f(5)) or (5,11). As you can
see, the number of such ordered pairs is infinite. For each new x-value, we get another
function value and another ordered pair.

Therefore, it is easier to turn our attention to the values of z that yield real number
responses in the equation f(z) = 3x — 4. This leads to the following key idea.

Definition 21. If a function is defined by an equation, then the domain of the
function is the set of “permissible x-values,” the values that produce a real number
response defined by the equation.
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We sometimes like to say that the domain of a function is the set of “OK z-values to
use in the equation.” For example, if we define a function with the rule f(x) = 3z — 4,
it is immediately apparent that we can use any value we want for x in the rule f(z) =
3x — 4. Thus, the domain of f is all real numbers. We can write that the domain
D =R, or we can use interval notation and write that the domain D = (—o0, 00).

It is not the case that x can be any real number in the function defined by the rule
f(z) = \/z. Tt is not possible to take the square root of a negative number.? Therefore,
x must either be zero or a positive real number. In set-builder notation, we can describe
the domain with D = {x : > 0}. In interval notation, we write D = [0, 00).

We must also be aware of the fact that we cannot divide by zero. If we define a
function with the rule f(x) = z/(xz — 3), we immediately see that = 3 will put a zero
in the denominator. Division by zero is not defined. Therefore, 3 is not in the domain
of f. No other x-value will cause a problem. The domain of f is best described with
set-builder notation as D = {x : = # 3}.

Functions Without Formulae

In the previous section, we defined functions by means of a formula, for example, as in

ﬂ@:;j;‘

Euler would be pleased with this definition, for as we have said previously, Euler thought
of functions as analytic expressions.

However, it really isn’t necessary to provide an expression or formula to define a
function. There are other forms we can use to express a functional relationship: a
graph, a table, or even a narrative description. The only thing that is really important
is the requirement that the function be well-defined, and by “well-defined,” we mean
that each object in the function’s domain is paired with one and only one object in its
range.

As an example, let’s look at a special function 7 on the natural numbers,® which
returns the number of primes less than or equal to a given natural number. For example,
the primes less than or equal to the number 23 are 2, 3, 5, 7, 11, 13, 17, 19, and 23,
nine numbers in all. Therefore, the number of primes less than or equal to 23 is nine.
In symbols, we would write

m(23) =9.

The square of a real number is either zero or a positive real number. It is not possible to square a real
number and get a negative result. Therefore, there is no real square root of a negative number.

The use of 7 in this context is unfortunate and apt to confuse. Readers are more likely to associate the
symbol 7 with the formulae for finding the area and circumference of a circle, with approximate value
m~ 3.14159. ... As John Derbyshire states in Prime Obsession, “The Greek alphabet has only 24 letters
and by the time mathematicians got round to giving this function a symbol (the person responsible
in this case is Edmund Landau, in 1909), all 24 had been pretty much used up and they had to start
recycling them.” In short, the symbol is standard, so we’ll just have to live with it.
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Note the absence of a formula in the definition of this function. Indeed, the definition
is descriptive in nature, so we might write

m(n) = number of primes less than or equal to n.

The important thing is not how we define this special function 7, but the fact that it
is well-defined; that is, for each natural number n, there are a fixed number of primes
less than or equal to n. Thus, each natural number in the domain of 7 is paired with
one and only one number in its range.

Now, just because our function doesn’t provide an expression for calculating the
number of primes less than or equal to a given natural number n, it doesn’t stop
mathematicians from seeking such a formula. Euclid of Alexandria (325-265 BC), a
Greek mathematician, proved that the number of primes is infinite, but it was the
German mathematician and scientist, Johann Carl Friedrich Gauss (1777-1855), who
first proposed that the number of primes less than or equal to n can be approximated
by the formula

n
ﬂ-(n) ~ lnna

where Inn is the “natural logarithm” of n (to be explained in Chapter 9). This ap-

proximation gets better and better with larger and larger values of n. The formula

was refined by Gauss, who did not provide a proof, and the problem became known as

the Prime Number Theorem. It was not until 1896 that Jacques Salomon Hadamard

(1865-1963) and Charles Jean Gustave Nicolas Baron de la Vallee Poussin (1866-1962),

working independently, provided a proof of the Prime Number Theorem.
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2.1 FExercises

In Exercises 1-6, state the domain and
range of the given relation.

1. R:{(173>7(274)7(374)}
2. R:{(173)7(274)7(275)}
3. R=1{(1,4),(2,5),(2,6)}

4. R= {(17 5)7 (274)7 (3> 6)}

5.
54
°
°
°
°
:528
6.
54
°
°
°
°
>5CL‘

In Exercises 7-12, create a mapping di-
agram for the given relation and state
whether or not it is a function.

7. The relation in Exercise 1.

8. The relation in Exercise 2.

9. The relation in Exercise 3.

10. The relation in Exercise 4.

11. The relation in Exercise 5.

12. The relation in Exercise 6.

13. Given that g takes a real number
and doubles it, then g : ©+ —7.

14. Given that f takes a real number
and divides it by 3, then f: z — 7.

15. Given that g takes a real number
and adds 3 to it, then g : © — 7.

16. Given that h takes a real number
and subtracts 4 from it, then h : * — 7.

17. Given that g takes a real number,
doubles it, then adds 5, then g : * — 7.

18. Given that h takes a real number,
subtracts 3 from it, then divides the re-
sult by 4, then A : x — 7.

Given that the function f is defined by
the rule f : * — 3z — 5, determine
where the input number is mapped in
Exercises 19-22.

19. f:3—7

4 Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/
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20. f:-5—7
2. f:a—7

22. f:2a4+3—7

Given that the function f is defined by
the rule f : * — 4 — bz, determine
where the input number is mapped in
Exercises 23-26.

23. f:2—7
24.

-3 —7

26.

f:
25. f:a—7
fi2a+11 —7

Given that the function f is defined by
the rule f : © — 22 — 42 — 6, deter-
mine where the input number is mapped
in Exercises 27-30.

27. f:1—7
28.

=2 —7

30.

ca— 7

f
29. f:—-1—07
f

Given that the function f is defined by
the rule f : *+ — 3z — 9, determine
where the input number is mapped in
Exercises 31-34.

31. f:a—7

32. f:a+1—7

33. f:2a—-5—77

34. f:a+h—7
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Given that the functions f and g are de-
fined by the rules f : ¢ — 22+ 3 and
g:x — 4—x, determine where the in-
put number is mapped in Exercises 35-
38.

35. f:2—7

36. ¢g:2—7

37. f:a+4+1—7

38. g:a—-3—7

39. Given that g takes a real number
and triples it, then g(x) =7.

40. Given that f takes a real number
and divides it by 5, then f(z) =7.

41. Given that g takes a real number
and subtracts it from 10, then g(z) =7.

42. Given that f takes a real number,
multiplies it by 5 and then adds 4 to the
result, then f(x) =7.

43. Given that f takes a real number,
doubles it, then subtracts the result from
11, then f(z) =7.

44. Given that h takes a real number,
doubles it, adds 5, then takes the square
root of the result, then h(x) =7.

In Exercises 45-54, evaluate the given
function at the given value b.

45. f(x) =12z + 2 for b = 6.
46. f(x)=—11lx —4 for b= -3.
47. f(x) = -9z —1 for b = —5.

48. f(x) =1lx +4 for b= —4.
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49. f(x) =4 for b= —12.

50. f(z)=7"for b= —T.

51. f(x)=0for b= —T7.

52. f(x) =12z + 8 for b= —3.
53. f(x)=—9z+ 3 for b = —1.

54. f(z)=6x — 3 for b= 3.

In Exercises 55-58, given that the func-
tion f is defined by the rule f(z) = 2z +
7, determine where the input number is
mapped.

55. f(a) =7

56. f(a+1)="7

57. f(Ba—2)=7

58. f(a+h)="

In Exercises 59-62, given that the func-
tion g is defined by the rule g(x) = 3 —
2z, determine where the input number is
mapped.

59. g(a) =7

60. g(a+3)="7

61. g¢g(2—5a)="

62. gla+h)="

Given that the functions f and g are
defined by the rules f(z) = 1 — z and
g(x) = 2x + 13, determine where the in-
put number is mapped in Exercises 63-
66.

63. f(a) =7

INTRODUCTION TO FUNCTIONS 89

64. g(a)="
65. f(a+3)="7

66. g(4—a)="

Given that the functions f and g are de-
fined by the rules f(z) = 3z + 4 and
g(x) = 2z —5, determine where the input
number is mapped in Exercises 67-70.

67. f(9(2)) ="
68. g(f(2) ="
69. f(g(a)) =7

70. g(f(a)) =7

Given that the functions f and g are de-
fined by the rules f(z) = 2z — 9 and
g(z) = 11, determine where the input
number is mapped in Exercises 71-74.

1 f(g(2) =7

74. g(f(a)) =7

Use set-builder notation to describe the
domain of each of the functions defined
in Exercises 75-78.

75 f(@) = xiggs
76 flz) = xi465
T f@) = f788
8. fa)= - 3052
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Use set-builder and interval notation to
describe the domain of the functions de-
fined in Exercises 79-82.

79. f(z)=+z+69
80. f(z)=+vaz +62
81l. f(x)=+z—-281

82. f(x)=+z—98

Two integers are said to be relatively prime
if their greatest common divisor is 1. For
example, the greatest common divisor of
6 and 35 is 1, so 6 and 35 are relatively
prime. On the other hand, the greatest
common divisor of 14 and 21 is not 1
(it is 7), so 14 and 21 are not relatively
prime. The Euler ¢-function is defined
as follows:

If n =1, then ¢(n) = 1.

e Ifn > 1, then ¢(n) is the number of
positive integers less than n that are
relatively prime to n. In Exercises 83-
84, evaluate the Euler ¢-function at
the given input.

83. ¢(12)

84. ¢(36)
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1. Domain = {1, 2,3}, Range = {3,4} 23.
3. Domain = {1, 2}, Range = {4, 5,6} 25.

5. Domain = {1, 2,3}, Range = {1,2,3,4} 27.

7.
R
1———3
2 7 4
3
Function.
9.

R

]——»4
2 i: 5
6
Not a function.

11.

R
l——mm1

22— 2
3 3
::4
Not a function.
13. g:z — 2z
15. g:z —xz+3
17. g:x — 2x+5
19. f:3 —4

2. f:a —3a-5

29.

31.

33.

35.

37.

39.

41.

43.

45.

47.

49.

51.

53.

55.

57.

59.

61.

63.

65.

i =1 — -1

f

f

!

f
fia—3a—9
f:2a—5 — 6a—24
fi2—7
fia+1 —2a+5
g(z) =3z

g(z) =10 —

flz) =11 -2z

74

44

4

0

12

fla)=2a+7
f(3a—2)=6a+3
g(a) =3 —2a

9(2 = 5a) = 10a — 1
flay=1-a

fla+3)=—-a—2
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67. f(9(2)) =1

69. f(g(a)) =6a—11

71 f(9(2) =13

73. f(g(a)) =13

75. Domain = {z : z # —98}
77. Domain = {z : x # 88}

79. Domain = [-69,00) = {z : = >
—69}

81. Domain = [81,00) = {z : z > 81}

83. $(12) =4
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The Graph of a Function

Rene Descartes (1596-1650) was a French philosopher and mathematician who is well
known for the famous phrase “cogito ergo sum” (I think, therefore I am), which appears
in his Discours de la methode pour bien conduire sa raison, et chercher la verite dans
les sciences (Discourse on the Method of Rightly Conducting the Reason, and Seeking
Truth in the Sciences). In that same treatise, Descartes introduces his coordinate
system, a method for representing points in the plane via pairs of real numbers. Indeed,
the Cartesian plane of modern day is so named in honor of Rene Descartes, who some
call the “Father of Modern Mathematics.”

Descartes’ work, which forever linked geometry and algebra, was continued in an
appendix to Discourse on Method, entitled La Geometrie, which some consider the
beginning of modern mathematics. Certainly both Newton and Leibniz, in developing
the Calculus, built upon the foundation provided in this work by Descartes.

A Cartesian Coordinate System consists of a pair of axes, usually drawn at right
angles to one another in the plane, one horizontal (labeled x) and one vertical (labeled
y), as shown in the Figure 1. The quadrants are numbered I, II, III, and IV, in
counterclockwise order, and samples of ordered pairs of the form (z,y) are shown in
each quadrant of the Cartesian coordinate system in Figure 1.

Y Y
(_37 3)
I I (3:2)
< > < >
11 IV "(—4,-2)
v v (27 _4)
Numbering the quadrants. To the right and up is positive,

left and down is negative.

Figure 1. The Cartesian coordinate system.
Now, suppose that we have a relation
R={(1,2),(3,1),(3,4),(4,3)}.

Recall that relation is the name given to a collection of ordered pairs. In Figure 2(b)
we’ve plotted each of the ordered pairs in the relation R. This is called the graph of
the relation R.

® Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/
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Definition 1. The graph of a relation is the collection of all ordered pairs of
the relation. These are usually represented as points in a Cartesian coordinate
system.

5

R (3,4)

| 1

(4,3)
3 9
(1,2)

4 3
(3,1)

4

(a) (b)

Figure 2. A mapping diagram and its graph.

In Figure 2(a), we've created a mapping diagram of the ordered pairs. Note that
the domain object 3 is paired with two range elements, namely 1 and 4. Hence the
relation R is not a function. It is interesting to note that there are two points in the
graph of R in Figure 2(b) that have the same first coordinate, namely (3,1) and (3,4).
This is a signal that the graph of the relation R is not a function. In the next section
we will discuss the Vertical Line Test, which will use this dual use of the first coordinate
to determine when a relation is a not a function.

Creating the Graph of a Function

Some texts will speak of the graph of an equation, such as “Draw the graph of the
2

equation y = z*.” This instruction raises a number of difficulties.
e First, the instruction provides no direction to the reader; that is, what does the
instruction mean? It’s not very helpful.

e Secondly, the instruction is incorrect. You don’t draw the graphs of equations.
Rather, you draw the graphs of relations and/or functions. A graph is just another
way of representing a function, a relation that pairs each element in its domain with
exactly one element in its range.

So, what is the proper instruction? First, we will provide the formal definition of
the graph of a function, then we will break it down by means of examples.
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Definition 2. The graph of a function is the collection of all ordered pairs of
the function. These are usually represented as points in a Cartesian coordinate
system.

As an example, consider the function

f=1{(1,2),(2,4),(3,1),(4,3)}. (3)

Readers will note that each object in the domain is paired with one and only one object
in the range, as seen in the mapping diagram of Figure 3(a).

Thus, we have two representations of the function f, the collection of ordered pairs
(3), and the mapping diagram of in Figure 3(a). A third representation of the function
f is the graph of the ordered pairs of the function, shown in the Cartesian plane in
Figure 3(b).

54
f EX)
] 1 (3)
9 9 w2
3 3 e
4 4
> T

(a) (b)
Figure 3. A mapping diagram and its graph.

When the function is represented by an equation or formula, then we adjust our
definition of its graph somewhat.

Definition 4. The graph of f is the set of all ordered pairs (x, f(x)) so that x
is in the domain of f. In symbols,

Graph of f = {(z, f(x)) : « is in the domain of f.}.

This last definition is most easily explained by example. So, let’s define a function
f that maps any real number z to the real number z?; that is, let f(z) = 2. Now,
according to Definition 4, the graph of f is the set of all points (z, f(x)), such that z

is in the domain of f.

The way is now clear. We begin by creating a table of points (x, f(z)), where x is in
the domain of the function f defined by f(x) = 2. The choice of z is both subjective
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and experimental, so we begin by choosing integer values of x between —3 and 3. We
then evaluate the function at each of these z-values (e.g., f(—3) = (=3)? = 9). The
results are shown in the table in Figure 4(a). We then plot the points in our table in
the Cartesian plane as shown in Figure 4(b).

y
104
z flz) =2* | (z,f(2)) 1 1
-3 9 (—3,9)
—2 4 (—2,4) JENES
~1 1 (-1,1) o
0 0 (0,0) 1 7
1 1 (1,1)
2 4 (2,4)
3 9 (3,9)
(a) (b)

Figure 4. Plotting pairs satisfying the functional relationship defined by the equation
f(z) =22

Although this is a good start, the graph in Figure 4(b) is far from complete.
Definition 4 requires that we plot the ordered pairs (z, f(x)) for every value of = that
is in the domain of f. We’ve only plotted seven such points, so we’re not done. Let’s
add more points to the graph of f. We’ll evaluate the function at each of the z-values
shown in the table in Figure 5(a), then plot the additional pairs (z, f(z)) from the
table in the Cartesian plane, as shown in Figure 5(b).

Y
° 10“ °

v [ i@ =2 @@ EmmEn
—5/2 25/4 | (—5/2,25/4)
—3/2 9/4 (—3/2,9/4) SEEA
—12 | 14 | (<1/2.1/4) | an .
1/2 1/4 (1/2,1/4) 10
3/2 9/4 (3/2,9/4)

5/2 25/4 (5/2,25/4)

(a) (b)
Figure 5. Plotting additional pairs

(z, f(x)) defined by the equation f(z) = z2.
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We're still not finished, because we’ve only plotted 13 pairs (z, f(x)), such that f(z) =
22. Definition 4 requires that we plot the ordered pairs (z, f(z)) for every value of
z in the domain of f.

However, a pattern is certainly establishing itself, as seen in Figure 5(b). At some
point, we need to “make a leap of faith,” and plot all ordered pairs (x, f(z)), such that
2 is in the domain of f. This is done in Figure 6.

Y
1011

\ 4

Figure 6. Plotting all pairs (z, f(z))
so that x is in the domain of f.

There are several important points we need to make about the final result in Figure 6.

e When we draw a smooth curve, such as that shown in Figure 6, it is important
to understand that this is a simply a shortcut for plotting all pairs (x, f(x)), where
f(x) = 2% and z is in the domain of f.°

e It is important to understand that we are NOT “connecting the dots,” neither with
a ruler nor with curved segments. Rather, the curve in Figure 6 is the result of
plotting all of the individual pairs (z, f(z)).

e The “arrows” at each end of the curve have an important meaning. Much as the
ellipsis at the end of the progression 2, 4, 6, ... mean “et-cetera,” the arrows at each
end of the curve have a similar meaning. The arrow at the end of the left-half of the
curve indicates that the graph continues opening upward and to the left, while the
arrow at the end of the right-half of the curve indicates that the graph continues
opening upward and to the right.

Creating Graphs by Hand

We're going to look at several basic graphs, which we’ll create by employing the strategy
used to create the graph of f(x) = 2. First, let’s summarize that process.

6 Tt would take too long to plot the individual pairs “one at a time.”
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Summary 5. If a function is defined by an equation, you can create the graph
of the function as follows.

1. Select several values of x in the domain of the function f.

2. Use the selected values of x to create a table of pairs (x, f(x)) that satisfy the
equation that defines the function f.

3. Create a Cartesian coordinate system on a sheet of graph paper. Label and
scale each axis, then plot the pairs (z, f(x)) from your table on your coordinate
system.

4. If the plotted pairs (z, f(x)) provide enough of a pattern for you to intuit the
shape of the graph of f, make the “leap of faith” and plot all pairs that satisfy
the equation defining f by drawing a smooth curve on your coordinate system.
Of course, this curve should contain all previously plotted pairs.

5. If your plotted pairs do not provide enough of a pattern to determine the final
shape of the graph of f, then add more pairs to your table and plot them
on your Cartesian coordinate system. Continue in this manner until you are
confident in the shape of the graph of f.

Let’s look at an example.

» Example 6. Sketch the graph of the function defined by the equation f(z) = x3.

We'll start with z-values —2, —1, 0, 1, and 2, then use the equation f(z) = 23 to
determine pairs (z, f(z)) (e.g., f(—2) = (=2)3 = —8). These are listed in the table in
Figure 7(a). We then plot the points from the table on a Cartesian coordinate system,
as shown in Figure 7(b).

y
104
z | fl@)=2" | (3 f(2))
—2 -8 (—2,-8)
~1 ~1 (—1,-1) I
0 0 (0,0) 1 ] 7
(1,1)
2 8 (2,8)

(a) (b)
Figure 7. Plotting pairs (z, f(z)) defined by the equation f(z) = z3.
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We’re a bit unsure of the shape of the graph of f, so we’ll add a few more pairs to our
table and plot them. This is shown in Figures 8(a) and (b).

Yy
104
@ f(z) =2 (z, f(z))

—3/2 —27/8 (—3/2,—27/8) .
~1/2 ~1/8 (—1/2,—1/8) J L L.
1/2 1/8 (1/2,1/8) . 10
3/2 27/8 (3/2,27/8) .

(a) (b)

Figure 8. Plotting additional pairs (z, f(z)) defined by the equation f(x) = 3.

The additional pairs fill in the shape of f in Figure 8(b) a bit better than those in
Figure 7(b), enough so that we’re confident enough to make a “leap of faith” and draw
the final shape of the graph of f(z) = 2® in Figure 9.

Y
1011

\ 4

Figure 9. The final
graph of f(z) = z3.

Let’s look at another example.
» Example 7. Sketch the graph of f(x) = /x.

Again, we’ll start by selecting several values of z in the domain of f. In this case,
f(x) = \/z, and it’s not possible to take the square root of a negative number.” Also,

7 Whenever you square a real number, the result is either positive or zero. Hence, the square root of a
negative number cannot be a real number.
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if we’re creating a table of pairs by hand, it’s good strategy to select known squares.
Thus, we’ll use x =0, 1, 4, and 9 for starters.

Y
104
z | fl@) =V (z, f(z))
0 0 (0,0) i
1 1 (171) - - \r
4 2 (4,2) 10"
9 3 (9,3)

(a) (b)
Figure 10. Plotting pairs (z, f(z)) defined by the equation f(z) = \/z.

Some might be ready to make a “leap of faith” based on these initial results. Others
might want to use a calculator to compute decimal approximations for additional square
roots. The resulting pairs are shown in the table in Figure 11(a) and the additional
pairs are plotted in Figure 11(b).

f@)=vz | (2 f(z) 103

x )

2 1.4 (2,1.4)

3 1.7 (3,1.7)

5 2.2 (5,2.2) | aanainaige
6 2.4 (6,2.4) 10
7 2.6 (7,2.6)

8 2.8 (8,2.8)

Figure 11. Plotting additional pairs
(x, f(z)) defined by the equation f(z) = \/=.

The pattern in Figure 11(b) is clear enough to make a “leap of faith” and complete
the graph as shown in Figure 12.
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1011

Figure 12. The graph of f defined
by the equation f(x) = +/z.

Using the Table Feature of the Graphing Calculator

The TABLE feature on your graphing calculator can be of immense help when creating

tables of points that satisfy the equation defining the function f. Let’s look at an
example.

» Example 8. Sketch the graph of f(x) = |z|.

Enter the function f(x) = |x| in the Y= menu as follows.®

1. Press the Y= button on your calculator. This will open the Y= menu as shown in
Figure 13(a). Use the arrow keys and the CLEAR button on your calculator to
delete any existing functions.

2. Press the MATH button to open the menu shown in Figure 13(b).

3. Press the right-arrow on your calculator to select the NUM submenu as shown in
Figure 13(c).

4. Select 1:abs(, then enter X and close the parentheses, as shown in Figure 13(d).

H= Flatl  Flotz  Flots H= Flobl Flatz  Floks
~Ny =l ~NBabs CED

M= =Mz=N

= “Ma=

Wy= wy=

“Me= “Me=

“ME= ME=

o ik Sr=

(a) (d)

Figure 13. Entering f(z) = |z| in the Y= menu.

8 Readers will recall that the absolute value function takes a real number and makes it nonnegative. For
example, | — 3| = 3, [0] = 0, and |3| = 3. We’ll have more to say about the absolute value function in
Chapter 3.
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We will now use the TABLE feature of the graphing calculator to help create a table
of pairs (z, f(z)) satisfying the equation f(x) = |z|. Proceed as follows.

1. Select 2nd TBLSET (i.e., push the 2nd button followed by TBLSET), which is located
over the WINDOW button. Enter TblStart=-3, ATbl = 1, and set the independent
and dependent variables to Auto (this is done by highlighting Auto and pressing the
Enter button), as shown in Figure 14(a).

2. Press 2nd TABLE, which is located above the GRAPH button, to produce the table of
pairs (z, f(x)) shown in Figure 14(b).

We’ve plotted the pairs directly from the calculator onto a Cartesian coordinate
system on graph paper in Figure 14(c).

Y
54
HELE SETUF A . .
Tblstart=-3 = IE . .
aThl=1 E z
IndrFht A=k o : N
[eretid: A=k i i - > T
F Z 5
3 3
=-3
v

(a) (b) (c)

Figure 14. Creating a table with the TABLE feature of the graphing calculator.

Based on what we see in Figure 14(c), we're ready to make a “leap of faith” and
draw the graph of f shown in Figure 15.

Y
54 f

Gty

A\ 4
Figure 15. The graph of f defined
by f(z) = |x].

Alternatively, or as a check, we can have the graphing calculator draw the graph for us.

Push the Z0OM button, then select 6:ZStandard (shown in Figure 16(a)) to produce
the graph shown in Figure 16(b).

Version: Fall 2007



SECTION 2.2 THE GRAPH OF A FuNcTION 103

i Z20ecimal
P 2Sauare
25t andard
JLZ2Trig

(a) (b)
Figure 16. Creating the graph of f(z) = |z| with the graphing
calculator.

Adjusting the Viewing Window

In Example 8, we used the graphing calculator to draw the graph of the function
defined by the equation f(x) = |z|. For the functions we’ve encountered thus far,
drawing their graphs using the graphing calculator is pretty trivial. Simply enter the
equation in the Y= menu, then press the ZOOM button and select 6:ZStandard. However,
if the graph of a function doesn’t fit (or even appear) in the “standard” viewing window,
it can be quite challenging to find optimal view settings so that the important features
of the graph are visible.

Indeed, as one might not even know what “important” features to look for, setting
the viewing window is usually highly subjective and experimental by nature. Let’s look
at some examples.

» Example 9. Use a graphing calculator to sketch the graph of f(z) = 56 — x — 22.

Experiment with the WINDOW settings until you feel you have a viewing window that
exhibits the important features of the graph.

First, start by entering the function in the Y= menu, as shown in Figure 17(a).
The caret “on the keyboard is used for exponents. Press the ZOOM button and select
6:ZStandard to produce the graph shown in Figure 17(b).

H= Flokl  Flokz  Floks
M ESE—R—ET 2
~Nzll

N E=

N y=

o=

Me=
SN EIEIEIE) .
(a) (b)

Figure 17. The graph of f(z) = 56 — z — 22 in the “standard”
viewing window.

As the graph draws, observe that the graph rises from the bottom of the screen,
leaves the top of the screen, then returns, falling from the top of the screen and leaving
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again at the bottom of the screen. This would indicate that there must be some sort
of “turning point” that is not visible at the top of the screen.

Press the WINDOW button to reveal the “standard viewing window” settings shown
in Figure 18(a). The following legend explains each of the WINDOW parameters in
Figure 18(a).

Xmin = x-value of left edge of viewing window
Xmax = x-value of right edge of viewing window
Xscl = zx-axis tick increment

Ymin = y-value of bottom edge of viewing window
Ymaxr = y-value of top edge of viewing window
Yscl = y-axis tick increment

It is easy to evaluate the function f(x) = 56 — x — 2% at = 0. Indeed, f(0) =
56 —0—0% = 56. This indicates that the graph of f must pass through the point (0, 56).
This gives us a clue at how we should set the upper bound on our viewing window. Set
Ymax = 60, as shown in Figure 18(b), then press the GRAPH button to produce the
graph and viewing window shown in Figure 18(c).

THOIOL THOIOh
T=min=-18 tTemin=-14

Amax=1A Aamax=1AH

necl=1 necl=1

Ymin=-1@ Ymin=-18

“Ymax=14 “max=5H

Y=rl=1 scl=

wrres=1 srres=1 I 4

(a) (b) ()

Figure 18. Changing the viewing window.

Although the viewing window in Figure 18(c) shows the “turning point” of the
graph of f, we will make some additional changes to the window settings, as shown in
Figure 19(a). First, we “widen” the viewing window a bit, setting Xmin = -15 and
Xmax = 15, then we set tick marks on the x-axis every 5 units with Xscl = 5. Next,
to create a little room at the top of the screen, we set Ymax = 100, then we “balance”
this setting with Ymin = -100. Finally, we set tick marks on the y-axis every 10 units
with Yscl = 10.

Push the GRAPH button to view the effects of these changes to the WINDOW parameters
in Figure 19(b). Note that these settings are highly subjective, and what one reader
might find quite pleasing will not necessarily find favor with other readers.

However, what is important is the fact that we’ve captured the “important features”
of the graph of f(z) = 56 — 2 — x2. Note that this is a very controversial statement. If
one is just beginning to learn about the graphs of functions, how is one to determine
what are the “important features” of the graph? Unfortunately, the answer to this
question is, “through experience.” Undoubtedly, this is a very frustrating phrase for
readers to hear, but at least it’s truthful. The more graphs that you draw, the more
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THOOL
tHmin=-15

mmax=15 ;
Wzc1=5 /_ F_\\
Ymin=-1848 i
Vmax=186
Y=cl=1A
wrres=1

(a) (b)
Figure 19. Improving the WINDOW settings.

7« 7w«

you will learn how to look for “turning points,
and the like.

end-behavior,” “z- and y-intercepts,”

For example, how do we know that the WINDOW settings in Figure 19(a) determine
a viewing window (Figure 19(b)) that reveals all “important features” of the graph?
The answer at this point is, “we don’t, not without further experiment.” For example,
the careful reader might want to try the window settings Xmin=-50, Xmax=50, Xsc1=10,
Ymin=-500, Ymax=500, and Ysc1=100 to see if any unexpected behavior crops up.

_<>_

Let’s look at one last example.

» Example 10. Sketch the graph of the function f defined by the equation f(x) =
ot + 923 — 11722 — 2652 + 2100.

Load the function into the Y= menu (shown in Figure 20(a)) and select 6:ZStan-
dard to produce the graph shown in Figure 20(b).

W= Flotl  FIokz  Flok:
s RRTG IR 3-11
kR 2-2EDkn+21 08

~Nzll
M=

M=
ENEIEIEIE) :
(a) (b)

Figure 20. Sketching the graph of f(z) = z* + 923 — 11722 —
2652 + 2100.

As the graph draws, observe that it rises form the bottom of the viewing window,
leaves the top of the viewing window, then returns to fall off the bottom of the viewing
window, then returns again and rises off the top of the viewing window.

We notice that f(0) = 2100, so we’ll need to set the top of the viewing window
to that value or higher. With this thought in mind, we’ll set Ymax=3000, then set
Ymin=-3000 for balance, then to avoid a million little tick marks, we’ll set Ysc1=1000,
all shown in Figure 21(a). Pressing the GRAPH button then produces the image shown
in Figure 21(b).
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ITHDOL

tHmin=-14
mmax=1a ﬁ&x
wecl=1

7

Ymin=-38848
Vmax=3EE4E
Ve l=1A684
wrres=1

(a) (b)

Figure 21. Adjusting the viewing window.

Does it appear that we have all of the “important features” of this graph displayed
in our viewing window? Note that we did not experiment very much. Perhaps we
should try expanding the window a bit more to see if we have missed any important
behavior. With that thought in mind, we set Xmin=-20, Xmax=20, and to avoid a ton
of tick marks, Xsc1=5, as shown in Figure 22(a). Pushing the GRAPH button produces
the image in Figure 22(b).

THOCL

Temin=-28

wmax=2=a H&

wecl=5 . .
T,

Ymax=2JE80

Ve l=1064
Ar-es=1

(a) (b)
Figure 22. Adjusting the viewing window again reveals be-
havior not seen.

Note that the viewing window in Figure 22(b) reveals behavior not seen in the
viewing window of Figure 21(b). If we had not experimented further, if we had not
expanded the viewing window, we would not have seen this new behavior. This is an
important lesson.

Note that one of the “turning points” of the graph in Figure 22(b) lies off the bot-
tom of the viewing window. We’ll make one more adjustment to include this important
feature. Set Ymin=-10000, Ymax=10000, and Ysc1=5000, as shown in Figure 23(a),
then push the GRAPH button to produce the image shown in Figure 23(b).

THOOL
THmin=-2A

wecl= Pl
Ymin=-1886840 -
?max=1@%%ﬁ I

(a) (b)
Figure 23. Adjusting the viewing window again reveals be-
havior not seen.
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The graph in Figure 23(b) shows all of the “important features” of the graph of f,
but the careful reader will continue to experiment, expanding the viewing window to
ascertain the truth of this statement.

_<>_
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2.2 FExercises

Perform each of the following tasks for
the functions defined by the equations in
Exercises 1-8.

i. Set up a table of points that satisfy
the given equation. Please place this
table of points next to your graph on
your graph paper.

ii. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis, then plot each of the points from
your table on your coordinate system.

iii. If you are confident that you “see”
the shape of the graph, make a “leap
of faith” and plot all pairs that sat-
isfy the given equation by drawing
a smooth curve (free-hand) on your
coordinate system that contains all
previously plotted points (use a ruler
only if the graph of the equation is
a line). If you are not confident that
you “see” the shape of the graph, then
add more points to your table, plot
them on your coordinate system, and
see if this helps. Continue this process
until you “see” the shape of the graph
and can fill in the rest of the points
that satisfy the equation by drawing
a smooth curve (or line) on your co-
ordinate system.

1. f(z)=2z+1
2. f(x)=1-z
3. f)=3-3uz
4. flz)=-1+3z
5. f(z)=2%-2

6. f(r)=4—2?

Perform each of the following tasks for
the functions Exercises 9-10.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

ii. Use the table feature of your graph-
ing calculator to evaluate the func-
tion at the given values of . Record
these results in a table next to your
coordinate system on your graph pa-
per.

iii. Plot the points in the table on your
coordinate system then use them to
draw the graph of the given function.
Label the graph with its equation.

9. f(x)=vVx—4atx=4,56,7,8,
9, and 10.

10. f(z) = vV4—=x at © = —10, -8,
—6, —4, —2, 0, 2, and 4.

In Exercises 11-14, the graph of the
given function is a parabola, a graph that
has a “U-shape.” A parabola has only
one turning point. For each exercise, per-
form the following tasks.

i. Load the equation into the Y= menu
of your graphing calculator. Adjust
the WINDOW parameters so that the
“turning point” (actually called the
vertex) is visible in the viewing win-
dow.

ii. Make a reasonable copy of the image
in the viewing window on your home-

9 Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/
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work paper. Draw all lines with a Perform each of the following tasks for
ruler (including the axes), but draw the equations in Exercises 19-22.
curves freehand. Label and scale each
axis with xmin, xmax, ymin, and ymax.
Label the graph with its equation.

i. Load the equation into the Y= menu.
Adjust the WINDOW parameters until
you think all important behavior (“turn-

11. f(z) =22 —2—30 ing points,” etc.) is visible in the
viewing window. Note: This is more
12. f(x) =24 —22 — 72 difficult than it sounds, particularly
when we have no advance notion of
13. f(x) =11+ 102 — 22 what the graph might look like. How-
ever, experiment with several settings
14. f(x) =2+ 11z — 12 until you “discover” the settings that

exhibit the most important behavior.

ii. Copy the image on the screen onto
your homework paper. Label and scale
each axis with xmin, xmax, ymin, and
ymax. Label the graph with its equa-
tion.

Each of the equations in Exercises 15-

18 are called “cubic polynomials.” Each

equation has been carefully chosen so that

its graph has exactly two “turning points.”

For each exercise, perform each of the

following tasks. 19, f(z) = 22 — o — 465

i. Load the equation into the Y= menu
of your graphing calculator and ad-
just the WINDOW parameters so that
both “turning points” are visible in
the viewing window.

ii. Make a reasonable copy of the graph
in the viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
then label the graph with its equa-
tion. Remember to draw all lines with
a ruler.

20. f(z) =23 — 2422 + 65z + 1050

21.  f(x) = 2* — 22 — 16822 + 288z +
3456

22. f(z) = —2* 323 +1412% + 5237 —
660

15. f(z) =23 — 22? — 292 + 30
16. f(r) = —23 + 222 + 192 — 20
17. f(z) =23 + 82% — 53z — 60

18. f(z) = —a3 + 1622 — 43z — 60
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2.2 Answers

1 5.
z |f(z) =2z +1|(z, f(2)) z |f(x) = 2® - 2|(z, f(x))
—2 -3 —2,-3 -3 7 (=3,7)
1 1 “1,-1 ) 2 (—2,2)
0 1 0, 1 1 (=1,-1)
1 3 : 0 9 (0, —2)
1 1 (1,-1)
59 fla)=20+1 2 2 (2,2)
3 (3,7)
10%{ flz)=a?=2
- / :51’
V SRy
3.
2 [f(@) = 3— 2/2|(x, (@) )
9 4 (—2,4) .
0 3 (0,3) '
2 2 (2,2) z |f(x) = 332/2 —6|(z, f(x))
4 1 (4,1) 4 2 (—4,2)
) 4 (—2,—4)
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10%{ f(x):x2/2—6 11.
=22 —2-30
50" fle)=a"—x
" > T
10
_fO \/ T()a:
—50
9.
13.
z|f(z) =vz -4 (z,f(z)) o
4 0 (4,0) il
5 1 (5,1)
6| 1.4142 (6,1.4142)
7 1.7321 (7,1.7321) ) .
8 2 (8,2) =5 15
9| 22361 (9,2.2361)
10 2.4495 (10,2.4495)
—507
103{ f(z)=11+10z—2z>
15.
fl2)=vz—1 100y f(z)=23—222—292+30
10
-10 \/ 10"
—100Y
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4004

—400Y

f(z)=2>482%—532—60

v

X
\/ .

f(z)=22%—2—465

20

19.
600%{
—20
—600Y
21.
6000:?;

f(@&)=2*—22° 16822 +2882+3456

_f5 v

4
—6000

—y
ot
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2.3 Interpreting the Graph of a Function

In the previous section, we began with a function and then drew the graph of the
given function. In this section, we will start with the graph of a function, then make a
number of interpretations based on the given graph: function evaluations, the domain
and range of the function, and solving equations and inequalities.

The Vertical Line Test

Consider the graph of the relation R shown in Figure 1(a). Recall that we earlier
defined a relation as a set of ordered pairs. Surely, the graph shown in Figure 1(a) is
a set of ordered pairs. Indeed, it is an infinite set of ordered pairs, so many that the
graph is a solid curve.

In Figure 1(b), note that we can draw a vertical line that cuts the graph more
than once. In Figure 1(b), we’ve drawn a vertical line that cuts the graph in two
places, once at (x,y1), then again at (z,ys2), as shown in Figure 1(c). This means that
the domain object z is paired with two different range objects, namely y; and 2, so
relation R is not a function.

Y Y Y

A

:C,
/ R R Y2 (@32) » R
A

1

(mvyl)

<

(a) (b) ()

Figure 1. Explaining the vertical line test for functions.

Recall the definition of a function.

Definition 1. A relation is a function if and only if each object in its domain
is paired with one and only one object in its range.

Consider the mapping diagram in Figure 2, where we’ve used arrows to indicate
the ordered pairs (z,y;) and (z,y2) in Figure 1(c). Note that x, an object in the
domain of R, is mapped to two objects in the range of R, namely y; and y2. Hence,
the relation R is not a function.

10" Copyrighted material. See: http://msenux.redwoods.edu/Int AlgText/
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R
T i: Y1
Y2
Figure 2. A mapping diagram repre-

senting the points (z,y1) and (x,y2) in
Figure 1(c).

This discussion leads to the following result, called the vertical line test for functions.

The Vertical Line Test. If any vertical line cuts the graph of a relation more
than once, then the relation is NOT a function.

Hence, the circle pictured in Figure 3(a) is a relation, but it is not the graph of
a function. It is possible to cut the graph of the circle more than once with a vertical
line, as shown in Figure 3(a). On the other hand, the parabola shown in Figure 3(b)
is the graph of a function, because no vertical line will cut the graph more than once.

Y )

A A

- \%/ » - >
a)

( (b)
Figure 3. Use the vertical line test to determine if the graph
is the graph of a function.

Reading the Graph for Function Values

We know that the graph of f pictured in Figure 4 is the graph of a function. We know
this because no vertical line will cut the graph of f more than once.

We earlier defined the graph of f as the set of all ordered pairs (z, f(x)), so that
x is in the domain of f. Consequently, if we select a point P on the graph of f, as in
Figure 4(a), we label the point P(z, f(x)). However, we can also label this point as
P(z,y), as shown in Figure 4(b). This leads to a new interpretation of f(x) as the
y-value of the point P. That is, f(z) is the y-value that is paired with z.**

11 0Of course, if the axes were labeled A and t, then there would be a similar interpretation based on the

variables A and t.
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>
>

(a) (b)

Figure 4. Reading the graph of a function.

Definition 2. f(z) is the y-value that is paired with x.

Two more comments are in order. In Figure 4(a), we select a point P on the graph
of f.

1. To find the z-value of the point P, we must project the point P onto the z-axis.

2. To find f(x), the value of y that is paired with z, we must project the point P onto
the y-axis.

Let’s look at an example.

» Example 3. Given the graph of f in Figure 5(a), find f(4).

) )
8A 8A

P(4,f(4))

4
v
S
4

(a) (b)
Figure 5. Finding the value of f(4).
First, note that the graph of f represents a function. No vertical line will cut the
graph of f more than once.

Because f(4) represents the y-value that is paired with an z-value of 4, we first
locate 4 on the z-axis, as shown in Figure 5(b). We then draw a vertical arrow until
we intercept the graph of f at the point P(4, f(4)). Finally, we draw a horizontal arrow
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from the point P until we intercept the y-axis. The projection of the point P onto the
y-axis is the value of f(4).

Because we have a grid that shows a scale on each axis, we can approximate the
value of f(4). It would appear that the y-value of point P is approximately 4. Thus,
f(4) =~ 4.

_<>_

Let’s look at another example.

» Example 4. Given the graph of f in Figure 6(a), find f(5).

) )
8A SA

5 P(5./(3)

N . N .

oy
e
oy

(a) (b)
Figure 6. Finding the value of f(5).

First, note that the graph of f represents a function. No vertical line will cut the
graph of f more than once.

Because f(5) represents the y-value that is paired with an x-value of 5, we first
locate 5 on the z-axis, as shown in Figure 6(b). We then draw a vertical arrow until
we intercept the graph of f at the point P(5, f(5)). Finally, we draw a horizontal arrow
from the point P until we intercept the y-axis. The projection of the point P onto the
y-axis is the value of f(5).

Because we have a grid that shows a scale on each axis, we can approximate the
value of f(5). It would appear that the y-value of point P is approximately 6. Thus,

f(5) ~6.
—O—

Let’s reverse the interpretation in another example.

» Example 5. Given the graph of f in Figure 7(a), for what value of x does
flz) = —47

Again, the graph in Figure 7 passes the vertical line test and represents the graph
of a function.

This time, in the equation f(x) = —4, we’re given a y-value equal to —4. Conse-
quently, we must reverse the process used in Example 3 and Example 4. We first
locate the y-value —4 on the y-axis, then draw a horizontal arrow until we intercept
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Yy Yy
24 24
< » < 5 »
< 87 s - 87 xr
T P(5.£(3)
/ Ty

(a) (b)
Figure 7. Finding z so that f(x) = —4.
the graph of f at P, as shown in Figure 7(b). Finally, we draw a vertical arrow from

the point P until we intercept the xz-axis. The projection of the point P onto the z-axis
is the solution of f(z) = —4.

Because we have a grid that shows a scale on each axis, we can approximate the
z-value of the point P. It seems that x ~ 5. Thus, we label the point P(5, f(5)), and
the solution of f(x) = —4 is approximately x ~ 5.

This solution can easily be checked by computing f(5). Simply start with 5 on the
x-axis, then reverse the order of the arrows shown in Figure 7(b). You should wind
up at —4 on the y-axis, demonstrating that f(5) = —4.

_<>_

The Domain and Range of a Function

We can use the graph of a function to determine its domain and range. For example,
consider the graph of the function shown in Figure 8(a).

54 ¥ 54 ¥

geoaanees R ces=c k2

v v

(a) (b)

Figure 8. Determining the domain of a function from its graph.

Note that no vertical line will cut the graph of f more than once, so the graph of f
represents a function.
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To determine the domain, we must collect the z-values (first coordinates) of every
point on the graph of f. In Figure 8(b), we’ve selected a point P on the graph of f,
which we then project onto the x-axis. The image of this projection is the point @,
and the x-value of the point @) is an element in the domain of f.

Think of the projection shown in Figure 8(b) in the following manner. Imagine a
light source above the point P. The point P blocks out the light and its shadow falls
onto the z-axis at the point (). That is, think of point () as the “shadow” that the
point P produces when it is projected vertically onto the x-axis.

Now, to find the domain of the function f, we must project each point on the graph
of f onto the z-axis. Here’s the question: if we project each point on the graph of
f onto the x-axis, what part of the x-axis will “lie in shadow” when the process is
complete? The answer is shown in Figure 8(c).

In Figure 8(c), note that the “shadow” created by projecting each point on the
graph of f onto the z-axis is shaded in red (a thicker line if you are viewing this in
black and white). This collection of xz-values is the domain of the function f. There
are three critical points that we need to make about the “shadow” on the z-axis in
Figure 8(c).

1. All points lying between x = —3 and = = 4 have been shaded on the z-axis in red.

2. The left endpoint of the graph of f is an open circle. This indicates that there is
no point plotted at this endpoint. Consequently, there is no point to project onto
the z-axis, and this explains the open circle at the left end of our “shadow” on the
ZT-axis.

3. On the other hand, the right endpoint of the graph of f is a filled endpoint. This
indicates that this is a plotted point and part of the graph of f. Consequently,
when this point is projected onto the z-axis, a shadow falls at x = 4. This explains
the filled endpoint at the right end of our “shadow” on the z-axis.

We can describe the z-values of the “shadow” on the z-axis using set-builder nota-
tion.

Domain of f = {z: —3 <z <4}.

Note that we don’t include —3 in this description because the left end of the shadow
on the z-axis is an empty circle. Note that we do include 4 in this description because
the right end of the shadow on the z-axis is a filled circle.

?

We can also describe the z-values of the “shadow’
notation.

on the z-axis using interval

Domain of f = (—3,4]
We remind our readers that the parenthesis on the left means that we are not including
—3, while the bracket on the right means that we are including 4.

To find the range of the function, picture again the graph of f shown in Figure 9(a).
Proceed in a similar manner, only this time project points on the graph of f onto the
y-axis, as shown in Figures 9(b) and (c).
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Figure 9. Determining the range of a function from its graph.

Note which part of the y-axis “lies in shadow” once we’ve projected all points on
the graph of f onto the y-axis.

1. All points lying between y = —2 and y = 4 have been shaded on the y-axis in red
(a thicker line style if you are viewing this in black and white).

2. The left endpoint of the graph of f is an empty circle, so there is no point to project
onto the y-axis. Consequently, there is no “shadow” at y = —2 on the y-axis and
the point is left unshaded (an empty circle).

3. The right endpoint of the graph of f is a filled circle, so there is a “shadow” at y = 4
on the y-axis and this point is shaded (a filled circle).

We can now easily describe the range in both set-builder and interval notation.
Range of f = (—2,4]={y: -2 <y <4}
——

Let’s look at another example.

» Example 6. Use set-builder and interval notation to describe the domain and
range of the function represented by the graph in Figure 10(a).

y
54 5

< \:% 1 \\Lul’
f f
(a) (b)

Figure 10. Determining the
domain from the graph of f.
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To determine the domain of f, project each point on the graph of f onto the z-axis.
This projection is indicated by the “shadow” on the z-axis in Figure 10(b). Two
important points need to be made about this “shadow” or projection.

1. The left endpoint of the graph of f is empty (indicated by the open circle), so it
has no projection onto the z-axis. This is indicated by an open circle at the left end
(at x = —4) of the “shadow” or projection on the z-axis.

2. The arrowhead on the right end of the graph of f indicates that the graph of f
continues downward and to the right indefinitely. Consequently, the projection
onto the z-axis is a shadow that moves indefinitely to the right. This is indicated
by an arrowhead at the right end of the “shadow” or projection on the x-axis.

Consequently, the domain of f is the collection of z-values represented by the “shadow”
or projection onto the z-axis. Note that all z-values to the right of z = —4 are shaded
on the z-axis. Consequently,

Domain of f = (—4,00) = {z: = > —4}.

To find the range, we must project each point on the graph of f (redrawn in
Figure 11(a)) onto the y-axis. The projection is indicated by a “shadow” or pro-
jection on the y-axis, as seen in Figure 11(b). Two important points need to be made
about this “shadow” or projection.

54 /)

(a (b)

Figure 11. Determining the range from the graph of f.

1. The left endpoint of the graph of f is empty (indicated by an open circle), so it has
no projection onto the y-axis. This is indicated by an open circle at the top end (at
y = 3) of the “shadow” on the y-axis.

2. The arrowhead on the right end of the graph of f indicates that the graph of f
continues downward and to the right indefinitely. Consequently, the projection of
the graph of f onto the y-axis is a shadow that moves indefinitely downward. In
Figure 11(b), note how projections of points on the graph of f not visible in the
viewing window come in from the lower right corner and cast “shadows” on the
y-axis.
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Consequently, the range of f is the collection of y-values shaded on the y-axis of the
coordinate system shown in Figure 11(b). Note that all y-values lower than y = 3 are
shaded on the y-axis. Thus, the range of f is

Range of f = (—00,3) ={y: y < 3}.
——

Let’s look at another example.

» Example 7. Use set-builder and interval notation to describe the domain and
range of the function represented by the graph in Figure 12(a).

Yy Yy
54 f 54 f

Oy

(a) (b)

Figure 12. Determining the
domain from the graph of f.

To determine the domain of f, we must project all points on the graph of f onto the
z-axis. This projection is indicated by the red “shadow” (or thicker line style if you are
viewing this in black and white) shown on the z-axis in Figure 12(b). Two important
points need to be made about this “shadow” or projection.

1. The arrow at the end of the left half of the graph of f in Figure 12(a) indicates that
this half of the graph of f opens indefinitely to the left and upward. Consequently,
when the points on the left half of the graph of f are projected onto the x-axis,
the “shadow” or projection extends indefinitely to the left. Note how points on the
graph that fall outside the viewing window come in from the upper left corner and
cast “shadows” on the z-axis.

2. The arrow at the end of the right half of the graph of f in Figure 12(a) indicates
that this half of the graph of f opens indefinitely to the right and upward. Conse-
quently, when the points on this half of the graph of f are projected onto the x-axis,
the “shadow” or projection extends indefinitely to the right.

Consequently, the entire z-axis lies in “shadow,” making the domain of f to be

Domain of f = (—o0,00) = {z: x € R}.
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To determine the range of f, we must project all points on the graph of f onto the
y-axis. This projection is indicated by the red “shadow” (or thicker line if you are
viewing this in black and white) shown on the y-axis in Figure 13(b). Two important
points need to made about this “shadow” or projection.

y y
S !

Oy
Oy

v v

(a) (b)

Figure 13. Determining the range from the graph of f.

1. The graph of f passes through the origin (the point (0,0)). This is the lowest point
on the graph and hence its shadow is the endpoint on the low end of the shaded
region on the y-axis.

2. The arrows at the end of each half of the graph of f indicate that the graph opens
upward indefinitely. Hence, when points on the graph of f are projected onto the
y-axis, the “shadow” or projection extends upward indefinitely. This is indicated
by an arrow on the upper end of the “shadow” on the y-axis.

Consequently, all points on the y-axis above and including the point at the origin “lie
in shadow.” Thus, the range of f is

Range of f =[0,00) ={y: y > 0}.
——

Using a Graphing Calculator to Determine Domain and
Range

We’ve learned how to find the domain and range of a function by looking at its graph.
Therefore, if we define a function by means of an expression, such as f(x) = V4 — z,
then we should be able to capture the domain and range of f from its graph, provided,
of course, that we can draw the graph of f. We’ll find the graphing calculator will be
a handy tool for this exercise.

» Example 8. Use set-builder and interval notation to describe the domain and
range of the function defined by the rule

flz) = Vi - (9)

Load the expression defining f into the Y= menu, as shown in Figure 14(a). Select
6:ZStandard from the ZOOM menu to produce the graph of f shown in Figure 14(b).
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H= Flokl  Flokz  Floks
x$1E={4—H} :
we= :
M= q_—__—"——_q_
-y = :

- e=
N e =
R

(a) (b)
Figure 14. Sketching the graph of f(x) = v4 — z.

Copy the image in Figure 14(b) onto a sheet of graph paper. Label and scale
each axis with the WINDOW parameters xmin, xmax, ymin, and ymax, as shown in
Figure 15(a).

Y
104 10

—10v —-10
(a) (b)

Figure 15. Capturing the domain
of f(z) = V4 — z from its graph.

Next, project each point on the graph of f onto the z-axis, as shown in Figure 15(b).
Note that we’ve made two assumptions about the graph of f.

1. At the left end of the graph in Figures 14(b) and 15(b), we assume that the graph
of f continues upward and to the left indefinitely. Hence, the “shadow” or projection
onto the z-axis will move indefinitely to the left. This is indicated by attaching an
arrowhead to the left-hand end of the region that “lies in shadow” on the z-axis, as
shown in Figure 15(b).

2. We also assume that the right end of the graph ends at the point (4,0). This
accounts for the “filled dot” when this point on the graph of f is projected onto the
ZT-axis.

Note that the “shadow” or projection onto the x axis in Figure 15(b) includes all
values of z less than or equal to 4. Thus, the domain of f is

Domain of f = (—o0,4] ={z: = < 4}.

We can intuit this result by considering the expression that defines f. That is,
consider the rule or definition
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flx) =V4—x.

Recall that we earlier defined the domain of f as the set of “permissible” z-values. In
this case, it is impossible to take the square root of a negative number, so we must be
careful selecting the x-values we use in this rule. Note that z = 4 is allowable, as

f(0)=vV4—4=+0=0.

However, numbers larger than 4 cannot be used in this rule. For example, consider
what happens when we attempt to use x = 5.

fla)=vVi-5=v-1

This result is not a real number, so 5 is not in the domain of f.

On the other hand, if we try z-values that are smaller than 4, such as z = 3,
f@=v4-3=V1=1.

We'll leave it to our readers to test other values of x that are less than 4. They will
also produce real answers when they are input into the rule f(z) = v/4 —x. Note
that this also verifies our earlier conjecture that the “shadow” or projection shown in
Figure 15(b) continues indefinitely to the left.

Instead of “guessing and checking,” we can speed up the analysis of the domain of
f(z) = v/4 — x by noting that the expression under the radical must not be a negative
number. Hence, 4 — x must either be greater than or equal to zero. This argument
produces an inequality that is easily solved for .

4—x>0
—x > —4
r <4

This last result verifies that the domain of f is all values of x that are less than or
equal to 4, which is in complete agreement with the “shadow” or projection onto the
z-axis shown in Figure 15(b).

To determine the range of f, we must project each point on the graph of f onto the
y-axis, as shown in Figure 16(b).

Again, we make two assumptions about the graph of f.

1. At the left-end of the graph of f(x) = v/4 — z in Figures 14(b) and 16(b), we
assume that the graph of f continues upward and to the left indefinitely. Thus,
when points on the graph of f are projected onto the y-axis, there will be projections
coming from the upper left from points on the graph of f that are not visible in the
viewing window selected in Figure 14(b). Hence, the “shadow” or projection on
the y-axis shown in Figure 16(b) continues upward indefinitely. This is indicated
with a arrowhead at the upper end of the “shadow” on the y-axis in Figure 16(b).

2. Again, we assume that the right end of the graph of f ends at the point (4,0). The
projection of this point onto the y-axis produces the “filled” endpoint at the origin
shown in Figure 16(b).

Version: Fall 2007



SECTION 2.3 INTERPRETING THE GRAPH OF A FUNCTION 127

104 —

- 10" v
(a) (b)

Figure 16. Determining the range

of f(z) = /4 — z from its graph.

Note that the “shadow” or projection onto the y-axis in Figure 16(b) includes all
values of y that are greater than or equal to zero. Hence,

Range of f =[0,00) ={y: y > 0}.
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2.3 Exercises

For Exercises 1-6, perform each of the 3.
following tasks. y
i. Make a copy of the graph on a sheet b3
of graph paper and apply the vertical
line test.
ii. Write a complete sentence stating whether
or not the graph represents a func- >5 z
tion. Explain the reason for your re-
sponse.
1.
Y
5“ 4.
Y
5“
> T
)
> T
bt
2.
Y
5“ 5-
Y
/\ Ba
> T
v !
\ i
/ 5

12 Copyrighted material. See: http://msenux.redwoods.edu/Int AlgText/

Version: Fall 2007



130 CHAPTER 2 FUNCTIONS

6. 8. Use the graph of f to determine f(3).

Y Y
51 5“

i

f

In Exercises 7-12, perform each of the

following tasks. 9. Use the graph of f to determine f(—2).

i. Make an exact copy of the graph of 5%{

the function f on a sheet of graph pa-
per. Label and scale each axis. Re-
member to draw all lines with a ruler.
ii. Use the technique of Examples 3 and
4 in the narrative to evaluate the func-
tion at the given value. Draw and la-
bel the arrows as shown in Figures 4 f
and 5 in the narrative.

O—'V

7. Use the graph of f to determine f(2).
10. Use the graph of f to determine

£ Q).

A

5“

Cﬂ"

Cﬂ"

Version: Fall 2007



SECTION 2.3 INTERPRETING THE GRAPH OF A FunNcTIiON 131

11. Use the graph of f to determine 13. Use the graph of f to solve the

f(1). equation f(z) = —2.
Y Y
5A 51\
> T » X
f ) )
f
12. Use the graph of f to determine 14. Use the graph of f to solve the
f(=2). equation f(z) = 1.
Y Y
O D4
> >
/ 5" 5
f

In Exercises 13-18, perform each of the

following tasks. 15. Use the graph of f to solve the

equation f(z) = 2.
i. Make an exact copy of the graph of y
the function f on a sheet of graph pa- 5a
per. Label and scale each axis. Re- f
member to draw all lines with a ruler.
ii. Use the technique of Example 5 in the
narrative to find the value of x that
maps onto the given value. Draw and
label the arrows as shown in Figure 6
in the narrative.

U‘V
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16. Use the graph of f to solve the
equation f(z) = —2.

Y
54

Cﬂ"

17. Use the graph of f to solve the
equation f(z) = 2.

Yy
f D

O_‘"

18. Use the graph of f to solve the
equation f(z) = —3.

Y
54
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In the Exercises 19-22, perform each of
the following tasks.

i.

ii.

iii.

19.

20.

Make a copy of the graph of f on a
sheet of graph paper. Label and scale
each axis.

Using a different colored pen or pen-
cil, project each point on the graph
of f onto the z-axis. Shade the re-
sulting domain on the z-axis.

Use both set-builder and interval no-
tation to describe the domain.

5%
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21.
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22.
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In Exercises 23-26, perform each of the
following tasks.

i. Make a copy of the graph of f on a
sheet of graph paper. Label and scale
each axis.

ii. Using a different colored pen or pen-
cil, project each point on the graph
of f onto the y-axis. Shade the re-
sulting range on the y-axis.

iii. Use both set-builder and interval no-
tation to describe the range.

23.

24.

25.

VO_(

"C)_‘
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VC)_!
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26.

~
<
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In Exercises 27-30, perform each of the
following tasks.

i.

ii.

iii.

iv.

27.

28.

29.

30.

Use your graphing calculator to draw
the graph of the given function. Make
a reasonably accurate copy of the im-
age in your viewing screen on your
homework paper. Label and scale each
axis with the WINDOW parameters xmin,
xmax, ymin, and ymax. Label the
graph with its equation.

Using a colored pencil, project each
point on the graph onto the z-axis;
i.e., shade the domain on the x-axis.
Use interval and set-builder notation
to describe the domain.

Use a purely algebraic technique, as
demonstrated in Example 8 in the nar-
rative, to find the domain. Compare
this result with that found in part (ii).
Using a different colored pencil, project
each point on the graph onto the y-
axis; i.e., shade the range on the y-
axis. Use interval and set-builder no-
tation to describe the range.

f(z) = V& F5.
fx)=v5—z
f()=—Vi—u.
fz)= vz +d
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2.3 Answers

1. Note that in the figure below a ver-
tical line cuts the graph more than once.
Therefore, the graph does not represent
the graph of a function.

AL5A

O-(V

3. No vertical line cuts the graph more
than once (see figure below). Therefore,
the graph represents a function.

Y
51\ 8

U‘V

5. Note that in the figure below a ver-
tical line cuts the graph more than once.
Therefore, the graph does not represent
the graph of a function.

Y
AL5A

\/
;;
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11. f(1)=3 17. The solution of f(z) =2isx = —1.
y Yy
54 f 54
F)
2
s I 5" 1 5"
13. The solution of f(z) = -2 is x = 19. {z:2z>-3}=(-3,00)
-3.
Y
y 5
51\
o
—3 J g
5
1 f
f
21. {z:z<0}=(—00,0)
15. The solution of f(z) =2isz = —2. y
5“
)

51\
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23. {y:y<1}=(-o00,1)

5

AR

Yo

<+

27. Domain = [-5,00)

={z: x> -5}

104

il

—10 -5

—107
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10

Range = {y : y > 0} = [0, 00)

—10

A

4

29. Domain = (—o00,4] = {z: x <4}

10

piliiiniiis

—10°"

[

Range = {y : y < 0} = (—00,0]

)

104

A

—y
s
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2.4 Solving Equations and Inequalities by Graphing

Our emphasis in the chapter has been on functions and the interpretation of their
graphs. In this section, we continue in that vein and turn our exploration to the
solution of equations and inequalities by graphing. The equations will have the form
f(z) = g(x), and the inequalities will have form f(z) < g(z) and/or f(z) > g(x).

You might wonder why we have failed to mention inequalities having the form
f(x) < g(x) and f(x) > g(x). The reason for this omission is the fact that the solution
of the inequality f(z) < g(x) is simply the union of the solutions of f(z) = g(z) and
f(z) < g(x). After all, < is pronounced “less than or equal.” Similar comments are in
order for the inequality f(z) > g(x).

We will begin by comparing the function values of two functions f and g at various
values of z in their domains.

Comparing Functions

Suppose that we evaluate two functions f and g at a particular value of . One of three
outcomes is possible. Either

f@)=g(x), or  flx)>g(x), or  f(z)<g(z).

It’s pretty straightforward to compare two function values at a particular value if rules
are given for each function.

» Example 1. Given f(z) = 2? and g(z) = 2x+3, compare the functions at r = —2,
0, and 3.

Simple calculations reveal the relations.
o Atx=-2
f(=2)=(-2)* =4 and g(-2)=2(-2)+3=—1,

so clearly, f(—2) > g(—2).
o Atz=0,

f(0)=(0)*=0 and  g¢(0)=2(0)+3=3,

so clearly, f(0) < g(0).
e Finally, at z = 3,

f3)=03)?*=9 and ¢g(3)=23)+3=9,

so clearly, f(3) = ¢(3).

We can also compare function values at a particular value of x by examining the
graphs of the functions. For example, consider the graphs of two functions f and ¢ in
Figure 1.

13 Copyrighted material. See: http://msenux.redwoods.edu/Int AlgText/
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Y

A

\\\\\\ g
/ oo
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~

Figure 1. Each side of the equation
f(z) = g(x) has its own graph.

Next, suppose that we draw a dashed vertical line through the point of intersection
of the graphs of f and g, then select a value of x that lies to the left of the dashed
vertical line, as shown in Figure 2(a). Because the graph of f lies above the graph of
g for all values of = that lie to the left of the dashed vertical line, it will be the case
that f(x) > g(x) for all such z (see Figure 2(a)).**

On the other hand, the graph of f lies below the graph of g for all values of = that
lie to the right of the dashed vertical line. Hence, for all such z, it will be the case that
f(x) < g(x) (see Figure 2(b)).*®

Y (Y
| | g
| z) E x,9(z))
5 ) F(@) ; (z.(x))
| ) IR
| / -
v : v :
(a) To the left of the vertical (b) To the right of the vertical
dashed line, the graph of f dashed line, the graph of
lies above the graph of g. f lies below the graph of g.

Figure 2. Comparing f and g.

14 When thinking in terms of the vertical direction, “greater than” is equivalent to saying “above.”
15 When thinking in terms of the vertical direction, “less than” is equivalent to saying “below.”
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Finally, if we select the z-value of the point of intersection of the graphs of f and g,
then for this value of z, it is the case that f(z) and g(x) are equal; that is, f(x) = g(z)
(see Figure 3).

Figure 3. The function values f(z)
and g(z) are equal where the graphs of
f and g intersect.

Let’s summarize our findings.

Summary 2.

e The solution of the equation f(z) = g(z) is the set of all x for which the graphs
of f and g intersect.

e The solution of the inequality f(x) < g(x) is the set of all x for which the
graph of f lies below the graph of g.

e The solution of the inequality f(x) > g(x) is the set of all x for which the
graph of f lies above the graph of g.

Let’s look at an example.

» Example 3. Given the graphs of f and g in Figure 4(a), use both set-builder
and interval notation to describe the solution of the inequality f(z) < g(z). Then find
the solutions of the inequality f(x) > g(x) and the equation f(z) = g(z) in a similar
fashion.

To find the solution of f(z) < g(x), we must locate where the graph of f lies below
the graph of g. We draw a dashed vertical line through the point of intersection of
the graphs of f and g (see Figure 4(b)), then note that the graph of f lies below the
graph of g to the left of this dashed line. Consequently, the solution of the inequality
f(z) < g(z) is the collection of all = that lie to the left of the dashed line. This set is
shaded in red (or in a thicker line style if viewing in black and white) on the z-axis in
Figure 4(b).
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Y )
\5 f \5 RN
- 5> X < i’é g X
9 | 9
(a) The graphs of f and g. (b) The solution of f(x) < g(x).

Figure 4. Comparing f and g.

Note that the shaded points on the z-axis have z-values less than 2. Hence, the
solution of f(z) < g(z) is

(—00,2) ={z: z < 2}.

In like manner, the solution of f(x) > g(z) is found by noting where the graph of
f lies above the graph of g and shading the corresponding z-values on the z-axis (see
Figure 5(a)). The solution of f(z) > g(z) is (2,00), or alternatively, {z : = > 2}.

To find the solution of f(z) = g(z), note where the graph of f intersects the graph of
g, then shade the z-value of this point of intersection on the z-axis (see Figure 5(b)).
Therefore, the solution of f(x) = g(z) is {x : © = 2}. This is not an interval, so it is
not appropriate to describe this solution with interval notation.

) )
\5 | ¥ \5 | i
i g i g

(a) The solution of f(z) > g(x). (b) The solution of f(x) = g(x).

Figure 5. Further comparisons.

_<>_

Let’s look at another example.
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» Example 4. Given the graphs of f and g in Figure 6(a), use both set-builder
and interval notation to describe the solution of the inequality f(x) > g(z). Then find
the solutions of the inequality f(x) < g(x) and the equation f(z) = g(z) in a similar
fashion.

y y
51; i 511 i
g | | g
f | Cf

(a) The graphs of f and g (b) The solution of f(x) > g(x).
Figure 6. Comparing f and g.

To determine the solution of f(x) > g(x), we must locate where the graph of f lies
above the graph of g. Draw dashed vertical lines through the points of intersection of
the graphs of f and g (see Figure 6(b)), then note that the graph of f lies above the
graph of g between the dashed vertical lines just drawn. Consequently, the solution of
the inequality f(x) > g(z) is the collection of all x that lie between the dashed vertical
lines. We have shaded this collection on the z-axis in red (or with a thicker line style
for those viewing in black and white) in Figure 6(b).

Note that the points shaded on the z-axis in Figure 6(b) have z-values between
—2 and 3. Consequently, the solution of f(z) > g(x) is

(—=2,3) ={z: -2< 2 <3}

In like manner, the solution of f(x) < g(z) is found by noting where the graph of
f lies below the graph of g and shading the corresponding z-values on the z-axis (see
Figure 7(a)). Thus, the solution of f(z) < g(z) is

(—00,—2)U(3,00) ={x: x < -2 or x > 3}.

To find the solution of f(z) = g(x), note where the graph of f intersects the graph of
g, and shade the x-value of each point of intersection on the z-axis (see Figure 7(b)).

Therefore, the solution of f(z) = g(z) is {z : © = —2 or = = 3}. Because this solution
set is not an interval, it would be inappropriate to describe it with interval notation.
——
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Y )
ot i ot i
| | 9 | | g
TR J 3 \?:c 2 5V
| T | o
(a) The solution of f(z) < g(x). (b) The solution of f(z) = g(z).

Figure 7. Further comparisons.

Solving Equations and Inequalities with the Graphing Cal-
culator

We now know that the solution of f(z) = g(z) is the set of all  for which the graphs
of f and g intersect. Therefore, the graphing calculator becomes an indispensable tool
when solving equations.

» Example 5. Use a graphing calculator to solve the equation
1.23z — 4.56 = 5.28 — 2.35x. (6)
Note that equation (6) has the form f(x) = g(z), where
f(z) =1.23x — 4.56 and g(z) =5.28 — 2.35x.

Thus, our approach will be to draw the graphs of f and g, then find the xz-value of the
point of intersection.

First, load f(x) = 1.23z — 4.56 into Y1 and g(x) = 5.28 — 2.35x into Y2 in the Y=
menu of your graphing calculator (see Figure 8(a)). Select 6:ZStandard in the ZOOM
menu to produce the graphs in Figure 8(b).

W= Flakl Flake Flakz '1\;
B, 23%E-4. 56 :
B, PE-2, 354N h& fffff
PR s
:-$I'|= [
“rE= 5
"-I'I'IE= /
(=11 =1 =10E] ;

(a) (b)
Figure 8. Sketching the graphs of f(z) = 1.23z — 4.56 and
g(z) =5.28 — 2.35z.
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The solution of equation (6) is the z-value of the point of intersection of the graphs
of f and g in Figure 8(b). We will use the intersect utility in the CALC menu on the
graphing calculator to determine the coordinates of the point of intersection.

We proceed as follows:

e Select 2nd CALC (push the 2nd button, followed by the TRACE button), which opens
the menu shown in Figure 9(a).

e Select 5:intersect. The calculator responds by placing the cursor on one of the
graphs, then asks if you want to use the selected curve. You respond in the affir-
mative by pressing the ENTER key on the calculator.

e The calculator responds by placing the cursor on the second graph, then asks if you
want to use the selected curve. Respond in the affirmative by pressing the ENTER
key.

e The calculator responds by asking you to make a guess. In this case, there are only
two graphs on the calculator, so any guess is appropriate.*® Simply press the ENTER
key to use the current position of the cursor as your guess.

fH=1.z3#H-4.E6 [fe=E. zB-z. 354 =L cH-Z. 35k

fminirm

fmaximm

fintersect .

: sl FiFst curye? Tecond CUFYE T GUEEST

AR T uzi ¥z -4 . Bz 4 iy=c.zB 4zn Y=C.2h

(a) (b) (c) (d)
Figure 9. Using the intersect utility.

The result of this sequence of steps is shown in Figure 10. The coordinates of the point

of intersection are approximately (2.7486034, —1.179218). The x-value of this point of

intersection is the solution of equation (6). That is, the solution of 1.23z — 4.56 =
5.28 — 2.35x is approximately x ~ 2.7486034.7

A\

__.-'
Inkerseckion
W=z.74BENEY |Y=-1.179z18

Figure 10. The coordinates of the
point of intersection.

16 We will see in the case where there are two points of intersection, that the guess becomes more important.

17 1t is important to remember that every time you pick up your calculator, you are only approximating
a solution.

18 Please use a ruler to draw all lines.
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Summary 7. Guidelines. You’ll need to discuss expectations with your
teacher, but we expect our students to summarize their results as follows.

1. Set up a coordinate system.*® Label and scale each axis with xmin, xmax, ymin,
and ymax.

2. Copy the image in your viewing window onto your coordinate system. Label
each graph with its equation.

3. Draw a dashed vertical line through the point of intersection.

4. Shade and label the solution of the equation on the x-axis.

The result of following this standard is shown in Figure 11.

Y
OA .
|
l
l
l
l
l
:
l
R.7 &6 4
< @ > T
10 10
l
l
l
l
l
l
|
|
y=1.23x—4.56 v—10 y=5.28—2.35x

Figure 11. Summarizing
the solution of equation (6).

_<>_

Let’s look at another example.

» Example 8. Use set-builder and interval notation to describe the solution of the
inequality

0.852% — 3 > 1.23x + 1.25. 9)
Note that the inequality (9) has the form f(z) > g(z), where
f(z) =085z -3 and  g(x) = 1.23z + 1.25.

Load f(z) = 0.8522 — 3 and g(r) = 1.23z + 1.25 into Y1 and Y2 in the Y= menu,
respectively, as shown in Figure 12(a). Select 6:ZStandard from the ZOOM menu to
produce the graphs shown in Figure 12(b).

To find the points of intersection of the graphs of f and g, we follow the same
sequence of steps as we did in Example 5 up to the point where the calculator asks
you to make a guess (i.e., 2nd CALC, 5:intersect, First curve ENTER, Second curve
ENTER). Because there are two points of intersection, when the calculator asks you to
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M= Flotl  Flokz  Flots
~Vi0A, S5k -3
~WeBl. 23+R+1.25
L

N y=

N o=

N E=

(a) (b)
Figure 12. The graphs of
f(x) = 0.8522 — 3 and g(x) = 1.23x + 1.25.

make a guess, you must move your cursor (with the arrow keys) so that it is closer to
the point of intersection you wish to find than it is to the other point of intersection.
Using this technique produces the two points of intersection found in Figures 13(a)
and (b).

InkgFseckion

n="1.6266HE

Y=-.FE0E19z

Inkersechion
n=E 07 411

E-.l:lll_........

= 0z0701E

(a)

(b)

Figure 13. The points of
intersection of the graphs of f and g.

The approximate coordinates of the first point of intersection are (—1.626682, —0.7508192).
The second point of intersection has approximate coordinates (3.0737411,5.0307015).

It is important to remember that every time you pick up your calculator, you are
only getting an approximation. It is possible that you will get a slightly different result
for the points of intersection. For example, you might get (—1.626685, —0.7508187) for
your point of intersection. Based on the position of the cursor when you marked the
curves and made your guess, you can get slightly different approximations. Note that
this second solution is very nearly the same as the one we found, differing only in the
last few decimal places, and is perfectly acceptable as an answer.

We now summarize our results by creating a coordinate system, labeling the axes,
and scaling the axes with the values of the window parameters xmin, xmax, ymin, and
ymax. We copy the image in our viewing window onto this coordinate system, labeling
each graph with its equation. We then draw dashed vertical lines through each point
of intersection, as shown in Figure 14.

We are solving the inequality 0.85x2 — 3 > 1.23z + 1.25. The solution will be the
union of the solutions of 0.8522 — 3 > 1.23z 4 1.25 and 0.852% — 3 = 1.232 + 1.25.

e To solve 0.8522 — 3 > 1.23z + 1.25, we note where the graph of y = 0.8522 — 3
lies above the graph of y = 1.23z + 1.25 and shade the corresponding z-values
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y=0.8502—3

I
I
I
I
If
4
:
I
37411

25 y—10

Figure 14. Summarizing the solution
of 0.852% — 3 > 1.23z + 1.25.

on the z-axis. In this case, the graph of y = 0.8522 — 3 lies above the graph of
y = 1.23x + 1.25 for values of x that lie outside of our dashed vertical lines.

e To solve 0.8522 — 3 = 1.23z + 1.25, we note where the graph of y = 0.852% — 3
intersects the graph of y = 1.23x + 1.25 and shade the corresponding x-values on
the x-axis. This is why the points at  ~ —1.626682 and z ~ 3.0737411 are “filled.”

Thus, all values of x that are either less than or equal to —1.626682 or greater than
or equal to 3.0737411 are solutions. That is, the solution of inequality 0.85z% — 3 >
1.23x + 1.25 is approximately

(=00, —1.626682] U [3.0737411, 00) = {z : = < —1.626682 or x > 3.0737411}.
_<>_

Comparing Functions with Zero

When we evaluate a function f at a particular value of x, only one of three outcomes
is possible. Either

f(z)=0, or f(x)>0, or f(x)<O.

That is, either f(z) equals zero, or f(x) is positive, or f(x) is negative. There are no
other possibilities.

We could start fresh, taking a completely new approach, or we can build on what we
already know. We choose the latter approach. Suppose that we are asked to compare
f(x) with zero? Is it equal to zero, is it greater than zero, or is it smaller than zero?

We set g(z) = 0. Now, if we want to compare the function f with zero, we need
only compare f with g, which we already know how to do. To find where f(z) = g(z),
we note where the graphs of f and ¢ intersect, to find where f(z) > g(x), we note
where the graph of f lies above the graph of g, and finally, to find where f(x) < g(z),
we simply note where the graph of f lies below the graph of g.
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However, the graph of g(z) = 0 is a horizontal line coincident with the z-axis.
Indeed, g(z) = 0 is the equation of the z-axis. This argument leads to the following
key results.

Summary 10.

e The solution of f(x) = 0 is the set of all x for which the graph of f intersects
the z-axis.

e The solution of f(x) > 0 is the set of all z for which the graph of f lies strictly
above the x-axis.

e The solution of f(x) < 0 is the set of all z for which the graph of f lies strictly
below the x-axis.

For example:

e To find the solution of f(x) = 0 in Figure 15(a), we simply note where the graph
of f crosses the z-axis in Figure 15(a). Thus, the solution of f(z) =0is z = 1.

e To find the solution of f(x) > 0 in Figure 15(b), we simply note where the graph
of f lies above the z-axis in Figure 15(b), which is to the right of the vertical
dashed line through = = 1. Thus, the solution of f(z) > 01is (1,00) = {z : x > 1}.

e To find the solution of f(z) < 0 in Figure 15(c), we simply note where the graph
of f lies below the z-axis in Figure 15(c), which is to the left of the vertical dashed
line at « = 1. Thus, the solution of f(x) < 0is (—o0,1) ={z:z < 1}.

5A . 511 . 5

'y

v v v

(a) The solution of f(z) =0 (b) The solution of f(x) >0 (¢) The solution of f(z) < 0

Figure 15. Comparing the function f with zero.

We next define some important terminology.

Definition 11. If f(a) = 0, then a is called a zero of the function f. The graph
of f will intercept the x-axis at (a,0), a point called the x-intercept of the graph
of f.

Your calculator has a utility that will help you to find the zeros of a function.
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» Example 12.

Use a graphing calculator to solve the inequality
0.252% — 1.24x — 3.84 < 0.

Note that this inequality has the form f(x) < 0, where f(z) = 0.252% —1.24z — 3.84.

Our strategy will be to draw the graph of f, then determine where the graph of f lies
below or on the x-axis.

We proceed as follows:

First, load the function f(z) = 0.2522 — 1.24x — 3.84 into the Y1 in the Y= menu of
your calculator. Select 6:ZStandard from the ZOOM menu to produce the image in
Figure 16(a).

Press 2nd CALC to open the menu shown in Figure 16(b), then select 2:zero to
start the utility that will find a zero of the function (an z-intercept of the graph).
The calculator asks for a “Left Bound,” so use your arrow keys to move the cursor
slightly to the left of the leftmost z-intercept of the graph, as shown in Figure 16(c).
Press ENTER to record this “Left Bound.”

The calculator then asks for a “Right Bound,” so use your arrow keys to move the
cursor slightly to the right of the z-intercept, as shown in Figure 16(d). Press
ENTER to record this “Right Bound.”

He TR
S adx

=02kl e-

1..2'-|=+=H-3.‘E'-I/

Lefk Eaund?
H=-x.191480

L

¥=2.5azA470

(a) (b)

(c)

=02k 2-

1..2'-|=+=H—3.‘H'-I/

L g

¥=-z.237018

(d)

Figure 16. Finding a zero or z-intercept with the calculator.

The calculator responds by marking the left and right bounds on the screen, as
shown in Figure 17(a), then asks you to make a reasonable starting guess for the
zero or x-intercept. You may use the arrow keys to move your cursor to any point, so
long as the cursor remains between the left- and right-bound marks on the viewing
window. We usually just leave the cursor where it is and press the ENTER to record
this guess. We suggest you do that as well.

The calculator responds by finding the coordinates of the z-intercept, as shown
in Figure 17(b). Note that the xz-coordinate of the z-intercept is approximately
—2.157931.

Repeat the procedure to find the coordinates of the rightmost x-intercept. The
result is shown in Figure 17(c). Note that the z-coordinate of the intercept is
approximately 7.1179306.

The final step is the interpretation of results and recording of our solution on our

homework paper. Referring to the Summary 7 Guidelines, we come up with the graph

shown in Figure 18.
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Figure 17. Finding a zero or z-intercept with the calculator.
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Figure 18. The solution of 0.25z% —
1.242x — 3,84 < 0.

Several comments are in order. Noting that f(x) = 0.252% — 1.24z — 3.84, we note:

1. The solutions of f(z) = 0 are the points where the graph crosses the xz-axis. That’s
why the points (—2.157931,0) and (7.1179306, 0) are shaded and filled in Figure 18.

2.

The solutions of f(x) < 0 are those values of = for which the graph of f falls strictly

below the z-axis. This occurs for all values of  between —2.157931 and 7.1179306.

These points are also shaded on the z-axis in Figure 18.
Finally, the solution of f(z) < 0 is the union of these two shadings, which we

describe in interval and set-builder notation as follows:

[—2.157931,7.1179306] = {z : —2.157931 < = < 7.1179306}
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2.4 Exercises

In Exercises 1-6, you are given the de-
finition of two functions f and g. Com-
pare the functions, as in Example 1 of
the narrative, at the given values of x.

1. fe)=z+2,9(x)=4—zatx=
-3, 1, and 2.

2. f(x)=2x—-3,¢9(x) =3—zxatzx=
—4, 2, and 5.

3. f(x)=3—=z,9(xr) =z+9atx = —4,
—3, and —2.

4. f(x) =22 g(x) =4z +5at x = -2,
1, and 6.

5. f(z) =2% g(z) = -3r—2at z =
-3, —1, and 0.

6. f(z)=|z|,9(z)=4—xatz=1,2,
and 3.

In Exercises 7-12, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Make an accurate copy of the image
on graph paper (label each equation,
label and scale each axis), drop a dashed
vertical line through the point of in-
tersection, then label and shade the
solution of f(z) = g(x) on the z-axis.

ii. Make a second copy of the image on
graph paper, drop a dashed, vertical
line through the point of intersection,
then label and shade the solution of
f(z) > g(z) on the z-axis. Use set-
builder and interval notation to de-
scribe your solution set.

iii. Make a third copy of the image on

graph paper, drop a dashed, vertical
line through the point of intersection,
then label and shade the solution of
f(z) < g(z) on the z-axis. Use set-
builder and interval notation to de-
scribe your solution set.

5 f

51\

¥

19 Copyrighted material. See: http://msenux.redwoods.edu/Int AlgText/
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In Exercises 13-16, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Make an accurate copy of the image
on graph paper, drop dashed, verti-
cal lines through the points of inter-
section, then label and shade the so-
lution of f(x) > g(x) on the z-axis.
Use set-builder and interval notation
to describe your solution set.

ii. Make a second copy of the image on
graph paper, drop dashed, vertical lines
through the points of intersection, then
label and shade the solution of f(x) <
g(z) on the x-axis. Use set-builder
and interval notation to describe your
solution set.
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13.

£

14.

¥

15.

¥

i

\\
=

en

16.

A

¥

In Exercises 17-20, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Load each side of the equation into
the Y= menu of your calculator. Ad-
just the WINDOW parameters so that
the point of intersection of the graphs
is visible in the viewing window. Use
the intersect utility in the CALC menu
of your calculator to determine the
x-coordinate of the point of intersec-
tion.

ii. Make an accurate copy of the image
in your viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
and label each graph with its equa-
tion.

iii. Draw a dashed, vertical line through
the point of intersection. Shade and
label the solution of the equation on
the x-axis.

17. 1.23x —4.56 = 3.46 — 2.3x
18. 2.23x — 1.56 = 5.46 — 3.3x
19. 546 — 1.3z = 2.2z — 5.66

20. 246 — 14z =12z — 2.66
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In Exercises 21-26, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Load each side of the inequality into
the Y= menu of your calculator. Ad-
just the WINDOW parameters so that
the point(s) of intersection of the graphs
is visible in the viewing window. Use
the intersect utility in the CALC menu
of your calculator to determine the
coordinates of the point(s) of inter-
section.

ii. Make an accurate copy of the image
in your viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
and label each graph with its equa-
tion.

iii. Draw a dashed, vertical line through
the point(s) of intersection. Shade
and label the solution of the inequal-
ity on the z-axis. Use both set-builder
and interval notation to describe the
solution set.

21. 1.62+1.23> —2.32 —4.2
22. 1.24x+5.6 < 1.2 —0.52z
23. 0.15x —0.23 > 8.2 — 0.6z
24. —1.23x —9.76 < 1.44x + 22.8
25. 0.522 —5< 1.23 —0.75z

26. 4—0522<0.72¢ —1.34

Version: Fall 2007

In Exercises 27-30, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Make an accurate copy of the image
on graph paper (label the graph with
the letter f and label and scale each
axis), drop a dashed vertical line through
the z-intercept of the graph of f, then
label and shade the solution of f(x) =
0 on the z-axis. Use set-builder no-
tation to describe your solution.

ii. Make a second copy of the image on
graph paper, drop a dashed, verti-
cal line through the z-intercept of the
graph of f, then label and shade the
solution of f(x) > 0 on the z-axis.
Use set-builder and interval notation
to describe your solution set.

iii. Make a third copy of the image on
graph paper, drop a dashed, verti-
cal line through the z-intercept of the
graph of f, then label and shade the
solution of f(x) < 0 on the z-axis.
Use set-builder and interval notation
to describe your solution set.

27.

Y

5 A
/ !
s
A

T

A
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28. In Exercises 31-34, perform each of the
following tasks. Remember to use a ruler
54 to draw all lines.

i. Make an accurate copy of the image
on graph paper, drop dashed, ver-
tical lines through the z-intercepts,
then label and shade the solution of

v f(z) > 0 on the z-axis. Use set-
builder and interval notation to de-
scribe your solution set.

f ii. Make a second copy of the image on
graph paper, drop dashed, vertical lines

v through the x-intercepts, then label

and shade the solution of f(z) < 0 on

.

29. the x-axis. Use set-builder and inter-
val notation to describe your solution
Yy
5a set.
\ 31.
Yy
51\
< > T
5
f < » T
5
A
30.
y v f
51\ f
< » T
5
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In Exercises 35-38, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i

ii.

iii.

35.

36.

37.

38.

Load the given function f into the
Y= menu of your calculator. Adjust
the WINDOW parameters so that the x-
intercept(s) of the graph of f is vis-
ible in the viewing window. Use the
zero utility in the CALC menu of your
calculator to determine the coordi-
nates of the z-intercept(s) of the graph
of f.

Make an accurate copy of the image
in your viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
and label the graph with its equation.
Draw a dashed, vertical line through
the z-intercept(s). Shade and label
the solution of the inequality f(z) >
0 on the z-axis. Use both set-builder
and interval notation to describe the
solution set.

f(z) = —1.25x + 3.58
f(z) = 1.34z — 4.52
f(z) = 1.252% + 4 — 5.9125

f(z) = —1.3222 — 3.96x + 5.9532

In Exercises 39-42, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i.

ii.

Load the given function f into the
Y= menu of your calculator. Adjust
the WINDOW parameters so that the x-
intercept(s) of the graph of f is vis-
ible in the viewing window. Use the
zero utility in the CALC menu of your
calculator to determine the coordi-
nates of the z-intercept(s) of the graph
of f.

Make an accurate copy of the image



iii.

39.

40.

41.

42,
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in your viewing window on your home-
work paper. Label and scale each

axis with xmin, xmax, ymin, and ymax,

and label the graph with its equation.
Draw a dashed, vertical line through
the z-intercept(s). Shade and label
the solution of the inequality f(z) <
0 on the z-axis. Use both set-builder
and interval notation to describe the
solution set.

f(z) =—1.452 - 5.6
f(x) =1.35x + 8.6
f(x) = —1.1122 — 5.9940x + 1.2432

f(z) = 1.222% — 6.3440x + 1.3176
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2.4 Answers

[y
~
—~
|
w
N—
N
Q
~—
|
w
N~—
~
~—
[a—
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Il

g(1), and

3. f(=4) > g(—4), f(=3) = g(-3), and
f(=2) <g(-2).

5. f(=3)>g(=3), f(=1) = g(-1), and
f(0) > ¢(0).
7. The solution of f(z) = g(x) isz = 3.

Y
5 i f

$ T

A

A

The solution of f(x) > g(z) is (3,00) =
{z: x> 3}

59

~
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The solution of f(x) < g(z) is (—o0,3) =
{z: x < 3}.

51 T f

[ 3

/A

9. The solution of f(z) = g(z) is = =
—2.

51\
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The solution of f(z) > g(z)is (—o0,—2) =  The solution of f(z) > g(x) is (3,00) =
{z:x< -2} {z: x> 3}

5

>

i ; i
[} [}
[} [}
[} [}
+ +
[} [}
| L f
[} )
1}
[} [}
< o > T < O ® T
72 i PN
' / | 9
[} [}
+
[} [}
[} [}
[} [}
[} [}
: A A f A 4 :
The solution of f(z) < g(z) is (=2, 00) = The solution of f(x) < g(z) is (—o0,3) =
{x:z>-2} {z: x <3}
Yy g Y )
| 'Q‘ :
| |
+ +
[} [}
| -
[} )
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[} | [}
* G %" i 5"
: / | g
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+
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[} [}
[} [}
| \ 1
: ' f v :
11. The solution of f(z) = g(x) is x = 13.  The solution of f(z) > g(x) is [-3,3] =
3. {z: -3<x<3}
53
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The solution of f(x) < g(x) is The solution of f(z) < g(x) is (—2,2) =
(—o0,—3) U (3,00) {z: -2<xz<2}
={z: x < -3 orz >3} y

54 i f
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17. x=2.271955
15. The solution of f(z) > g(z) is y
(—o0, —2] U [2,00) 10,

={z: 2z < -2o0rz>2} y=1.232—4.56
)
i 5a i f
| |
) )
| |
\ } < > T
! ! 10 1o
) |
< ~
5 %"
) )
l l !
: : —10 y=3.46—2.3z
| |
| |
| | 19.
1 A 4 1 g
y=2.20—5.66
< » T
—10 10
y=5.46—1.3x
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21. [-1.392308,00) = {x : x > —1.392308} 27. The solution of f(z) =0isz = —1.

04 y=1.62+1.23

!

k- ———————

0V Yy=—23z-42

23. (11.24,00) = {z : = > 11.24}

~104

-5
— 11.24

e S o T P P

~10v

25. (—4.358670,2.858670)
= {x: —4.358670 < < 2.858670}

Y

.10y y=0.522—5
: :
] ]
] ]
]
]
) ]
] ]
] ]
] ]
< e » T
—10  —4.358670 |2.8BRG70 10
: :
] ]
] ]
] ]
| | y=1.23-0.75z
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The solution of f(z) > 0is (—1,00) =
{z:x>-1}.

5

A

13 \
~

A

The solution of f(z) < 01is (—o0,—1) =
{z:2z< -1}
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29. The solution of f(z) =01is z = 2.

Y
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A 4

The solution of f(xz) > 0 is (—o00,2) =
{z: xz <2}

Yy
V\E)A

<

A 4

The solution of f(z) < 01is (2,00) = {z:
x> 2}
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~
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31. Thesolutionof f(x) > 0is [—3,2] =
{z: -3<ax<2}.
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The solution of f(z) < 0is (—oo0,—3) U
(2,00) ={z: z <=3 oraz>2}
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33. Thesolution of f(z) > 0is (—o0, —2]U
[l,o0)={z: 2z < —-20rz>1}.
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The solution of f(z) < 0is (—2,1) = {z:

-2 <z <1}

T

f(z)=—1.250+3.58

35. (—00,2.8640) = {x : = < 2.8640}
IOiy; i
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]
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37. (—o00,—43)U(1.1,00) ={z: z <
—43orx > 1.1}

104

—————————
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39. [-3.8621,00) = {z: x > —3.8621}

Y

® T
. 10
|
|
|
|
fqm):_ﬂijsﬁ
i
1 —107
41. (—00,-5.6]U[0.2,00) = {z: = <
—5.6 or z > 0.2}
: >
—10 2 10

5.9940x4-1.2432
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2.5 Vertical Transformations

In this section we study the art of transformations: scalings, reflections, and transla-
tions. We will restrict our attention to transformations in the vertical or y-direction.
Our goal is to apply certain transformations to the equation of a function, then ask
what effect it has on the graph of the function.

We begin our task with an example that requires that we read the graph of a
function to capture several key points that lie on the graph of the function.

» Example 1. Consider the graph of f presented in Figure 1(a). Use the graph of
f to complete the table in Figure 1(b).

Y
5%

—2

AN -
5" 0

; ; f 1

(a) The graph of f. (b) The table.
Figure 1. Reading key values from the graph of f.

To compute f(—1), we would locate —1 on the z-axis, draw a vertical arrow to the
graph of f, then a horizontal arrow to the y-axis, as shown in Figure 2(a). The y-value
of this final destination is the value of f(—1). That is, f(—1) = 2. This allows us to
complete one entry in the table, as shown in Figure 2(b). Continue in this manner to
complete all of the entries in the table. The result is shown in Figure 2(c).

_<>_

20 Copyrighted material. See: http://msenux.redwoods.edu/Int AlgText/
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5%

z | f(x)|(x, f(x)) z | f(x)|(x, f(x))

2 2 “2[ 0 | (=2,0)

i‘g _1] 2 | (=1,2) _1] 2 | (=1,2)
ry 1e 0 0| 0| (0,0
;;f 1 1] -2 (1,-2)

2 21 0| (2,0
(a) The graph of f. (b) Recording (c) Completed table.
f(=1) =2

Figure 2. Recording coordinates of points on the graph of f in the tables.

Vertical Scaling

In the narrative that follows, we will have repeated need of the graph in Figure 2(a)
and the table in Figure 2(c). They characterize the basic function that will be the
starting point for the concepts of scaling, reflection, and translation that we develop in
this section. Consequently, let’s place them side-by-side for emphasis in Figure 3.

Yy
5%

z |f(@)|(=, f(z))
20 0 [ (=2,0)

/A ~1) 2 | (=1,2)

= 0| 0| (0,0

;;f 1] -2 (1,-2)

2| 0| (2,0

Y
(a) (b)

Figure 3. The original graph of f and a table of key points on

the graph of f.

We are now going to scale the graph of f in the vertical direction.

» Example 2. Ify = f(x) has the graph shown in Figure 3(a), sketch the graph
of y =2f(x).

What do we do when we meet a graph whose shape we are unsure of? The answer
to this question is we plot some points that satisfy the equation in order to get an
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idea of the shape of the graph. With that thought in mind, let’s evaluate the function
y=2f(z) at x = —2.

The letter f refers to the original function shown in Figure 3(a) and the table in
Figure 3(b) contains the values of that function at the given values of . Thus, in
computing y = 2f(—2), the first step is to look up the value of f(—2) in the table in
Figure 3(b). There we find that f(—2) = 0. Thus, we can write

In similar fashion, let’s evaluate the function y = 2f(z) at x = —1. First, look up the
value of f(—1) in the table in Figure 3(b). There we find that f(—1) = 2. Thus, we
can write

We finish by evaluating the function y = 2f(z) at « = 0, 1, and 2. Each time you
need to evaluate the function f at a number, take the result from the table or graph in
Figure 3. What follows are the evaluations of y = 2f(z) at x = —2, —1, 0, 1, and 2.

= 2/(~2) = 2(0) =0

y=2f(-1)=2(2) =4
y =2£(0)=2(0)=0
y=2f(1)=2(-2) = -4
y=2f(2)=2(0)=0

We can arrange these results in a table shown in Figure 4(b), then plot them in the
figure shown in Figure 4(a).

5%
z |y =2f(z)|(z,2f())
S 0 | (—2.0)
—1 4 (~1,4)
ol o (0,0)
4| (1,-4)
2l 0 (2,0)
(a) (b)

Figure 4. The points in the table
are points on the graph of y = 2f(z).

At this point, there are a number of comparisons you can make.

1. Compare the data in the tables in Figure 3(b) and Figure 4(b). Note that the
x-values are identical. In both tables, + = —2, —1, 0, 1, and 2. However, note
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that each y-value in the table in Figure 4(b) is precisely double the corresponding
y-value in the table in Figure 3(b).

2. Compare the graphs in Figure 3(a) and Figure 4(a). Note that the y-value of
each point in the graph of y = 2f(x) in Figure 4(a) is precisely double the y-value
of the corresponding point in Figure 3(a).

Note the result. The graph of y = 2f(x) has been stretched vertically (away from
the x-axis) , both positively and negatively, by a factor of 2.

_<>_

Let’s look at another example.

» Example 3. Ify = f(z) has the graph shown in Figure 3(a), sketch the graph
of y = (1/2)f ().

Let’s begin by evaluating the function y = (1/2) f(x) at x = —2. First, look up the
value of f(—2) in the table in Figure 3(b). There we find that f(—2) = 0. Thus, we
can write

y = (1/2)f(=2) = (1/2)(0) = 0.

In similar fashion, let’s evaluate the function y = (1/2) f(x) at * = —1. First, look up
the value of f(—1) in the table in Figure 3(b). There we find that f(—1) = 2. Thus,
we can write

y=@1/2)f(-1) = (1/2)(2) = 1.

Continuing in this manner, we can evaluate the function y = (1/2)f(z) at « = 0, 1,
and 2.

y=(1/2)f(0) = (1/2)(0) = 0
y=(1/2)f(1) = (1/2)(-2) = -1
y=(1/2)f(2) = (1/2)(0) = 0

The results are recorded in the table in Figure 5(b). Rather than double each value
of y as did the function y = 2f(z) in Example 2, this function y = (1/2) f(z) halves
each value of y. The graph of y = (1/2) f(x) and a table of key points on the graph are
presented in Figures 5(a) and (b), respectively.

Again, there are a number of comparisons.

1. Compare the data in the tables in Figure 5(b) and Figure 3(b). Note that the
x-values are identical. In both tables x = —2, —1, 0, 1, and 2. However, note that
each y-value in the table in Figure 5(b) is precisely half the corresponding y-value
in the table in Figure 3(b).

2. When you compare the graph of y = (1/2)f(z) in Figure 5(a) with the original
graph of y = f(z) in Figure 3(a), note that each point on the graph of y =
(1/2)f(z) has a y-value that is precisely half of the corresponding y-value on the
original graph of y = f(z) in Figure 3(a).
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5
z ly = (1/2)f(x)|(z, (1/2)f(x))
2 0 (=2,0)
-1 1 (—-1,1)
4—0& LT 0 0 (0,0)
y=(1/2)f(x) 1 1 (1,-1)
2 0 (2,0)
(a) (b)

Figure 5. The points in the table are
points on the graph of y = (1/2) f(x).

Note the result. The graph of f has been compressed vertically (toward the x-axis),
both positively and negatively, by a factor of 2.

_<>_

Let’s summarize our findings.

A Visual Summary — Vertical Scaling. Consider the images in Figure 6.

In Figure 6(a), we see pictured the graph of the original function y = f(z).
In Figure 6(b), note that each key point on the graph of y = 2f(z) has a
y-value that is precisely double the y-value of the corresponding point on the
graph of y = f(x) in Figure 6(a).

e In Figure 6(c), note that each key point on the graph of y = (1/2)f(z) has
a y-value that is precisely half the y-value of the corresponding point on the
graph of y = f(x) in Figure 6(a).

e Note that the z-value of each transformed point remains the same.

Y
5 A 51\ 5 A

/N v=1 (z)

Ut

y=(1/2)f (=)

(a) y = f(x) (b) y = 2f(x) )y = (1/2)f(x)
Figure 6. The graph of y = 2f(x) stretches vertically (away from the z-axis) by a factor of 2.
The graph of y = (1/2) f(z) compresses vertically (toward the z-axis) by a factor of 2.
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The visual summary in Figure 6 makes sketching the graphs of y = 2f(x) and y =
(1/2)f(x) an easy task.

e Given the graph of y = f(z), to sketch the graph of y = 2f(x), simply take each
point on the graph of y = f(z) and double its y-value, keeping the same z-value.

e Given the graph of y = f(x), to sketch the graph of y = (1/2) f(x), simply take each
point on the graph of y = f(z) and halve its y-value, keeping the same z-value.

Follow the same procedures for other scaling factors. For example, in the case of
y = 3f(z), take each point on the graph of y = f(z) and multiply its y-value by 3,
keeping the same z-value. On the other hand, to draw the graph of y = (1/3)f(z),
take each point on the graph of f and multiply its y-value by 1/3, keeping the same
y-value.

In general, we can state the following.

Summary 4. Suppose we are given the graph of y = f(z).

e Ifa > 1, then the graph of y = af(x) is stretched vertically (away from the
x-axis), both positively and negatively, by a factor of a.

e If0 < a<1, then the graph of y = af(x) is compressed vertically (toward the
x-axis), both positively and negatively, by a factor of 1/a.

The second item in Summary 4 warrants a word of explanation. Compare the
general form y = af(z) with the function of Example 3, y = (1/2)f(z). In this case,
a=1/2 so

The second item says that when 0 < a < 1, the graph of y = af(z) is compressed
vertically by a factor of 1/a. Indeed, this is exactly what happens in the case of
y = (1/2) f(x), which is compressed by a factor of 1/(1/2), or 2.

Vertical Reflections

For convenience, we begin by repeating the original graph of y = f(x) and its accom-
panying data.

We are now going to reflect the graph in the vertical direction (across the z-axis).
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51\

20 0 | (=2,0)

/1 _1] 2 | (=1,2)

@ 0| 0| (0,0

;;-f 1] -2 (1,-2)

\ 4

(a) (b)
Figure 7. The original graph of f and a table of key points on
the graph of f.

» Example 5. Ify = f(x) has the graph shown in Figure 7(a), sketch the graph
of y = —f(=).

To set up a table of points in preparation for the plot of y = — f(z), we’'ll use exactly
the same values of x that you see in the table in Figure 7(b), namely z = -2, —1, 0,
1, and 2.

To evaluate y = — f () at the first value of x, namely z = —2, we make the following
calculation,

y=—f(-2)=—-(0)=0,

where we've used the fact that f(—2) = 0 from the table in Figure 7(b). In similar

fashion, we evaluate y = — f(z) at each of the remaining values of x, namely = = —1,
0, 1, and 2.

y=—f(-1)=~(2) = -2

y=—f(0)=—-(0)=0

y=—f(1) = —(-2) =2

y=—f(2)=-(0)=0

We assemble these points in the table in Figure 8(b) and plot them in Figure 8(a).

Note that the graph of y = —f(z) in Figure 8(a) is a reflection of the graph of
y = f(z) in Figure 7(a) across the z-axis.?!

_<>_

Be sure to note that this is a reflection of the graph of y = f(z) across the z-axis. Note that a reflection
of the graph of y = f(z) across the y-axis gives the same result, but that’s not what we’ve done here.
We’ll address reflections across the y-axis in the next section.
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51\

\ 4

(a) (b)
Figure 8. The graph of y = —f(x)
and a table of key points on the graph.

Let’s summarize what we’ve learned about vertical reflections.

A Visual Summary — Vertical Reflections. Consider the images in
Figure 9.

e In Figure 9(a), we see pictured the original graph of y = f(z).
e In Figure 9(b), the graph of y = — f(z) is a reflection of the graph of y = f(x)
across the z-axis.

54; 51\

y=—f(z)

(a)y = f(x) (b)y = —f(z)

Figure 9. The graph of y = —f(z) is a reflection of the graph of y = f(x)
across the z-axis.

Thus, given the graph of y = f(z), it is a simple task to draw the graph of y = — f(z).

e To draw the graph of y = —f(z), take each point on the graph of y = f(x) and
reflect it across the z-axis, keeping the z-value the same, but negating the y-value.
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Vertical Translations

Translations are perhaps the easiest transformation of all. A translation is a “shift”
or a “slide.” Pretend, for a moment, that you've placed a transparent sheet of thin
plastic over a sheet of graph paper. You've drawn a Cartesian coordinate system on
your graph paper, but you've plotted your graph on the transparent sheet of plastic.
Now, “shift” or “slide” the transparency over your graph paper in a constant direction
without rotating the transparency. This is what we mean by a “translation.” In this
section, we will focus strictly on vertical translations.

For convenience, we begin by repeating the original graph of y = f(z) and its
accompanying data in Figure 10(a) and( b), respectively. We will now translate this
graph in the vertical direction.

Yy
5%

(a) (b)
Figure 10. The original graph of f and a table of key points on
the graph of f.

» Example 6. Ify= f(z) has the graph shown in Figure 10(a), sketch the graph
ofy = f(x)+ 1.

We will evaluate y = f(z)+1 at the same values shown in the table in Figure 10(b),
namely z = —2, —1, 0, 1, and 2. To evaluate y = f(x)+1 at the first value of z, namely
x = —2, we make the following calculation

y=f(-2)+1=0+1=1,

where we’ve used that fact that f(—2) = 0 from the table in Figure 10(b). In similar
fashion, we can evaluate y = f(z) + 1 at each of the remaining values of z, namely
=—-1,0, 1, and 2.

F-)+1=2+1=3
fO)+1=0+1=1
fﬂ)+1_—2+1— ~1
f@)+1=0+1=1

Y
Y
Y
We assemble these points in the table in Figure 11(b) and plot them in Figure 11(a).
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51\

)+ 1(z, f(z) +1)

\ 4

(a) (b)
Figure 11. The graph of y = f(z) + 1
and a table of key points on the graph.

When you compare the entries in the table in Figure 11(b) with the original values
in the table in Figure 10(b), you’ll note that the z-values in each table are identical,
but the y-values in the table in Figure 11(b) are all increased by 1. This makes sense,
because these are the y-values of the points associated with the function y = f(z) + 1.
Of course, all the y-values should be 1 larger than the y-values associated with the
original equation y = f(x).

Note the result. The graph of y = f(z) + 1 in Figure 11(a), when compared with
the graph of y = f(z) in Figure 10(a), is shifted 1 unit upwards.

_<>_

Let’s look at another example.

» Example 7. Ify= f(x) has the graph shown in Figure 10(a), sketch the graph
ofy = f(x) —2.

Evaluate the function y = f(x) — 2 at each value of x in the table in Figure 10(b).
At x = -2,

y=f(-2)-2=0-2=-2.

In similar fashion, evaluate y = f(z) — 2 at each remaining z-value in the table in
Figure 10(b).

() 2=0-2=-2

We assemble these points in the table in Figure 12(b) and plot them in Figure 12(a).

When you compare the entries in the table in Figure 12(b) with the original values
in the table in Figure 10(b), you’ll note that the x-values in each table are identical,
but the y-values in the table in Figure 12(b) are all decremented by 2. This makes
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54
zJy= @) -2, fa) — 2)
—2 —2 (=2, —2)
-1 0 (~1,0)

Figure 12. The graph of y = f(z) — 2
and a table of key points on the graph.

sense, because these are the y-values of the points associated with the function y =
f(x) — 2. Of course, all the y-values should be 2 less than the y-values associated with
the original equation y = f(z).

Note the result. The graph of y = f(z) — 2 in Figure 12(a), when compared with
the graph of y = f(z) in Figure 10(a), is shifted downward 2 units.

_<>_

Let’s summarize what we’ve learned about vertical translations.

A Visual Summary — Vertical Translations (Shifts). Consider the images
in Figure 13.

In Figure 13(a), we see pictured the graph of the original function y = f(z).
In Figure 13(b), note that each key point on the graph of y = f(z) + 1 has
a y-value that is precisely 1 unit larger than the y-value of the corresponding
point on the graph of y = f(x) in in Figure 13(a).

e In Figure 13(c), note that each key point on the graph of y = f(z) — 2 has a
y-value that is precisely 2 units smaller than the y-value of the corresponding
point on the graph of y = f(z) in in Figure 13(a).

e Note that the z-value of each transformed point remains the same.

The visual summary in Figure 13 makes sketching the graphs of y = f(z) 4+ 1 and
y = f(z) — 2 an easy task.

e Given the graph of y = f(x), to sketch the graph of y = f(z) + 1, simply take
each point on the graph of y = f(z) and move it upwards 1 unit, keeping the same
x-value.

e Given the graph of y = f(x), to sketch the graph of y = f(z) — 2, simply take each
point on the graph of y = f(z) and move it downwards 2 units, keeping the same
x-value.
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Y Y
54 54 5%

/\ y=f(1)+1
=16 j N N j i 1.
Y T T T TN
\/‘y:f(w%?

\ 4

¥

A 4

v

(a) y = f(z) (b)y = flz) +1 (€)y = flz) -2

Figure 13. The graph of y = f(x) + 1 is formed by shifting (vertically) the graph of y = f(x)
upward 1 unit. The graph of y = f(x) — 2 is formed by shifting (vertically) the graph of y = f(x)

downward 2 units.

In general, we can state the following.

Summary 8. Suppose that we are given the graph of y = f(x) and suppose
that c is any positive real number.

The graph of y = f(x)+ c is shifted ¢ units upward from the graph of y = f(z).
The graph of y = f(x) — ¢ is shifted ¢ units downward from the graph of

y = f(x).

Composing Transformations

Sometimes we will want to perform one transformation, then take the result of the first
transformation and apply a second transformation. Let’s look at an example.

» Example 9. Consider the graph of y = f(x) presented in Figure 14.

oy

A 4

Figure 14. The graph of y = f(z)
that will be transformed in Example 9.
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Use the concepts discussed in the Visual Summaries to sketch the graph of y = —2f(x)
without creating and referring to a table of points.

Note that the equation y = —2f(x) can be formed by a sequence of two transfor-
mations.

1. First, scale the original function y = f(x) to obtain the equation y = 2f(z).
2. Second, negate the resulting function y = 2f(x) to obtain the equation y = —2f(z).

Thus, the graph of y = —2f(z) can be formed as follows:

1. Start with the graph of y = f(x) and double the y-value of each point on the graph
of y = f(x), keeping the same z-value. The result is the graph of y = 2f(z) shown
in Figure 15(b).

2. Next, negate the y-value of each point on the graph of y = 2f(z), keeping the same
x-value. The result is the graph of y = —2f(x) in Figure 15(c).

Yy Yy Yy
o4 Y'Y y=2f(z) oa
\ y=f(z)
v‘ >5m - >5m - >5x
v v ‘—:r y:72f(x)
(&) y = f(z) (b)y = 2f(x) (c)y = —2f(z)

Figure 15. Transforming the graph of y = f(x) with a sequence of two transformations.

It is interesting to note that you will get the same result if you negate first, then
scale the result. We will leave it to our readers to check that this is true.

_<>_

Let’s look at one final example.

» Example 10. Consider the graph of y = f(x) presented in Figure 16.

Use the concepts discussed in the Visual Summaries to sketch the graph of y = — f(x)+2
without creating and referring to a table of points.

Note that the equation y = —f(z) + 2 can be formed by a sequence of two trans-
formations.

1. First, negate the original function y = f(x) to obtain the equation y = — f(z).
Second, add 2 to the resulting function y = —f(z) to obtain the equation y =
—f(z) +2.

Thus, the graph of y = — f(z) + 2 can be formed as follows.
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Y
5y

A 4

Figure 16. The graph of y
that will be transformed in Example 10.

1. First, start with the graph of y = f(x) in Figure 17(a) and negate the y-value of

each point to produce the graph of y = — f(x) Figure 17(b).

2. Next, add 2 to the y-value of each point on the graph of y = — f(x) in Figure 17(b)

to produce the graph of y = —f(x) + 2 in Figure 17(c).

Y
5%

A 4

(a) y = f(x)

Y
o4

A

(b) y = —f(x)

Y
5%

y=—f(z)+2

SERRSZ4EEA

> T
5

A 4

(©)y = —f(z) +2

Figure 17. Transforming the graph of y = f(z), first reflecting across the z-axis, then shifting 2 units
upward to obtain the graph of y = —f(x) + 2.

In Example 9, where we started with the graph of y = f(z) and then graphed y =
2f(x), the order of the transformations did not matter. Scale by 2, then negate, or
negate and scale by 2, you get the same result (readers should verify this claim).
However, in this example, the order in which the transformations are applied does
matter. To see this, let’s do the following:

1. Add 2 to shift the graph of y = f(x) in Figure 18(a) two units upward to obtain
the graph of y = f(z) + 2 in Figure 18(b).
2. Negate the y-value of each point on the graph of y = f(z) + 2 in Figure 18(b) to
obtain the graph of y = —(f(z) + 2) in Figure 18(c). Note that we must negate
the entire y-value. Hence the parentheses.
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Unfortunately, the graph of y = —(f(z)+2) in Figure 18(c) is not the same as the
graph of y = —f(z) + 2 in Figure 17(c). But of course, this makes complete sense, as
the equations (in the case of Figure 18(c))

y=—(f(z)+2)=—f(x) -2

and (in the case of Figure 17(c))

are also not the same.

54
N
N L
(a) y = f(z)

y=—f(z)+2

o4

y=f(z)+2

A A

(b)y = fz) +2

¥

o4

8

y=—(f(x)+2)

A

)y =—(flz) +2)

Figure 18. Transforming the graph of y = f(z), shifting 2 units upward to obtain the graph of y =
f(z) + 2, then reflecting across the z-axis to obtain the graph of y = —(f(x) + 2).

Therefore, care must be taken when applying more than one transformation. Here is a
good rule of thumb to live by.

Do Vertical Scalings and Reflections First, then Vertical Translations.
When performing a sequence of vertical transformations, it is usually easier (less
confusing) to apply vertical scalings and reflections before vertical translations.

However, as long as you perform the transformations correctly, you should obtain
the correct result. In Example 10, if you want to sketch the graph of y = — f(z)+2 by
doing the translation first, the correct way to proceed is as follows (though somewhat
counterintuitive):

1. First, shift the graph of y = f(z) downward 2 units to obtain the graph of y =

flx) —2.

2. Second, reflect the graph of y = f(x) — 2 across the z-axis to obtain the graph
of y = —(f(z) — 2). Again, note the use of parentheses as we negate the entire
y-value.

Finally, note that
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We will leave it to our readers to show that this sequence produces the correct result,
a graph identical to the correct answer shown in Figure 17(c).

_<>_

Summary

In this section we’ve seen how a handful of transformations greatly enhance our graph-
ing capability. We end this section by listing the transformations presented in this
section and their effects on the graph of a function.

Vertical Transformations. Suppose we are given the graph of y = f(x).

e If a > 1, then the graph of y = af(z) is stretched vertically (away from the
x-axis), both positively and negatively, by a factor of a.

e If0 < a< 1, then the graph of y = af(z) is compressed vertically (toward the
x-axis), both positively and negatively, by a factor of 1/a.

e The graph of y = —f(z) is a reflection of the graph of y = f(z) across the
r-axis.

e If ¢ > 0, then the graph of y = f(x) + ¢ is shifted ¢ units upward from the
graph of y = f(z).

e If ¢ > 0, then the graph of y = f(z) — c is shifted ¢ units downward from the
graph of y = f(x).
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2.5 FExercises

Pictured below is the graph of a function

f.

Y
10%

cph

A 4

The table that follows evaluates the
function f in the plot at key values of x.
Notice the horizontal format, where the
first point in the table is the ordered pair
(—4,0).

z |—4]-3]0]2]5]6
f@)| o] al4a]-a[-

Use the graph and the table to complete
each of following tasks for Exercises 1-
10.

i. Set up a coordinate system on graph
paper. Label and scale each axis, then
copy and label the original graph of
f onto your coordinate system. Re-
member to draw all lines with a ruler.

ii. Use the original table to help com-
plete the table for the given function
in the exercise.

iii. Using a different colored pencil, plot
the data from your completed table
on the same coordinate system as the
original graph of f. Use these points

to help complete the graph of the given
function in the exercise, then label
this graph with its equation given in
the exercise.

22 Copyrighted material. See: http://msenux.redwoods.edu/Int AlgText/
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7. y=(-1/2)f().

11. Use your graphing calculator to draw
the graph of y = y/z. Then, draw the
graph of y = —y/z. In your own words,
explain what you learned from this exer-
cise.

12. Use your graphing calculator to draw
the graph of y = |z|. Then, draw the
graph of y = —|z|. In your own words,
explain what you learned from this exer-
cise.

13. Use your graphing calculator to draw
the graph of y = 22. Then, in succession,
draw the graphs of y = 222, y = 2% —4,
and y = 22 — 6. In your own words, ex-
plain what you learned from this exer-
cise.

14. Use your graphing calculator to draw
the graph of y = 2. Then, in succession,

Version: Fall 2007

draw the graphs of y = 2242, y = 244,
and y = z? + 6. In your own words, ex-
plain what you learned from this exer-
cise.

15. Use your graphing calculator to draw
the graph of y = |z|. Then, in succession,
draw the graphs of y = 2|z, y = 3|z|,
and y = 4|z|. In your own words, explain
what you learned from this exercise.

16. Use your graphing calculator to draw
the graph of y = |z|. Then, in succession,
draw the graphs of y = (1/2)|z], y =
(1/3)|z|, and y = (1/4)|z|. In your own
words, explain what you learned from
this exercise.

Pictured below is the graph of a function
f- In Exercises 17-22, use this graph
to perform each of the following tasks.

Y
10%

A
—Y
Oy

A 4

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-
member to draw all lines with a ruler.

ii. In the narrative, a shadow box at the
end of the section summarizes the con-
cepts and technique of vertical scal-
ing, vertical reflection, and vertical
translation. Use the shortcut ideas
presented in this summary shadow box



iii.

17.

18.

19.

20.

21.

22.

SECTION 2.5 VERTICAL GEOMETRIC TRANSFORMATIONS

to draw the graphs of the functions
that follow without using tables.
Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

y = (1/2)f ().

y=2f(z)
y=—f(x)
y=flz) -1
y=flx)+3
y=[(z) -4

Pictured below is the graph of a function

f.

In Exercises 23-28, use this graph

to perform each of the following tasks.

ii.

Y
10%

i
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Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-
member to draw all lines with a ruler.
In the narrative, a shadow box at the

iii.

23.

24.

25.

26.

27.

28.

185

end of the section summarizes the con-
cepts and technique of vertical scal-
ing, vertical reflection, and vertical
translation. Use the shortcut ideas
presented in this summary shadow box
to draw the graphs of the functions
that follow without using tables.
Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

y=2f(z).
y=(1/2)f ().
y=—f().
y= f(x)+3.
y=f(z)—-2
y=flz) -1

Pictured below is the graph of a function

f.

In Exercises 29-34, use this graph

to perform each of the following tasks.

i.

103
TN !
e > T
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A 4

Set up a coordinate system on a sheet
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ii.

iii.

29.

30.

31.

32.

33.

34.

of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-
member to draw all lines with a ruler.
In the narrative, a shadow box at the
end of the section summarizes the con-
cepts and technique of vertical scal-
ing, vertical reflection, and vertical
translation. Use the shortcut ideas
presented in this summary shadow box
to draw the graphs of the functions
that follow without using tables.
Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

y=(=1/2)f ().
y=—2f(x).
y=—flx)+2
y=—f(z)-3
y=2f(z) -3
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2.5 Answers
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Y
103
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11. Mutiplying by —1, as in y = —/x,

—fle) 12

reflects the graph across the x-axis.

13. Subtracting ¢, where ¢ > 0, moves

the graph c¢ units downward.

15. Multiply by a scalar a, such that
a is larger than 1, stretches the graph

vertically by a factor of a.

17.

10%

/

y:?1/2>f<m>:/
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31.
107 Y
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33.
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y=(—1/2) f(x)
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Versio