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1 Preliminaries
Welcome to the study of intermediate algebra. In this first chapter, we will quickly
review the skills that are prerequisite for a successful completion of a course in inter-
mediate algebra.

We begin by defining the various number systems that are an integral part of the
study of intermediate algebra, then we move to review the skills and tools that are used
to solve linear equations and formulae. Finally, we’ll spend some serious effort on the
logic of the words “ and” and “or,” and their application to linear inequalities.

As all of the material in this “preliminary” chapter is prerequisite material, the
pace with which we travel these opening pages will be much quicker than that spent on
the chapters that follow. Indeed, if you have an opportunity to work on this material
before the first day of classes, it will be time well spent.
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1.1 Number Systems
In this section we introduce the number systems that we will work with in the remainder
of this text.

The Natural Numbers
We begin with a definition of the natural numbers, or the counting numbers.

Definition 1. The set of natural numbers is the set

N = {1, 2, 3, . . .}. (2)

The notation in equation (2)2 is read “N is the set whose members are 1, 2, 3, and
so on.” The ellipsis (the three dots) at the end in equation (2) is a mathematician’s
way of saying “et-cetera.” We list just enough numbers to establish a recognizable pat-
tern, then write “and so on,” assuming that a pattern has been sufficiently established
so that the reader can intuit the rest of the numbers in the set. Thus, the next few
numbers in the set N are 4, 5, 6, 7, “and so on.”

Note that there are an infinite number of natural numbers. Other examples of nat-
ural numbers are 578,736 and 55,617,778. The set N of natural numbers is unbounded;
i.e., there is no largest natural number. For any natural number you choose, adding
one to your choice produces a larger natural number.

For any natural number n, we call m a divisor or factor of n if there is another
natural number k so that n = mk. For example, 4 is a divisor of 12 (because 12 = 4×3),
but 5 is not. In like manner, 6 is a divisor of 12 (because 12 = 6× 2), but 8 is not.

We next define a very special subset of the natural numbers.

Definition 3. If the only divisors of a natural number p are 1 and itself, then p
is said to be prime.

For example, because its only divisors are 1 and itself, 11 is a prime number. On
the other hand, 14 is not prime (it has divisors other than 1 and itself, i.e., 2 and 7). In
like manner, each of the natural numbers 2, 3, 5, 7, 11, 13, 17, and 19 is prime. Note
that 2 is the only even natural number that is prime.3

If a natural number other than 1 is not prime, then we say that it is composite.
Note that any natural number (except 1) falls into one of two classes; it is either prime,
or it is composite.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

In this textbook, definitions, equations, and other labeled parts of the text are numbered consecutively,2

regardless of the type of information. Figures are numbered separately, as are Tables.
Although the natural number 1 has only 1 and itself as divisors, mathematicians, particularly number3

theorists, don’t consider 1 to be prime. There are good reasons for this, but that might take us too far
afield. For now, just note that 1 is not a prime number. Any number that is prime has exactly two
factors, namely itself and 1.
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We can factor the composite number 36 as a product of prime factors, namely

36 = 2× 2× 3× 3.

Other than rearranging the factors, this is the only way that we can express 36 as a
product of prime factors.

Theorem 4. The Fundamental Theorem of Arithmetic says that every natural
number has a unique prime factorization.

No matter how you begin the factorization process, all roads lead to the same prime
factorization. For example, consider two different approaches for obtaining the prime
factorization of 72.

72 = 8× 9
= (4× 2)× (3× 3)
= 2× 2× 2× 3× 3

72 = 4× 18
= (2× 2)× (2× 9)
= 2× 2× 2× 3× 3

In each case, the result is the same, 72 = 2× 2× 2× 3× 3.

Zero
The use of zero as a placeholder and as a number has a rich and storied history. The
ancient Babylonians recorded their work on clay tablets, pressing into the soft clay
with a stylus. Consequently, tablets from as early as 1700 BC exist today in museums
around the world. A photo of the famous Plimpton_322 is shown in Figure 1, where
the markings are considered by some to be Pythagorean triples, or the measures of the
sides of right triangles.

Figure 1. Plimpton_322

The people of this ancient culture had a sexagesimal (base 60) numbering system that
survived without the use of zero as a placeholder for over 1000 years. In the early
Babylonian system, the numbers 216 and 2106 had identical recordings on the clay
tablets of the authors. One could only tell the difference between the two numbers
based upon the context in which they were used. Somewhere around the year 400 BC,
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the Babylonians started using two wedge symbols to denote a zero as a placeholder
(some tablets show a single or a double-hook for this placeholder).

The ancient Greeks were well aware of the Babylonian positional system, but most of
the emphasis of Greek mathematics was geometrical, so the use of zero as a placeholder
was not as important. However, there is some evidence that the Greeks used a symbol
resembling a large omicron in some of their astronomical tables.

It was not until about 650 AD that the use of zero as a number began to creep into
the mathematics of India. Brahmagupta (598-670?), in his work Brahmasphutasid-
dhanta, was one of the first recorded mathematicians who attempted arithmetic oper-
ations with the number zero. Still, he didn’t quite know what to do with division by
zero when he wrote

Positive or negative numbers when divided by zero is a fraction with zero as
denominator.
Note that he states that the result of division by zero is a fraction with zero in the

denominator. Not very informative. Nearly 200 years later, Mahavira (800-870) didn’t
do much better when he wrote

A number remains unchanged when divided by zero.
It seems that the Indian mathematicians could not admit that division by zero was

impossible.
The Mayan culture (250-900 AD) had a base 20 positional system and a symbol

they used as a zero placeholder. The work of the Indian mathematicians spread into
the Arabic and Islamic world and was improved upon. This work eventually made
its way to the far east and also into Europe. Still, as late as the 1500s European
mathematicians were still not using zero as a number on a regular basis. It was not
until the 1600s that the use of zero as a number became widespread.

Of course, today we know that adding zero to a number leaves that number un-
changed and that division by zero is meaningless,4 but as we struggle with these con-
cepts, we should keep in mind how long it took humanity to come to grips with this
powerful abstraction (zero as a number).

If we add the number zero to the set of natural numbers, we have a new set of
numbers which are called the whole numbers.

Definition 5. The set of whole numbers is the set

W = {0, 1, 2, 3, . . .}.

The Integers
Today, much as we take for granted the fact that there exists a number zero, denoted
by 0, such that

It makes no sense to ask how many groups of zero are in five. Thus, 5/0 is undefined.4
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a+ 0 = a (6)

for any whole number a, we similarly take for granted that for any whole number a
there exists a unique number −a, called the “negative” or “opposite” of a, so that

a+ (−a) = 0. (7)

In a natural way, or so it seems to modern-day mathematicians, this easily introduces
the concept of a negative number. However, history teaches us that the concept of neg-
ative numbers was not embraced wholeheartedly by mathematicians until somewhere
around the 17th century.

In his work Arithmetica (c. 250 AD?), the Greek mathematician Diophantus
(c. 200-284 AD?), who some call the “Father of Algebra,” described the equation
4 = 4x + 20 as “absurd,” for how could one talk about an answer less than nothing?
Girolamo Cardano (1501-1576), in his seminal work Ars Magna (c. 1545 AD) referred
to negative numbers as “numeri ficti,” while the German mathematician Michael Stifel
(1487-1567) referred to them as “numeri absurdi.” John Napier (1550-1617) (the cre-
ator of logarithms) called negative numbers “defectivi,” and Rene Descartes (1596-1650)
(the creator of analytic geometry) labeled negative solutions of algebraic equations as
“false roots.”

On the other hand, there were mathematicians whose treatment of negative numbers
resembled somewhat our modern notions of the properties held by negative numbers.
The Indian mathematician Brahmagupta, whose work with zero we’ve already men-
tioned, described arithmetical rules in terms of fortunes (positive number) and debts
(negative numbers). Indeed, in his work Brahmasphutasiddhanta, he writes “a fortune
subtracted from zero is a debt,” which in modern notation would resemble 0− 4 = −4.
Further, “a debt subtracted from zero is a fortune,” which resonates as 0 − (−4) = 4.
Further, Brahmagupta describes rules for multiplication and division of positive and
negative numbers:

• The product or quotient of two fortunes is one fortune.

• The product or quotient of two debts is one fortune.

• The product or quotient of a debt and a fortune is a debt.

• The product or quotient of a fortune and a debt is a debt.

In modern-day use we might say that “like signs give a positive answer,” while
“unlike signs give a negative answer.” Modern examples of Brahmagupta’s first two
rules are (5)(4) = 20 and (−5)(−4) = 20, while examples of the latter two are (−5)(4) =
−20 and (5)(−4) = −20. The rules are similar for division.

In any event, if we begin with the set of natural numbers N = {1, 2, 3, . . .}, add
zero, then add the negative of each natural number, we obtain the set of integers.
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Definition 8. The set of integers is the set

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. (9)

The letter Z comes from the word Zahl, which is a German word for “number.”
It is important to note that an integer is a “whole” number, either positive, negative,

or zero. Thus, −11 456, −57, 0, 235, and 41 234 576 are integers, but the numbers −2/5,
0.125,

√
2 and π are not. We’ll have more to say about the classification of the latter

numbers in the sections that follow.

Rational Numbers
You might have noticed that every natural number is also a whole number. That is,
every number in the set N = {1, 2, 3, . . .} is also a number in the set W = {0, 1, 2, 3, . . .}.
Mathematicians say that “N is a subset of W,” meaning that each member of the set N
is also a member of the set W. In a similar vein, each whole number is also an integer,
so the set W is a subset of the set Z = {. . . ,−2,−2,−1, 0, 1, 2, 3, . . .}.

We will now add fractions to our growing set of numbers. Fractions have been used
since ancient times. They were well known and used by the ancient Babylonians and
Egyptians.

In modern times, we use the phrase rational number to describe any number that
is the ratio of two integers. We will denote the set of rational numbers with the letter
Q.

Definition 10. The set of rational numbers is the set

Q =
{m
n

: m,n are integers, n 6= 0
}
. (11)

This notation is read “the set of all ratios m/n, such that m and n are integers, and
n is not 0.” The restriction on n is required because division by zero is undefined.

Clearly, numbers such as −221/31, −8/9, and 447/119, being the ratios of two
integers, are rational numbers (fractions). However, if we think of the integer 6 as
the ratio 6/1 (or alternately, as 24/4, −48/ − 8, etc.), then we note that 6 is also a
rational number. In this way, any integer can be thought of as a rational number (e.g.,
12 = 12/1, −13 = −13/1, etc.). Therefore, the set Z of integers is a subset of the set
Q of rational numbers.

But wait, there is more. Any decimal that terminates is also a rational number.
For example,

0.25 = 25
100
, 0.125 = 125

1000
, and − 7.6642 = −76642

10000
.

The process for converting a terminating decimal to a fraction is clear; count the number
of decimal places, then write 1 followed by that number of zeros for the denominator.
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For example, in 7.638 there are three decimal places, so place the number over 1000,
as in

7638
1000
.

But wait, there is still more, for any decimal that repeats can also be expressed as the
ratio of two integers. Consider, for example, the repeating decimal

0.021 = 0.0212121 . . . .

Note that the sequence of integers under the “repeating bar” are repeated over and
over indefinitely. Further, in the case of 0.021, there are precisely two digits5 under the
repeating bar. Thus, if we let x = 0.021, then

x = 0.0212121 . . . ,

and multiplying by 100 moves the decimal two places to the right.

100x = 2.12121 . . .

If we align these two results

100x = 2.12121 . . .
−x = 0.02121 . . .

and subtract, then the result is

99x = 2.1

x = 2.1
99
.

However, this last result is not a ratio of two integers. This is easily rectified by
multiplying both numerator and denominator by 10.

x = 21
990

We can reduce this last result by dividing both numerator and denominator by 3. Thus,
0.021 = 7/330, being the ratio of two integers, is a rational number.

Let’s look at another example.

I Example 12. Show that 0.621 is a rational number.

In this case, there are three digits under the repeating bar. If we let x = 0.621, then
multiply by 1000 (three zeros), this will move the decimal three places to the right.

1000x = 621.621621 . . .
x = 0.621621 . . .

Subtracting,

The singletons 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 are called digits.5
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999x = 621

x = 621
999
.

Dividing numerator and denominator by 27 (or first by 9 then by 3), we find that
0.621 = 23/37. Thus, 0.621, being the ratio of two integers, is a rational number.

At this point, it is natural to wonder, “Are all numbers rational?” Or, “Are there
other types of numbers we haven’t discussed as yet?” Let’s investigate further.

The Irrational Numbers
If a number is not rational, mathematicians say that it is irrational.

Definition 13. Any number that cannot be expressed as a ratio of two integers
is called an irrational number.

Mathematicians have struggled with the concept of irrational numbers throughout
history. Pictured in Figure 2 is an ancient Babylonian artifact called The Square Root
of Two Tablet.

Figure 2. The Square
Root of Two Tablet.

There is an ancient fable that tells of a disciple of Pythagoras who provided a geo-
metrical proof of the irrationality of

√
2. However, the Pythagoreans believed in the

absoluteness of numbers, and could not abide the thought of numbers that were not
rational. As a punishment, Pythagoras sentenced his disciple to death by drowning, or
so the story goes.

But what about
√

2? Is it rational or not? A classic proof, known in the time of
Euclid (the “Father of Geometry,” c. 300 BC), uses proof by contradiction. Let us
assume that

√
2 is indeed rational, which means that

√
2 can be expressed as the ratio

of two integers p and q as follows.
√

2 = p
q

Square both sides,
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2 = p
2

q2
,

then clear the equation of fractions by multiplying both sides by q2.

p2 = 2q2 (14)

Now p and q each have their own unique prime factorizations. Both p2 and q2 have an
even number of factors in their prime factorizations.6 But this contradicts equation 14,
because the left side would have an even number of factors in its prime factorization,
while the right side would have an odd number of factors in its prime factorization
(there’s one extra 2 on the right side).

Therefore, our assumption that
√

2 was rational is false. Thus,
√

2 is irrational.
There are many other examples of irrational numbers. For example, π is an irra-

tional number, as is the number e, which we will encounter when we study exponential
functions. Decimals that neither repeat nor terminate, such as

0.1411411141114 . . . ,

are also irrational. Proofs of the irrationality of such numbers are beyond the scope
of this course, but if you decide on a career in mathematics, you will someday look
closely at these proofs. Suffice it to say, there are a lot of irrational numbers out there.
Indeed, there are many more irrational numbers than there are rational numbers.

The Real Numbers
If we take all of the numbers that we have discussed in this section, the natural numbers,
the whole numbers, the integers, the rational numbers, and the irrational numbers, and
lump them all into one giant set of numbers, then we have what is known as the set of
real numbers. We will use the letter R to denote the set of all real numbers.

Definition 15.

R = {x : x is a real number}.

This notation is read “the set of all x such that x is a real number.” The set of real
numbers R encompasses all of the numbers that we will encounter in this course.

For example, if p = 2× 3× 3× 5, then p2 = 2× 2× 3× 3× 3× 3× 5× 5, which has an even number of6

factors.



Section 1.1 Number Systems 11

Version: Fall 2007

1.1 Exercises

In Exercises 1-8, find the prime factor-
ization of the given natural number.

1. 80

2. 108

3. 180

4. 160

5. 128

6. 192

7. 32

8. 72

In Exercises 9-16, convert the given dec-
imal to a fraction.

9. 0.648

10. 0.62

11. 0.240

12. 0.90

13. 0.14

14. 0.760

15. 0.888

16. 0.104

In Exercises 17-24, convert the given
repeating decimal to a fraction.

17. 0.27

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/7

18. 0.171

19. 0.24

20. 0.882

21. 0.84

22. 0.384

23. 0.63

24. 0.60

25. Prove that
√

3 is irrational.

26. Prove that
√

5 is irrational.

In Exercises 27-30, copy the given ta-
ble onto your homework paper. In each
row, place a check mark in each column
that is appropriate. That is, if the num-
ber at the start of the row is rational,
place a check mark in the rational col-
umn. Note: Most (but not all) rows will
have more than one check mark.

27.

N W Z Q R
0
−2
−2/3
0.15
0.2
√

5
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28.

N W Z Q R
10/2
π

−6
0.9
√

2
0.37

29.

N W Z Q R
−4/3

12
0
√

11
1.3
6/2

30.

N W Z Q R
−3/5
√

10
1.625
10/2
0/5
11

In Exercises 31-42, consider the given
statement and determine whether it is
true or false. Write a sentence explaining
your answer. In particular, if the state-
ment is false, try to give an example that
contradicts the statement.

31. All natural numbers are whole num-
bers.

32. All whole numbers are rational num-
bers.

33. All rational numbers are integers.

34. All rational numbers are whole num-
bers.

35. Some natural numbers are irrational.

36. Some whole numbers are irrational.

37. Some real numbers are irrational.

38. All integers are real numbers.

39. All integers are rational numbers.

40. No rational numbers are natural num-
bers.

41. No real numbers are integers.

42. All whole numbers are natural num-
bers.
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1.1 Answers

1. 2 · 2 · 2 · 2 · 5

3. 2 · 2 · 3 · 3 · 5

5. 2 · 2 · 2 · 2 · 2 · 2 · 2

7. 2 · 2 · 2 · 2 · 2

9. 81
125

11. 6
25

13. 7
50

15. 111
125

17. 3
11

19. 8
33

21. 28
33

23. 7
11

25. Suppose that
√

3 is rational. Then
it can be expressed as the ratio of two
integers p and q as follows:

√
3 = p
q

Square both sides,

3 = p
2

q2
,

then clear the equation of fractions by
multiplying both sides by q2:

p2 = 3q2 (16)

Now p and q each have their own unique
prime factorizations. Both p2 and q2 have
an even number of factors in their prime
factorizations. But this contradicts equa-
tion (14), because the left side would
have an even number of factors in its
prime factorization, while the right side
would have an odd number of factors in
its prime factorization (there’s one extra
3 on the right side).
Therefore, our assumption that

√
3 was

rational is false. Thus,
√

3 is irrational.

27.

N W Z Q R
0 x x x x
−2 x x x
−2/3 x x
0.15 x x
0.2 x x
√

5 x

29.

N W Z Q R
−4/3 x x

12 x x x x x
0 x x x x
√

11 x
1.3 x x
6/2 x x x x x

31. True. The only difference between
the two sets is that the set of whole num-
bers contains the number 0.
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33. False. For example, 1
2 is not an in-

teger.

35. False. All natural numbers are ra-
tional, and therefore not irrational.

37. True. For example, π and
√

2 are
real numbers which are irrational.

39. True. Every integer b can be writ-
ten as a fraction b/1.

41. False. For example, 2 is a real num-
ber that is also an integer.
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1.2 Solving Equations
In this section, we review the equation-solving skills that are prerequisite for successful
completion of the material in this text. Before we list the tools used in the equation-
solving process, let’s make sure that we understand what is meant by the phrase “solve
for x.”

Solve for x. Using the properties that we provide, you must “isolate x,” so that
your final solution takes the form

x = “Stuff,”

where “Stuff” can be an expression containing numbers, constants, other variables,
and mathematical operators such as addition, subtraction, multiplication, division,
square root, and the like.

“Stuff” can even contain other mathematical functions, such as exponentials, loga-
rithms, or trigonometric functions. However, it is essential that you understand that
there is one thing “Stuff” must not contain, and that is the variable you are solving
for, in this case, x. So, in a sense, you want to isolate x on one side of the equation,
and put all the other “Stuff” on the other side of the equation.

Now, let’s provide the tools to help you with this task.

Property 1. Let a and b be any numbers such that a = b. Then, if c is any
number,

a+ c = b+ c,

and,

a− c = b− c.

In words, the first of these tools allows us to add the same quantity to both sides
of an equation without affecting equality. The second statement tells us that we can
subtract the same quantity from both sides of an equation and still have equality.

Let’s look at an example.

I Example 2. Solve the equation x+ 5 = 7 for x.

The goal is to “isolate x on one side of the equation. To that end, let’s subtract 5
from both sides of the equation, then simplify.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/8
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x+ 5 = 7
x+ 5− 5 = 7 − 5

x = 2.

It is important to check your solution by showing that x = 2 “satisfies” the original
equation. To that end, substitute x = 2 in the original equation and simplify both
sides of the result.

x+ 5 = 7
2 + 5 = 7

7 = 7

This last statement (i.e., 7 = 7) is a true statement, so x = 2 is a solution of the
equation x+ 5 = 7.

An important concept is the idea of equivalent equations.

Equivalent Equations. Two equations are said to be equivalent if and only if
they have the same solution set. That is, two equations are equivalent if each of
the solutions of the first equation is also a solution of the second equation, and
vice-versa.

Thus, in Example 2, the equations x+5 = 7 and x = 2 are equivalent, because they
both have the same solution set {2}. It is no coincidence that the tools in Property 1
produce equivalent equations. Whenever you add the same amount to both sides of
an equation, the resulting equation is equivalent to the original equation (they have
the same solution set). This is also true for subtraction. When you subtract the same
amount from both sides of an equation, the resulting equation has the same solutions
as the original equation.

Let’s look at another example.

I Example 3. Solve the equation x− 7 = 12 for x.

We want to “isolate x” on one side of the equation, so we add 7 to both sides of the
equation and simplify.

x− 7 = 12
x− 7 + 7 = 12 + 7

x = 19

We will leave it to our readers to check that x = 19 is a solution of x− 7 = 12.

Let’s pause for a moment and define what is meant by a monomial.
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Definition 4. A monomial is an algebraic expression that is the product of a
number and zero or more variables, each raised to some arbitrary exponent.

Examples of monomials are:

3x2, or − 4ab2, or 25x3y5, or 17, or − 11x.

Monomials are commonly referred to as “terms.” We often use algebraic expressions
that are the sum of two or more terms. For example, the expression

3x3 + 2x2 − 7x+ 8 or equivalently 3x3 + 2x2 + (−7x) + 8,

is the sum of four terms, namely, 3x3, 2x2, −7x, and 8. Note that the terms are thos
parts of the expression that are separated by addition symbols.

Some mathematicians prefer use the word “term” in a more relaxed manner, simply
stating that the terms of an algebraic expression are those components of the expression
that are separated by addition symbols. For example, the terms of the expression

3x2 − 1
x

+ 2x2

x+ 3
or equivalenty 3x2 +

(
−1
x

)
+ 2x2

x+ 3
,

are 3x2, −1/x, and 2x2/(x+ 3). This is the meaning we will use in this text.
Having made the definition of what is meant by a “term,” let’s return to our dis-

cussion of solving equations.

I Example 5. Solve the equation 3x− 3 = 2x+ 4 for x.

We will isolate all terms containing an x on the left side of this equation (we could
just as well have chosen to isolate terms containing x on the right side of the equation).
To this end, we don’t want the −3 on the left side of the equation (we want it on the
right), so we add 3 to both sides of the equation and simplify.

3x− 3 = 2x+ 4
3x− 3 + 3 = 2x+ 4 + 3

3x = 2x+ 7

Remember that we have chosen to isolate all terms containing x on the left side of
the equation. So, for our next step, we choose to subtract 2x from both sides of the
equation (this will “move” it from the right over to the left), then simplify.

3x = 2x+ 7
3x− 2x = 2x+ 7 − 2x

x = 7

To check the solution, substitute x = 7 in the original equation to obtain
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3x− 3 = 2x+ 4
3(7)− 3 = 2(7) + 4

21− 3 = 14 + 4
18 = 18

The last line is a true statement, so x = 7 checks and is a solution of 3x− 3 = 2x+ 4.

If you use the technique of Example 5 repeatedly, there comes a point when you
tire of showing the addition or subtraction of the same amount on both sides of your
equation. Here is a tool, which, if carefully used, will greatly simplify your work.9

Useful Shortcut. When you move a term from one side of an equation to the
other, that is, when you move a term from one side of the equal sign to the other
side, simply change its sign.

Let’s see how we would apply this shortcut to the equation of Example 5. Start
with the original equation,

3x− 3 = 2x+ 4,

then move all terms containing an x to the left side of the equation, and move all other
terms to the right side of the equation. Remember to change the sign of a term if it
moves from one side of the equals sign to the other. If a term does not move from one
side of the equation to the other, leave its sign alone. The result would be

3x− 2x = 4 + 3.

Thus, x = 7 and you are finished.
It is important to note that when we move the −3 from the left-hand side of the

above equation to the right-hand side of the equation and change its sign, what we are
actually doing is adding 3 to both sides of the equation. A similar statement explains
that moving 2x from the right-hand side to the left-hand side and changing its sign is
simply a shortcut for subtracting 2x from both sides of the equation.

Here are two more useful tools for solving equations.

You should be aware that mathematics educators seemingly divide into two distinct camps regarding9

this tool: some refuse to let their students use it, others are comfortable with their students using it.
There are good reasons for this dichotomy which we won’t go into here, but you should check to see
how your teacher feels about your use of this tool in your work.
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Property 6. Let a and b be any numbers such that a = b. Then, if c is any
number other than zero,

ac = bc.

If c is any number other than zero, then
a

c
= b
c
.

In words, the first of these tools allows us to multiply both sides of an equation by
the same number. A similar statement holds for division, provided we do not divide by
zero (division by zero is meaningless). Both of these tools produce equivalent equations.

Let’s look at an example.

I Example 7. Solve the equation 5x = 15 for x.

In this case, only one term contains the variable x and this term is already isolated
on one side of the equation. We will divide both sides of this equation by 5, then
simplify, obtaining

5x = 15
5x
5

= 15
5

x = 3.

We’ll leave it to our readers to check this solution.

I Example 8. Solve the equation x/2 = 7 for x.

Again, there is only one term containing x and it is already isolated on one side of
the equation. We will multiply both sides of the equation by 2, then simplify, obtaining

x

2
= 7

2
(x

2

)
= 2(7)

x = 14.

Again, we will leave it to our readers to check this solution.

Let’s apply everything we’ve learned in the next example.

I Example 9. Solve the equation 7x− 4 = 5− 3x for x.

Note that we have terms containing x on both sides of the equation. Thus, the
first step is to isolate the terms containing x on one side of the equation (left or right,
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your choice).10 We will move the terms containing x to the left side of the equation,
everything else will be moved to the right side of the equation. Remember the rule, if
a term moves from one side of the equal sign to the other, change the sign of the term
you are moving. Thus,

7x− 4 = 5− 3x
7x+ 3x = 5 + 4.

Simplify.

10x = 9

Divide both sides of this last result by 10.

10x = 9
10x
10

= 9
10

x = 9
10

To check this solution, substitute x = 9/10 into both sides of the original equation and
simplify.

7x− 4 = 5− 3x

7
(

9
10

)
− 4 = 5− 3

(
9
10

)
63
10
− 4 = 5− 27

10
We’ll need a common denominator to verify that our solution is correct. That is,

63
10
− 40

10
= 50

10
− 27

10
23
10

= 23
10
.

Thus, x = 9/10 checks and is a solution of 7x− 4 = 5− 3x.
Note that the check can sometimes be more difficult than solving the equation. This

is one of the reasons that we tend to get lazy and not check our solutions. However, we
shouldn’t need to tell you what will probably happen if you do not check your work.

There is a workaround that involves the use of the graphing calculator. We first
store the solution for x in our calculator, then calculate each side of the original equation
and compare results.

1. Enter 9/10 in your calculator window, then
2. push the STOI key, then
3. push the X key followed by the ENTER key.

Although moving all the terms containing x to the right side is alright, it is often preferable to have10

the x terms on the left side of the equation in order to end up with x = “Stuff.”
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The result is shown in Figure 1(a).
Now that we’ve stored x = 9/10 in the calculator’s memory, let’s evaluate each side

of the equation 7x− 4 = 5− 3x at this value of x. Enter 7*X-4 in your calculator and
press ENTER. The result is shown in Figure 1(b), where we see that 7x− 4, evaluated
at x = 9/10, equals 2.3.

Next, enter 5-3*X and press ENTER. The result is shown in Figure 1(c), where we
see that 5 − 3x, evaluated at x = 9/10, also equals 2.3 (by the way, this is equivalent
to the 23/10 we found in our hand check above).

Because the expressions on each side of the equation are equal when x = 9/10 (both
equal 2.3), the solution checks.

(a) (b) (c)
Figure 1. Checking the solution of 7x− 4 = 5− 3x with the graphing calculator.

If you need to solve an equation that contains fractions, one very useful strategy
is to clear the equations of fractions by multiplying both sides of the equation by the
least common denominator.

I Example 10. Solve the equation
2
3
x− 3

4
= 1

4
− 3

2
x

for x.

The least common denominator is 12, so we multiply both sides of this equation by
12.

12
(

2
3
x− 3

4

)
= 12
(

1
4
− 3

2
x

)
Distribute the 12 and simplify.

12
(

2
3
x

)
− 12
(

3
4

)
= 12
(

1
4

)
− 12
(

3
2
x

)
8x− 9 = 3− 18x

Move all terms containing x to the left side of the equation, everything else to the right,
then simplify.
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8x+ 18x = 3 + 9
26x = 12

Divide both sides of this last result by 26 and simplify (always reduce to lowest terms
— in this case we can divide both numerator and denominator by 2).

26x
26

= 12
26

x = 6
13

We leave it to our readers to check this solution. Use your graphing calculator as
demonstrated in Example 9.

You can clear decimals from an equation by multiplying by the appropriate power
of 10.11

I Example 11. Solve the equation 1.23x− 5.46 = 3.72x for x.

Let’s multiply both sides of this equation by 100, which moves the decimal two
places to the right, which is enough to clear the decimals from this problem.

100(1.23x− 5.46) = 100(3.72x)

Distribute and simplify.
100(1.23x)− 100(5.46) = 100(3.72x)

123x− 546 = 372x

Move each term containing an x to the right side of the equation (the first time we’ve
chosen to do this — it avoids a negative sign in the coefficient of x) and simplify.

−546 = 372x− 123x
−546 = 249x

Divide both sides of the equation by 249 and simplify (in this case we can reduce,
dividing numerator and denominator by 3).

−546
249

= 249x
249

−182
83

= x

Rewrite your answer, placing x on the left side of the equation.

x = −182
83

Check your result with your calculator. It is important to be sure that you always use
the original problem when you check your result. The steps are shown in Figure 2(a),
(b), and (c).

Multiplying by 10 moves the decimal one place to the right, multiplying by 100 moves the decimal two11

places to the right, etc.
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(a) (e) (f)
Figure 2. Checking that x = −182/83 is a solution of 1.23x− 5.46 = 3.72x.

Formulae
Science is filled with formulae that involve more than one variable and a number of
constants. In chemistry and physics, the instructor will expect that you can manipulate
these equations, solving for one variable or constant in terms of the others in the
equation.

There is nothing new to say here, as you should follow the same rules that we’ve
given heretofore when the only variable was x. However, students usually find these
a bit intimidating because of the presence of multiple variables and constants, so let’s
take our time and walk through a couple of examples.

I Example 12. Isaac Newton is credited with the formula that determines the
magnitude F of the force of attraction between two planets. The formula is

F = GmM
r2
,

where m is the mass of the smaller planet, M is the mass of the larger planet, r is the
distance between the two planets, and G is a universal gravitational constant. Solve
this equation for G.

First, a word of caution.

Warning 13. When using formulae of science, never change the case of a variable
or constant. If it is uppercase, write it in uppercase on your homework. The same
directive applies if the variable or constant is presented in lowercase. Write it in
lowercase on your homework.

This equation has fractions in it, so we will begin by multiplying both sides of the
equation by the common denominator, which in this case is r2.

r2(F ) = r2
(
GmM

r2

)
This gives us
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r2F = GmM.

In this case, there is only one term with G, and that term is already isolated on one side
of the equation. The next step is to divide both sides of the equation by the coefficient
of G, then simplify.

r2F

mM
= GmM
mM

r2F

mM
= G

Hence,

G = r
2F

mM
.

Note that we have G = “Stuff”, and most importantly, the “Stuff” has no occurrence
of the variable G. This is what it means to “solve for G.”

Let’s look at a final example.

I Example 14. Water freezes at 0◦ Celsius and boils at 100◦ Celsius. Americans
are probably more familiar with Fahrenheit temperature, where water freezes at 32◦
Fahrenheit and boils at 212◦ Fahrenheit. The formula to convert Celsius temperature
C into Fahrenheit temperature F is

F = 9
5
C + 32.

Solve this equation for C.

Once again, the equation has fractions in it, so our first move will be to eliminate
the fractions by multiplying both sides of the equation by the common denominator (5
in this case).

5F = 5
(

9
5
C + 32

)
5F = 5

(
9
5
C

)
+ 5(32)

5F = 9C + 160

We’re solving for C, so move all terms containing a C to one side of the equation, and
all other terms to the other side of the equation.

5F − 160 = 9C

Divide both sides of this last equation by 9.
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5F − 160
9

= 9C
9

5F − 160
9

= C

Thus,

C = 5F − 160
9

.

Note that we have C = “Stuff,” and most importantly, the “Stuff” has no occurrence
of the variable C. This is what it means to solve for C.

Once you’ve solved a formula from science for a particular variable, you can use the
result to make conversions or predictions.

I Example 15. In Example 14, the relationship between Fahrenheit and Celsius
temperatures is given by the result

C = 5F − 160
9

. (16)

Above the bank in Eureka, California, a sign proclaims that the Fahrenheit temperature
is 40◦ F. What is the Celsius temperature?

Substitute the Fahrenheit temperature into formula (16). That is, substitute F =
40.

C = 5F − 160
9

= 5(40)− 160
9

= 40
9
≈ 4.44

Hence, the Celsius temperature is approximately 4.44◦C. Note that you should always
include units with your final answer.



26 Chapter 1 Preliminaries

Version: Fall 2007



Section 1.2 Solving Equations 27

Version: Fall 2007

1.2 Exercises

In Exercises 1-12, solve each of the given
equations for x.

1. 45x+ 12 = 0

2. 76x− 55 = 0

3. x− 7 = −6x+ 4

4. −26x+ 84 = 48

5. 37x+ 39 = 0

6. −48x+ 95 = 0

7. 74x− 6 = 91

8. −7x+ 4 = −6

9. −88x+ 13 = −21

10. −14x− 81 = 0

11. 19x+ 35 = 10

12. −2x+ 3 = −5x− 2

In Exercises 13-24, solve each of the
given equations for x.

13. 6− 3(x+ 1) = −4(x+ 6) + 2

14. (8x+ 3)− (2x+ 6) = −5x+ 8

15. −7 − (5x− 3) = 4(7x+ 2)

16. −3− 4(x+ 1) = 2(x+ 4) + 8

17. 9− (6x− 8) = −8(6x− 8)

18. −9− (7x− 9) = −2(−3x+ 1)

19. (3x− 1)− (7x− 9) = −2x− 6

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/12

20. −8− 8(x− 3) = 5(x+ 9) + 7

21. (7x− 9)− (9x+ 4) = −3x+ 2

22. (−4x− 6) + (−9x+ 5) = 0

23. −5− (9x+ 4) = 8(−7x− 7)

24. (8x− 3) + (−3x+ 9) = −4x− 7

In Exercises 25-36, solve each of the
given equations for x. Check your solu-
tions using your calculator.

25. −3.7x− 1 = 8.2x− 5

26. 8.48x− 2.6 = −7.17x− 7.1

27. −2
3x+ 8 = 4

5x+ 4

28. −8.4x = −4.8x+ 2

29. −3
2x+ 9 = 1

4x+ 7

30. 2.9x− 4 = 0.3x− 8

31. 5.45x+ 4.4 = 1.12x+ 1.6

32. −1
4x+ 5 = −4

5x− 4

33. −3
2x− 8 = 2

5x− 2

34. −4
3x− 8 = −1

4x+ 5

35. −4.34x− 5.3 = 5.45x− 8.1

36. 2
3x− 3 = −1

4x− 1
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In Exercises 37-50, solve each of the
given equations for the indicated vari-
able.

37. P = IRT for R

38. d = vt for t

39. v = v0 + at for a

40. x = v0 + vt for v

41. Ax+By = C for y

42. y = mx+ b for x

43. A = πr2 for π

44. S = 2πr2 + 2πrh for h

45. F = kqq0
r2

for k

46. C = Q

mT
for T

47. V
t

= k for t

48. λ = h

mv
for v

49. P1V1
n1T1

= P2V2
n2T2

for V2

50. π = nRT
V
i for n

51. Tie a ball to a string and whirl it
around in a circle with constant speed.
It is known that the acceleration of the
ball is directly toward the center of the
circle and given by the formula

a = v
2

r
, (17)

where a is acceleration, v is the speed of
the ball, and r is the radius of the circle

of motion.

i. Solve formula (17) for r.
ii. Given that the acceleration of the ball

is 12 m/s2 and the speed is 8 m/s, find
the radius of the circle of motion.

52. A particle moves along a line with
constant acceleration. It is known the
velocity of the particle, as a function of
the amount of time that has passed, is
given by the equation

v = v0 + at, (18)

where v is the velocity at time t, v0 is the
initial velocity of the particle (at time
t = 0), and a is the acceleration of the
particle.

i. Solve formula (18) for t.
ii. You know that the current velocity

of the particle is 120 m/s. You also
know that the initial velocity was 40 m/s
and the acceleration has been a con-
stant a = 2 m/s2. How long did it
take the particle to reach its current
velocity?

53. Like Newton’s Universal Law of Grav-
itation, the force of attraction (repulsion)
between two unlike (like) charged parti-
cles is proportional to the product of the
charges and inversely proportional to the
distance between them.

F = kC
q1q2
r2

(19)

In this formula, kC ≈ 8.988×109 Nm2/C2

and is called the electrostatic constant.
The variables q1 and q2 represent the charges
(in Coulombs) on the particles (which
could either be positive or negative num-
bers) and r represents the distance (in
meters) between the charges. Finally, F
represents the force of the charge, mea-
sured in Newtons.
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i. Solve formula (19) for r.
ii. Given a force F = 2.0 × 1012 N, two

equal charges q1 = q2 = 1 C, find the
approximate distance between the two
charged particles.
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1.2 Answers

1. − 4
15

3. 11
7

5. −39
37

7. 97
74

9. 17
44

11. −25
19

13. −25

15. − 4
11

17. 47
42

19. 7

21. 15

23. −1

25. 40
119

27. 30
11

29. 8
7

31. −280
433

33. −60
19

35. 280
979

37. R = P
IT

39. a = v − v0
t

41. y = C −Ax
B

43. π = A
r2

45. k = Fr
2

qq0

47. t = V
k

49. V2 = n2P1V1T2
n1P2T1

51. r = v2/a, r = 16/3 meters.

53. r ≈ 0.067 meters.
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1.3 Logic
Two of the most subtle words in the English language are the words “and” and “or.”
One has only three letters, the other two, but it is absolutely amazing how much
confusion these two tiny words can cause. Our intent in this section is to clear the
mystery surrounding these words and prepare you for the mathematics that depends
upon a thorough understanding of the words “and” and “or.”

Set Notation
We begin with the definition of a set.

Definition 1. A set is a collection of objects.

The objects in the set could be anything at all: numbers, letters, first names, cities,
you name it. In this section we will focus on sets of numbers, but it is important to
understand that the objects in a set can be whatever you choose them to be.

If the number of objects in a set is finite and small enough, we can describe the set
simply by listing the elements (objects) in the set. This is usually done by enclosing
the list of objects in the set with curly braces. For example, let

A = {1, 3, 5, 7, 9, 11}. (2)

Now, when we refer to the set A in the narrative, everyone should know we’re talking
about the set of numbers 1, 3, 5, 7, 9, and 11.

It is also possible to describe the set A with words. Although there are many ways
to do this, one possible description might be “Let A be the set of odd natural numbers
between 1 and 11, inclusive.” This descriptive technique is particularly efficient when
the set you are describing is either infinite or too large to enumerate in a list.

For example, we might say “let A be the set of all real numbers that are greater
than 4.” This is much better than trying to list each of the numbers in the set A, which
would be futile in this case. Another possibility is to combine the curly brace notation
with a textual description and write something like

A = {real numbers that are greater than 4}.

If we’re called upon to read this notation aloud, we would say “A is the set of all real
numbers that are greater than 4,” or something similar.

There are a number of more sophisticated methods we can use to describe a set.
One description that we will often employ is called set-builder notation and has the
following appearance.

A = {x : some statement describing x}

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/13
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It is standard to read the notation {x : } aloud as follows: “The set of all x
such that.” That is, the colon is pronounced “such that.” Then you would read the
description that follows the colon. For example, the set

A = {x : x < 3}

is read aloud “A is the set of all x such that x is less than 3.” Some people prefer to
use a “bar” instead of a colon and they write

A = {x| some statement describing x}.

This is also pronounced “A is the set of all x such that,” and then you would read the
text description that follows the “bar.” Thus, the notation

A = {x|x < 3}

is identical to the notation A = {x : x < 3} used above and is read in exactly the same
manner, “A is the set of all x such that x is less than 3.” We prefer the colon notation,
but feel free to use the “bar” if you like it better. It means the same thing.

A moment’s thought will reveal the fact that the notation A = {x : x < 3} is
not quite descriptive enough. It’s probably safe to say, since the description of x is
“x < 3,” that this notation is referring to numbers that are less than 3, but what kind
of numbers? Natural numbers? Integers? Rational numbers? Irrational numbers?
Real numbers? The notation A = {x : x < 3} doesn’t really tell the whole story.

We’ll fix this deficiency in a moment, but first recall that in our preliminary chapter,
we used specific symbols to represent certain sets of numbers. Indeed, we used the
following:

N = {natural numbers}
Z = {integers}
Q = {rational numbers}
R = {real numbers}

We can use these symbols to help denote the type of number described with our set-
builder notation. For example, if we write

A = {x ∈ N : x < 3},

then we say “A is the set of all x in the natural numbers such that x is less than 3,”
or more simply, “the set of all natural numbers that are less than 3.” The symbol ∈
is the Greek letter “epsilon,” and when used in set-builder notation, it is pronounced
“is an element of,” or “is in.” Of course, the only natural numbers N = {1, 2, 3, . . .}
that are less than 3 are the natural numbers 1 and 2. Thus, A = {1, 2}, the “set whose
members are 1 and 2.”

On the other hand, if we write

A = {x ∈ Z : x < 3},
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then we say that “A is the set of x in the set of integers such that x is less than 3,”
or more informally, “A is the set of all integers less than 3.” Of course, the integers
Z = {0,±1,±2,±3, . . .}14 less than 3 are infinite in number. We cannot list all of them
unless we appeal to the imagination with something like

A = {. . . ,−3,−2,−1, 0, 1, 2}.

The ellipsis . . . means “etc.” We’ve listed enough of the numbers to establish a pattern,
so we’re permitted to say “and so on.” The reader intuits that the earlier numbers in
the list are −4, −5, etc.

Let’s look at another example. Suppose that we write

A = {x ∈ R : x < 3}.

Then we say “A is the set of all x in the set of real numbers such that x is less than
3,” or more informally, “A is the set of all real numbers less than 3.” Of course, this
is another infinite set and it’s not hard to imagine that the notation {x ∈ R : x < 3}
used above is already optimal for describing this set of real numbers.

In this text, we will mostly deal with sets of real numbers. Thus, from this point
forward, if we write

A = {x : x < 3},

we will assume that we mean to say that “A is the set of all real numbers less than 3.”
That is, if we write A = {x : x < 3}, we understand this to mean A = {x ∈ R : x < 3}.
In the case when we want to use a specific set of numbers, we will indicate that as we
did above, for example, in A = {x ∈ N : x < 3}.

The Real Line and Interval Notation
Suppose that we draw a line (affectionately known as the “real line”), then plot a point
anywhere on that line, then map the number zero to that point (called the “origin”),
as shown in Figure 1. Secondly, decide on a unit distance and map the number 1 to
that point, again shown in Figure 1.

0 1
Figure 1. Establishing the origin and a unit length
on the real line.

Now that we’ve established a unit distance, every real number corresponds to a point on
the real line. Vice-versa, every point on the real line corresponds to a real number. This
defines a one-to-one correspondence between the real numbers in R and the points on
the real line. In this manner, the point on the line and the real number can be thought
of as synonymous. Figure 2 shows several real numbers plotted on the real line.

The notation ± is shorthand for “plus or minus”. For example, the sets {±1,±2} and {−2,−1, 1, 2} are14

identical.
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−5 0 5
−3

√
2 π

Figure 2. Sample numbers on the real line.

Now, suppose that we’re asked to shade all real numbers in the set {x : x > 3}. Because
this requires that we shade every real number that is greater than 3 (to the right of 3),
we use the shading shown in Figure 3 to represent the set {x : x > 3}.

−5 0 53
Figure 3. Shading all real

numbers greater than 3.

Although technically correct, the image in Figure 3 contains more information than
is really needed. The picture is acceptable, but crowded. The really important infor-
mation is the fact that the shading starts at 3, then moves to the right. Also, because
3 is not in the set {x : x > 3}, that is, 3 is not greater than 3, we do not shade the
point corresponding to the real number 3. Note that we’ve indicated this fact with an
“empty” circle at 3 on the real line.

Thus, when shading the set {x : x > 3} on the real line, we need only label the
endpoint at 3, use an “empty” circle at 3, and shade all the real numbers to the right
of 3, as shown in Figure 4.

3
Figure 4. Shading all real numbers greater than
3. The endpoint is the only information that needs
to be labeled. It is not necessary to show any other
tickpoints and/or labels.

Because we’re shading all numbers from 3 to positive infinity in Figure 4, we’ll use the
following interval notation to represent this “interval” of numbers (everything between
3 and positive infinity).

(3,∞) = {x : x > 3}

Similarly, Table 1 lists the set-builder and interval notations, as well as shading of the
sets on the real line, for several situations, including the one just discussed.

There are several points of emphasis regarding the intervals in Table 1.

1. When we want to emphasize that we are not including a point on the real line, we
use an “empty circle.” Conversely, a “filled circle” means that we are including the
point on the real line. Thus, the real lines in the first two rows of Table 1 do not
include the number 3, but the real lines in the last two rows in Table 1 do include
the number 3.

2. The use of a parenthesis in interval notation means that we are not including that
endpoint in the interval. Thus, the parenthesis use in (−∞, 3) in the second row of
Table 1 means that we are not including the number 3 in the interval.
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Number line Set-builder
notation

Interval
notation

3 {x : x > 3} (3,∞)

3 {x : x < 3} (−∞, 3)

3 {x : x ≥ 3} [3,∞)

3 {x : x ≤ 3} (−∞, 3]

Table 1. Number lines, set-builder notation, and interval notation.

3. The use of a bracket in interval notation means that we are including the bracketed
number in the interval. Thus, the bracket used in [3,∞), as seen in the third row
of Table 1, means that we are including the number 3 in the interval.

4. The use of ∞ in (3,∞) in row one of Table 1 means that we are including every
real number greater than 3. The use of −∞ in (−∞, 3] means that we are including
every real number less than or equal to 3. As −∞ and ∞ are not actual numbers,
it makes no sense to include them with a bracket. Consequently, you must always
use a parenthesis with −∞ or ∞.

Union and Intersection
The intersection of two sets A and B is defined as follows.

Definition 3. The intersection of the sets A and B is the set of all objects that
are in A and in B. In symbols, we write

A ∩B = {x : x ∈ A and x ∈ B}. (4)

In order to understand this definition, it’s absolutely crucial that we understand the
meaning of the word “and.” The word “and” is a conjunction, used between statements
P and Q, as in “It is raining today and my best friend is the Lone Ranger.” In order
to determine the truth or falsehood of this statement, you must first examine the truth
or falsehood of the statements P and Q on each side of the word “and.”

The only way that the speaker is telling the truth is if both statements P and Q
are true. In other words, the statement “It is raining today and my best friend is the
Lone Ranger” is true if and only if the statement “It is raining today” is true and the
statement “my best friend is the Lone Ranger” is also true. Logicians like to make up
a construct called a truth table, like the one shown in Table 2.

Points in Table 2 to consider:
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P Q P and Q
T T T
T F F
F T F
F F F

Table 2. Truth table for
the conjunction “and.”

• In the first row (after the header row) of Table 2, if statements P and Q are both
true (indicated with a T), then the statement “P and Q” is also true.

• In the remaining rows of Table 2, one or the other of statements P or Q are false
(indicated with an F), so the statement “P and Q” is also false.

Therefore, the statement “P and Q” is true if and only if P is true and Q is true.

I Example 5. If A = {1, 3, 5, 7, 9} and B = {2, 5, 7, 8, 11}, find the intersection of
A and B.

As a reminder, the intersection of A and B is

A ∩B = {x : x ∈ A and x ∈ B}.

Thus, we are looking for the objects that are in A and in B. The only objects that are
in A and in B (remember, both statements “in A” and “in B” must be true) are 5 and
7, so we write:

A ∩B = {5, 7}.

Mathematicians and logicians both use a visual aid called a Venn Diagram to represent
sets. John Venn was an English mathematician who devised this visualization of logical
relationships. Consider the ellipse A in Figure 5. Everything inside the boundary of
this ellipse constitutes the set A = {1, 3, 5, 7, 9}. That’s why you see these numbers
inside the boundary of this ellipse.

Consider the ellipse B in Figure 5. Everything inside the boundary of this ellipse
constitutes the set B = {2, 5, 7, 8, 11}. That’s why you see these numbers inside the
boundary of this ellipse.

A B

5

71
3

9

2
8

11

Figure 5. Venn Diagram
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Now, note that only two numbers, 5 and 7, are contained within the boundaries of both
A and B. These are the numbers that are in the intersection of the sets A and B.

The shaded region in Figure 6 is the area that belongs to both of the sets A and
B. Note how this shaded region is aptly named “the intersection of the sets A and B.”
This is the region that is in common to the sets A and B, the region where the sets A
and B overlap or “intersect.”

A B

Figure 6. The shaded region is the
intersection of the sets A and B. That
is, the shaded region is A ∩B.

This leads to the following important piece of advice.

Tip 6. When asked to find the intersection of two sets A and B, look to see
where the sets intersect or overlap. That is, look to see the elements that are in
both sets A and B.

Let’s move on to the definition of the union of two sets A and B.

Definition 7. The union of the sets A and B is the set of all objects that are
in A or in B. In symbols, we write

A ∪B = {x : x ∈ A or x ∈ B}. (8)

In order to understand this definition, it’s critical that we understand the meaning
of the word “or.” The word “or” is a disjunction, used between statements P and Q,
as in “It is raining today or my best friend is the Lone Ranger.” In order to determine
the truth or falsehood of this statement, you must first examine the truth or falsehood
of the statements P and Q on each side of the word “or.”

The speaker is telling the truth if either statement P is true or statement Q is true.
In other words, the statement “It is raining today or my best friend is the Lone Ranger”
is true if and only if the statement “It is raining today” is true or the statement “my
best friend is the Lone Ranger” is true. Logicians like to make up a construct called a
truth table, like the one shown in Table 3.
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P Q P or Q
T T T
T F T
F T T
F F F

Table 3. Truth table
for the disjunction “or.”

Points in Table 3 to consider:

• In the last row of Table 3, both statements P and Q are false (indicated with an
F), so the statement P or Q is also false.

• In the first three rows (after the header row) of Table 3, either statement P is true
or statement Q is true (indicated with a T), so the statement P or Q is also true.

Therefore, the statement “P or Q” is true if and only if either statement, P or Q,
is true.

I Example 9. If A = {1, 3, 5, 7, 9} and B = {2, 5, 7, 8, 11}, find the union of A and
B.

As a reminder, the union of A and B is

A ∪B = {x : x ∈ A or x ∈ B}.

Thus, an object is in the union of A and B if and only if it is in either set. The numbers
that are in either set are the numbers

A ∪B = {1, 2, 3, 5, 7, 8, 9, 11}.

If we look again at the Venn Diagram in Figure 5, we see that this union A ∪ B =
{1, 2, 3, 5, 7, 8, 9, 11} lists every number that is in either set in Figure 5.

Thus, the shaded region in Figure 7 is the union of sets A and B. Note how this
region is well-named, as that’s what you’re actually doing, taking the “union” of the
two sets A and B. That is, the union contains all elements that belong to either A or
B. Less formally, the union is a way of combining everything that occurs in either set.

A B

Figure 7. The shaded region is the
union of sets A and B. That is, the
shaded region is A ∪B.
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This leads to the following important piece of advice.

Tip 10. When asked to find the union of two sets A and B, in your answer,
include everything from both sets.

Simple Compound Inequalities
Let’s apply what we’ve learned to find the unions and/or intersections of intervals of
real numbers. The easiest approach is through a series of examples. Let’s begin.

I Example 11. On the real line, sketch the set of real numbers in the set {x : x <
3 or x < 5}. Use interval notation to describe your final answer.

First, let’s sketch two sets, {x : x < 3} and {x : x < 5}, on separate real lines, one
atop the other as shown in Figure 8.

5

3

Figure 8. Sketch each set separately.

Now, to sketch the solution, note the word “or” in the set {x : x < 3 or x < 5}. Thus,
we need to take the union of the two shaded real lines in Figure 8. That is, we need
to shade everything that is shaded on either of the two number lines. Of course, this
would be everything less than 5, as shown in Figure 9.

5
Figure 9. The final solution is the union of the
two shaded sets in Figure 8.

Thus, the final solution is {x : x < 5}, which in interval notation, is (−∞, 5).

Let’s look at another example.

I Example 12. On the real line, sketch the set of real numbers in the set {x : x <
3 and x < 5}. Use interval notation to describe your final answer.

In Example 11, you were asked to shade the set {x : x < 3 or x < 5} on the real
line. In this example, we’re asked to sketch the set {x : x < 3 and x < 5}. Note that
the set-builder notations are identical except for one change, the “or” of Example 11
has been replaced with the word “and.”

Again, sketch two sets, {x : x < 3} and {x : x < 5}, on separate real lines, one
atop the other as shown in Figure 10.
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5

3

Figure 10. Sketch each set separately.

Now, to sketch the solution, note the word “and” in the set {x : x < 3 and x < 5}.
Thus, we need to take the intersection of the two shaded real lines in Figure 10. That
is, we need to shade everything that is common to the two number lines. Of course,
this would be everything less than 3, as shown in Figure 11.

3
Figure 11. The final solution is the intersection
of the two shaded sets in Figure 10.

Thus, the final solution is {x : x < 3}, which in interval notation, is (−∞, 3).

Warning 13. If you answer “or” when the answer requires “and,” or vice-versa,
you have not made a minor mistake. Indeed, this is a huge error, as demonstrated
in Example 11 and Example 12.

Before attempting another example, we pause to define a bit of notation that will
be extremely important in our upcoming work.

Definition 14. The notation

a < x < b

is interpreted to mean

x > a and x < b.

Alternatively, we could have said that a < x < b is identical to saying “a <
x and x < b,” but saying “a < x” is the same as saying “x > a.” We prefer to
say “x > a and x < b,” and will use this order throughout our work, but the form
“a < x and x < b” is equally valid.

The really key point to make here is the fact that the statement a < x < b is an
“and” statement. If it is used properly, it’s a good way to describe the numbers that
lie between a and b.

Let’s look at an example.

I Example 15. On the real line, sketch the set of real numbers in the set {x : 3 <
x < 5}. Use interval notation to describe your answer.

First, let’s write what’s meant by the notation {x : 3 < x < 5}. By definition, this
set is the same as the set
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{x : x > 3 and x < 5}.

Thus, the first step is to sketch the sets {x : x > 3} and {x : x < 5} on individual real
lines, stacked one atop the other, as shown in Figure 12.

5

3

Figure 12. Sketch each set separately.

Now, to sketch the solution, note the word “and” in the set {x : x > 3 and x < 5}.
Thus, we need to take the intersection of the two lines in Figure 12. That is, we need
to shade the numbers on the real line that are in common to the two lines shown in
Figure 12. The numbers 3 and 5 are not shaded in both sets in Figure 12, so they
will not be shaded in our final solution. However, all real numbers between 3 and 5 are
shaded in both sets in Figure 12, so these numbers will be shaded in the final solution
shown in Figure 13.

3 5
Figure 13. The final solution is the intersection
of the two shaded sets in Figure 12.

In a most natural way, the interval notation for the shaded solution in Figure 13 is
(3, 5). That is,

(3, 5) = {x : 3 < x < 5}

Similarly, here are the set-builder and interval notations, as well as shading of the
sets on the real line, for several situations, including the one just discussed.

Number line Set-builder
notation

Interval
notation

3 5 {x : 3 < x < 5} (3, 5)

3 5 {x : 3 ≤ x ≤ 5} [3, 5]

3 5 {x : 3 ≤ x < 5} [3, 5)

3 5 {x : 3 < x ≤ 5} (3, 5]

Table 4. Number lines, set-builder notation, and interval notation.

There are several points of emphasis regarding the intervals in Table 4.



42 Chapter 1 Preliminaries

Version: Fall 2007

1. When we want to emphasize that we are not including a point on the real line,
we use an “empty circle.” Conversely, a “filled circle” means that we are including
the point on the real line. Thus, the interval in the first row of Table 4 does not
include the endpoints at 3 and 5, but the interval in the second row of Table 4
does include the endpoints at 3 and 5.

2. The use of a parenthesis in interval notation means that we are not including that
endpoint in the interval. Thus, the parentheses used in (3, 5) in the first row of
Table 4 means that we are not including the numbers 3 and 5 in that interval.

3. The use of a bracket in interval notation means that we are including the bracketed
number in the interval. Thus, the brackets used in [3, 5], as seen in the second row
of Table 4, means that we are including the numbers 3 and 5 in the interval.

4. Finally, note that some of our intervals are “open” on one end but “closed” (filled)
on the other end, such as those in rows 3 and 4 of Table 4.

Definition 16. Some terminology:

• The interval (3, 5) is open at each end. Therefore, we call the interval (3, 5) an
open interval.

• The interval [3, 5] is closed (filled) at each end. Therefore, we call the interval
[3, 5] a closed interval.

• The intervals (3, 5] and [3, 5) are neither open nor closed.

Let’s look at another example.

I Example 17. On the real line, sketch the set of all real numbers in the set
{x : x > 3 or x < 5}. Use interval notation to describe your answer.

Note that the only difference between this current example and the set shaded in
Example 15 is the fact that we’ve replaced the word “and” in {x : x > 3 and x < 5}
with the word “or” in {x : x > 3 or x < 5}. But, as we’ve seen before, this can make
a world of difference.

Thus, the first step is to sketch the sets {x : x > 3} and {x : x < 5} on individual
real lines, stacked one atop the other, as shown in Figure 14.

5

3

Figure 14. Sketch each set separately.

Now, to sketch the solution, note the word “or” in the set {x : x > 3 or x < 5}. Thus,
we need to take the union of the two lines in Figure 14. That is, we need to shade the
numbers on the real line that are shaded on either of the two lines shown in Figure 14.
However, this means that we will have to shade every number on the line, as shown in
Figure 15. You’ll note no labels for 3 and 5 on the real line in Figure 15, as there are
no endpoints in this solution. The endpoints, if you will, are at negative and positive
infinity.
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Figure 15. The final solution is the union of the
two shaded sets in Figure 14.

Thus, in a most natural way, the interval notation for the shaded solution in Figure 15
is (−∞,∞).

Let’s look at another example.

I Example 18. On the real line, sketch the set of all real numbers in the set
{x : x < −1 or x > 3}. Use interval notation to describe your answer.

The first step is to sketch the sets {x : x < −1} and {x : x > 3} on separate real
lines, stacked one atop the other, as shown in Figure 16.

3

−1

Figure 16. Sketch each set separately.

To sketch the solution, note the word “or” in the set {x : x < −1 or x > 3}. Thus, we
need to take the union of the two shaded real lines in Figure 16. That is, we need to
shade the numbers on the real line that are shaded on either real line in Figure 16.
Thus, every number smaller than −1 is shaded, as well as every number greater than
3. The result is shown in Figure 17.

1 3
Figure 17. The final solution is the union of the
shaded real lines in Figure 16.

Here is an important tip.

Tip 19. If you wish to use interval notation correctly, follow one simple rule:
Always sweep your eyes from left to right describing what you see shaded on the
real line.

If we follow this advice, as we sweep our eyes from left to right across the real line
shaded in Figure 17, we see that numbers are shaded from negative infinity to −1,
and from 3 to positive infinity. Thus, in a most natural way, the interval notation for
the shaded solution set in Figure 17 is

(−∞,−1) ∪ (3,∞).

There are several important points to make here:
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• Note how we used the union symbol ∪ to join the two intervals in (−∞,−1)∪(3,∞)
in a natural manner.

• The union symbol is used between sets of numbers, while the word “or” is used
between statements about numbers. It is incorrect to exchange the roles of the
union symbol and the word “or.” Thus, writing {x : x < −1 ∪ x > 3} is incorrect,
as it would also be to write (−∞,−1) or (3,∞).

We reinforce earlier discussion about the difference between “filled” and “open”
circles, brackets, and parentheses in Table 5, where we include several comparisons of
interval and set-builder notation, including the current solution to Example 18.

Number line Set-builder notation Interval notation

−1 3 {x : x < −1 or x > 3} (−∞,−1) ∪ (3,∞)

−1 3 {x : x ≤ −1 or x ≥ 3} (−∞,−1] ∪ [3,∞)

−1 3 {x : x ≤ −1 or x > 3} (−∞,−1] ∪ (3,∞)

−1 3 {x : x < −1 or x ≥ 3} (−∞,−1) ∪ [3,∞)

Table 5. Number lines, set-builder notation, and interval notation.

Again, we reinforce the following points.

• Note how sweeping your eyes from left to right, describing what is shaded on the
real line, insures that you write the interval notation in the correct order.

• A bracket is equivalent to a filled dot and includes the endpoint, while a parenthesis
is equivalent to an open dot and does not include the endpoint.

Let’s do one last example that should forever cement the notion that there is a huge
difference between the words “and” and “or.”

I Example 20. On the real line, sketch the set of all real numbers in the set
{x : x < −1 and x > 3}. Describe your solution.

First and foremost, note that the only difference between this example and Example 18
is the fact that we changed the “or” in {x : x < −1 or x > 3} to an “and” in
{x : x < −1 and x > 3}. The preliminary sketches are identical to those in Figure 16.

3

−1

Figure 18. Sketch {x : x < −1} and {x : x >
3} on separate real lines.

Now, note the word “and” in {x : x < −1 and x > 3}. Thus, we need to take the
intersection of the shaded real lines in Figure 18. That is, we need to shade on a
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single real line all of the numbers that are shaded on both real lines in Figure 18.
However, there are no points shaded in common on the real lines in Figure 18, so the
solution set is empty, as shown in Figure 19.

Figure 19. The solution is empty so we leave
the real line blank.

Pretty impressive! The last two examples clearly demonstrate that if you inter-
change the roles of “and” and “or,” you have not made a minor mistake. Indeed,
you’ve changed the whole meaning of the problem. So, be careful with your “ands”
and “ors.”
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1.3 Exercises

Perform each of the following tasks in
Exercises 1-4.

i. Write out in words the meaning of
the symbols which are written in set-
builder notation.

ii. Write some of the elements of this set.
iii. Draw a real line and plot some of the

points that are in this set.

1. A = {x ∈ N : x > 10}

2. B = {x ∈ N : x ≥ 10}

3. C = {x ∈ Z : x ≤ 2}

4. D = {x ∈ Z : x > −3}

In Exercises 5-8, use the sets A, B, C,
andD that were defined in Exercises 1-
4. Describe the following sets using set
notation, and draw the corresponding Venn
Diagram.

5. A ∩B

6. A ∪B

7. A ∪ C.

8. C ∩D.

In Exercises 9-16, use both interval and
set notation to describe the interval shown
on the graph.

9.

3

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/15

10.

0

11.

−7

12.

1

13.

0

14.

1

15.

−8

16.

9

In Exercises 17-24, sketch the graph of
the given interval.

17. [2, 5)

18. (−3, 1]

19. [1,∞)
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20. (−∞, 2)

21. {x : −4 < x < 1}

22. {x : 1 ≤ x ≤ 5}

23. {x : x < −2}

24. {x : x ≥ −1}

In Exercises 25-32, use both interval
and set notation to describe the inter-
section of the two intervals shown on the
graph. Also, sketch the graph of the in-
tersection on the real number line.

25.

1

−3

26.

−6

−3

27.

2

−4

28.

11

8

29.

−6

2

30.

1

5

31.

9

5

32.

−14

−6

In Exercises 33-40, use both interval
and set notation to describe the union
of the two intervals shown on the graph.
Also, sketch the graph of the union on
the real number line.

33.

−10

−8

34.

−3

−2

35.

15

9
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36.

5
14

37.

−5

3

38.

11

9

39.

10

9

40.

7
−2

In Exercises 41-56, use interval nota-
tion to describe the given set. Also, sketch
the graph of the set on the real number
line.

41. {x : x ≥ −6 and x > −5}

42. {x : x ≤ 6 and x ≥ 4}

43. {x : x ≥ −1 or x < 3}

44. {x : x > −7 and x > −4}

45. {x : x ≥ −1 or x > 6}

46. {x : x ≥ 7 or x < −2}

47. {x : x ≥ 6 or x > −3}

48. {x : x ≤ 1 or x > 0}

49. {x : x < 2 and x < −7}

50. {x : x ≤ −3 and x < −5}

51. {x : x ≤ −3 or x ≥ 4}

52. {x : x < 11 or x ≤ 8}

53. {x : x ≥ 5 and x ≤ 1}

54. {x : x < 5 or x < 10}

55. {x : x ≤ 5 and x ≥ −1}

56. {x : x > −3 and x < −6}
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1.3 Answers

1.

i. A is the set of all x in the natural
numbers such that x is greater than
10.

ii. A = {11, 12, 13, 14, . . .}
iii.

11 17

3.

i. C is the set of all x in the set of inte-
gers such that x is less than or equal
to 2.

ii. C = {. . . ,−4,−3,−2,−1, 0, 1, 2}
iii.

−4 2

5. A ∩ B = {x ∈ N : x > 10} =
{11, 12, 13, . . .}

A

B

7. A ∪ C = {x ∈ Z : x ≤ 2 or x >
10} = {. . . ,−3,−2−1, 0, 1, 2, 11, 12, 13 . . .}

A C

9. [3,∞) = {x : x ≥ 3}

11. (−∞,−7) = {x : x < −7}

13. (0,∞) = {x : x > 0}

15. (−8,∞) = {x : x > −8}

17.

2 5

19.

1

21.

−4 1

23.

−2

25. [1,∞) = {x : x ≥ 1}

1

27. no intersection

29. [−6, 2] = {x : −6 ≤ x ≤ 2}

−6 2

31. [9,∞) = {x : x ≥ 9}

9
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33. (−∞,−8] = {x : x ≤ −8}

−8

35. (−∞, 9] ∪ (15,∞)
={x : x ≤ 9 or x > 15}

159

37. (−∞, 3) = {x : x < 3}

3

39. [9,∞) = {x : x ≥ 9}

9

41. (−5,∞)

−5

43. (−∞,∞)

45. [−1,∞)

−1

47. (−3,∞)

−3

49. (−∞,−7)

−7

51. (−∞,−3] ∪ [4,∞)

4−3

53. the set is empty

55. [−1, 5]

−1 5
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1.4 Compound Inequalities
This section discusses a technique that is used to solve compound inequalities, which is
a phrase that usually refers to a pair of inequalities connected either by the word “and”
or the word “or.” Before we begin with the advanced work of solving these inequalities,
let’s first spend a word or two (for purposes of review) discussing the solution of simple
linear inequalities.

Simple Linear Inequalities
As in solving equations, you may add or subtract the same amount from both sides of
an inequality.

Property 1. Let a and b be real numbers with a < b. If c is any real number,
then

a+ c < b+ c

and

a− c < b− c.

This utility is equally valid if you replace the “less than” symbol with >, ≤, or ≥.

I Example 2. Solve the inequality x+ 3 < 8 for x.

Subtract 3 from both sides of the inequality and simplify.

x+ 3 < 8
x+ 3− 3 < 8− 3

x < 5

Thus, all real numbers less than 5 are solutions of the inequality. It is traditional to
sketch the solution set of inequalities on a number line.

5

We can describe the solution set using set-builder and interval notation. The solu-
tion is

(−∞, 5) = {x : x < 5}.

An important concept is the idea of equivalent inequalities.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/16
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Equivalent Inequalities. Two inequalities are said to be equivalent if and only
if they have the same solution set.

Note that this definition is similar to the definition of equivalent equations. That
is, two inequalities are equivalent if all of the solutions of the first inequality are also
solutions of the second inequality, and vice-versa.

Thus, in Example 2, subtracting three from both sides of the original inequality
produced an equivalent inequality. That is, the inequalities x+3 < 8 and x < 5 have the
same solution set, namely, all real numbers that are less than 5. It is no coincidence
that the tools in Property 1 produce equivalent inequalities. Whenver you add or
subtract the same amount from both sides of an inequality, the resulting inequality is
equivalent to the original (they have the same solution set).

Let’s look at another example.

I Example 3. Solve the inequality x− 5 ≥ 4 for x.

Add 5 to both sides of the inequality and simplify.

x− 5 ≥ 4
x− 5 + 5 ≥ 4 + 5

x ≥ 9

Shade the solution on a number line.

9

In set-builder and interval notation, the solution is

[9,∞) = {x : x ≥ 9}

You can also multiply or divide both sides by the same positive number.

Property 4. Let a and b be real numbers with a < b. If c is a real positive
number, then

ac < bc

and
a

c
<
b

c
.

Again, this utility is equally valid if you replace the “less than” symbol by >, ≤, or
≥. The tools in Property 4 always produce equivalent inequalities.
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I Example 5. Solve the inequality 3x ≤ −18 for x

Divide both sides of the inequality by 3 and simplify.

3x ≤ −18
3x
3
≤ −18

3
x ≤ −6

Sketch the solution on a number line.

−6

In set-builder and interval notation, the solution is

(−∞,−6] = {x : x ≤ −6}.

Thus far, there is seemingly no difference between the technique employed for solv-
ing inequalities and that used to solve equations. However, there is one important
exception. Consider for a moment the true statement

−2 < 6. (6)

If you multiply both sides of (6) by 3, you still have a true statement; i.e.,

−6 < 18

But if you multiply both sides of (6) by −3, you need to “reverse the inequality symbol”
to maintain a true statement; i.e.,

6 > −18.

This discussion leads to the following property.

Property 7. Let a and b be real numbers with a < b. If c is any real negative
number, then

ac > bc

and
a

c
>
b

c
.

Note that you “reverse the inequality symbol” when you multiply or divide both
sides of an inequality by a negative number. Again, this utility is equally valid if you
replace the “less than” symbol by >, ≤, or ≥. The tools in Property 7 always produce
equivalent inequalities.
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I Example 8. Solve the inequality −5x > 10 for x.

Divide both sides of the inequality by −5 and reverse the inequality symbol. Sim-
plify.

−5x > 10
−5x
−5
<

10
−5

x < −2

Sketch the solution on a number line.

−2

In set-builder and interval notation, the solution is

(−∞,−2) = {x : x < −2}.

Compound Inequalities
We now turn our attention to the business of solving compound inequalities. In the
previous section, we studied the subtleties of “and” and “or,” intersection and union,
and looked at some simple compound inequalities. In this section, we build on those
fundamentals and turn our attention to more intricate examples.

In this case, the best way of learning is by doing. Let’s start with an example.

I Example 9. Solve the following compound inequality for x.

3− 2x < −1 or 3− 2x > 1 (10)

First, solve each of the inequalities independently. With the first inequality, add −3
to both sides of the inequality, then divide by −2, reversing the inequality sign.

3− 2x < −1
−2x < −4
x > 2

Shade the solution on a number line.

2

The exact same sequence of operations can be used to solve the second inequality.

3− 2x > 1
−2x > −2
x < 1
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1

Although you solve each side of the inequality independently, you will want to arrange
your work as follows, stacking the number line solution for the first inequality above
that of the second inequality.

3− 2x < −1 or 3− 2x > 1

− 2x < −4 − 2x > −2

x > 2 x < 1

1

2

Because the inequalities are connected with the word “or,” we need to take the union
of these two number lines. That is, you want to shade every number from either set on
a single number line, as shown in Figure 1

1 2
Figure 1. The solution of the compound in-
equality 3− 2x < −1 or 3− 2x > 1.

The solution, in interval and set-builder notation, is

(−∞, 1) ∪ (2,∞) = {x : x < 1 or x > 2}.

Let’s look at another example.

I Example 11. Solve the following compound inequality for x.

−1 < 3− 2x < 1 (12)

Recall that a < x < b is identical to the statement x > a and x < b. Thus, we can
write the compound inequality −1 < 3− 2x < 1 in the form

3− 2x > −1 and 3− 2x < 1. (13)

Solve each inequality independently, arranging your work as follows.

3− 2x > −1 and 3− 2x < 1 (14)

− 2x > −4 − 2x < −2 (15)

x < 2 x > 1

Shade the solution of each inequality on separate real lines, one atop the other.



58 Chapter 1 Preliminaries

Version: Fall 2007

1

2

Note the word “and” in our final statement x < 2 and x > 1. Thus, we must find the
intersection of the two shaded solutions. These are the numbers that fall between 1
and 2, as shaded in Figure 2.

1 2
Figure 2. The solution of the compound in-
equality −1 < 3− 2x < 1.

The solution, in both interval and set-builder notation, is

(1, 2) = {x : 1 < x < 2}.

Note that we used the compact form of the compound inequality in our answer. We
could just as well have used

(1, 2) = {x : x > 1 and x < 2}.

Both forms of set-builder notation are equally valid. You may use either one, but you
must understand both.

Alternative approach. You might have noted that in solving the second inequality
in (14), you found yourself repeating the identical operations used to solve the first
inequality. That is, you subtracted 3 from both sides of the inequality, then divided
both sides of the inequality by −2, reversing the inequality sign.

This repetition is annoying and suggests a possible shortcut in this particular situ-
ation. Instead of splitting the compound inequality (12) in two parts (as in (13)), let’s
keep the inequality together, as in

−1 < 3− 2x < 1. (16)

Now, here are the rules for working with this form.
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Property 17. When working with a compound inequality having the form

a < x < b, (18)

you may add (or subtract) the same amount to (from) all three parts of the in-
equality, as in

a+ c < x+ c < b+ c (19)

or

a− c < x− c < b− c. (20)

You may also multiply all three parts by the same positive number c > 0, as in

ca < cx < cb. (21)

However, if you multiply all three parts by the same negative number c < 0, then
don’t forget to reverse the inequality signs, as in

ca > cx > cb. (22)

The rules for division are identical to the multiplication rules. If c > 0 (positive),
then

a

c
<
x

c
<
b

c
. (23)

If c < 0 (negative), then reverse the inequality signs when you divide.
a

c
>
x

c
>
b

c
(24)

Each of the tools in Property 17 always produce equivalent inequalities.
So, let’s return to the compound inequality (16) and subtract 3 from all three

members of the inequality.

−1 < 3− 2x < 1
−1− 3 < 3− 2x− 3 < 1− 3

−4 < −2x < −2

Next, divide all three members by −2, reversing the inequality signs as you do so.

−4 < −2x < −2
−4
−2
>
−2x
−2
>
−2
−2

2 > x > 1

It is conventional to change the order of this last inequality. By reading the inequality
from right to left, we get
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1 < x < 2,

which describes the real numbers that are greater than 1 and less than 2. The solution
is drawn on the following real line.

1 2
Figure 3. The solution of the compound in-
equality −1 < 3− 2x < 1.

Note that this is identical to the solution set on the real line in Figure 2. Note also
that this second alternative method is more efficient, particularly if you do a bit of
work in your head. Consider the following sequence where we subtract three from all
three members, then divide all three members by −2, reversing the inequality signs,
then finally read the inequality in the opposite direction.

−1 < 3− 2x < 1
−4 < −2x < −2

2 > x > 1
1 < x < 2

Let’s look at another example.

I Example 25. Solve the following compound inequality for x.

−1 < x− x+ 1
2
≤ 2 (26)

First, let’s multiply all three members by 2, in order to clear the fractions.

2(−1) < 2
(
x− x+ 1

2

)
≤ 2(2)

−2 < 2(x)− 2
(
x+ 1

2

)
≤ 4

Cancel. Note the use of parentheses, which is crucial when a minus sign is involved.

−2 < 2x− 2
(
x+ 1

2

)
≤ 4

−2 < 2x− (x+ 1) ≤ 4

Distribute the minus sign and simplify.

−2 < 2x− x− 1 ≤ 4
−2 < x− 1 ≤ 4

Add 1 to all three members.

−1 < x ≤ 5

This solution describes the real numbers that are greater than -1 and less than 5,
including 5. That is, the real numbers that fall between -1 and 5, including 5, shaded
on the real line in Figure 4.
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−1 5
Figure 4. The solution set
of −1 < x − (x + 1)/2 ≤ 2.

The answer, described in both interval and set-builder notation, follows.

(−1, 5] = {x : −1 < x ≤ 5}

Let’s look at another example.

I Example 27. Solve the following compound inequality for x.

x ≤ 2x− 3 ≤ 5

Suppose that we try to isolate x as we did in Example 25. Perhaps we would try
adding −x to all three members.

x ≤ 2x− 3 ≤ 5
x− x ≤ 2x− 3− x ≤ 5− x

0 ≤ x− 3 ≤ 5− x

Well, that didn’t help much, just transferring the problem with x to the other end of
the inequality. Similar attempts will not help in isolating x. So, what do we do?

The solution is we split the inequality (with the word “and,” of course).

x ≤ 2x− 3 and 2x− 3 ≤ 5

We can solve the first inequality by subtracting 2x from both sides of the inequality,
then multiplying both sides by −1, reversing the inequality in the process.

x ≤ 2x− 3
−x ≤ −3
x ≥ 3

To solve the second inequality, add 3 to both sides, then divide both sides by 2.

2x− 3 ≤ 5
2x ≤ 8
x ≤ 4

Of course, you’ll probably want to arrange your work as follows.

x ≤ 2x− 3 and 2x− 3 ≤ 5

− x ≤ −3 2x ≤ 8

x ≥ 3 x ≤ 4

Thus, we need to shade on a number line all real numbers that are greater than or
equal to 3 and less than or equal to 4, as shown in Figure 5.



62 Chapter 1 Preliminaries

Version: Fall 2007

3 4
Figure 5. When shading the solution
of x ≤ 2x− 3 ≤ 5, we “fill-in” the end-
points.

The solution, described in both interval and set-builder notation, is

[3, 4] = {x : 3 ≤ x ≤ 4}.
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1.4 Exercises

In Exercises 1-12, solve the inequality.
Express your answer in both interval and
set notations, and shade the solution on
a number line.

1. −8x− 3 ≤ −16x− 1

2. 6x− 6 > 3x+ 3

3. −12x+ 5 ≤ −3x− 4

4. 7x+ 3 ≤ −2x− 8

5. −11x− 9 < −3x+ 1

6. 4x− 8 ≥ −4x− 5

7. 4x− 5 > 5x− 7

8. −14x+ 4 > −6x+ 8

9. 2x− 1 > 7x+ 2

10. −3x− 2 > −4x− 9

11. −3x+ 3 < −11x− 3

12. 6x+ 3 < 8x+ 8

In Exercises 13-50, solve the compound
inequality. Express your answer in both
interval and set notations, and shade the
solution on a number line.

13. 2x− 1 < 4 or 7x+ 1 ≥ −4

14. −8x+ 9 < −3 and − 7x+ 1 > 3

15. −6x−4 < −4 and −3x+7 ≥ −5

16. −3x+ 3 ≤ 8 and − 3x− 6 > −6

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/17

17. 8x+ 5 ≤ −1 and 4x− 2 > −1

18. −x− 1 < 7 and − 6x− 9 ≥ 8

19. −3x+ 8 ≤ −5 or − 2x− 4 ≥ −3

20. −6x− 7 < −3 and − 8x ≥ 3

21. 9x− 9 ≤ 9 and 5x > −1

22. −7x+ 3 < −3 or − 8x ≥ 2

23. 3x− 5 < 4 and − x+ 9 > 3

24. −8x− 6 < 5 or 4x− 1 ≥ 3

25. 9x+ 3 ≤ −5 or − 2x− 4 ≥ 9

26. −7x+ 6 < −4 or − 7x− 5 > 7

27. 4x− 2 ≤ 2 or 3x− 9 ≥ 3

28. −5x+ 5 < −4 or − 5x− 5 ≥ −5

29. 5x+ 1 < −6 and 3x+ 9 > −4

30. 7x+ 2 < −5 or 6x− 9 ≥ −7

31. −7x− 7 < −2 and 3x ≥ 3

32. 4x+ 1 < 0 or 8x+ 6 > 9

33. 7x+ 8 < −3 and 8x+ 3 ≥ −9

34. 3x < 2 and − 7x− 8 ≥ 3

35. −5x+ 2 ≤ −2 and − 6x+ 2 ≥ 3

36. 4x− 1 ≤ 8 or 3x− 9 > 0

37. 2x− 5 ≤ 1 and 4x+ 7 > 7

38. 3x+ 1 < 0 or 5x+ 5 > −8
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39. −8x+ 7 ≤ 9 or − 5x+ 6 > −2

40. x− 6 ≤ −5 and 6x− 2 > −3

41. −4x− 8 < 4 or − 4x+ 2 > 3

42. 9x− 5 < 2 or − 8x− 5 ≥ −6

43. −9x− 5 ≤ −3 or x+ 1 > 3

44. −5x− 3 ≤ 6 and 2x− 1 ≥ 6

45. −1 ≤ −7x− 3 ≤ 2

46. 0 < 5x− 5 < 9

47. 5 < 9x− 3 ≤ 6

48. −6 < 7x+ 3 ≤ 2

49. −2 < −7x+ 6 < 6

50. −9 < −2x+ 5 ≤ 1

In Exercises 51-62, solve the given in-
equality for x. Graph the solution set on
a number line, then use interval and set-
builder notation to describe the solution
set.

51. −1
3
<
x

2
+ 1

4
<

1
3

52. −1
5
<
x

2
− 1

4
<

1
5

53. −1
2
<

1
3
− x

2
<

1
2

54. −2
3
≤ 1

2
− x

5
≤ 2

3

55. −1 < x− x+ 1
5
< 2

56. −2 < x− 2x− 1
3
< 4

57. −2 < x+ 1
2
− x+ 1

3
≤ 2

58. −3 < x− 1
3
− 2x− 1

5
≤ 2

59. x < 4− x < 5

60. −x < 2x+ 3 ≤ 7

61. −x < x+ 5 ≤ 11

62. −2x < 3− x ≤ 8

63. Aeron has arranged for a demon-
stration of “How to make a Comet” by
Professor O’Commel. The wise profes-
sor has asked Aeron to make sure the
auditorium stays between 15 and 20 de-
grees Celsius (C). Aeron knows the ther-
mostat is in Fahrenheit (F) and he also
knows that the conversion formula be-
tween the two temperature scales is C =
(5/9)(F − 32).

a) Setting up the compound inequality
for the requested temperature range
in Celsius, we get 15 ≤ C ≤ 20. Us-
ing the conversion formula above, set
up the corresponding compound in-
equality in Fahrenheit.

b) Solve the compound inequality in part
(a) for F. Write your answer in set
notation.

c) What are the possible temperatures
(integers only) that Aeron can set the
thermostat to in Fahrenheit?



Section 1.4 Compound Inequalities 65

Version: Fall 2007

1.4 Answers

1. (−∞, 1
4 ] = {x|x ≤ 1

4}

1
4

3. [1,∞) = {x|x ≥ 1}

1

5. (−5
4 ,∞) = {x|x > −5

4}

−5
4

7. (−∞, 2) = {x|x < 2}

2

9. (−∞,−3
5) = {x|x < −3

5}

−3
5

11. (−∞,−3
4) = {x|x < −3

4}

−3
4

13. (−∞,∞) = {all real numbers}

15. (0, 4] = {x|0 < x ≤ 4}

0 4

17. no solution

19.
(
−∞,−1

2
]⋃ [13

3 ,∞
)

={x|x ≤ −1
2 or x ≥ 13

3 }

−1
2

13
3

21. (−1
5 , 2] = {x| − 1

5 < x ≤ 2}

−1
5

2

23. (−∞, 3) = {x|x < 3}

3

25. (−∞,−8
9 ] = {x|x ≤ −8

9}

−8
9

27. (−∞, 1]
⋃

[4,∞) = {x|x ≤ 1 or x ≥
4}

1 4

29. (−13
3 ,−

7
5) = {x| − 13

3 < x < −
7
5}

−13
3 −7

5

31. [1,∞) = {x|x ≥ 1}

1

33. no solution
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35. no solution

37. (0, 3] = {x|0 < x ≤ 3}

0 3

39. (−∞,∞) = {all real numbers}

41. (−∞,∞) = {all real numbers}

43. [−2
9 ,∞) = {x|x ≥ −2

9}

−2
9

45. [−5
7 ,−

2
7 ] = {x| − 5

7 ≤ x ≤ −
2
7}

−5
7 −2

7

47. (8
9 , 1] = {x|89 < x ≤ 1}

8
9

1

49. (0, 8
7 ) = {x|0 < x < 8

7}

0 8
7

51. (−7/6, 1/6) = {x : −7/6 < x <
1/6}

−7/6 1/6

53. (−1/3, 5/3) = {x : −1/3 < x <
5/3}

−1/3 5/3

55. (−1, 11/4) = {x : −1 < x < 11/4}

−1 11/4

57. (−13, 11] = {x : −13 < x ≤ 11}

−13 11

59. (−1, 2) = {x : −1 < x < 2}

−1 2

61. (−5/2, 6] = {x : −5/2 < x ≤ 6}

−5/2 6

63.

a) 15 ≤ 5
9(F − 32) ≤ 20

b) {F : 59 ≤ F ≤ 68}

c) {59, 60, 61, 62, 63, 64, 65, 66, 67, 68}
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1.5 Index
a
and 36 , 57

c
Celsius 24
composite 3
compound inequality 39 , 40 , 53 , 56 ,

57 , 59

d
decimal

repeating 8
terminating 7

description 31
divisor 3

e
empty circle 34 , 42
equatins

subtraction 15
equations

addition 15
clearing decimals 22
clearing fractions 21
division 19
multiplication 19
solving

change sign 18

f
factor 3
Fahrenheit 24
filled circle 34 , 42
Formulae 23
Fundamental Theorem of Arithmetic

4

i
inequality

addition 53
clearing fractions 60
compound 53 , 56
division

negative number 55

positive number 54
linear 53
multiplication

negative number 55
positive number 54

subtraction 53
integers 6
Intersection 35
intersection 37
Interval Notation 33
interval notation 34 , 44

bracket 35 , 44
closed interval 42
open interval 42
parenthesis 34 , 44

irrational number 9
isolate x 15

l
linear inequalities 53
list 31
Logic 31
lowercase 23

m
monomial 16

n
natural numbers 3
negative numbers 6
Number lines 44

o
or 38 , 56

p
prime 3
prime factorization 4

r
rational numbers 7
Real Line 33
real number 10
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s
set-builder 31
set-builder notation 44
solution

check 17 , 21 , 44
empty 45

solve for x 15

u
union 37 , 38
uppercase 23

v
Venn Diagram 36

w
whole numbers 5

z
Zero 4
zero

division is undefined 19
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2 Functions
The concept of a function is a unifying theme in the study of mathematics and it has
a rich and storied history. The word “function” was first coined by Gottfried Wilhelm
Leibniz (c. 1694) (one of the co-founders of calculus with Sir Isaac Newton). Leibniz’s
concept of function was relegated to how geometrical properties of a curve (e.g., subtan-
gents and subnormals) depended on the shape of the curve. Johann Bernoulli (c. 1718)
described a function of a variable as a quantity that is constructed from that variable
and some constants. Indeed, even Leonard Euler (1707-1793), who was a former student
of Bernoulli, described the dependence of one variable on another through the means
of an analytical expression. In his Introductio in Analysin Infinitorum (Introduction
to infinite analyses) (1748), Euler states

The nature of the curve, provided it is continuous, is expressed through the
quality of the function y, that is, the rule of formation whereby the value of y
is obtained from the composition of constants and the variable x.
Euler equated the word function with an analytic equation describing the rela-

tionship between the independent and dependent variables. This is not the modern
definition of a function, but it is precisely how many of today’s students think about
the concept of a function; i.e., a function is an equation.

Euler’s definition of function did not change much until mathematicians began
studying the equation of the vibrating string, an equation known as the wave equation.
Jean Baptiste Fourier (1768-1830), in his classic work on heat transfer, claimed that
any function could be expressed as an infinite series of trigonometric functions. It
turned out that he was wrong, and it was up to Johann Peter Gustav Lejeune Dirichlet
(1805-1859) to set sufficient conditions on functions to correct Fourier’s error. In order
to do that, Dirichlet had to separate the concept of function from its dependence on
an analytic expression. Dirichlet’s definition of a function closely mirrors the modern
day definition.
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2.1 Introduction to Functions
Our development of the function concept is a modern one, but quite quick, particularly
in light of the fact that today’s definition took over 300 years to reach its present state.
We begin with the definition of a relation.

Relations

x

y

5

5 (2, 4)

(4, 2)

Figure 1.

We use the notation (2, 4) to denote what is called an ordered
pair. If you think of the positions taken by the ordered pairs
(4, 2) and (2, 4) in the coordinate plane (see Figure 1), then it is
immediately apparent why order is important. The ordered pair
(4, 2) is simply not the same as the ordered pair (2, 4).

The first element of an ordered pair is called its abscissa. The
second element of an ordered pair is called its ordinate. Thus, for
example, the abscissa of (4, 2) is 4, while the ordinate of (4, 2) is
2.

Definition 1. A collection of ordered pairs is called a relation.

For example, the collection of ordered pairs

R =
{
(0, 1), (0, 2), (3, 4)

}
(2)

is a relation.

Definition 3. The domain of a relation is the collection of all abscissas of each
ordered pair.

Thus, the domain of the relation R in (2) is

Domain = {0, 3}.

Note that we list each abscissa only once.

Definition 4. The range of a relation is the collection of all ordinates of each
ordered pair.

Thus, the range of the relation R in (2) is

Range = {1, 2, 4}.

Let’s look at an example.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1
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I Example 5. Consider the relation T defined by

T =
{
(1, 2), (3, 2), (4, 5)

}
. (6)

What are the domain and range of this relation?

The domain is the collection of abscissas of each ordered pair. Hence, the domain
of T is

Domain = {1, 3, 4}.

The range is the collection of ordinates of each ordered pair. Hence, the range of T is

Range = {2, 5}.

Note that we list each ordinate in the range only once.

In Example 5, the relation is described by listing the ordered pairs. This is not the
only way that one can describe a relation. For example, a graph certainly represents a
collection of ordered pairs.

I Example 7. Consider the graph of the relation S shown in Figure 2.

x

y

5

5

Figure 2. The
graph of a relation.

What are the domain and range of the relation S?

There are five ordered pairs (points) plotted in Figure 2. They are

S =
{
(1, 2), (2, 1), (2, 4), (3, 3), (4, 4)

}
.

Therefore, the relation S has Domain = {1, 2, 3, 4} and Range = {1, 2, 3, 4}. In the
case of the range, note how we’ve sorted the ordinates of each ordered pair in ascending
order, taking care not to list any ordinate more than once.
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Functions
A function is a very special type of relation. We begin with a formal definition.

Definition 8. A relation is a function if and only if each object in its domain is
paired with one and only one object in its range.

This is not an easy definition, so let’s take our time and consider a few examples.
Consider, if you will, the relation R in (2), repeated here again for convenience.

R =
{
(0, 1), (0, 2), (3, 4)

}
The domain is {0, 3} and the range is {1, 2, 4}. Note that the number 0 in the domain
of R is paired with two numbers from the range, namely, 1 and 2. Therefore, R is not
a function.

There is a construct, called a mapping diagram, which can be helpful in determining
whether a relation is a function. To craft a mapping diagram, first list the domain on
the left, then the range on the right, then use arrows to indicate the ordered pairs in
your relation, as shown in Figure 3.

0

3

1

2

4

R

Figure 3. A mapping
diagram for R.

It’s clear from the mapping diagram in Figure 3 that the number 0 in the domain
is being paired (mapped) with two different range objects, namely, 1 and 2. Thus, R
is not a function.

Let’s look at another example.

I Example 9. Is the relation described in Example 5 a function?

First, let’s repeat the listing of the relation T here for convenience.

T =
{
(1, 2), (3, 2), (4, 5)

}
Next, construct a mapping diagram for the relation T . List the domain on the left, the
range on the right, then use arrows to indicate the pairings, as shown in Figure 4.

From the mapping diagram in Figure 4, we can see that each domain object on the
left is paired (mapped) with exactly one range object on the right. Hence, the relation
T is a function.
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1

3

4

2

5

T

Figure 4. A mapping
diagram for T .

Let’s look at another example.

I Example 10. Is the relation of Example 7, pictured in Figure 2, a function?

First, we repeat the graph of the relation from Example 7 here for convenience.
This is shown in Figure 5(a). Next, we list the ordered pairs of the relation S.

S =
{
(1, 2), (2, 1), (2, 4), (3, 3), (4, 4)

}
Then we create a mapping diagram by first listing the domain on the left, the range
on the right, then using arrows to indicate the pairings, as shown in Figure 5(b).

x

y

5

5

1

2

3

4

1

2

3

4

S

(a) (b)
Figure 5. A graph of the relation S and its corresponding
mapping diagram

Each object in the domain of S gets mapped to exactly one range object with one
exception. The domain object 2 is paired with two range objects, namely, 1 and 4.
Consequently, S is not a function.

This is a good point to summarize what we’ve learned about functions thus far.
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Summary 11. A function consists of three parts:

1. a set of objects which mathematicians call the domain,
2. a second set of objects which mathematicians call the range,
3. and a rule that describes how to assign a unique range object to each object

in the domain.

The rule can take many forms. For example, we can use sets of ordered pairs,
graphs, and mapping diagrams to describe the function. In the sections that follow,
we will explore other ways of describing a function, for example, through the use of
equations and simple word descriptions.

Function Notation
We’ve used the word “mapping” several times in the previous examples. This is not a
word to be taken lightly; it is an important concept. In the case of the mapping diagram
in Figure 5(b), we would say that the number 1 in the domain of S is “mapped” (or
“sent”) to the number 2 in the range of S.

There are a number of different notations we could use to indicate that the number
1 in the domain is “mapped” or “sent” to the number 2 in the range. One possible
notation is

S : 1 −→ 2,

which we would read as follows: “The relation S maps (sends) 1 to 2.” In a similar
vein, we see in Figure 5(b) that the domain objects 3 and 4 are mapped (sent) to the
range objects 3 and 4, respectively. In symbols, we would write

S : 3 −→ 3, and
S : 4 −→ 4.

A difficulty arises when we examine what happens to the domain object 2. There
are two possibilities, either

S : 2 −→ 1,

or

S : 2 −→ 4.

Which should we choose? The 1? Or the 4? Thus, S is not well-defined and is not a
function, since we don’t know which range object to pair with the domain object 1.

The idea of mapping gives us an alternative way to describe a function. We could
say that a function is a rule that assigns a unique object in its range to each object in
its domain. Take for example, the function that maps each real number to its square.
If we name the function f , then f maps 5 to 25, 6 to 36, −7 to 49, and so on. In
symbols, we would write
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f : 5 −→ 25, f : 6 −→ 36, and f : −7 −→ 49.

In general, we could write

f : x −→ x2.

Note that each real number x gets mapped to a unique number in the range of f ,
namely, x2. Consequently, the function f is well defined. We’ve succeeded in writing a
rule that completely defines the function f .

As another example, let’s define a function that takes a real number, doubles it,
then adds 3. If we name the function g, then g would take the number 7, double it,
then add 3. That is,

g : 7 −→ 2(7) + 3

Simplifying, g : 7 −→ 17. Similarly, g would take the number 9, double it, then add 3.
That is,

g : 9 −→ 2(9) + 3

Simplifying, g : 9 −→ 21. In general, g takes a real number x, doubles it, then adds
three. In symbols, we would write

g : x −→ 2x+ 3.

Notice that each real number x is mapped by g to a unique number in its range.
Therefore, we’ve again defined a rule that completely defines the function g.

It is helpful to think of a function as a machine. The machine receives input,
processes it according to some rule, then outputs a result. Something goes in (input),
then something comes out (output). In the case of the function described by the rule
f : x −→ x2, the “f -machine” receives input x, then applies its “square rule” to the
input and outputs x2, as shown in Figure 6(a). In the case of the function described
by the rule g : x −→ 2x + 3, the “g-machine” receives input x, then applies the rules
“double,” then “add 3,” in that order, then outputs 2x+ 3, as shown in Figure 6(b).

x

x2

f 1. Square

x

2x + 3

g 1. Double
2. Add 3

(a) The f -machine. (b) The g-machine.
Figure 6. Function machines.
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Let’s look at another example.

I Example 12. Suppose that f is defined by the following rule. For each real
number x,

f : x −→ x2 − 2x− 3.

Where does f map the number −3? Is f a function?

We substitute −3 for x in the rule for f and obtain

f : −3 −→ (−3)2 − 2(−3)− 3.

Simplifying,

f : −3 −→ 9 + 6− 3,

or,

f : −3 −→ 12.

Thus, f maps (sends) the number −3 to the number 12. It should be clear that each
real number x will be mapped (sent) to a unique real number, as defined by the rule
f : x −→ x2 − 2x− 3. Therefore, f is a function.

Let’s look at another example.

I Example 13. Suppose that g is defined by the following rule. For each real
number x that is greater than or equal to zero,

g : x −→ ±
√
x.

Where does g map the number 4? Is g a function?

Again, we substitute 4 for x in the rule for g and obtain

g : 4 −→ ±
√

4.

Simplifying,

g : 4 −→ ± 2.

Thus, g maps (sends) the number 4 to two different objects in its range, namely, 2 and
−2. Consequently, g is not well-defined and is not a function.

Let’s look at another example.

I Example 14. Suppose that we have functions f and g, defined by

f : x −→ x4 + 11 and g : x −→ (x+ 2)2.
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Where does g send 5?

In this example, we see a clear advantage of function notation. Because our functions
have distinct names, we can simply reference the name of the function we want our
readers to use. In this case, we are asked where the function g sends the number 5, so
we substitute 5 for x in

g : x −→ (x+ 2)2.

That is,

g : 5 −→ (5 + 2)2.

Simplifying, g : 5 −→ 49.

Modern Notation
Function notation is relatively new, with some of the earliest symbolism first occurring
in the 17th century. In a letter to Leibniz (1698), Johann Bernoulli wrote “For denoting
any function of a variable quantity x, I rather prefer to use the capital letter having the
same name X or the Greek ξ, for it appears at once of what variable it is a function;
this relieves the memory.”

Mathematicians are fond of the notation

f : x −→ x2 − 2x,

because it conveys a sense of what a function does; namely, it “maps” or “sends” the
number x to the number x2 − 2x. This is what functions do, they pair each object in
their domain with a unique object in their range. Equivalently, functions “send” each
object in their domain to a unique object in their range.

However, in common computational situations, the “arrow” notation can be a bit
clumsy, so mathematicians tend to favor a slightly different notation. Instead of writing

f : x −→ x2 − 2x,

mathematicians tend to favor the notation

f(x) = x2 − 2x.

It is important to understand from the outset that these two different notations are
equivalent; they represent the same function f , one that pairs each real number x in
its domain with the real number x2 − 2x in its range.

The first notation, f : x −→ x2 − 2x, conveys the sense that the function f is a
mapping. If we read this notation aloud, we should pronounce it as “f sends (or maps)
x to x2 − 2x.” The second notation, f(x) = x2 − 2x, is pronounced “f of x equals
x2 − 2x.”
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Warning 15. The phrase “f of x” is unfortunate, as our readers might recall
being trained from a very early age to pair the word “of” with the operation of
multiplication. For example, 1/2 of 12 is 6, as in 1/2 × 12 = 6. However, in
the context of function notation, even though f(x) is read aloud as “f of x,” it
does not mean “f times x.” Indeed, if we remind ourselves that the notation
f(x) = x2 − 2x is equivalent to the notation f : x −→ x2 − 2x, then even though
we might say “f of x,” we should be thinking “f sends x” or “f maps x.” We
should not be thinking “f times x.”

Now, let’s see how each of these notations operates on the number 5. In the first
case, using the “arrow” notation,

f : x −→ x2 − 2x.

To find where f sends 5, we substitute 5 for x as follows.

f : 5 −→ (5)2 − 2(5).

Simplifying, f : 5 −→ 15. Now, because both notations are equivalent, to compute
f(5), we again substitute 5 for x in

f(x) = x2 − 2x.

Thus,

f(5) = (5)2 − 2(5).

Simplifying, f(5) = 15. This result is read aloud as “f of 5 equals 15,” but we want to
be thinking “f sends 5 to 15.”

Let’s look at examples that use this modern notation.

I Example 16. Given f(x) = x3 + 3x2 − 5, determine f(−2).

Simply substitute −2 for x. That is,

f(−2) = (−2)3 + 3(−2)2 − 5
= −8 + 3(4)− 5
= −8 + 12− 5
= −1.

Thus, f(−2) = −1. Again, even though this is pronounced “f of −2 equals −1,” we
still should be thinking “f sends −2 to −1.”
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I Example 17. Given

f(x) = x+ 3
2x− 5

,

determine f(6).

Simply substitute 6 for x. That is,

f(6) = 6 + 3
2(6)− 5

= 9
12− 5

= 9
7
.

Thus, f(6) = 9/7. Again, even though this is pronounced “f of 6 equals 9/7,” we
should still be thinking “f sends 6 to 9/7.”

I Example 18. Given f(x) = 5x− 3, determine f(a+ 2).

If we’re thinking in terms of mapping notation, then

f : x −→ 5x− 3.

Think of this mapping as a “machine.” Whatever we put into the machine, it first
is multiplied by 5, then 3 is subtracted from the result, as shown in Figure 7. For
example, if we put a 4 into the machine, then the function rule requires that we multiply
input 4 by 5, then subtract 3 from the result. That is,

f : 4 −→ 5(4)− 3.

Simplifying, f : 4 −→ 17.

x

5x− 3

f
1. Multiply by 5
2. Subtract 3

Figure 7. The multiply by 5 then
subtract 3 machine.
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Similarly, if we put an a+ 2 into the machine, then the function rule requires that
we multiply the input a+ 2 by 5, then subtract 3 from the result. That is,

f : a+ 2 −→ 5(a+ 2)− 3.

Using modern function notation, we would write

f(a+ 2) = 5(a+ 2)− 3.

Note that this is again a simple substitution, where we replace each occurrence of x
in the formula f(x) = 5x − 3 with the expression a + 2. Finally, use the distributive
property to first multiply by 5, then subtract 3.

f(a+ 2) = 5a+ 10− 3
= 5a+ 7.

We will often need to substitute the result of one function evaluation into a second
function for evaluation. Let’s look at an example.

I Example 19. Given two functions defined by f(x) = 3x + 2 and g(x) = 5 − 4x,
find f(g(2)).

The nested parentheses in the expression f(g(2)) work in the same manner that
they do with nested expressions. The rule is to work the innermost grouping symbols
first, proceeding outward as you work. We’ll first evaluate g(2), then evaluate f at the
result.

We begin. First, evaluate g(2) by substituting 2 for x in the defining equation
g(x) = 5− 4x. Note that g(2) = 5− 4(2), then simplify.

f(g(2)) = f(5− 4(2)) = f(5− 8) = f(−3)

To complete the evaluation, we substitute −3 for x in the defining equation f(x) =
3x+ 2, then simplify.

f(−3) = 3(−3) + 2 = −9 + 2 = −7.

Hence, f(g(2)) = −7.
It is conventional to arrange the work in one contiguous block, as follows.

f(g(2)) = f(5− 4(2))
= f(−3)
= 3(−3) + 2
= −7

You can shorten the task even further if you are willing to do the function substitution
and simplification in your head. First, evaluate g at 2, then f at the result.

f(g(2)) = f(−3) = −7
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Let’s look at another example of this unique way of combining functions.

I Example 20. Given f(x) = 5x + 2 and g(x) = 3 − 2x, evaluate g(f(a)) and
simplify the result.

We work the inner function evaluation in the expression g(f(a)) first. Thus, to
evaluate f(a), we substitute a for x in the definition f(x) = 5x+ 2 to get

g(f(a)) = g(5a+ 2).

Now we need to evaluate g(5a + 2). To do this, we substitute 5a + 2 for x in the
definition g(x) = 3− 2x to get

g(5a+ 2) = 3− 2(5a+ 2).

We can expand this last result and simplify. Thus,

g(f(a)) = 3− 10a− 4 = −10a− 1.

Again, it is conventional to arrange the work in one continuous block, as follows.

g(f(a)) = g(5a+ 2)
= 3− 2(5a+ 2)
= 3− 10a− 4
= −10a− 1

Hence, g(f(a)) = −10a− 1.

Extracting the Domain of a Function
We’ve seen that the domain of a relation or function is the set of all the first coordinates
of its ordered pairs. However, if a functional relationship is defined by an equation
such as f(x) = 3x − 4, then it is not practical to list all ordered pairs defined by this
relationship. For any real x-value, you get an ordered pair. For example, if x = 5,
then f(5) = 3(5)− 4 = 11, leading to the ordered pair (5, f(5)) or (5, 11). As you can
see, the number of such ordered pairs is infinite. For each new x-value, we get another
function value and another ordered pair.

Therefore, it is easier to turn our attention to the values of x that yield real number
responses in the equation f(x) = 3x− 4. This leads to the following key idea.

Definition 21. If a function is defined by an equation, then the domain of the
function is the set of “permissible x-values,” the values that produce a real number
response defined by the equation.
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We sometimes like to say that the domain of a function is the set of “OK x-values to
use in the equation.” For example, if we define a function with the rule f(x) = 3x− 4,
it is immediately apparent that we can use any value we want for x in the rule f(x) =
3x − 4. Thus, the domain of f is all real numbers. We can write that the domain
D = R, or we can use interval notation and write that the domain D = (−∞,∞).

It is not the case that x can be any real number in the function defined by the rule
f(x) =

√
x. It is not possible to take the square root of a negative number.2 Therefore,

x must either be zero or a positive real number. In set-builder notation, we can describe
the domain with D = {x : x ≥ 0}. In interval notation, we write D = [0,∞).

We must also be aware of the fact that we cannot divide by zero. If we define a
function with the rule f(x) = x/(x− 3), we immediately see that x = 3 will put a zero
in the denominator. Division by zero is not defined. Therefore, 3 is not in the domain
of f . No other x-value will cause a problem. The domain of f is best described with
set-builder notation as D = {x : x 6= 3}.

Functions Without Formulae
In the previous section, we defined functions by means of a formula, for example, as in

f(x) = x+ 3
2− 3x

.

Euler would be pleased with this definition, for as we have said previously, Euler thought
of functions as analytic expressions.

However, it really isn’t necessary to provide an expression or formula to define a
function. There are other forms we can use to express a functional relationship: a
graph, a table, or even a narrative description. The only thing that is really important
is the requirement that the function be well-defined, and by “well-defined,” we mean
that each object in the function’s domain is paired with one and only one object in its
range.

As an example, let’s look at a special function π on the natural numbers,3 which
returns the number of primes less than or equal to a given natural number. For example,
the primes less than or equal to the number 23 are 2, 3, 5, 7, 11, 13, 17, 19, and 23,
nine numbers in all. Therefore, the number of primes less than or equal to 23 is nine.
In symbols, we would write

π(23) = 9.

The square of a real number is either zero or a positive real number. It is not possible to square a real2

number and get a negative result. Therefore, there is no real square root of a negative number.
The use of π in this context is unfortunate and apt to confuse. Readers are more likely to associate the3

symbol π with the formulae for finding the area and circumference of a circle, with approximate value
π ≈ 3.14159 . . .. As John Derbyshire states in Prime Obsession, “The Greek alphabet has only 24 letters
and by the time mathematicians got round to giving this function a symbol (the person responsible
in this case is Edmund Landau, in 1909), all 24 had been pretty much used up and they had to start
recycling them.” In short, the symbol is standard, so we’ll just have to live with it.
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Note the absence of a formula in the definition of this function. Indeed, the definition
is descriptive in nature, so we might write

π(n) = number of primes less than or equal to n.

The important thing is not how we define this special function π, but the fact that it
is well-defined; that is, for each natural number n, there are a fixed number of primes
less than or equal to n. Thus, each natural number in the domain of π is paired with
one and only one number in its range.

Now, just because our function doesn’t provide an expression for calculating the
number of primes less than or equal to a given natural number n, it doesn’t stop
mathematicians from seeking such a formula. Euclid of Alexandria (325-265 BC), a
Greek mathematician, proved that the number of primes is infinite, but it was the
German mathematician and scientist, Johann Carl Friedrich Gauss (1777-1855), who
first proposed that the number of primes less than or equal to n can be approximated
by the formula

π(n) ≈ n
lnn
,

where lnn is the “natural logarithm” of n (to be explained in Chapter 9). This ap-
proximation gets better and better with larger and larger values of n. The formula
was refined by Gauss, who did not provide a proof, and the problem became known as
the Prime Number Theorem. It was not until 1896 that Jacques Salomon Hadamard
(1865-1963) and Charles Jean Gustave Nicolas Baron de la Vallee Poussin (1866-1962),
working independently, provided a proof of the Prime Number Theorem.
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2.1 Exercises

In Exercises 1-6, state the domain and
range of the given relation.

1. R = {(1, 3), (2, 4), (3, 4)}

2. R = {(1, 3), (2, 4), (2, 5)}

3. R = {(1, 4), (2, 5), (2, 6)}

4. R = {(1, 5), (2, 4), (3, 6)}

5.

x
5

y
5

6.

x
5

y
5

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/4

In Exercises 7-12, create a mapping di-
agram for the given relation and state
whether or not it is a function.

7. The relation in Exercise 1.

8. The relation in Exercise 2.

9. The relation in Exercise 3.

10. The relation in Exercise 4.

11. The relation in Exercise 5.

12. The relation in Exercise 6.

13. Given that g takes a real number
and doubles it, then g : x −→?.

14. Given that f takes a real number
and divides it by 3, then f : x −→ ?.

15. Given that g takes a real number
and adds 3 to it, then g : x −→ ?.

16. Given that h takes a real number
and subtracts 4 from it, then h : x −→ ?.

17. Given that g takes a real number,
doubles it, then adds 5, then g : x −→ ?.

18. Given that h takes a real number,
subtracts 3 from it, then divides the re-
sult by 4, then h : x −→ ?.

Given that the function f is defined by
the rule f : x −→ 3x − 5, determine
where the input number is mapped in
Exercises 19-22.

19. f : 3 −→ ?
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20. f : −5 −→ ?

21. f : a −→ ?

22. f : 2a+ 3 −→ ?

Given that the function f is defined by
the rule f : x −→ 4 − 5x, determine
where the input number is mapped in
Exercises 23-26.

23. f : 2 −→ ?

24. f : −3 −→ ?

25. f : a −→ ?

26. f : 2a+ 11 −→ ?

Given that the function f is defined by
the rule f : x −→ x2 − 4x − 6, deter-
mine where the input number is mapped
in Exercises 27-30.

27. f : 1 −→ ?

28. f : −2 −→ ?

29. f : −1 −→ ?

30. f : a −→ ?

Given that the function f is defined by
the rule f : x −→ 3x − 9, determine
where the input number is mapped in
Exercises 31-34.

31. f : a −→ ?

32. f : a+ 1 −→ ?

33. f : 2a− 5 −→ ?

34. f : a+ h −→ ?

Given that the functions f and g are de-
fined by the rules f : x −→ 2x + 3 and
g : x −→ 4− x, determine where the in-
put number is mapped in Exercises 35-
38.

35. f : 2 −→ ?

36. g : 2 −→ ?

37. f : a+ 1 −→ ?

38. g : a− 3 −→ ?

39. Given that g takes a real number
and triples it, then g(x) = ?.

40. Given that f takes a real number
and divides it by 5, then f(x) = ?.

41. Given that g takes a real number
and subtracts it from 10, then g(x) = ?.

42. Given that f takes a real number,
multiplies it by 5 and then adds 4 to the
result, then f(x) = ?.

43. Given that f takes a real number,
doubles it, then subtracts the result from
11, then f(x) = ?.

44. Given that h takes a real number,
doubles it, adds 5, then takes the square
root of the result, then h(x) = ?.

In Exercises 45-54, evaluate the given
function at the given value b.

45. f(x) = 12x+ 2 for b = 6.

46. f(x) = −11x− 4 for b = −3.

47. f(x) = −9x− 1 for b = −5.

48. f(x) = 11x+ 4 for b = −4.
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49. f(x) = 4 for b = −12.

50. f(x) = 7 for b = −7.

51. f(x) = 0 for b = −7.

52. f(x) = 12x+ 8 for b = −3.

53. f(x) = −9x+ 3 for b = −1.

54. f(x) = 6x− 3 for b = 3.

In Exercises 55-58, given that the func-
tion f is defined by the rule f(x) = 2x+
7, determine where the input number is
mapped.

55. f(a) = ?

56. f(a+ 1) = ?

57. f(3a− 2) = ?

58. f(a+ h) = ?

In Exercises 59-62, given that the func-
tion g is defined by the rule g(x) = 3 −
2x, determine where the input number is
mapped.

59. g(a) = ?

60. g(a+ 3) = ?

61. g(2− 5a) = ?

62. g(a+ h) = ?

Given that the functions f and g are
defined by the rules f(x) = 1 − x and
g(x) = 2x+ 13, determine where the in-
put number is mapped in Exercises 63-
66.

63. f(a) = ?

64. g(a) = ?

65. f(a+ 3) = ?

66. g(4− a) = ?

Given that the functions f and g are de-
fined by the rules f(x) = 3x + 4 and
g(x) = 2x−5, determine where the input
number is mapped in Exercises 67-70.

67. f(g(2)) = ?

68. g(f(2)) = ?

69. f(g(a)) = ?

70. g(f(a)) = ?

Given that the functions f and g are de-
fined by the rules f(x) = 2x − 9 and
g(x) = 11, determine where the input
number is mapped in Exercises 71-74.

71. f(g(2)) = ?

72. g(f(2)) = ?

73. f(g(a)) = ?

74. g(f(a)) = ?

Use set-builder notation to describe the
domain of each of the functions defined
in Exercises 75-78.

75. f(x) = 93
x+ 98

76. f(x) = 54
x+ 65

77. f(x) = − 87
x− 88

78. f(x) = − 30
x− 52
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Use set-builder and interval notation to
describe the domain of the functions de-
fined in Exercises 79-82.

79. f(x) =
√
x+ 69

80. f(x) =
√
x+ 62

81. f(x) =
√
x− 81

82. f(x) =
√
x− 98

Two integers are said to be relatively prime
if their greatest common divisor is 1. For
example, the greatest common divisor of
6 and 35 is 1, so 6 and 35 are relatively
prime. On the other hand, the greatest
common divisor of 14 and 21 is not 1
(it is 7), so 14 and 21 are not relatively
prime. The Euler φ-function is defined
as follows:

• If n = 1, then φ(n) = 1.
• If n > 1, then φ(n) is the number of

positive integers less than n that are
relatively prime to n. In Exercises 83-
84, evaluate the Euler φ-function at
the given input.

83. φ(12)

84. φ(36)
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2.1 Answers

1. Domain = {1, 2, 3}, Range = {3, 4}

3. Domain = {1, 2}, Range = {4, 5, 6}

5. Domain = {1, 2, 3}, Range = {1, 2, 3, 4}

7.

R

1
2
3

3
4

Function.

9.

R

1
2

4
5
6

Not a function.

11.

R

1
2
3

1
2
3
4

Not a function.

13. g : x −→ 2x

15. g : x −→ x+ 3

17. g : x −→ 2x+ 5

19. f : 3 −→ 4

21. f : a −→ 3a− 5

23. f : 2 −→ −6

25. f : a −→ 4− 5a

27. f : 1 −→ −9

29. f : −1 −→ −1

31. f : a −→ 3a− 9

33. f : 2a− 5 −→ 6a− 24

35. f : 2 −→ 7

37. f : a+ 1 −→ 2a+ 5

39. g(x) = 3x

41. g(x) = 10− x

43. f(x) = 11− 2x

45. 74

47. 44

49. 4

51. 0

53. 12

55. f(a) = 2a+ 7

57. f(3a− 2) = 6a+ 3

59. g(a) = 3− 2a

61. g(2− 5a) = 10a− 1

63. f(a) = 1− a

65. f(a+ 3) = −a− 2
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67. f(g(2)) = 1

69. f(g(a)) = 6a− 11

71. f(g(2)) = 13

73. f(g(a)) = 13

75. Domain = {x : x 6= −98}

77. Domain = {x : x 6= 88}

79. Domain = [−69,∞) = {x : x ≥
−69}

81. Domain = [81,∞) = {x : x ≥ 81}

83. φ(12) = 4
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2.2 The Graph of a Function
Rene Descartes (1596-1650) was a French philosopher and mathematician who is well
known for the famous phrase “cogito ergo sum” (I think, therefore I am), which appears
in his Discours de la methode pour bien conduire sa raison, et chercher la verite dans
les sciences (Discourse on the Method of Rightly Conducting the Reason, and Seeking
Truth in the Sciences). In that same treatise, Descartes introduces his coordinate
system, a method for representing points in the plane via pairs of real numbers. Indeed,
the Cartesian plane of modern day is so named in honor of Rene Descartes, who some
call the “Father of Modern Mathematics.”

Descartes’ work, which forever linked geometry and algebra, was continued in an
appendix to Discourse on Method, entitled La Geometrie, which some consider the
beginning of modern mathematics. Certainly both Newton and Leibniz, in developing
the Calculus, built upon the foundation provided in this work by Descartes.

A Cartesian Coordinate System consists of a pair of axes, usually drawn at right
angles to one another in the plane, one horizontal (labeled x) and one vertical (labeled
y), as shown in the Figure 1. The quadrants are numbered I, II, III, and IV, in
counterclockwise order, and samples of ordered pairs of the form (x, y) are shown in
each quadrant of the Cartesian coordinate system in Figure 1.

x

y

III

III IV

x

y

(3, 2)
(−3, 3)

(−4,−2)

(2,−4)
Numbering the quadrants. To the right and up is positive,

left and down is negative.
Figure 1. The Cartesian coordinate system.

Now, suppose that we have a relation

R = {(1, 2), (3, 1), (3, 4), (4, 3)}.

Recall that relation is the name given to a collection of ordered pairs. In Figure 2(b)
we’ve plotted each of the ordered pairs in the relation R. This is called the graph of
the relation R.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/5
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Definition 1. The graph of a relation is the collection of all ordered pairs of
the relation. These are usually represented as points in a Cartesian coordinate
system.

1

3

4

1

2

3

4

R

x

y

5

5

(1, 2)

(3, 1)

(3, 4)

(4, 3)

(a) (b)
Figure 2. A mapping diagram and its graph.

In Figure 2(a), we’ve created a mapping diagram of the ordered pairs. Note that
the domain object 3 is paired with two range elements, namely 1 and 4. Hence the
relation R is not a function. It is interesting to note that there are two points in the
graph of R in Figure 2(b) that have the same first coordinate, namely (3, 1) and (3, 4).
This is a signal that the graph of the relation R is not a function. In the next section
we will discuss the Vertical Line Test, which will use this dual use of the first coordinate
to determine when a relation is a not a function.

Creating the Graph of a Function
Some texts will speak of the graph of an equation, such as “Draw the graph of the
equation y = x2.” This instruction raises a number of difficulties.

• First, the instruction provides no direction to the reader; that is, what does the
instruction mean? It’s not very helpful.

• Secondly, the instruction is incorrect. You don’t draw the graphs of equations.
Rather, you draw the graphs of relations and/or functions. A graph is just another
way of representing a function, a relation that pairs each element in its domain with
exactly one element in its range.

So, what is the proper instruction? First, we will provide the formal definition of
the graph of a function, then we will break it down by means of examples.
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Definition 2. The graph of a function is the collection of all ordered pairs of
the function. These are usually represented as points in a Cartesian coordinate
system.

As an example, consider the function

f =
{
(1, 2), (2, 4), (3, 1), (4, 3)

}
. (3)

Readers will note that each object in the domain is paired with one and only one object
in the range, as seen in the mapping diagram of Figure 3(a).

Thus, we have two representations of the function f , the collection of ordered pairs
(3), and the mapping diagram of in Figure 3(a). A third representation of the function
f is the graph of the ordered pairs of the function, shown in the Cartesian plane in
Figure 3(b).

1

2

3

4

1

2

3

4

f

x

y

5

5

(1, 2)

(2, 4)

(3, 1)

(4, 3)

(a) (b)
Figure 3. A mapping diagram and its graph.

When the function is represented by an equation or formula, then we adjust our
definition of its graph somewhat.

Definition 4. The graph of f is the set of all ordered pairs (x, f(x)) so that x
is in the domain of f . In symbols,

Graph of f =
{
(x, f(x)) : x is in the domain of f .

}
.

This last definition is most easily explained by example. So, let’s define a function
f that maps any real number x to the real number x2; that is, let f(x) = x2. Now,
according to Definition 4, the graph of f is the set of all points (x, f(x)), such that x
is in the domain of f .

The way is now clear. We begin by creating a table of points (x, f(x)), where x is in
the domain of the function f defined by f(x) = x2. The choice of x is both subjective
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and experimental, so we begin by choosing integer values of x between −3 and 3. We
then evaluate the function at each of these x-values (e.g., f(−3) = (−3)2 = 9). The
results are shown in the table in Figure 4(a). We then plot the points in our table in
the Cartesian plane as shown in Figure 4(b).

x f(x) = x2 (x, f(x))
−3 9 (−3, 9)
−2 4 (−2, 4)
−1 1 (−1, 1)
0 0 (0, 0)
1 1 (1, 1)
2 4 (2, 4)
3 9 (3, 9)

x10

y
10

(a) (b)
Figure 4. Plotting pairs satisfying the functional relationship defined by the equation
f(x) = x2.

Although this is a good start, the graph in Figure 4(b) is far from complete.
Definition 4 requires that we plot the ordered pairs (x, f(x)) for every value of x that
is in the domain of f . We’ve only plotted seven such points, so we’re not done. Let’s
add more points to the graph of f . We’ll evaluate the function at each of the x-values
shown in the table in Figure 5(a), then plot the additional pairs (x, f(x)) from the
table in the Cartesian plane, as shown in Figure 5(b).

x f(x) = x2 (x, f(x))
−5/2 25/4 (−5/2, 25/4)
−3/2 9/4 (−3/2, 9/4)
−1/2 1/4 (−1/2, 1/4)
1/2 1/4 (1/2, 1/4)
3/2 9/4 (3/2, 9/4)
5/2 25/4 (5/2, 25/4)

x10

y
10

(a) (b)
Figure 5. Plotting additional pairs

(x, f(x)) defined by the equation f(x) = x2.
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We’re still not finished, because we’ve only plotted 13 pairs (x, f(x)), such that f(x) =
x2. Definition 4 requires that we plot the ordered pairs (x, f(x)) for every value of
x in the domain of f .

However, a pattern is certainly establishing itself, as seen in Figure 5(b). At some
point, we need to “make a leap of faith,” and plot all ordered pairs (x, f(x)), such that
x is in the domain of f . This is done in Figure 6.

x10

y
10

f

Figure 6. Plotting all pairs (x, f(x))
so that x is in the domain of f .

There are several important points we need to make about the final result in Figure 6.

• When we draw a smooth curve, such as that shown in Figure 6, it is important
to understand that this is a simply a shortcut for plotting all pairs (x, f(x)), where
f(x) = x2 and x is in the domain of f .6

• It is important to understand that we are NOT “connecting the dots,” neither with
a ruler nor with curved segments. Rather, the curve in Figure 6 is the result of
plotting all of the individual pairs (x, f(x)).

• The “arrows” at each end of the curve have an important meaning. Much as the
ellipsis at the end of the progression 2, 4, 6, . . . mean “et-cetera,” the arrows at each
end of the curve have a similar meaning. The arrow at the end of the left-half of the
curve indicates that the graph continues opening upward and to the left, while the
arrow at the end of the right-half of the curve indicates that the graph continues
opening upward and to the right.

Creating Graphs by Hand
We’re going to look at several basic graphs, which we’ll create by employing the strategy
used to create the graph of f(x) = x2. First, let’s summarize that process.

It would take too long to plot the individual pairs “one at a time.”6
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Summary 5. If a function is defined by an equation, you can create the graph
of the function as follows.

1. Select several values of x in the domain of the function f .

2. Use the selected values of x to create a table of pairs (x, f(x)) that satisfy the
equation that defines the function f .

3. Create a Cartesian coordinate system on a sheet of graph paper. Label and
scale each axis, then plot the pairs (x, f(x)) from your table on your coordinate
system.

4. If the plotted pairs (x, f(x)) provide enough of a pattern for you to intuit the
shape of the graph of f , make the “leap of faith” and plot all pairs that satisfy
the equation defining f by drawing a smooth curve on your coordinate system.
Of course, this curve should contain all previously plotted pairs.

5. If your plotted pairs do not provide enough of a pattern to determine the final
shape of the graph of f , then add more pairs to your table and plot them
on your Cartesian coordinate system. Continue in this manner until you are
confident in the shape of the graph of f .

Let’s look at an example.

I Example 6. Sketch the graph of the function defined by the equation f(x) = x3.

We’ll start with x-values −2, −1, 0, 1, and 2, then use the equation f(x) = x3 to
determine pairs (x, f(x)) (e.g., f(−2) = (−2)3 = −8). These are listed in the table in
Figure 7(a). We then plot the points from the table on a Cartesian coordinate system,
as shown in Figure 7(b).

x f(x) = x3 (x, f(x))
−2 −8 (−2,−8)
−1 −1 (−1,−1)
0 0 (0, 0)
1 1 (1, 1)
2 8 (2, 8)

x10

y
10

(a) (b)
Figure 7. Plotting pairs (x, f(x)) defined by the equation f(x) = x3.
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We’re a bit unsure of the shape of the graph of f , so we’ll add a few more pairs to our
table and plot them. This is shown in Figures 8(a) and (b).

x f(x) = x3 (x, f(x))
−3/2 −27/8 (−3/2,−27/8)
−1/2 −1/8 (−1/2,−1/8)
1/2 1/8 (1/2, 1/8)
3/2 27/8 (3/2, 27/8)

x10

y
10

(a) (b)
Figure 8. Plotting additional pairs (x, f(x)) defined by the equation f(x) = x3.

The additional pairs fill in the shape of f in Figure 8(b) a bit better than those in
Figure 7(b), enough so that we’re confident enough to make a “leap of faith” and draw
the final shape of the graph of f(x) = x3 in Figure 9.

x10

y
10

f

Figure 9. The final
graph of f(x) = x3.

Let’s look at another example.

I Example 7. Sketch the graph of f(x) =
√
x.

Again, we’ll start by selecting several values of x in the domain of f . In this case,
f(x) =

√
x, and it’s not possible to take the square root of a negative number.7 Also,

Whenever you square a real number, the result is either positive or zero. Hence, the square root of a7

negative number cannot be a real number.
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if we’re creating a table of pairs by hand, it’s good strategy to select known squares.
Thus, we’ll use x = 0, 1, 4, and 9 for starters.

x f(x) =
√
x (x, f(x))

0 0 (0, 0)
1 1 (1, 1)
4 2 (4, 2)
9 3 (9, 3)

x10

y
10

(a) (b)
Figure 10. Plotting pairs (x, f(x)) defined by the equation f(x) =

√
x.

Some might be ready to make a “leap of faith” based on these initial results. Others
might want to use a calculator to compute decimal approximations for additional square
roots. The resulting pairs are shown in the table in Figure 11(a) and the additional
pairs are plotted in Figure 11(b).

x f(x) =
√
x (x, f(x))

2 1.4 (2, 1.4)
3 1.7 (3, 1.7)
5 2.2 (5, 2.2)
6 2.4 (6, 2.4)
7 2.6 (7, 2.6)
8 2.8 (8, 2.8)

x10

y
10

(a) (b)
Figure 11. Plotting additional pairs

(x, f(x)) defined by the equation f(x) =
√
x.

The pattern in Figure 11(b) is clear enough to make a “leap of faith” and complete
the graph as shown in Figure 12.
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x10

y
10

f

Figure 12. The graph of f defined
by the equation f(x) =

√
x.

Using the Table Feature of the Graphing Calculator
The TABLE feature on your graphing calculator can be of immense help when creating

tables of points that satisfy the equation defining the function f . Let’s look at an
example.

I Example 8. Sketch the graph of f(x) = |x|.

Enter the function f(x) = |x| in the Y= menu as follows.8

1. Press the Y= button on your calculator. This will open the Y= menu as shown in
Figure 13(a). Use the arrow keys and the CLEAR button on your calculator to
delete any existing functions.

2. Press the MATH button to open the menu shown in Figure 13(b).

3. Press the right-arrow on your calculator to select the NUM submenu as shown in
Figure 13(c).

4. Select 1:abs(, then enter X and close the parentheses, as shown in Figure 13(d).

(a) (b) (c) (d)
Figure 13. Entering f(x) = |x| in the Y= menu.

Readers will recall that the absolute value function takes a real number and makes it nonnegative. For8

example, | − 3| = 3, |0| = 0, and |3| = 3. We’ll have more to say about the absolute value function in
Chapter 3.



102 Chapter 2 Functions

Version: Fall 2007

We will now use the TABLE feature of the graphing calculator to help create a table
of pairs (x, f(x)) satisfying the equation f(x) = |x|. Proceed as follows.

1. Select 2nd TBLSET (i.e., push the 2nd button followed by TBLSET), which is located
over the WINDOW button. Enter TblStart=-3, ∆Tbl = 1, and set the independent
and dependent variables to Auto (this is done by highlighting Auto and pressing the
Enter button), as shown in Figure 14(a).

2. Press 2nd TABLE, which is located above the GRAPH button, to produce the table of
pairs (x, f(x)) shown in Figure 14(b).

We’ve plotted the pairs directly from the calculator onto a Cartesian coordinate
system on graph paper in Figure 14(c).

x5

y
5

(a) (b) (c)
Figure 14. Creating a table with the TABLE feature of the graphing calculator.

Based on what we see in Figure 14(c), we’re ready to make a “leap of faith” and
draw the graph of f shown in Figure 15.

x5

y
5 f

Figure 15. The graph of f defined
by f(x) = |x|.

Alternatively, or as a check, we can have the graphing calculator draw the graph for us.
Push the ZOOM button, then select 6:ZStandard (shown in Figure 16(a)) to produce
the graph shown in Figure 16(b).
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(a) (b)
Figure 16. Creating the graph of f(x) = |x| with the graphing
calculator.

Adjusting the Viewing Window
In Example 8, we used the graphing calculator to draw the graph of the function
defined by the equation f(x) = |x|. For the functions we’ve encountered thus far,
drawing their graphs using the graphing calculator is pretty trivial. Simply enter the
equation in the Y= menu, then press the ZOOM button and select 6:ZStandard. However,
if the graph of a function doesn’t fit (or even appear) in the “standard” viewing window,
it can be quite challenging to find optimal view settings so that the important features
of the graph are visible.

Indeed, as one might not even know what “important” features to look for, setting
the viewing window is usually highly subjective and experimental by nature. Let’s look
at some examples.

I Example 9. Use a graphing calculator to sketch the graph of f(x) = 56− x− x2.
Experiment with the WINDOW settings until you feel you have a viewing window that
exhibits the important features of the graph.

First, start by entering the function in the Y= menu, as shown in Figure 17(a).
The caret ˆon the keyboard is used for exponents. Press the ZOOM button and select
6:ZStandard to produce the graph shown in Figure 17(b).

(a) (b)
Figure 17. The graph of f(x) = 56−x−x2 in the “standard”
viewing window.

As the graph draws, observe that the graph rises from the bottom of the screen,
leaves the top of the screen, then returns, falling from the top of the screen and leaving
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again at the bottom of the screen. This would indicate that there must be some sort
of “turning point” that is not visible at the top of the screen.

Press the WINDOW button to reveal the “standard viewing window” settings shown
in Figure 18(a). The following legend explains each of the WINDOW parameters in
Figure 18(a).

Xmin = x-value of left edge of viewing window
Xmax = x-value of right edge of viewing window
Xscl = x-axis tick increment
Y min = y-value of bottom edge of viewing window
Y max = y-value of top edge of viewing window
Y scl = y-axis tick increment

It is easy to evaluate the function f(x) = 56 − x − x2 at x = 0. Indeed, f(0) =
56−0−02 = 56. This indicates that the graph of f must pass through the point (0, 56).
This gives us a clue at how we should set the upper bound on our viewing window. Set
Ymax = 60, as shown in Figure 18(b), then press the GRAPH button to produce the
graph and viewing window shown in Figure 18(c).

(a) (b) (c)
Figure 18. Changing the viewing window.

Although the viewing window in Figure 18(c) shows the “turning point” of the
graph of f , we will make some additional changes to the window settings, as shown in
Figure 19(a). First, we “widen” the viewing window a bit, setting Xmin = -15 and
Xmax = 15, then we set tick marks on the x-axis every 5 units with Xscl = 5. Next,
to create a little room at the top of the screen, we set Ymax = 100, then we “balance”
this setting with Ymin = -100. Finally, we set tick marks on the y-axis every 10 units
with Yscl = 10.

Push the GRAPH button to view the effects of these changes to the WINDOW parameters
in Figure 19(b). Note that these settings are highly subjective, and what one reader
might find quite pleasing will not necessarily find favor with other readers.

However, what is important is the fact that we’ve captured the “important features”
of the graph of f(x) = 56− x− x2. Note that this is a very controversial statement. If
one is just beginning to learn about the graphs of functions, how is one to determine
what are the “important features” of the graph? Unfortunately, the answer to this
question is, “through experience.” Undoubtedly, this is a very frustrating phrase for
readers to hear, but at least it’s truthful. The more graphs that you draw, the more
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(a) (b)
Figure 19. Improving the WINDOW settings.

you will learn how to look for “turning points,” “end-behavior,” “x- and y-intercepts,”
and the like.

For example, how do we know that the WINDOW settings in Figure 19(a) determine
a viewing window (Figure 19(b)) that reveals all “important features” of the graph?
The answer at this point is, “we don’t, not without further experiment.” For example,
the careful reader might want to try the window settings Xmin=-50, Xmax=50, Xscl=10,
Ymin=-500, Ymax=500, and Yscl=100 to see if any unexpected behavior crops up.

Let’s look at one last example.

I Example 10. Sketch the graph of the function f defined by the equation f(x) =
x4 + 9x3 − 117x2 − 265x+ 2100.

Load the function into the Y= menu (shown in Figure 20(a)) and select 6:ZStan-
dard to produce the graph shown in Figure 20(b).

(a) (b)
Figure 20. Sketching the graph of f(x) = x4 + 9x3 − 117x2 −
265x+ 2100.

As the graph draws, observe that it rises form the bottom of the viewing window,
leaves the top of the viewing window, then returns to fall off the bottom of the viewing
window, then returns again and rises off the top of the viewing window.

We notice that f(0) = 2100, so we’ll need to set the top of the viewing window
to that value or higher. With this thought in mind, we’ll set Ymax=3000, then set
Ymin=-3000 for balance, then to avoid a million little tick marks, we’ll set Yscl=1000,
all shown in Figure 21(a). Pressing the GRAPH button then produces the image shown
in Figure 21(b).
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(a) (b)
Figure 21. Adjusting the viewing window.

Does it appear that we have all of the “important features” of this graph displayed
in our viewing window? Note that we did not experiment very much. Perhaps we
should try expanding the window a bit more to see if we have missed any important
behavior. With that thought in mind, we set Xmin=-20, Xmax=20, and to avoid a ton
of tick marks, Xscl=5, as shown in Figure 22(a). Pushing the GRAPH button produces
the image in Figure 22(b).

(a) (b)
Figure 22. Adjusting the viewing window again reveals be-
havior not seen.

Note that the viewing window in Figure 22(b) reveals behavior not seen in the
viewing window of Figure 21(b). If we had not experimented further, if we had not
expanded the viewing window, we would not have seen this new behavior. This is an
important lesson.

Note that one of the “turning points” of the graph in Figure 22(b) lies off the bot-
tom of the viewing window. We’ll make one more adjustment to include this important
feature. Set Ymin=-10000, Ymax=10000, and Yscl=5000, as shown in Figure 23(a),
then push the GRAPH button to produce the image shown in Figure 23(b).

(a) (b)
Figure 23. Adjusting the viewing window again reveals be-
havior not seen.
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The graph in Figure 23(b) shows all of the “important features” of the graph of f ,
but the careful reader will continue to experiment, expanding the viewing window to
ascertain the truth of this statement.
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2.2 Exercises

Perform each of the following tasks for
the functions defined by the equations in
Exercises 1-8.

i. Set up a table of points that satisfy
the given equation. Please place this
table of points next to your graph on
your graph paper.

ii. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis, then plot each of the points from
your table on your coordinate system.

iii. If you are confident that you “see”
the shape of the graph, make a “leap
of faith” and plot all pairs that sat-
isfy the given equation by drawing
a smooth curve (free-hand) on your
coordinate system that contains all
previously plotted points (use a ruler
only if the graph of the equation is
a line). If you are not confident that
you “see” the shape of the graph, then
add more points to your table, plot
them on your coordinate system, and
see if this helps. Continue this process
until you “see” the shape of the graph
and can fill in the rest of the points
that satisfy the equation by drawing
a smooth curve (or line) on your co-
ordinate system.

1. f(x) = 2x+ 1

2. f(x) = 1− x

3. f(x) = 3− 1
2 x

4. f(x) = −1 + 1
2 x

5. f(x) = x2 − 2

6. f(x) = 4− x2

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/9

7. f(x) = 1
2 x

2 − 6

8. f(x) = 8− 1
2 x

2

Perform each of the following tasks for
the functions Exercises 9-10.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

ii. Use the table feature of your graph-
ing calculator to evaluate the func-
tion at the given values of x. Record
these results in a table next to your
coordinate system on your graph pa-
per.

iii. Plot the points in the table on your
coordinate system then use them to
draw the graph of the given function.
Label the graph with its equation.

9. f(x) =
√
x− 4 at x = 4, 5, 6, 7, 8,

9, and 10.

10. f(x) =
√

4− x at x = −10, −8,
−6, −4, −2, 0, 2, and 4.

In Exercises 11-14, the graph of the
given function is a parabola, a graph that
has a “U-shape.” A parabola has only
one turning point. For each exercise, per-
form the following tasks.

i. Load the equation into the Y= menu
of your graphing calculator. Adjust
the WINDOW parameters so that the
“turning point” (actually called the
vertex) is visible in the viewing win-
dow.

ii. Make a reasonable copy of the image
in the viewing window on your home-
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work paper. Draw all lines with a
ruler (including the axes), but draw
curves freehand. Label and scale each
axis with xmin, xmax, ymin, and ymax.
Label the graph with its equation.

11. f(x) = x2 − x− 30

12. f(x) = 24− 2x− x2

13. f(x) = 11 + 10x− x2

14. f(x) = x2 + 11x− 12

Each of the equations in Exercises 15-
18 are called “cubic polynomials.” Each
equation has been carefully chosen so that
its graph has exactly two “turning points.”
For each exercise, perform each of the
following tasks.

i. Load the equation into the Y= menu
of your graphing calculator and ad-
just the WINDOW parameters so that
both “turning points” are visible in
the viewing window.

ii. Make a reasonable copy of the graph
in the viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
then label the graph with its equa-
tion. Remember to draw all lines with
a ruler.

15. f(x) = x3 − 2x2 − 29x+ 30

16. f(x) = −x3 + 2x2 + 19x− 20

17. f(x) = x3 + 8x2 − 53x− 60

18. f(x) = −x3 + 16x2 − 43x− 60

Perform each of the following tasks for
the equations in Exercises 19-22.

i. Load the equation into the Y= menu.
Adjust the WINDOW parameters until
you think all important behavior (“turn-
ing points,” etc.) is visible in the
viewing window. Note: This is more
difficult than it sounds, particularly
when we have no advance notion of
what the graph might look like. How-
ever, experiment with several settings
until you “discover” the settings that
exhibit the most important behavior.

ii. Copy the image on the screen onto
your homework paper. Label and scale
each axis with xmin, xmax, ymin, and
ymax. Label the graph with its equa-
tion.

19. f(x) = 2x2 − x− 465

20. f(x) = x3 − 24x2 + 65x+ 1050

21. f(x) = x4 − 2x3 − 168x2 + 288x+
3456

22. f(x) = −x4−3x3 +141x2 +523x−
660
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2.2 Answers

1.

x f(x) = 2x+ 1 (x, f(x))
−2 −3 (−2,−3)
−1 −1 (−1,−1)
0 1 (0, 1)
1 3 (1, 3)

x
5

y
5 f(x)=2x+1

3.

x f(x) = 3− x/2 (x, f(x))
−2 4 (−2, 4)
0 3 (0, 3)
2 2 (2, 2)
4 1 (4, 1)

x
5

y
5f(x)=3−x/2

5.

x f(x) = x2 − 2 (x, f(x))
−3 7 (−3, 7)
−2 2 (−2, 2)
−1 −1 (−1,−1)
0 −2 (0,−2)
1 −1 (1,−1)
2 2 (2, 2)
3 7 (3, 7)

x
10

y
10 f(x)=x2−2

7.

x f(x) = x2/2− 6 (x, f(x))
−4 2 (−4, 2)
−2 −4 (−2,−4)
0 −6 (0,−6)
2 −4 (2,−4)
4 2 (4, 2)
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x
10

y
10 f(x)=x2/2−6

9.

x f(x) =
√
x− 4 (x, f(x))

4 0 (4, 0)
5 1 (5, 1)
6 1.4142 (6, 1.4142)
7 1.7321 (7, 1.7321)
8 2 (8, 2)
9 2.2361 (9, 2.2361)
10 2.4495 (10, 2.4495)

x
10

y
10

f(x)=
√
x−4

11.

x
−10 10

y

−50

50
f(x)=x2−x−30

13.

x
−5 15

y

−50

50

f(x)=11+10x−x2

15.

x
−10 10

y

−100

100
f(x)=x3−2x2−29x+30
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17.

x
−15 10

y

−400

400

f(x)=x3+8x2−53x−60

19.

x
−20 20

y

−600

600

f(x)=2x2−x−465

21.

x
−15 15

y

−6000

6000

f(x)=x4−2x3−168x2+288x+3456
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2.3 Interpreting the Graph of a Function
In the previous section, we began with a function and then drew the graph of the
given function. In this section, we will start with the graph of a function, then make a
number of interpretations based on the given graph: function evaluations, the domain
and range of the function, and solving equations and inequalities.

The Vertical Line Test
Consider the graph of the relation R shown in Figure 1(a). Recall that we earlier
defined a relation as a set of ordered pairs. Surely, the graph shown in Figure 1(a) is
a set of ordered pairs. Indeed, it is an infinite set of ordered pairs, so many that the
graph is a solid curve.

In Figure 1(b), note that we can draw a vertical line that cuts the graph more
than once. In Figure 1(b), we’ve drawn a vertical line that cuts the graph in two
places, once at (x, y1), then again at (x, y2), as shown in Figure 1(c). This means that
the domain object x is paired with two different range objects, namely y1 and y2, so
relation R is not a function.

x

y

R

x

y

R

x

y

Ry2

y1

(x,y2)

(x,y1)

(a) (b) (c)
Figure 1. Explaining the vertical line test for functions.

Recall the definition of a function.

Definition 1. A relation is a function if and only if each object in its domain
is paired with one and only one object in its range.

Consider the mapping diagram in Figure 2, where we’ve used arrows to indicate
the ordered pairs (x, y1) and (x, y2) in Figure 1(c). Note that x, an object in the
domain of R, is mapped to two objects in the range of R, namely y1 and y2. Hence,
the relation R is not a function.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/10
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x y1

y2

R

Figure 2. A mapping diagram repre-
senting the points (x, y1) and (x, y2) in
Figure 1(c).

This discussion leads to the following result, called the vertical line test for functions.

The Vertical Line Test. If any vertical line cuts the graph of a relation more
than once, then the relation is NOT a function.

Hence, the circle pictured in Figure 3(a) is a relation, but it is not the graph of
a function. It is possible to cut the graph of the circle more than once with a vertical
line, as shown in Figure 3(a). On the other hand, the parabola shown in Figure 3(b)
is the graph of a function, because no vertical line will cut the graph more than once.

x

y

x

y

(a) (b)
Figure 3. Use the vertical line test to determine if the graph
is the graph of a function.

Reading the Graph for Function Values
We know that the graph of f pictured in Figure 4 is the graph of a function. We know
this because no vertical line will cut the graph of f more than once.

We earlier defined the graph of f as the set of all ordered pairs (x, f(x)), so that
x is in the domain of f . Consequently, if we select a point P on the graph of f , as in
Figure 4(a), we label the point P (x, f(x)). However, we can also label this point as
P (x, y), as shown in Figure 4(b). This leads to a new interpretation of f(x) as the
y-value of the point P . That is, f(x) is the y-value that is paired with x.11

Of course, if the axes were labeled A and t, then there would be a similar interpretation based on the11

variables A and t.
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x

y

f

f(x)

x

P (x,f(x))

x

y

f

y

x

P (x,y)

(a) (b)
Figure 4. Reading the graph of a function.

Definition 2. f(x) is the y-value that is paired with x.

Two more comments are in order. In Figure 4(a), we select a point P on the graph
of f .

1. To find the x-value of the point P , we must project the point P onto the x-axis.

2. To find f(x), the value of y that is paired with x, we must project the point P onto
the y-axis.

Let’s look at an example.

I Example 3. Given the graph of f in Figure 5(a), find f(4).

x

y

8

8

f

x

y

8

8

f

4

f(4)
P (4,f(4))

(a) (b)
Figure 5. Finding the value of f(4).

First, note that the graph of f represents a function. No vertical line will cut the
graph of f more than once.

Because f(4) represents the y-value that is paired with an x-value of 4, we first
locate 4 on the x-axis, as shown in Figure 5(b). We then draw a vertical arrow until
we intercept the graph of f at the point P (4, f(4)). Finally, we draw a horizontal arrow
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from the point P until we intercept the y-axis. The projection of the point P onto the
y-axis is the value of f(4).

Because we have a grid that shows a scale on each axis, we can approximate the
value of f(4). It would appear that the y-value of point P is approximately 4. Thus,
f(4) ≈ 4.

Let’s look at another example.

I Example 4. Given the graph of f in Figure 6(a), find f(5).

x

y

8

8

f

x

y

8

8

f

5

f(5)
P (5,f(5))

(a) (b)
Figure 6. Finding the value of f(5).

First, note that the graph of f represents a function. No vertical line will cut the
graph of f more than once.

Because f(5) represents the y-value that is paired with an x-value of 5, we first
locate 5 on the x-axis, as shown in Figure 6(b). We then draw a vertical arrow until
we intercept the graph of f at the point P (5, f(5)). Finally, we draw a horizontal arrow
from the point P until we intercept the y-axis. The projection of the point P onto the
y-axis is the value of f(5).

Because we have a grid that shows a scale on each axis, we can approximate the
value of f(5). It would appear that the y-value of point P is approximately 6. Thus,
f(5) ≈ 6.

Let’s reverse the interpretation in another example.

I Example 5. Given the graph of f in Figure 7(a), for what value of x does
f(x) = −4?

Again, the graph in Figure 7 passes the vertical line test and represents the graph
of a function.

This time, in the equation f(x) = −4, we’re given a y-value equal to −4. Conse-
quently, we must reverse the process used in Example 3 and Example 4. We first
locate the y-value −4 on the y-axis, then draw a horizontal arrow until we intercept
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x

y

8

2

f

x

y

8

2

f
−4

5

P (5,f(5))

(a) (b)
Figure 7. Finding x so that f(x) = −4.

the graph of f at P , as shown in Figure 7(b). Finally, we draw a vertical arrow from
the point P until we intercept the x-axis. The projection of the point P onto the x-axis
is the solution of f(x) = −4.

Because we have a grid that shows a scale on each axis, we can approximate the
x-value of the point P . It seems that x ≈ 5. Thus, we label the point P (5, f(5)), and
the solution of f(x) = −4 is approximately x ≈ 5.

This solution can easily be checked by computing f(5). Simply start with 5 on the
x-axis, then reverse the order of the arrows shown in Figure 7(b). You should wind
up at −4 on the y-axis, demonstrating that f(5) = −4.

The Domain and Range of a Function
We can use the graph of a function to determine its domain and range. For example,
consider the graph of the function shown in Figure 8(a).

x5

y
5 f

x5

y
5 f

P

Q
x

y
5 f

−3
4

(a) (b) (c)
Figure 8. Determining the domain of a function from its graph.

Note that no vertical line will cut the graph of f more than once, so the graph of f
represents a function.
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To determine the domain, we must collect the x-values (first coordinates) of every
point on the graph of f . In Figure 8(b), we’ve selected a point P on the graph of f ,
which we then project onto the x-axis. The image of this projection is the point Q,
and the x-value of the point Q is an element in the domain of f .

Think of the projection shown in Figure 8(b) in the following manner. Imagine a
light source above the point P . The point P blocks out the light and its shadow falls
onto the x-axis at the point Q. That is, think of point Q as the “shadow” that the
point P produces when it is projected vertically onto the x-axis.

Now, to find the domain of the function f , we must project each point on the graph
of f onto the x-axis. Here’s the question: if we project each point on the graph of
f onto the x-axis, what part of the x-axis will “lie in shadow” when the process is
complete? The answer is shown in Figure 8(c).

In Figure 8(c), note that the “shadow” created by projecting each point on the
graph of f onto the x-axis is shaded in red (a thicker line if you are viewing this in
black and white). This collection of x-values is the domain of the function f . There
are three critical points that we need to make about the “shadow” on the x-axis in
Figure 8(c).

1. All points lying between x = −3 and x = 4 have been shaded on the x-axis in red.

2. The left endpoint of the graph of f is an open circle. This indicates that there is
no point plotted at this endpoint. Consequently, there is no point to project onto
the x-axis, and this explains the open circle at the left end of our “shadow” on the
x-axis.

3. On the other hand, the right endpoint of the graph of f is a filled endpoint. This
indicates that this is a plotted point and part of the graph of f . Consequently,
when this point is projected onto the x-axis, a shadow falls at x = 4. This explains
the filled endpoint at the right end of our “shadow” on the x-axis.

We can describe the x-values of the “shadow” on the x-axis using set-builder nota-
tion.

Domain of f = {x : −3 < x ≤ 4}.

Note that we don’t include −3 in this description because the left end of the shadow
on the x-axis is an empty circle. Note that we do include 4 in this description because
the right end of the shadow on the x-axis is a filled circle.

We can also describe the x-values of the “shadow” on the x-axis using interval
notation.

Domain of f = (−3, 4]

We remind our readers that the parenthesis on the left means that we are not including
−3, while the bracket on the right means that we are including 4.

To find the range of the function, picture again the graph of f shown in Figure 9(a).
Proceed in a similar manner, only this time project points on the graph of f onto the
y-axis, as shown in Figures 9(b) and (c).
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x5

y
5 f

x5

y
5 f

P
Q

x

y

5

f4

−2

(a) (b) (c)
Figure 9. Determining the range of a function from its graph.

Note which part of the y-axis “lies in shadow” once we’ve projected all points on
the graph of f onto the y-axis.

1. All points lying between y = −2 and y = 4 have been shaded on the y-axis in red
(a thicker line style if you are viewing this in black and white).

2. The left endpoint of the graph of f is an empty circle, so there is no point to project
onto the y-axis. Consequently, there is no “shadow” at y = −2 on the y-axis and
the point is left unshaded (an empty circle).

3. The right endpoint of the graph of f is a filled circle, so there is a “shadow” at y = 4
on the y-axis and this point is shaded (a filled circle).

We can now easily describe the range in both set-builder and interval notation.

Range of f = (−2, 4] = {y : −2 < y ≤ 4}

Let’s look at another example.

I Example 6. Use set-builder and interval notation to describe the domain and
range of the function represented by the graph in Figure 10(a).

x5

y
5

f

x

y
5

f

−4

(a) (b)
Figure 10. Determining the
domain from the graph of f .
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To determine the domain of f , project each point on the graph of f onto the x-axis.
This projection is indicated by the “shadow” on the x-axis in Figure 10(b). Two
important points need to be made about this “shadow” or projection.

1. The left endpoint of the graph of f is empty (indicated by the open circle), so it
has no projection onto the x-axis. This is indicated by an open circle at the left end
(at x = −4) of the “shadow” or projection on the x-axis.

2. The arrowhead on the right end of the graph of f indicates that the graph of f
continues downward and to the right indefinitely. Consequently, the projection
onto the x-axis is a shadow that moves indefinitely to the right. This is indicated
by an arrowhead at the right end of the “shadow” or projection on the x-axis.

Consequently, the domain of f is the collection of x-values represented by the “shadow”
or projection onto the x-axis. Note that all x-values to the right of x = −4 are shaded
on the x-axis. Consequently,

Domain of f = (−4,∞) = {x : x > −4}.

To find the range, we must project each point on the graph of f (redrawn in
Figure 11(a)) onto the y-axis. The projection is indicated by a “shadow” or pro-
jection on the y-axis, as seen in Figure 11(b). Two important points need to be made
about this “shadow” or projection.

x5

y
5

f

x

y

5

f

3

(a) (b)
Figure 11. Determining the range from the graph of f .

1. The left endpoint of the graph of f is empty (indicated by an open circle), so it has
no projection onto the y-axis. This is indicated by an open circle at the top end (at
y = 3) of the “shadow” on the y-axis.

2. The arrowhead on the right end of the graph of f indicates that the graph of f
continues downward and to the right indefinitely. Consequently, the projection of
the graph of f onto the y-axis is a shadow that moves indefinitely downward. In
Figure 11(b), note how projections of points on the graph of f not visible in the
viewing window come in from the lower right corner and cast “shadows” on the
y-axis.
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Consequently, the range of f is the collection of y-values shaded on the y-axis of the
coordinate system shown in Figure 11(b). Note that all y-values lower than y = 3 are
shaded on the y-axis. Thus, the range of f is

Range of f = (−∞, 3) = {y : y < 3}.

Let’s look at another example.

I Example 7. Use set-builder and interval notation to describe the domain and
range of the function represented by the graph in Figure 12(a).

x5

y
5 f

x5

y
5 f

(a) (b)
Figure 12. Determining the
domain from the graph of f .

To determine the domain of f , we must project all points on the graph of f onto the
x-axis. This projection is indicated by the red “shadow” (or thicker line style if you are
viewing this in black and white) shown on the x-axis in Figure 12(b). Two important
points need to be made about this “shadow” or projection.

1. The arrow at the end of the left half of the graph of f in Figure 12(a) indicates that
this half of the graph of f opens indefinitely to the left and upward. Consequently,
when the points on the left half of the graph of f are projected onto the x-axis,
the “shadow” or projection extends indefinitely to the left. Note how points on the
graph that fall outside the viewing window come in from the upper left corner and
cast “shadows” on the x-axis.

2. The arrow at the end of the right half of the graph of f in Figure 12(a) indicates
that this half of the graph of f opens indefinitely to the right and upward. Conse-
quently, when the points on this half of the graph of f are projected onto the x-axis,
the “shadow” or projection extends indefinitely to the right.

Consequently, the entire x-axis lies in “shadow,” making the domain of f to be

Domain of f = (−∞,∞) = {x : x ∈ R}.
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To determine the range of f , we must project all points on the graph of f onto the
y-axis. This projection is indicated by the red “shadow” (or thicker line if you are
viewing this in black and white) shown on the y-axis in Figure 13(b). Two important
points need to made about this “shadow” or projection.

x5

y
5 f

x5

y
5 f

(a) (b)
Figure 13. Determining the range from the graph of f .

1. The graph of f passes through the origin (the point (0, 0)). This is the lowest point
on the graph and hence its shadow is the endpoint on the low end of the shaded
region on the y-axis.

2. The arrows at the end of each half of the graph of f indicate that the graph opens
upward indefinitely. Hence, when points on the graph of f are projected onto the
y-axis, the “shadow” or projection extends upward indefinitely. This is indicated
by an arrow on the upper end of the “shadow” on the y-axis.

Consequently, all points on the y-axis above and including the point at the origin “lie
in shadow.” Thus, the range of f is

Range of f = [0,∞) = {y : y ≥ 0}.

Using a Graphing Calculator to Determine Domain and
Range
We’ve learned how to find the domain and range of a function by looking at its graph.
Therefore, if we define a function by means of an expression, such as f(x) =

√
4− x,

then we should be able to capture the domain and range of f from its graph, provided,
of course, that we can draw the graph of f . We’ll find the graphing calculator will be
a handy tool for this exercise.

I Example 8. Use set-builder and interval notation to describe the domain and
range of the function defined by the rule

f(x) =
√

4− x. (9)

Load the expression defining f into the Y= menu, as shown in Figure 14(a). Select
6:ZStandard from the ZOOM menu to produce the graph of f shown in Figure 14(b).
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(a) (b)
Figure 14. Sketching the graph of f(x) =

√
4− x.

Copy the image in Figure 14(b) onto a sheet of graph paper. Label and scale
each axis with the WINDOW parameters xmin, xmax, ymin, and ymax, as shown in
Figure 15(a).

x10

y
10

f

−10

−10

x

y

−10

10

f

4

(a) (b)
Figure 15. Capturing the domain

of f(x) =
√

4− x from its graph.

Next, project each point on the graph of f onto the x-axis, as shown in Figure 15(b).
Note that we’ve made two assumptions about the graph of f .

1. At the left end of the graph in Figures 14(b) and 15(b), we assume that the graph
of f continues upward and to the left indefinitely. Hence, the “shadow” or projection
onto the x-axis will move indefinitely to the left. This is indicated by attaching an
arrowhead to the left-hand end of the region that “lies in shadow” on the x-axis, as
shown in Figure 15(b).

2. We also assume that the right end of the graph ends at the point (4, 0). This
accounts for the “filled dot” when this point on the graph of f is projected onto the
x-axis.

Note that the “shadow” or projection onto the x axis in Figure 15(b) includes all
values of x less than or equal to 4. Thus, the domain of f is

Domain of f = (−∞, 4] = {x : x ≤ 4}.

We can intuit this result by considering the expression that defines f . That is,
consider the rule or definition
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f(x) =
√

4− x.

Recall that we earlier defined the domain of f as the set of “permissible” x-values. In
this case, it is impossible to take the square root of a negative number, so we must be
careful selecting the x-values we use in this rule. Note that x = 4 is allowable, as

f(0) =
√

4− 4 =
√

0 = 0.

However, numbers larger than 4 cannot be used in this rule. For example, consider
what happens when we attempt to use x = 5.

f(x) =
√

4− 5 =
√
−1

This result is not a real number, so 5 is not in the domain of f .
On the other hand, if we try x-values that are smaller than 4, such as x = 3,

f(3) =
√

4− 3 =
√

1 = 1.

We’ll leave it to our readers to test other values of x that are less than 4. They will
also produce real answers when they are input into the rule f(x) =

√
4− x. Note

that this also verifies our earlier conjecture that the “shadow” or projection shown in
Figure 15(b) continues indefinitely to the left.

Instead of “guessing and checking,” we can speed up the analysis of the domain of
f(x) =

√
4− x by noting that the expression under the radical must not be a negative

number. Hence, 4 − x must either be greater than or equal to zero. This argument
produces an inequality that is easily solved for x.

4− x ≥ 0
−x ≥ −4
x ≤ 4

This last result verifies that the domain of f is all values of x that are less than or
equal to 4, which is in complete agreement with the “shadow” or projection onto the
x-axis shown in Figure 15(b).

To determine the range of f , we must project each point on the graph of f onto the
y-axis, as shown in Figure 16(b).

Again, we make two assumptions about the graph of f .

1. At the left-end of the graph of f(x) =
√

4− x in Figures 14(b) and 16(b), we
assume that the graph of f continues upward and to the left indefinitely. Thus,
when points on the graph of f are projected onto the y-axis, there will be projections
coming from the upper left from points on the graph of f that are not visible in the
viewing window selected in Figure 14(b). Hence, the “shadow” or projection on
the y-axis shown in Figure 16(b) continues upward indefinitely. This is indicated
with a arrowhead at the upper end of the “shadow” on the y-axis in Figure 16(b).

2. Again, we assume that the right end of the graph of f ends at the point (4, 0). The
projection of this point onto the y-axis produces the “filled” endpoint at the origin
shown in Figure 16(b).
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x10

y
10

f

−10

−10

x

y

−10

10
f

0

(a) (b)
Figure 16. Determining the range

of f(x) =
√

4− x from its graph.

Note that the “shadow” or projection onto the y-axis in Figure 16(b) includes all
values of y that are greater than or equal to zero. Hence,

Range of f = [0,∞) = {y : y ≥ 0}.
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2.3 Exercises

For Exercises 1-6, perform each of the
following tasks.

i. Make a copy of the graph on a sheet
of graph paper and apply the vertical
line test.

ii. Write a complete sentence stating whether
or not the graph represents a func-
tion. Explain the reason for your re-
sponse.

1.

x

y

5

5

2.

x

y

5

5

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/12

3.

x

y

5

5

4.

x

y

5

5

5.

x

y

5

5
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6.

x

y

5

5

In Exercises 7-12, perform each of the
following tasks.

i. Make an exact copy of the graph of
the function f on a sheet of graph pa-
per. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Use the technique of Examples 3 and
4 in the narrative to evaluate the func-
tion at the given value. Draw and la-
bel the arrows as shown in Figures 4
and 5 in the narrative.

7. Use the graph of f to determine f(2).

x

y

5

5

f

8. Use the graph of f to determine f(3).

x

y

5

5

f

9. Use the graph of f to determine f(−2).

x

y

5

5

f

10. Use the graph of f to determine
f(1).

x

y

5

5

f
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11. Use the graph of f to determine
f(1).

x

y

5

5

f

12. Use the graph of f to determine
f(−2).

x

y

5

5

f

In Exercises 13-18, perform each of the
following tasks.

i. Make an exact copy of the graph of
the function f on a sheet of graph pa-
per. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Use the technique of Example 5 in the
narrative to find the value of x that
maps onto the given value. Draw and
label the arrows as shown in Figure 6
in the narrative.

13. Use the graph of f to solve the
equation f(x) = −2.

x

y

5

5

f

14. Use the graph of f to solve the
equation f(x) = 1.

x

y

5

5

f

15. Use the graph of f to solve the
equation f(x) = 2.

x

y

5

5
f
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16. Use the graph of f to solve the
equation f(x) = −2.

x

y

5

5

f

17. Use the graph of f to solve the
equation f(x) = 2.

x

y

5

5f

18. Use the graph of f to solve the
equation f(x) = −3.

x

y

5

5

f

In the Exercises 19-22, perform each of
the following tasks.

i. Make a copy of the graph of f on a
sheet of graph paper. Label and scale
each axis.

ii. Using a different colored pen or pen-
cil, project each point on the graph
of f onto the x-axis. Shade the re-
sulting domain on the x-axis.

iii. Use both set-builder and interval no-
tation to describe the domain.

19.

x

y
5

5

f

20.

x

y
5

5
f
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21.

x

y
5

5

f

22.

x

y
5

5

f

In Exercises 23-26, perform each of the
following tasks.

i. Make a copy of the graph of f on a
sheet of graph paper. Label and scale
each axis.

ii. Using a different colored pen or pen-
cil, project each point on the graph
of f onto the y-axis. Shade the re-
sulting range on the y-axis.

iii. Use both set-builder and interval no-
tation to describe the range.

23.

x

y
5

5

f

24.

x

y
5

5

f

25.

x

y
5

5

f
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26.

x

y
5

5

f

In Exercises 27-30, perform each of the
following tasks.

i. Use your graphing calculator to draw
the graph of the given function. Make
a reasonably accurate copy of the im-
age in your viewing screen on your
homework paper. Label and scale each
axis with the WINDOW parameters xmin,
xmax, ymin, and ymax. Label the
graph with its equation.

ii. Using a colored pencil, project each
point on the graph onto the x-axis;
i.e., shade the domain on the x-axis.
Use interval and set-builder notation
to describe the domain.

iii. Use a purely algebraic technique, as
demonstrated in Example 8 in the nar-
rative, to find the domain. Compare
this result with that found in part (ii).

iv. Using a different colored pencil, project
each point on the graph onto the y-
axis; i.e., shade the range on the y-
axis. Use interval and set-builder no-
tation to describe the range.

27. f(x) =
√
x+ 5.

28. f(x) =
√

5− x.

29. f(x) = −
√

4− x.

30. f(x) = −
√
x+ 4.
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2.3 Answers

1. Note that in the figure below a ver-
tical line cuts the graph more than once.
Therefore, the graph does not represent
the graph of a function.

x

y

5

5

3. No vertical line cuts the graph more
than once (see figure below). Therefore,
the graph represents a function.

x

y

5

5

5. Note that in the figure below a ver-
tical line cuts the graph more than once.
Therefore, the graph does not represent
the graph of a function.

x

y

5

5

7. f(2) = −1

x

y

5

5

f

2
f(2)

9. f(−2) = 1

x

y

5

5

f

−2
f(−2)
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11. f(1) = 3

x

y

5

5

f 1

f(1)

13. The solution of f(x) = −2 is x =
−3.

x

y

5

5

f

−2

−3

15. The solution of f(x) = 2 is x = −2.

x

y

5

5
f

2

−2

17. The solution of f(x) = 2 is x = −1.

x

y

5

5f

2

−1

19. {x : x > −3} = (−3,∞)

x

y
5

5

f

21. {x : x < 0} = (−∞, 0)

x

y
5

5

f
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23. {y : y < 1} = (−∞, 1)

x

y
5

5

f

25. {y : y > −2} = (−2,∞)

x

y
5

5

f

27. Domain = [−5,∞)
={x : x ≥ −5}

x
10−10

y
10

−10

f

−5

Range = {y : y ≥ 0} = [0,∞)

x
10−10

y
10

−10

f

0

29. Domain = (−∞, 4] = {x : x ≤ 4}

x
10−10

y
10

−10

f

4

Range = {y : y ≤ 0} = (−∞, 0]

x
10−10

y
10

−10

f

0
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2.4 Solving Equations and Inequalities by Graphing
Our emphasis in the chapter has been on functions and the interpretation of their
graphs. In this section, we continue in that vein and turn our exploration to the
solution of equations and inequalities by graphing. The equations will have the form
f(x) = g(x), and the inequalities will have form f(x) < g(x) and/or f(x) > g(x).

You might wonder why we have failed to mention inequalities having the form
f(x) ≤ g(x) and f(x) ≥ g(x). The reason for this omission is the fact that the solution
of the inequality f(x) ≤ g(x) is simply the union of the solutions of f(x) = g(x) and
f(x) < g(x). After all, ≤ is pronounced “less than or equal.” Similar comments are in
order for the inequality f(x) ≥ g(x).

We will begin by comparing the function values of two functions f and g at various
values of x in their domains.

Comparing Functions
Suppose that we evaluate two functions f and g at a particular value of x. One of three
outcomes is possible. Either

f(x) = g(x), or f(x) > g(x), or f(x) < g(x).

It’s pretty straightforward to compare two function values at a particular value if rules
are given for each function.

I Example 1. Given f(x) = x2 and g(x) = 2x+3, compare the functions at x = −2,
0, and 3.

Simple calculations reveal the relations.

• At x = −2,

f(−2) = (−2)2 = 4 and g(−2) = 2(−2) + 3 = −1,

so clearly, f(−2) > g(−2).
• At x = 0,

f(0) = (0)2 = 0 and g(0) = 2(0) + 3 = 3,

so clearly, f(0) < g(0).
• Finally, at x = 3,

f(3) = (3)2 = 9 and g(3) = 2(3) + 3 = 9,

so clearly, f(3) = g(3).

We can also compare function values at a particular value of x by examining the
graphs of the functions. For example, consider the graphs of two functions f and g in
Figure 1.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/13
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x

y

f

g

Figure 1. Each side of the equation
f(x) = g(x) has its own graph.

Next, suppose that we draw a dashed vertical line through the point of intersection
of the graphs of f and g, then select a value of x that lies to the left of the dashed
vertical line, as shown in Figure 2(a). Because the graph of f lies above the graph of
g for all values of x that lie to the left of the dashed vertical line, it will be the case
that f(x) > g(x) for all such x (see Figure 2(a)).14

On the other hand, the graph of f lies below the graph of g for all values of x that
lie to the right of the dashed vertical line. Hence, for all such x, it will be the case that
f(x) < g(x) (see Figure 2(b)).15

x

y

f

g

x

(x,f(x))

(x,g(x))

f(x)

g(x)
x

y

f

g

x

(x,f(x))

(x,g(x))

f(x)

g(x)

(a) To the left of the vertical
dashed line, the graph of f
lies above the graph of g.

(b) To the right of the vertical
dashed line, the graph of
f lies below the graph of g.

Figure 2. Comparing f and g.

When thinking in terms of the vertical direction, “greater than” is equivalent to saying “above.”14

When thinking in terms of the vertical direction, “less than” is equivalent to saying “below.”15
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Finally, if we select the x-value of the point of intersection of the graphs of f and g,
then for this value of x, it is the case that f(x) and g(x) are equal; that is, f(x) = g(x)
(see Figure 3).

x

y

f

g

x

f(x), g(x)

Figure 3. The function values f(x)
and g(x) are equal where the graphs of
f and g intersect.

Let’s summarize our findings.

Summary 2.

• The solution of the equation f(x) = g(x) is the set of all x for which the graphs
of f and g intersect.

• The solution of the inequality f(x) < g(x) is the set of all x for which the
graph of f lies below the graph of g.

• The solution of the inequality f(x) > g(x) is the set of all x for which the
graph of f lies above the graph of g.

Let’s look at an example.

I Example 3. Given the graphs of f and g in Figure 4(a), use both set-builder
and interval notation to describe the solution of the inequality f(x) < g(x). Then find
the solutions of the inequality f(x) > g(x) and the equation f(x) = g(x) in a similar
fashion.

To find the solution of f(x) < g(x), we must locate where the graph of f lies below
the graph of g. We draw a dashed vertical line through the point of intersection of
the graphs of f and g (see Figure 4(b)), then note that the graph of f lies below the
graph of g to the left of this dashed line. Consequently, the solution of the inequality
f(x) < g(x) is the collection of all x that lie to the left of the dashed line. This set is
shaded in red (or in a thicker line style if viewing in black and white) on the x-axis in
Figure 4(b).
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x5

y
5

f

g

x5

y
5

f

g

2

(a) The graphs of f and g. (b) The solution of f(x) < g(x).
Figure 4. Comparing f and g.

Note that the shaded points on the x-axis have x-values less than 2. Hence, the
solution of f(x) < g(x) is

(−∞, 2) = {x : x < 2}.

In like manner, the solution of f(x) > g(x) is found by noting where the graph of
f lies above the graph of g and shading the corresponding x-values on the x-axis (see
Figure 5(a)). The solution of f(x) > g(x) is (2,∞), or alternatively, {x : x > 2}.

To find the solution of f(x) = g(x), note where the graph of f intersects the graph of
g, then shade the x-value of this point of intersection on the x-axis (see Figure 5(b)).
Therefore, the solution of f(x) = g(x) is {x : x = 2}. This is not an interval, so it is
not appropriate to describe this solution with interval notation.

x5

y
5

f

g

2 x5

y
5

f

g

2

(a) The solution of f(x) > g(x). (b) The solution of f(x) = g(x).
Figure 5. Further comparisons.

Let’s look at another example.
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I Example 4. Given the graphs of f and g in Figure 6(a), use both set-builder
and interval notation to describe the solution of the inequality f(x) > g(x). Then find
the solutions of the inequality f(x) < g(x) and the equation f(x) = g(x) in a similar
fashion.

x5

y
5

f

g

x5

y
5

f

g

−2 3

(a) The graphs of f and g (b) The solution of f(x) > g(x).
Figure 6. Comparing f and g.

To determine the solution of f(x) > g(x), we must locate where the graph of f lies
above the graph of g. Draw dashed vertical lines through the points of intersection of
the graphs of f and g (see Figure 6(b)), then note that the graph of f lies above the
graph of g between the dashed vertical lines just drawn. Consequently, the solution of
the inequality f(x) > g(x) is the collection of all x that lie between the dashed vertical
lines. We have shaded this collection on the x-axis in red (or with a thicker line style
for those viewing in black and white) in Figure 6(b).

Note that the points shaded on the x-axis in Figure 6(b) have x-values between
−2 and 3. Consequently, the solution of f(x) > g(x) is

(−2, 3) = {x : −2 < x < 3}.

In like manner, the solution of f(x) < g(x) is found by noting where the graph of
f lies below the graph of g and shading the corresponding x-values on the x-axis (see
Figure 7(a)). Thus, the solution of f(x) < g(x) is

(−∞,−2) ∪ (3,∞) = {x : x < −2 or x > 3}.

To find the solution of f(x) = g(x), note where the graph of f intersects the graph of
g, and shade the x-value of each point of intersection on the x-axis (see Figure 7(b)).
Therefore, the solution of f(x) = g(x) is {x : x = −2 or x = 3}. Because this solution
set is not an interval, it would be inappropriate to describe it with interval notation.
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(a) The solution of f(x) < g(x). (b) The solution of f(x) = g(x).
Figure 7. Further comparisons.

Solving Equations and Inequalities with the Graphing Cal-
culator
We now know that the solution of f(x) = g(x) is the set of all x for which the graphs
of f and g intersect. Therefore, the graphing calculator becomes an indispensable tool
when solving equations.

I Example 5. Use a graphing calculator to solve the equation

1.23x− 4.56 = 5.28− 2.35x. (6)

Note that equation (6) has the form f(x) = g(x), where

f(x) = 1.23x− 4.56 and g(x) = 5.28− 2.35x.

Thus, our approach will be to draw the graphs of f and g, then find the x-value of the
point of intersection.

First, load f(x) = 1.23x − 4.56 into Y1 and g(x) = 5.28 − 2.35x into Y2 in the Y=
menu of your graphing calculator (see Figure 8(a)). Select 6:ZStandard in the ZOOM
menu to produce the graphs in Figure 8(b).

(a) (b)
Figure 8. Sketching the graphs of f(x) = 1.23x − 4.56 and
g(x) = 5.28− 2.35x.
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The solution of equation (6) is the x-value of the point of intersection of the graphs
of f and g in Figure 8(b). We will use the intersect utility in the CALC menu on the
graphing calculator to determine the coordinates of the point of intersection.

We proceed as follows:

• Select 2nd CALC (push the 2nd button, followed by the TRACE button), which opens
the menu shown in Figure 9(a).

• Select 5:intersect. The calculator responds by placing the cursor on one of the
graphs, then asks if you want to use the selected curve. You respond in the affir-
mative by pressing the ENTER key on the calculator.

• The calculator responds by placing the cursor on the second graph, then asks if you
want to use the selected curve. Respond in the affirmative by pressing the ENTER
key.

• The calculator responds by asking you to make a guess. In this case, there are only
two graphs on the calculator, so any guess is appropriate.16 Simply press the ENTER
key to use the current position of the cursor as your guess.

(a) (b) (c) (d)
Figure 9. Using the intersect utility.

The result of this sequence of steps is shown in Figure 10. The coordinates of the point
of intersection are approximately (2.7486034,−1.179218). The x-value of this point of
intersection is the solution of equation (6). That is, the solution of 1.23x − 4.56 =
5.28− 2.35x is approximately x ≈ 2.7486034.17

Figure 10. The coordinates of the
point of intersection.

We will see in the case where there are two points of intersection, that the guess becomes more important.16

It is important to remember that every time you pick up your calculator, you are only approximating17

a solution.
Please use a ruler to draw all lines.18



146 Chapter 2 Functions

Version: Fall 2007

Summary 7. Guidelines. You’ll need to discuss expectations with your
teacher, but we expect our students to summarize their results as follows.

1. Set up a coordinate system.18 Label and scale each axis with xmin, xmax, ymin,
and ymax.

2. Copy the image in your viewing window onto your coordinate system. Label
each graph with its equation.

3. Draw a dashed vertical line through the point of intersection.
4. Shade and label the solution of the equation on the x-axis.

The result of following this standard is shown in Figure 11.

x10

y
10

y=1.23x−4.56 y=5.28−2.35x

2.7486034
−10

−10
Figure 11. Summarizing

the solution of equation (6).

Let’s look at another example.

I Example 8. Use set-builder and interval notation to describe the solution of the
inequality

0.85x2 − 3 ≥ 1.23x+ 1.25. (9)

Note that the inequality (9) has the form f(x) ≥ g(x), where

f(x) = 0.85x2 − 3 and g(x) = 1.23x+ 1.25.

Load f(x) = 0.85x2 − 3 and g(x) = 1.23x + 1.25 into Y1 and Y2 in the Y= menu,
respectively, as shown in Figure 12(a). Select 6:ZStandard from the ZOOM menu to
produce the graphs shown in Figure 12(b).

To find the points of intersection of the graphs of f and g, we follow the same
sequence of steps as we did in Example 5 up to the point where the calculator asks
you to make a guess (i.e., 2nd CALC, 5:intersect, First curve ENTER, Second curve
ENTER). Because there are two points of intersection, when the calculator asks you to
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(a) (b)
Figure 12. The graphs of

f(x) = 0.85x2 − 3 and g(x) = 1.23x + 1.25.

make a guess, you must move your cursor (with the arrow keys) so that it is closer to
the point of intersection you wish to find than it is to the other point of intersection.
Using this technique produces the two points of intersection found in Figures 13(a)
and (b).

(a) (b)
Figure 13. The points of

intersection of the graphs of f and g.

The approximate coordinates of the first point of intersection are (−1.626682,−0.7508192).
The second point of intersection has approximate coordinates (3.0737411, 5.0307015).

It is important to remember that every time you pick up your calculator, you are
only getting an approximation. It is possible that you will get a slightly different result
for the points of intersection. For example, you might get (−1.626685,−0.7508187) for
your point of intersection. Based on the position of the cursor when you marked the
curves and made your guess, you can get slightly different approximations. Note that
this second solution is very nearly the same as the one we found, differing only in the
last few decimal places, and is perfectly acceptable as an answer.

We now summarize our results by creating a coordinate system, labeling the axes,
and scaling the axes with the values of the window parameters xmin, xmax, ymin, and
ymax. We copy the image in our viewing window onto this coordinate system, labeling
each graph with its equation. We then draw dashed vertical lines through each point
of intersection, as shown in Figure 14.

We are solving the inequality 0.85x2 − 3 ≥ 1.23x + 1.25. The solution will be the
union of the solutions of 0.85x2 − 3 > 1.23x+ 1.25 and 0.85x2 − 3 = 1.23x+ 1.25.

• To solve 0.85x2 − 3 > 1.23x + 1.25, we note where the graph of y = 0.85x2 − 3
lies above the graph of y = 1.23x + 1.25 and shade the corresponding x-values
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x10

y
10y=0.85x2−3

y=1.23x+1.25

−1.626682
3.0737411

−10

−10
Figure 14. Summarizing the solution
of 0.85x2 − 3 ≥ 1.23x+ 1.25.

on the x-axis. In this case, the graph of y = 0.85x2 − 3 lies above the graph of
y = 1.23x+ 1.25 for values of x that lie outside of our dashed vertical lines.

• To solve 0.85x2 − 3 = 1.23x + 1.25, we note where the graph of y = 0.85x2 − 3
intersects the graph of y = 1.23x + 1.25 and shade the corresponding x-values on
the x-axis. This is why the points at x ≈ −1.626682 and x ≈ 3.0737411 are “filled.”

Thus, all values of x that are either less than or equal to −1.626682 or greater than
or equal to 3.0737411 are solutions. That is, the solution of inequality 0.85x2 − 3 >
1.23x+ 1.25 is approximately

(−∞,−1.626682] ∪ [3.0737411,∞) = {x : x ≤ −1.626682 or x ≥ 3.0737411}.

Comparing Functions with Zero
When we evaluate a function f at a particular value of x, only one of three outcomes
is possible. Either

f(x) = 0, or f(x) > 0, or f(x) < 0.

That is, either f(x) equals zero, or f(x) is positive, or f(x) is negative. There are no
other possibilities.

We could start fresh, taking a completely new approach, or we can build on what we
already know. We choose the latter approach. Suppose that we are asked to compare
f(x) with zero? Is it equal to zero, is it greater than zero, or is it smaller than zero?

We set g(x) = 0. Now, if we want to compare the function f with zero, we need
only compare f with g, which we already know how to do. To find where f(x) = g(x),
we note where the graphs of f and g intersect, to find where f(x) > g(x), we note
where the graph of f lies above the graph of g, and finally, to find where f(x) < g(x),
we simply note where the graph of f lies below the graph of g.
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However, the graph of g(x) = 0 is a horizontal line coincident with the x-axis.
Indeed, g(x) = 0 is the equation of the x-axis. This argument leads to the following
key results.

Summary 10.

• The solution of f(x) = 0 is the set of all x for which the graph of f intersects
the x-axis.

• The solution of f(x) > 0 is the set of all x for which the graph of f lies strictly
above the x-axis.

• The solution of f(x) < 0 is the set of all x for which the graph of f lies strictly
below the x-axis.

For example:

• To find the solution of f(x) = 0 in Figure 15(a), we simply note where the graph
of f crosses the x-axis in Figure 15(a). Thus, the solution of f(x) = 0 is x = 1.

• To find the solution of f(x) > 0 in Figure 15(b), we simply note where the graph
of f lies above the x-axis in Figure 15(b), which is to the right of the vertical
dashed line through x = 1. Thus, the solution of f(x) > 0 is (1,∞) = {x : x > 1}.

• To find the solution of f(x) < 0 in Figure 15(c), we simply note where the graph
of f lies below the x-axis in Figure 15(c), which is to the left of the vertical dashed
line at x = 1. Thus, the solution of f(x) < 0 is (−∞, 1) = {x : x < 1}.

x5

y
5

f

1
x5

y
5

f

1
x5

y
5

f

1

(a) The solution of f(x) = 0 (b) The solution of f(x) > 0 (c) The solution of f(x) < 0
Figure 15. Comparing the function f with zero.

We next define some important terminology.

Definition 11. If f(a) = 0, then a is called a zero of the function f . The graph
of f will intercept the x-axis at (a, 0), a point called the x-intercept of the graph
of f .

Your calculator has a utility that will help you to find the zeros of a function.
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I Example 12. Use a graphing calculator to solve the inequality

0.25x2 − 1.24x− 3.84 ≤ 0.

Note that this inequality has the form f(x) ≤ 0, where f(x) = 0.25x2−1.24x−3.84.
Our strategy will be to draw the graph of f , then determine where the graph of f lies
below or on the x-axis.

We proceed as follows:

• First, load the function f(x) = 0.25x2 − 1.24x− 3.84 into the Y1 in the Y= menu of
your calculator. Select 6:ZStandard from the ZOOM menu to produce the image in
Figure 16(a).

• Press 2nd CALC to open the menu shown in Figure 16(b), then select 2:zero to
start the utility that will find a zero of the function (an x-intercept of the graph).

• The calculator asks for a “Left Bound,” so use your arrow keys to move the cursor
slightly to the left of the leftmost x-intercept of the graph, as shown in Figure 16(c).
Press ENTER to record this “Left Bound.”

• The calculator then asks for a “Right Bound,” so use your arrow keys to move the
cursor slightly to the right of the x-intercept, as shown in Figure 16(d). Press
ENTER to record this “Right Bound.”

(a) (b) (c) (d)
Figure 16. Finding a zero or x-intercept with the calculator.

• The calculator responds by marking the left and right bounds on the screen, as
shown in Figure 17(a), then asks you to make a reasonable starting guess for the
zero or x-intercept. You may use the arrow keys to move your cursor to any point, so
long as the cursor remains between the left- and right-bound marks on the viewing
window. We usually just leave the cursor where it is and press the ENTER to record
this guess. We suggest you do that as well.

• The calculator responds by finding the coordinates of the x-intercept, as shown
in Figure 17(b). Note that the x-coordinate of the x-intercept is approximately
−2.157931.

• Repeat the procedure to find the coordinates of the rightmost x-intercept. The
result is shown in Figure 17(c). Note that the x-coordinate of the intercept is
approximately 7.1179306.

The final step is the interpretation of results and recording of our solution on our
homework paper. Referring to the Summary 7 Guidelines, we come up with the graph
shown in Figure 18.
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(a) (b) (c)
Figure 17. Finding a zero or x-intercept with the calculator.

x10

y
10

f(x)=−0.25x2−1.24x−3.84

−2.157931
7.1179306

−10

−10
Figure 18. The solution of 0.25x2 −
1.24x− 3, 84 ≤ 0.

Several comments are in order. Noting that f(x) = 0.25x2 − 1.24x− 3.84, we note:

1. The solutions of f(x) = 0 are the points where the graph crosses the x-axis. That’s
why the points (−2.157931, 0) and (7.1179306, 0) are shaded and filled in Figure 18.

2. The solutions of f(x) < 0 are those values of x for which the graph of f falls strictly
below the x-axis. This occurs for all values of x between −2.157931 and 7.1179306.
These points are also shaded on the x-axis in Figure 18.

3. Finally, the solution of f(x) ≤ 0 is the union of these two shadings, which we
describe in interval and set-builder notation as follows:

[−2.157931, 7.1179306] = {x : −2.157931 ≤ x ≤ 7.1179306}
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2.4 Exercises

In Exercises 1-6, you are given the de-
finition of two functions f and g. Com-
pare the functions, as in Example 1 of
the narrative, at the given values of x.

1. f(x) = x + 2, g(x) = 4 − x at x =
−3, 1, and 2.

2. f(x) = 2x − 3, g(x) = 3 − x at x =
−4, 2, and 5.

3. f(x) = 3−x, g(x) = x+9 at x = −4,
−3, and −2.

4. f(x) = x2, g(x) = 4x+5 at x = −2,
1, and 6.

5. f(x) = x2, g(x) = −3x − 2 at x =
−3, −1, and 0.

6. f(x) = |x|, g(x) = 4− x at x = 1, 2,
and 3.

In Exercises 7-12, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Make an accurate copy of the image
on graph paper (label each equation,
label and scale each axis), drop a dashed
vertical line through the point of in-
tersection, then label and shade the
solution of f(x) = g(x) on the x-axis.

ii. Make a second copy of the image on
graph paper, drop a dashed, vertical
line through the point of intersection,
then label and shade the solution of
f(x) > g(x) on the x-axis. Use set-
builder and interval notation to de-
scribe your solution set.

iii. Make a third copy of the image on

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/19

graph paper, drop a dashed, vertical
line through the point of intersection,
then label and shade the solution of
f(x) < g(x) on the x-axis. Use set-
builder and interval notation to de-
scribe your solution set.

7.

x
5

y
5 f

g

8.

x
5

y
5

f

g
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9.

x
5

y
5

f

g

10.

x
5

y
5

f

g

11.

x
5

y
5

f

g

12.

x
5

y
5

f

g

In Exercises 13-16, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Make an accurate copy of the image
on graph paper, drop dashed, verti-
cal lines through the points of inter-
section, then label and shade the so-
lution of f(x) ≥ g(x) on the x-axis.
Use set-builder and interval notation
to describe your solution set.

ii. Make a second copy of the image on
graph paper, drop dashed, vertical lines
through the points of intersection, then
label and shade the solution of f(x) <
g(x) on the x-axis. Use set-builder
and interval notation to describe your
solution set.
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13.

x
5

y
5

f

g

14.

x
5

y
5 f

g

15.

x
5

y
5 f

g

16.

x
5

y
5

f

g

In Exercises 17-20, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Load each side of the equation into
the Y= menu of your calculator. Ad-
just the WINDOW parameters so that
the point of intersection of the graphs
is visible in the viewing window. Use
the intersect utility in the CALC menu
of your calculator to determine the
x-coordinate of the point of intersec-
tion.

ii. Make an accurate copy of the image
in your viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
and label each graph with its equa-
tion.

iii. Draw a dashed, vertical line through
the point of intersection. Shade and
label the solution of the equation on
the x-axis.

17. 1.23x− 4.56 = 3.46− 2.3x

18. 2.23x− 1.56 = 5.46− 3.3x

19. 5.46− 1.3x = 2.2x− 5.66

20. 2.46− 1.4x = 1.2x− 2.66
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In Exercises 21-26, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Load each side of the inequality into
the Y= menu of your calculator. Ad-
just the WINDOW parameters so that
the point(s) of intersection of the graphs
is visible in the viewing window. Use
the intersect utility in the CALC menu
of your calculator to determine the
coordinates of the point(s) of inter-
section.

ii. Make an accurate copy of the image
in your viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
and label each graph with its equa-
tion.

iii. Draw a dashed, vertical line through
the point(s) of intersection. Shade
and label the solution of the inequal-
ity on the x-axis. Use both set-builder
and interval notation to describe the
solution set.

21. 1.6x+ 1.23 ≥ −2.3x− 4.2

22. 1.24x+ 5.6 < 1.2− 0.52x

23. 0.15x− 0.23 > 8.2− 0.6x

24. −1.23x− 9.76 ≤ 1.44x+ 22.8

25. 0.5x2 − 5 < 1.23− 0.75x

26. 4− 0.5x2 ≤ 0.72x− 1.34

In Exercises 27-30, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Make an accurate copy of the image
on graph paper (label the graph with
the letter f and label and scale each
axis), drop a dashed vertical line through
the x-intercept of the graph of f , then
label and shade the solution of f(x) =
0 on the x-axis. Use set-builder no-
tation to describe your solution.

ii. Make a second copy of the image on
graph paper, drop a dashed, verti-
cal line through the x-intercept of the
graph of f , then label and shade the
solution of f(x) > 0 on the x-axis.
Use set-builder and interval notation
to describe your solution set.

iii. Make a third copy of the image on
graph paper, drop a dashed, verti-
cal line through the x-intercept of the
graph of f , then label and shade the
solution of f(x) < 0 on the x-axis.
Use set-builder and interval notation
to describe your solution set.

27.

x
5

y
5

f
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28.

x
5

y
5

f

29.

x
5

y
5

f

30.

x
5

y
5 f

In Exercises 31-34, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Make an accurate copy of the image
on graph paper, drop dashed, ver-
tical lines through the x-intercepts,
then label and shade the solution of
f(x) ≥ 0 on the x-axis. Use set-
builder and interval notation to de-
scribe your solution set.

ii. Make a second copy of the image on
graph paper, drop dashed, vertical lines
through the x-intercepts, then label
and shade the solution of f(x) < 0 on
the x-axis. Use set-builder and inter-
val notation to describe your solution
set.

31.

x
5

y
5

f
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32.

x
5

y
5 f

33.

x
5

y
5

f

34.

x
5

y
5

f

In Exercises 35-38, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Load the given function f into the
Y= menu of your calculator. Adjust
the WINDOW parameters so that the x-
intercept(s) of the graph of f is vis-
ible in the viewing window. Use the
zero utility in the CALC menu of your
calculator to determine the coordi-
nates of the x-intercept(s) of the graph
of f .

ii. Make an accurate copy of the image
in your viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
and label the graph with its equation.

iii. Draw a dashed, vertical line through
the x-intercept(s). Shade and label
the solution of the inequality f(x) >
0 on the x-axis. Use both set-builder
and interval notation to describe the
solution set.

35. f(x) = −1.25x+ 3.58

36. f(x) = 1.34x− 4.52

37. f(x) = 1.25x2 + 4x− 5.9125

38. f(x) = −1.32x2 − 3.96x+ 5.9532

In Exercises 39-42, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Load the given function f into the
Y= menu of your calculator. Adjust
the WINDOW parameters so that the x-
intercept(s) of the graph of f is vis-
ible in the viewing window. Use the
zero utility in the CALC menu of your
calculator to determine the coordi-
nates of the x-intercept(s) of the graph
of f .

ii. Make an accurate copy of the image
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in your viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
and label the graph with its equation.

iii. Draw a dashed, vertical line through
the x-intercept(s). Shade and label
the solution of the inequality f(x) ≤
0 on the x-axis. Use both set-builder
and interval notation to describe the
solution set.

39. f(x) = −1.45x− 5.6

40. f(x) = 1.35x+ 8.6

41. f(x) = −1.11x2−5.9940x+1.2432

42. f(x) = 1.22x2 − 6.3440x+ 1.3176
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2.4 Answers

1. f(−3) < g(−3), f(1) = g(1), and
f(2) > g(2).

3. f(−4) > g(−4), f(−3) = g(−3), and
f(−2) < g(−2).

5. f(−3) > g(−3), f(−1) = g(−1), and
f(0) > g(0).

7. The solution of f(x) = g(x) is x = 3.

x
5

y
5 f

g

3

The solution of f(x) > g(x) is (3,∞) =
{x : x > 3}.

x
5

y
5 f

g

3

The solution of f(x) < g(x) is (−∞, 3) =
{x : x < 3}.

x
5

y
5 f

g

3

9. The solution of f(x) = g(x) is x =
−2.

x
5

y
5

f

g

−2
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The solution of f(x) > g(x) is (−∞,−2) =
{x : x < −2}.

x
5

y
5

f

g

−2

The solution of f(x) < g(x) is (−2,∞) =
{x : x > −2}.

x
5

y
5

f

g

−2

11. The solution of f(x) = g(x) is x =
3.

x
5

y
5

f

g
3

The solution of f(x) > g(x) is (3,∞) =
{x : x > 3}.

x
5

y
5

f

g
3

The solution of f(x) < g(x) is (−∞, 3) =
{x : x < 3}.

x
5

y
5

f

g
3

13. The solution of f(x) ≥ g(x) is [−3, 3] =
{x : −3 ≤ x ≤ 3}.

x
5

y
5

f

g

−3 3
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The solution of f(x) < g(x) is
(−∞,−3) ∪ (3,∞)
={x : x < −3 or x > 3}.

x
5

y
5

f

g

−3 3

15. The solution of f(x) ≥ g(x) is
(−∞,−2] ∪ [2,∞)
={x : x ≤ −2 or x ≥ 2}.

x
5

y
5 f

g

−2 2

The solution of f(x) < g(x) is (−2, 2) =
{x : −2 < x < 2}.

x
5

y
5 f

g

−2 2

17. x = 2.271955

x
10−10

y
10

−10

y=1.23x−4.56

y=3.46−2.3x

2.271955

19. x = 3.177143

x
10−10

y
10

−10

y=5.46−1.3x

y=2.2x−5.66

3.177143
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21. [−1.392308,∞) = {x : x ≥ −1.392308}

x
10−10

y
10

−10

y=1.6x+1.23

y=−2.3x−4.2

−1.392308

23. (11.24,∞) = {x : x > 11.24}

x
−5 15

y

−10

10

y=0.15x−0.23

y=8.2−0.6x
11.24

25. (−4.358670, 2.858670)
= {x : −4.358670 < x < 2.858670}

x
10−10

y
10

−10

y=0.5x2−5

y=1.23−0.75x

−4.358670 2.858670

27. The solution of f(x) = 0 is x = −1.

x
5

y
5

f

−1

The solution of f(x) > 0 is (−1,∞) =
{x : x > −1}.

x
5

y
5

f

−1

The solution of f(x) < 0 is (−∞,−1) =
{x : x < −1}

x
5

y
5

f

−1
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29. The solution of f(x) = 0 is x = 2.

x
5

y
5

f

2

The solution of f(x) > 0 is (−∞, 2) =
{x : x < 2}.

x
5

y
5

f

2

The solution of f(x) < 0 is (2,∞) = {x :
x > 2}

x
5

y
5

f

2

31. The solution of f(x) ≥ 0 is [−3, 2] =
{x : −3 ≤ x ≤ 2}.

x
5

y
5

f

−3 2

The solution of f(x) < 0 is (−∞,−3) ∪
(2,∞) = {x : x < −3 or x > 2}.

x
5

y
5

f

−3 2

33. The solution of f(x) ≥ 0 is (−∞,−2]∪
[1,∞) = {x : x ≤ −2 or x ≥ 1}.

x
5

y
5

f

−2 1
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The solution of f(x) < 0 is (−2, 1) = {x :
−2 < x < 1}.

x
5

y
5

f

−2 1

35. (−∞, 2.8640) = {x : x < 2.8640}

x
10−10

y
10

−10 f(x)=−1.25x+3.58

2.8640

37. (−∞,−4.3) ∪ (1.1,∞) = {x : x <
−4.3 or x > 1.1}

x
10−10

y
10

−10

f(x)=1.25x2+4x−5.9125

−4.3 1.1

39. [−3.8621,∞) = {x : x ≥ −3.8621}

x
10−10

y
10

−10

f(x)=−1.45x−5.6

−3.8621

41. (−∞,−5.6] ∪ [0.2,∞) = {x : x ≤
−5.6 or x ≥ 0.2}

x
10−10

y
10

−10

f(x)=−1.11x2−5.9940x+1.2432

−5.6 0.2
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2.5 Vertical Transformations
In this section we study the art of transformations: scalings, reflections, and transla-
tions. We will restrict our attention to transformations in the vertical or y-direction.
Our goal is to apply certain transformations to the equation of a function, then ask
what effect it has on the graph of the function.

We begin our task with an example that requires that we read the graph of a
function to capture several key points that lie on the graph of the function.

I Example 1. Consider the graph of f presented in Figure 1(a). Use the graph of
f to complete the table in Figure 1(b).

x
5

y
5

f

x f(x) (x, f(x))
−2
−1
0
1
2

(a) The graph of f . (b) The table.
Figure 1. Reading key values from the graph of f .

To compute f(−1), we would locate −1 on the x-axis, draw a vertical arrow to the
graph of f , then a horizontal arrow to the y-axis, as shown in Figure 2(a). The y-value
of this final destination is the value of f(−1). That is, f(−1) = 2. This allows us to
complete one entry in the table, as shown in Figure 2(b). Continue in this manner to
complete all of the entries in the table. The result is shown in Figure 2(c).

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/20
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x
5

y
5

f
−1

2

x f(x) (x, f(x))
−2
−1 2 (−1, 2)
0
1
2

x f(x) (x, f(x))
−2 0 (−2, 0)
−1 2 (−1, 2)
0 0 (0, 0)
1 −2 (1,−2)
2 0 (2, 0)

(a) The graph of f . (b) Recording
f(−1) = 2.

(c) Completed table.

Figure 2. Recording coordinates of points on the graph of f in the tables.

Vertical Scaling
In the narrative that follows, we will have repeated need of the graph in Figure 2(a)
and the table in Figure 2(c). They characterize the basic function that will be the
starting point for the concepts of scaling, reflection, and translation that we develop in
this section. Consequently, let’s place them side-by-side for emphasis in Figure 3.

x
5

y
5

f

x f(x) (x, f(x))
−2 0 (−2, 0)
−1 2 (−1, 2)
0 0 (0, 0)
1 −2 (1,−2)
2 0 (2, 0)

(a) (b)
Figure 3. The original graph of f and a table of key points on
the graph of f .

We are now going to scale the graph of f in the vertical direction.

I Example 2. If y = f(x) has the graph shown in Figure 3(a), sketch the graph
of y = 2f(x).

What do we do when we meet a graph whose shape we are unsure of? The answer
to this question is we plot some points that satisfy the equation in order to get an
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idea of the shape of the graph. With that thought in mind, let’s evaluate the function
y = 2f(x) at x = −2.

The letter f refers to the original function shown in Figure 3(a) and the table in
Figure 3(b) contains the values of that function at the given values of x. Thus, in
computing y = 2f(−2), the first step is to look up the value of f(−2) in the table in
Figure 3(b). There we find that f(−2) = 0. Thus, we can write

y = 2f(−2) = 2(0) = 0.

In similar fashion, let’s evaluate the function y = 2f(x) at x = −1. First, look up the
value of f(−1) in the table in Figure 3(b). There we find that f(−1) = 2. Thus, we
can write

y = 2f(−1) = 2(2) = 4.

We finish by evaluating the function y = 2f(x) at x = 0, 1, and 2. Each time you
need to evaluate the function f at a number, take the result from the table or graph in
Figure 3. What follows are the evaluations of y = 2f(x) at x = −2, −1, 0, 1, and 2.

y = 2f(−2) = 2(0) = 0
y = 2f(−1) = 2(2) = 4
y = 2f(0) = 2(0) = 0
y = 2f(1) = 2(−2) = −4
y = 2f(2) = 2(0) = 0

We can arrange these results in a table shown in Figure 4(b), then plot them in the
figure shown in Figure 4(a).

x
5

y
5

y=2f(x)

x y = 2f(x) (x, 2f(x))
−2 0 (−2, 0)
−1 4 (−1, 4)
0 0 (0, 0)
1 −4 (1,−4)
2 0 (2, 0)

(a) (b)
Figure 4. The points in the table

are points on the graph of y = 2f(x).

At this point, there are a number of comparisons you can make.

1. Compare the data in the tables in Figure 3(b) and Figure 4(b). Note that the
x-values are identical. In both tables, x = −2, −1, 0, 1, and 2. However, note
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that each y-value in the table in Figure 4(b) is precisely double the corresponding
y-value in the table in Figure 3(b).

2. Compare the graphs in Figure 3(a) and Figure 4(a). Note that the y-value of
each point in the graph of y = 2f(x) in Figure 4(a) is precisely double the y-value
of the corresponding point in Figure 3(a).

Note the result. The graph of y = 2f(x) has been stretched vertically (away from
the x-axis) , both positively and negatively, by a factor of 2.

Let’s look at another example.

I Example 3. If y = f(x) has the graph shown in Figure 3(a), sketch the graph
of y = (1/2)f(x).

Let’s begin by evaluating the function y = (1/2)f(x) at x = −2. First, look up the
value of f(−2) in the table in Figure 3(b). There we find that f(−2) = 0. Thus, we
can write

y = (1/2)f(−2) = (1/2)(0) = 0.

In similar fashion, let’s evaluate the function y = (1/2)f(x) at x = −1. First, look up
the value of f(−1) in the table in Figure 3(b). There we find that f(−1) = 2. Thus,
we can write

y = (1/2)f(−1) = (1/2)(2) = 1.

Continuing in this manner, we can evaluate the function y = (1/2)f(x) at x = 0, 1,
and 2.

y = (1/2)f(0) = (1/2)(0) = 0
y = (1/2)f(1) = (1/2)(−2) = −1
y = (1/2)f(2) = (1/2)(0) = 0

The results are recorded in the table in Figure 5(b). Rather than double each value
of y as did the function y = 2f(x) in Example 2, this function y = (1/2)f(x) halves
each value of y. The graph of y = (1/2)f(x) and a table of key points on the graph are
presented in Figures 5(a) and (b), respectively.

Again, there are a number of comparisons.

1. Compare the data in the tables in Figure 5(b) and Figure 3(b). Note that the
x-values are identical. In both tables x = −2, −1, 0, 1, and 2. However, note that
each y-value in the table in Figure 5(b) is precisely half the corresponding y-value
in the table in Figure 3(b).

2. When you compare the graph of y = (1/2)f(x) in Figure 5(a) with the original
graph of y = f(x) in Figure 3(a), note that each point on the graph of y =
(1/2)f(x) has a y-value that is precisely half of the corresponding y-value on the
original graph of y = f(x) in Figure 3(a).



Section 2.5 Vertical Transformations 171

Version: Fall 2007

x
5

y
5

y=(1/2)f(x)

x y = (1/2)f(x) (x, (1/2)f(x))
−2 0 (−2, 0)
−1 1 (−1, 1)
0 0 (0, 0)
1 −1 (1,−1)
2 0 (2, 0)

(a) (b)
Figure 5. The points in the table are
points on the graph of y = (1/2)f(x).

Note the result. The graph of f has been compressed vertically (toward the x-axis),
both positively and negatively, by a factor of 2.

Let’s summarize our findings.

A Visual Summary — Vertical Scaling. Consider the images in Figure 6.

• In Figure 6(a), we see pictured the graph of the original function y = f(x).
• In Figure 6(b), note that each key point on the graph of y = 2f(x) has a
y-value that is precisely double the y-value of the corresponding point on the
graph of y = f(x) in Figure 6(a).

• In Figure 6(c), note that each key point on the graph of y = (1/2)f(x) has
a y-value that is precisely half the y-value of the corresponding point on the
graph of y = f(x) in Figure 6(a).

• Note that the x-value of each transformed point remains the same.

x
5

y
5

y=f(x)
x

5

y
5

y=2f(x)

x
5

y
5

y=(1/2)f(x)

(a) y = f(x) (b) y = 2f(x) (c) y = (1/2)f(x)
Figure 6. The graph of y = 2f(x) stretches vertically (away from the x-axis) by a factor of 2.
The graph of y = (1/2)f(x) compresses vertically (toward the x-axis) by a factor of 2.
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The visual summary in Figure 6 makes sketching the graphs of y = 2f(x) and y =
(1/2)f(x) an easy task.

• Given the graph of y = f(x), to sketch the graph of y = 2f(x), simply take each
point on the graph of y = f(x) and double its y-value, keeping the same x-value.

• Given the graph of y = f(x), to sketch the graph of y = (1/2)f(x), simply take each
point on the graph of y = f(x) and halve its y-value, keeping the same x-value.

Follow the same procedures for other scaling factors. For example, in the case of
y = 3f(x), take each point on the graph of y = f(x) and multiply its y-value by 3,
keeping the same x-value. On the other hand, to draw the graph of y = (1/3)f(x),
take each point on the graph of f and multiply its y-value by 1/3, keeping the same
y-value.

In general, we can state the following.

Summary 4. Suppose we are given the graph of y = f(x).

• If a > 1, then the graph of y = af(x) is stretched vertically (away from the
x-axis), both positively and negatively, by a factor of a.

• If 0 < a < 1, then the graph of y = af(x) is compressed vertically (toward the
x-axis), both positively and negatively, by a factor of 1/a.

The second item in Summary 4 warrants a word of explanation. Compare the
general form y = af(x) with the function of Example 3, y = (1/2)f(x). In this case,
a = 1/2, so

1
a

= 1
1/2

= 1× 2 = 2.

The second item says that when 0 < a < 1, the graph of y = af(x) is compressed
vertically by a factor of 1/a. Indeed, this is exactly what happens in the case of
y = (1/2)f(x), which is compressed by a factor of 1/(1/2), or 2.

Vertical Reflections
For convenience, we begin by repeating the original graph of y = f(x) and its accom-
panying data.

We are now going to reflect the graph in the vertical direction (across the x-axis).
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x
5

y
5

f

x f(x) (x, f(x))
−2 0 (−2, 0)
−1 2 (−1, 2)
0 0 (0, 0)
1 −2 (1,−2)
2 0 (2, 0)

(a) (b)
Figure 7. The original graph of f and a table of key points on
the graph of f .

I Example 5. If y = f(x) has the graph shown in Figure 7(a), sketch the graph
of y = −f(x).

To set up a table of points in preparation for the plot of y = −f(x), we’ll use exactly
the same values of x that you see in the table in Figure 7(b), namely x = −2, −1, 0,
1, and 2.

To evaluate y = −f(x) at the first value of x, namely x = −2, we make the following
calculation,

y = −f(−2) = −(0) = 0,

where we’ve used the fact that f(−2) = 0 from the table in Figure 7(b). In similar
fashion, we evaluate y = −f(x) at each of the remaining values of x, namely x = −1,
0, 1, and 2.

y = −f(−1) = −(2) = −2
y = −f(0) = −(0) = 0
y = −f(1) = −(−2) = 2
y = −f(2) = −(0) = 0

We assemble these points in the table in Figure 8(b) and plot them in Figure 8(a).
Note that the graph of y = −f(x) in Figure 8(a) is a reflection of the graph of

y = f(x) in Figure 7(a) across the x-axis.21

Be sure to note that this is a reflection of the graph of y = f(x) across the x-axis. Note that a reflection21

of the graph of y = f(x) across the y-axis gives the same result, but that’s not what we’ve done here.
We’ll address reflections across the y-axis in the next section.
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x
5

y
5

y=−f(x)
x y = −f(x) (x,−f(x))
−2 0 (−2, 0)
−1 −2 (−1,−2)
0 0 (0, 0)
1 2 (1, 2)
2 0 (2, 0)

(a) (b)
Figure 8. The graph of y = −f(x)

and a table of key points on the graph.

Let’s summarize what we’ve learned about vertical reflections.

A Visual Summary — Vertical Reflections. Consider the images in
Figure 9.

• In Figure 9(a), we see pictured the original graph of y = f(x).
• In Figure 9(b), the graph of y = −f(x) is a reflection of the graph of y = f(x)

across the x-axis.

x
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y
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f

x
5

y
5

y=−f(x)

(a) y = f(x) (b) y = −f(x)
Figure 9. The graph of y = −f(x) is a reflection of the graph of y = f(x)
across the x-axis.

Thus, given the graph of y = f(x), it is a simple task to draw the graph of y = −f(x).

• To draw the graph of y = −f(x), take each point on the graph of y = f(x) and
reflect it across the x-axis, keeping the x-value the same, but negating the y-value.
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Vertical Translations
Translations are perhaps the easiest transformation of all. A translation is a “shift”
or a “slide.” Pretend, for a moment, that you’ve placed a transparent sheet of thin
plastic over a sheet of graph paper. You’ve drawn a Cartesian coordinate system on
your graph paper, but you’ve plotted your graph on the transparent sheet of plastic.
Now, “shift” or “slide” the transparency over your graph paper in a constant direction
without rotating the transparency. This is what we mean by a “translation.” In this
section, we will focus strictly on vertical translations.

For convenience, we begin by repeating the original graph of y = f(x) and its
accompanying data in Figure 10(a) and( b), respectively. We will now translate this
graph in the vertical direction.

x
5

y
5

f

x f(x) (x, f(x))
−2 0 (−2, 0)
−1 2 (−1, 2)
0 0 (0, 0)
1 −2 (1,−2)
2 0 (2, 0)

(a) (b)
Figure 10. The original graph of f and a table of key points on
the graph of f .

I Example 6. If y = f(x) has the graph shown in Figure 10(a), sketch the graph
of y = f(x) + 1.

We will evaluate y = f(x)+1 at the same values shown in the table in Figure 10(b),
namely x = −2, −1, 0, 1, and 2. To evaluate y = f(x)+1 at the first value of x, namely
x = −2, we make the following calculation

y = f(−2) + 1 = 0 + 1 = 1,

where we’ve used that fact that f(−2) = 0 from the table in Figure 10(b). In similar
fashion, we can evaluate y = f(x) + 1 at each of the remaining values of x, namely
x = −1, 0, 1, and 2.

y = f(−1) + 1 = 2 + 1 = 3
y = f(0) + 1 = 0 + 1 = 1
y = f(1) + 1 = −2 + 1 = −1
y = f(2) + 1 = 0 + 1 = 1

We assemble these points in the table in Figure 11(b) and plot them in Figure 11(a).
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x
5

y
5

y=f(x)+1

x y = f(x) + 1 (x, f(x) + 1)
−2 1 (−2, 1)
−1 3 (−1, 3)
0 1 (0, 1)
1 −1 (1,−1)
2 1 (2, 1)

(a) (b)
Figure 11. The graph of y = f(x) + 1
and a table of key points on the graph.

When you compare the entries in the table in Figure 11(b) with the original values
in the table in Figure 10(b), you’ll note that the x-values in each table are identical,
but the y-values in the table in Figure 11(b) are all increased by 1. This makes sense,
because these are the y-values of the points associated with the function y = f(x) + 1.
Of course, all the y-values should be 1 larger than the y-values associated with the
original equation y = f(x).

Note the result. The graph of y = f(x) + 1 in Figure 11(a), when compared with
the graph of y = f(x) in Figure 10(a), is shifted 1 unit upwards.

Let’s look at another example.

I Example 7. If y = f(x) has the graph shown in Figure 10(a), sketch the graph
of y = f(x)− 2.

Evaluate the function y = f(x)− 2 at each value of x in the table in Figure 10(b).
At x = −2,

y = f(−2)− 2 = 0− 2 = −2.

In similar fashion, evaluate y = f(x) − 2 at each remaining x-value in the table in
Figure 10(b).

y = f(−1)− 2 = 2− 2 = 0
y = f(0)− 2 = 0− 2 = −2
y = f(1)− 2 = −2− 2 = −4
y = f(2)− 2 = 0− 2 = −2

We assemble these points in the table in Figure 12(b) and plot them in Figure 12(a).
When you compare the entries in the table in Figure 12(b) with the original values

in the table in Figure 10(b), you’ll note that the x-values in each table are identical,
but the y-values in the table in Figure 12(b) are all decremented by 2. This makes
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x
5

y
5

y=f(x)−2

x y = f(x)− 2 (x, f(x)− 2)
−2 −2 (−2,−2)
−1 0 (−1, 0)
0 −2 (0,−2)
1 −4 (1,−4)
2 −2 (2,−2)

(a) (b)
Figure 12. The graph of y = f(x) − 2
and a table of key points on the graph.

sense, because these are the y-values of the points associated with the function y =
f(x)− 2. Of course, all the y-values should be 2 less than the y-values associated with
the original equation y = f(x).

Note the result. The graph of y = f(x)− 2 in Figure 12(a), when compared with
the graph of y = f(x) in Figure 10(a), is shifted downward 2 units.

Let’s summarize what we’ve learned about vertical translations.

A Visual Summary — Vertical Translations (Shifts). Consider the images
in Figure 13.

• In Figure 13(a), we see pictured the graph of the original function y = f(x).
• In Figure 13(b), note that each key point on the graph of y = f(x) + 1 has

a y-value that is precisely 1 unit larger than the y-value of the corresponding
point on the graph of y = f(x) in in Figure 13(a).

• In Figure 13(c), note that each key point on the graph of y = f(x)− 2 has a
y-value that is precisely 2 units smaller than the y-value of the corresponding
point on the graph of y = f(x) in in Figure 13(a).

• Note that the x-value of each transformed point remains the same.

The visual summary in Figure 13 makes sketching the graphs of y = f(x) + 1 and
y = f(x)− 2 an easy task.

• Given the graph of y = f(x), to sketch the graph of y = f(x) + 1, simply take
each point on the graph of y = f(x) and move it upwards 1 unit, keeping the same
x-value.

• Given the graph of y = f(x), to sketch the graph of y = f(x)− 2, simply take each
point on the graph of y = f(x) and move it downwards 2 units, keeping the same
x-value.
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y=f(x)+1

x
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y=f(x)−2

(a) y = f(x) (b) y = f(x) + 1 (c) y = f(x) − 2
Figure 13. The graph of y = f(x) + 1 is formed by shifting (vertically) the graph of y = f(x)
upward 1 unit. The graph of y = f(x)− 2 is formed by shifting (vertically) the graph of y = f(x)
downward 2 units.

In general, we can state the following.

Summary 8. Suppose that we are given the graph of y = f(x) and suppose
that c is any positive real number.

• The graph of y = f(x)+c is shifted c units upward from the graph of y = f(x).
• The graph of y = f(x) − c is shifted c units downward from the graph of
y = f(x).

Composing Transformations
Sometimes we will want to perform one transformation, then take the result of the first
transformation and apply a second transformation. Let’s look at an example.

I Example 9. Consider the graph of y = f(x) presented in Figure 14.

x
5

y
5

y=f(x)

Figure 14. The graph of y = f(x)
that will be transformed in Example 9.
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Use the concepts discussed in the Visual Summaries to sketch the graph of y = −2f(x)
without creating and referring to a table of points.

Note that the equation y = −2f(x) can be formed by a sequence of two transfor-
mations.

1. First, scale the original function y = f(x) to obtain the equation y = 2f(x).
2. Second, negate the resulting function y = 2f(x) to obtain the equation y = −2f(x).

Thus, the graph of y = −2f(x) can be formed as follows:

1. Start with the graph of y = f(x) and double the y-value of each point on the graph
of y = f(x), keeping the same x-value. The result is the graph of y = 2f(x) shown
in Figure 15(b).

2. Next, negate the y-value of each point on the graph of y = 2f(x), keeping the same
x-value. The result is the graph of y = −2f(x) in Figure 15(c).
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y=2f(x)
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y=−2f(x)

(a) y = f(x) (b) y = 2f(x) (c) y = −2f(x)
Figure 15. Transforming the graph of y = f(x) with a sequence of two transformations.

It is interesting to note that you will get the same result if you negate first, then
scale the result. We will leave it to our readers to check that this is true.

Let’s look at one final example.

I Example 10. Consider the graph of y = f(x) presented in Figure 16.
Use the concepts discussed in the Visual Summaries to sketch the graph of y = −f(x)+2
without creating and referring to a table of points.

Note that the equation y = −f(x) + 2 can be formed by a sequence of two trans-
formations.

1. First, negate the original function y = f(x) to obtain the equation y = −f(x).
2. Second, add 2 to the resulting function y = −f(x) to obtain the equation y =
−f(x) + 2.

Thus, the graph of y = −f(x) + 2 can be formed as follows.
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x
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y
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y=f(x)

Figure 16. The graph of y = f(x)
that will be transformed in Example 10.

1. First, start with the graph of y = f(x) in Figure 17(a) and negate the y-value of
each point to produce the graph of y = −f(x) Figure 17(b).

2. Next, add 2 to the y-value of each point on the graph of y = −f(x) in Figure 17(b)
to produce the graph of y = −f(x) + 2 in Figure 17(c).
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y=−f(x)+2

(a) y = f(x) (b) y = −f(x) (c) y = −f(x) + 2
Figure 17. Transforming the graph of y = f(x), first reflecting across the x-axis, then shifting 2 units
upward to obtain the graph of y = −f(x) + 2.

In Example 9, where we started with the graph of y = f(x) and then graphed y =
2f(x), the order of the transformations did not matter. Scale by 2, then negate, or
negate and scale by 2, you get the same result (readers should verify this claim).
However, in this example, the order in which the transformations are applied does
matter. To see this, let’s do the following:

1. Add 2 to shift the graph of y = f(x) in Figure 18(a) two units upward to obtain
the graph of y = f(x) + 2 in Figure 18(b).

2. Negate the y-value of each point on the graph of y = f(x) + 2 in Figure 18(b) to
obtain the graph of y = −(f(x) + 2) in Figure 18(c). Note that we must negate
the entire y-value. Hence the parentheses.
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Unfortunately, the graph of y = −(f(x)+2) in Figure 18(c) is not the same as the
graph of y = −f(x) + 2 in Figure 17(c). But of course, this makes complete sense, as
the equations (in the case of Figure 18(c))

y = −(f(x) + 2) = −f(x)− 2

and (in the case of Figure 17(c))

y = −f(x) + 2 (11)

are also not the same.
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y=−(f(x)+2)

(a) y = f(x) (b) y = f(x) + 2 (c) y = −(f(x) + 2)
Figure 18. Transforming the graph of y = f(x), shifting 2 units upward to obtain the graph of y =
f(x) + 2, then reflecting across the x-axis to obtain the graph of y = −(f(x) + 2).

Therefore, care must be taken when applying more than one transformation. Here is a
good rule of thumb to live by.

Do Vertical Scalings and Reflections First, then Vertical Translations.
When performing a sequence of vertical transformations, it is usually easier (less
confusing) to apply vertical scalings and reflections before vertical translations.

However, as long as you perform the transformations correctly, you should obtain
the correct result. In Example 10, if you want to sketch the graph of y = −f(x)+2 by
doing the translation first, the correct way to proceed is as follows (though somewhat
counterintuitive):

1. First, shift the graph of y = f(x) downward 2 units to obtain the graph of y =
f(x)− 2.

2. Second, reflect the graph of y = f(x) − 2 across the x-axis to obtain the graph
of y = −(f(x) − 2). Again, note the use of parentheses as we negate the entire
y-value.

Finally, note that

y = −(f(x)− 2) = −f(x) + 2.
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We will leave it to our readers to show that this sequence produces the correct result,
a graph identical to the correct answer shown in Figure 17(c).

Summary
In this section we’ve seen how a handful of transformations greatly enhance our graph-
ing capability. We end this section by listing the transformations presented in this
section and their effects on the graph of a function.

Vertical Transformations. Suppose we are given the graph of y = f(x).

• If a > 1, then the graph of y = af(x) is stretched vertically (away from the
x-axis), both positively and negatively, by a factor of a.

• If 0 < a < 1, then the graph of y = af(x) is compressed vertically (toward the
x-axis), both positively and negatively, by a factor of 1/a.

• The graph of y = −f(x) is a reflection of the graph of y = f(x) across the
x-axis.

• If c > 0, then the graph of y = f(x) + c is shifted c units upward from the
graph of y = f(x).

• If c > 0, then the graph of y = f(x) − c is shifted c units downward from the
graph of y = f(x).
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2.5 Exercises

Pictured below is the graph of a function
f .

x
10

y
10

f

The table that follows evaluates the
function f in the plot at key values of x.
Notice the horizontal format, where the
first point in the table is the ordered pair
(−4, 0).

x −4 −3 0 2 5 6
f(x) 0 4 4 −4 −4 0

Use the graph and the table to complete
each of following tasks for Exercises 1-
10.

i. Set up a coordinate system on graph
paper. Label and scale each axis, then
copy and label the original graph of
f onto your coordinate system. Re-
member to draw all lines with a ruler.

ii. Use the original table to help com-
plete the table for the given function
in the exercise.

iii. Using a different colored pencil, plot
the data from your completed table
on the same coordinate system as the
original graph of f . Use these points

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/22

to help complete the graph of the given
function in the exercise, then label
this graph with its equation given in
the exercise.

1. y = 2f(x).

x −4 −3 0 2 5 6
y

2. y = (1/2)f(x).

x −4 −3 0 2 5 6
y

3. y = −f(x).

x −4 −3 0 2 5 6
y

4. y = f(x)− 2.

x −4 −3 0 2 5 6
y

5. y = f(x) + 4.

x −4 −3 0 2 5 6
y

6. y = −2f(x).

x −4 −3 0 2 5 6
y
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7. y = (−1/2)f(x).

x −4 −3 0 2 5 6
y

8. y = −f(x) + 3.

x −4 −3 0 2 5 6
y

9. y = −f(x)− 2.

x −4 −3 0 2 5 6
y

10. y = (−1/2)f(x) + 3.

x −4 −3 0 2 5 6
y

11. Use your graphing calculator to draw
the graph of y =

√
x. Then, draw the

graph of y = −
√
x. In your own words,

explain what you learned from this exer-
cise.

12. Use your graphing calculator to draw
the graph of y = |x|. Then, draw the
graph of y = −|x|. In your own words,
explain what you learned from this exer-
cise.

13. Use your graphing calculator to draw
the graph of y = x2. Then, in succession,
draw the graphs of y = x2−2, y = x2−4,
and y = x2 − 6. In your own words, ex-
plain what you learned from this exer-
cise.

14. Use your graphing calculator to draw
the graph of y = x2. Then, in succession,

draw the graphs of y = x2+2, y = x2+4,
and y = x2 + 6. In your own words, ex-
plain what you learned from this exer-
cise.

15. Use your graphing calculator to draw
the graph of y = |x|. Then, in succession,
draw the graphs of y = 2|x|, y = 3|x|,
and y = 4|x|. In your own words, explain
what you learned from this exercise.

16. Use your graphing calculator to draw
the graph of y = |x|. Then, in succession,
draw the graphs of y = (1/2)|x|, y =
(1/3)|x|, and y = (1/4)|x|. In your own
words, explain what you learned from
this exercise.

Pictured below is the graph of a function
f . In Exercises 17-22, use this graph
to perform each of the following tasks.

x
10

y
10

f

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-
member to draw all lines with a ruler.

ii. In the narrative, a shadow box at the
end of the section summarizes the con-
cepts and technique of vertical scal-
ing, vertical reflection, and vertical
translation. Use the shortcut ideas
presented in this summary shadow box
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to draw the graphs of the functions
that follow without using tables.

iii. Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

17. y = (1/2)f(x).

18. y = 2f(x).

19. y = −f(x).

20. y = f(x)− 1.

21. y = f(x) + 3.

22. y = f(x)− 4.

Pictured below is the graph of a function
f . In Exercises 23-28, use this graph
to perform each of the following tasks.

x
10

y
10

f

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-
member to draw all lines with a ruler.

ii. In the narrative, a shadow box at the

end of the section summarizes the con-
cepts and technique of vertical scal-
ing, vertical reflection, and vertical
translation. Use the shortcut ideas
presented in this summary shadow box
to draw the graphs of the functions
that follow without using tables.

iii. Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

23. y = 2f(x).

24. y = (1/2)f(x).

25. y = −f(x).

26. y = f(x) + 3.

27. y = f(x)− 2.

28. y = f(x)− 1.

Pictured below is the graph of a function
f . In Exercises 29-34, use this graph
to perform each of the following tasks.

x
10

y
10

f

i. Set up a coordinate system on a sheet
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of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-
member to draw all lines with a ruler.

ii. In the narrative, a shadow box at the
end of the section summarizes the con-
cepts and technique of vertical scal-
ing, vertical reflection, and vertical
translation. Use the shortcut ideas
presented in this summary shadow box
to draw the graphs of the functions
that follow without using tables.

iii. Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

29. y = (−1/2)f(x).

30. y = −2f(x).

31. y = −f(x) + 2.

32. y = −f(x)− 3.

33. y = 2f(x)− 3.

34. y = (−1/2)f(x) + 1.
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2.5 Answers

1.

x
10

y
10

f

y=2f(x)

3.

x
10

y
10

f

y=−f(x)

5.

x
10

y
10

f

y=f(x)+4

7.

x
10

y
10

f

y=(−1/2)f(x)
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9.

x
10

y
10

f

y=−f(x)−2

11. Mutiplying by −1, as in y = −
√
x,

reflects the graph across the x-axis.

13. Subtracting c, where c > 0, moves
the graph c units downward.

15. Multiply by a scalar a, such that
a is larger than 1, stretches the graph
vertically by a factor of a.

17.

x
10

y
10

f

y=(1/2)f(x)

19.

x
10

y
10

f

y=−f(x)

21.

x
10

y
10

f

y=f(x)+3

23.

x
10

y
10

f

y=2f(x)
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25.

x
10

y
10

f

y=−f(x)

27.

x
10

y
10

f

y=f(x)−2

29.

x
10

y
10

f

y=(−1/2)f(x)

31.

x
10

y
10

f

y=−f(x)+2

33.

x
10

y
10

f

y=2f(x)−3
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2.6 Horizontal Transformations
In the previous section, we introduced the concept of transformations. We made a
change to the basic equation y = f(x), such as y = af(x), y = −f(x), y = f(x) − c,
or y = f(x) + c, then studied how these changes affected the shape of the graph of
y = f(x). In that section, we concentrated strictly on transformations that applied in
th vertical direction. In this section, we will study transformations that will affect the
shape of the graph in the horizontal direction.

We begin our task with an example that requires that we read the graph of a
function to capture several key points that lie on the graph of the function.

I Example 1. Consider the graph of f presented in Figure 1(a). Use the graph of f
to complete the table in Figure 1(b).

x
10

y
10

f

x f(x) (x, f(x))
−4
−2
0
2
4

(a) The graph of f . (b) The table.
Figure 1. Reading key values from the graph of f .

To compute f(−2), for example, we would first locate −2 on the x-axis, draw
a vertical arrow to the graph of f , then a horizontal arrow to the y-axis, as shown
in Figure 2(a). The y-value of this final destination is the value of f(−2). That
is, f(−2) = −4. This allows us to complete one entry in the table, as shown in
Figure 2(b). Continue in this manner to complete all of the entries in the table. The
result is shown in Figure 2(c).

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/23
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x
10

y
10

f

−2

−4

x f(x) (x, f(x))
−4
−2 −4 (−2,−4)
0
2
4

x f(x) (x, f(x))
−4 0 (−4, 0)
−2 −4 (−2,−4)
0 0 (0, 0)
2 2 (2, 2)
4 0 (4, 0)

(a) The graph of f . (b) Recording
f(−2) = −4.

(c) Completed table.

Figure 2. Recording coordinates of points on the graph of f in the tables.

Horizontal Scaling
In the narrative that follows, we will have repeated need of the graph in Figure 2(a)
and the table in Figure 2(c). They characterize the basic function that will be the
starting point for the concepts of scaling, reflection, and translation that we develop in
this section. Consequently, let’s place them side-by-side for emphasis in Figure 3.

x
10

y
10

f

x f(x) (x, f(x))
−4 0 (−4, 0)
−2 −4 (−2,−4)
0 0 (0, 0)
2 2 (2, 2)
4 0 (4, 0)

(a) (b)
Figure 3. The original graph of f and a table of key points on
the graph of f

We are now going to scale the graph of f in the horizontal direction.

I Example 2. If y = f(x) has the graph shown in Figure 3(a), sketch the graph
of y = f(2x).

In the previous section, we investigated the graph of y = 2f(x). The number 2
was outside the function notation and as a result we stretched the graph of y = f(x)
vertically by a factor of 2. However, note that the 2 is now inside the function notation
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y = f(2x). Intuition would demand that this might have something to do with scaling
in the x-direction (horizontal direction), but how?

Again, when we’re unsure of the shape of the graph, we rely on plotting a table of
points. We begin by picking these x-values: x = −2, −1, 0, 1, and 2. Note that these
are precisely half of each of the x-values presented in the table in Figure 3(b). We
will now evaluate the function y = f(2x) at each of these x-values. For example, to
compute y = f(2x) at x = −2, we first insert x = −2 for x to obtain

y = f(2(−2)) = f(−4).

To complete the computation, we must now evaluate f(−4). However, this result is
recorded in the table in Figure 3(b). There we find that f(−4) = 0, and we can
complete the computation started above.

y = f(2(−2)) = f(−4) = 0

In similar fashion, to evaluate the function y = f(2x) at x = −1, first substitute x = −1
in y = f(2x) to obtain

y = f(2(−1)) = f(−2).

Now, note that f(−2) is the next recorded value in the table in Figure 3(b). There
we find that f(−2) = −4, so we can complete the computation started above.

y = f(2(−1)) = f(−2) = −4

At this point, you might see why we chose x-values: −2, −1, 0, 1, and 2. These are
precisely half of the x-values in the table of original values for the function y = f(x) in
Figure 3(b). When the values −2, −1, 0, 1, and 2 are substituted into the function
y = f(2x), they are first doubled before we go to look up the function value in the
table in Figure 3(b).

Continuing in this manner, we evaluate the function y = f(2x) at the remaining
values of x, namely, 0, 1, and 2.

y = f(2(0)) = f(0) = 0,
y = f(2(1)) = f(2) = 2,
y = f(2(2)) = f(4) = 0

We enter these values into the table in Figure 4(b) and plot them to determine the
graph of y = f(2x) in Figure 4(a).

At this point, there are a number of comparisons you can make.

1. Compare the data in the table in Figure 4(b) with the original function data
in the table in Figure 3(b). Note that the y-values in each table are identical.
However, note that each x-value in the table of Figure 4(b) is precisely half of the
corresponding x-value in the table of Figure 3(b).

2. Compare the graph of y = f(2x) in Figure 4(a) with the original graph of y = f(x)
in Figure 3(a). Note that each x-value at each point on the graph of y = f(2x) in
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x
10

y
10

y=f(2x)

x y = f(2x) (x, f(2x))
−2 0 (−2, 0)
−1 −4 (−1,−4)
0 0 (0, 0)
1 2 (1, 2)
2 0 (2, 0)

(a) (b)
Figure 4. The points in the table

are points on the graph of y = f(2x).

Figure 4(a) is precisely half the x-value of the corresponding point on the graph
of y = f(x) in Figure 3(a).

Note the result. The graph of y = f(2x) is compressed horizontally (toward the
y-axis), both positively and negatively, by a factor of 2. Note that this is exactly the
opposite of what you might expect by intuition, but a careful examination of the data
in the tables in Figures 3(b) and 4(b) will explain why.

Let’s look at another example.

I Example 3. If y = f(x) has the graph shown in Figure 3(a), sketch the graph
of y = f((1/2)x).

Rather than doubling each value of x at the start, this function first halves each
value of x. Thus, we will want to evaluate the function y = f((1/2)x) at x = −8,
−4, 0, 4, and 8. For example, to evaluate the function y = f((1/2)x) at x = −8, first
substitute x = −8 to obtain

y = f((1/2)(−8)) = f(−4).

Now, look up this value in the table in Figure 3(b) and note that f(−4) = 0. Thus,
we can complete the computation as follows.

y = f((1/2)(−8)) = f(−4) = 0

Similarly, to evaluate the function y = f((1/2)x) at x = −4, first substitute x = −4 to
obtain

y = f((1/2)(−4)) = f(−2).

Now, look up this value in the table in Figure 3(b) and note that f(−2) = −4. Thus,
we can complete the computation as follows.
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y = f((1/2)(−4)) = f(−2) = −4

At this point, you will see why we chose x-values: −8, −4, 0, 4, and 8. These values are
precisely double the x-values in the table of original values for the function y = f(x)
in Figure 3(b). When the values −8, −4, 0, 4, and 8 are substituted into the function
y = f((1/2)x), they are first halved before we go to look up the function value in the
table in Figure 3(b). This halving leads to the values −4, −2, 0, 2, and 4, which are
precisely the values available in the table in Figure 3(b).

We make similar computations at the remaining values of x, namely x = 0, 4, and
8.

y = f((1/2)(0)) = f(0) = 0
y = f((1/2)(4)) = f(2) = 2
y = f((1/2)(8)) = f(4) = 0

Hopefully, these computations explain our choice of x-values above. Each of these
results is recorded in the table in Figure 5(b) and plotted on the graph shown in
Figure 5(a).

x
10

y
10

y=f((1/2)x)

x y = f((1/2)x) (x, f((1/2)x))
−8 0 (−8, 0)
−4 −4 (−4,−4)
0 0 (0, 0)
4 2 (4, 2)
8 0 (8, 0)

(a) (b)
Figure 5. The points in the table are
points on the graph of y = f((1/2)x).

Again, note that the y-values in the table in Figure 5(b) are identical to the y-values
in the table in Figure 3(b). However, each x-value in the table in Figure 5(b) is
precisely double the corresponding x-value in the table in Figure 3(b).

This doubling of the x-values is apparent in the graph of y = f((1/2)x) shown in
Figure 5(a), where the graph is stretched by a factor of 2 horizontally (away from the
y-axis), both positively and negatively. Note that this is exactly the opposite of what
you might expect by intuition, but a careful examination of the data in the tables in
Figures 3(b) and 5(b) will explain why.

Let’s summarize our findings.
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A Visual Summary — Horizontal Scaling. Consider the images in Figure 6.

• In Figure 6(a), we see pictured the graph of the original function y = f(x).
• In Figure 6(b), note that each key point on the graph of y = f(2x) has an
x-value that is precisely half the x-value of the corresponding point on the
graph of y = f(x) in Figure 6(a).

• In Figure 6(c), note that each key point on the graph of y = f((1/2)x) has
an x-value that is twice the x-value of the corresponding point on the graph of
y = f(x) in Figure 6(a).

• Note that the y-value of each transformed point remains the same.

x
10

y
10

f

x
10

y
10

y=f(2x)

x
10

y
10

y=f((1/2)x)

(a) y = f(x) (b) y = f(2x) (c) y = f((1/2)x)
Figure 6. The graph of y = f(2x) compresses horizontally (toward the y-axis) by a factor of 2.
The graph of y = f((1/2)x) stretches horizontally (away from the y-axis) by a factor of 2.

The visual summary in Figure 6 makes sketching the graphs of y = f(2x) and y =
f(1/2)x) an easy task.

• Given the graph of y = f(x), to sketch the graph of y = f(2x), simply take each
point on the graph of y = f(x) and cut its x-value in half, keeping the same y-value.

• Given the graph of y = f(x), to sketch the graph of y = f((1/2)x), simply take each
point on the graph of y = f(x) and double its x-value, keeping the same y-value.

Follow the same procedures for other scaling factors. For example, in the case of
y = f(3x), take each point on the graph of y = f(x) and divide its x-value by 3, keeping
the same y-value. On the other hand, to draw the graph of y = f((1/3)x), take each
point on the graph of f and multiply its x-value by 3, keeping the same y-value.

In general, we can state the following.
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Summary 4. Suppose we are given the graph of y = f(x).

• If a > 1, the graph of y = f(ax) compresses horizontally (toward the y-axis) ,
both positively and negatively, by a factor of a.

• If 0 < a < 1, the graph of y = f(ax) stretches horizontally (away from the
y-axis), both positively and negatively, by a factor of 1/a.

In the case of the first item in Summary 4, when we compare the general form
y = f(ax) with y = f(2x), we see that a = 2. In this case, note that a > 1 and the
graph of y = f(2x) compresses horizontally by a factor of 2 when compared with the
graph of y = f(x) (see Figure 6(b)).

In the case of the second item in Summary 4, when we compare the general form
y = f(ax) with the equation y = f((1/2)x), we see that a = 1/2, so

1
a

= 1
1/2

= 2.

The second item in Summary 4 says that when 0 < a < 1, the graph of y = f(ax)
stretches horizontally by a factor of 1/a. Indeed, this is exactly what happened in the
case of y = f((1/2)x), which stretched in the horizontal direction by a factor of 1/(1/2),
or 2 (see Figure 6(c)).

Horizontal Reflections
For convenience, we begin by repeating the original graph of y = f(x) and its accom-
panying data in Figure 7. We are now going to reflect the graph of y = f(x) in the
horizontal direction (across the y-axis).

x
10

y
10

f

x f(x) (x, f(x))
−4 0 (−4, 0)
−2 −4 (−2,−4)
0 0 (0, 0)
2 2 (2, 2)
4 0 (4, 0)

(a) (b)
Figure 7. The original graph of f and a table of key points on
the graph of f

I Example 5. If y = f(x) has the graph shown in Figure 7(a), draw the graph of
y = f(−x).
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In the previous section, we were asked to draw the graph of y = −f(x). Note
how the minus sign appears on the outside of the function. Clearly, the y-values of
y = −f(x) must be opposite in sign to the y-values of y = f(x). That is why the graph
of y = −f(x) was a reflection of the graph of y = f(x) across the x-axis.

However, in this example, the minus sign is inside the function, leaving one to intuit
that it is the x-values, not the y-values, that are being negated. We will choose the
following x-values: x = 4, 2, 0, −2, and −4. This is a bit deceptive, as it looks like
we are choosing the same x-values, only in reverse order. This is not the case. We are
choosing the negative of each x-value in the table in Figure 7(b).

To evaluate y = f(−x) at our first x-value, namely x = 4, we perform the following
calculation. First substitute x = 4 to obtain

y = f(−(4)) = f(−4).

Now, look up this value in the table in Figure 7(b) and note that f(−4) = 0. Thus,
we can complete the computation as follows.

y = f(−(4)) = f(−4) = 0

Similarly, to evaluate the function y = f(−x) at x = 2, first substitute x = 2 to obtain

y = f(−(2)) = f(−2).

Now, look up this value in the table in Figure 7(b) and note that f(−2) = −4. Thus,
we can complete the computation as follows.

y = f(−(2)) = f(−2) = −4

At this point, you will see why we chose x-values: 4, 2, 0, −2, and −4. These values are
the negatives of the x-values in the table of original values for the function y = f(x) in
Figure 7(b). When the values 4, 2, 0, −2, and −4 are substituted into the function
y = f(−x), they are first negated before we go to look up the function value in the
table in Figure 7(b). This negating leads to the values −4, −2, 0, 2, and 4, which are
precisely the values available in the table in Figure 7(b).

We make similar computations at the remaining values of x, namely x = 0, −2, and
−4.

y = f(−(0)) = f(0) = 0
y = f(−(−2)) = f(2) = 2
y = f(−(−4)) = f(4) = 0

We organize these points in the table in Figure 8(b), then plot them in Figure 8(a).
When you compare the entries in the table in Figure 8(b) with those in the table

in Figure 7(b), note that the y-values appear in the same order, but the x-values of
the table in Figure 7(b) have been negated in the table in Figure 8(b). This means
that a former point such as (−2,−4) is transformed to the point (2,−4), which is a
reflection of the point (−2,−4) across the y-axis.
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x
10

y
10

y=f(−x)

x y = f(−x) (x, f(−x))
4 0 (4, 0)
2 −4 (2,−4)
0 0 (0, 0)
−2 2 (−2, 2)
−4 0 (−4, 0)

(a) (b)
Figure 8. The graph of y = f(−x)

and a table of key points on the graph.

Thus, to produce the graph of y = f(−x), simply reflect the graph of y = f(x)
across the y-axis.

Let’s summarize what we’ve learned about horizontal reflections.

x
10

y
10

f

x
10

y
10

y=f(−x)

(a) y = f(x) (b) y = f(−x)
Figure 9. The graph of y = f(−x) is a reflection of the graph of y = f(x)
across the y-axis.

A Visual Summary — Horizontal Reflections. Consider the images in
Figure 9.

• In Figure 9(a), we see pictured the original graph of y = f(x).
• In Figure 9(b), the graph of y = f(−x) is a reflection of the graph of y = f(x)

across the y-axis.
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Thus, given the graph of y = f(x), it is a simple task to draw the graph of y = f(−x).

• To draw the graph of y = f(−x), take each point on the graph of y = f(x) and
reflect it across the y-axis, keeping the y-value the same, but negating the x-value.

Horizontal Translations
In the previous section, we saw that the graphs of y = f(x) + c and y = f(x)− c were
vertical translations of the graph of y = f(x). If c is a positive number, then the graph
of y = f(x) + c shifts c units upward while the graph of y = f(x) − c shifts c units
downward.

In this section, we will study horizontal translations. For convenience, we begin by
repeating the original graph of y = f(x) and its accompanying data in Figure 10.

x
10

y
10

f

x f(x) (x, f(x))
−4 0 (−4, 0)
−2 −4 (−2,−4)
0 0 (0, 0)
2 2 (2, 2)
4 0 (4, 0)

(a) (b)
Figure 10. The original graph of f and a table of key points on
the graph of f

I Example 6. If y = f(x) has the graph shown in Figure 10(a), sketch the graph
of y = f(x+ 1).

In the previous section, we drew the graph of y = f(x)+1. Note that in y = f(x)+1,
the number 1 is outside the function. The result was a graph that was shifted 1 unit
upwards in the y-direction.

In this case, y = f(x+ 1) and the 1 is inside the function notation, leading one to
intuit that the translation might be in the horizontal direction (x-direction). But how?

Again, we will set up a table of points that satisfy the equation y = f(x+ 1), then
plot them. Because this function requires that we first add 1 to each x-value before
inserting it into the function, we will choose x-values appropriately, namely x = −5,
−3, −1, 1, and 3. In a moment, it will be clear why we have chosen these particular
values of x. Perhaps you already see why?

We need to evaluate the function y = f(x+ 1) at each of these chosen values of x.
To evaluate y = f(x+1) at the first value, namely x = −5, we insert x = −5 and make
the calculation
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y = f(−5 + 1) = f(−4).

To complete the calculation, we must now evaluate f(−4). However, this result is
recorded in the table in Figure 10(b). There we find that f(−4) = 0, and we can
complete the calculation started above.

y = f(−5 + 1) = f(−4) = 0

In similar fashion, we can evaluate the function y = f(x+1) at x = −3. First, substitute
x = −3 in y = f(x+ 1) to obtain

y = f(−3 + 1) = f(−2).

To complete the calculation, we must now evaluate f(−2). However, this result is
recorded in the table in Figure 10(b). There we find that f(−2) = −4, and we can
complete the calculation started above.

y = f(−3 + 1) = f(−2) = −4

At this point, you might see why we chose x-values: −5, −3, −1, 1, and 3. These
are precisely one less than the x-values in the table of original values for the function
y = f(x) in Figure 10(b). When the values −5, −3, −1, 1, and 3 are substituted into
the function y = f(x + 1), we first add 1 to each value before we go to look up the
function value in the table in Figure 10(b). This adding of 1 leads to the values −4,
−2, 0, 2, and 4, which are precisely the values available in the table in Figure 10(b).

Continuing in this manner, we evaluate the function y = f(x+ 1) at the remaining
values of x, namely, −1, 1, and 3.

y = f(−1 + 1) = f(0) = 0
y = f(1 + 1) = f(2) = 2
y = f(3 + 1) = f(4) = 0

We assemble these results in the table in Figure 11(b) and plot them in Figure 11(a).

x
10

y
10

y=f(x+1)

x y = f(x+ 1) (x, f(x+ 1))
−5 0 (−5, 0)
−3 −4 (−3,−4)
−1 0 (−1, 0)
1 2 (1, 2)
3 0 (3, 0)

(a) (b)
Figure 11. The graph of y = f(x + 1)
and a table of key points on the graph.
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When you compare the points on the graph of y = f(x+1) in the table in Figure 11(b)
with the original points on the graph of y = f(x) in the table in Figure 10(b), note
that the y-values are identical, but the x-values in the table in Figure 11(b) are all 1
unit less than the corresponding x-values in the table in Figure 10(b). It is no wonder
that the graph of y = f(x + 1) in Figure 11(a) is shifted 1 unit to the left of the
original graph of y = f(x) in Figure 10(a).

Note that this is somewhat counterintuitive, because we’re seemingly adding 1 to
each x-value in y = f(x + 1). Why doesn’t the graph move one unit to the right?
Well, a careful comparison of the x-values in the tables in Figures 10(b) and 11(b)
reveals the answer. In order to use the data in the table in Figure 10(b), we must
first subtract 1 from each x-value to produce the x-values in the table in Figure 11(b).
This is why the graph of y = f(x+ 1) moves 1 unit to the left instead of 1 unit to the
right.

You might also recall that the function y = f(2x) compressed by a factor of 2,
which is also the opposite of what intuition might dictate. Similarly, the function
y = f((1/2)x) stretches by a factor of 2, which also goes counter to intuition. With
these thoughts in mind, it is not surprising that y = f(x+1) shifts one unit to the left.
Still, a comparison of the x-values in the tables in Figures 10(b) and 11(b) provide
irrefutable evidence that the shift is 1 unit to the left.

Let’s look at another example.

I Example 7. If y = f(x) has the graph shown in Figure 10(a), sketch the graph
of y = f(x− 2).

Again, we will set up a table of points that satisfy the equation y = f(x− 2), then
plot them. Because this function requires that we first subtract 2 from each x-value
before inserting it into the function, we will choose x-values: −2, 0, 2, 4, and 6. We
need to evaluate the function y = f(x− 2) at each of these values of x.

To evaluate y = f(x− 2) at the first value, namely x = −2, insert x = −2 into the
function y = f(x− 2) to obtain

y = f(−2− 2) = f(−4).

In the table in Figure 10(b), we find that f(−4) = 0, which allows us to complete the
calculation above.

y = f(−2− 2) = f(−4) = 0

In similar fashion, we evaluate y = f(x− 2) at x = 0 to obtain

y = f(0− 2) = f(−2).

In the table in Figure 10(b), we find that f(−2) = −4, which allows us to complete
the calculation above.

y = f(0− 2) = f(−2) = −4
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Hopefully, you see why we chose the x-values: −2, 0, 2, 4, and 6. These values are
2 larger than the x-values in the table of original values for the function y = f(x) in
Figure 10(b). When the values −2, 0, 2, 4, and 6 are substituted into the function
y = f(x− 2), we first subtract 2 from each value before we go to look up the function
value in the table in Figure 10(b). This subtracting of 2 leads to −4, −2, 0, 2, and 4,
precisely the values that are available in the table in Figure 10(b).

Continuing in this manner, we evaluate y = f(x− 2) at the remaining values of x,
namely, x = 2, 4, and 6.

y = f(2− 2) = f(0) = 0
y = f(4− 2) = f(2) = 2
y = f(6− 2) = f(4) = 0

We assemble these results in the table in Figure 12(b) and plot them in Figure 12(a).

x
10

y
10

y=f(x−2)

x y = f(x− 2) (x, f(x− 2))
−2 0 (−2, 0)
0 −4 (0,−4)
2 0 (2, 0)
4 2 (4, 2)
6 0 (6, 0)

(a) (b)
Figure 12. The graph of y = f(x − 2)
and a table of key points on the graph.

When you compare the points on the graph of y = f(x−2) in the table in Figure 12(b)
with the original points on the graph of y = f(x) in the table in Figure 10(b), note
that the y-values are identical, but the x-values in the table in Figure 12(b) are all 2
larger than the corresponding x-values in the table in Figure 10(b). It is no wonder
that the graph of y = f(x − 2) in Figure 12(a) is shifted 2 units to the right of the
original graph of y = f(x) in Figure 10(a).

Again, this runs counterintuitive (why doesn’t the graph of y = f(x − 2) shift 2
units to the left?), but a comparison of the x-values in the tables in Figures 10(b) and
12(b) clearly indicates a shift to the right.

Let’s summarize what we’ve learned about horizontal translations.
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Visual Summary — Horizontal Translations (Shifts). Consider the images
in Figure 13.

• In Figure 13(a), we see pictured the graph of the original function y = f(x).
• In Figure 13(b), note that each point on the graph of y = f(x + 1) has an
x-value that is 1 unit less than the x-value of the corresponding point on the
graph of y = f(x) in Figure 13(a).

• In Figure 13(c), note that each point on the graph of y = f(x − 2) has an
x-value that is 2 units greater than the x-value of the corresponding point on
the graph of y = f(x) in Figure 13(a).

• Note that the y-value of each transformed point remains the same.

x
10

y
10

f

x
10

y
10

y=f(x+1)

x
10

y
10

y=f(x−2)

(a) y = f(x) (b) y = f(x + 1) (c) y = f(x − 2)
Figure 13. The graph of y = f(x+ 1) is formed by shifting (horizontally) the graph of y = f(x)
one unit to the left. The graph of y = f(x − 2) is formed by shifting (horizontally) the graph of
y = f(x) two units to the right.

The visual summary in Figure 13 makes sketching the graphs of y = f(x + 1) and
y = f(x− 2) an easy task.

• Given the graph of y = f(x), to sketch the graph of y = f(x+ 1), simply take each
point on the graph of y = f(x) and shift it 1 unit to the left, keeping the same
y-value.

• Given the graph of y = f(x), to sketch the graph of y = f(x− 2), simply take each
point on the graph of y = f(x) and shift it 2 units to the right, keeping the same
y-value.

In general, we can state the following.

Summary 8. Suppose that we are given the graph of y = f(x) and suppose
that c is any positive real number.

• The graph of y = f(x+c) is shifted c units to the left of the graph of y = f(x).
• The graph of y = f(x−c) is shifted c units to the right of the graph of y = f(x).
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When we looked at vertical translations in the previous section, a translation was
described by first imagining a graph on a sheet of transparent plastic, then sliding the
transparency (without rotating it) over a coordinate system on a sheet of graph paper.
Horizontal translations can be thought of in the same way, as sliding the graph on the
transparency c units to the left, or c units to the right.

Extra Practice
In this section, let’s take the concepts from the Visual Summaries and put them to
work on some final examples.

I Example 9. Consider the graph of f in Figure 14.

x
10

y
10

y=f(x)

Figure 14. The graph of y = f(x)
for Example 9.

Use the concepts from the Visual Summaries (scaling, reflection, and translation) to
sketch the graphs of y = f(2x), y = f(−x), and y = f(x + 2) without creating and
referring to tables.

To sketch the graph of y = f(2x), simply take each point on the graph of y = f(x)
in Figure 15(a) and divide its x-value by 2, keeping the same y-value. The result is
shown in Figure 15(b).

x
10

y
10

y=f(x)

x
10

y
10

y=f(2x)

(a) y = f(x) (b) y = f(2x)
Figure 15. Compress the graph of y = f(x) by a factor of 2 to produce
the graph of y = f(2x).
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To sketch the graph of y = f(−x), simply take each point on the graph of y = f(x) in
Figure 16(a) and negate its x-value, keeping the same y-value. The result is shown in
Figure 16(b).

x
10

y
10

y=f(x)

x
10

y
10

y=f(−x)

(a) y = f(x) (b) y = f(−x)
Figure 16. Reflect the graph of y = f(x) across the y-axis to produce
the graph of y = f(−x).

To sketch the graph of y = f(x+ 2), simply take each point on the graph of y = f(x)
in Figure 17(a) and subtract 2 from its x-value, keeping the same y-value. The result
is shown in Figure 17(b).

x
10

y
10

y=f(x)

x
10

y
10

y=f(x+2)

(a) y = f(x) (b) y = f(x + 2)
Figure 17. Shift the graph of y = f(x) to the left 2 units to produce
the graph of y = f(x+ 2).
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Summary
In this section we’ve seen how a handful of transformations greatly enhance our graph-
ing capability. We end this section by listing the transformations presented in this
section and their effects on the graph of a function.

Vertical Transformations. Suppose we are given the graph of y = f(x).

• If a > 1, the graph of y = f(ax) compresses horizontally (toward the y-axis) ,
both positively and negatively, by a factor of a.

• If 0 < a < 1, the graph of y = f(ax) stretches horizontally (away from the
y-axis), both positively and negatively, by a factor of 1/a.

• The graph of y = f(−x) is a reflection of the graph of y = f(x) across the
y-axis.

• If c > 0, then the graph of y = f(x + c) is shifted c units to the left of the
graph of y = f(x).

• If c > 0, then the graph of y = f(x − c) is shifted c units to the right of the
graph of y = f(x).
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2.6 Exercises

Pictured below is the graph of a function
f .

x
10

y
10

f

The table that follows evaluates the
function f in the plot at key values of x.
Notice the horizontal format, where the
first point in the table is the ordered pair
(−6, 0).

x −6 −4 −2 0 2 4
f(x) 0 4 4 0 −2 0

Use the graph and the table to complete
each of following tasks for Exercises 1-
10.

i. Set up a coordinate system on graph
paper. Label and scale each axis, then
copy and label the original graph of
f onto your coordinate system. Re-
member to draw all lines with a ruler.

ii. Use the original table to help com-
plete the table for the given function
in the exercise.

iii. Using a different colored pencil, plot
the data from your completed table
on the same coordinate system as the
original graph of f . Use these points

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/24

to help complete the graph of the given
function in the exercise, then label
this graph with its equation given in
the exercise.

1. y = f(2x).

x −3 −2 −1 0 1 2
y

2. y = f((1/2)x).

x −12 −8 −4 0 4 8
y

3. y = f(−x).

x −4 −2 0 2 4 6
y

4. y = f(x+ 3).

x −9 −7 −5 −3 −1 1
y

5. y = f(x− 1).

x −5 −3 −1 1 3 5
y

6. y = f(−2x).

x −2 −1 0 1 2 3
y
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7. y = f((−1/2)x).

x −8 −4 0 4 8 12
y

8. y = f(−x− 2).

x −6 −4 −2 0 2 4
y

9. y = f(−x+ 1).

x −3 −1 1 3 5 7
y

10. y = f(−x/4).

x −16 −8 0 8 16 24
y

11. Use your graphing calculator to draw
the graph of y =

√
x. Then, draw the

graph of y =
√
−x. In your own words,

explain what you learned from this exer-
cise.

12. Use your graphing calculator to draw
the graph of y = |x|. Then, draw the
graph of y = | − x|. In your own words,
explain what you learned from this exer-
cise.

13. Use your graphing calculator to draw
the graph of y = x2. Then, in succession,
draw the graphs of y = (x − 2)2, y =
(x− 4)2, and y = (x− 6)2. In your own
words, explain what you learned from
this exercise.

14. Use your graphing calculator to draw
the graph of y = x2. Then, in succession,

draw the graphs of y = (x + 2)2, y =
(x+ 4)2, and y = (x+ 6)2. In your own
words, explain what you learned from
this exercise.

15. Use your graphing calculator to draw
the graph of y = |x|. Then, in succession,
draw the graphs of y = |2x|, y = |3x|,
and y = |4x|. In your own words, explain
what you learned from this exercise.

16. Use your graphing calculator to draw
the graph of y = |x|. Then, in succession,
draw the graphs of y = |(1/2)x|, y =
|(1/3)x|, and y = |(1/4)x|. In your own
words, explain what you learned from
this exercise.

Pictured below is the graph of a function
f . In Exercises 17-22, use this graph
to perform each of the following tasks.

x
10

y
10

f

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-
member to draw all lines with a ruler.

ii. In the narrative, a shadow box at the
end of the section summarizes the con-
cepts and technique of horizontal scal-
ing, horizontal reflection, and hori-
zontal translation. Use the shortcut
ideas presented in this summary shadow
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box to draw the graphs of the func-
tions that follow without using ta-
bles.

iii. Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

17. y = f(2x).

18. y = f((1/2)x).

19. y = f(−x).

20. y = f(x− 1).

21. y = f(x+ 3).

22. y = f(x− 2).

Pictured below is the graph of a function
f . In Exercises 23-28, use this graph
to perform each of the following tasks.

x
10

y
10

f

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-

member to draw all lines with a ruler.
ii. In the narrative, a shadow box at the

end of the section summarizes the con-
cepts and technique of horizontal scal-
ing, horizontal reflection, and hori-
zontal translation. Use the shortcut
ideas presented in this summary shadow
box to draw the graphs of the func-
tions that follow without using ta-
bles.

iii. Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

23. y = f(2x).

24. y = f((1/2)x).

25. y = f(−x).

26. y = f(x+ 3).

27. y = f(x− 2).

28. y = f(x+ 1).
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2.6 Answers

1.

x
10

y
10

f

y=f(2x)

3.

x
10

y
10

f

y=f(−x)

5.

x
10

y
10

f

y=f(x−1)

7.

x
10

y
10

f

y=f((−1/2)x)
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9.

x
10

y
10

f

y=f(−x+1)

11. Mutiplying on the inside by −1, as
in y =

√
−x, reflects the graph across

the y-axis.

13. Replacing x with x − c, where c is
positive, moves the graph c units to the
right.

15. Multiplying by a scalar a, such that
a is larger than 1, compresses the graph
horizonally by a factor of a.

17.

x
10

y
10

f

y=f(2x)

19.

x
10

y
10

fy=f(−x)

21.

x
10

y
10

f

y=f(x+3)

23.

x
10

y
10

fy=f(2x)
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25.

x
10

y
10

f

y=f(−x)

27.

x
10

y
10

f

y=f(x−2)
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2.7 Index
x-intercept 149

a
abscissa 73
arrow 123
arrowhead 122 , 126

c
Cartesian Coordinate System 93
comparing functions 139
f(x) < g(x) 140 , 141 , 143
f(x) = g(x) 141 , 142 , 143
f(x) > g(x) 140 , 142 , 143
summary 141

comparing functions with zero 148
f(x) < 0 149
f(x) = 0 149
f(x) > 0 149
summary 149

d
domain 73

analytic method 126
graphing calculator 124
reading from graph 125
reading from the graph 122 , 123
reading the graph 119

f
filled endpoint 120
filled endpoint 120 , 126
function 73 , 75 , 77

collection of ordered pairs 95
domain 84

from graph 116 , 119 , 122 , 123
permissible x-values 84

f maps x 81
f of x 81
mapping diagram 95
modern notation 80
range

from graph 121 , 122
from the graph 124

reading function value from the graph

117 , 118 , 167 , 175 , 191
reflecting 172

summary 174
scaling 168
substitute 81 , 82
vertical scaling 169 , 170

summary 172
zero 149

function machine 78 , 82
Function Notation 77
functions

comparing with zero 148
reflecting

vertically 173
translating 175

vertically 176

g
graph 74

arrowheads 97
definition 95
drawing summary 98
f(x) =

√
x 101

f(x) = |x| 102
f(x) = x2 96
f(x) = x3 99
plotting additional pairs 96
plotting ordered pairs 96

graphing calculator
6:ZStandard 102
adjusting the view 103 , 104 , 106
determining domain 124
finding zeros 150
GRAPH button 104 , 105 , 106
intersect utility 145 , 147
standard viewing window 103
TABLE 101
TBLSET 102
WINDOW button 104
zero utility 150
ZOOM button 102

graph of a function 95
graph of a relation 94
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h
horizontal transformations 191

i
intersect utility 145 , 147
interval notation 123 , 124

bracket 120
parenthesis 120

m
mapping diagram 75 , 95

o
open circle 120 , 122
ordered pair 73
ordinate 73

p
Prime Number Theorem 86

r
range 73

determing from the graph 126
reading from the graph 124
reading the graph 121 , 122

reflecting a function 172
summary 174
vertically 173

relation
collection of ordered pairs 94

s
scaling a function 168

vertically 169 , 170
summary 172

set-builder notation 123 , 124
solving equations

by graphing 139
graphing calculator 144

reporting guidelines 146
intersect utility 145

solving inequalities
by graphing 139
graphing calculator 144

reporting guidelines 147 , 151

t
TABLE 102

graphing calculator 101
TBLSET 102

translating functions 175
vertically 176

summary 178

v
Vertical Line Test 115
vertical transformations 167

w
well-defined 85

z
zero of a function 149
zero utility 150
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3 Linear Functions
In this chapter we will study a class of function called a linear function, so named
because the graph of a linear function is a line.

We begin our study of linear functions by examining some linear models, where
we will present a thorough discussion of the modeling process, including the notion of
dependent and independent variables, and representing the data with a graph, properly
labeled and scaled. We will learn that if one quantity changes at constant rate with
respect to a second quantity, the functional relationship must be linear and the graph
will be a line. We will also learn how to develop model equations, then use both the
model equation and the graph to make predictions.

We will then present a discussion on slope, making the connection to the constant
rates provided in the linear models section previously studied. From there we move to
a more formal definition of the slope of a line, a number that controls the “steepness”
of the line.

We conclude the chapter with a discussion of the equation of a linear function, using
two important forms: the slope-intercept form and point-slope form. Finally, we will
use these forms to determine a “line of best fit” for a variety of data sets.

Welcome to the world of linear models. Let’s begin.
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3.1 Linear Models
Sebastian waves good-bye to his brother, who is talking to a group of his friends ap-
proximately 20 feet away. Sebastian then begins to walk away from his brother at a
constant rate of 4 feet per second. Let’s model the distance separating the two brothers
as a function of time.

Our first approach will be graphical. We will let the variable d represent the distance
(in feet) between the brothers and the variable t represent the amount of time (in
seconds) that has passed since Sebastian waved good-bye to his brother. Because the
distance separating the brothers depends on the amount of time that has passed, we
will say that the distance d is the dependent variable and the time t is the independent
variable.

It is somewhat traditional in the modeling process to place the independent variable
on the horizontal axis and the dependent variable on the vertical axis. This is not a
hard and fast rule, more a matter of personal taste, but we will follow this rule in our
example nonetheless. Thus, we will place distance on the vertical axis and time on the
horizontal axis, as shown in Figure 1. Notice that we’ve labeled each axis with its
variable representation and included the units, an important practice.

t (s)

d (ft)

Figure 1. Distance
depends upon time.

Warning 1. The label on the horizontal axis, t (s), might look like function
notation to some readers. This is not the case. Rather, the variable t represents
time, and the (s) in parentheses that follows represents seconds, a standard ab-
breviation in physics. Similar comments are in order for the label d (ft). The
variable d represents distance, and the (ft) in parentheses that follows represent
feet, another standard abbreviation in physics.

There are a number of different ways that you can label the axes of your graph
with units appropriate for the problem at hand. For example, consider the technique
presented in Figure 2, where the labels are placed to the left of the vertical axis and

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1
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underneath the horizontal axis. Another difference is the fact that the unit abbrevia-
tions in Figure 1 are spelled out in their entirety in Figure 2.

t (seconds)

d (feet)

Figure 2. Distance
depends upon time.

Some instructors prefer that you rotate the distance label on the vertical axis ninety
degrees, so that it appears sideways. Others prefer that you label the ends of each axis
with the variable, as we have done in Figure 1, but spell out the units in their entirety
alongside each axis as we’ve done in Figure 2. The list of preferences goes on and on.

Tip 2. It is important to have a conversation with your instructor in order to
determine what your instructor’s expectations are when it comes to labeling the
axes and indicating the units on your graphs.

We prefer to label the axes as shown in Figure 1, and we will try to be consistent to
this standard throughout the remainder of the text, though we might stray to alternate
forms of labeling from time to time.

We must now scale each axis appropriately, a task that is harder than it first seems.
A poor choice of scale can make the task ahead more difficult than it needs to be. We
will choose a scale for each axis with the following thoughts in mind.

Guidelines for Scaling Axes. Here is some good advice to follow when scaling
the dependent and independent axes.

1. We want to avoid postage-stamp-sized graphs. A large graph is easier to inter-
pret than one that is cramped in a small corner of our graph paper.

2. It is not necessary to have the same scale on each axis, but once a scale is
chosen, you must remain consistent.

3. We want to choose a scale that correlates easily with the given rate.

Sebastian is walking away from his brother at a constant rate of 4 feet per second.
Let’s let each box on the vertical axis represent 4 feet and every two boxes on the
horizontal axis represent 1 second, as shown in Figure 3.
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t (s)

d (ft)

0 5 100

20

40

60

Figure 3. Scaling each axis to accommo-
date the rate.

At time t = 0, Sebastian is separated from his brother by a distance of d = 20 feet.
This corresponds to the point (t, d) = (0, 20) shown in Figure 4(a).

Next, Sebastian walks away from his brother at a constant rate of 4 feet per second.
This means that for every second of time that elapses, the distance between the brothers
increases by 4 feet. Starting at the point (0, 20), move 1 second (two boxes) to the right
and 4 feet (1 box) upward to the point (1, 24), as shown in Figure 4(b).
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(0,20)
(1,24)

(a) Initially 20 feet from his brother. (b) Walking away at 4 ft/s.
Figure 4.

The rate of separation is a constant 4 feet per second. So, continue indefinitely in
the manner of Figure 4(b), moving 1 second (2 boxes) to the right, then 4 feet upward
(1 box). This will produce the linear relationship between distance and time suggested
in Figure 5(a).

If we assume that the distance is a continuous function of time, a legitimate as-
sumption due to the fact that the distance is increasing continuously at a constant rate
of 4 feet per second, then we can replace the discrete set of data points in Figure 5(a)
with the line shown in Figure 5(b).

The line in Figure 5(b) is a continuous model. It can be drawn with a simple stroke
of the pencil, without the tip of the pencil ever leaving contact with our graph paper.
On the other hand, the set of points in Figure 5(a) is a discrete model. After plotting
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a point, our pencil must break contact with our graph paper before plotting the next
point. This is the essential difference between a discrete model and a continuous model.

In this case, the continuous model is a more accurate representation of the distance
between the brothers. We say this because the distance between them is increasing at
a constant rate of 4 feet per second, or 2 feet every half second, or 1 foot every quarter
second, etc. Shortly, we will show an example where this sort of continuous model is
unreasonable.

t (s)

d (ft)

0 5 10

20

0

40

60

t (s)

d (ft)

0 5 100

20

40

60

(a) A discrete model. (b) A continuous model.
Figure 5. Constant rate yields a linear relationship.

Now that we’ve modeled the distance between the brothers with a graph, we can
use the graph to make predictions. For example, to determine the distance between
the brothers after 8 seconds, locate 8 seconds on the time axis, draw a vertical arrow
to the line, then a horizontal arrow to the distance axis, as shown in Figure 6.
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Figure 6. Predicting the distance be-
tween the brothers after 8 seconds.

However, suppose that we want to determine the distance between the brothers
after 2 minutes. As the graph in Figure 5(b) only models the distance over the first
10 seconds, we would have to redraw the graph over the first 2 minutes (120 seconds)
to determine the answer. We did not plan ahead for this contingency, so perhaps we
can model the distance between the brothers in another way, one that will more easily
predict the distance between the brothers after an arbitrary amount of time t.



Section 3.1 Linear Models 223

Version: Fall 2007

To this end, we search for a pattern that describes the distance d between the
brothers as a function of time t. Because the distance between the brothers is increasing
at a rate of 4 feet per second, we note that:

• At t = 0 seconds, the distance between the brothers is d = 20 feet.
• At t = 1 second, the distance between the brothers is d = 24 feet.
• At t = 2 seconds, the distance between the brothers is d = 28 feet.
• At t = 3 seconds, the distance between the brothers is d = 32 feet.

We summarize these results in Table 1(a).
However, you don’t want to simplify the distances as we have in Table 1(a), because

you hide the pattern or the relationship between the distance d and the time t. It is
more efficient to seek a relationship between distance and time in the following manner.
After t = 1 second, the distance increases by 1 increment of 4 feet, so d = 20 + 4(1).
After t = 2 seconds, the distance increases by 2 increments of 4 feet, so d = 20 + 4(2).
Continuing in this manner, we have:

• At t = 3 seconds, the distance between the brothers is d = 20 + 4(3) feet.
• At t = 4 seconds, the distance between the brothers is d = 20 + 4(4) feet.

These results are summarized in Table 1(b).

t d

0 20
1 24
2 28
3 32

t d

0 20
1 20 + 4(1)
2 20 + 4(2)
3 20 + 4(3)

(a) (b)
Table 1. Determining a model equation.

Unlike Table 1(a), Table 1(b) reveals a relationship between distance d and time
t that can be described by the equation

d = 20 + 4t. (3)

The careful reader will check that equation (3) reveals the correct distances for t = 0,
1, 2, and 3 seconds, as recorded in Table 1(a). Two important observations can be
made about equation (3).

1. The 20 in d = 20 + 4t is the initial distance between the brothers and corresponds
to the point (0, 20) in Figure 4(a).

2. The 4 in N = 20 + 4t is the rate at which the distance between the brothers is
increasing (4 feet per second).

Moreover, equation (3) can be used to predict the distance between the brothers
at 2 minutes. First, convert t = 2 minutes to t = 120 seconds, then substitute this
number in our model equation (3).
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d = 20 + 4(120) = 500.

Thus, the distance between the brothers after 2 minutes is d = 500 feet.
We can also write the equation d = 20 + 4t using function notation.

d(t) = 20 + 4t

Then, to find the distance between the brothers at the end of 2 minutes, we would
perform the following calculation.

d(120) = 20 + 4(120)
d(120) = 500

Unlike function notation, when the result is written d = 500 feet, note how one
piece of information is hidden, namely the time. With function notation, we interpret
d(120) = 500 to mean “the distance between the two brothers after 120 seconds is
500 feet.” Note how both the distance and the time are available in the notation
d(120) = 500.

Modeling the Discrete with the Continuous
Jenny builds a rabbit hutch behind her barn. She places 25 rabbits in the hutch, then
locks the door and leaves. Unfortunately, there is a flaw in the design of the hutch and
the rabbits begin to escape at a constant rate of 5 rabbits every 2 hours. Again, we’ll
model the number N of rabbits remaining in the hutch as a function of time t. First,
we propose a graphical model.

Note that the number of rabbits remaining in the hutch depends on the amount of
time that has passed. This makes the number N of rabbits remaining in the hutch the
dependent variable, which we will place on the vertical axis in Figure 7(a). Time t is
the independent variable and is placed on the horizontal axis.

We’ll again choose a scale for our axes that accommodates the fact that the rabbit
population is decreasing at a constant rate of 5 rabbits every 2 hours. In Figure 7(b),
we let each box on the vertical axis represent 1 rabbit, while two boxes on the horizontal
axis represents 1 hour. We could just as easily let each box on the horizontal axis
represent one hour, but our choice makes a graph that is a bit larger. Larger graphs
are a bit easier to read and interpret.

At time t = 0 hours, the rabbit population is N = 25 rabbits. This fact is rep-
resented by the point (t,N) = (0, 25) in Figure 8(a). Because the rabbit population
decreases at a constant rate of 5 rabbits every 2 hours, we start at the point (0, 25),
then move 2 hours (4 boxes) to the right, and 5 rabbits (5 boxes) down to the point
(2, 20), also shown in Figure 8(a).

The rate at which the rabbits are decreasing is constant at 5 rabbits every 2 hours,
so continue indefinitely in the manner of Figure 8(a), moving 2 hours (4 boxes) to
the right, then 5 rabbits (5 boxes) downward. This will produce the linear relationship
between the number of rabbits N and the time t shown in Figure 8(b).



Section 3.1 Linear Models 225

Version: Fall 2007

t (hr)

N (rabbits)

t (hr)

N (rabbits)

0 5 100

5

10

15

20

25

(a) Dependent and
independent variables.

(b) Scaling the axes to
accommodate the rate.

Figure 7.
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(a) Initial rabbit population is 25.
Five rabbits escape every 2 hours.

(b) A discrete model.

Figure 8.

We can draw a line through the data points in Figure 8(b) to produce the con-
tinuous model in Figure 9(a). However, we need to be aware of the shortcoming
imposed by this continuous approximation. For example, consider the prediction in
Figure 9(b). Is it reasonable to say that 7.5 rabbits remain in the hutch after 7 hours?
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(a) A continuous model. (b) Predicting the rabbit
population after 7 hours.

Figure 9.

In our first model, the distance between the brothers can be any real number, so
a continuous model was appropriate. However, in the case of Jenny’s rabbit hutch,
the remaining population must be a whole number of rabbits (unless a fox gets in),
so modeling the population with the continuous line in Figure 9(b) is at best an
approximation of reality. However, mathematicians will frequently model a discrete
situation with a continuous model. As long as we are aware of its limitations, we can
still use the model to make reasonable predictions. For example, we might say that
there are approximately 7 rabbits left in the hutch after 7 hours.

We saw the advantage of using function notation at the end of our previous model,
so let’s employ function notation a bit earlier in this model. We will let

N(t) = the number of rabbits remaining after t hours.

Initially, at time t = 0, there are 25 rabbits in the hutch. Thus, we write

N(0) = 25.

It might be easier to think of losing 5 rabbits every 2 hours as being equivalent to losing
“on average” 2.5 rabbits every hour. Thus, at the end of 1 hour, the number of rabbits
decreases by one increment of 2.5 rabbits, and we write

N(1) = 25− 2.5(1).

At the end of 2 hours, the rabbit population decreases by 2 increments of 2.5 rabbits
and we can write

N(2) = 25− 2.5(2).



Section 3.1 Linear Models 227

Version: Fall 2007

At the end of 3 hours, the rabbit population decreases by 3 increments of 2.5 rabbits
and we can write

N(3) = 25− 2.5(3).

A clear pattern develops, particularly when we summarize these results in Table 2.

t N(t)
0 25
1 25 − 2.5(1)
2 25 − 2.5(2)
3 25 − 2.5(3)

Table 2. Determining
a model equation.

Table 2 reveals a relationship between the number of rabbits N and time t that can
be described by the equation

N(t) = 25− 2.5t. (4)

The careful reader will again check that equation (4) returns the correct number of
rabbits at times t = 0, 1, 2, and 3, as recorded in Table 2.

There are two important observations we can make about equation (4).

1. The 25 in N(t) = 25 − 2.5t is the initial rabbit population and corresponds to the
point (0, 25) in Figure 8(a).

2. The −2.5 in N(t) = 25−2.5t is the rate at which the rabbit population is decreasing
“on average” (2.5 rabbits per hour).

The equation (4) can be used to predict the number of rabbits remaining in the
hutch after t = 7 hours. Simply substitute t = 7 in equation (4).

N(7) = 25− 2.5(7) = 7.5

It is important to note that the prediction made by the model equation is identical to
that made by the model graph in Figure 9(b).

However, again note that this equation is a continuous model, and its prediction
that 7.5 rabbits remain in the hutch is not realistic (unless that fox got loose again).
However, if we are aware of the model’s shortcomings, the equation can still be used as
a good predictive tool. For example, we might again say that approximately 7 rabbits
remain in the hutch after 7 hours. This can be written N(7) ≈ 7, which means that
“after 7 hours, there are approximately 7 rabbits remaining in the hutch.”
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Determining the Equation Model from the Graph
Mrs. Burke sets up a motion detector at the front of her classroom, then positions one
of her students a fixed distance from the detector and asks the student to approach the
detector at a constant speed. The detector measures the distance d (in meters) of the
student from the detector as a function of time t (in seconds). The graph of distance
d versus time t is given in Figure 10.

t (s)

d (m)

0 5 100

5
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15

Figure 10. The detector measures the
distance between student and detector ver-
sus time.

It is a simple matter to determine the student’s initial distance from the detector.
We need only determine the value of d at time t = 0 seconds. The result is located at
the point (0, 15), as shown in Figure 11(a). Thus, the student sets up at an initial
distance of 15 meters from the detector.

To determine the rate at which the student approaches the detector, we need to do
a bit more work. Examine the graph and pick two points on the line. It makes things
a bit easier if you pick points on the line that are situated at the intersection of two
grid lines, but as we will show, this is not necessary. With this thought in mind, we’ve
picked the points P (3, 13) and Q(6, 11) on the line, as shown in Figure 11(b).
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(a) Initial distance from detector. (b) Determining the rate.
Figure 11. Determining initial distance and rate.
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Draw a right triangle4PQR with sides parallel to the axes, as shown in Figure 11(b).
Determine the length of each side of the right triangle.

• Side PR is 2 boxes in length, but each box represents 1 meter, so side PR represents
a decrease of 2 meters in distance from the detector. That is why we’ve used the
minus sign in labeling the side PR with −2 m in Figure 11(b).

• Side RQ is 6 boxes in length, but 2 boxes represents 1 second, so side RQ represents
an increase of 3 seconds in time. That is why we’ve labeled side RQ with 3 s in
Figure 11(b).

Thus, the distance between the student and detector is decreasing at a rate of 2 meters
every 3 seconds.

What would happen if we picked two different points on the line? Consider the case
in Figure 12, where we’ve picked the points on the line at P (3, 13) and Q(9, 9). We’ve
also decided to draw right triangle 4PQR on the opposite side of the line. However,
note again that the sides of the right triangle 4PQR are parallel to the horizontal and
vertical axes.

t (s)
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Figure 12. Determining the rate.

Determine the length of each side of triangle 4PQR.

• Side PR is 12 boxes in length, but 2 boxes represent 1 second, so side PR represents
an increase of 6 seconds in time. That is why we’ve labeled side PR with 6 s in
Figure 12.

• Side RQ is 4 boxes in length, but each box represents 1 meter, so side RQ represents
a decrease of 4 meters in distance from the detector. That is why we’ve used a minus
sign in labeling the side RQ with −4 m in Figure 12.

Thus, the distance between the student and detector is decreasing at a rate of 4 meters
every 6 seconds. In symbols, we would write that the rate is

Rate = −4 m
6 s

= −4
6

m/s.

Note, however, that this reduces to

Rate = −2
3

m/s,
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which is identical to the rate found earlier when using the points P andQ in Figure 11(b).
The fact that these rates are equivalent is due to the fact that the triangles 4PQR

in Figure 11(b) and Figure 12 are similar triangles, so their sides are proportional.
Thus, it doesn’t matter which two points you pick on the line, nor does it matter which
side of the line you place your right triangle. Thus, the only requirement is that you
draw a right triangle with sides parallel to the coordinate axes.

Finally, let’s see if we can develop a model equation. We will define

d(t) = the distance from the detector at time t.

Initially, the student is 15 meters from the detector. That is, at time t = 0, the distance
from the detector is 15 meters. In symbols, we write

d(0) = 15.

The distance decreases at a rate of 2 meters every 3 seconds. This is equivalent to
saying that the distance decreases 2/3 meters every second. At the end of 1 second, the
distance has decreased by 1 increment of 2/3 meters, so the distance from the detector
is given by

d(1) = 15− 2
3

(1).

At the end of 2 seconds, the distance has decreased by 2 increments of 2/3 meters, so
the distance from the detector is given by

d(2) = 15− 2
3

(2).

At the end of 3 seconds, the distance has decreased by 3 increments of 2/3 meters, so
the distance from the detector is given by

d(3) = 15− 2
3

(3).

A clear pattern emerges, particularly if you summarize the results as we have in
Table 3.

t d(t)
0 15
1 15 − (2/3)(1)
2 15 − (2/3)(2)
3 15 − (2/3)(3)

Table 3. Determining
a model equation.

Table 3 reveals that the linear relationship (see Figure 10) between the distance d
from the detector at time t can be modeled by the equation
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d(t) = 15− 2
3
t. (5)

Again, the careful reader will check that equation (5) returns the correct distance d
at the times t = 0, 1, 2, and 3 recorded in Table 3.

There are two important observations to be made about equation (5).

1. The 15 in d(t) = 15−(2/3)t is the initial distance from the detector and corresponds
to the point (0, 15) in Figure 11(a).

2. The −2/3 in d(t) = 15−(2/3)t is the rate at which the distance between the student
and detector is changing as determined in Figure 11(b). It is negative because the
distance is decreasing with time.

Equation (5) can be used to make predictions. For example, to determine the
distance between the student and detector at the end of 9 seconds, insert t = 9 into
equation (5).

d(9) = 15− 2
3
(9) = 15− 6 = 9.

Of course, the notation d(9) = 9 is interpreted to mean “the distance between the
student and the detector after 9 seconds is 9 meters.”



232 Chapter 3 Linear Functions

Version: Fall 2007



Section 3.1 Linear Models 233

Version: Fall 2007

3.1 Exercises

1.

Jodiah is saving his money to buy a Playsta-
tion 3 gaming system. He estimates that
he will need $950 to buy the unit itself,
accessories, and a few games. He has
$600 saved right now, and he can rea-
sonably put $60 into his savings at the
end of each month.
Since the amount of money saved de-
pends on how many months have passed,
choose time, in months, as your indepen-
dent variable and place it on the hori-
zontal axis. Let t represent the number
of months passed, and make a mark for
every month.
Choose money saved, in dollars, as your
dependent variable and place it on the
vertical axis. LetA represent the amount
saved in dollars. Since Jodiah saves $60
each month, it will be convenient to let
each box represent $60.
Copy the following coordinate system onto
a sheet of graph paper.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/2

Time t (months)

Amount saved A (dollars)

0 2 4 6
60

180

300

420

540

660

780

900

1020

a) At month 0, Jodiah has $600 saved.
This corresponds to the point (0, 600).
Plot this point on your coordinate sys-
tem.

b) For the next month, he saved $60
more. Beginning at point (0, 600),
move 1 month to the right and $60
up and plot a new data point. What
are the coordinates of this point?

c) Each time you go right 1 month, you
must go up by $60 and plot a new
data point. Repeat this process until
you reach the edge of the coordinate
system.

d) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

e) Use your graph to estimate how much
money Jodiah will have saved after 7
months.

f) Using your graph, estimate how many
months it will take him to have saved
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up enough money to buy his gaming
system, accessories, and games.

2.

The sign above shows the prices for a taxi
ride from Liberty Cab Company. Since
the cost depends on the distance trav-
eled, make the distance be the indepen-
dent variable and place it on the hori-
zontal axis. Let d represent the distance
traveled, in miles. Because the cab com-
pany charges per 1/6 mile, it is conve-
nient to mark every 1/6 mile.
Make price, in $, your dependent vari-
able and place it on the vertical axis. Let
C represent the cost, in $. Because the
cost occurs in increments of 40c, mark
every 40c along the vertical axis.
Copy the following coordinate system onto
a sheet of graph paper.

distance d (miles)

Cost C ($)

0 1 2 3
0.20
0.60
1.00
1.40
1.80
2.20
2.60
3.00
3.40
3.80
4.20
4.60
5.00
5.40
5.80
6.20
6.60

a) For the first 1/6 mile of travel, the
cost is $2.30. This corresponds to the
point (1/6,$2.30). Plot this point on
your coordinate system.

b) For the next 1/6 of a mile, the cost
goes up by 40c. Beginning at point
(1/6,$2.30), move 1/6 of a mile to the
right and 40c up and plot a new data
point. What are the coordinates of
this point?

c) Each time you go right 1/6 of a mile,
you must go up by 40c and plot a new
data point. Repeat this process until
you reach the edge of your coordinate
system.

d) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

e) Melissa steps into a cab in the city
of Niagara Falls, about 2 miles from
Niagara Falls State Park. Use your
graph to estimate the fare to the park.

f) Elsewhere in the area, Georgina takes
a cab. She has only $5 for the fare.
Use the graph to estimate how far she
can travel, in miles, with only $5 for
the fare.

3. A boat is 200 ft from a buoy at sea.
It approaches the buoy at an average speed
of 15 ft/s.

a) Choosing time, in seconds, as your
independent variable and distance from
the buoy, in feet, as your dependent
variable, make a graph of a coordi-
nate system on a sheet of graph pa-
per showing the axes and units. Use
tick marks to identify your scales.

b) At time t=0, the boat is 200 ft from
the buoy. To what point does this
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correspond? Plot this point on your
coordinate system.

c) After 1 second, the boat has drawn
15 ft closer to the buoy. Beginning
at the previous point, move 1 second
to the right and 15 ft down (since the
distance is decreasing) and plot a new
data point. What are the coordinates
of this point?

d) Each time you go right 1 second, you
must go down by 15 ft and plot a new
data point. Repeat this process until
you reach 12 seconds.

e) Draw a line through your data points.

f) When the boat is within 50 feet of
the buoy, the driver wants to begin
to slow down. Use your graph to esti-
mate how soon the boat will be within
50 feet of the buoy.

4. Joe owes $24,000 in student loans.
He has finished college and is now work-
ing. He can afford to pay $1500 per month
toward his loans.

a) Choose time in months as your inde-
pendent variable and amount owed,
in $, as the dependent variable. On a
sheet of graph paper, make a sketch
of the coordinate system, using tick
marks and labeling the axes appro-
priately.

b) At time t = 0, Joe has not yet paid
anything toward his loans. To what
point does this correspond? Plot this
point on your coordinate system.

c) After one month, he pays $1500. Be-
ginning at the previous point, move 1
month to the right and $1500 down
(down because the debt is decreas-
ing). Plot this point. What are its
coordinates?

d) Each time you go 1 month to the
right, you must move $1500 down.
Continue doing this until his loans
have been paid off.

e) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

f) Use the graph to determine how many
months it will take him to pay off the
full amount of his loans.

5.

Earl the squirrel has only ten more days
until hibernation. He needs to save 50
more acorns. He is tired of collecting
acorns and so he is only able to gather 8
acorns every 2 days.

a) Let t represent time in days and make
it your independent variable. Let N
represent the number of acorns col-
lected and make it your dependent
variable. Set up an appropriately scaled
coordinate system on a sheet of graph
paper.

b) At time t = 0, Earl has collected zero
of the acorns he needs. To what point
does this correspond? Plot this point
on your coordinate system.

c) After two days (t = 2), Earl has col-
lected 8 acorns. Beginning at the pre-
vious point, move 2 days to the right



236 Chapter 3 Linear Functions

Version: Fall 2007

and 8 acorns up. Plot this point.
What are its coordinates?

d) Each time you go 2 days to the right,
you must move 8 acorns up and plot a
point. Continue doing this until you
reach 14 days.

e) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

f) Use the graph to determine how many
acorns he will have collected after 10
days. Will Earl have collected enough
acorns for his winter hibernation?

g) Notice that the number of acorns col-
lected is increasing at a rate of 8 acorns
every 2 days. Reduce this to a rate
that tells the average number of acorns
that is collected each day.

h) The table below lists the number of
acorns Earl will have collected at var-
ious times. Some of the entries have
been completed for you. For exam-
ple, at t = 0, Earl has no acorns, so
N = 0. After one day, the amount
increases by 4, so N = 0 + 4(1). Af-
ter two days, two increases have oc-
curred, so N = 0+4(2). The pattern
continues. Fill in the missing entries.

t N

0 0
1 0 + 4(1)
2 0 + 4(2)
3 0 + 4(3)
4
6
8
10
12
14

i) Express the number of acorns collected,
N , as a function of the time t, in days.

j) Use your function to predict the num-
ber of acorns that Earl will have after
10 days. Does this answer agree with
your estimate from part (f)?

6. On network television, a typical hour
of programming contains 15 minutes of
commercials and advertisements and 45
minutes of the program itself.

a) Choose amount of television watched
as your independent variable and place
it on the horizontal axis. Let T repre-
sent the amount of television watched,
in hours. Choose total amount of com-
mercials/ads watched as your depen-
dent variable and place it on the ver-
tical axis. Let C represent the total
amount of commercials/ads watched,
in minutes. Using a sheet of graph
paper, make a sketch of a coordinate
system and label appropriately.

b) For 0 hours of programming watched,
0 minutes of commercials have been
watched. To what point does this
correspond? Plot it on your coordi-
nate system.

c) After watching 1 hour of program-



Section 3.1 Linear Models 237

Version: Fall 2007

ming, 15 minutes of commercials/ads
have been watched. Beginning at the
previous point, move 1 hour to the
right and 15 minutes up. Plot this
point. What are its coordinates?

d) Each time you go 1 hour to the right,
you must move 15 minutes up and
plot a point. Continue doing this un-
til you reach 5 hours of programming.

e) Draw a line through your data points.

f) Billy watches TV for five hours on
Monday. Use the graph to determine
how many minutes of commercials he
has watched during this time.

g) Suppose a person has watched one
hour of commercials/ads. Use the graph
to estimate how many hours of tele-
vision he watched.

h) The following table shows numbers
of hours of programming watched as
it relates to number of minutes of com-
mercials/ads watched. For 0 hours
of TV, 0 minutes of commercials/ads
are watched. For each hour of TV
watched, we must count 15 minutes
of commercials/ads. So, for 1 hour,
0 + 15(1) minutes of commercials are
watched. For 2 hours, 0 + 15(2) min-
utes; and so on. Fill in the missing
entries.

T (hrs) C (mins)
0 0
1 0 + 15(1)
2 0 + 15(2)
3
4
5

i) Express the amount of commercials/ads
watched, C, as a function of the amount

of television watched T. Use your equa-
tion to predict the amount of com-
mercials/ads watched for 5 hours of
television programming. Does this
answer agree with your estimate from
part (f)?

7. According to NATO (the National
Association of Theatre Owners), the av-
erage price of a movie ticket was 5.65 dol-
lars in the year 2001. Since then, the av-
erage price has been rising each year by
about 20c.

a) Choose year, beginning with 2000, as
the independent variable and make
marks every year on the axis. Choose
average ticket price, in dollars, as your
dependent variable and begin at 5.65
dollars, with marks every 10c above.
Make a sketch of a coordinate system
and label appropriately.

b) In 2001, the average ticket price was
5.65 dollars, corresponding to the point
(2001, 5.65). Plot it on your coordi-
nate system.

c) In 2002, one year later, the average
price rose by about 20c. Beginning
at the previous point, move right by
1 year and up by 20c and plot the
point. What are its coordinates?

d) Each time you go 1 year to the right,
you must move up by 20c and plot a
point. Continue doing this until the
year 2010.

e) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

f) Use the graph to estimate what year
the average price of a ticket will pass
7.00 dollars.
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8. When Jessica drives her car to a work-
related conference, her employer reim-
burses her approximately 45 cents per
mile to cover the cost of gas and the
wear-and-tear on the vehicle.

a) Using distance traveled d, in miles,
as the independent variable and amount
reimbursed A, in dollars, as the de-
pendent variable, make a sketch of a
coordinate system and label appro-
priately. Mark distance every 5 miles
and amount reimbursed every $0.45.

b) For traveling 0 miles, the reimburse-
ment is 0. This corresponds to the
point (0, 0). Plot it on your coordi-
nate system.

c) For a trip that requires her to drive
a total of 5 miles, she is reimbursed
5(0.45) = $2.25. This corresponds to
the point (5, $2.25). Plot it.

d) For each 5 miles you go to the right,
you must go up $2.25 and plot the
point. Do this until you reach 20
miles.

e) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

f) In March, Jessica attends a confer-
ence that is only 5 miles away. Count-
ing roundtrip, she travels 10 total miles.
Use the graph to determine how much
she is reimbursed.

g) In December, she attends a confer-
ence 10 miles away. How long is her
trip in total? Use the graph to de-
termine how much she will be reim-
bursed.

h) For longer trips, such as 200 total
miles, you will probably need to make

a much larger graph. And what if she
travels 400 miles? Or further? It is
limitations such as these that make
it useful to find an equation that de-
scribes what the graph shows. To
find the equation, we start with a ta-
ble that helps us to understand the
relationship between the dependent
and independent variables. Complete
the table below.

d
(miles) A ($)

0 0
1 0 + 0.45(1)
2 0 + 0.45(2)
3
4
5
10
20
50
100

i) Use the table from part (h) to come
up with an equation that relates d
and A.

j) Now, use the equation to determine
the reimbursement amounts for trips
of 200 miles and 400 miles.

9. Temperature is typically measured
in degrees Fahrenheit in the United States;
but it is measured in degrees Celsius in
many other countries. The relationship
between Fahrenheit and Celsius is lin-
ear. Let’s choose the measurement of
degrees in Celsius to be our independent
variable and the measurement of degrees
in Fahrenheit to be our dependent vari-
able. Water freezes at 0 degrees Celsius,
which corresponds to 32 degrees Fahren-
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heit; and water boils at 100 degrees Cel-
sius, which corresponds to 212 degrees
Fahrenheit. We can plot this information
as the two points (0,32) and (100,212).
The relationship is linear, so have the fol-
lowing graph:

C (deg)

F (deg)

0 16 32 48 64 80 96

16
32
48
64
80
96

112
128
144
160
176
192
208

(0,32)(0,32)

(100,212)(100,212)

a) Use the graph to approximate the
equivalent Fahrenheit temperature for
48 degree Celsius.

b) To determine the rate of change of
Fahrenheit with respect to Celsius,
we draw a right triangle with sides
parallel to the axes that connects the
two points we know...

C (deg)

F (deg)

0 16 32 48 64 80 96

16
32
48
64
80
96

112
128
144
160
176
192
208

Q(100,212)Q(100,212)

PP
RR

180 deg

100 deg

Side PR is 100 degrees long, repre-
senting an increase in 100 degrees Cel-
sius. Side RQ is 180 degrees, rep-

resenting an increase in 180 degrees
Fahrenheit. Find the rate of increase
of Fahrenheit per Celsius.

c) The following table shows some val-
ues of temperatures in Celsius and
their corresponding Fahrenheit read-
ings. Zero degrees Celsius corresponds
to 32 degrees Fahrenheit. Our rate
is 9 degrees Fahrenheit for every 5
degrees Celsius, or 9/5 of a degree
Fahrenheit for every 1 degree Celsius.
So, for 1 degree Celsius, we increase
the Fahrenheit reading by 9/5 degree,
getting 32 + 9/5(1). For 2 degrees
Celsius, we increase by two occurrences
of 9/5 degree to get 32 + 9/5(2). Fill
in the missing entries, following the
pattern.

C (deg) F (deg)
0 32
1 32 + 9

5(1)
2 32 + 9

5(2)
3 32 + 9

5(3)
4
5
10
20
48
100

d) Use the table to form an equation
that gives degrees Fahrenheit in terms
of degrees Celsius.

10. On June 16, 2006, the conversion
rate from Euro to U.S. dollars was ap-
proximately 0.8 to 1, meaning that every
0.8 Euros were worth 1 U.S. dollar.

a) Choosing dollars to be the indepen-
dent variable and Euros to be the de-
pendent variable, make a graph of co-
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ordinate system. Mark every dollar
on the dollar axis and every 0.8 Eu-
ros on the Euro axis. Label appropri-
ately.

b) Zero dollars are worth 0 Euros. This
corresponds to the point (0, 0). Plot
it on your coordinate system.

c) One dollar is worth 0.8 Euros. Plot
this as a point on your coordinate
system.

d) For every dollar you move to the right,
you must go up 0.8 Euros and plot a
point. Do this until you reach $10.

e) Draw a line through your data points.

f) Use the graph to estimate how many
Euros $8 are worth.

g) Use the graph to estimate how many
dollars 5 Euros are worth.

h) The following table shows some val-
ues of dollars and their corresponding
value in Euros. Fill in the missing en-
tries.

Dollars Euros

0 0
1 0 + 0.8(1)
2 0 + 0.8(2)
3
4
5
10

i) Use the table to make an equation
that can be used to convert dollars
to Euros.

j) Use the equation from (i) to convert
$8 to Euros. Does your answer agree
with the answer from (f) that you ob-
tained using the graph?

11. The Tower of Pisa in Italy has its
famous lean to the south because the clay
and sand ground on which it is built is
softer on the south side than the north.
The tilt is often found by measuring the
distance that the upper part of the tower
overhangs the base, indicated by h in the
figure below. In 1980, the tower had a
tilt of h = 4.49m, and this tilt was in-
creasing by about 1 mm/year.

Figure 13. h measures the tilt of the
Tower of Pisa.

We will investigate how the tilt of the
tower changed from 1980 to 1995.

a) First, note that our units do not match:
The tilt in 1980 was given as 4.49 m,
but the annual increase in the tilt is
given as 1 mm/year. Our first goal is
to make the units the same. We will
use millimeters (mm). Convert 4.49
m to mm.

b) Get a sheet of graph paper. Since
the tilt of the tower depends on the
year, make the year the independent
variable and place it on the horizontal
axis. Let t represent the year.
Make the tilt the dependent variable
and place it on the vertical axis. Let
h represent the tilt, measured in mil-
limeters (mm).
Choose 1980 as the first year on the
horizontal axis and mark every year
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thereafter, until 1995. Let the ver-
tical axis begin at 4.49 m, converted
to mm from part (a), since that was
our first measurement; and then we
mark every 1 mm thereafter up to
4510 mm.

c) Think of 1980 as the starting year.
Together with the tilt measurement
from that year, it forms a point. What
are the coordinates of this point? Plot
the point on your coordinate system.

d) Beginning at the first point, from part
(c), move one year to the right (to
1981) and 1 mm up (because the tilt
increases) and plot a new data point.

e) Each time you move one year to the
right, you must move 1 mm up and
plot a new point. Repeat this process
until you reach the year 1995.

f) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points. We can use this model to
make predictions.

g) According to computer simulation mod-
els, which use sophisticated mathe-
matics, the tower would be in danger
of collapsing when h reaches about
4495 mm. Use your graph to esti-
mate what year this would happen.

h) In reality, the tilt of the tower passed
4495 mm and the tower did not col-
lapse. In fact, the tilt increased to
4500 mm before the tower was closed
on January 7, 1990, to undergo ren-
ovations to decrease the tilt. (The
tower was reopened in 2001, after en-
gineers used weights and removed dirt
from under the base to decrease the
tilt by 450 mm.) What might be some
reasons why the prediction of the com-
puter model was wrong?

i) The following table lists the tilt of the
tower, h, the year, and the number
of years since 1980. In 1980, the tilt
was 4490 mm and no occurrences of
the 1 mm increase had happened yet,
so we fill in 4490 + 0(1) = 4490. In
1981, one occurrence of the 1 mm in-
crease had occurred because one year
had passed since 1980. Therefore, the
tilt was 4490+1(1). In 1982, two oc-
currences of the 1 mm increase had
occurred, because 2 years had passed
since 1980. Thus, the tilt was 4490+
2(1). And the pattern continues in
this manner. Fill in the remaining
entries.

Year yrs x after ’80 tilt h
1980 0 4490 + 0(1)
1981 1 4490 + 1(1)
1982 2 4490 + 1(2)
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995

j) Let x represent the number of years
since 1980 and h represent the tilt.
Using the table above, write an equa-
tion that relates h and x.

k) Use your equation to predict the tilt
in 1990. Does it agree with the actual
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value from 1990? Does it agree with
the value that is shown on the graph
you made?

l) In part (g), you used the graph to
predict the year in which the tilt would
be 4495mm. Use your equation to
make the same prediction. Do the
answers agree?

12. According to the Statistical Abstract
of the United States (www.census.gov),
there were approximately 31, 000 crimes
reported in the United States in 1998,
and this was dropping by a rate of about
2900 per year.

a) On a sheet of graph paper, make a
coordinate system and plot the 1998
data as a point. Note that you will
only need to graph the first quadrant
of a coordinate system, since there
are no data for years before 1998 and
there cannot be a negative number of
crimes reported. Use the given rate
to find points for 1999 through 2006,
and then draw a line through your
data. We are constructing a continu-
ous model for our discrete situation.

b) The following table lists the number
of crimes reported, C, the year, and
the number of years since 1998. In
1998, the number was 31, 000 and no
occurrences of the 2900 decrease had
happened yet, so we fill in 31000 −
2900(0). In 1999, one occurrence of
the 2900 decrease had happened be-
cause one year had passed since 1998.
Therefore, the number of crimes re-
ported was 31000−2900(1). And the
pattern continues in this manner. Fill
in the remaining entries.

Year yrs x after 1998 No. of crimes C
1998 0 31000− 2900(0)
1999 1 31000− 2900(1)
2000
2001
2002

c) Observing the pattern in the table,
we come up with the equation C =
31000 − 2900x to relate the number
of crimes C to the number of years
x after 1998. Here, C is a function
of x, and so we can use the notation
C(x) = 31000 − 2900x to emphasize
this.

i. Compute C(5).
ii. In a complete sentence, explain

what C(5) represents.
iii. Compute C(8).
iv. In a complete sentence, explain

what C(8) represents.

13. According to the Statistical Abstract
of the United States (www.census.gov),
there were approximately 606, 000 inmates
in United States prisons in 1999, and this
was increasing by a rate of about 14, 000
per year.

a) On a sheet of graph paper, make a
coordinate system and plot the 1999
data as a point. Note that you will
only need to graph the first quadrant
of a coordinate system, since there
are no data for years before 1999 and
there cannot be a negative number of
crimes reported. Use the given rate
to find points for 2000 through 2006,
and then draw a line through your
data. We are constructing a continu-
ous model for our discrete situation.
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b) The following table lists the num-
ber of inmates, N , the year, and the
number of years since 1999. In 1999,
the number was 606, 000 and no oc-
currences of the 14, 000 increase had
happened yet, so we fill in 606000 +
14000(0). In 2000, one occurrence of
the 14, 000 increase had happened be-
cause one year had passed since 1999.
Therefore, the number of crimes re-
ported was 606000 + 14000(1). And
the pattern continues in this manner.
Fill in the remaining entries.

Year yrs x after ’99 No. of
inmates N

1999 0 606000+14000(0)
2000 1 606000+14000(1)
2001
2002

c) Observing the pattern in the table,
we come up with the equation N =
606000+14000x to relate the number
of crimes C to the number of years
x after 1999. Here, N is a function
of x, and so we can use the notation
N(x) = 606000+14000x to emphasis
this.

i. Compute N(5).
ii. In a complete sentence, explain

what N(5) represents.
iii. Compute N(7).
iv. In a complete sentence, explain

what N(7) represents.
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3.1 Answers

1.

b) (1, $660)

d)

time t (months)

Amount saved A (dollars)

0 2 4 6
60

180

300

420

540

660

780

900

1020

(0,600)(0,600)
(1,660)(1,660)

e) $1020

f) 6 months

3.

b) (0, 200)

c) (1, 185)

e)

time t (sec)

distance d (ft)

0 2 4 6 8 10 120
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200 (0,200)(0,200)

(1,185)(1,185)

f) 10 seconds

5.

b) (0, 0)

c) (2, 8)

e)

time t (days)

number N (acorns)

0 2 4 6 8 10 12 14
0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60

(2,8)(2,8)

f) 40 acorns
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g) 4 acorns/day

h)

t N

0 0
1 0 + 4(1)
2 0 + 4(2)
3 0 + 4(3)
4 0 + 4(4)
6 0 + 4(6)
8 0 + 4(8)
10 0 + 4(10)
12 0 + 4(12)
14 0 + 4(14)

i) N = 0 + 4t or N = 4t

j) N = 40; yes.

7.

c) (2002, 5.85)

e)

Y ear

P (dollars)

2000 2002 2004 2006 2008 20105.65
5.85
6.05
6.25
6.45
6.65
6.85
7.05
7.25
7.45
7.65

(2002,$5.85)(2002,$5.85)

f) 2008

9.

a) The estimate should be approximately
120 degrees Fahrenheit.

b) 9
5

c)

C (deg) F (deg)
0 32
1 32 + 9

5(1)
2 32 + 9

5(2)
3 32 + 9

5(3)
4 32 + 9

5(4)
5 32 + 9

5(5)
10 32 + 9

5(10)
20 32 + 9

5(20)
48 32 + 9

5(48)
100 32 + 9

5(100)

d) F = 9
5C + 32

11.

a) 4490mm

c) (1980, 4490)

f)

Year

tilt h (mm)

′80 ′82 ′84 ′86 ′88 ′90 ′92 ′94
4490
4492
4494
4496
4498
4500
4502
4504
4506
4508
4510
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g) 1985

h) The computer model must not have
taken into consideration certain un-
expected factors.

i)

Year yrs after 1980 tilt h
1980 0 4490
1981 1 4490 + 1(1)
1982 2 4490 + 1(2)
1983 3 4490 + 1(3)
1984 4 4490 + 1(4)
1985 5 4490 + 1(5)
1986 6 4490 + 1(6)
1987 7 4490 + 1(7)
1988 8 4490 + 1(8)
1989 9 4490 + 1(9)
1990 10 4490 + 1(10)
1991 11 4490 + 1(11)
1992 12 4490 + 1(12)
1993 13 4490 + 1(13)
1994 14 4490 + 1(14)
1995 15 4490 + 1(15)

j) h = 4490 + 1x

k) 4500mm. Yes, it agrees with the ac-
tual value in 1990.

l) 1985. Yes, it agrees with our answer
from (g).

13.

a)

Year

N (thousands)

2000 2002 2004 2006606
620
634
648
662
676
690
704

b)

Year yrs x after ’99 No. of
inmates N

1999 0 606000+14000(0)
2000 1 606000+14000(1)
2001 2 606000+14000(2)
2002 3 606000+14000(3)

c)

i. 676, 000.
ii. It means that, according to our

model, 5 years after 1999 (that is,
in 2004), the number of inmates
will be 676, 000.

iii. 704, 000.
iv. It means that, according to our

model, in 2006, the number of in-
mates will be 704, 000



Section 3.2 Slope 247

Version: Fall 2007

3.2 Slope
In the previous section on Linear Models, we saw that if the dependent variable was
changing at a constant rate with respect to the independent variable, then the graph
was a line. If the rate was positive, then as we swept our eyes from left to right,
the line rose upward, the dependent variable increasing with increasing changes in the
independent variable. If the rate was negative, then the graph fell downward, the
dependent variable decreasing with increasing changes in the independent variable.
You may have also learned that higher rates led to steeper lines (lines that rose more
quickly) and lower rates led to lines that were less steep.

In this section, we will connect the intuitive concept of rate developed in the previous
section with a formal definition of the slope of a line. To start, let’s state up front what
is meant by the slope of a line.

Slope is a number that tells us how quickly a line rises or falls.

If slope is a number that is directly connected to the “steepness” of a line, then we
should have certain expectations.

Expectations.

1. Lines with positive slope should slant uphill (as our eyes sweep from left to
right).

2. Lines with negative slope should slant downhill (as our eyes sweep from left to
right).

3. Because any horizontal line neither slants uphill nor downhill, we expect that
it should have slope equal to zero.

4. Lines with a larger positive slope should rise more quickly than lines with a
smaller positive slope.

5. If two lines have negative slope, then the line having the slope with larger
absolute value should fall more quickly than the other line.

It remains to define how to compute the slope of a particular line. Whatever
definition we choose, it should conform with the expectations outlined above. We
also would like the definition of slope to conform with the concept of rate developed in
the previous section. Thus, we make the following definition.

Definition 1. The slope of a line is the rate at which the dependent variable
is changing with respect to the independent variable.

Note how the word “change” is used Definition 1. It is important to understand
that the change in some quantity can be positive, negative, or zero. For example, if

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/3
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the temperature outside is 40◦ F when I leave my home at 6 AM, and at noon the
temperature is 65◦ F, then the change in temperature is a positive 25◦ F. On the other
hand, if the temperature outside is 65◦ F at noon, and the temperature is 50◦ F when
I return home in the evening, then the change in temperature is a negative 15 degrees
Fahrenheit.

In calculating the change in a quantity, follow this rule.

Definition 2.

Change in Quantity = Latter Measurement− Former Measurement.

Thus, if T represents the temperature and ∆T represents the change in the tem-
perature4, then in our first case (taking the temperature in the morning then later at
noon), the change in temperature is

∆T = Latter− Former = 65◦ F− 40◦ F = 25◦ F.

This positive result represents an increase in the temperature of 25◦ F.
In the second case (taking the temperature at noon then later in the evening), the

change in temperature is

∆T = Latter− Former = 50◦ F− 65◦ F = −15◦ F.

This negative result represents a decrease in the temperature of 15◦ F.

Tip 3. Readers should note that the direction of subtraction is extremely im-
portant. To detect the change in a quantity, always subtract the former (earlier)
measurement from the latter (later) measurement.

I Example 4. A ball is perched at rest at the top of a long ramp. It’s given a little
tap and it begins to roll down the ramp. The speed v of the ball (in meters per second)
is plotted versus the time t (in seconds) in Figure 1.
Determine the slope of the line.

We’ve defined the slope as the rate at which the dependent variable is changing with
respect to the independent variable. In this case, the speed v of the ball “depends”
upon the amount of time t that has elapsed. Consequently, v is the dependent variable
and has been placed on the vertical axis.5 On the other hand, t is the independent
variable and has been assigned the horizontal axis.

The first four letters of the Greek alphabet are α (“alpha”), β (“beta”), γ (“gamma”), and δ (“delta”),4

which have similar meanings to the letters a, b, c, and d of the English alphabet. The symbol ∆ is the
uppercase equivalent of the letter δ, so think of ∆ as a “capital D.” Note that the word “difference”
starts with the letter “d,” so our choice of ∆T (read "delta-T") for the “change in T” is no accident.
The change in T is found by taking the difference in T .
It is traditional to place the dependent variable on the vertical axis and the independent variable on5

the horizontal axis. Although not required, we will try to follow this tradition when possible.
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t (s)

v (m/s)

0 5 100

5

10

15

Figure 1. Speed versus time.

To determine the rate at which v is changing with respect to t (the slope of the line),
we first select two points P (2, 3) and Q(8, 12) on the line, as shown in Figure 2. As
we sweep our eyes from left to right (a convention we will always follow when dealing
with slope), the point P occurs before the point Q. Hence, we consider P the “former”
measurement and point Q the “latter” measurement.

t (s)

v (m/s)

0 5 100

5

10

15

P (2,3)

Q(8,12)

∆t=6 s

∆v=9 m/s

Figure 2. Determining
the slope of the line.

At point P , the time is t = 2 seconds, then at point Q the time is t = 8 seconds. The
change in t is found by subtracting the former measurement from the latter measure-
ment.

∆t = 8 s− 2 s = 6 s.

At point P , the speed is v = 3 meters per second, then at point Q the speed is v = 12
meters per second. Hence, the change in v is

∆v = 12 m/s− 3 m/s = 9 m/s.

Finally, the slope of the line is defined as the rate at which the dependent variable v is
changing with respect to the independent variable t. That is,

Slope = ∆v
∆t

= 9 m/s
6 s

= 3
2

m/s
s
.
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Scientists prefer to write this as 1.5 m/s2, but this might not be as intuitive as
writing 1.5 (m/s)/s, which indicates that the speed is increasing at a rate of 1.5 m/s
every second.6 This makes good sense as a ball rolling down a ramp will pick up speed
with the passage of time. The slope provides an exact numerical description of how the
speed increases with respect to time.

Note that our definition of the slope of the line satisfies one of our goals: the slope
is precisely the same as the notion of rate described in the previous section. Indeed,
note the right triangle we’ve drawn in Figure 2. The bottom edge of the triangle is
12 boxes long, but every 2 boxes represents one second, so this displacement in the
time t direction is 6 seconds. The vertical side of the right triangle is 9 boxes in height
where each box represents 1 meter per second. Consequently, this vertical edge of the
right triangle represents a positive displacement of 9 meters per second. Thus, every 6
seconds, there is an increase in speed of 9 meters per second. Hence, the ball is picking
up speed at the rate of 9 meters per second every 6 seconds, or equivalently, 1.5 meters
per second every second.

Remark. In Figure 2, the rate at which the speed is increasing with respect to
time is equivalent to the slope of the line.

Suppose that we had labeled our points P (tinitial, vinitial) and Q(tfinal, vfinal) as shown
in Figure 3.

t (s)

v (m/s)

0 5 100

5

10

15

P (tinitial,vinitial)

Q(tfinal,vfinal)

∆t=tfinal−tinitial

∆v=vfinal−vinitial

Figure 3. Initial and
final measurements.

Now the change in speed v would be

∆v = vfinal − vinitial,

and the change in time t would be

∆t = tfinal − tinitial.

Scientists call this the acceleration of the ball. We’ll have more to say about acceleration in upcoming6

sections.
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Therefore, the slope of the line would be computed with the following formula.

Slope = ∆v
∆t

= vfinal − vinitial
tfinal − tinitial

.

With P (tinitial, vinitial) = (2 s, 3 m/s) and Q(tfinal, vfinal) = (8 s, 12 m/s), this becomes

Slope = 12 m/s− 3 m/s
8 s− 2 s

= 9 m/s
6 s

= 1.5 m/s2.

The Slope Formula
The last calculation in Example 4 allows us to discuss the slope of a line as a
purely mathematical concept, one that is not rooted in a supporting application as
in Example 4. Take, for example, the line shown in Figure 4 that passes through
the points P (−3,−3) and Q(2, 1).

x

y

5

5

P (−3,−3)

Q(2,1)

Figure 4. Computing the slope of a
line in an xy-coordinate system.

In this example, the dependent variable is y and the independent variable is x, so
the slope of the line is ∆y (the change in y) divided by ∆x (the change in x).

Slope = ∆y
∆x
.

Sweeping our eyes from left to right, the point P comes first, followed by the point Q.
Keeping “latter minus former” in mind, the change in y is computed by subtracting
the y-value of point P from the y-value of point Q. That is,

∆y = 1− (−3) = 4.

Similarly, the change in x is computed by subtracting the x-value of point P from
the x-value of point Q. That is,

∆x = 2− (−3) = 5.
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Thus, the slope of the line is

Slope = ∆y
∆x

= 4
5
.

Alternatively, we can use the points P and Q as vertices of a right triangle with sides
parallel to the axes (shown in Figure 5(a)). The horizontal edge of the right triangle
is 5 boxes (each representing 1 unit), so the displacement in x is 5 units. The vertical
edge is 4 boxes (each representing 1 unit), so the displacement in y is 4 units. Hence,
each time x is increased by 5 units, y experiences an increase of 4 units. Therefore, the
slope of the line is again 4/5.

x

y

5

5

P (−3,−3)

Q(2,1)

P (−3,−3)
∆x=5

∆y=4
x

y

5

5

P (x1,y1)

Q(x2,y2)

∆x=x2−x1

∆y=y2−y1

(a) (b)
Figure 5. Using a right triangle to determine the slope.

Suppose that we had labeled our points P (x1, y1) andQ(x2, y2) as shown in Figure 5(b).
Now the change in y would be7

∆y = y2 − y1,

and the change in x would be

∆x = x2 − x1.

Therefore, the slope of the line would be computed with the following formula.

Slope = ∆y
∆x

= y2 − y1
x2 − x1

With P (x1, y1) = (−3,−3) and Q(x2, y2) = (2, 1), this becomes

Slope = 1− (−3)
2− (−3)

= 4
5
.

The slope formula is worth summarizing in a definition.

Again, note that the Greek letter ∆ is like our uppercase “D.” “D” is for “difference.” The change in y,7

represented by ∆y (read "delta-Y") , is calculated by taking the “difference in y,” or y2 − y1.
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Definition 5. The slope of the line that passes through the points P (x1, y1) and
Q(x2, y2) is given by the formula

Slope = ∆y
∆x

= y2 − y1
x2 − x1

.

Let’s look at some more examples.

I Example 6. Find the slope of the line passing through the points P (−3,−2) and
Q(3, 1).

We can use the slope formula in Definition 5 to determine the slope. With
(x1, y1) = P (−3,−2) and (x2, y2) = Q(3, 1),

Slope = ∆y
∆x

= y2 − y1
x2 − x1

= 1− (−2)
3− (−3)

= 3
6

= 1
2
.

Readers will sometimes ask, “Which point should be (x1, y1) and which should be
(x2, y2)?” The short answer is, “It doesn’t matter!” Suppose instead, that we let
(x1, y1) = Q(3, 1) and (x2, y2) = P (−3,−2). Then,

Slope = ∆y
∆x

= y2 − y1
x2 − x1

= −2− 1
−3− 3

= −3
−6

= 1
2
.

Because the change in any quantity is found by subtracting the earlier measurement
from the later measurement, we will continue to stress the first order. However, if we
reverse the points as we did in our second calculation, both numerator and denominator
reverse sign with this interchange, so we get the same answer.

Of course, we can also determine the slope by plotting P (−3,−2) and Q(3, 1) and
the line that passes through P and Q, as we’ve done in Figure 6.

x

y

5

5

P (−3,−2)

Q(3,1)

∆x=6

∆y=3

Figure 6. Determining the slope from
the graph.

Starting at the point P , to get to the point Q, we move 6 boxes to the right, then 3
boxes up, as shown in Figure 6. Hence, the slope of the line is
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Slope = ∆y
∆x

= 3
6

= 1
2
.

Note that two of our expectations regarding the slope of a line are met with this
example.

1. The line through P (−3,−2) and Q(3, 1) in Figure 6 has slope 1/2. This is a
positive number and the line slants uphill (as expected) as we sweep our eyes from
left to right.

2. The slope in this example is 1/2, which is less than the slope of the line in Figure 5(a),
which was 4/5. Note that the line in Figure 6 is less steep than the line in
Figure 5(a), which was another of our earlier expectations regarding the slope
of a line.

I Example 7. Find the slope of the line passing through the points P (−4, 4) and
Q(4,−2).

We can use the slope formula in Definition 5 to determine the slope. With
(x1, y1) = P (−4, 4) and (x2, y2) = Q(4,−2),

Slope = ∆y
∆x

= y2 − y1
x2 − x1

= −2− 4
4− (−4)

= −6
8

= −3
4
.

We can also get the slope of the line from the graph in Figure 7. Starting at
the point P (−4, 4), move 8 units to the right, then 6 units downward, as shown in
Figure 7.

x

y

5

5

P (−4,4)

Q(4,−2)

∆x=8

∆y=−6

Figure 7. Determining
the slope from the graph.

Thus, the slope of the line is

Slope = ∆y
∆x

= −6
8

= −3
4
.
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Again, one of our earlier expectations regarding the slope of a line is met in this
example. The slope is −3/4, which is a negative number, and the line in Figure 7
slants downhill (as we sweep our eyes from left to right).

I Example 8. Draw a line that intercepts the y-axis at (0, 3) so that the line has
slope −4/3. Draw a second line that passes through the point P (−1,−1) with slope
3/5.

The slope of the first line is −4/3. This means that our line must slant downhill
(as we sweep our eyes from left to right). The slope is the change in y over the change
in x. Therefore, every time x increases by 3 units, y must decrease by 4 units. Plot
the point P (0, 3), as shown in Figure 8(a). Then, starting at P , move 3 units to the
right, followed by 4 units downward to the point Q(3,−1), as shown in Figure 8(a).
Draw the required line, which must pass through the points P and Q.

To draw the second line, first plot the point P (−1,−1), as shown in Figure 8(b).
Starting at the point P , move 5 units to the right, then upward 3 units to the point
Q(4, 2), as shown in Figure 8(b). Draw the required line passing through the points
P and Q.

x

y

5

5

P (0,3)

Q(3,−1)

∆x=3

∆y=−4
x

y

5

5

P (−1,−1)

Q(4,2)

∆x=5

∆y=3

(a) A line having y-intercept
at (0, 3) with slope −4/3.

(b) A line having slope
3/5 that passes through

the point P (−1,−1).
Figure 8.
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Parallel Lines
Because slope controls the “steepness” of a line, it is a simple matter to see that parallel
lines must have the same slope.

Property 9. Let L1 be a line having slope m1. Let L2 be a line having slope
m2. If L1 and L2 are parallel, then

m1 = m2 (10)

That is, any two parallel lines have the same slope.

I Example 11. What is the slope of any horizontal line? What is the slope of any
vertical line?

One would expect that our definition would verify that the slope of any horizontal
line is zero. Select, for example, the horizontal line shown in Figure 9(a). Select the
points (−3, 3) and (3, 3) on this line.

x

y

5

5

y=3
P (−3,3) Q(3,3)

x

y

5

5

x=−3

P (−3,−3)

Q(−3,3)

(a) Determine the slope
of a horizontal line.

(b) Determine the
slope of a vertical line.

Figure 9.

With (x1, y1) = (−3, 3) and (x2, y2) = (3, 3),

Slope = ∆y
∆x

= y2 − y1
x2 − x1

= 3− 3
3− (−3)

= 0
6

= 0.

Thus, the horizontal line in Figure 9(a) has slope equal to zero, exactly as expected.
Further, all horizontal lines are parallel to this horizontal line and have the same slope.
Therefore, all horizontal lines have slope zero.

We would surmise that the vertical line in Figure 9(b) has undefined slope (we’ll
explore this more fully in the exercises). In Figure 9(b), we’ve selected the points
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P (−3,−3) and Q(−3, 3) on the vertical line. With (x1, y1) = P (−3,−3) and (x2, y2) =
Q(−3, 3),

Slope = ∆y
∆x

= y2 − y1
x2 − x1

= 3− (−3)
−3− (−3)

= 6
0

, which is undefined.

The slope of the vertical line in Figure 9(b) is undefined because division by zero
is meaningless. Further, all vertical lines are parallel to this vertical line and have
undefined slope.

I Example 12. Draw a line through the point P (1, 2) that is parallel to the line
passing through the origin with slope −2/3.

We will first draw a line through the origin with slope −2/3. Plot the point P (0, 0),
then move 3 units to the right and 2 units downward to the point Q(3,−2), as shown
in Figure 10(a). Draw a line through the points P and Q as shown in Figure 10(a).

Next, plot the point P (1, 2) as shown in Figure 10(b). To draw a line through this
point that is parallel to the line through the origin, this second line must have the same
slope as the first line. Therefore, start at the point P (1, 2), as shown in Figure 10(b),
then move 3 units to the right and 2 units downward to the point Q(4, 0). Draw a line
through the points P and Q as shown in Figure 10(b). Note that this second line is
parallel to the first.

x

y

5

5

P (0,0)

Q(3,−2)

∆x=3

∆y=−2
x

y

5

5

P (1,2)

Q(4,0)

∆x=3

∆y=−2

(a) A line through the
origin with slope −2/3.

(b) A line through P (1, 2)
that is parallel to the

line through the origin.
Figure 10.
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Perpendicular Lines
The relationship between the slopes of two perpendicular lines is not as straightforward
as the relation between the slopes of two parallel lines. Let’s begin by stating the
pertinent property.

Property 13. Let L1 be a line having slope m1. Let L2 be a line having slope
m2. If L1 and L2 are perpendicular, then

m1m2 = −1. (14)

That is, the product of the slopes of two perpendicular lines is −1.

We can solve equation (14) for m1 in terms of m2.

m1 = − 1
m2

(15)

Equation (15) tells us that the slope of the first line is the negative reciprocal of the
slope of the second line.

For example, suppose that L1 and L2 are perpendicular lines with slopes m1 and
m2, respectively.

• If m2 = 2, then m1 = −1
2

.

• If m2 = 3
5

, then m1 = −5
3

.

• If m2 = −2
3

, then m1 = 3
2

.

Note that in each bulleted item, the product of the slopes is −1.
We won’t provide a proof of equation (15), but we will provide some motivating

evidence in the form of a graph.

I Example 16. Sketch the graphs of the lines passing through the origin having
slopes 2 and −1/2.

In Figure 11(a), we’ve plotted the point P (0, 0) at the origin, then moved 1 unit
to the right and 2 units upward to the point Q(1, 2). The resulting line passes through
the origin and has slope m1 = 2 (alternatively, m1 = 2/1).

In Figure 11(b), we’ve again plotted the point P (0, 0) at the origin, then moved 2
units to the right and 1 unit downward to the point Q(2,−1). The resulting line passes
through the origin and has slope m2 = −1/2.
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There are two important points that need to be made about the lines in Figure 11(b).

1. The two lines in Figure 11(b) are perpendicular. They meet and form a right angle
of 90◦. If you have a protractor available, you might want to measure the angle
between the two lines and note that the measure of the angle is 90◦.

2. The product of the two slopes is

m1m2 = 2 ·
(
−1

2

)
= −1.

x

y

5

5

P (0,0)

Q(1,2)

∆x=1

∆y=2
x

y

5

5

P (0,0)
Q(2,−1)

∆x=2
∆y=−1

(a) m1 = 2. (b) m2 = −1/2.
Figure 11. Sketching perpendicular lines.
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3.2 Exercises

1. Suppose you are riding a bicycle up
a hill as shown below.

Figure 12. Riding
a bicycle up a hill.

a) If the hill is straight as shown, con-
sider the slant, or steepness, of its in-
cline. As you ride up the hill, what
can you say about the slant? Does it
change? If so, how?

b) The slant is what mathematicians call
the slope. To confirm your answer to
part (a), you will place the hill on
a coordinate system and compute its
slope along various segments of the
hill. See the figure below.

run x (ft)

rise y (ft)

0 5 10 15 200

5

10

15

20

P (3,1)P (3,1) Q(9,3)Q(9,3)
R(12,4)R(12,4)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/8

Three points–P , Q and R–have been
labeled along the hill. We call the
vertical distance (height) the rise and
the horizontal distance the run. As
you ride up the hill from point P to
point Q, what is the rise? What is
the run? Use these values to compute
the slope from P to Q.

c) Now consider as you ride from P to
R. What is the rise? What is the
run? Use these values to compute the
slope from P to R.

d) Finally, consider as you ride from Q
to R. What is the rise? What is the
run? Use these values to compute the
slope from Q to R.

e) How do the values for slope from parts
(b)-(d) compare? Do these results
confirm your answer to part (a)?

f) Notice that the slope is positive in
this example. In this context of rid-
ing a bicycle over a hill, what would
negative slope mean?

2. Set up a coordinate system on a sheet
of graph paper, plotting the points P (3, 4)
andQ(−2,−7) and drawing the line through
them.

a) What can you say about the slope of
the line? Is it positive, zero, negative
or undefined? Is the slope the same
everywhere along the line, or does it
change in places? If it does change,
where are the slopes different?
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b) Use your graph to determine the change
in y (rise) and the change in x (run).
Use these results to compute the slope
of the line.

c) Use the slope formula to compute the
slope of the line.

d) Does your numerical solution from
part (c) agree with your graphical so-
lution from part (b)? If not, check
your work for errors.

3. Set up a coordinate system on a sheet
of graph paper, plotting the points P (−1, 3)
andQ(5,−3) and drawing the line through
them.

a) What can you say about the slope of
the line? Is it positive, zero, negative
or undefined? Is the slope the same
everywhere along the line, or does it
change in places? If it does change,
where are the slopes different?

b) Use your graph to determine the change
in y (rise) and the change in x (run).
Use these results to compute the slope
of the line.

c) Use the slope formula to compute the
slope of the line.

d) Does your numerical solution from
part (c) agree with your graphical so-
lution from part (b)? If not, check
your work for errors.

In Exercises 4-10, perform each of the
following tasks.

i. Make a sketch of a coordinate system;
plot the given points, and draw the
line through the points.

ii. Use the slope formula to compute the
slope of the line through the given
points. Reduce the slope where pos-
sible.

4. (0, 0) and (3, 4)

5. (−5, 2) and (0, 3)

6. (−3,−3) and (6,−5)

7. (2, 0) and (2, 2)

8. (−9,−3) and (6,−3)

9. (−8, 4) and (3,−8)

10. (−2, 6) and (5,−2)

11. For the following line, two conve-
nient points P and Q have been chosen.
We chose two points that were at the cor-
ners of boxes on our grid so their coordi-
nates are easy to read.

x

y

−10 −5 5 1010

−10

−5

5

10

PP

QQ

a) Label their coordinates.

b) Thinking of P as the starting point
and Q as the ending point, draw a
right triangle joining the points.
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c) Clearly state the change in y (rise)
and the change in x (run) from P to
Q.

d) Compute the slope.

12. For the following line, two conve-
nient points A and B have been chosen.
We chose two points that were at the cor-
ners of boxes on our grid so their coordi-
nates are easy to read.

x

y

−10 −5 5 1010

−10

−5

5

10

A(0,5)A(0,5)

B(5,−5)B(5,−5)

a) Label their coordinates.

b) Thinking of A as the starting point
and B as the ending point, draw a
right triangle joining the points.

c) Clearly state the change in y (rise)
and the change in x (run) from A to
B.

d) Compute the slope.

13. Copy the coordinate system below
onto a sheet of graph paper. Then do
the following:

a) Select any two convenient points P
and Q on the graph of the line. Label
each point with its coordinates.

b) Clearly state the change in y (rise)
and the change in x (run). Compute

the slope of the line.

x

y

−10 −5 5 1010

−10

−5

5

10

14. Copy the coordinate system below
onto a sheet of graph paper. Then do
the following:

a) Select any two convenient points P
and Q on the graph of the line. Label
each point with its coordinates.

b) Clearly state the change in y (rise)
and the change in x (run). Compute
the slope of the line.

x

y

−10 −5 5 1010

−10

−5

5

10

15. Copy the coordinate system below
onto a sheet of graph paper. Then do
the following:

a) Select any two convenient points P
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and Q on the graph of the line. Label
each point with its coordinates.

b) Clearly state the change in y (rise)
and the change in x (run). Compute
the slope of the line.

x

y

−10 −5 5 1010

−10

−5

5

10

16. Copy the coordinate system below
onto a sheet of graph paper. Then do
the following:

a) Select any two convenient points P
and Q on the graph of the line. Label
each point with its coordinates.

b) Clearly state the change in y (rise)
and the change in x (run). Compute
the slope of the line.

x

y

−10 −5 5 1010

−10

−5

5

10

17. The following coordinate system shows
the graphs of three lines, each with dif-
ferent slope. Match each slope with (a),
(b), or (c) appropriately.
slope = 1
slope = 2/3
slope = −2

x

y

−10 −5 5 1010

−10

−5

5

10
(b)(a)

(c)

18. The following coordinate system shows
the graphs of three lines, each with dif-
ferent slope. Match each slope with (a),
(b), or (c) appropriately.
slope = 2
slope = −1/3
slope = 1/2

x

y

−10 −5 5 1010

−10

−5

5

10
(b)

(a)

(c)
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19. Draw a coordinate system on a sheet
of graph paper for which the x- and y-
axes both range from −10 to 10.

a) Draw a line that contains the point
(0, 1) and has slope 2. Label the line
as (a).

b) On the same coordinate system, draw
a line that contains the point (0, 1)
and has slope −1/2. Label it as (b).

c) Use the slopes of these two lines to
show that they are perpendicular.

20. Draw a coordinate system on a sheet
of graph paper for which the x- and y-
axes both range from −10 to 10.

a) Draw a line that contains the point
(1,−2) and has slope 1/3. Label the
line as (a).

b) On the same coordinate system, draw
a line that contains the point (0, 1)
and has slope −3. Label it as (b).

c) Use the slopes of these two lines to
show that they are perpendicular.

21. Draw a line through the point P (1, 3)
that is parallel to the line through the
origin with slope −1/4.

22. Draw a line through the point P(1,3)
that is parallel to the line through the
origin with slope 3/5.

23. Draw a coordinate system on a sheet
of graph paper for which the x- and y-
axes both range from −10 to 10.

a) Draw a line that contains the point
(−1,−2) and has slope 3/4. Label
the line as (a).

b) On the same coordinate system, draw
a line that contains the point (0, 1)

and has slope 4/3. Label it as (b).

c) Are these lines parallel, perpendicu-
lar or neither? Show using their slopes.

24. Graph a coordinate system on a
sheet of graph paper for which the x- and
y-axes both range from −10 to 10.

a) Draw a line that contains the point
(−4, 0) and has slope 1. Label the
line as (a).

b) On the same coordinate system, draw
a line that contains the point (0, 2)
and has slope −1. Label it as (b).

c) Are these lines parallel, perpendicu-
lar or neither? Show using their slopes.

25.

Figure 13. A grade is a way of ex-
pressing slope.

On the road from Fort Bragg to Willits
or from Fort Bragg to Santa Rosa, one of-
ten passes signs like that shown above. A
grade is just slope expressed as a percent
instead of a fraction or decimal. In other
words, the grade measures the steepness
of the road just as slope does.

a) An 80/0 grade means that, for every
horizontal distance of 100 ft, the road
rises or drops 8 ft (depending on whether
you are going uphill or downhill). Write
80/0 grade as slope in reduced frac-
tional form.
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b) Suppose a hill drops 16 ft for every
180 ft horizontally. Find the grade
of the hill to the nearest tenth of a
percent.

c) Explain in a complete sentence or sen-
tences what a grade of 00/0 would rep-
resent.



Section 3.2 Slope 267

Version: Fall 2007

3.2 Answers

1.

a) No.

b) 1/3

c) 1/3

d) 1/3

e) All are the same because the steep-
ness of the hill is the same everywhere.

f) Negative slope would mean that you
are riding downhill.

3.

a) The slope is negative because the line
slants downhill. The slope is the same
everywhere along the line because the
slant of the line does not change.

b)

x

y

5−5−10

5

10

−5

−100

P (−1,3)P (−1,3)

Q(5,−3)Q(5,−3)

∆x=6

∆y=−6

slope = −1

c) ∆y = −6; ∆x = 6; slope = −1

d) Yes.

5. 1
5

7. undefined

9. −12
11

11.

a) (0, 0) and (6, 3)

b)

x

y

−10 −5 5 1010

−10

−5

5

10

P (0,0)P (0,0)

Q(6,3)Q(6,3)

c) ∆y = 3− 0 = 3; ∆x = 6− 0 = 6

d) slope = ∆y
∆x = 3

6 = 1
2
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13.

a) You can pick any two points on the
line; for example, (0, 0) and (5, 4) as
shown below.

x

y

−10 −5 5 1010

−10

−5

5

10

P (0,0)P (0,0)

Q(5,4)Q(5,4)

b) Changes in y and x will vary depend-
ing on points chosen, but slope = 4

5 .

15.

a) You can pick any two points on the
line; for example, (1, 1) and (3, 7) as
shown below.

x

y

−10 −5 5 1010

−10

−5

5

10

P (1,1)

Q(3,7)Q(3,7)

b) Changes in y and x will vary depend-
ing on points chosen, but slope = 3.

17. slope = 1: (b)
slope = 2/3: (c)
slope = −2: (a)

19.

b)

x

y

−10 −5 5 1010

−10

−5

5

10 (a)

(b)

(0,1)

(1,3)(1,3)

(2,0)

c) Yes.

21.

x

y

−10 −5 5 1010

−10

−5

5

10

P (1,3)P (1,3)
Q(5,2)Q(5,2)

(4,−1)(4,−1)
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23.

b)

x

y

−10 −5 5 1010

−10

−5

5

10 (b)

(a)

(−1,−2)

(0,1)(0,1)

c) The lines are neither parallel nor per-
pendicular.

25.

a) 2
25

b) 8.90/0

c) 00/0 grade represents no grade or slope;
that is, a flat road.
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3.3 Equations of Lines
In this section we will develop the slope-intercept form of a line. When you have
completed the work in this section, you should be able to look at the graph of a line
and determine its equation in slope-intercept form.

The Slope-Intercept Form
In the previous section, we developed the formula for the slope of a line. Let’s assume
that the dependent variable is y and the independent variable is x and we have a line
passing through the points P (x1, y1) and Q(x2, y2), as shown in Figure 1.

x

y

P (x1,y1)

Q(x2,y2)

∆x=x2−x1

∆y=y2−y1

Figure 1. Determining the slope of a line
through two points.

As we sweep our eyes from left to right, note that the change in x is ∆x = x2 − x1
and the change in y is ∆y = y2 − y1. Thus, the slope of the line is determined by the
formula

Slope = ∆y
∆x

= y2 − y1
x2 − x1

. (1)

Now consider the line in Figure 2. Suppose that we are given two facts about this
line:

1. The point where the line crosses the y-axis (the y-intercept) is (0, b).
2. The “slope” of the line is some number m.

To find the equation of the line pictured in Figure 2, select an arbitrary point
Q(x, y) on the line, then compute the slope of the line using (x1, y1) = P (0, b) and
(x2, y2) = Q(x, y) in the slope formula (1).

Slope = y2 − y1
x2 − x1

= y − b
x− 0

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/9
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x

y

P (0,b)

Q(x,y)

Slope=m

Figure 2. Find the equation of the line
in slope-intercept form.

Simplify.

Slope = y − b
x

We’re given that the slope is the number m, so substitute this number for the word
“Slope” in the last result.

m = y − b
x

Multiply both sides of the last equation by x.

mx = y − b

Add b to both sides of the last equation to obtain

mx+ b = y,

or upon exchanging sides of the equation,

y = mx+ b.

The above discussion leads to the following result.

The Slope-Intercept Form of a Line. If the line L intercepts the y-axis at the
point (0, b) and has slope m, then the equation of the line is

y = mx+ b. (2)

This form of the equation of a line is called the slope-intercept form. The
function defined by the equation

f(x) = mx+ b

is called a linear function.
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It is important to note two key facts about the slope-intercept form y = mx+ b.

• The coefficient of x (the m in y = mx+ b) is the slope of the line.
• The constant term (the b in y = mx+b) is the y-coordinate of the y-intercept (0, b).

Procedure for Using the Slope-Intercept Form of a Line. When given
the slope of a line and the y-intercept of the line, use the slope-intercept form as
follows:

1. Substitute the given slope for m in the formula y = mx+ b.
2. Substitute the y-coordinate of the y-intercept for b in the formula y = mx+ b.

For example, if the line has slope −2 and the y-intercept (the point where the
line crosses the y-axis) is (0, 3), then substitute m = −2 and b = 3 in the formula
y = mx+ b to obtain

y = −2x+ 3.

Let’s look at some examples of use of this all-important formula.

I Example 3. What is the equation of the line having slope −2/3 and y-intercept
at (0, 3)? Sketch the line on graph paper.

The equation of the line is

y = mx+ b. (4)

We’re given that the slope is −2/3. Hence, m = −2/3. Secondly, we’re given that the
line intercepts the y-axis at the point (0, 3). In the slope-intercept form y = mx + b,
recall that b represents the y-coordinate of the y-intercept. Hence, b = 3. Substitute
m = −2/3 and b = 3 in equation (4), obtaining

y = −2
3
x+ 3.

To sketch the graph of the line, first locate the y-intercept at P (0, 3), as shown in
Figure 3. Starting from the y-intercept at P (0, 3), move 3 units to the right and 2
units downward to the point Q(3, 1). The required line passes through the points P
and Q.

Note that the line “intercepts” the y-axis at 3 and slants downhill, in accordance
with the fact that the slope is negative in this example.

I Example 5. Given the graph of the line in Figure 4(a), determine the equation
of the line.

First, locate the y-intercept of the line, which we’ve labeled P (0,−1) in Figure 4(b).
In the formula y = mx+ b, recall that b represents the y-coordinate of the y-intercept.
Thus, b = −1.
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x

y
5

5

P (0,3)

Q(3,1)

∆x=3

∆y=−2

Figure 3. The line has y-intercept at
(0, 3) and slope −2/3.

Secondly, we need to determine the slope of the line. In Figure 4(b), start at the
point P , move 2 units to the right, then 3 units upward to the point Q(2, 2). This
makes the slope

m = ∆y
∆x

= 3
2
.

Substitute m = 3/2 and b = −1 into the slope-intercept form y = mx+ b to obtain

y = 3
2
x− 1,

which is the desired equation of the line.

x

y
5

5
x

y
5

5
P (0,−1)

Q(2,2)

∆x=2

∆y=3

(a) (b)
Figure 4. Determining the equation of a line from its graph.
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Making Connections
If the connection between rate and slope is still not clear, let’s recall an example we
did earlier in the chapter.

Sebastian waves good-bye to his brother, who is talking to a group of his
friends approximately 20 feet away. Sebastian then begins to walk away from
his brother at a constant rate of 4 feet per second.
The distance between the brothers depends upon the amount of time that has

passed, so we set distance d on the vertical axis and time t on the horizontal axis,
as shown in Figure 5. Note that d and t are taking the “usual” place of y and x,
respectively. The distance separating the brothers at time t = 0 is d = 20 feet. This is
indicated with the “d-intercept” at P (0, 20) in Figure 5.

Next, the distance between the brothers is increasing at a rate of 4 feet per second.
Starting at the point P (0, 20), move 1 second to the right (2 boxes) and 4 units up (1
box) to the point Q(1, 24), as shown in Figure 5. The line through the points P and
Q then models the distance between the brothers as a function of time.

t (s)

d (ft)

0 5 100

40

60

P (0,20)
Q(1,24)

1
4

Figure 5. Distance between brothers as a
function of time.

If you recall, we then determined a relation between distance d and time t by exam-
ining the distance between the brothers at times t = 0, 1, 2, and 3, and summarizing
the results in Table 1.

t d

0 20
1 20 + 4(1)
2 20 + 4(2)
3 20 + 4(3)

Table 1. Determining
a model equation.

Intuition then led to the following model, which provides the distance d between the
brothers as a function of time t.
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d = 20 + 4t (6)

Again, readers should check that equation (6) produces the results in Table 1 at
t = 0, 1, 2, and 3.

Alternatively, with the theory developed in this section, we would develop the equa-
tion of the line by using the slope-intercept form of the line; that is,

y = mx+ b. (7)

However, in this case, the dependent variable is d, not y, and the independent variable
is t, not x. So, replace y and x in equation (7) with d and t, respectively, obtaining

d = mt+ b. (8)

Next, the line intercepts the d-axis at P (0, 20), so b = 20. Furthermore, the slope of
the line is 4 feet per second, so m = 4. Substitute m = 4 and b = 20 in equation (8)
to obtain

d = 4t+ 20, (9)

or using function notation, d(t) = 4t+ 20. Note that equation (9) is identical to the
intuitively generated model of equation (6).

Hopefully, this development should cement for all time the idea that slope of the line
is the rate at which the dependent variable is changing with respect to the independent
variable.

The Standard Form of a Line
We now know that if our equation has the form y = mx + b (or can be manipulated
into this form), the graph will be a line. Let’s take a moment to demonstrate that the
graph of the equation Ax+By = C, where A, B, and C are constants, is a line.

If we can place the form Ax + By = C into slope-intercept form y = mx + b,
then that will demonstrate that the graph of Ax + By = C is a line. So, start with
Ax+By = C and subtract Ax from both sides of the equation.

By = −Ax+ C

Divide both sides of this last equation by B. Note that there is an assumption here
that B 6= 0. We will handle the case when B = 0 separately, at the end of this section.

By

B
= −Ax+ C

B

y = −A
B
x+ C
B

When we compare y = −(A/B)x + (C/B) with y = mx + b, we note that the slope
is m = −A/B and the y-coordinate of the y-intercept is b = C/B. Because we were



Section 3.3 Equations of Lines 277

Version: Fall 2007

successful in placing the equation Ax+By = C into slope-intercept form, we now know
that the graph of Ax+By = C is a line (we’ll need this result in later work).10

The Standard Form of a Line. The graph of the equation Ax + By = C is a
line. The form

Ax+By = C (10)

is called the standard form of a line.

Let’s look at an example.

I Example 11. The equation 3x+4y = 12 is in standard form. Place this equation
in slope-intercept form, determine the slope and y-intercept, then use these results to
draw the graph of the line.

First, solve the equation 3x+ 4y = 12 for y.

3x+ 4y = 12
4y = −3x+ 12

y = −3
4
x+ 3

.

Note in the last step how the distributive property came into play. When we divided
−3x+ 12 by 4, we divided each term by 4, getting (−3/4)x+ 3.

When we compare y = (−3/4)x+3 with the general slope-intercept form y = mx+b,
we determine that the slope is m = −3/4 and the y-coordinate of the y-intercept is
b = 3. To sketch the graph of the line, as we’ve done in Figure 6, plot the y-intercept
at P (0, 3), then move 4 units to the right and 3 units down to the point Q(4, 0). The
line passing through the points P and Q is the required line.

Note again that the slope is m = −3/4 and the line slants “downhill.” Also, b = 3
and the line “intercepts” the y-axis at P (0, 3).

Let’s look at another example.

I Example 12. In Example 5, we determined that the given line had the equation

y = 3
2
x− 1.

Place this equation in standard from Ax + By = C, where A, B, and C are integers
and A > 0.

Some would argue that it is useful to memorize that the line Ax + By = C has slope m = −A/B10

and the y-coordinate of the y-intercept is b = C/B. If you memorize these facts, then you can quickly
determine that the slope of the line 3x + 4y = 12 is m = −A/B = −3/4 and the y-coordinate of the
y-intercept is b = C/B = 12/4 = 3.
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x

y
5

5

P (0,3)

Q(4,0)

∆x=4

∆y=−3

Figure 6. The graph
of 3x + 4y = 12.

We’re requested to place the equation y = (3/2)x − 1 in the form Ax + By = C,
where A, B, and C are integers, so let’s begin by clearing fractions from the equation.
Multiply both sides of the equation by the common denominator 2.

y = 3
2
x− 1

2y = 2
(

3
2
x− 1

)
2y = 3x− 2

Now, subtract 2y from both sides of the equation, then add 2 to both sides of the
equation to obtain

2 = 3x− 2y,

or equivalently,

3x− 2y = 2.

Note that this last result is in standard form Ax + By = C, where A, B, and C are
integers and A > 0.11

Intercepts
We now know that the graph of the equation Ax + By = C, where A, B, and C are
constants, is a line. Because the graph of Ax+By = C is a line, to draw the graph of
the line, we need only find two points that satisfy the equation, plot them, then draw
a line through them. Our two favorite points to work with are the x- and y-intercepts,
because each involves the number zero, an easy number to work with.

This is a traditional request. When placing a linear function in the form Ax+By = C, we will always11

require that A, B, and C be integers and that A > 0.
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Consider the graph in Figure 7(a). Note that the graph passes through the x-axis
three times. The points where the graph intercepts the x-axis are called x-intercepts.
Note that each of these points has a defining value in common: the y-value of each of
these x-intercepts is equal to zero.

x

y

(−3,0) (1,0)
(3,0)

x

y

(0,3)

(0,1)

(0,−3)

(a) x-intercepts. (b) y-intercepts.
Figure 7.

How to Find an x-intercept. To find an x intercept, let y = 0 in the equation
and solve for x.

On the other hand, consider the graph in Figure 7(b). Note that this is not a
function (fails the vertical line test) but the graph intercepts the y-axis three separate
times. The points where the graph intercepts the y-axis are called y-intercepts. Note
that each of the y-intercepts in Figure 7(b) has a defining value in common: the
x-value of each of the y-intercepts is equal to zero.

How to Find a y-intercept. To find a y-intercept, let x = 0 in the equation
and solve for y.

Let’s put what we’ve learned into practice.

I Example 13. Sketch the graph of 3x+ 4y = 12.

We drew the graph of the equation 3x+ 4y = 12 in Figure 6. There we solved the
equation for y to determine the slope and the y-intercept. These, in turn, were used to
draw the graph of 3x+ 4y = 12 in Figure 6.

Here, our approach will be different. We will first determine the x- and y-intercepts,
plot them, then draw a line through these intercepts. Hopefully, we will get a result
that matches that in Figure 6.

To find the x-intercept, let y = 0 in 3x+ 4y = 12 and solve for x.
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3x+ 4y = 12
3x+ 4(0) = 12

3x = 12
x = 4

Hence, the x-intercept is the point Q(4, 0). To find the y-intercept, let x = 0 in
3x+ 4y = 12 and solve for y.

3x+ 4y = 12
3(0) + 4y = 12

4y = 12
y = 3

Hence, the y-intercept is the point P (0, 3). In Figure 8, we’ve plotted both x- and
y-intercepts and drawn a line through them. Note that the resulting line in Figure 8
matches the same line drawn in Figure 6 (where we used a different method).

x

y
5

5

P (0,3)

Q(4,0)

Figure 8. Plotting
the x- and y-intercepts.

We recommend that whenever the line is given in Standard Form Ax + By = C, find
the x- and y-intercepts, plot them, then draw a line through them. This technique is
quite efficient because working with the number zero greatly simplifies the calculations.

Horizontal and Vertical Lines
We’ve introduced the standard form of the line Ax+By = C. The case where A and B
are simultaneously equal to zero is not very interesting.12 However, the following two
cases are of interest.

In the case of 0x+0y = C, where C is non zero, there are no points satisfying this equation. Hence, no12

graph. In the case 0x+ 0y = 0, all points in the plane satisfy this equation, so the graph would consist
of every point in the Cartesian plane.
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1. If we let A = 0 and B 6= 0 in the standard form Ax + By = C, then By = C, or
equivalently y = C/B. Note that this has the form y = b, where b is some constant.

2. Similarly, if we let B = 0 and A 6= 0 in the standard form Ax + By = C, then
Ax = C, or equivalently, x = C/A. Note that this has the form x = a, where a is
some constant.

The lines having the form x = a and y = b are two of the easiest lines to plot. Let’s
look at an example of each.

I Example 14. Sketch the graph of the equation x = 3.

The direction “sketch the graph of the equation x = 3” can be quite vexing unless
one remembers that a graph of an equation is the set of all points that satisfy the
equation. Thus, the direction is better posed if we say “sketch the set of all points
(x, y) that satisfy x = 3,” or equivalently, “sketch the set of all points (x, y) that have
an x-value of 3.” Then it is an easy matter to sketch the vertical line shown in Figure 9.

x

y
5

5

x = 3
Figure 9. The graph
of the equation x = 3.

Note that each point on the line has an x-value equal to 3. Also, note that the slope
of this vertical line is undefined.

I Example 15. Sketch the graph of the equation y = 3.

This direction is better posed if we say “sketch the set of all points (x, y) that satisfy
y = 3,” or equivalently, “sketch the set of all points (x, y) that have a y-value of 3.”
Then it is an easy matter to sketch the horizontal line shown in Figure 10.

Note that each point on the line has a y-value equal to 3. Also, note that this
horizontal line has slope zero.

Two final comments are in order. Because the line in Figure 10 has slope zero
and y-intercept (0, 3), we can insert m = 0 and b = 3 into the slope intercept form
y = mx+ b and obtain

y = 0x+ 3,
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x

y
5

5

y = 3

Figure 10. The graph of the equa-
tion y = 3.

which of course, is equivalent to y = 3. However, the vertical line shown in Figure 9
has “undefined” slope, so this approach is unavailable. We must simply recognize that
the vertical line in Figure 9 consists of all points having an x-value equal to 3, and
then intuit that its equation is x = 3.
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3.3 Exercises

In Exercises 1-6, perform each of the
following tasks for the given linear func-
tion.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Remember to draw all lines with
a ruler.

ii. Identify the slope and y-intercept of
the graph of the given linear function.

iii. Use the slope and y-intercept to draw
the graph of the given linear function
on your coordinate system. Label the
y-intercept with its coordinate and
the graph with its equation.

1. f(x) = 2x+ 1

2. f(x) = −2x+ 3

3. f(x) = 3− x

4. f(x) = 2− 3x

5. f(x) = −3
4
x+ 3

6. f(x) = 2
3
x− 2

In Exercises 7-12, perform each of the
following tasks.

i. Make a copy of the given graph on a
sheet of graph paper.

ii. Label the y-intercept with its coor-
dinates, then draw a right triangle
and label the sides to help identify
the slope.

iii. Label the line with its equation.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/13

7.

x

y

5

5

8.

x

y

5

5

9.

x

y

5

5
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10.

x

y

5

5

11.

x

y

5

5

12.

x

y

5

5

13. Kate makes $39, 000 per year and
gets a raise of $1000 each year. Since
her salary depends on the year, let time
t represent the year, with t = 0 being the
present year, and place it along the hor-
izontal axis. Let salary S, in thousands

of dollars, be the dependent variable and
place it along the vertical axis.
We will assume that the rate of increase
of $1000 per year is constant, so we can
model this situation with a linear func-
tion.

a) On a sheet of graph paper, make a
graph to model this situation, going
as far as t = 10 years.

b) What is the S-intercept?

c) What is the slope?

d) Suppose we want to predict Kate’s
salary in 20 years or 30 years. We
cannot use the graphical model be-
cause it only shows up to t = 10 years.
We could draw a larger graph, but
what if we then wanted to predict
50 years into the future? The point
is that a graphical model is limited
to what it shows. A model algebraic
function, however, can be used to pre-
dict for any year!
Find the slope-intercept form of the
linear function that models Kate’s salary.

e) Write the function using function no-
tation, which emphasizes that S is a
function of t.

f) Now use the algebraic model from (e)
to predict Kate’s salary 10 years, 20
years, 30 years, and 50 years into the
future.

g) Compute S(40).

h) In a complete sentence, explain what
the value of S(40) from part (g) means
in the context of the problem.

14. For each DVD that Blue Charles
Co. sells, they make 5c profit. Profit
depends on the number of DVD’s sold,
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so let number sold n be the independent
variable and profit P , in $, be the depen-
dent variable.

a) On a sheet of graph paper, make a
graph to model this situation, going
as far as n = 15.

b) Use the graph to predict the profit if
n = 10 DVD’s are sold.

c) The graphical model is limited to pre-
dicting for values of n on your graph.
Any larger value of n necessitates a
larger graph, or a different kind of
model. To begin finding an algebraic
model, identify the P -intercept of the
graph.

d) What is the slope of the line in you
graphical model?

e) Find a slope-intercept form of a lin-
ear function that models Blue Charles
Co.’s sales.

f) Write the function using function no-
tation.

g) Explain why this model does not have
the same limitation as the graphical
model.

h) Find P (100), P (1000), and P (10000).

i) In complete sentences, explain what
the values of P (100), P (1000), and
P (10000) mean in the context of the
problem.

15. Enrique had $1, 000 saved when he
began to put away an additional $25 each
month.

a) Let t represent time, in months, and
S represent Enrique’s savings, in $.
Identify which should be the indepen-
dent and dependent variables.

b) To begin finding a linear function to
model this situation, identify the S-
intercept and slope.

c) Find a slope-intercept form of a lin-
ear function to model Enrique’s sav-
ings over time.

d) Write the linear function in function
notation.

e) Use the function model to predict
how much will be in his savings in
one year.

f) Use the function model to predict when
will he have $2000 saved.

g) Graph the function on a coordinate
system.

h) At the same time, Anne-Marie also
begins to save $25 per month, but she
begins with $1200 already in her sav-
ings. Make a graphical model of her
situation and place it on the same co-
ordinate system as the graphical model
for Enrique’s savings. Label it appro-
priately.

i) How do the lines compare to each
other? Say something about their slopes.

j) Find a slope-intercept form of a lin-
ear function that models Anne-Marie’s
savings. Use the same variables as
you did for Enrique’s model.

k) Write the function using function no-
tation.

l) Prove that the graphs of the two func-
tions are parallel lines.

m) For Anne-Marie, looking at the graphs,
do you think it will take her more
time or less time than Enrique to save
up $2000?.
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n) Use the linear function model for Anne-
Marie to predict how long it will take
her to save $2000. Does this agree
with your expectation from (m)?

16. Jose is initially 400 meters away
from the bus stop. He starts running to-
ward the stop at a rate of 5 meters per
second.

a) Express Jose’s distance d from the
bus stop as a function of time t.

b) Use your model to determine Jose’s
distance from the bus stop after one
minute.

c) Use your model to determine the time
it will take Jose to reach the bus stop.

17. A ball is dropped from rest above
the surface of the earth. As it falls, its
speed increases at a constant rate of 32
feet per second per second.

a) Express the speed v of the ball as a
function of time t.

b) Use your model to determine the speed
of the ball after 5 seconds.

c) Use your model to determine the time
it will take for the ball to achieve a
speed of 256 feet per second.

18. A ball is thrown into the air with
an initial speed of 200 meters per second.
It immediately begins to lose speed at a
rate of 9.5 meters per second per second.

a) Express the speed v of the ball as a
function of time t.

b) Use your model to determine the speed
of the ball after 5 seconds.

c) Use your model to determine the time
it will take for the ball to achieve its
maximum height.

In Exercises 19-24, a linear function is
given in standard form Ax + By = C.
In each case, solve the given equation for
y, placing the equation in slope-intercept
form. Use the slope and intercept to
draw the graph of the equation on a sheet
of graph paper.

19. 3x− 2y = 6

20. 3x+ 5y = 15

21. 3x+ 2y = 6

22. 4x− y = 4

23. x− 3y = −3

24. x+ 4y = −4

In Exercises 25-30, you are given a lin-
ear function in slope-intercept form. Place
the linear function in standard formAx+
By = C, where A, B, and C are integers
and A > 0.

25. y = 2
3
x− 5

26. y = 5
6
x+ 1

27. y = −4
5
x+ 3

28. y = −3
7
x+ 2

29. y = −2
5
x− 3

30. y = −1
4
x+ 2
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31. What is the x-intercept of the line?

x

y

5

5

32. What is the y-intercept of the line?

x

y

5

5

33. What is the y-intercept of the line?

x

y

5

5

34. What is the x-intercept of the line?

x

y

5

5

In Exercises 35-40, find the x- and y-
intercepts of the linear function that is
given in standard form. Use the inter-
cepts to plot the graph of the line on a
sheet of graph paper.

35. 3x− 2y = 6

36. 4x+ 5y = 20

37. x− 2y = −2

38. 6x+ 5y = 30

39. 2x− y = 4

40. 8x− 3y = 24

41. Sketch the graph of the horizon-
tal line that passes through the point
(3,−3). Label the line with its equation.

42. Sketch the graph of the horizon-
tal line that passes through the point
(−9, 9). Label the line with its equation.

43. Sketch the graph of the vertical line
that passes through the point (2,−1).
Label the line with its equation.
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44. Sketch the graph of the vertical line
that passes through the point (15,−16).
Label the line with its equation.

In Exercises 45-48, find the domain and
range of the given linear function.

45. f(x) = −37x− 86

46. f(x) = 98

47. f(x) = −12

48. f(x) = −2x+ 8
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3.3 Answers

1. Slope = 2, y-intercept = (0, 1)

x

y

5

5

∆x=1

∆y=2

Q(1,2)Q(1,2)

P (0,1)P (0,1)

f(x)=2x+1

3. Slope = −1, y-intercept = (0, 3)

x

y

5

5

∆x=1
∆y=−1

Q(1,2)Q(1,2)
P (0,3)P (0,3)

f(x)=3−x

5. Slope = −3/4, y-intercept = (0, 3)

x

y

5

5

∆x=4

∆y=−3

Q(4,0)Q(4,0)

P (0,3)P (0,3)

f(x)=(−3/4)x+3

7.

x

y

5

5

∆x=2
∆y=1(0,−3)(0,−3)

y=(1/2)x−3

9.

x

y

5

5

∆x=3

∆y=2

(0,−2)(0,−2)

y=(2/3)x−2

11.

x

y

5

5

(0,1)(0,1)

∆y=3

∆x=2

y=(3/2)x+1
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13.

a)

time t (years)

salary S (thousands of dollars)

0 2 4 6 8 10

10

20

30

40

50

(0,39)(0,39)

b) (0, 39)

c) 1

d) S = t+ 39

e) S(t) = t+ 39

f) $49000, $59000, $69000, and $89000

g) 79

h) If the current rate of increase contin-
ues, in 40 years Kate’s salary will be
$79, 000.

15.

a) t should be the independent variable
and S should be the dependent vari-
able.

b) S-intercept = (0, 1000); slope = 25

c) S = 25t+ 1000

d) S(t) = 25t+ 1000

e) 1300

f) It will take 40 months for him to reach
$2000.

h)

time t (months)

savings S (dollars)

0 2 4 6 8 10 12 14
1000

1100

1200

1300

1400

1500

1600

Enrique

Anne−Marie

i) The lines have the same slope; they
are parallel.

j) S = 25t+ 1200

k) S(t) = 25t+ 1200

l) They are lines because they are in the
y = mx + b form. They are parallel
because their slopes are equal (both
are 25).

m) It should take her less time.

n) It will take 32 months for her to reach
$2000. This agrees with our expecta-
tion from (m).

17.

a) v = 32t

b) v = 160 feet per second

c) t = 8 seconds
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19. y = (3/2)x− 3

x

y

5

5

∆x=2

∆y=3

P (0,−3)P (0,−3)

Q(2,0)Q(2,0)

21. y = (−3/2)x+ 3

x

y

5

5

∆x=2

∆y=−3

P (0,3)P (0,3)

Q(2,0)Q(2,0)

23. y = (1/3)x+ 1

x

y

5

5

∆x=3
∆y=1

P (0,1)P (0,1)
Q(3,2)Q(3,2)

25. 2x− 3y = 15

27. 4x+ 5y = 15

29. 2x+ 5y = −15

31. (−4, 0)

33. (0, 4)

35.

x

y

5

5

(0,−3)(0,−3)

(2,0)(2,0)

37.

x

y

5

5

(0,1)(0,1)
(−2,0)(−2,0)

39.

x

y

5

5

(2,0)(2,0)

(0,−4)(0,−4)
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41.

x

y

5

5

(3,−3)(3,−3)
y=−3

43.

x

y

5

5 x=2

(2,−1)(2,−1)

45. Domain=(−∞,∞) and Range=(−∞,∞)

47. Domain=(−∞,∞) and Range={−12}
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3.4 The Point-Slope Form of a Line
In the last section, we developed the slope-intercept form of a line (y = mx+ b). The
slope-intercept form of a line is applicable when you’re given the slope and y-intercept
of the line. However, there will be times when the y-intercept is unknown.

Suppose for example, that you are asked to find the equation of a line that passes
through a particular point P (x0, y0) with slope = m. This situation is pictured in
Figure 1.

x

y

P (x0,y0)

Q(x,y)

Figure 1. A line through (x0, y0) with
slope m.

Let the point Q(x, y) be an arbitrary point on the line. We can determine the equation
of the line by using the slope formula with points P and Q. Hence,

Slope = ∆y
∆x

= y − y0
x− x0

.

Because the slope equals m, we can set Slope = m in this last result to obtain

m = y − y0
x− x0

.

If we multiply both sides of this last equation by x− x0, we get

m(x− x0) = y − y0,

or exchanging sides of this last equation,

y − y0 = m(x− x0).

This last result is the equation of the line.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/14
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The Point-Slope Form of a Line. If line L passes through the point (x0, y0)
and has slope m, then the equation of the line is

y − y0 = m(x− x0). (1)

This form of the equation of a line is called the point-slope form.

To use the point-slope form of a line, follow these steps.

Procedure for Using the Point-Slope Form of a Line. When given the slope
of a line and a point on the line, use the point-slope form as follows:

1. Substitute the given slope for m in the formula y − y0 = m(x− x0).
2. Substitute the coordinates of the given point for x0 and y0 in the formula
y − y0 = m(x− x0).

For example, if the line has slope −2 and passes through the point (3, 4), then
substitute m = −2, x0 = 3, and y0 = 4 in the formula y − y0 = m(x − x0) to
obtain

y − 4 = −2(x− 3).

I Example 2. Draw the line that passes through the point P (−3,−2) and has slope
m = 1/2. Use the point-slope form to determine the equation of the line.

First, plot the point P (−3,−2), as shown in Figure 2(a). Starting from the point
P (−3,−2), move 2 units to the right and 1 unit up to the point Q(−1,−1). The line
through the points P and Q in Figure 2(a) now has slope m = 1/2.

x

y

P (−3,−2)
Q(−1,−1)

∆x=2
∆y=1

x

y

R(0,−0.5)

(a) The line through P (−3,−2)
with slope m = 1/2.

(b) Checking the y-intercept.

Figure 2.
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To determine the equation of the line in Figure 2(a), we will use the point-slope form
of the line

y − y0 = m(x− x0). (3)

The slope of the line is m = 1/2 and the given point is P (−3,−2), so (x0, y0) =
(−3,−2). In equation (3), set m = 1/2, x0 = −3, and y0 = −2, obtaining

y − (−2) = 1
2

(x− (−3)),

or equivalently,

y + 2 = 1
2

(x+ 3). (4)

This is the equation of the line in Figure 2(a).
As a check, we’ve estimated the y-intercept of the line in Figure 2(b) as R(0,−0.5).

Let’s place equation (4) in slope-intercept form to determine the exact value of the
y-intercept. First, distribute 1/2 to get

y + 2 = 1
2
x+ 3

2
.

Subtract 2 from both sides of this last equation.

y = 1
2
x+ 3

2
− 2

Make equivalent fractions with a common denominator and simplify.

y = 1
2
x+ 3

2
− 4

2
y = 1

2
x− 1

2

(5)

Comparing equation (5) with y = mx+b gives us b = −1/2. This is the exact y-value
of the y-intercept. Note that this result compares exactly with the y-value of point R
in Figure 2(b). This is a bit lucky. Don’t expect to get an exact comparison every
time. However, if the comparison is not close, look for an error in your work, either in
your computations or in your graph.

Let’s look at another example.

I Example 6. Find the equation of the line passing through the points P (−3, 2)
and Q(2,−1). Place your final answer in standard form.

Again, to help keep our focus, we draw the line passing through the points P (−3, 2)
and Q(2,−1) in Figure 3.
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x

y

P (−3,2)

Q(2,−1)

Figure 3. The line through points
P (−3, 2) and Q(2,−1).

Use the slope formula to determine the slope of the line through the points P (−3, 2)
and Q(2,−1).

m = ∆y
∆x

= −1− 2
2− (−3)

= −3
5

We’ll use the point-slope form of the line

y − y0 = m(x− x0). (7)

Let’s use point P (−3, 2) as the given point (x0, y0). That is, (x0, y0) = (−3, 2). Sub-
stitute m = −3/5, x0 = −3, and y0 = 2 in equation (7), obtaining

y − 2 = −3
5
(x− (−3)). (8)

This is the equation of the line passing through the points P and Q.
Alternatively, we could also use the point Q(2,−1) as the given point (x0, y0). That

is, (x0, y0) = (2,−1). Substitute m = −3/5, x0 = 2, and y0 = −1 in the point-slope
form (7), obtaining

y − (−1) = −3
5
(x− 2). (9)

This too, is the equation of the line passing through the points P and Q.
How can the equations (8) and (9) both be the equation of the line through P

and Q, yet look so distinctly different? Let’s place each equation in standard form
Ax+By = C and compare the results.

If we start with equation (8) and distribute the slope,

y − 2 = −3
5
(x− (−3))

y − 2 = −3
5
x− 9

5
.

Multiply both sides by the common denominator 5 to clear the fractions.
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5(y − 2) = 5
(
−3

5
x− 9

5

)
5y − 10 = −3x− 9

Add 3x to both sides of the equation, then add 10 to both sides of the equation to
obtain

3x+ 5y = 1. (10)

Place equation (9) in standard form in a similar manner. First, start with equation (9)
and distribute the slope,

y − (−1) = −3
5
(x− 2)

y + 1 = −3
5
x+ 6

5
.

Next, multiply both sides of this last result by 5 to clear the fractions from the equation.

5 (y + 1) = 5
(
−3

5
x+ 6

5

)
5y + 5 = −3x+ 6

Finally, add 3x to both sides of the equation, then subtract 5 from both sides of the
equation to obtain

3x+ 5y = 1. (11)

Note that equation (11) is identical to equation (10). Thus, it doesn’t matter which
point you use in the point-slope form. Both lead to the same result.

Parallel Lines
Recall that slope controls the “steepness” of a line. Consequently, if two lines are
parallel, they must have the same “steepness” or slope. Let’s look at an example of
parallel lines.

I Example 12. Find the equation of the line that passes through the point P (−2, 2)
that is parallel to the line passing through the points Q(−3,−1) and R(2, 1).

First, to help us stay focused, we draw the line through the points Q(−3,−1) and
R(2, 1), then plot the point P (−2, 2), as shown in Figure 4(a).

We can use the slope formula to calculate the slope of the line passing through the
points Q(−3,−1) and R(2, 1).

m = ∆y
∆x

= 1− (−1)
2− (−3)

= 2
5
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x

y

P (−2,2)

Q(−3,−1)

R(2,1)
x

y

P (−2,2)

Q(−3,−1)

R(2,1)
∆x=5

∆y=2

T (3,4)

(a) The line through
Q(−3,−1) and R(2, 1).

(b) The line through P (−2, 2)
that is parallel to the
line through Q and R.

Figure 4.

We now draw a line through the point P (−2, 2) that is parallel to the line through
the points Q and R. Parallel lines must have the same slope, so we start at the point
P (−2, 2), “run” 5 units to the right, then “rise” 2 units up to the point T (3, 4), as
shown in Figure 4(b).

We seek the equation of the line through the points P and T . We’ll use the point-
slope form of the line

y − y0 = m(x− x0). (13)

We’ll use the point P (−2, 2) as the given point (x0, y0). That is, (x0, y0) = (−2, 2).
The line through P has slope 2/5. Substitute m = 2/5, x0 = −2, and y0 = 2 in
equation (13) to obtain

y − 2 = 2
5
(x− (−2)). (14)

Let’s place the equation (14) in standard form. Distribute the slope, then clear
fractions by multiplying both sides of the resulting equation by 5.

y − 2 = 2
5
x+ 4

5

5(y − 2) = 5
(

2
5
x+ 4

5

)
5y − 10 = 2x+ 4

Finally, subtract 5y from both sides of the last equation, then subtract 4 from both
sides of the equation, obtaining

−14 = 2x− 5y,

or equivalently,



Section 3.4 The Point-Slope Form of a Line 299

Version: Fall 2007

2x− 5y = −14.

This is the standard form of the equation of the line passing through the point P and
parallel to the line passing through the points Q and R.

Perpendicular Lines
Suppose that two lines L1 and L2 have slopes m1 and m2, respectively. Recall (see the
section on Slope) that if L1 and L2 are perpendicular, then the product of their slopes
is m1m2 = −1. Alternatively, the slope of the first line is the negative reciprocal of
the second line, and vice-versa; i.e., m1 = −1/m2 and m2 = −1/m1. Let’s look at an
example of perpendicular lines.

I Example 15. Find the equation of the line passing through the point P (−4,−4)
that is perpendicular to the line 4x+ 3y = 12.

It will help our focus if we draw the given line 4x + 3y = 12. The easiest way to
plot a line in standard form Ax+By = C is to find the x- and y-intercepts.

4x+ 3y = 12 4x+ 3y = 12

4x+ 3(0) = 12 4(0) + 3y = 12

4x = 12 3y = 12

x = 3 y = 4

Plot the x- and y-intercepts R(3, 0) and S(0, 4) as shown in Figure 5(a). The line
through points R and S is the graph of the equation 4x+ 3y = 12.

x

y

R(3,0)

S(0,4)

x

y

P (−4,−4)

Q(0,−1)

∆x=4

∆y=3
m=−4/3

(a) Plot the x and
y-intercepts of 4x + 3y = 12.

(b) A line through P (−4,−4) that
is perpendicular to 4x + 3y = 12.

Figure 5.

Next, determine the slope of the line 4x + 3y = 12 by placing this equation in
slope-intercept form (i.e., solve the equation 4x+ 3y = 12 for y).15
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4x+ 3y = 12
3y = −4x+ 12

y = −4
3
x+ 4

If two lines are perpendicular, then their slopes are negative reciprocals of one
another. Therefore, the slope of the line that is perpendicular to the line 4x+ 3y = 12
(which has slope −4/3) is m = 3/4. Our second line must pass through the point
P (−4,−4). To draw this second line, first plot the point P (−4,−4), then move 4 units
to the right and 3 units upward to the point Q(0,−1), as shown in Figure 5(b). The
line through the points P and Q is perpendicular to the line 4x+ 3y = 12.16

To determine the equation of the line through the points P and Q, we will use the
point-slope form of the line, namely

y − y0 = m(x− x0). (16)

The slope of the line through points P and Q ism = 3/4. If we use the point P (−4,−4),
then (x0, y0) = (−4,−4). Set m = 3/4, x0 = −4, and y0 = −4 in equation (16),
obtaining

y − (−4) = 3
4

(x− (−4)),

or equivalently,

y + 4 = 3
4

(x+ 4). (17)

Alternatively, we could use the slope-intercept form of the line. We know that the
line through points P and Q in Figure 5(b) crosses the y-axis at Q(0,−1). So, with
slope m = 3/4 and y-coordinate of the y-intercept b = −1, the slope-intercept form
y = mx+ b becomes

y = 3
4
x− 1.

On the other hand, if we solve equation (17) for y,

y + 4 = 3
4

(x+ 4)

y + 4 = 3
4
x+ 3

y = 3
4
x− 1.

(18)

Note that this is identical to the result found using the slope-intercept form above.

If you also remember that the slope of Ax+ By = C is m = −A/B, then the slope of 4x+ 3y = 12 is15

m = −A/B = −4/3.
It’s a good exercise to measure the angle between the two lines with a protractor. If the angle measures16

90 degrees, then you know the lines are truly perpendicular.



Section 3.4 The Point-Slope Form of a Line 301

Version: Fall 2007

It is comforting to note that the two forms (point-slope and slope-intercept) give
the same result, but how do we determine the most efficient form to use for a particular
problem? Here’s a good hint.

Determining the Form of the Line to Use. Here is some sound advice when
you are trying to determine whether to use the slope-intercept form or the point-
slope form of a line.

• If you are given the slope and the y-intercept, use the slope-intercept form
y = mx+ b.

• If you are given a point (other than the y-intercept) and the slope, use the
point-slope form y − y0 = m(x− x0).

Applications of Linear Functions
In this section we will look at some applications of linear functions. We begin by
developing a function relating Fahrenheit and Celsius temperature.

I Example 19. Water freezes at 32◦ F and 0◦C. Water boils at 212◦ F and 100◦C.
F and C are abbreviations for Fahrenheit and Celsius temperature scales, respectively.
Assuming a linear relationship, develop a model relating Fahrenheit and Celsius tem-
perature.

First, to help keep our focus, we set up a coordinate system on a sheet of graph
paper. In Figure 6, we’ve decided to make the Celsius temperature the dependent
variable and have assigned the Celsius temperature to the vertical axis. Similarly,
we’ve declared the Fahrenheit temperature the independent variable and assigned it to
the horizontal axis.17

Interpret the given data:

• Water freezes at 32◦ F and 0◦C. This gives us the point (F,C) = (32, 0), which we
plot in Figure 6.

• Water boils at 212◦ F and 100◦C. This gives us the point (F,C) = (212, 100), which
we plot in Figure 6.

Now we are on familiar ground. We want to find the equation of the line through
these two points, which is the same type of problem we tackled in Example 6. First,
use the points (32, 0) and (212, 100) to determine the slope of the line.

m = ∆C
∆F

= 100− 0
212− 32

= 100
180

= 5
9
.

We will now use the point-slope form of the line, y− y0 = m(x−x0) with m = 5/9 and
(x0, y0) = (32, 0). Substitute m = 5/9, x0 = 32, and y0 = 0 in y − y0 = m(x − x0) to
obtain

We could easily reverse these assignments, placing the Fahrenheit temperature on the vertical axis and17

the Celsius temperature on the horizontal axis.
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F
250

C120

(32, 0)

(212, 100)

Figure 6. Plotting Celsius temperature versus Fahren-
heit temperature.

y − 0 = 5
9
(x− 32). (20)

However, our dependent axis is labeled C, not y, and our independent axis is labeled
F , not x. So, we must replace y and x in equation (20) with C and F , respectively,
obtaining

C = 5
9
(F − 32). (21)

This result in equation (21) expresses the Celsius temperature as a function of the
Fahrenheit temperature. Alternatively, we could also use function notation and write

C(F ) = 5
9
(F − 32).

Suppose that we know that the Fahrenheit temperature outside is 80◦ F and we
wish to express this using the Celsius scale. To do so, we simply evaluate C(80), as in

C(80) = 5
9
(80− 32) ≈ 26.6.

Hence, the Celsius temperature is approximately 26.6◦C.
On the other hand, suppose that we know the Celsius temperature on a metal roof

is 80◦C and we wish to find the Fahrenheit temperature. To do so, we need to solve

C(F ) = 80

for F , or equivalently,
5
9
(F − 32) = 80.

Multiply both sides by 9 to obtain

5(F − 32) = 720,
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then divide both sides of the result by 5 to obtain

F − 32 = 144.

Adding 32 to both sides of this last result produces the Fahrenheit temperature F =
176◦ F. Wow, that’s hot!
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3.4 Exercises

In Exercises 1-4, perform each of the
following tasks.

i. Draw the line on a sheet of graph
paper with the given slope m that
passes through the given point (x0, y0).

ii. Estimate the y-intercept of the line.
iii. Use the point-slope form to determine

the equation of the line. Place your
answer in slope-intercept form by solv-
ing for y. Compare the exact value of
the y-intercept with the approxima-
tion found in part (ii).

1. m = 2/3 and (x0, y0) = (−1,−1)

2. m = −2/3 and (x0, y0) = (1,−1)

3. m = −3/4 and (x0, y0) = (−2, 3)

4. m = 2/5 and (x0, y0) = (−3,−2)

5. Find the equation of the line in slope-
intercept form that passes through the
point (1, 3) and has a slope of 1.

6. Find the equation of the line in slope-
intercept form that passes through the
point (0, 2) and has a slope of 1/4.

7. Find the equation of the line in slope-
intercept form that passes through the
point (1, 9) and has a slope of −2/3.

8. Find the equation of the line in slope-
intercept form that passes through the
point (1, 9) and has a slope of −3/4.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/18

In Exercises 9-12, perform each of the
following tasks.

i. Set up a coordinate system on a sheet
of graph paper and draw the line through
the two given points.

ii. Use the point-slope form to determine
the equation of the line.

iii. Place the equation of the line in stan-
dard form Ax+By = C, where A, B,
and C are integers and A > 0. Label
the line in your plot with this result.

9. (−2,−1) and (3, 2)

10. (−1, 4) and (2,−3)

11. (−2, 3) and (4,−3)

12. (−4, 4) and (2,−4)

13. Find the equation of the line in slope-
intercept form that passes through the
points (−5, 5) and (6, 8).

14. Find the equation of the line in slope-
intercept form that passes through the
points (6,−6) and (9,−7).

15. Find the equation of the line in slope-
intercept form that passes through the
points (−4, 6) and (2,−4).

16. Find the equation of the line in slope-
intercept form that passes through the
points (−1, 5) and (4, 4).
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In Exercises 17-20, perform each of the
following tasks.

i. Draw the graph of the given linear
equation on graph paper and label it
with its equation.

ii. Determine the slope of the given equa-
tion, then use this slope to draw a
second line through the given point
P that is parallel to the first line.

iii. Estimate the y-intercept of the sec-
ond line from your graph.

iv. Use the point-slope form to determine
the equation of the second line. Place
this result in slope-intercept form y =
mx + b, then state the exact value
of the y-intercept. Label the second
line with the slope-intercept form of
its equation.

17. 2x+ 3y = 6, P = (−2,−3)

18. 3x− 4y = 12, P = (−3, 4)

19. x+ 2y = −4, P = (3, 3)

20. 5x+ 2y = 10, P = (−3,−5)

In Exercises 21-24, perform each of the
following tasks.

i. Draw the graph of the given linear
equation on graph paper and label it
with its equation.

ii. Determine the slope of the given equa-
tion, then use this slope to draw a
second line through the given point
P that is prependicular to the first
line.

iii. Use the point-slope form to determine
the equation of the second line. Place
this result in standard formAx+By =
C, where A, B, C are integers and
A > 0. Label the second line with
this standard form of its equation.

21. x− 2y = −2, P = (3,−4)

22. 3x+ y = 3, P = (−3,−4)

23. x− 2y = 4, P = (−3, 3)

24. x− 4y = 4, P = (−3, 4)

25. Find the equation of the line in slope-
intercept form that passes through the
point (7, 8) and is parallel to the line
x− 5y = 4.

26. Find the equation of the line in slope-
intercept form that passes through the
point (3,−7) and is perpendicular to the
line 7x− 2y = −8.

27. Find the equation of the line in slope-
intercept form that passes through the
point (1,−2) and is perpendicular to the
line −7x+ 5y = 4.

28. Find the equation of the line in slope-
intercept form that passes through the
point (4,−9) and is parallel to the line
9x+ 3y = 5.

29. Find the equation of the line in slope-
intercept form that passes through the
point (2,−9) and is perpendicular to the
line −8x+ 3y = 1.

30. Find the equation of the line in slope-
intercept form that passes through the
point (−7,−7) and is parallel to the line
8x+ y = 2.

31. A ball is thrown vertically upward
on a distant planet. After 1 second, its
velocity is 100 meters per second. After
5 seconds, the velocity is 50 meters per
second. Assume that the velocity v of
the ball is a linear function of the time t.

a) On graph paper, sketch the graph of
the velocity v versus the time t. As-
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sume that the velocity is the depen-
dent variable and place it on the ver-
tical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the velocity v of the ball as a function
of time t.

d) Determine the time it takes the ball
to reach its maximum height.

32. A ball is thrown vertically upward
on a distant planet. After 2 seconds, its
velocity is 320 feet per second. After 8
seconds, the velocity is 200 feet per sec-
ond. Assume that the velocity v of the
ball is a linear function of the time t.

a) On graph paper, sketch the graph of
the velocity v versus the time t. As-
sume that the velocity is the depen-
dent variable and place it on the ver-
tical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the velocity v of the ball as a function
of time t.

d) Determine the time it takes the ball
to reach its maximum height.

33. An automobile is traveling down the
autobahn and the driver applies its brakes.
After 2 seconds, the car’s speed is 60
km/h. After 4 seconds, the car’s speed
is 50 km/h.

a) On graph paper, sketch the graph of

the velocity v versus the time t. As-
sume that the velocity is the depen-
dent variable and place it on the ver-
tical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the velocity v of the automobile as a
function of time t.

d) Determine the time it takes the au-
tomobile to stop.

34. An automobile is traveling down the
autobahn and its driver steps on the ac-
celerator. After 2 seconds, the car’s ve-
locity is 30 km/h. After 4 seconds, the
car’s velocity is 40 km/h.

a) On graph paper, sketch the graph of
the velocity v versus the time t. As-
sume that the velocity is the depen-
dent variable and place it on the ver-
tical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the velocity v of the automobile as a
function of time t.

d) Determine the speed of the vehicle
after 8 seconds.

35. Suppose that the demand d for a
particular brand of teakettle is a linear
function of its unit price p. When the
unit price is fixed at $30, the demand for
teakettles is 100. This means the public
buys 100 teakettles. If the unit price is
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fixed at $50, then the demand for teaket-
tles is 60.

a) On graph paper, sketch the graph of
the demand d versus the unit price p.
Assume that the demand is the de-
pendent variable and place it on the
vertical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the demand d for teakettles as a func-
tion of unit price p.

d) Compute the demand if the unit price
is set at $40.

36. It’s perfect kite-flying weather on
the coast of Oregon. Annie grabs her
kite, climbs up on the roof of her two
story home, and begins playing out kite
string. In 10 seconds, Annie’s kite is 120
feet above the ground. After 20 seconds,
it is 220 feet above the ground. Assume
that the height h of the kite above the
ground is a linear function of the amount
of time t that has passed since Annie be-
gan playing out kite string.

a) On graph paper, sketch the graph of
the height h of the kite above ground
versus the time t . Assume that the
height is the dependent variable and
place it on the vertical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the height h of the kite as a function
of time t.

d) Determine the height of the kite af-
ter 20 seconds.

e) Determine the height of Annie’s sec-
ond story roof above ground.
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3.4 Answers

1. Approximate y-intercept is (0,−0.3).
Exact is (0,−1/3).

x

y

5

5

∆x=3

∆y=2

(−1,−1)(−1,−1)

y=(2/3)x−1/3

3. Approximate y-intercept is (0, 1.5).
Exact is (0, 3/2).

x

y

5

5

∆x=4

∆y=−3

(−2,3)(−2,3)

y=(−3/4)x+3/2

5. y = x+ 2

7. y = (−2/3)x+ 29/3

9.

x

y

5

5

(−2,−1)

(3,2)(3,2)

3x−5y=−1

11.

x

y

5

5

(−2,3)(−2,3)

(4,−3)(4,−3)

x+y=1

13. y = 3
11x+ 70

11

15. y = −5
3x−

2
3

17. Approximate y-intercept: (0,−4.3).
Exact y-intercept: (0,−13/3).

x

y

5

5
2x+3y=6

y=(−2/3)x−13/3

(0,2)(0,2)

(3,0)(3,0)

(−2,−3)(−2,−3)
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19. Approximate y-intercept: (0, 4.5).
Exact y-intercept: (0, 9/2).

x

y

5

5

x+2y=−4

y=(−1/2)x+9/2
(−4,0)(−4,0)

(0,−2)(0,−2)

(3,3)(3,3)

21.

x

y

5

5
x−2y=−2

2x+y=2

(−2,0)(−2,0)
(0,1)(0,1)

(3,−4)(3,−4)

23.

x

y

5

5

x−2y=4 2x+y=−3

(4,0)(4,0)

(0,−2)(0,−2)

(−3,3)(−3,3)

25. y = 1
5x+ 33

5

27. y = −5
7x−

9
7

29. y = −3
8x−

33
4

31.

a)

t (s)
10

v (m/s)
120

(1,100)(1,100)

(5,50)(5,50)

b) −12.5 (m/s)/s

c) v = −12.5t+ 112.5

d) 9 seconds

33.

a)

t (s)
6

v (km/h)
80

(2,60)(2,60)
(4,50)(4,50)

b) −5 (km/h)/s

c) v = −5t+ 70

d) t = 14 seconds
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35.

a)

p(dollars)

d(teakettles)

(30,100)(30,100)

(50,60)(50,60)

b) −2 teakettles/dollar

c) d = −2p+ 160

d) 80 teakettles
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3.5 The Line of Best Fit
When gathering data in the real world, a plot of the data often reveals a “linear trend,”
but the data don’t fall precisely on a single line. In this case, we seek to find a linear
model that approximates the data. Let’s begin by looking at an extended example.

Aditya and Tami are lab partners in Dr. Mills’ physics class. They are hanging
masses from a spring and measuring the resulting stretch in the spring. See Table 1
for their data.

m (mass in grams) 10 20 30 40 50
x (stretch in cm) 6.8 10.2 13.9 21.2 24.2

Table 1. Aditya and Tami’s data set.

The goal is to find a model that describes the data, in both the form of a graph
and of an equation. The first step is to plot the data. Recall some of the guidelines
provided in the first section of the current chapter.

Guidelines. When plotting real data, we follow these guidelines.

1. You don’t want small graphs. It’s best to scale your graph so that it fills a full
sheet of graph paper. This will make it much easier to read and interpret the
graph.

2. You may have different scales on each axis, but once chosen, you must remain
consistent.

3. You want to choose a scale which facilitates our first objective, but which also
makes the data easy to plot.

Aditya and Tami are free to choose the masses which they hang on the spring.
Hence, the mass m is the independent variable. Consequently, we will scale the hori-
zontal axis to accommodate the mass. The distance the spring stretches depends upon
the amount of mass that is hanging from the spring, so the distance stretched x is
the dependent variable. We will scale the vertical axis to accommodate the distance
stretched.

On the horizontal axis, we need to fit the masses 10, 20, 30, 40, and 50 grams. To
avoid a smallish graph, we will let every 5 boxes represent 10 grams. On the vertical
axis, we need to fit distances ranging from 6.8 centimeters up to and including 24.2
centimeters. Making each box represent 1 cm gives a nice sized graph and will allow
for easy plotting of our data points, which we’ve done in Figure 1(a).

Note the linear trend displayed by the data in Figure 1(a). It’s not possible to
draw a single line that will pass through every one of the data points, so a linear model
will not exactly “fit” the data. However, the data are “approximately linear,” so let’s
try to draw a line that “nearly fits” the data.

It is not our goal here to try to draw a line that passes through as many data points
as possible. If we do, then we are essentially saying that the points through which
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the line does not pass have no influence on the overall model, nor do they have any
influence on any predictions we might make with our model. This is not a reasonable
assumption.

Indeed, the goal is to draw a line that comes as close to as many points as possible.
Some points will lie above the line, some will lie below, and what we’ll try to do is
“balance” the overestimates and the underestimates in an attempt to minimize the
overall error. The best way to do this is to take a clear plastic ruler, something you can
see through, and rotate and shift the ruler until you think you have a line that balances
the overestimates and underestimates. We’ve done this for you in Figure 1(b). The
resulting line is called the “line of best fit.”

m (g)

x (cm)

10 10 20 30 40 500

5

10

15

20

25

m (g)

x (cm)

10 10 20 30 40 500

5

10

15

20

25

(a) Scaling the axes
and plotting the data.

(b) Drawing the “line of best fit.”

Figure 1.

We can use the “line of best fit” in Figure 1(b) to make predictions. For example,
if we wanted to predict how much the spring will stretch when Aditya and Tami attach
a 22 gram mass, then we would locate 22 grams on the horizontal axis, draw a vertical
line upward to the “line of best fit,” followed by a horizontal line to the vertical axis,
as shown in Figure 2(a). Note that the x-value on the vertical axis appears to be
approximately 11.6 centimeters.

Alternatively, we will develop an equation model. First, select two points on the
“line of best fit” using the following guidelines.

Guidelines.

1. Pick two points on the “line of best fit” that are not data points.
2. Try to pick points passing through a lattice point of the grid. It makes inter-

preting the coordinates of the point a lot easier.
3. The further apart the two selected points, the better the accuracy. Don’t pick

points that are too close together.
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m (g)

x (cm)

10 10 30 40 500

5

10

15

20

25

22

11.6

m (g)

x (cm)

10 10 20 30 40 500

5

10

15

20

25

P (12,7)

Q(36,18)

(a) Predicting the stretch
when the mass is 22 grams.

(b) Pick two points on the
line that are not data points.

Figure 2.

In Figure 2(b), we’ve selected points P (12, 7) and Q(36, 18). The first point indi-
cates that a mass of 12 grams stretches the spring 7 centimeters. The interpretation
for the second point is similar. We can find the slope of the line through the points P
and Q with the slope formula.

m = ∆x
∆m

= 18 cm− 7 cm
36 g− 12 g

= 11
24

cm
g
.

The slope of the line is the rate at which the distance stretched is changing with respect
to how the mass is changing. In this case, for every additional 24 grams of mass that
is hung, the spring stretches an additional 11 centimeters.

The next step is to use the point-slope formula to determine the equation of the
line.

y − y0 = m(x− x0) (1)

Let’s use point P (12, 7). That is, set (x0, y0) = (12, 7). Substitute m = 11/24, x0 = 12,
and y0 = 7 into equation (1) to obtain

y − 7 = 11
24

(x− 12). (2)

In the spring-mass application, the dependent variable is x, not y, and the independent
variable is m, not x. Replace the y on the left-hand side of equation (2) with x, then
replace x on the right-hand side of equation (2) with m to obtain

x− 7 = 11
24

(m− 12). (3)

Solve equation (3) for x.
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x− 7 = 11
24
m− 132

24
x = 11

24
m− 132

24
+ 7

x = 11
24
m− 132

24
+ 168

24
x = 11

24
m+ 36

24
Reduce 36/24 to 3/2 to obtain

x = 11
24
m+ 3

2
.

Recall that x represents the distance stretched and m represents the amount of
mass hung from the spring. That is, x is a function of m. We can use function notation
to write the last equation as follows.

x(m) = 11
24
m+ 3

2
(4)

We can use the model in equation (4) to determine the amount of stretch when a
mass of 22 grams is attached to the spring. Substitute m = 22 in equation (4), then
use a calculator to approximate the stretch in the spring.

x(22) = 11
24

(22) + 3
2
≈ 11.6 cm

Note the agreement with the graphical solution found in Figure 2(a). Readers should
understand that this kind of accuracy is not the usual norm. There are a number of
factors that can introduce error.

• Aditya and Tami might not have taken accurate measurements in the lab, so the
data could be flawed to begin with.

• There could be errors made when we scale the axes and plot the data.

• The “eyeball” line of best fit that we drew was very subjective. A slight rotation
or translation of the ruler during the drawing of the supposed “line of best fit” can
produce different results.

• Our calculations could contain mistakes and round-off error.

Using the Graphing Calculator to Find the Line of Best Fit
Statisticians have developed a particular method, called the “method of least squares,”
which is used to find a “line of best fit” for a set of data that shows a linear trend. The
algorithm seeks to find the line that minimizes the total error. These algorithms are
programmed into the graphing calculator and are available for student use.

To use the graphing calculator to determine the line of best fit, the first thing you
have to learn how to do is load the data from Table 1 into your calculator.
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• Locate and push the STAT button on your keyboard, which will open the menu
shown in Figure 3(a).

• Select 1:Edit from this menu, which will open the edit window shown in Figure 3(b).19

• Enter the data from Table 1 into lists L1 and L2, as shown in Figure 3(c)

(a) (b) (c)
Figure 3. Enter the data from Table 1 into lists L1 and L2 in your graphing calculator.

The next step is to plot the data you’ve entered into lists L1 and L2.

• Press the 2ND key, followed by STAT PLOT (located above the Y= menu). This opens
the window shown in Figure 4(a).

• Select 1:Plot1 to open the plot selection window shown in Figure 4(b).
• In the plot selection window of Figure 4(b), there are several things you need to

check.
1. Use the arrow keys to place the cursor over the word “On” and press the ENTER

key to highlight this selection.
2. There are six “Types” of plots: scatterplot, lineplot, histogram, modified box

plot, box plot, and normal probability plot. These choices are arranged in two
rows of three plots. Move your cursor to the first plot of the first row, the
scatterplot, then press the ENTER key to highlight your selection.

3. The next selection is the XList. This is the list that goes on the horizontal axis.
In the case of Table 1, we want to place the mass data on the horizontal axis.
We entered the mass data in list L1, so enter 2ND L1 (L1 is located above the 1
on the keyboard).

4. The next selection is the Ylist. Enter 2ND L2 (L2 is located above the 2 on the
keyboard). This lists the distance stretched and will be placed on the vertical
axis.

5. The last item is the marker. Choose the first one with the arrow keys (it’s the
easiest to see) and press the ENTER key to highlight this choice.

• Push the ZOOM button on the first row of keys on your keyboard. Use the arrow keys
to scroll the menu downward until you can select 9:ZoomStat. This will produce
the image shown in Figure 4(c).

You may have to clear out existing data sets. The easiest way to do this is to use the arrow keys on your19

calculator to move the cursor into the header of the column, press the CLEAR button on your keyboard,
followed by the ENTER key. This should clear the data out of the corresponding column.
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(a) (b) (c)
Figure 4. Plotting the data points from Table 1

The final step is to calculate and plot the line of best fit.

• Press the STAT button again, but then use the right-arrow to select the CALC sub-
menu highlighted in Figure 5(a).

• Select 4:LinReg(ax+b) from the CALC submenu.20 This places the command Lin-
Reg(ax+b) on your home screen, as shown in Figure 5(b). You must then type
2ND L1, a comma (located on its own key just above the 7 key), then 2ND L2, as
shown in Figure 5(b).

• Press the ENTER key to execute the command LinReg L1, L2, which produces the
equation of the line of best fit shown in Figure 5(c).

(a) (b) (c)
Figure 5. Finding the equation of the line of best fit.

The screen in Figure 5(c) is quite informative. It tells us two things.

1. The equation of the line of best fit is y = ax + b.
2. The slope is a = .458 and the y-intercept is b = 1.52.

Substituting a = 0.458 and b = 1.52 into the equation y = ax + b gives us the
equation of the line of best fit.

y = 0.458x+ 1.52 (5)

We can superimpose the plot of the line of best fit on our data set in two easy steps.

• Press the Y= key and enter the equation 0.458*X+1.52 in Y1, as shown in Figure 6(a).
• Press the GRAPH button on the top row of keys on your keyboard to produce the

line of best fit in Figure 6(b).

The technical name of the process for finding the line of best fit is linear regression. Hence, the20

abbreviation LinReg.
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(a) (b)
Figure 6. Superimpose the line of best fit on the scatterplot
of the data from Table 1.

On the left-hand side of equation (5), replace y with x (the distance stretched);
on the right-hand side, replace x with m (amount of mass). This leads to the result

x = 0.458m+ 1.52 (6)

You might recall that our hand calculation produced equation (4), which we repeat
here for convenience.

x = 11
24
x+ 3

2
.

Note that 11/24 ≈ 0.4583 and 3/2 = 1.5, so equation (6) agrees closely with our
hand-calculated equation of the line of best fit.

It is rather unusual to have a hand-calculated line of best fit agree so closely with
the sophisticated and very accurate result produced by the graphing calculator. So,
don’t be disappointed when your homework results don’t match as nicely as they have
in this example. If you are in the ballpark with your hand-calculated equation for the
line of best fit, that will usually be good enough. However, if your hand-calculated
equation is not even close to what your calculator produces, it’s “back to the drawing
board.” Recheck your plot and your calculations. Be stubborn! Don’t be satisfied with
your results until you have reasonable agreement.
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3.5 Exercises

1. The following set of data about re-
volving consumer credit (debt) in the United
States is from Google.com. This is pri-
marily made up of credit card debt, but
also includes other consumer non-mortgage
credit, like those offered by commercial
banks, credit unions, Sallie Mae, and the
federal government.

Year yrs x after 2001
all revolving
credit C in
billions of $

2001 0 721.0
2002 1 741.2
2003 2 759.3
2004 3 786.1
2005 4 805.4

a) Set up a coordinate system on graph
paper, placing the credit C on the
vertical axis, and the years x after
2001 on the horizontal axis. Label
and scale each axis appropriately. Draw
what you feel is the line of best fit.
Remember to draw all lines with a
ruler.

b) Select two points on your line of best
fit that are not from the data table
above. Use these two points to de-
termine the slope of the line. Include
units with your answer. Write a sen-
tence or two explaining the real world
significance of the slope of the line of
best fit.

c) Use one of the two points on the line
and the slope to determine the equa-
tion of the line of best fit in point-
slope form. Use C and x for the de-
pendent and independent variables,

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/21

respectively. Solve the resulting equa-
tion for C and write your result using
function notation.

d) Use the equation developed in part
(c) to predict the revolving credit debt
in the year 2008.

e) If the linear trend predicted by the
line of best fit continues, in what year
will the revolving credit debt reach
1.0 trillion dollars?

2. The following set of data about non-
revolving credit (debt) in the United States
is from Google.com. The largest compo-
nent of non-revolving credit is automo-
bile loans, but it is also includes student
loans and other defined-term consumer
loans.

Year yrs x after 2001

Non-
revolving
debt D in

billions of $
2001 0 1121.3
2002 1 1184.1
2003 2 1247.3
2004 3 1305.0
2005 4 1342.3

a) Set up a coordinate system on graph
paper, placing the non-revolving credit
debt D on the vertical axis, and the
years x after 2001 on the horizontal
axis. Label and scale each axis appro-
priately. Draw what you feel is the
line of best fit. Remember to draw
all lines with a ruler.

b) Select two points on your line of best
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fit that are not from the data table
above. Use these two points to de-
termine the slope of the line. Include
units with your answer. Write a sen-
tence or two explaining the real world
significance of the slope of the line of
best fit.

c) Use one of the two points on the line
and the slope to determine the equa-
tion of the line of best fit in point-
slope form. Use D and x for the de-
pendent and independent variables,
respectively. Solve the resulting equa-
tion for D and write your result using
function notation.

d) Use the equation developed in part
(c) to predict the non-revolving credit
debt in the year 2008.

e) If the linear trend predicted by the
line of best fit continues, in what year
will the non-revolving credit debt reach
2.0 trillion dollars?

3. According to the U.S. Bureau of Trans-
portation (www.bts.gov), retail sales of
new cars declined every year from 2000-
2004, as shown in the following table.

Year yrs x after 2000 Sales S in
thousands

2000 0 8847
2001 1 8423
2002 2 8103
2003 3 7610
2004 4 7506

a) Set up a coordinate system on graph
paper, placing the sales S on the ver-
tical axis, and the years x after 2000
on the horizontal axis. Label and scale
each axis appropriately. Draw what
you feel is the line of best fit. Remem-
ber to draw all lines with a ruler.

b) Select two points on your line of best
fit that are not from the data table
above. Use these two points to de-
termine the slope of the line. Include
units with your answer. Write a sen-
tence or two explaining the real world
significance of the slope of the line of
best fit.

c) Use one of the two points on the line
and the slope to determine the equa-
tion of the line of best fit in point-
slope form. Use S and x for the de-
pendent and independent variables,
respectively. Solve the resulting equa-
tion for S and write your result using
function notation.

d) Use the equation developed in part
(c) to predict sales in the year 2006.

e) If the linear trend predicted by the
line of best fit continues, when will
sales drop to 7 million cars per year?

4. The following table shows total midyear
population of the world according to the
U.S. Census Bureau, (www.census.gov)
for recent years.

Year yrs x after 2000 Population
P in billions

2000 0 6.08
2001 1 6.16
2002 2 6.23
2003 3 6.30
2004 4 6.38
2005 5 6.45
2006 6 6.53

a) Set up a coordinate system on graph
paper, placing the population P on
the vertical axis, and the years x af-
ter 2000 on the horizontal axis. La-
bel and scale each axis appropriately.
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Draw what you feel is the line of best
fit. Remember to draw all lines with
a ruler.

b) Select two points on your line of best
fit that are not from the data table
above. Use these two points to de-
termine the slope of the line. Include
units with your answer. Write a sen-
tence or two explaining the real world
significance of the slope of the line of
best fit.

c) Use one of the two points on the line
and the slope to determine the equa-
tion of the line of best fit in point-
slope form. Use P and x for the de-
pendent and independent variables,
respectively. Solve the resulting equa-
tion for P and write your result using
function notation.

d) Use the equation developed in part
(c) to predict the population in 2010.

e) If the linear trend predicted by the
line of best fit continues, when will
world population reach 7 billion?

5. The following table shows an excerpt
from the U.S. Census Bureau’s 2005 data
(www.census.gov) on annual sales of new
homes in the United States.

Price Range
(thousands

of $)

Number sold
(thousands)

150 − 199 246
200 − 249 200
250 − 299 152

We cannot use price ranges as coordi-
nate values (we must have single values),
so we replace each price range in the ta-
ble with a single price in the middle of
the range–the average value of a home
in that range. This gives us the follow-

ing modified table:

Avg Price P
(thousands

of $)

Number
sold N

(thousands)
175 246
225 200
275 152

We can now plot the data on a coordi-
nate system.

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Use your calculator to determine a
line of best fit. This is called a lin-
ear demand function, because it al-
lows you to predict the demand for
houses with a certain price. Write it
using function notation and round to
the nearest thousandth. Graph it on
your calculator and copy it onto your
coordinate system.

c) Use the linear demand function to
predict annual sales of homes priced
at $200, 000. Try to use the TABLE
feature on your calculator to make
this prediction.

6. The following table shows data from
the National Association of Homebuilders
(www.nahb.org), indicating the median
price of new homes in the United States.
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Year

Median
Price

(thousands
of $)

2000 169
2001 175
2002 188
2003 195
2004 221
2005 238

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Use your calculator to determine a
line of best fit that can be used to pre-
dict the median price of new homes in
future years. Write it using function
notation. Graph it on your calcula-
tor and copy it onto your coordinate
system.

c) Use the linear demand function to
predict the median price of a new home
in 2010. Try to use the TABLE fea-
ture on your calculator to make this
prediction.

d) Looking at the graph, do you think
the linear demand function models the
actual data points well? If not, why
not? What does this mean about the
prediction you made in part (c)?

7. Jim is hanging blocks of various mass
on a spring in the physics lab. He no-
tices that the spring will stretch further
if he adds more mass to the end of the
spring. He is soon convinced that the
distance the spring will stretch depends
on the amount of mass attached to it. He
decides to take some measurements. He
records the amount of mass attached to

the end of the spring and then measures
the distance that the spring stretched.
Here is Jim’s data.

Mass
(grams)

Distance
Stretched

(cm)
50 1.2
100 1.9
150 3.1
200 4.0
250 4.8
300 6.2

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Use your calculator to determine a
line of best fit that can be used to pre-
dict the distance the spring stretches.
Write it using function notation. Graph
it on your calculator and copy it onto
your coordinate system.

c) Use the function from part (c) to pre-
dict the distance the spring will stretch
if 175 grams is attached to the spring.
Try to use the TABLE feature on your
calculator to make this prediction.

8. Dave and Melody are lab partners in
Tony Sartori’s afternoon chemistry lab.
Professor Sartori has prepared an exper-
iment to help them discover the relation-
ship between the Celsius and Fahrenheit
temperature scales. The experiment con-
sists of a beaker full of ice and two ther-
mometers, one calibrated in the Fahren-
heit scale, the other in the Celsius scale.
Dave and Melody use a Bunsen burner to
heat the beaker, eventually bringing the
water in the beaker to the boiling point.
Every few minutees they make two tem-
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perature readings, one in Fahrenheit, one
in Celsius. The data that they record
during the laboratory session follows.

Celsius Fahrenheit
4.0 39
18 65
30 85
51 122
70 159
85 186
100 210

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Use your calculator to determine a
line of best fit that can be used to
predict the Fahrenheit temperature
as a function of the Celsius temper-
ature. Write it using function nota-
tion. Graph it on your calculator and
copy it onto your coordinate system.

c) Use the function from part (c) to pre-
dict the Fahrenheit temperature if the
Celsius temperature is 40. Try to use
the TABLE feature on your calcula-
tor to make this prediction.

d) Use the function from part (c) to
predict the Celsius temperature if the
Fahrenheit temperature is 100.

9. The following table shows data on
home sales at the Mendocino Coast in
2005.

Price Range
(thousands

of $)

Number sold
(thousands)

200 − 299 14
300 − 399 55
400 − 499 62

We cannot use price ranges as coordi-
nate values (we must have single values),
so we replace each price range in the ta-
ble with a single price in the middle of
the range–the average value of a home
in that range. This gives us the follow-
ing modified table:

Avg Price P
(thousands

of $)

Number
sold N

(thousands)
250 14
350 55
450 62

We can now plot the data on a coordi-
nate system.

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Use your calculator to determine a
line of best fit. Write it using func-
tion notation and round to the near-
est thousandth. Graph it on your cal-
culator and copy it onto your coordi-
nate system.

c) Use the linear function to predict the
sales for houses in the price range $500, 000−
$599, 000. Use the average price of
$550, 000 for this estimate.

d) The actual number of houses sold in
the price range $500, 000 − $599, 000
was 41. Plot this as a point on your
coordinate system and compare it to
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your linear function model’s predic-
tion. Notice that this actual value is
pretty different from the prediction.

e) What this means is that a linear model
is not very good for the data for home
sales! Draw a simple curve that goes
through each of the data points. No-
tice that it does not very closely re-
semble the shape of a line! More so-
phisticated functions are required to
model this example–such as quadratic
functions, which we study in a later
chapter. The moral of the story here
is that not every data set can be mod-
eled linearly!

10. The following from the July 14, 2006
edition of the Beĳing Today newspaper
shows how high-heels affect the ball of
the foot. The table shows the increase
in percent of pressure on the ball of the
foot for given heights of heels.

Heel height
h (inches)

%increase
in pressure

1 22
2 57

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Notice that, because we have exactly
two data points, the line of best fit is
the line that goes through both points.
To begin finding the equation, use the
slope formula to compute the slope.

c) Use the point-slope form to find an
equation for the line. Write it in slope-
intercept form.

d) Use the linear function to predict the
percent of stress increase for a 3-inch
heel.

e) The actual percent of pressure in-
crease for a 3-inch heel is 76 %. Plot
this as a point on your coordinate
system and compare it to your linear
function model’s prediction. Notice
that this actual value is pretty differ-
ent from the prediction.

f) What this means is that a linear model
is not very good for the data! Draw a
simple curve that goes through each
of the data points. Notice that it does
not very closely resemble the shape of
a line! More sophisticated functions
are required to model this example.
Not every data set should be mod-
eled linearly!
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3.5 Answers

1.

x (years)
0 1 2 3 4

C (billion dollars)

720

740

760

780

800

820

a)

b)

x (years)
0 1 2 3 4

C (billion dollars)

720

740

760

780

800

820

P (1.4,750)

Q(2.8,780)

c) C(x) = 21.42x+ 720.012

d) Approximately 869 billion dollars.

e) 2014

3.

a)

x (years)
0 1 2 3 4

C (thousands dollars)

7000

7500

8000

8500

9000

b)

x (years)
0 1 2 3 4

C (thousands dollars)

7000

7500

8000

8500

9000

P (1.4,8300)

Q(4.0,7400)

m = −346.15 thousand cars per year

c) S(x) = −346.15x+ 8784.61

d) S(6) ≈ 6707 thousand cars.

e) In the year 2005-2006.
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5.

a)

b)

N(P ) = −0.94P + 410.833

c)

Approximately 222, 830 homes.

7.

a)

b)

d(m) = 0.01977m+ 0.07333

c)

Approximately 3.53 centimeters.

9.

a)

b)

N(P ) = 0.24P − 40.33.

c)

Approximately 91, 667 homes.

d)
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e)
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3.6 Index
a
acceleration 250
axes

label and scale 219 , 224
scaling

guidelines 220
axis

dependent 219
independent 219

c
Change in Quantity 248
change in quantity

subtract 248
change in x 251
change in y 251
constant rate 221 , 222
continuous model 221 , 222 , 225

d
dependent 313
dependent variable 219 , 224

vertical axis 219
discrete model 221 , 222
draw a line

parallel to another line 255 , 257
perpendicular to another line 258
through point P perpendicular to line
L 299

using x- and y-intercepts 280
with slope and y-intercept. 273
with slope m and y-intercept (0, 3)

255
with slope m through point P 254 ,

294 , 297
draw a line of best fit 314

e
equation of a line

from its graph 273
slope-intercept 273
through point P perpendicular to line
L 299

which form to use 301

equation of line
given point and slope 294
through two points 295

f
function

linear 272

g
graphing calculator

4:LinReg(ax
b) 318

9:ZoomStat 317
Edit menu 317
entering data 317
equation of line of best fit 318
line of best fit 319
scatterplot 319
scatterplots 317
STAT button 317
STAT PLOT 317

h
horizonal lines 256
horizontal line

equation 280

i
independent 313
independent variable 219 , 224

horizontal axis 219

l
line

equation
given point and slope 294

horizontal
equation 280

point-slope form 293 , 294
slope-intercept form 271 , 272
standard form 276
vertical

equation 280
linear function 272



332 Chapter 3 Linear Functions

Version: Fall 2007

linear model
constant rate 221
initial condition 221

linear models 219
line of best fit 313

drawing 314
finding equation with graphing calcu-

lator 316
graphing calculator

equation 318
guidelines for drawing 313
guidelines for finding equation manu-

ally 314
prediction 314

lines
horizontal 256
parallel 256
perpendicular 258

m
model

constant rate
determining 228

continuous 221 , 225
discrete 221
equation 223 , 227

determining 228 , 230
prediction 227

initial condition
determining 228

prediction 222 , 225
models

linear 219

p
parallel lines 256

same slope 256
perpendicular lines 258

slope 258

point-slope form of a line 293 , 294
prediction 222
predictive tool 227

r
rate is a slope 275

s
Slope 247
slope 247 , 271

change in y divided by change in x
253

determining from graph 249
equivalent to rate 250
expectations 247
of a line through two points 253 ,

254
perpendicular lines 258
undefined 257
zero 257

slope-intercept form of a line 271 , 272
slope formula 251 , 253
slope is a rate 275
standard form of a line 276

v
vertical line

equation 280

x
x-intercept 279

computing 279

y
y-intercept 271 , 279

computing 279
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4 Absolute Value Functions
In this chapter we will introduce the absolute value function, one of the more useful
functions that we will study in this course. Because it is closely related to the concept
of distance, it is a favorite among statisticians, mathematicians, and other practitioners
of science.

Most readers probably already have an intuitive understanding of absolute value.
You’ve probably seen that the absolute value of seven is seven, i.e., |7| = 7, and the
absolute value of negative seven is also seven, i.e., | − 7| = 7. That is, the absolute
value function takes a number as input, and then makes that number positive (if it
isn’t already). Technically, because |0| = 0, which is not a positive number, we are
forced to say that the absolute value function takes a number as input, and then makes
it nonnegative (positive or zero).

However, as you advance in your coursework, you will quickly discover that this
intuitive notion of absolute value is insufficient when tackling more sophisticated prob-
lems. In this chapter, as we try to raise our understanding of absolute value to a higher
plane, we will encounter piecewise-defined functions and use them to create piecewise
definitions for absolute value functions. These piecewise definitions will help us draw
the graphs of a variety of absolute value functions.

Finally we’ll conclude our work in this chapter by developing techniques for solving
equations and inequalities containing expressions that implement the absolute value
function.
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4.1 Piecewise-Defined Functions
In preparation for the definition of the absolute value function, it is extremely important
to have a good grasp of the concept of a piecewise-defined function. However, before
we jump into the fray, let’s take a look at a special type of function called a constant
function.

One way of understanding a constant function is to have a look at its graph.

I Example 1. Sketch the graph of the constant function f(x) = 3.

Because the notation f(x) = 3 is equivalent to the notation y = 3, we can sketch a
graph of f by drawing the graph of the horizontal line having equation y = 3, as shown
in Figure 1.

x
10

y
10

f(x) = 3

Figure 1. The graph of a constant func-
tion is a horizontal line.

When you look at the graph in Figure 1, note that every point on the horizontal line
having equation f(x) = 3 has a y-value equal to 3. We say that the y-values on this
horizontal line are constant, for the simple reason that they are constantly equal to 3.

The function form works in precisely the same manner. Look again at the notation

f(x) = 3.

Note that no matter what number you substitute for x in the left-hand side of f(x) = 3,
the right-hand side is constantly equal to 3. Thus,

f(−5) = 3, f(−1/2) = 3, f(
√

2) = 3, or f(π) = 3.

The above discussion leads to the following definition.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1



336 Chapter 4 Absolute Value Functions

Version: Fall 2007

Definition 2. The function defined by f(x) = c, where c is a constant (fixed
real number), is called a constant function.

Two comments are in order:

1. f(x) = c for all real numbers x.
2. The graph of f(x) = c is a horizontal line. It consists of all the points (x, y) having
y-value equal to c.

Piecewise Constant Functions
Piecewise functions are a favorite of engineers. Let’s look at an example.

I Example 3. Suppose that a battery provides no voltage to a circuit when a switch
is open. Then, starting at time t = 0, the switch is closed and the battery provides
a constant 5 volts from that time forward. Create a piecewise function modeling the
problem constraints and sketch its graph.

This is a fairly simple exercise, but we will have to introduce some new notation.
First of all, if the time t is less than zero (t < 0), then the voltage is 0 volts. If the
time t is greater than or equal to zero (t ≥ 0), then the voltage is a constant 5 volts.
Here is the notation we will use to summarize this description of the voltage.

V (t) =
{

0, if t < 0,
5, if t ≥ 0 (4)

Some comments are in order:

• The voltage difference provide by the battery in the circuit is a function of time.
Thus, V (t) represents the voltage at time t.

• The notation used in (4) is universally adopted by mathematicians in situations
where the function changes definition depending on the value of the independent
variable. This definition of the function V is called a “piecewise definition.” Because
each of the pieces in this definition is constant, the function V is called a piecewise
constant function.

• This particular function has two pieces. The function is the constant function
V (t) = 0, when t < 0, but a different constant function, V (t) = 5, when t ≥ 0.

If t < 0, V (t) = 0. For example, for t = −1, t = −10, and t = −100,

V (−1) = 0, V (−10) = 0, and V (−100) = 0.

On the other hand, if t ≥ 0, then V (t) = 5. For example, for t = 0, t = 10, and t = 100,

V (0) = 5, V (10) = 5, and V (100) = 5.

Before we present the graph of the piecewise constant function V , let’s pause for a
moment to make sure we understand some standard geometrical terms.
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Geometrical Terms.

• A line stretches indefinitely in two directions, as shown in Figure 2(a).
• If a line has a fixed endpoint and stretches indefinitely in only one direction,

as shown in Figure 2(b), then it is called a ray.
• If a portion of the line is fixed at each end, as shown in Figure 2(c), then it

is called a line segment.

B

A

B

A

B

A

(a) (b) (c)
Figure 2. Lines, rays, and segments.

With these terms in hand, let’s turn our attention to the graph of the voltage defined
by equation (4). When t < 0, then V (t) = 0. Normally, the graph of V (t) = 0 would
be a horizontal line where each point on the line has V -value equal to zero. However,
V (t) = 0 only if t < 0, so the graph is the horizontal ray that starts at the origin, then
moves indefinitely to the left, as shown in Figure 3. That is, the horizontal line V = 0
has been restricted to the domain {t : t < 0} and exists only to the left of the origin.

Similarly, when t ≥ 0, then V (t) = 5 is the horizontal ray shown in Figure 3. Each
point on the ray has a V -value equal to 5.

t10

V
10

0

5

Figure 3. The voltage as a function
of time t.
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Two comments are in order:

• Because V (t) = 0 only when t < 0, the point (0, 0) is unfilled (it is an open circle).
The open circle at (0, 0) is a mathematician’s way of saying that this particular
point is not plotted or shaded.

• Because V (t) = 5 when t ≥ 0, the point (0, 5) is filled (it is a filled circle). The
filled circle at (0, 5) is a mathematician’s way of saying that this particular point is
plotted or shaded.

Let’s look at another example.

I Example 5. Consider the piecewise-defined function

f(x) =

{ 0, if x < 0,
1, if 0 ≤ x < 2,
2, if x ≥ 2.

(6)

Evaluate f(x) at x = −1, 0, 1, 2, and 3. Sketch the graph of the piecewise function f .

Because each piece of the function in (6) is constant, evaluation of the function is
pretty easy. You just have to select the correct piece.

• Note that x = −1 is less than 0, so we use the first piece and write f(−1) = 0.
• Note that x = 0 satisfies 0 ≤ x < 2, so we use the second piece and write f(0) = 1.
• Note that x = 1 satisfies 0 ≤ x < 2, so we use the second piece and write f(1) = 1.
• Note that x = 2 satisfies x ≥ 2, so we use the third piece and write f(2) = 2.
• Finally, note that x = 3 satisfies x ≥ 2, so we use the third piece and write f(3) = 2.

The graph is just as simple to sketch.

• Because f(x) = 0 for x < 0, the graph of this piece is a horizontal ray with endpoint
at x = 0. Each point on this ray will have a y-value equal to zero and the ray will
lie entirely to the left of x = 0, as shown in Figure 4.

• Because f(x) = 1 for 0 ≤ x < 2, the graph of this piece is a horizontal segment
with one endpoint at x = 0 and the other at x = 2. Each point on this segment will
have a y-value equal to 1, as shown in Figure 4.

• Because f(x) = 2 for x ≥ 2, the graph of this piece is a horizontal ray with endpoint
at x = 2. Each point on this ray has a y-value equal to 2 and the ray lies entirely
to the right of x = 2, as shown in Figure 4.

Several remarks are in order:

• The function is zero to the left of the origin (for x < 0), but not at the origin. This
is indicated by an empty circle at the origin, an indication that we are not plotting
that particular point.

• For 0 ≤ x < 2, the function equals 1. That is, the function is constantly equal to 1
for all values of x between 0 and 2, including zero but not including 2. This is why
you see a filled circle at (0, 1) and an empty circle at (2, 1).

• Finally, for x ≥ 2, the function equals 2. That is, the function is constantly equal
to 2 whenever x is greater than or equal to 2. That is why you see a filled circle at
(2, 2).
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x
10

y
10

Figure 4. Sketching the graph of the
piecewise function (6).

Piecewise-Defined Functions
Now, let’s look at a more generic situation involving piecewise-defined functions—one
where the pieces are not necessarily constant. The best way to learn is by doing, so
let’s start with an example.

I Example 7. Consider the piecewise-defined function

f(x) =
{
−x+ 2, if x < 2,
x− 2, if x ≥ 2. (8)

Evaluate f(x) for x = 0, 1, 2, 3 and 4, then sketch the graph of the piecewise-defined
function.

The function changes definition at x = 2. If x < 2, then f(x) = −x + 2. Because
both 0 and 1 are strictly less than 2, we evaluate the function with this first piece of
the definition.

f(x) = −x+ 2 and f(x) = −x+ 2

f(0) = −0 + 2 f(1) = −1 + 2

f(0) = 2 f(1) = 1.

On the other hand, if x ≥ 2, then f(x) = x − 2. Because 2, 3, and 4 are all greater
than or equal to 2, we evaluate the function with this second piece of the definition.

f(x) = x− 2 and f(x) = x− 2 and f(x) = x− 2

f(2) = 2− 2 f(3) = 3− 2 f(4) = 4− 2

f(2) = 0 f(3) = 1 f(4) = 2.
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One possible approach to the graph of f is to place the points we’ve already calcu-
lated, plus a couple extra, in a table (see Figure 5(a)), plot them (see Figure 5(b)),
then intuit the shape of the graph from the evidence provided by the plotted points.
This is done in Figure 5(c).

x f(x)
−1 3
0 2
1 1
2 0
3 1
4 2
5 3

x
10

y
10

x
10

y
10

f

(a) (b) (c)
Figure 5. Plotting the graph of the piecewise function defined in (8).

However pragmatic, this point-plotting approach is a bit tedious; but, more impor-
tantly, it does not provide the background necessary for the discussion of the absolute
value function in the next section. We need to stretch our understanding to a higher
level. Fortunately, all the groundwork is in place. We need only apply what we already
know about the equations of lines to fit this piecewise situation.

Alternative approach. Let’s use our knowledge of the equation of a line (i.e.
y = mx+ b) to help sketch the graph of the piecewise function defined in (8).

Let’s sketch the first piece of the function f defined in (8). We have f(x) = −x+ 2,
provided x < 2. Normally, this would be a line (with slope −1 and intercept 2), but we
are to sketch only a part of that line, the part where x < 2 (x is to the left of 2). Thus,
this piece of the graph will be a ray, starting at the point where x = 2, then moving
indefinitely to the left.

The easiest way to sketch a ray is to first calculate and plot its fixed endpoint (in
this case at x = 2), then plot a second point on the ray having x-value less than 2, then
use a ruler to draw the ray.

With this thought in mind, to find the coordinates of the endpoint of the ray,
substitute x = 2 in f(x) = −x + 2 to get f(2) = 0. Now, technically, we’re not
supposed to use this piece of the function unless x is strictly less than 2, but we could
use it with x = 1.9, or x = 1.99, or x = 1.999, etc. So let’s go ahead and use x = 2
in this piece of the function, but indicate that we’re not actually supposed to use this
point by drawing an “empty circle” at (2, 0), as shown in Figure 6(a).

To complete the plot of the ray, we need a second point that lies to the left of its
endpoint at (2, 0). Note that x = 0 is to the left of x = 2. Evaluate f(x) = −x + 2
at x = 0 to obtain f(0) = −0 + 2 = 2. This gives us the second point (0, 2), which we
plot as shown in Figure 6(a). Finally, draw the ray with endpoint at (2, 0) and second
point at (0, 2), as shown in Figure 6(a).



Section 4.1 Piecewise-Defined Functions 341

Version: Fall 2007

x
10

y
10

(2, 0)

(0, 2)
x

10

y
10
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(4, 2)

(a) (b)
Figure 6. Sketch each piece separately.

We now repeat this process for the second piece of the function defined in (8). The
equation of the second piece is f(x) = x− 2, provided x ≥ 2. Normally, f(x) = x− 2
would be a line (with slope 1 and intercept −2), but we’re only supposed to sketch that
part of the line that lies to the right of or at x = 2. Thus, the graph of this second piece
is a ray, starting at the point with x = 2 and continuing to the right. If we evaluate
f(x) = x− 2 at x = 2, then f(2) = 2− 2 = 0. Thus, the fixed endpoint of the ray is at
the point (2, 0). Since we’re actually supposed to use this piece with x = 2, we indicate
this fact with a filled circle at (2, 0), as shown in Figure 6(b).

We need a second point to the right of this fixed endpoint, so we evaluate f(x) = x−2
at x = 4 to get f(4) = 4 − 2 = 2. Thus, a second point on the ray is the point (4, 2).
Finally, we simply draw the ray, starting at the endpoint (2, 0) and passing through
the second point at (4, 2), as shown in Figure 6(b).

To complete the graph of the piecewise function f defined in equation (8), simply
combine the two pieces in Figure 6(a) and Figure 6(b) to get the finished graph
in Figure 7. Note that the graph in Figure 7 is identical to the earlier result in
Figure 5(c).

Let’s try this alternative procedure in another example.

I Example 9. A source provides voltage to a circuit according to the piecewise
definition

V (t) =
{

0, if t < 0,
t, if t ≥ 0. (10)

Sketch the graph of the voltage V versus time t.

For all time t that is less than zero, the voltage V is zero. The graph of V (t) = 0 is a
constant function, so its graph is normally a horizontal line. However, we must restrict
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x
10

y
10

f

Figure 7. Combining
both pieces.

the graph to the domain (−∞, 0), so this piece of equation (10) will be a horizontal
ray, starting at the origin and moving indefinitely to the left, as shown in Figure 8(a).

On the other hand, V (t) = t for all values of t that are greater than or equal to
zero. Normally, this would be a line with slope 1 and intercept zero. However, we must
restrict the domain to [0,∞), so this piece of equation (10) will be a ray, starting at
the origin and moving indefinitely to the right.

• The endpoint of this ray starts at t = 0. Because V (t) = t, V (0) = 0. Hence, the
endpoint of this ray is at the point (0, 0).

• Choose any value of t that is greater than zero. We’ll choose t = 5. Because
V (t) = t, V (5) = 5. This gives us a second point on the ray at (5, 5), as shown in
Figure 8(b).

t10

V
10

(0, 0)
t10

V
10

(0, 0)

(5, 5)

(a) V (t) = 0 for t < 0. (b) V (t) = t for t ≥ 0.
Figure 8.

Finally, to provide a complete graph of the voltage function defined by equation (10),
we combine the graphs of each piece of the definition shown in Figures 8(a) and (b).
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The result is shown in Figure 9. Engineers refer to this type of input function as a
“ramp function.”

t10

V
10 V

Figure 9. The graph of the ramp
function defined by equation (10).

Let’s look at a very practical application of piecewise functions.

I Example 11. The federal income tax rates for a single filer in the year 2005 are
given in Table 1.

Income Tax Rate
Up to $7,150 10%

$7,151-$29,050 15%
$29,051-$70,350 25%
$70,351-$146,750 28%
$146,751-$319,100 33%
$319,101 or more 35%

Table 1. 2005 Federal Income Tax
rates for single filer.

Create a piecewise definition that provides the tax rate as a function of personal income.

In reporting taxable income, amounts are rounded to the nearest dollar on the
federal income tax form. Technically, the domain is discrete. You can report a taxable
income of $35,000 or $35,001, but numbers between these two incomes are not used
on the federal income tax form. However, we will think of the income as a continuum,
allowing the income to be any real number greater than or equal to zero. If we did
not do this, then our graph would be a series of dots–one for each dollar amount. We
would have to plot lots of dots!
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We will let R represent the tax rate and I represent the income. The goal is to
define R as a function of I.

• If income I is any amount greater than or equal to zero, and less than or equal
to $7,150, the tax rate R is 10% (i.e., R = 0.10). Thus, if $0 ≤ I ≤ $7, 150,
R(I) = 0.10.

• If income I is any amount that is strictly greater than $7,150 but less than or equal to
$29,050, then the tax rate R is 15% (i.e., R = 0.15). Thus, if $7, 150 < I ≤ $29, 050,
then R(I) = 0.15.

Continuing in this manner, we can construct a piecewise definition of rate R as a
function of taxable income I.

R(I) =



0.10, if $0 ≤ I ≤ $7, 150,
0.15, if $7, 150 < I ≤ $29, 050,
0.25, if $29, 050 < I ≤ $70, 350,
0.28, if $70, 350 < I ≤ $146, 750,
0.33, if $146, 750 < I ≤ $319, 100,
0.35, if I > $319, 100.

(12)

Let’s turn our attention to the graph of this piecewise-defined function. All of
the pieces are constant functions, so each piece will be a horizontal line at a level
indicating the tax rate. However, each of the first five pieces of the function defined in
equation (12) are segments, because the rate is defined on an interval with a starting
and ending income. The sixth and last piece is a ray, as it has a starting endpoint, but
the rate remains constant for all incomes above $319,100. We use this knowledge to
construct the graph shown in Figure 10.

The first rate is 10% and this is assigned to taxable income starting at $0 and ending
at $7,150, inclusive. Thus, note the first horizontal line segment in Figure 10 that
runs from $0 to $7,150 at a height of R = 0.10. Note that each of the endpoints are
filled circles.

The second rate is 15% and this is assigned to taxable incomes greater than $7,150,
but less than or equal to $29,050. The second horizontal line segment in Figure 10
runs from $7,150 to $29,050 at a height of R = 0.15. Note that the endpoint at the left
end of this horizontal segment is an open circle while the endpoint on the right end is
a filled circle because the taxable incomes range on $7, 150 < I ≤ $29, 050. Thus, we
exclude the left endpoint and include the right endpoint.

The remaining segments are drawn in a similar manner.
The last piece assigns a rate of R = 0.35 to all taxable incomes strictly above

$319,100. Hence, the last piece is a horizontal ray, starting at ($319 100, 0.35) and
extending indefinitely to the right. Note that the left endpoint of this ray is an open
circle because the rate R = 0.35 applies to taxable incomes I > $319, 100.

Let’s talk a moment about the domain and range of the function R defined by
equation (12). The graph of R is depicted in Figure 10. If we project all points on
the graph onto the horizontal axis, the entire axis will “lie in shadow.” Thus, at first
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Figure 10. The graph of the tax rate R versus taxable income I.

glance, one would state that the domain of R is the set of all real numbers that are
greater than or equal to zero.

However, remember that we chose to model a discrete situation with a continuum.
Taxable income is always rounded to the nearest dollar on federal income tax forms.
Therefore, the domain is actually all whole numbers greater than or equal to zero. In
symbols,

Domain = {I ∈W : I ≥ 0}.

To find the range of R, we would project all points on the graph of R in Figure 10
onto the vertical axis. The result would be that six points would be shaded on the
vertical axis, one each at 0.10, 0.15, 0.25, 0.28, 0.33, and 0.35. Thus, the range is a
finite discrete set, so it’s best described by simply listing its members.

Range = {0.10, 0.15, 0.25, 0.28, 0.33, 0.35}
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4.1 Exercises

1. Given the function defined by the
rule f(x) = 3, evaluate f(−3), f(0) and
f(4), then sketch the graph of f .

2. Given the function defined by the
rule g(x) = 2, evaluate g(−2), g(0) and
g(4), then draw the draw the graph of g.

3. Given the function defined by the
rule h(x) = −4, evaluate h(−2), h(a),
and h(2x+ 3), then draw the graph of h.

4. Given the function defined by the
rule f(x) = −2, evaluate f(0), f(b), and
f(5− 4x), then draw the graph of f .

5. The speed of an automobile travel-
ing on the highway is a function of time
and is described by the constant func-
tion v(t) = 30, where t is measured in
hours and v is measured in miles per
hour. Draw the graph of v versus t. Be
sure to label each axis with the appro-
priate units. Shade the area under the
graph of v over the time interval [0, 5]
hours. What is the area under the graph
of v over this time interval and what does
it represent?

6. The speed of a skateboarder as she
travels down a slope is a function of time
and is described by the constant function
v(t) = 8, where t is measured in seconds
and v is measured in feet per second.
Draw the graph of v versus t. Be sure
to label each axis with the appropriate
units. Shade the area under the graph of
v over the time interval [0, 60] seconds.
What is the area under the graph of v
over this time interval and what does it
represent?

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/2

7. An unlicensed plumber charges 15
dollars for each hour of labor. Let’s de-
fine this rate as a function of time by
r(t) = 15, where t is measured in hours
and r is measured in dollars per hour.
Draw the graph of r versus t. Be sure to
label each axis with appropriate units.
Shade the area under the graph of r over
the time interval [0, 4] hours. What is
area under the graph of r over this time
interval and what does it represent?

8. A carpenter charges a fixed rate for
each hour of labor. Let’s describe this
rate as a function of time by r(t) = 25,
where t is measured in hours and r is
measured in dollars per hour. Draw the
graph of r versus t. Be sure to label each
axis with appropriate units. Shade the
area under the graph of r over the time
interval [0, 5] hours. What is the area un-
der the graph of r over this time interval
and what does it represent?

9. Given the function defined by the
rule

f(x) =
{

0, if x < 0
2, if x ≥ 0,

evaluate f(−2), f(0), and f(3), then draw
the graph of f on a sheet of graph paper.
State the domain and range of f .

10. Given the function defined by the
rule

f(x) =
{

2, if x < 0
0, if x ≥ 0,

evaluate f(−2), f(0), and f(3), then draw
the graph of f on sheet of graph paper.
State the domain and range of f .
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11. Given the function defined by the
rule

g(x) =

{−3, if x < −2,
1, if −2 ≤ x < 2,
3, if x ≥ 2,

evaluate g(−3), g(−2), and g(5), then
draw the graph of g on a sheet of graph
paper. State the domain and range of g.

12. Given the function defined by the
rule

g(x) =

{ 4, if x ≤ −1,
2, if −1 < x ≤ 2,
−3, if x > 2,

evaluate g(−1), g(2), and g(3), then draw
the graph of g on a sheet of graph paper.
State the domain and range of g.

In Exercises 13-16, determine a piece-
wise definition of the function described
by the graphs, then state the domain and
range of the function.

13.

x
5

y
5

f

14.

x
5

y
5

f

15.

x
5

y
5

g

16.

x
5

y
5

g



Section 4.1 Piecewise-Defined Functions 349

Version: Fall 2007

17. Given the piecewise definition

f(x) =
{
−x− 3, if x < −3,
x+ 3, if x ≥ −3,

evaluate f(−4) and f(0), then draw the
graph of f on a sheet of graph paper.
State the domain and range of the func-
tion.

18. Given the piecewise definition

f(x) =
{
−x+ 1, if x < 1,
x− 1, if x ≥ 1,

evaluate f(−2) and f(3), then draw the
graph of f on a sheet of graph paper.
State the domain and range of the func-
tion.

19. Given the piecewise definition

g(x) =
{
−2x+ 3, if x < 3/2,
2x− 3, if x ≥ 3/2,

evaluate g(0) and g(3), then draw the
graph of g on a sheet of graph paper.
State the domain and range of the func-
tion.

20. Given the piecewise definition

g(x) =
{
−3x− 4, if x < −4/3,
3x+ 4, if x ≥ −4/3,

evaluate g(−2) and g(3), then draw the
graph of g on a sheet of graph paper.
State the domain and range of the func-
tion.

21. A battery supplies voltage to an
electric circuit in the following manner.
Before time t = 0 seconds, a switch is
open, so the voltage supplied by the bat-
tery is zero volts. At time t = 0 seconds,
the switch is closed and the battery be-
gins to supply a constant 3 volts to the
circuit. At time t = 2 seconds, the switch
is opened again, and the voltage supplied

by the battery drops immediately to zero
volts. Sketch a graph of the voltage v
versus time t, label each axis with the
appropriate units, then provide a piece-
wise definition of the voltage v supplied
by the battery as a function of time t.

22. Prior to time t = 0 minutes, a drum
is empty. At time t = 0 minutes a hose
is turned on and the water level in the
drum begins to rise at a constant rate
of 2 inches every minute. Let h repre-
sent water level (in inches) at time t (in
minutes). Sketch the graph of h versus
t, label the axes with appropriate units,
then provide a piecewise definition of h
as a function of t.
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4.1 Answers

1. f(−3) = 3, f(0) = 3, and f(4) = 3.

x
5

y
5

f(x)=3

3. h(−2) = −4, h(a) = −4, and h(2x+
3) = −4.

x
5

y
5

h(x)=−4

5. The area under the curve is 150 miles.
This is the distance traveled by the car.

t (h)

v (mi/h)

v(t)=30

0 50

30

7. The area under the curve is 150 miles.
This is the distance traveled by the car.

t (h)

r (dollars/h)

r(t)=15

0 4
0

15

9. f(−2) = 0, f(0) = 2, and f(3) = 2.

x
5

y
5

f

The domain of f is the set of all real
numbers. The range of f is {0, 2}.

11. g(−3) = −3, g(−2) = 1, and g(5) =
3.

x
5

y
5

g
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The domain of g is all real numbers. The
range of g is {−3, 1, 3}.

13.

f(x) =
{

3, if x < 0,
−2, if x ≥ 0.

Domain of f is the set of all real numbers.
The range of f is {−2, 3}.

15.

g(x) =

{ 2, if x < 0,
−2, if 0 ≤ x < 2,
2, if x ≥ 2.

The domain of f is the set of all real
numbers. The range of f is {−2, 2}.

17. f(−4) = 1 and f(0) = 3.

x
5

y
5 f

(−4,1)(−4,1)

(−3,0)(−3,0)

(0,3)(0,3)

The domain of f is the set of all real
numbers. The range of f is {y : y ≥ 0}.

19. g(−2) = 7 and g(2) = 1.

x
5

y
5 g

(0,3)(0,3)

(3/2,0)(3/2,0)

(3,3)(3,3)

The domain of g is the set of all real num-
bers. The range of g is {y : y ≥ 0}.

21. The graph follows.

t (s)
5

V (volts)
5

The piecewise definition is

v(t) =

{ 0, if t < 0,
3, if 0 ≤ t < 2,
0, if t ≥ 2.
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4.2 Absolute Value
Now that we have the fundamentals of piecewise-defined functions in place, we are
ready to introduce the absolute value function. First, let’s state a trivial reminder of
what it means to take the absolute value of a real number.

In a sense, the absolute value of a number is a measure of its magnitude, sans
(without) its sign. Thus,

|7| = 7 and | − 7] = 7. (1)

Here is the formal definition of the absolute value of a real number.

Definition 2. To find the absolute value of any real number, first locate the
number on the real line.

x0

|x|

The absolute value of the number is defined as its distance from the origin.

For example, to find the absolute value of 7, locate 7 on the real line and then find
its distance from the origin.

70

|7| = 7

To find the absolute value of −7, locate −7 on the real line and then find its distance
from the origin.

−7 0

| − 7| = 7

Some like to say that taking the absolute value “produces a number that is always
positive.” However, this ignores an important exception, that is,

|0| = 0. (3)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/3
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Thus, the correct statement is “the absolute value of any real number is either positive
or it is zero,” i.e., the absolute value of a real number is “not negative.”4 Instead of
using the phrase “not negative,” mathematicians prefer the word “nonnegative.” When
we take the absolute value of a number, the result is always nonnegative; that is, the
result is either positive or zero. In symbols,

|x| ≥ 0 for all real numbers x.

This makes perfect sense in light of Definition 2. Distance is always nonnegative.
However, the discussion above is not of sufficient depth to handle more sophisticated

problems involving absolute value.

A Piecewise Definition of Absolute Value
Because absolute value is intimately connected with distance, mathematicians and sci-
entists find it an invaluable tool for measurement and error analysis. However, we will
need a formulaic definition of the absolute value if we want to use this tool in a mean-
ingful way. We need to develop a piecewise definition of the absolute value function,
one that will define the absolute value for any arbitrary real number x.

We begin with a few observations. Remember, the absolute value of a number is
always nonnegative (positive or zero).

1. If a number is negative, negating that number will make it positive.

| − 5| = −(−5) = 5, and similarly, | − 12| = −(−12) = 12.

Thus, if x < 0 (if x is negative), then |x| = −x.
2. If x = 0, then |x| = 0.
3. If a number is positive, taking the absolute value of that number will not change a

thing.

|5| = 5, and similarly, |12| = 12.

Thus, if x > 0 (if x is positive), then |x| = x.

We can summarize these three cases with a piecewise definition .

|x| =

{−x, if x < 0,
0, if x = 0.,
x, if x > 0.

(4)

It is the first line in our piecewise definition (4) that usually leaves students scratching
their heads. They might say “I thought absolute value makes a number positive (or
zero), yet you have |x| = −x; that is, you have the absolute value of x equal to a
negative x.” Try as they might, this seems contradictory. Does it seem so to you?

A real number is either positive, negative, or zero. If we say that the real number is “not negative,”4

then that implies that it is either “positive” or “zero.”
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However, there is no contradiction. If x < 0, that is, if x is a negative number, then
−x is a positive number, and our intuitive notion of absolute value is not dissimilar
to that of our piecewise definition (4). For example, if x = −8, then −x = 8, and even
though we say “negative x,” in this case −x is a positive number.

If this still has you running confused, consider the simple fact that x and −x must
have “opposite signs.” If one is positive, the other is negative, and vice versa. Conse-
quently,

• if x is positive, then −x is negative, but
• if x is negative, then −x is positive.

Let’s summarize what we’ve learned thus far.

Summarizing the Definition on a Number Line. We like to use a number
line to help summarize the definition of the absolute value of x.

|x| −x x

x − 0 +

Some remarks are in order for this summary on the number line.

• We first draw the real line then mark the “critical value” for the expression inside
the absolute value bars on the number line. The number zero is a critical value for
the expression x, because x changes sign as you move from one side of zero to the
other.

• To the left of zero, x is a negative number. We indicate this with the minus sign
below the number line. To the right of zero, x is a positive number, indicated with
a plus sign below the number line.

• Above the number line, we simplify the expression |x|. To the left of zero, x is
a negative number (look below the line), so |x| = −x. Note how the result −x is
placed above the line to the left of zero. Similarly, to the right of zero, x is a positive
number (look below the line), so |x| = x. Note how the result x is placed above the
line to the right of zero.

In the piecewise definition of |x| in (4), note that we have three distinct pieces, one
for each case discussed above. However, because |0| = 0, we can include this case with
the piece |x| = x, if we adjust the condition to include zero.

Definition 5.

|x| =
{
−x, if x < 0,
x, if x ≥ 0. (6)

Note that this piecewise definition agrees with our discussion to date.
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1. In the first line of equation (6), if x is a negative number (i.e., if x < 0), then the
absolute value must change x to a positive number by negating. That is, |x| = −x.

2. In the second line of equation (6), if x is positive or zero (i.e., if x ≥ 0), then
there’s nothing to do except remove the absolute value bars. That is, |x| = x.

Because |0| = −0, we could just as well include the case for zero on the left, defining
the absolute value with

|x| =
{
−x, if x ≤ 0,
x, if x > 0.

However, in this text we will always include the critical value on the right, as shown in
Definition 5.

Constructing Piecewise Definitions
Let’s see if we can determine piecewise definitions for other expressions involving ab-
solute value.

I Example 7. Determine a piecewise definition for |x− 2|.

First, set the expression inside the absolute value bars equal to zero and solve for
x.

x− 2 = 0
x = 2

Note that x − 2 = 0 at x = 2. This is the “critical value” for this expression. Draw a
real line and mark this critical value of x on the line. Place the expression x− 2 below
the line at its left end.

2x− 2

Next, determine the sign of x − 2 for values of x on each side of 2. This is easily
done by “testing” a point on each side of 2 in the expression x− 2.

• Take x = 1, which lies to the left of the critical value 2 on our number line. Substi-
tute this value of x in the expression x− 2, obtaining

x− 2 = 1− 2 = −1,

which is negative. Indeed, regardless of which x-value you pick to the left of 2, when
inserted into the expression x− 2, you will get a negative result (you should check
this for other values of x to the left of 2). We indicate that the expression x − 2
is negative for values of x to the left of 2 by placing a minus (−) sign below the
number line to the left of 2.
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x− 2 − 2 +

• Next, pick x = 3, which lies to the right of the critical value 2 on the number line.
Substitute this value of x into the expression x− 2, obtaining

x− 2 = 3− 2 = 1,

which is positive. Indeed, regardless of which x-value you pick to the right of 2,
when inserted into the expression x − 2, you will get a positive result (you should
check this for other values of x to the right of 2). We indicate that the expression
x − 2 is positive for values of x to the right of 2 by placing a plus (+) sign below
the number line to the right of 2 (see the number line above).

The next step is to remove the absolute value bars from the expression |x−2|, depending
on the sign of x− 2.

• To the left of 2, the expression x− 2 is negative (note the minus sign (−) below the
number line), so |x − 2| = −(x − 2). That is, we have to negate x − 2 to make it
positive. This is indicated by placing −(x− 2) above the line to the left of 2.

|x− 2| −(x− 2) x− 2
x− 2 − 2 +

• To the right of 2, the expression x− 2 is positive (note the plus sign (+) below the
line), so |x− 2| = x− 2. That is, we simply remove the absolute value bars because
the quantity inside is already positive. This is indicated by placing x− 2 above the
line to the right of 2 (see the number line above).

We can use this last number line summary to construct a piecewise definition of the
expression |x− 2|.

|x− 2| =
{
−(x− 2), if x < 2,
x− 2, if x ≥ 2 =

{
−x+ 2, if x < 2,
x− 2, if x ≥ 2.

Our number line and piecewise definition agree: |x− 2| = −(x− 2) to the left of 2 and
|x− 2| = x− 2 to the right of 2. Further, note how we’ve included the critical value of
2 “on the right” in our piecewise definition.

Let’s summarize the method we followed to construct the piecewise function above.
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Constructing a Piecewise Definition for Absolute Value. When presented
with the absolute value of an algebraic expression, perform the following steps to
remove the absolute value bars and construct an equivalent piecewise definition.

1. Take the expression that is inside the absolute value bars, and set that expres-
sion equal to zero. Then solve for x. This value of x is called a “critical value.”
(Note: The expression inside the absolute value bars could have more than one
critical value. We will not encounter such problems in this text.)

2. Place your critical value on a number line.
3. Place the expression inside the absolute value bars below the number line at

the left end.
4. Test the sign of the expression inside the absolute value bars by inserting a

value of x from each side of the critical value and marking the result with a
plus (+) or minus (−) sign below the number line.

5. Place the original expression, the one including the absolute value bars, above
the number line at the left end.

6. Use the sign of the expression inside the absolute value bars (indicated by the
plus and minus signs below the number line) to remove the absolute value bars,
placing the results above the number line on each side of the critical value.

7. Construct a piecewise definition that mimics the results on the number line.

Let’s apply this technique to another example.

I Example 8. Determine a piecewise definition for |3− 2x|.

Step 1: First set the expression inside the absolute value bars equal to zero and solve
for x.

3− 2x = 0
x = 3/2

Note that 3− 2x = 0 at x = 3/2. This is the “critical value” for this expression.
Steps 2 and 3: Draw a number line and mark this critical value on the line. The
next step requires that we place the expression inside the absolute value bars, namely
3− 2x, underneath the line at its left end.

3/23− 2x

Step 4: Next, determine the sign of 3− 2x for values of x on each side of 3/2. This is
easily done by “testing” a point on each side of 3/2 in the expression 3− 2x.

• Take x = 1, which lies to the left of 3/2. Substitute this value of x into the expression
3− 2x, obtaining

3− 2x = 3− 2(1) = 1,
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which is positive. Indicate this result by placing a plus sign (+) below the number
line to the left of 3/2.

3− 2x + 3/2 −

• Next, pick x = 2, which lies to the right of 3/2. Substitute this value of x into the
expression 3− 2x, obtaining

3− 2x = 3− 2(2) = −1,

which is negative. Indicate this result by placing a negative sign (−) below the line
to the right of 3/2 (see the number line above).

Steps 5 and 6: Place the original expression, namely |3− 2x|, above the number line
at the left end. The next step is to remove the absolute value bars from the expression
|3− 2x|.

• To the left of 3/2, the expression 3 − 2x is positive (note the plus sign (+) below
the number line), so |3−2x| = 3−2x. Indicate this result by placing the expression
3− 2x above the number line to the left of 3/2.

|3− 2x| 3− 2x −(3− 2x)
3− 2x + 3/2 −

• To the right of 3/2, the expression 3−2x is negative (note the minus sign (−) below
the numberline), so |3−2x| = −(3−2x). That is, we have to negate 3−2x to make
it positive. This is indicated by placing the expression −(3− 2x) above the line to
the right of 3/2 (see the number line above).

Step 7: We can use this last number line summary to write a piecewise definition for
the expression |3− 2x|.

|3− 2x| =
{

3− 2x, if x < 3/2.
−(3− 2x), if x ≥ 3/2 =

{
3− 2x, if x < 3/2,
−3 + 2x, if x ≥ 3/2.

Again, note how we’ve included the critical value of 3/2 “on the right.”

Drawing the Graph of an Absolute Value Function
Now that we know how to construct a piecewise definition for an expression containing
absolute value bars, we can use what we learned in the previous section to draw the
graph.
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I Example 9. Sketch the graph of the function f(x) = |3− 2x|.

In Example 8, we constructed the following piecewise definition.

f(x) = |3− 2x| =
{

3− 2x, if x < 3/2
−3 + 2x, if x ≥ 3/2 (10)

We now sketch each piece of this function.

• If x < 3/2, then f(x) = 3 − 2x (see equation (10)). This is a ray, starting at
x = 3/2 and extending to the left. At x = 3/2,

f(3/2) = 3− 2(3/2) = 3− 3 = 0.

Thus, the endpoint of the ray is located at (3/2, 0).
Next, pick a value of x that lies to the left of 3/2. At x = 0,

f(0) = 3− 2(0) = 3− 0 = 3.

Thus, a second point on the ray is (0, 3).
A table containing the two evaluated points and a sketch of the accompanying

ray are shown in Figure 1. Because f(x) = 3 − 2x only if x is strictly less than
3/2, the point at (3/2, 0) is unfilled.

x f(x) = 3− 2x (x, f(x))
3/2 0 (3/2, 0)
0 3 (0, 3)

x10

y
10

(3/2, 0)

(0, 3)

y = 3− 2x

(a) (b)
Figure 1. f(x) = 3 − 2x when x < 3/2.

• If x ≥ 3/2, then f(x) = −3 + 2x (see equation (10)). This is a ray, starting at
x = 3/2 and extending to the right. At x = 3/2,

f(3/2) = −3 + 2(3/2) = −3 + 3 = 0.

Thus, the endpoint of the ray is located at (3/2, 0).
Next, pick a value of x that lies to the right of 3/2. At x = 3,

f(3) = −3 + 2(3) = −3 + 6 = 3.
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Thus, a second point on the ray is (3, 3).
A table containing the two evaluated points and a sketch of the accompanying

ray are shown in Figure 2. Because f(x) = −3 + 2x for all values of x that are
greater than or equal to 3/2, the point at (3/2, 0) is filled in this plot.

x f(x) = −3 + 2x (x, f(x))
3/2 0 (3/2, 0)
3 3 (−3, 3)

x10

y
10

(3/2, 0)

(3, 3)

y = −3 + 2x

(a) (b)
Figure 2. f(x) = −3 + 2x when x ≥ 3/2.

• To sketch the graph of f(x) = |3− 2x|, we need only combine the two pieces from
Figures 1 and 2. The result is shown in Figure 3.

x10

y
10

Figure 3. The graph
of f(x) = |3 − 2x|.

Note the “V-shape” of the graph. We will refer to the point at the tip of the “V”
as the vertex of the absolute value function.

In Figure 3, the equation of the left-hand branch of the “V” is y = 3 − 2x. An
alternate approach to drawing this branch is to note that its graph is contained in the
graph of the full line y = 3 − 2x, which has slope −2 and y-intercept at (0, 3). Thus,
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one could draw the full line using the slope and y-intercept, then erase that part of the
line that lies to the right of x = 3/2. A similar strategy would work for the right-hand
branch of y = |3− 2x|.

Using Transformations
Consider again the basic definition of the absolute value of x.

f(x) = |x| =
{
−x, if x < 0
x, if x ≥ 0 (11)

Some basic observations are:

• If x < 0, then f(x) = −x. This ray starts at the origin and extends to the left with
slope −1. Its graph is pictured in Figure 4(a).

• If x ≥ 0, then f(x) = x. This ray starts at the origin and extends to the right with
slope 1. Its graph is pictured in Figure 4(b).

• We combine the graphs in Figures 4(a) and 4(b) to produce the graph of f(x) = |x|
in Figure 4(c).

x10

y
10

x10

y
10

x10

y
10

(a) f(x) = −x, if x < 0. (b) f(x) = x, if x ≥ 0. (c) f(x) = |x|.
Figure 4. Combine left and right branches to produce the basic graph of f(x) = |x|.

You should commit the graph of f(x) = |x| to memory. Things to note:

• The graph of f(x) = |x| is “V-shaped.”
• The vertex of the graph is at the point (0, 0).
• The left-hand branch has equation y = −x and slope −1.
• The right-hand branch has equation y = x and slope 1.
• Each branch of the graph of f(x) = |x| forms a perfect 45◦ angle with the x-axis.

Now that we know how to draw the graph of f(x) = |x|, we can use the transforma-
tions we learned in Chapter 2 (sections 5 and 6) to sketch a number of simple graphs
involving absolute value.
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I Example 12. Sketch the graph of f(x) = |x− 3|.

First, sketch the graph of y = f(x) = |x|, as shown in Figure 5(a). Note that if
f(x) = |x|, then

y = f(x− 3) = |x− 3|.

To sketch the graph of y = f(x− 3) = |x− 3|, shift the graph of y = f(x) = |x| three
units to the right, producing the result shown in Figure 5(b).

x10

y
10

x10

y
10

(a) y = f(x) = |x|. (b) y = f(x − 3) = |x − 3|.
Figure 5. To draw the graph of y = |x− 3|, shift the graph of y = |x|
three units to the right.

We can check this result using the graphing calculator. Load the function f(x) =
|x − 3| into Y1 in the Y= menu on your graphing calculator as shown in Figure 6(a).
Push the MATH button, right-arrow to the NUM menu, then select 1:abs( (see Figure 6(b))
to enter the absolute value in Y1. Push the ZOOM button, then select 6:ZStandard to
produce the image shown in Figure 6(c).

(a) (b) (c)
Figure 6. Using the graphing calculator to draw the graph of f(x) = |x − 3|.

Let’s look at another simple example.
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I Example 13. Sketch the graph of f(x) = |x| − 4.

First, sketch the graph of y = f(x) = |x|, as shown in Figure 7(a). Note that if
f(x) = |x|, then

y = f(x)− 4 = |x| − 4.

To sketch the graph of y = f(x) − 4 = |x| − 4, shift the graph of y = f(x) = |x|
downward 4 units, producing the result shown in Figure 5(b).

x10

y
10

x10

y
10

(a) y = f(x) = |x|. (b) y = f(x) − 4 = |x| − 4.
Figure 7. To draw the graph of y = |x| − 4, shift the graph of y = |x|
downward 4 units.

Let’s look at one final example.

I Example 14. Sketch the graph of f(x) = −|x|+ 5. State the domain and range
of this function.

• First, sketch the graph of y = f(x) = |x|, as shown in Figure 8(a).
• Next, sketch the graph of y = −f(x) = −|x|, which is a reflection of the graph of
y = f(x) = |x| across the x-axis and is pictured in Figure 8(b).

• Finally, we will want to sketch the graph of y = −f(x) + 5 = −|x|+ 5. To do this,
we shift the graph of y = −f(x) = −|x| in Figure 8(b) upward 5 units to produce
the result in Figure 8(c).

To find the domain of f(x) = −|x| + 5, project all points on the graph onto the
x-axis, as shown in Figure 9(a). Thus, the domain of f is (−∞,∞). To find the range,
project all points on the graph onto the y-axis, as shown in Figure 9(b). Thus, the
range is (−∞, 5].
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x10

y
10

x10

y
10

x10

y
10

(a) y = f(x) = |x|. (b) y = −f(x) = −|x|. (b) y = −f(x) + 5 = −|x|+ 5.
Figure 8. To draw the graph of y = −|x| + 5, first reflect the graph of y = |x| across the x-axis to
produce the graph of y = −|x|, then shift this result up 5 units to produce the graph of y = −|x|+ 5.

x10

y
10

x10

y
10

(a) Domain = (−∞,∞). (b) Range = (−∞, 5].
Figure 9. Projecting onto the

axes to find the domain and range.
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4.2 Exercises

For each of the functions in Exercises 1-
8, as in Examples 7 and 8 in the narra-
tive, mark the “critical value” on a num-
ber line, then mark the sign of the ex-
pression inside of the absolute value bars
below the number line. Above the num-
ber line, remove the absolute value bars
according to the sign of the expression
you marked below the number line. Once
your number line summary is finished,
create a piecewise definition for the given
absolute value function.

1. f(x) = |x+ 1|

2. f(x) = |x− 4|

3. g(x) = |4− 5x|

4. g(x) = |3− 2x|

5. h(x) = | − x− 5|

6. h(x) = | − x− 3|

7. f(x) = x+ |x|

8. f(x) = |x|
x

For each of the functions in Exercises 9-
16, perform each of the following tasks.

i. Create a piecewise definition for the
given function, using the technique in
Exercises 1-8 and Examples 7 and
8 in the narrative.

ii. Following the lead in Example 9 in
the narrative, use your piecewise defi-
nition to sketch the graph of the given
function on a sheet of graph paper.
Please place each exercise on its own

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/5

coordinate system.

9. f(x) = |x− 1|

10. f(x) = |x+ 2|

11. g(x) = |2x− 1|

12. g(x) = |5− 2x|

13. h(x) = |1− 3x|

14. h(x) = |2x+ 1|

15. f(x) = x− |x|

16. f(x) = x+ |x− 1|

17. Use a graphing calculator to draw
the graphs of y = |x|, y = 2|x|, y = 3|x|,
and y = 4|x| on the same viewing win-
dow. In your own words, explain what
you learned in this exercise.

18. Use a graphing calculator to draw
the graphs of y = |x|, y = (1/2)|x|, y =
(1/3)|x|, and y = (1/4)|x| on the same
viewing window. In your own words, ex-
plain what you learned in this exercise.

19. Use a graphing calculator to draw
the graphs of y = |x|, y = |x − 2|, y =
|x−4|, and y = |x−6| on the same view-
ing window. In your own words, explain
what you learned in this exercise.

20. Use a graphing calculator to draw
the graphs of y = |x|, y = |x + 2|, y =
|x+4|, and y = |x+6| on the same view-
ing window. In your own words, explain
what you learned in this exercise.
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In Exercises 21-36, perform each of the
following tasks. Feel free to check your
work with your graphing calculator, but
you should be able to do all of the work
by hand.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Create an accurate plot of the
function y = |x| on your coordinate
system and label this graph with its
equation.

ii. Use the technique of Examples 12, 13,
and 14 in the narrative to help se-
lect the appropriate geometric trans-
formations to transform the equation
y = |x| into the form of the func-
tion given in the exercise. On the
same coordinate system, use a differ-
ent colored pencil or pen to draw the
graph of the function resulting from
your applied transformation. Label
the resulting graph with its equation.

iii. Use interval notation to describe the
domain and range of the given func-
tion.

21. f(x) = | − x|

22. f(x) = −|x|

23. f(x) = (1/2)|x|

24. f(x) = −2|x|

25. f(x) = |x+ 4|

26. f(x) = |x− 2|

27. f(x) = |x|+ 2

28. f(x) = |x| − 3

29. f(x) = |x+ 3|+ 2

30. f(x) = |x− 3| − 4

31. f(x) = −|x− 2|

32. f(x) = −|x| − 2

33. f(x) = −|x|+ 4

34. f(x) = −|x+ 4|

35. f(x) = −|x− 1|+ 5

36. f(x) = −|x+ 5|+ 2
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4.2 Answers

1.

|x+1| −(x+1) x+1

x+1 − −1 +

f(x) =
{
−x− 1, if x < −1,
x+ 1, if x ≥ −1.

3.

|4−5x| 4−5x −(4−5x)

4−5x + 4/5 −

g(x) =
{

4− 5x, if x < 4/5,
−4 + 5x, if x ≥ 4/5.

5.

|−x−5| −x−5 −(−x−5)

−x−5 + −5 −

h(x) =
{
−x− 5, if x < −5,
x+ 5, if x ≥ −5.

7.

x+|x| x+(−x) x+x
x − 0 +

f(x) =
{

0, if x < 0,
2x, if x ≥ 0.

9.

f(x) =
{
−x+ 1, if x < 1,
x− 1, if x ≥ 1.

x
5

y
5

f

(−1,2)(−1,2)

(1,0)(1,0)

(3,2)(3,2)

11.

g(x) =
{
−2x+ 1, if x < 1/2,
2x− 1, if x ≥ 1/2.

x
5

y
5 g

(0,1)(0,1)

(1/2,0)(1/2,0)

(2,3)(2,3)

13.

h(x) =
{

1− 3x, if x < 1/3,
−1 + 3x, if x ≥ 1/3.

x
5

y
5 h

(−1,4)(−1,4)

(1/3,0)(1/3,0)

(1,2)(1,2)
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15.

f(x) =
{

2x, if x < 0,
0, if x ≥ 0.

x
5

y
5

f

(−1,−2)(−1,−2)

17. Multiplying by a factor of a > 1, as
in y = a|x|, stretches the graph of y = |x|
vertically by a factor of a. The higher
the value of a, the more it stretches ver-
tically.

19. Subtracting a positive value of a,
as in y = |x−a|, shifts the graph a units
to the right.

21. The graphs of y = |x| and y = |−x|
coincide. The domain is (−∞,∞) and
the range is [0,∞).

x
5

y
5 y=|x|y=|−x|

23. The domain is (−∞,∞) and the
range is [0,∞).

x
5

y
5 y=|x|

y=(1/2)|x|

25. The domain is (−∞,∞) and the
range is [0,∞).

x
10

y
10 y=|x|

y=|x+4|

27. The domain is (−∞,∞) and the
range is [2,∞).

x
10

y
10

y=|x|y=|x|+2
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29. The domain is (−∞,∞) and the
range is [2,∞).

x
10

y
10

y=|x|
y=|x+3|+2

31. The domain is (−∞,∞) and the
range is (−∞, 0].

x
10

y
10

y=|x|

y=−|x−2|

33. The domain is (−∞,∞) and the
range is (−∞, 4].

x
10

y
10

y=|x|

y=−|x|+4

35. The domain is (−∞,∞) and the
range is (−∞, 5].

x
10

y
10

y=|x|

y=−|x−1|+5



372 Chapter 4 Absolute Value Functions

Version: Fall 2007



Section 4.3 Absolute Value Equations 373

Version: Fall 2007

4.3 Absolute Value Equations
In the previous section, we defined

|x| =
{
−x, if x < 0.
x, if x ≥ 0, (1)

and we saw that the graph of the absolute value function defined by f(x) = |x| has the
“V-shape” shown in Figure 1.

x
10

y
10

Figure 1. The graph of the absolute
value function f(x) = |x|.

It is important to note that the equation of the left-hand branch of the “V” is y = −x.
Typical points on this branch are (−1, 1), (−2, 2), (−3, 3), etc. It is equally important
to note that the right-hand branch of the “V” has equation y = x. Typical points on
this branch are (1, 1), (2, 2), (3, 3), etc.

Solving |x| = a
We will now discuss the solutions of the equation

|x| = a.

There are three distinct cases to discuss, each of which depends upon the value and
sign of the number a.

• Case I: a < 0

If a < 0, then the graph of y = a is a horizontal line that lies strictly below the
x-axis, as shown in Figure 2(a). In this case, the equation |x| = a has no solutions
because the graphs of y = a and y = |x| do not intersect.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/6
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• Case II: a = 0

If a = 0, then the graph of y = 0 is a horizontal line that coincides with the x-axis,
as shown in Figure 2(b). In this case, the equation |x| = 0 has the single solution
x = 0, because the horizontal line y = 0 intersects the graph of y = |x| at exactly
one point, at x = 0.

• Case III: a > 0

If a > 0, then the graph of y = a is a horizontal line that lies strictly above the x-
axis, as shown in Figure 2(c). In this case, the equation |x| = a has two solutions,
because the graphs of y = a and y = |x| have two points of intersection.

Recall that the left-hand branch of y = |x| has equation y = −x, and points on
this branch have the form (−1, 1), (−2, 2), etc. Because the point where the graph
of y = a intersects the left-hand branch of y = |x| has y-coordinate y = a, the
x-coordinate of this point of intersection is x = −a. This is one solution of |x| = a.

Recall that the right-hand branch of y = |x| has equation y = x, and points
on this branch have the form (1, 1), (2, 2), etc. Because the point where the graph
of y = a intersects the right-hand branch of y = |x| has y-coordinate y = a, the
x-coordinate of this point of intersection is x = a. This is the second solution of
|x| = a.

x

y y=|x|

y=a

x

y y=|x|

y=a

0
x

y y=|x|

y=a

−a a

(a) a < 0. (b) a = 0. (c) a > 0.
Figure 2. The solution of |x| = a has three cases.

This discussion leads to the following key result.
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Property 2. The solution of |x| = a depends upon the value and sign of a.

• Case I: a < 0

The equation |x| = a has no solutions.

• Case II: a = 0

The equation |x| = 0 has one solution, x = 0.

• Case III: a > 0

The equation |x| = a has two solutions, x = −a or x = a.

Let’s look at some examples.

I Example 3. Solve |x| = −3 for x.

The graph of the left-hand side of |x| = −3 is the “V” of Figure 2(a). The graph
of the right-hand side of |x| = −3 is a horizontal line three units below the x-axis. This
has the form of the sketch in Figure 2(a). The graphs do not intersect. Therefore, the
equation |x| = −3 has no solutions.

An alternate approach is to consider the fact that the absolute value of x can
never equal −3. The absolute value of a number is always nonnegative (either zero or
positive). Hence, the equation |x| = −3 has no solutions.

I Example 4. Solve |x| = 0 for x.

This is the case shown in Figure 2(b). The graph of the left-hand side of |x| = 0
intersects the graph of the right-hand side of |x| = 0 at x = 0. Thus, the only solution
of |x| = 0 is x = 0.

Thinking about this algebraically instead of graphically, we know that 0 = 0, but
there is no other number with an absolute value of zero. So, intuitively, the only
solution of |x| = 0 is x = 0.

I Example 5. Solve |x| = 4 for x.

The graph of the left-hand side of |x| = 4 is the “V” of Figure 2(c). The graph of
the right-hand side is a horizontal line 4 units above the x-axis. This has the form of
the sketch in Figure 2(c). The graphs intersect at (−4, 4) and (4, 4). Therefore, the
solutions of |x| = 4 are x = −4 or x = 4.

Alternatively, | − 4| = 4 and |4| = 4, but no other real numbers have absolute value
equal to 4. Hence, the only solutions of |x| = 4 are x = −4 or x = 4.
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I Example 6. Solve the equation |3− 2x| = −8 for x.

If the equation were |x| = −8, we would not hesitate. The equation |x| = −8
has no solutions. However, the reasoning applied to the simple case |x| = −8 works
equally well with the equation |3− 2x| = −8. The left-hand side of this equation must
be nonnegative, so its graph must lie above or on the x-axis. The right-hand side of
|3−2x| = −8 is a horizontal line 8 units below the x-axis. The graphs cannot intersect,
so there is no solution.

We can verify this argument with the graphing calculator. Load the left and right-
hand sides of |3 − 2x| = −8 into Y1 and Y2, respectively, as shown in Figure 3(a).
Push the MATH button on your calculator, then right-arrow to the NUM menu, as shown
in Figure 3(b). Use 1:abs( to enter the absolute value shown in Y1 in Figure 3(a).
From the ZOOM menu, select 6:ZStandard to produce the image shown in Figure 3(c).

Note, that as predicted above, the graph of y = |3 − 2x| lies on or above the x-
axis and the graph of y = −8 lies strictly below the x-axis. Hence, the graphs cannot
intersect and the equation |3− 2x| = −8 has no solutions.

(a) (b) (c)
Figure 3. Using the graphing calculator to examine the solution of |3− 2x| = −8.

Alternatively, we can provide a completely intuitive solution of |3 − 2x| = −8 by
arguing that the left-hand side of this equation is nonnegative, but the right-hand side
is negative. This is an impossible situation. Hence, the equation has no solutions.

I Example 7. Solve the equation |3− 2x| = 0 for x.

We have argued that the only solution of |x| = 0 is x = 0. Similar reasoning points
out that |3− 2x| = 0 only when 3− 2x = 0. We solve this equation independently.

3− 2x = 0
−2x = −3

x = 3
2

Thus, the only solution of |3− 2x| = 0 is x = 3/2.
It is worth pointing out that the “tip” or “vertex” of the “V” in Figure 3(c) is

located at x = 3/2. This is the only location where the graphs of y = |3 − 2x| and
y = 0 intersect.
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I Example 8. Solve the equation |3− 2x| = 6 for x.

In this example, the graph of y = 6 is a horizontal line that lies 6 units above the
x-axis, and the graph of y = |3 − 2x| intersects the graph of y = 6 in two locations.
You can use the intersect utility to find the points of intersection of the graphs, as we
have in Figure 4(b) and (c).

(a) (b) (c)
Figure 4. Using the graphing calculator to find two solutions of |3 − 2x| = 6.

Expectations. We need a way of summarizing this graphing calculator approach
on our homework paper. First, draw a reasonable facsimile of your calculator’s
viewing window on your homework paper. Use a ruler to draw all lines. Complete
the following checklist.

• Label each axis, in this case with x and y.
• Scale each axis. To do this, press the WINDOW button on your calculator, then

report the values of xmin, xmax, ymin, and ymax on the appropriate axis.
• Label each graph with its equation.
• Drop dashed vertical lines from the points of intersection to the x-axis. Shade

and label these solutions of the equation on the x-axis.

Following the guidelines in the above checklist, we obtain the image in Figure 5.

x

y

−10

−10

10

10

y=6

y=|3−2x|

−1.5 4.5

Figure 5. Reporting a graphical solu-
tion of |3− 2x| = 6.
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Algebraic Approach. One can also use an algebraic technique to find the two
solutions of |3− 2x| = 6. Much as |x| = 6 has solutions x = −6 or x = 6, the equation

|3− 2x| = 6

is possible only if the expression inside the absolute values is either equal to −6 or 6.
Therefore, write

3− 2x = −6 or 3− 2x = 6,

and solve these equations independently.

3− 2x = −6 or 3− 2x = 6

− 2x = −9 − 2x = 3

x = 9
2

x = −3
2
.

Because −3/2 = −1.5 and 9/2 = 4.5, these exact solutions agree exactly with the
graphical solutions in Figure 4(b) and (c).

Let’s summarize the technique involved in solving this important case.

Solving |expression| = a, when a > 0. To solve the equation

|expression| = a, when a > 0,

set

expression = −a or expression = a,

then solve each of these equations independently.

For example:

• To solve |2x+ 7| = 5, set

2x+ 7 = −5 or 2x+ 7 = 5,

then solve each of these equations independently.
• To solve |3− 5x| = 9, set

3− 5x = −9 or 3− 5x = 9,

then solve each of these equations independently.
• Note that this technique should not be applied to the equation |2x + 11| = −10,

because the right-hand side of the equation is not a positive number. Indeed, in
this case, no values of x will make the left-hand side of this equation equal to −10,
so the equation has no solutions.
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Sometimes we have to do a little algebra before removing the absolute value bars.

I Example 9. Solve the equation

|x+ 2|+ 3 = 8

for x.

First, subtract 3 from both sides of the equation.

|x+ 2|+ 3 = 8
|x+ 2|+ 3− 3 = 8− 3

This simplifies to

|x+ 2| = 5

Now, either

x+ 2 = −5 or x+ 2 = 5,

each of which can be solved separately.

x+ 2 = −5 or x+ 2 = 5

x+ 2− 2 = −5− 2 x+ 2− 2 = 5− 2

x = −7 x = 3

I Example 10. Solve the equation

3|x− 5| = 6

for x.

First, divide both sides of the equation by 3.

3|x− 5| = 6
3|x− 5|

3
= 6

3
This simplifies to

|x− 5| = 2.

Now, either

x− 5 = −2 or x− 5 = 2,

each of which can be solved separately.
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x− 5 = −2 or x− 5 = 2

x− 5 + 5 = −2 + 5 x− 5 + 5 = 2 + 5

x = 3 x = 7

Properties of Absolute Value
An example will motivate the need for some discussion of the properties of absolute
value.

I Example 11. Solve the equation∣∣∣∣x2 − 1
3

∣∣∣∣ = 1
4

(12)

for x.

It is tempting to multiply both sides of this equation by a common denominator as
follows. ∣∣∣∣x2 − 1

3

∣∣∣∣ = 1
4

12
∣∣∣∣x2 − 1

3

∣∣∣∣ = 12
(

1
4

)
If it is permissible to move the 12 inside the absolute values, then we could proceed as
follows. ∣∣∣∣12

(
x

2
− 1

3

)∣∣∣∣ = 3

|6x− 4| = 3

Assuming for the moment that this last move is allowable, either

6x− 4 = −3 or 6x− 4 = 3.

Each of these can be solved separately, first by adding 4 to both sides of the equations,
then dividing by 6.

6x− 4 = −3 or 6x− 4 = 3

6x = 1 6x = 7

x = 1/6 x = 7/6

As we’ve used a somewhat questionable move in obtaining these solutions, it would be
wise to check our results. First, substitute x = 1/6 into the original equation.
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∣∣∣∣x2 − 1
3

∣∣∣∣ = 1
4∣∣∣∣1/62

− 1
3

∣∣∣∣ = 1
4∣∣∣∣ 1

12
− 1

3

∣∣∣∣ = 1
4

Write equivalent fractions with a common denominator and subtract.∣∣∣∣ 1
12
− 4

12

∣∣∣∣ = 1
4∣∣∣∣− 3

12

∣∣∣∣ = 1
4∣∣∣∣−1

4

∣∣∣∣ = 1
4

Clearly, x = 1/6 checks.7 We’ll leave the check of the second solution to our readers.

Well, we’ve checked our solutions and they are correct, so it must be the case that

12
∣∣∣∣x2 − 1

3

∣∣∣∣ = ∣∣∣∣12
(
x

2
− 1

3

)∣∣∣∣ .
But why? After all, absolute value bars, though they do act as grouping symbols, have
a bit more restrictive meaning than ordinary grouping symbols such as parentheses,
brackets, and braces.

We state the first property of absolute values.

Property 13. If a and b are any real numbers, then

|ab| = |a||b|.

We can demonstrate the validity of this property by simply checking cases.

• If a and b are both positive real numbers, then so is ab and |ab| = ab. On the other
hand, |a||b| = ab. Thus, |ab| = |a||b|.

• If a and b are both negative real numbers, then ab is positive and |ab| = ab. On the
other hand, |a||b| = (−a)(−b) = ab. Thus, |ab| = |a||b|.

We will leave the proof of the remaining two cases as exercises. We can use |a||b| =
|ab| to demonstrate that

Note that the check is almost as difficult as the solution. Perhaps that’s why we get a bit lazy, not7

checking our solutions as often as we should.
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12
∣∣∣∣x2 − 1

3

∣∣∣∣ = |12|
∣∣∣∣x2 − 1

3

∣∣∣∣ = ∣∣∣∣12
(
x

2
− 1

3

)∣∣∣∣ .
This validates the method of attack we used to solve equation (12) in Example 11.

Warning 14. On the other hand, it is not permissible to multiply by a negative
number and simply slide the negative number inside the absolute value bars. For
example,

−2|x− 3| = | − 2(x− 3)|

is clearly an error (well, it does work for x = 3). For any x except 3, the left-
hand side of this result is a negative number, but the right-hand side is a positive
number. They are clearly not equal.

In similar fashion, one can demonstrate a second useful property involving absolute
value.

Property 15. If a and b are any real numbers, then∣∣∣a
b

∣∣∣ = |a||b| ,
provided, of course, that b 6= 0.

Again, this can be proved by checking four cases. For example, if a is a positive
real number and b is a negative real number, then a/b is negative and |a/b| = −a/b.
On the other hand, |a|/|b| = a/(−b) = −a/b.

We leave the proof of the remaining three cases as exercises.
This property is useful in certain situations. For example, should you desire to

divide |2x− 4| by 2, you would proceed as follows.

|2x− 4|
2

= |2x− 4|
|2|

=
∣∣∣∣2x− 4

2

∣∣∣∣ = |x− 2|

This technique is useful in several situations. For example, should you want to solve
the equation |2x − 4| = 6, you could divide both sides by 2 and apply the quotient
property of absolute values.

Distance Revisited
Recall that for any real number x, the absolute value of x is defined as the distance
between the real number x and the origin on the real line. In this section, we will push
this distance concept a bit further.

Suppose that you have two real numbers on the real line. For example, in the figure
that follows, we’ve located 3 and −2 on the real line.
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−2 3

d

You can determine the distance between the two points by subtracting the number
on the left from the number on the right. That is, the distance between the two
points is d = 3 − (−2) = 5 units. If you subtract in the other direction, you get the
negative of the distance, as in −2− 3 = −5 units. Of course, distance is a nonnegative
quantity, so this negative result cannot represent the distance between the two points.
Consequently, to find the distance between two points on the real line, you must always
subtract the number on the left from the number on the right.8

However, if you take the absolute value of the difference, you’ll get the correct result
regardless of the direction of subtraction.

d = |3− (−2)| = |5| = 5 and d = | − 2− 3| = | − 5| = 5.

This discussion leads to the following key idea.

Property 16. Suppose that a and b are two numbers on the real line.

a b

d

You can determine the distance d between a and b on the real line by taking the
absolute value of their difference. That is,

d = |a− b|.

Of course, you could subtract in the other direction, obtaining d = |b− a|. This is
also correct.

Now that this geometry of distance has been introduced, it is useful to pronounce
the symbolism |a− b| as “the distance between a and b” instead of saying “the absolute
value of a minus b.”

I Example 17. Solve the equation

|x− 3| = 8

for x.

Here’s the ideal situation to apply our new concept of distance. Instead of saying
“the absolute value of x minus 3 is 8,” we pronounce the equation |x− 3| = 8 as “the
distance between x and 3 is 8.”

On a vertical line, you would subtract the lower number from the upper number.8
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Draw a number line and locate the number 3 on the line.

3

Recall that the “distance between x and 3 is 8.” Having said this, mark two points
on the real line that are 8 units away from 3.

3−5 11

8 8

Thus, the solutions of |x− 3| = 8 are x = −5 or x = 11.

I Example 18. Solve the equation

|x+ 5| = 2

for x.

Rewrite the equation as a difference.

|x− (−5)| = 2

This is pronounced “the distance between x and −5 is 2.” Locate two points on the
number line that are 2 units away from −5.

−5−7 −3

2 2

Hence, the solutions of |x+ 5| = 2 are x = −7 or x = −3.
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4.3 Exercises

For each of the equations in Exercises 1-
4, perform each of the following tasks.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

ii. Sketch the graph of each side of the
equation without the aid of a calcula-
tor. Label each graph with its equa-
tion.

iii. Shade the solution of the equation
on the x-axis (if any) as shown in
Figure 5 (read "Expectations") in the
narrative. That is, drop dashed lines
from the points of intersection to the
axis, then shade and label the solu-
tion set on the x-axis.

1. |x| = −2

2. |x| = 0

3. |x| = 3

4. |x| = 2

For each of the equations in Exercises 5-
8, perform each of the following tasks.

i. Load each side of the equation into
the Y= menu of your calculator. Ad-
just the viewing window so that all
points of intersection of the two graphs
are visible in the viewing window.

ii. Copy the image in your viewing screen
onto your homework paper. Label
each axis and scale each axis with
xmin, xmax, ymin, and ymax. La-
bel each graph with its equation.

iii. Use the intersect utility in the CALC
menu to determine the points of in-

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/9

tersection. Shade and label each so-
lution as shown in Figure 5 (read "Ex-
pectations") in the narrative. That
is, drop dashed lines from the points
of intersection to the axis, then shade
and label the solution set on the x-
axis.

5. |3− 2x| = 5

6. |2x+ 7| = 4

7. |4x+ 5| = 7

8. |5x− 7| = 8

For each of the equations in Exercises 9-
14, provide a purely algebraic solution
without the use of a calculator. Arrange
your work as shown in Examples 6, 7,
and 8 in the narrative, but do not use a
calculator.

9. |4x+ 3| = 0

10. |3x− 11| = −5

11. |2x+ 7| = 14

12. |7 − 4x| = 8

13. |3− 2x| = −1

14. |4x+ 9| = 0

For each of the equations in Exercises 15-
20, perform each of the following tasks.

i. Arrange each of the following parts
on your homework paper in the same
location. Do not do place the alge-
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braic work on one page and the graph-
ical work on another.

ii. Follow each of the directions given for
Exercises 5-8 to find and record a
solution with your graphing calcula-
tor.

iii. Provide a purely algebraic solution,
showing all the steps of your work.
Do these solutions compare favorably
with those found using your graphing
calculator in part (ii)? If not, look for
a mistake in your work.

15. |x− 8| = 7

16. |2x− 15| = 5

17. |2x+ 11| = 6

18. |5x− 21| = 7

19. |x− 12| = 6

20. |x+ 11| = 5

Use a strictly algebraic technique to solve
each of the equations in Exercises 21-
28. Do not use a calculator.

21. |x+ 2| − 3 = 4

22. 3|x+ 5| = 6

23. −2|3− 2x| = −6

24. |4− x|+ 5 = 12

25. 3|x+ 2| − 5 = |x+ 2|+ 7

26. 4− 3|4− x| = 2|4− x| − 1

27.
∣∣∣∣x3 − 1

4

∣∣∣∣ = 1
12

28.
∣∣∣∣x4 − 1

2

∣∣∣∣ = 2
3

Use the technique of distance on the num-
ber line demonstrated in Examples 16
and 17 to solve each of the equations in
Exercises 29-32. Provide number line
sketches on your homework paper as shown
in Examples 16 and 17 in the narrative.

29. |x− 5| = 8

30. |x− 2| = 4

31. |x+ 4| = 3

32. |x+ 2| = 11

Use the instructions provided in Exercises 5-
8 to solve the equations in Exercises 33-
34.

33. |x+ 2| = 1
3
x+ 5

34. |x− 3| = 5− 1
2
x

In Exercises 35-36, perform each of the
following tasks.

i. Set up a coordinate system on graph
paper. Label and scale each axis.

ii. Without the use of a calculator, sketch
the graphs of the left- and right-hand
sides of the given equation. Label
each graph with its equation.

iii. Drop dashed vertical lines from each
point of intersection to the x-axis. Shade
and label each solution on the x-axis
(you will have to approximate).

35. |x− 2| = 1
3
x+ 2

36. |x+ 4| = 1
3
x+ 4

37. Given that a < 0 and b > 0, prove
that |ab| = |a||b|.
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38. Given that a > 0 and b < 0, prove
that |ab| = |a||b|.

39. In the narrative, we proved that if
a > 0 and b < 0, then |a/b| = |a|/|b|.
Prove the remaining three cases.
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4.3 Answers

1. No solutions.

x
5

y
5 y=|x|

y=−2

3. Solution: x = −3 or x = 3.

x
5

y
5 y=|x|

y=3

−3−3 33

5. Solutions: x = −1 or x = 4

x

y

−10 10

−10

10 y=|3−2x|

y=5

−1−1 44

7. Solutions: x = −3 or x = 0.5

x

y

−10 10

−10

10 y=|4x+5|
y=7

−3−3 0.50.5

9. x = −3/4

11. x = −21/2 or x = 7/2

13. No solutions.

15.

x

y

−5 20

−10

10 y=|x−8|

y=7

11 1515

x = 1 or x = 15
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17.

x

y

−15 5

−10

10y=|2x+11|

y=6

−8.5−8.5 −2.5−2.5

x = −8.5 or x = −2.5

19.

x

y

−5 25

−10

10 y=|x−12|

y=6

66 1818

x = 6 or x = 18

21. x = −9 or x = 5

23. x = 0 or x = 3

25. x = −8 or x = 4

27. x = 1/2 or x = 1

29.

5−3−3 1313

8 8

x = −3 or x = 13

31.

−4−7−7 −1−1

3 3

x = −7 or x = −1

33.

x

y

−10 10

−10

10
y=|x+2|

y=x/3+5

−5.25−5.25 4.54.5

35.

x

y

−10 10

−10

10
y=|x−2|

y=x/3+2

00 66

37. If a is a negative real number and
b is a positive real number, then ab is
negative, so |ab| = −ab. On the other
hand, a negative also means that |a| =
−a, and b positive means that |b| = b, so
that |a||b| = −a(b) = −ab. Comparing
these results, we see that |ab| and |a||b|
equal the same thing, and so they must
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be equal to one another.

39. Case I. (a, b > 0) If a and b are
both positive real numbers, then a/b is
positive and so |a/b| = a/b. On the
other hand, a positive also means that
|a| = a, and b positive means that |b| = b,
so that |a|/|b| = a/b. Comparing these
two results, we see that |a/b| and |a|/|b|
equal the same thing, and so they must
be equal to one another.
Case II. (a, b < 0) If a and b are both neg-
ative real numbers, then a/b is positive
and so |a/b| = a/b. On the other hand, a
negative also means that |a| = −a, and
b negative means that |b| = −b, so that
|a|/|b| = −a/(−b) = a/b. Comparing
these two results, we see that |a/b| and
|a|/|b| equal the same thing, and so they
must be equal to one another.
Case III. (a < 0, b > 0) If a is a negative
real number and b is a positive real num-
ber, then a/b is negative and so |a/b| =
−(a/b). On the other hand, a negative
also means that |a| = −a, and b posi-
tive means that |b| = b, so that |a|/|b| =
−a/b = −(a/b). Comparing these two
results, we see that |a/b| and |a|/|b| equal
the same thing, and so they must be equal
to one another.
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4.4 Absolute Value Inequalities
In the last section, we solved absolute value equations. In this section, we turn our
attention to inequalities involving absolute value.

Solving |x| < a
The solutions of

|x| < a

again depend upon the value and sign of the number a. To solve |x| < a graphically,
we must determine where the graph of the left-hand side lies below the graph of the
right-hand side of the inequality |x| < a. There are three cases to consider.

• Case I: a < 0

In this case, the graph of y = a lies strictly below the x-axis. As you can see in
Figure 1(a), the graph of y = |x| never lies below the graph of y = a. Hence, the
inequality |x| < a has no solutions.

• Case II: a = 0

In this case, the graph of y = 0 coincides with the x-axis. As you can see in
Figure 1(b), the graph of y = |x| never lies strictly below the x-axis. Hence, the
inequality |x| < 0 has no solutions.

• Case III: a > 0

In this case, the graph of y = a lies strictly above the x-axis. In Figure 1(c), the
graph of y = |x| and y = a intersect at x = −a and x = a. In Figure 1(c), we
also see that the graph of y = |x| lies strictly below the graph of y = a when x is
in-between −a and a; that is, when −a < x < a.

In Figure 1(c), we’ve dropped dashed vertical lines from the points of intersec-
tion of the two graphs to the x-axis. On the x-axis, we’ve shaded the solution of
|x| < a, that is, −a < x < a.

x

y y=|x|

y=a

x

y y=|x|

y=a

0
x

y y=|x|

y=a

−a a

(a) (b) (c)
Figure 1. The solution of |x| < a has three cases.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/10
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This discussion leads to the following key property.

Property 1. The solution of |x| < a depends upon the value and sign of a.

• Case I: a < 0

The inequality |x| < a has no solution.

• Case II: a = 0

The inequality |x| < 0 has no solution.

• Case III: a > 0

The inequality |x| < a has solution set {x : −a < x < a}.

Let’s look at some examples.

I Example 2. Solve the inequality |x| < −5 for x.

The graph of the left-hand side of |x| < −5 is the “V” of Figure 1(a). The graph
of the right-hand side of |x| < −5 is a horizontal line located 5 units below the x-axis.
This is the situation shown in Figure 1(a). The graph of y = |x| is therefore never
below the graph of y = −5. Thus, the inequality |x| < −5 has no solution.

An alternate approach is to consider the fact that the absolute value of x is always
nonnegative and can never be less than −5. Thus, the inequality |x| < −5 has no
solution.

I Example 3. Solve the inequality |x| < 0 for x.

This is the case shown in Figure 1(b). The graph of y = |x| is never strictly below
the x-axis. Thus, the inequality |x| < 0 has no solution.

I Example 4. Solve the inequality |x| < 8 for x.

The graph of the left-hand side of |x| < 8 is the “V” of Figure 1(c). The graph of
the right-hand side of |x| < 8 is a horizontal line located 8 units above the x-axis. This
is the situation depicted in Figure 1(c). The graphs intersect at (−8, 8) and (8, 8) and
the graph of y = |x| lies strictly below the graph of y = 8 for values of x in-between
−8 and 8. Thus, the solution of |x| < 8 is −8 < x < 8.

It helps the intuition if you check the results of the last example. Note that numbers
between −8 and 8, such as −7.75, −3 and 6.8 satisfy the inequality,

| − 7.75| < 8 and | − 3| < 8 and |6.8| < 8,
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while values that do not lie between −8 and 8 do not satisfy the inequality. For example,
none of the numbers −9.3, 8.2, and 11.7 lie between −8 and 8, and each of the following
is a false statement.

| − 9.3| < 8 and |8.2| < 8 and |11.7| < 8 (all are false)

If you reflect upon these results, they will help cement the notion that the solution of
|x| < 8 is all values of x satisfying −8 < x < 8.

I Example 5. Solve the inequality |5− 2x| < −3 for x.

If the inequality were |x| < −3, we would not hesitate. This is the situation depicted
in Figure 1(a) and the inequality |x| < −3 has no solutions. The reasoning applied
to |x| < −3 works equally well for the inequality |5− 2x| < −3. The left-hand side of
this inequality must be nonnegative, so its graph must lie on or above the x-axis. The
right-hand side of |5 − 2x| < −3 is a horizontal line located 3 units below the x-axis.
Therefore, the graph of y = |5− 2x| can never lie below the graph of y = −3 and the
inequality |5− 2x| < −3 has no solution.

We can verify this result with the graphing calculator. Load the left- and right-hand
sides of |5− 2x| < −3 into Y1 and Y2, respectively, as shown in Figure 2(a). From the
ZOOM menu, select 6:ZStandard to produce the image shown in Figure 2(b).

As predicted, the graph of y = |5− 2x| never lies below the graph of y = −3, so the
inequality |5− 2x| < −3 has no solution.

(a) (b)
Figure 2. Using the graphing calculator to solve the inequality
|5− 2x| < −3.

I Example 6. Solve the inequality |5− 2x| < 0 for x.

We know that the left-hand side of the inequality |5 − 2x| < 0 has the “V” shape
indicated in Figure 1(b). The graph “touches” the x-axis when |5− 2x| = 0, or when

5− 2x = 0
−2x = −5

x = 5
2
.

However, the graph of y = |5 − 2x| never falls below the x-axis, so the inequality
|5− 2x| < 0 has no solution.
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Intuitively, it should be clear that the inequality |5−2x| < 0 has no solution. Indeed,
the left-hand side of this inequality is always nonnegative, and can never be strictly
less than zero.

I Example 7. Solve the inequality |5− 2x| < 3 for x.

In this example, the graph of the right-hand side of the inequality |5− 2x| < 3 is a
horizontal line located 3 units above the x-axis. The graph of the left-hand side of the
inequality has the “V” shape shown in Figure 3(b) and (c). You can use the intersect
utility on the graphing calculator to find the points of intersection of the graphs of
y = |5 − 2x| and y = 3, as we have done in Figures 3(b) and (c). Note that the
calculator indicates two points of intersection, one at x = 1 and a second at x = 4.

(a) (b) (c)
Figure 3. Using the graphing calculator to solve the inequality |5 − 2x| < 3.

The graph of y = |5− 2x| falls below the graph of y = 3 for all values of x between 1
and 4. Hence, the solution of the inequality |5 − 2x| < 3 is the set of all x satisfying
1 < x < 4; i.e. {x : 1 < x < 4}.

Expectations. We need a way of summarizing this graphing calculator approach
on our homework paper. First, draw a reasonable facsimile of your calculator’s
viewing window on your homework paper. Use a ruler to draw all lines. Complete
the following checklist.

• Label each axis, in this case with x and y.
• Scale each axis. To do this, press the WINDOW button on your calculator, then

report the values of xmin, xmax, ymin, and ymax on the appropriate axis.
• Label each graph with its equation.
• Drop dashed vertical lines from the points of intersection to the x-axis. Shade

and label the solution set of the inequality on the x-axis.

Following the guidelines in the above checklist, we obtain the image in Figure 4.
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x
10

y
10

−10

−10

y = 3

y = |5 − 2x|

1 4

Figure 4. Reporting a graphical solution of
|5− 2x| < 3.

Algebraic Approach. Let’s now explore an algebraic solution of the inequality
|5− 2x| < 3. Much as |x| < 3 implies that −3 < x < 3, the inequality

|5− 2x| < 3

requires that

−3 < 5− 2x < 3.

We can subtract 5 from all three members of this last inequality, then simplify.

−3− 5 < 5− 2x− 5 < 3− 5
−8 < −2x < −2

Divide all three members of this last inequality by −2, reversing the inequality symbols
as you go.

4 > x > 1

We prefer that our inequalities read from “small-to-large,” so we write

1 < x < 4.

This form matches the order of the shaded solution on the number line in Figure 4,
which we found using the graphing calculator.

The algebraic technique of this last example leads us to the following property.

Property 8. If a > 0, then the inequality |x| < a is equivalent to the inequality
−a < x < a.

This property provides a simple method for solving inequalities of the form |x| < a.
Let’s apply this algebraic technique in the next example.
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I Example 9. Solve the inequality |4x+ 5| < 7 for x.

The first step is to use Property 8 to write that

|4x+ 5| < 7

is equivalent to the inequality

−7 < 4x+ 5 < 7.

From here, we can solve for x by first subtracting 5 from all three members, then
dividing through by 4.

−12 < 4x < 2

−3 < x < 1
2

We can sketch the solution on a number line.

−3 1/2

And we can describe the solution in both interval and set-builder notation as follows.(
−3, 1

2

)
=
{
x : −3 < x < 1

2

}

Assuming that a > 0, the inequality |x| ≤ a requires that we find where the absolute
value of x is either “less than” a or “equal to” a. We know that |x| < a when −a < x < a
and we know that |x| = a when x = −a or x = a. Thus, the solution of |x| ≤ a is the
“union” of these two solutions.

This argument leads to the following property.

Property 10. If a > 0, then the inequality |x| ≤ a is equivalent to the inequality
−a ≤ x ≤ a.

I Example 11. Solve the inequality 5− 3|x− 4| ≥ −4 for x.

At first glance, the inequality

5− 3|x− 4| ≥ −4

has a form quite dissimilar from what we’ve done thus far. However, let’s subtract 5
from both sides of the inequality.

−3|x− 4| ≥ −9
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Now, let’s divide both sides of this last inequality by −3, reversing the inequality sign.

|x− 4| ≤ 3

Aha! Familiar ground. Using Property 10, this last inequality is equivalent to

−3 ≤ x− 4 ≤ 3,

and when we add 4 to all three members, we have the solution.

1 ≤ x ≤ 7

We can sketch the solution on a number line.

1 7

And we can describe the solution with interval and set-builder notation.

[1, 7] = {x : 1 ≤ x ≤ 7}

Solving |x| > a
The solutions of |x| > a again depend upon the value and sign of a. To solve |x| > a
graphically, we must determine where the graph of y = |x| lies above the graph of
y = a. Again, we consider three cases.

• Case I: a < 0

In this case, the graph of y = a lies strictly below the x-axis. Therefore, the graph
of y = |x| in Figure 5(a) always lies above the graph of y = a. Hence, all real
numbers are solutions of the inequality |x| > a.

• Case II: a = 0

In this case, the graph of y = 0 coincides with the x-axis. As shown in Figure 5(b),
the graph of y = |x| will lie strictly above the graph of y = 0 for all values of x
with one exception, namely, x cannot equal zero. Hence, every real number except
x = 0 is a solution of |x| > 0. In Figure 5(b), we’ve shaded the solution of |x| > 0,
namely the set of all real numbers except x = 0.

• Case III: a > 0

In this case, the graph of y = a lies strictly above the x-axis. In Figure 5(c), the
graph of y = |x| intersects the graph of y = a at x = −a and x = a. In Figure 5(c),
we see that the graph of y = |x| lies strictly above the graph of y = a if x is less
than −a or greater than a.

In Figure 5(c), we’ve dropped dashed vertical lines from the points of intersec-
tion to the x-axis. On the x-axis, we’ve shaded the solution of |x| > a, namely the
set of all real numbers x such that x < −a or x > a.
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x

y y=|x|

y=a

x

y y=|x|

y=a

0
x

y y=|x|

y=a

−a a

(a) (b) (c)
Figure 5. The solution of |x| > a has three cases.

This discussion leads to the following property.

Property 12. The solution of |x| > a depends upon the value and sign of a.

• Case I: a < 0

All real numbers are solutions of the inequality |x| > a.

• Case II: a = 0

All real numbers, with the exception of x = 0, are solutions of |x| > 0.

• Case III: a > 0

The inequality |x| > a has solution set {x : x < −a or x > a}.

I Example 13. State the solution of each of the following inequalities.

a. |x| > −5 b. |x| > 0 c. |x| > 4

Solution:

a. The solution of |x| > −5 is all real numbers.
b. The solution of |x| > 0 is all real numbers except zero.
c. The solution of |x| > 4 is the set of all real numbers less than −4 or greater than 4.

I Example 14. Solve the inequality |4− x| > −5 for x.

The left-hand side of the inequality |4 − x| > −5 is nonnegative, so the graph of
y = |4 − x| must lie above or on the x-axis. The graph of the right-hand side of
|4− x| > −5 is a horizontal line located 5 units below the x-axis. Therefore, the graph
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of y = |4 − x| always lies above the graph of y = −5. Thus, all real numbers are
solutions of the inequality |4− x| > −5.

We can verify our thinking with the graphing calculator. Load the left- and right-
hand sides of the inequality |4 − x| > −5 into Y1 and Y2, respectively, as shown in
Figure 6(a). From the ZOOM menu, select 6:ZStandard to produce the image shown
in Figure 6(b).

As predicted, the graph of y = |4 − x| lies above the graph of y = −5 for all real
numbers.

(a) (b)
Figure 6. Using the graphing
calculator to solve |4 − x| > −5.

Intuitively, the absolute value of any number is always nonnegative, so |4−x| > −5 for
all real values of x.

I Example 15. Solve the inequality |4− x| > 0 for x.

As we saw in Figure 6(b), the graph of y = |4− x| lies on or above the x-axis for
all real numbers. It “touches” the x-axis at the “vertex” of the “V,” where

|4− x| = 0.

This can occur only if
4− x = 0
−x = −4
x = 4.

Thus, the graph of y = |4 − x| is strictly above the x-axis for all real numbers except
x = 4. That is, the solution of |4− x| > 0 is {x : x 6= 4}.

I Example 16. Solve the inequality |4− x| > 5 for x.

In this example, the graph of the right-hand side of |4 − x| > 5 is a horizontal
line located 5 units above the x-axis. The graph of y = |4 − x| has the “V” shape
shown in Figure 6(c). You can use the intersect utility on the graphing calculator to
approximate the points of intersection of the graphs of y = |4 − x| and y = 5, as we
have done in Figure 7(c) and (d). The calculator indicates two points of intersection,
one at x = −1 and a second at x = 9.
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(a) (b) (c) (d)
Figure 7. Using the graphing calculator to solve the inequality |4 − x| > 5.

The graph of y = |4 − x| lies above the graph of y = 5 for all values of x that lie
either to the left of −1 or to the right of 9. Hence, the solution of |4− x| > 5 is the set
{x : x < −1 or x > 9}.

Following the guidelines established in Example 7, we create the image shown in
Figure 8 on our homework paper. Note that we’ve labeled each axis, scaled each axis
with xmin, xmax, ymin, and ymax, labeled each graph with its equation, and shaded
and labeled the solution on x-axis.

x
15

y
10

−5

−10

y = 5

y = |4 − x|

−1 9

Figure 8. Reporting a graphical solu-
tion of |4− x| > 5.

Algebraic Approach. Let’s explore an algebraic solution of |4− x| > 5. In much
the same manner that |x| > 5 leads to the conditions x < −5 or x > 5, the inequality

|4− x| > 5

requires that

4− x < −5 or 4− x > 5.

We can solve each of these independently by first subtracting 4 from each side of
the inequality, then multiplying both sides of each inequality by −1, reversing each
inequality as we do so.
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4− x < −5 or 4− x > 5

− x < −9 − x > 1

x > 9 x < −1

We prefer to write this solution in the order

x < −1 or x > 9,

as it then matches the order of the graphical solution shaded in Figure 8. That is, the
solution set is {x : x < −1 or x > 9}.

The algebraic technique of this last example leads to the following property.

Property 17. If a > 0, then the inequality |x| > a is equivalent to the compound
inequality x < −a or x > a.

This property provides a simple algebraic technique for solving inequalities of the
form |x| > a, when a > 0. Let’s concentrate on this technique in the examples that
follow.

I Example 18. Solve the inequality |4x− 3| > 1 for x.

The first step is to use Property 17 to write that

|4x− 3| > 1

is equivalent to

4x− 3 < −1 or 4x− 3 > 1.

We can now solve each inequality independently. We begin by adding 3 to both sides
of each inequality, then we divide both sides of the resulting inequalities by 4.

4x− 3 < −1 or 4x− 3 > 1

4x < 2 4x > 4

x <
1
2

x > 1

We can sketch the solutions on a number line.

1/2 1
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And we can describe the solution using interval and set-builder notation.

(−∞, 1/2) ∪ (1,∞) = {x : x < 1/2 or x > 1}

Again, let a > 0. As we did with |x| ≤ a, we can take the union of the solutions of
|x| = a and |x| > a to find the solution of |x| ≥ a. This leads to the following property.

Property 19. If a > 0, then the inequality |x| ≥ a is equivalent to the inequality
x ≤ −a or x ≥ a.

I Example 20. Solve the inequality 3|1− x| − 4 ≥ |1− x| for x.

Again, at first glance, the inequality

3|1− x| − 4 ≥ |1− x|

looks unlike any inequality we’ve attempted to this point. However, if we subtract
|1− x| from both sides of the inequality, then add 4 to both sides of the inequality, we
get

3|1− x| − |1− x| ≥ 4.

On the left, we have like terms. Note that 3|1−x|−|1−x| = 3|1−x|−1|1−x| = 2|1−x|.
Thus,

2|1− x| ≥ 4.

Divide both sides of the last inequality by 2.

|1− x| ≥ 2

We can now use Property 19 to write

1− x ≤ −2 or 1− x ≥ 2.

We can solve each of these inequalities independently. First, subtract 1 from both sides
of each inequality, then multiply both sides of each resulting inequality by −1, reversing
each inequality as you go.

1− x ≤ −2 or 1− x ≥ 2

− x ≤ −3 − x ≥ 1

x ≥ 3 x ≤ −1

We prefer to write this in the order

x ≤ −1 or x ≥ 3.
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We can sketch the solutions on a number line.

−1 3

And we can describe the solutions using interval and set-builder notation.

(−∞,−1] ∪ [3,∞) = {x : x ≤ −1 or x ≥ 3}

Revisiting Distance
If a and b are any numbers on the real line, then the distance between a and b is found
by taking the absolute value of their difference. That is, the distance d between a and
b is calculated with d = |a − b|. More importantly, we’ve learned to pronounce the
symbolism |a − b| as “the distance between a and b.” This pronunciation is far more
useful than saying “the absolute value of a minus b.”

I Example 21. Solve the inequality |x− 3| < 8 for x.

This inequality is pronounced “the distance between x and 3 is less than 8.” Draw
a number line, locate 3 on the line, then note two points that are 8 units away from 3.

3−5 11

8 8

Now, we need to shade the points that are less than 8 units from 3.

3−5 11

Hence, the solution of the inequality |x− 3| < 8 is

(−5, 11) = {x : −5 < x < 11}.

I Example 22. Solve the inequality |x+ 5| > 2 for x.

First, write the inequality as a difference.

|x− (−5)| > 2

This last inequality is pronounced “the distance between x and −5 is greater than 2.”
Draw a number line, locate −5 on the number line, then note two points that are 2
units from −5.
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−5−7 −3

2 2

Now, we need to shade the points that are greater than 2 units from −5.

−5−7 −3

Hence, the solution of the inequality |x+ 5| > 2 is

(−∞,−7) ∪ (−3,∞) = {x : x < −7 or x > −3}.
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4.4 Exercises

For each of the inequalities in Exercises 1-
10, perform each of the following tasks.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

ii. Sketch the graph of each side of the
inequality without the aid of a cal-
culator. Label each graph with its
equation.

iii. Shade the solution of the inequality
on the x-axis (if any) in the manner
shown in Figures 4 and 8 in the narra-
tive. That is, drop dashed lines from
the points of intersection to the axis,
then shade and label the solution set
on the x-axis. Use set-builder and
interval notation (when possible) to
describe your solution set.

1. |x| > −2

2. |x| > 0

3. |x| < 3

4. |x| > 2

5. |x| > 1

6. |x| < 4

7. |x| ≤ 0

8. |x| ≤ −2

9. |x| ≤ 2

10. |x| ≥ 1

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/11

For each of the inequalities in Exercises 11-
22, perform each of the following tasks.

i. Load each side of the inequality into
the Y= menu of your calculator. Ad-
just the viewing window so that all
points of intersection of the two graphs
are visible in the viewing window.

ii. Copy the image in your viewing screen
onto your homework paper. Label
each axis and scale each axis with
xmin, xmax, ymin, and ymax. La-
bel each graph with its equation.

iii. Use the intersect utility in the CALC
menu to determine the points of in-
tersection. Shade the solution of the
inequality on the x-axis (if any) in the
manner shown in Figures 4 and 8 in
the narrative. That is, drop dashed
lines from the points of intersection
to the axis, then shade and label the
solution set on the x-axis. Use set-
builder and interval notation (when
appropriate) to describe your solution
set.

11. |3− 2x| > 5

12. |2x+ 7| < 4

13. |4x+ 5| < 7

14. |5x− 7| > 8

15. |4x+ 5| > −2

16. |3x− 5| < −3

17. |2x− 9| ≥ 6

18. |3x+ 25| ≥ 8
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19. |13− 2x| ≤ 7

20. |2x+ 15| ≤ 7

21. |3x− 11| > 0

22. |4x+ 19| ≤ 0

For each of the inequalities in Exercises 23-
32, provide a purely algebraic solution
without the use of a calculator. Show
all of your work that leads to the solu-
tion, shade your solution set on a num-
ber line, then use set-builder and interval
notation (if possible) to describe your so-
lution set.

23. |4x+ 3| < 8

24. |3x− 5| > 11

25. |2x− 3| ≤ 10

26. |3− 5x| ≥ 15

27. |3x− 4| < 7

28. |5− 2x| > 10

29. |3− 7x| ≥ 5

30. |2− 11x| ≤ 6

31. |x+ 2| ≥ −3

32. |x+ 5| < −4

For each of the inequalities in Exercises 33-
38, perform each of the following tasks.

i. Arrange each of the following parts
on your homework paper in the same
location. Do not do place the alge-
braic work on one page and the graph-
ical work on another.

ii. Follow each of the directions given for
Exercises 11-22 to find and record

a solution with your graphing calcu-
lator.

iii. Provide a purely algebraic solution,
showing all the steps of your work.
Sketch your solution on a number line,
then use set-builder and interval no-
tation to describe your solution set.
Do these solutions compare favorably
with those found using your graphing
calculator in part (ii)? If not, look for
a mistake in your work.

33. |x− 8| < 7

34. |2x− 15| > 5

35. |2x+ 11| ≥ 6

36. |5x− 21| ≤ 7

37. |x− 12| > 6

38. |x+ 11| < 5

Use a strictly algebraic technique to solve
each of the equations in Exercises 39-
46. Do not use a calculator. Shade the
solution set on a number line and de-
scribe the solution set using both set-
builder and interval notation.

39. |x+ 2| − 3 > 4

40. 3|x+ 5| < 6

41. −2|3− 2x| ≤ −6

42. |4− x|+ 5 ≥ 12

43. 3|x+ 2| − 5 > |x+ 2|+ 7

44. 4− 3|4− x| > 2|4− x| − 1

45.
∣∣∣∣x3 − 1

4

∣∣∣∣ ≤ 1
12

46.
∣∣∣∣x4 − 1

2

∣∣∣∣ ≥ 2
3
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Use the technique of distance on the num-
ber line demonstrated in Examples 21
and 22 to solve each of the inequalities in
Exercises 47-50. Provide number line
sketches as in Example 17 in the narra-
tive. Describe the solution set using both
set-builder and interval notation.

47. |x− 5| < 8

48. |x− 2| > 4

49. |x+ 4| ≥ 3

50. |x+ 2| ≤ 11

Use the instructions provided in Exercises 11-
22 to solve the inequalities in Exercises 51-
52. Describe the solution set using both
set-builder and interval notation.

51. |x+ 2| < 1
3
x+ 5

52. |x− 3| > 5− 1
2
x

In Exercises 53-54, perform each of the
following tasks.

i. Set up a coordinate system on graph
paper. Label and scale each axis.

ii. Without the use of a calculator, sketch
the graphs of the left- and right-hand
sides of the given inequality. Label
each graph with its equation.

iii. Shade the solution of the inequality
on the x-axis (if any) in the man-
ner shown in Figures 4 and 8 in the
narrative. That is, drop dashed lines
from the points of intersection to the
axis, then shade and label the solu-
tion set on the x-axis (you will have
to approximate). Describe the solu-
tion set using both set-builder and in-
terval notation.

53. |x− 2| > 1
3
x+ 2

54. |x+ 4| < 1
3
x+ 4
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4.4 Answers

1.

x
5

y
5 y=|x|

y=−2

Solution: R = (−∞,∞)

3.

x
5

y
5 y=|x|

y=3

−3 3

Solution: (−3, 3) = {x : −3 < x < 3}.

5.

x
5

y
5 y=|x|

y=1

−1 1

Solution: (−∞,−1) ∪ (1,∞) = {x : x <
−1 or x > 1}.

7.

x
5

y
5 y=|x|

y=0
0

Solution: {x : x = 0}.

9.

x
5

y
5 y=|x|

y=2

−2 2

Solution: [−2, 2] = {x : −2 ≤ x ≤ 2}.
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11.

x

y

−10 10

−10

10 y=|3−2x|

y=5

−1 4

Solution: (−∞,−1) ∪ (4,∞) = {x : x <
−1 or x > 4}.

13.

x

y

−10 10

−10

10 y=|4x+5|
y=7

−3 0.5

Solution: (−3, 0.5) = {x : −3 < x <
0.5}.

15.

x

y

−10 10

−10

10 y=|4x+5|

y=−2

Solution: R = (−∞,∞).

17.

x

y

−5 15

−10

10 y=|2x−9|

y=6

1.5 7.5

Solution: (−∞, 1.5]∪[7.5,∞) = {x : x ≤
1.5 or x ≥ 7.5}.
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19.

x

y

−5 15

−10

10 y=|13−2x|

y=7

3 10

Solution: [3, 10] = {x : 3 ≤ x ≤ 10}.

21.

x

y

−10 10

−10

10 y=|3x−11|

y=0 11/3

Solution: {x : x 6= 11/3}.

23.

−11/4 5/4

(−11/4, 5/4) = {x : −11/4 < x < 5/4}

25.

−7/2 13/2

[−7/2, 13/2] = {x : −7/2 ≤ x ≤ 13/2}

27.

−1 11/3

(−1, 11/3) = {x : −1 < x < 11/3}

29.

−2/7 8/7

(−∞,−2/7]∪[8/7,∞) = {x : x ≤ −2/7 or x ≥
8/7}

31.

R = (−∞,∞)

33.

x

y

−5 20

−10

10 y=|x−8|

y=7

1 15

(1, 15) = {x : 1 < x < 15}
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35.

x

y

−15 5

−10

10y=|2x+11|

y=6

−8.5 −2.5

(−∞,−8.5]∪[−2.5,∞) = {x : x ≤ −8.5 or x ≥
−2.5}

37.

x

y

−5 25

−10

10 y=|x−12|

y=6

6 18

(−∞, 6) ∪ (18,∞) = {x : x < 6 or x >
18}

39.

−9 5

(−∞,−9)∪(5,∞) = {x : x < −9 or x >
5}

41.

0 3

(−∞, 0] ∪ [3,∞) = {x : x ≤ 0 or x ≥ 3}

43.

−8 4

(−∞,−8)∪(4,∞) = {x : x < −8 or x >
4}

45.

1/2 1

[1/2, 1] = {x : 1/2 ≤ x ≤ 1}

47.

5−3 13

8 8

(−3, 13) = {x : −3 < x < 13}

49.

−4−7 −1

3 3

(−∞,−7]∪[−1,∞) = {x : x ≤ −7 or x ≥
−1}

51.

x

y

−10 10

−10

10
y=|x+2|

y=x/3+5

−5.25 4.5

(−5.25, 4.5) = {x : −5.25 < x < 4.5}
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53.

x

y

−10 10

−10

10
y=|x−2|

y=x/3+2

0 6

(−∞, 0) ∪ (6,∞) = {x : x < 0 or x > 6}
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4.5 Index
a
absolute value 353

construct piecewise definition 356 ,
358

definition 353 , 355
distance 383 , 384 , 403 , 404
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5 Quadratic Functions

A parabola.

In this chapter we study one of the most famous of mathematical concepts–the parabola.
The most basic parabola is shaped rather like a "U," as shown in the margin. Whereas
the graphs of linear functions like f(x) = mx + b are lines, the graphs of functions
having the form

f(x) = ax2 + bx+ c, (1)

where a, b, and c are arbitrary numbers, are parabolas. These functions are called
quadratic functions.

Apollonius (262 BC to 190 BC) wrote the quintessential text on the conic sections–of
which the parabola is one–and is credited with giving the parabola its name.

Parabolic arches in Las Vegas foun-
tains.

In nature, approximations of parabolas are found in many diverse situations. Early
in the 17th century, the parabolic trajectory of projectiles was discovered experimen-
tally by Galileo (1564 to 1642), who performed experiments with balls rolling on in-
clined planes. The parabolic shape for projectiles
was later proven mathematically by Isaac Newton
(1643 to 1727). He found that, if we assume that
there is no air resistance, parabolas can be used
to model the trajectory of a body in motion under
the influence of gravity (for instance, a rock flying
through the air, neglecting air friction). We will
study this application in detail in Section 5.5.

Other applications of parabolas include the mod-
eling of suspension bridges; the shapes of satellite
dishes, heaters, and automobile headlights; brak-
ing distance and stopping distance of cars; and
the path of water projected from a fountain, like
at the water show at the Bellagio Hotel in Las
Vegas.
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5.1 The Parabola
In this section you will learn how to draw the graph of the quadratic function defined
by the equation

f(x) = a(x− h)2 + k. (1)

You will quickly learn that the graph of the quadratic function is shaped like a "U"
and is called a parabola. The form of the quadratic function in equation (1) is called
vertex form, so named because the form easily reveals the vertex or “turning point”
of the parabola. Each of the constants in the vertex form of the quadratic function
plays a role. As you will soon see, the constant a controls the scaling (stretching or
compressing of the parabola), the constant h controls a horizontal shift and placement
of the axis of symmetry, and the constant k controls the vertical shift.

Let’s begin by looking at the scaling of the quadratic.

Scaling the Quadratic
The graph of the basic quadratic function f(x) = x2 shown in Figure 1(a) is called
a parabola. We say that the parabola in Figure 1(a) “opens upward.” The point at
(0, 0), the “turning point” of the parabola, is called the vertex of the parabola. We’ve
tabulated a few points for reference in the table in Figure 1(b) and then superimposed
these points on the graph of f(x) = x2 in Figure 1(a).

x

y

5

5 f

x f(x) = x2

−2 4
−1 1
0 0
1 1
2 4

(a) A basic parabola. (b) Table of x-values
and function values

satisfying f(x) = x2.
Figure 1. The graph of the basic

parabola is a fundamental starting point.

Now that we know the basic shape of the parabola determined by f(x) = x2, let’s
see what happens when we scale the graph of f(x) = x2 in the vertical direction. For

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1
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example, let’s investigate the graph of g(x) = 2x2. The factor of 2 has a doubling
effect. Note that each of the function values of g is twice the corresponding function
value of f in the table in Figure 2(b).

x

y

5

10 fg

x f(x) = x2 g(x) = 2x2

−2 4 8
−1 1 2
0 0 0
1 1 2
2 4 8

(a) The graphs of f and g. (b) Table of x-values and function values
satisfying f(x) = x2 and g(x) = 2x2.

Figure 2. A stretch by a factor of 2 in the vertical direction.

When the points in the table in Figure 2(b) are added to the coordinate system in
Figure 2(a), the resulting graph of g is stretched by a factor of two in the vertical
direction. It’s as if we had put the original graph of f on a sheet of rubber graph
paper, grabbed the top and bottom edges of the sheet, and then pulled each edge in
the vertical direction to stretch the graph of f by a factor of two. Consequently, the
graph of g(x) = 2x2 appears somewhat narrower in appearance, as seen in comparison
to the graph of f(x) = x2 in Figure 2(a). Note, however, that the vertex at the origin
is unaffected by this scaling.

In like manner, to draw the graph of h(x) = 3x2, take the graph of f(x) = x2 and
stretch the graph by a factor of three, tripling the y-value of each point on the original
graph of f . This idea leads to the following result.

Property 2. If a is a constant larger than 1, that is, if a > 1, then the graph of
g(x) = ax2, when compared with the graph of f(x) = x2, is stretched by a factor
of a.
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I Example 3. Compare the graphs of y = x2, y = 2x2, and y = 3x2 on your
graphing calculator.

Load the functions y = x2, y = 2x2, and y = 3x2 into the Y= menu, as shown
in Figure 3(a). Push the ZOOM button and select 6:ZStandard to produce the image
shown in Figure 3(b).

(a) (b)
Figure 3. Drawing y = x2, y = 2x2, and y = 3x2 on the
graphing calculator.

Note that as the “a” in y = ax2 increases from 1 to 2 to 3, the graph of y = ax2

stretches further and becomes, in a sense, narrower in appearance.

Next, let’s consider what happens when we scale by a number that is smaller than
1 (but greater than zero — we’ll deal with the negative in a moment). For example,
let’s investigate the graph of g(x) = (1/2)x2. The factor 1/2 has a halving effect. Note
that each of the function values of g is half the corresponding function value of f in
the table in Figure 4(b).

x

y

5

5 f g

x f(x) = x2 g(x) = (1/2)x2

−2 4 2
−1 1 1/2
0 0 0
1 1 1/2
2 4 2

(a) The graphs of f and g. (a) Table of x-values and function values
satisfying f(x) = x2 and g(x) = (1/2)x2.

Figure 4. A compression by a factor of 2 in the vertical direction.

When the points in the table in Figure 4(b) are added to the coordinate system
in Figure 4(a), the resulting graph of g is compressed by a factor of 2 in the vertical
direction. It’s as if we again placed the graph of f(x) = x2 on a sheet of rubber graph
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paper, grabbed the top and bottom of the sheet, and then squeezed them together by
a factor of two. Consequently, the graph of g(x) = (1/2)x2 appears somewhat wider
in appearance, as seen in comparison to the graph of f(x) = x2 in Figure 4(a). Note
again that the vertex at the origin is unaffected by this scaling.

Property 4. If a is a constant smaller than 1 (but larger than zero), that is,
if 0 < a < 1, then the graph of g(x) = ax2, when compared with the graph of
f(x) = x2, is compressed by a factor of 1/a.

Some find Property 4 somewhat counterintuitive. However, if you compare the
function g(x) = (1/2)x2 with the general form g(x) = ax2, you see that a = 1/2.
Property 4 states that the graph will be compressed by a factor of 1/a. In this case,
a = 1/2 and

1
a

= 1
1/2

= 2.

Thus, Property 4 states that the graph of g(x) = (1/2)x2 should be compressed by a
factor of 1/(1/2) or 2, which is seen to be the case in Figure 4(a).

I Example 5. Compare the graphs of y = x2, y = (1/2)x2, and y = (1/3)x2 on
your graphing calculator.

Load the equations y = x2, y = (1/2)x2, and y = (1/3)x2 into the Y=, as shown
in Figure 5(a). Push the ZOOM button and select 6:ZStandard to produce the image
shown in Figure 5(b).

(a) (b)
Figure 5. Drawing y = x2, y = (1/2)x2, and y = (1/3)x2

on the graphing calculator.

Note that as the “a” in y = ax2 decreases from 1 to 1/2 to 1/3, the graph of y = ax2

compresses further and becomes, in a sense, wider in appearance.

Vertical Reflections
Let’s consider the graph of g(x) = ax2, when a < 0. For example, consider the graphs
of g(x) = −x2 and h(x) = (−1/2)x2 in Figure 6.
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x

y

5

5

g h

x g(x) = −x2 h(x) = (−1/2)x2

−2 −4 −2
−1 −1 −1/2
0 0 0
1 −1 −1/2
2 −4 −2

(a) The graphs of g and h. (b) Table of x-values and
function values satisfying

g(x) = −x2 and h(x) = (−1/2)x2.
Figure 6. A vertical reflection across the x-axis.

When the table in Figure 6(b) is compared with the table in Figure 4(b), it is easy to
see that the numbers in the last two columns are the same, but they’ve been negated.
The result is easy to see in Figure 6(a). The graphs have been reflected across the
x-axis. Each of the parabolas now “opens downward.”

However, it is encouraging to see that the scaling role of the constant a in g(x) = ax2

has not changed. In the case of h(x) = (−1/2)x2, the y-values are still “compressed”
by a factor of two, but the minus sign negates these values, causing the graph to reflect
across the x-axis. Thus, for example, one would think that the graph of y = −2x2

would be stretched by a factor of two, then reflected across the x-axis. Indeed, this is
correct, and this discussion leads to the following property.

Property 6. If −1 < a < 0, then the graph of g(x) = ax2, when compared with
the graph of f(x) = x2, is compressed by a factor of 1/|a|, then reflected across
the x-axis. Secondly, if a < −1, then the graph of g(x) = ax2, when compared
with the graph of f(x) = x2, is stretched by a factor of |a|, then reflected across
the x-axis.

Again, some find Property 6 confusing. However, if you compare g(x) = (−1/2)x2

with the general form g(x) = ax2, you see that a = −1/2. Note that in this case,
−1 < a < 0. Property 6 states that the graph will be compressed by a factor of 1/|a|.
In this case, a = −1/2 and

1
|a|

= 1
| − 1/2|

= 2.

That is, Property 6 states that the graph of g(x) = (−1/2)x2 is compressed by a
factor of 1/(|− 1/2|), or 2, then reflected across the x-axis, which is seen to be the case
in Figure 6(a). Note again that the vertex at the origin is unaffected by this scaling
and reflection.
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I Example 7. Sketch the graphs of y = −2x2, y = −x2, and y = (−1/2)x2 on your
graphing calculator.

Each of the equations were loaded separately into Y1 in the Y= menu. In each of
the images in Figure 7, we selected 6:ZStandard from the ZOOM menu to produce the
image.

(a) y = −2x2 (b) y = −x2 (c) y = (−1/2)x2

Figure 7.

In Figure 7(b), the graph of y = −x2 is a reflection of the graph of y = x2

across the x-axis and opens downward. In Figure 7(a), note that the graph of y =
−2x2 is stretched vertically by a factor of 2 (compare with the graph of y = −x2 in
Figure 7(b)) and reflected across the x-axis to open downward. In Figure 7(c), the
graph of (−1/2)x2 is compressed by a factor of 2, appears a bit wider, and is reflected
across the x-axis to open downward.

Horizontal Translations
The graph of g(x) = (x + 1)2 in Figure 8(a) shows a basic parabola that is shifted
one unit to the left. Examine the table in Figure 8(b) and note that the equation
g(x) = (x + 1)2 produces the same y-values as does the equation f(x) = x2, the only
difference being that these y-values are calculated at x-values that are one unit less
than those used for f(x) = x2. Consequently, the graph of g(x) = (x + 1)2 must shift
one unit to the left of the graph of f(x) = x2, as is evidenced in Figure 8(a).

Note that this result is counterintuitive. One would think that replacing x with
x + 1 would shift the graph one unit to the right, but the shift actually occurs in the
opposite direction.

Finally, note that this time the vertex of the parabola has shifted 1 unit to the left
and is now located at the point (−1, 0).

We are led to the following conclusion.

Property 8. If c > 0, then the graph of g(x) = (x+ c)2 is shifted c units to the
left of the graph of f(x) = x2.
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x

y

5

5 fg

x f(x) = x2 x g(x) = (x+ 1)2

−2 4 −3 4
−1 1 −2 1
0 0 −1 0
1 1 0 1
2 4 1 4

(a) The graphs of f and g. (a) Table of x-values and function values
satisfying f(x) = x2 and g(x) = (x + 1)2.

Figure 8. A horizontal shift or translation.

A similar thing happens when you replace x with x− 1, only this time the graph is
shifted one unit to the right.

I Example 9. Sketch the graphs of y = x2 and y = (x − 1)2 on your graphing
calculator.

Load the equations y = x2 and y = (x − 1)2 into the Y= menu, as shown in
Figure 9(a). Push the ZOOM button and select 6:ZStandard to produce the image
shown in Figure 9(b).

(a) (b)
Figure 9. Drawing y = x2 and y = (x−1)2 on the graphing
calculator.

Note that the graph of y = (x− 1)2 is shifted 1 unit to the right of the graph of y = x2

and the vertex of the graph of y = (x− 1)2 is now located at the point (1, 0).

We are led to the following property.

Property 10. If c > 0, then the graph of g(x) = (x − c)2 is shifted c units to
the right of the graph of f(x) = x2.
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Vertical Translations
The graph of g(x) = x2 + 1 in Figure 10(a) is shifted one unit upward from the graph
of f(x) = x2. This is easy to see as both equations use the same x-values in the table
in Figure 10(b), but the function values of g(x) = x2 + 1 are one unit larger than the
corresponding function values of f(x) = x2.

Note that the vertex of the graph of g(x) = x2 + 1 has also shifted upward 1 unit
and is now located at the point (0, 1).

x

y

5

5 fg

x f(x) = x2 g(x) = x2 + 1
−2 4 5
−1 1 2
0 0 1
1 1 2
2 4 5

Figure 10. A vertical shift or translation.

The above discussion leads to the following property.

Property 11. If c > 0, the graph of g(x) = x2 + c is shifted c units upward
from the graph of f(x) = x2.

In a similar vein, the graph of y = x2 − 1 is shifted downward one unit from the
graph of y = x2.

I Example 12. Sketch the graphs of y = x2 and y = x2 − 1 on your graphing
calculator.

Load the equations y = x2 and y = x2 − 1 into the Y= menu, as shown in
Figure 11(a). Push the ZOOM button and select 6:ZStandard to produce the image
shown in Figure 11(b).

Note that the graph of y = x2 − 1 is shifted 1 unit downward from the graph of
y = x2 and the vertex of the graph of y = x2 − 1 is now at the point (0,−1).
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(a) (b)
Figure 11. Drawing y = x2 and y = x2−1 on the graphing
calculator.

The above discussion leads to the following property.

Property 13. If c > 0, the graph of g(x) = x2 − c is shifted c units downward
from the graph of f(x) = x2.

The Axis of Symmetry
In Figure 1, the graph of y = x2 is symmetric with respect to the y-axis. One half
of the parabola is a mirror image of the other with respect to the y-axis. We say the
y-axis is acting as the axis of symmetry.

If the parabola is reflected across the x-axis, as in Figure 6, the axis of symme-
try doesn’t change. The graph is still symmetric with respect to the y-axis. Similar
comments are in order for scalings and vertical translations. However, if the graph of
y = x2 is shifted right or left, then the axis of symmetry will change.

I Example 14. Sketch the graph of y = −(x+ 2)2 + 3.

Although not required, this example is much simpler if you perform reflections
before translations.

Tip 15. If at all possible, perform scalings and reflections before translations.

In the series shown in Figure 12, we first perform a reflection, then a horizontal
translation, followed by a vertical translation.

• In Figure 12(a), the graph of y = −x2 is a reflection of the graph of y = x2 across
the x-axis and opens downward. Note that the vertex is still at the origin.

• In Figure 12(b), we’ve replaced x with x+2 in the equation y = −x2 to obtain the
equation y = −(x+2)2. The effect is to shift the graph of y = −x2 in Figure 12(a)
2 units to the left to obtain the graph of y = −(x+ 2)2 in Figure 12(b). Note that
the vertex is now at the point (−2, 0).

• In Figure 12(c), we’ve added 3 to the equation y = −(x+2)2 to obtain the equation
y = −(x+2)2 +3. The effect is to shift the graph of y = −(x+2)2 in Figure 12(b)
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upward 3 units to obtain the graph of y = −(x + 2)2 + 3 in Figure 12(c). Note
that the vertex is now at the point (−2, 3).

x

y

5

5

x

y

5

5

x

y

5

5

(a) y = −x2 (b) y = −(x + 2)2 (c) y = −(x + 2)2 + 3
Figure 12. Finding the graph of y = −(x + 2)2 + 3

through a series of transformations.

In practice, we can proceed more quickly. Analyze the equation y = −(x+ 2)2 + 3.
The minus sign tells us that the parabola “opens downward.” The presence of x + 2
indicates a shift of 2 units to the left. Finally, adding the 3 will shift the graph 3 units
upward. Thus, we have a parabola that “opens downward” with vertex at (−2, 3). This
is shown in Figure 13.

x

y

5

5
(−2, 3)

x = −2
Figure 13. The axis of symmetry
passes through the vertex.

The axis of symmetry passes through the vertex (−2, 3) in Figure 13 and has
equation x = −2. Note that the right half of the parabola is a mirror image of its left
half across this axis of symmetry. We can use the axis of symmetry to gain an accurate
plot of the parabola with minimal plotting of points.
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Guidelines for Using the Axis of Symmetry.

• Start by plotting the vertex and axis of symmetry as shown in Figure 14(a).

• Next, compute two points on either side of the axis of symmetry. We choose
x = −1 and x = 0 and compute the corresponding y-values using the equation
y = −(x+ 2)2 + 3.

x y = −(x+ 2)2 + 3
−1 2
0 −1

Plot the points from the table, as shown in Figure 14(b).

• Finally, plot the mirror images of these points across the axis of symmetry, as
shown in Figure 14(c).

x

y

5

5
(−2, 3)

x = −2

x

y

5

5
(−2, 3)

x = −2

x

y

5

5
(−2, 3)

x = −2
(a) (b) (c)

Figure 14. Using the axis of symmetry to establish accuracy.

The image in Figure 14(c) clearly contains enough information to complete the graph
of the parabola having equation y = −(x+ 2)2 + 3 in Figure 15.

x

y

5

5
(−2, 3)

x = −2
Figure 15. An accurate plot of y =
−(x+ 2)2 + 3.
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Let’s summarize what we’ve seen thus far.

Summary 16. The form of the quadratic function

f(x) = a(x− h)2 + k

is called vertex form. The graph of this quadratic function is a parabola.

1. The graph of the parabola opens upward if a > 0, downward if a < 0.
2. If the magnitude of a is larger than 1, then the graph of the parabola is stretched

by a factor of a. If the magnitude of a is smaller than 1, then the graph of the
parabola is compressed by a factor of 1/a.

3. The parabola is translated h units to the right if h > 0, and h units to the left
if h < 0.

4. The parabola is translated k units upward if k > 0, and k units downward if
k < 0.

5. The coordinates of the vertex are (h, k).
6. The axis of symmetry is a vertical line through the vertex whose equation is
x = h.

Let’s look at one final example.

I Example 17. Use the technique of Example 14 to sketch the graph of f(x) =
2(x− 2)2 − 3.

Compare f(x) = 2(x − 2)2 − 3 with f(x) = a(x − h)2 + k and note that a = 2.
Hence, the parabola has been “stretched” by a factor of 2 and opens upward. The
presence of x − 2 indicates a shift of 2 units to the right; and subtracting 3 shifts the
parabola 3 units downward. Therefore, the vertex will be located at the point (2,−3)
and the axis of symmetry will be the vertical line having equation x = 2. This is shown
in Figure 16(a).

Note. Some prefer a more strict comparison of f(x) = 2(x − 2)2 − 3 with the
general vertex form f(x) = a(x−h)2 +k, yielding a = 2, h = 2, and k = −3. This
immediately identifies the vertex at (h, k), or (2,−3).

Next, evaluate the function f(x) = 2(x− 2)2 − 3 at two points lying to the right of
the axis of symmetry (or to the left, if you prefer). Because the axis of symmetry is
the vertical line x = 2, we choose to evaluate the function at x = 3 and 4.

f(3) = 2(3− 2)2 − 3 = −1
f(4) = 2(4− 2)2 − 3 = 5

This gives us two points to the right of the axis of symmetry, (3,−1) and (4, 5), which
we plot in Figure 16(b).

Finally, we plot the mirror images of (3,−1) and (4, 5) across the axis of symme-
try, which gives us the points (1,−1) and (0, 5), respectively. These are plotted in
Figure 16(c). We then draw the parabola through these points.
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x
5

y
5

x = 2

(2,−3)

x
5

y
5

x = 2

(2,−3)

x
5

y
5

x = 2

(2,−3)

f

(a) (b) (c)
Figure 16. Creating the graph of f(x) = 2(x − 2)2 − 3.

Let’s finish by describing the domain and range of the function defined by the
rule f(x) = 2(x− 2)2 − 3. If you use the intuitive notion that the domain is the set of
“permissible x-values,” then one can substitute any number one wants into the equation
f(x) = 2(x− 2)2− 3. Therefore, the domain is all real numbers, which we can write as
follows: Domain = R or Domain = (−∞,∞).

You can also project each point on the graph of f(x) = 2(x−2)2−3 onto the x-axis,
as shown in Figure 17(a). If you do this, then the entire axis will “lie in shadow,” so
once again, the domain is all real numbers.

x
5

y
5

x
5

y
5

−3

(a) (b)
Figure 17. Projecting to find

(a) the domain and (b) the range.

To determine the range of the function f(x) = 2(x − 2)2 − 3, project each point
on the graph of f onto the y-axis, as shown in Figure 17(b). On the y-axis, all
points greater than or equal to −3 “lie in shadow,” so the range is described with
Range = {y : y ≥ −3} = [−3,∞).



432 Chapter 5 Quadratic Functions

Version: Fall 2007

The following summarizes how one finds the domain and range of a quadratic func-
tion that is in vertex form.

Summary 18. The domain of the quadratic function

f(x) = a(x− h)2 + k,

regardless of the values of the parameters a, h, and k, is the set of all real numbers,
easily described with R or (−∞,∞). On the other hand, the range depends upon
the values of a and k.

• If a > 0, then the parabola opens upward and has vertex at (h, k). Conse-
quently, the range will be

[k,∞) = {y : y ≥ k}.

• If a < 0, then the parabola opens downward and has vertex at (h, k). Conse-
quently, the range will be

(−∞, k] = {y : y ≤ k}.
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5.1 Exercises

In Exercises 1-6, sketch the image of
your calculator screen on your homework
paper. Label and scale each axis with
xmin, xmax, ymin, and ymax. Label
each graph with its equation. Remember
to use a ruler to draw all lines, including
axes.

1. Use your graphing calculator to sketch
the graphs of f(x) = x2, g(x) = 2x2, and
h(x) = 4x2 on one screen. Write a short
sentence explaining what you learned in
this exercise.

2. Use your graphing calculator to sketch
the graphs of f(x) = −x2, g(x) = −2x2,
and h(x) = −4x2 on one screen. Write a
short sentence explaining what you learned
in this exercise.

3. Use your graphing calculator to sketch
the graphs of f(x) = x2, g(x) = (x −
2)2, and h(x) = (x − 4)2 on one screen.
Write a short sentence explaining what
you learned in this exercise.

4. Use your graphing calculator to sketch
the graphs of f(x) = x2, g(x) = (x +
2)2, and h(x) = (x + 4)2 on one screen.
Write a short sentence explaining what
you learned in this exercise.

5. Use your graphing calculator to sketch
the graphs of f(x) = x2, g(x) = x2 +
2, and h(x) = x2 + 4 on one screen.
Write a short sentence explaining what
you learned in this exercise.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/2

6. Use your graphing calculator to sketch
the graphs of f(x) = x2, g(x) = x2 −
2, and h(x) = x2 − 4 on one screen.
Write a short sentence explaining what
you learned in this exercise.

In Exercises 7-14, write down the given
quadratic function on your homework pa-
per, then state the coordinates of the ver-
tex.

7. f(x) = −5(x− 4)2 − 5

8. f(x) = 5(x+ 3)2 − 7

9. f(x) = 3(x+ 1)2

10. f(x) = 7
5

(
x+ 5

9

)2
− 3

4

11. f(x) = −7(x− 4)2 + 6

12. f(x) = −1
2

(
x− 8

9

)2
+ 2

9

13. f(x) = 1
6

(
x+ 7

3

)2
+ 3

8

14. f(x) = −3
2

(
x+ 1

2

)2
− 8

9

In Exercises 15-22, state the equation
of the axis of symmetry of the graph of
the given quadratic function.

15. f(x) = −7(x− 3)2 + 1

16. f(x) = −6(x+ 8)2 + 1
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17. f(x) = −7
8

(
x+ 1

4

)2
+ 2

3

18. f(x) = −1
2

(
x− 3

8

)2
− 5

7

19. f(x) = −2
9

(
x+ 2

3

)2
− 4

5

20. f(x) = −7(x+ 3)2 + 9

21. f(x) = −8
7

(
x+ 2

9

)2
+ 6

5

22. f(x) = 3(x+ 3)2 + 6

In Exercises 23-36, perform each of the
following tasks for the given quadratic
function.

i. Set up a coordinate system on graph
paper. Label and scale each axis.

ii. Plot the vertex of the parabola and
label it with its coordinates.

iii. Draw the axis of symmetry and label
it with its equation.

iv. Set up a table near your coordinate
system that contains exact coordinates
of two points on either side of the axis
of symmetry. Plot them on your co-
ordinate system and their “mirror im-
ages” across the axis of symmetry.

v. Sketch the parabola and label it with
its equation.

vi. Use interval notation to describe both
the domain and range of the quadratic
function.

23. f(x) = (x+ 2)2 − 3

24. f(x) = (x− 3)2 − 4

25. f(x) = −(x− 2)2 + 5

26. f(x) = −(x+ 4)2 + 4

27. f(x) = (x− 3)2

28. f(x) = −(x+ 2)2

29. f(x) = −x2 + 7

30. f(x) = −x2 + 7

31. f(x) = 2(x− 1)2 − 6

32. f(x) = −2(x+ 1)2 + 5

33. f(x) = −1
2(x+ 1)2 + 5

34. f(x) = 1
2(x− 3)2 − 6

35. f(x) = 2(x− 5/2)2 − 15/2

36. f(x) = −3(x+ 7/2)2 + 15/4

In Exercises 37-44, write the given qua-
dratic function on your homework pa-
per, then use set-builder and interval no-
tation to describe the domain and the
range of the function.

37. f(x) = 7(x+ 6)2 − 6

38. f(x) = 8(x+ 1)2 + 7

39. f(x) = −3(x+ 4)2 − 7

40. f(x) = −6(x− 7)2 + 9

41. f(x) = −7(x+ 5)2 − 7

42. f(x) = 8(x− 4)2 + 3

43. f(x) = −4(x− 1)2 + 2

44. f(x) = 7(x− 2)2 − 3
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In Exercises 45-52, using the given value
of a, find the specific quadratic function
of the form f(x) = a(x − h)2 + k that
has the graph shown. Note: h and k are
integers. Check your solution with your
graphing calculator.

45. a = −2

x

y

5

5

46. a = 0.5

x

y

5

5

47. a = 2

x

y

5

5

48. a = 0.5

x

y

5

5

49. a = 2

x

y

5

5

50. a = −0.5

x

y

5

5
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51. a = 2

x

y

5

5

52. a = 0.5

x

y

5

5

In Exercises 53-54, use the graph to
determine the range of the function f(x) =
ax2+bx+c. The arrows on the graph are
meant to indicate that the graph contin-
ues indefinitely in the continuing pattern
and direction of each arrow. Describe
your solution using interval notation.

53.

x

y

5

5

54.

x

y

5

5

In Exercises 55-56, use the graph to
determine the domain of the function f(x) =
ax2+bx+c. The arrows on the graph are
meant to indicate that the graph contin-
ues indefinitely in the continuing pattern
and direction of each arrow. Use interval
notation to describe your solution.

55.

x

y

5

5

56.

x

y

5

5
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5.1 Answers

1. Multiplying by 2 scales vertically by
a factor of 2. Multiplying by 4 scales
vertically by a factor of 4.

x
10

y
10

fgh

3. The graph of g(x) = (x−2)2 is shifted
2 units to the right of f(x) = x2. The
graph of h(x) = (x−4)2 is shifted 4 units
to the right of f(x) = x2.

x
10

y
10

f g h

5. The graph of g(x) = x2 +2 is shifted
2 units to the upward from the graph of
f(x) = x2. The graph of h(x) = x2 + 4
is shifted 4 units upward from the graph
of f(x) = x2.

x
10

y
10

f

g

h

7. (4,−5)

9. (−1, 0)

11. (4, 6)

13.
(
−7

3
,
3
8

)
15. x = 3

17. x = −1
4

19. x = −2
3

21. x = −2
9
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23. Domain= (−∞,∞); Range= [−3,∞)

x
10

y
10

x=−2

(−2,−3)

f(x)=(x+2)2−3

25. Domain= (−∞,∞); Range= (−∞, 5]

x
10

y
10

x=2

(2,5)

f(x)=−(x−2)2+5

27. Domain= (−∞,∞); Range= [0,∞)

x
10

y
10

x=3

(3,0)

f(x)=(x−3)2

29. Domain= (−∞,∞); Range= (−∞, 7]

x
10

y
10

x=0

(0,7)

f(x)=−x2+7

31. Domain= (−∞,∞); Range= [−6,∞)

x
10

y
10

x=1

(1,−6)

f(x)=2(x−1)2−6

33. Domain= (−∞,∞); Range= (−∞, 5]

x
10

y
10

x=−1

(−1,5)

f(x)=− 1
2 (x+1)2+5
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35. Domain= (−∞,∞); Range= [−15/2,∞)

x
10

y
10

x=5/2

(5/2,−15/2)

f(x)=2(x−5/2)2−15/2

37. Domain= (−∞,∞); Range= [−6,∞) =
{y : y ≥ −6}

39. Domain= (−∞,∞); Range= (−∞,−7] =
{y : y ≤ −7}

41. Domain= (−∞,∞); Range= (−∞,−7] =
{y : y ≤ −7}

43. Domain= (−∞,∞); Range= (−∞, 2] =
{y : y ≤ 2}

45. f(x) = −2(x− 3)2 + 1

47. f(x) = 2(x+ 1)2 − 1

49. f(x) = 2(x+ 2)2 + 1

51. f(x) = 2(x− 3)2 − 1

53. (−∞,−2]

55. (−∞,∞)
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5.2 Vertex Form
In the previous section, you learned that it is a simple task to sketch the graph of a
quadratic function if it is presented in vertex form

f(x) = a(x− h)2 + k. (1)

The goal of the current section is to start with the most general form of the quadratic
function, namely

f(x) = ax2 + bx+ c, (2)

and manipulate the equation into vertex form. Once you have your quadratic function
in vertex form, the technique of the previous section should allow you to construct the
graph of the quadratic function.

However, before we turn our attention to the task of converting the general quadratic
into vertex form, we need to review the necessary algebraic fundamentals. Let’s begin
with a review of an important algebraic shortcut called squaring a binomial.

Squaring a Binomial
A monomial is a single algebraic term, usually constructed as a product of a number
(called a coefficient) and one or more variables raised to nonnegative integral powers,
such as −3x2 or 14y3z5. The key phrase here is “single term.” A binomial is an algebraic
sum or difference of two monomials (or terms), such as x+ 2y or 3ab2 − 2c3. The key
phrase here is “two terms.”

To “square a binomial,” start with an arbitrary binomial, such as a+b, then multiply
it by itself to produce its square (a + b)(a + b), or, more compactly, (a + b)2. We can
use the distributive property to expand the square of the binomial a+ b.

(a+ b)2 = (a+ b)(a+ b)
= a(a+ b) + b(a+ b)
= a2 + ab+ ba+ b2

Because ab = ba, we can add the two middle terms to arrive at the following property.

Property 3. The square of the binomial a+ b is expanded as follows.

(a+ b)2 = a2 + 2ab+ b2 (4)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/3
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I Example 5. Expand (x+ 4)2.

We could proceed as follows.

(x+ 4)2 = (x+ 4)(x+ 4)
= x(x+ 4) + 4(x+ 4)
= x2 + 4x+ 4x+ 16
= x2 + 8x+ 16

Although correct, this technique will not help us with our upcoming task. What
we need to do is follow the algorithm suggested by Property 3.

Algorithm for Squaring a Binomial. To square the binomial a + b, proceed
as follows:

1. Square the first term to get a2.
2. Multiply the first and second terms together, and then multiply the result by

two to get 2ab.
3. Square the second term to get b2.

Thus, to expand (x+ 4)2, we should proceed as follows.

1. Square the first term to get x2

2. Multiply the first and second terms together and then multiply by two to get 8x.
3. Square the second term to get 16.

Proceeding in this manner allows us to perform the expansion mentally and simply
write down the solution.

(x+ 4)2 = x2 + 2(x)(4) + 42 = x2 + 8x+ 16

Here are a few more examples. In each, we’ve written an extra step to help clarify
the procedure. In practice, you should simply write down the solution without any
intermediate steps.

(x+ 3)2 = x2 + 2(x)(3) + 32 = x2 + 6x+ 9
(x− 5)2 = x2 + 2(x)(−5) + (−5)2 = x2 − 10x+ 25(
x− 1

2
)2 = x2 + 2(x)

(
−1

2
)

+
(
−1

2
)2 = x2 − x+ 1

4

It is imperative that you master this shortcut before moving on to the rest of the
material in this section.
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Perfect Square Trinomials
Once you’ve mastered squaring a binomial, as in

(a+ b)2 = a2 + 2ab+ b2, (6)

it’s a simple matter to identify and factor trinomials (three terms) having the form
a2 + 2ab + b2. You simply “undo” the multiplication. Whenever you spot a trinomial
whose first and third terms are perfect squares, you should suspect that it factors as
follows.

a2 + 2ab+ b2 = (a+ b)2 (7)

A trinomial that factors according to this rule or pattern is called a perfect square
trinomial.

For example, the first and last terms of the following trinomial are perfect squares.

x2 + 16x+ 64

The square roots of the first and last terms are x and 8, respectively. Hence, it makes
sense to try the following.

x2 + 16x+ 64 = (x+ 8)2

It is important that you check your result using multiplication. So, following the
three-step algorithm for squaring a binomial:

1. Square x to get x2.
2. Multiply x and 8 to get 8x, then multiply this result by 2 to get 16x.
3. Square 8 to get 64.

Hence, x2 + 16x+ 64 is a perfect square trinomial and factors as (x+ 8)2.
As another example, consider x2 − 10x+ 25. The square roots of the first and last

terms are x and 5, respectively. Hence, it makes sense to try

x2 − 10x+ 25 = (x− 5)2.

Again, you should check this result. Note especially that twice the product of x and
−5 equals the middle term on the left, namely, −10x.

Completing the Square
If a quadratic function is given in vertex form, it is a simple matter to sketch the
parabola represented by the equation. For example, consider the quadratic function

f(x) = (x+ 2)2 + 3,

which is in vertex form. The graph of this equation is a parabola that opens upward.
It is translated 2 units to the left and 3 units upward. This is the advantage of vertex
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form. The transformations required to draw the graph of the function are easy to spot
when the equation is written in vertex form.

It’s a simple matter to transform the equation f(x) = (x+ 2)2 + 3 into the general
form of a quadratic function, f(x) = ax2 + bx + c. We simply use the three-step
algorithm to square the binomial; then we combine like terms.

f(x) = (x+ 2)2 + 3
f(x) = x2 + 4x+ 4 + 3
f(x) = x2 + 4x+ 7

Note, however, that the result of this manipulation, f(x) = x2 + 4x+ 7, is not as useful
as vertex form, as it is difficult to identify the transformations required to draw the
parabola represented by the equation f(x) = x2 + 4x+ 7.

It’s really the reverse of the manipulation above that is needed. If we are presented
with an equation in the form f(x) = ax2 + bx+ c, such as f(x) = x2 + 4x+ 7, then an
algebraic method is needed to convert this equation to vertex form f(x) = a(x−h)2 +k;
or in this case, back to its original vertex form f(x) = (x+ 2)2 + 3.

The procedure we seek is called completing the square. The name is derived from
the fact that we need to “complete” the trinomial on the right side of y = x2 + 4x+ 7
so that it becomes a perfect square trinomial.

Algorithm for Completing the Square The procedure for completing the
square involves three key steps.

1. Take half of the coefficient of x and square the result.
2. Add and subtract the quantity from step one so that the right-hand side of the

equation does not change.
3. Factor the resulting perfect square trinomial and combine constant terms.

Let’s follow this procedure and place f(x) = x2 + 4x+ 7 in vertex form.

1. Take half of the coefficient of x. Thus, (1/2)(4) = 2. Square this result. Thus,
22 = 4.

2. Add and subtract 4 on the right side of the equation f(x) = x2 + 4x+ 7.

f(x) = x2 + 4x+ 4− 4 + 7

3. Group the first three terms on the right-hand side. These form a perfect square
trinomial.

f(x) = (x2 + 4x+ 4)− 4 + 7

Now factor the perfect square trinomial and combine the constants at the end to
get

f(x) = (x+ 2)2 + 3.
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That’s it, we’re done! We’ve returned the general quadratic f(x) = x2 + 4x + 7
back to vertex form f(x) = (x+ 2)2 + 3.

Let’s try that once more.

I Example 8. Place the quadratic function f(x) = x2 − 8x− 9 in vertex form.

We follow the three-step algorithm for completing the square.

1. Take half of the coefficient of x and square: i.e.,

[(1/2)(−8)]2 = [−4]2 = 16.

2. Add and subtract this amount to the right-hand side of the function.

f(x) = x2 − 8x+ 16− 16− 9

3. Group the first three terms on the right-hand side. These form a perfect square
trinomial.

f(x) = (x2 − 8x+ 16)− 16− 9

Factor the perfect square trinomial and combine the coefficients at the end.

f(x) = (x− 4)2 − 25

Now, let’s see how we can use the technique of completing the square to help in
drawing the graphs of general quadratic functions.

Working with f(x) = x2 + bx+ c
The examples in this section will have the form f(x) = x2 + bx + c. Note that the
coefficient of x2 is 1. In the next section, we will work with a harder form, f(x) =
ax2 + bx+ c, where a 6= 1.

I Example 9. Complete the square to place f(x) = x2 + 6x+ 2 in vertex form and
sketch its graph.

First, take half of the coefficient of x and square; i.e., [(1/2)(6)]2 = 9. On the right
side of the equation, add and subtract this amount so as to not change the equation.

f(x) = x2 + 6x+ 9− 9 + 2

Group the first three terms on the right-hand side.

f(x) = (x2 + 6x+ 9)− 9 + 2

The first three terms on the right-hand side form a perfect square trinomial that is
easily factored. Also, combine the constants at the end.

f(x) = (x+ 3)2 − 7
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This is a parabola that opens upward. We need to shift the parabola 3 units to the left
and then 7 units downward, placing the vertex at (−3,−7) as shown in Figure 1(a).
The axis of symmetry is the vertical line x = −3. The table in Figure 1(b) calculates
two points to the right of the axis of symmetry, and mirror points on the left of the
axis of symmetry make for an accurate plot of the parabola.

x10

y
10

x = −3

(−3,−7)

x y = (x+ 3)2 − 7
−2 −6
−1 −3

(a) (b)
Figure 1. Plotting the graph of the

quadratic function f(x) = (x + 3)2 − 7.

Let’s look at another example.

I Example 10. Complete the square to place f(x) = x2 − 8x + 21 in vertex form
and sketch its graph.

First, take half of the coefficient of x and square; i.e., [(1/2)(−8)]2 = 16. On
the right side of the equation, add and subtract this amount so as to not change the
equation.

f(x) = x2 − 8x+ 16− 16 + 21

Group the first three terms on the right-hand side of the equation.

f(x) = (x2 − 8x+ 16)− 16 + 21

The first three terms form a perfect square trinomial that is easily factored. Also,
combine constants at the end.

f(x) = (x− 4)2 + 5

This is a parabola that opens upward. We need to shift the parabola 4 units to the
right and then 5 units upward, placing the vertex at (4, 5), as shown in Figure 2(a).
The table in Figure 2(b) calculates two points to the right of the axis of symmetry,
and mirror points on the left of the axis of symmetry make for an accurate plot of the
parabola.
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x10

y
10

x = 4

(4, 5)
x y = (x− 4)2 + 5
5 6
6 9

(a) (b)
Figure 2. Plotting the graph of the

quadratic function f(x) = (x − 4)2 + 5.

Working with f(x) = ax2 + bx+ c
In the last two examples, the coefficient of x2 was 1. In this section, we will learn how
to complete the square when the coefficient of x2 is some number other than 1.

I Example 11. Complete the square to place f(x) = 2x2 + 4x − 4 in vertex form
and sketch its graph.

In the last two examples, we gained some measure of success when the coefficient
of x2 was a 1. We were just getting comfortable with that situation and we’d like
to continue to be comfortable, so let’s start by factoring a 2 from each term on the
right-hand side of the equation.

f(x) = 2
[
x2 + 2x− 2

]
If we ignore the factor of 2 out front, the coefficient of x2 in the trinomial expression

inside the parentheses is a 1. Ah, familiar ground! We will proceed as we did before,
but we will carry the factor of 2 outside the parentheses in each step. Start by taking
half of the coefficient of x and squaring the result; i.e., [(1/2)(2)]2 = 1.

Add and subtract this amount inside the parentheses so as to not change the equa-
tion.

f(x) = 2
[
x2 + 2x+ 1− 1− 2

]
Group the first three terms inside the parentheses and combine constants.

f(x) = 2
[
(x2 + 2x+ 1)− 3

]
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The grouped terms inside the parentheses form a perfect square trinomial that is easily
factored.

f(x) = 2
[
(x+ 1)2 − 3

]
Finally, redistribute the 2.

f(x) = 2(x+ 1)2 − 6

This is a parabola that opens upward. In addition, it is stretched by a factor of
2, so it will be somewhat narrower than our previous examples. The parabola is also
shifted 1 unit to the left, then 6 units downward, placing the vertex at (−1,−6), as
shown in Figure 3(a). The table in Figure 3(b) calculates two points to the right of
the axis of symmetry, and mirror points on the left of the axis of symmetry make for
an accurate plot of the parabola.

x10

y
10

x = −1

(−1,−6)

x y = 2(x+ 1)2 − 6
0 −4
1 2

(a) (a)
Figure 3. Plotting the graph of the

quadratic function f(x) = 2x2 + 4x − 4.

Let’s look at an example where the coefficient of x2 is negative.

I Example 12. Complete the square to place f(x) = −x2 + 6x− 2 in vertex form
and sketch its graph.

In the last example, we factored out the coefficient of x2. This left us with a
trinomial having leading coefficient4 1, which enabled us to proceed much as we did
before: halve the middle coefficient and square, add and subtract this amount, factor
the resulting perfect square trinomial. Since we were successful with this technique in
the last example, let’s begin again by factoring out the leading coefficient, in this case
a −1.

The leading coefficient of a quadratic function is the coefficient of x2. That is, if f(x) = ax2 + bx+ c,4

then the leading coefficient is “a.” We’ll have more to say about the leading coefficient in Chapter 6.
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f(x) = −1
[
x2 − 6x+ 2

]
If we ignore the factor of−1 out front, the coefficient of x2 in the trinomial expression

inside the parentheses is a 1. Again, familiar ground! We will proceed as we did before,
but we will carry the factor of −1 outside the parentheses in each step. Start by taking
half of the coefficient of x and squaring the result; i.e., [(1/2)(−6)]2 = 9.

Add and subtract this amount inside the parentheses so as to not change the equa-
tion.

f(x) = −1
[
x2 − 6x+ 9− 9 + 2

]
Group the first three terms inside the parentheses and combine constants.

f(x) = −1
[
(x2 − 6x+ 9)− 7

]
The grouped terms inside the parentheses form a perfect square trinomial that is easily
factored.

f(x) = −1
[
(x− 3)2 − 7

]
Finally, redistribute the −1.

f(x) = −(x− 3)2 + 7

This is a parabola that opens downward. The parabola is also shifted 3 units to
the right, then 7 units upward, placing the vertex at (3, 7), as shown in Figure 4(a).
The table in Figure 4(b) calculates two points to the right of the axis of symmetry,
and mirror points on the left of the axis of symmetry make for an accurate plot of the
parabola.

x10

y
10

x = 3

(3, 7)

x y = −(x− 3)2 + 7
4 6
5 3

(a) (b)
Figure 4. Plotting the graph of the

quadratic function f(x) = −(x − 3)2 + 7.
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Let’s try one more example.

I Example 13. Complete the square to place f(x) = 3x2 + 4x − 8 in vertex form
and sketch its graph.

Let’s begin again by factoring out the leading coefficient, in this case a 3.

f(x) = 3
[
x2 + 4

3x−
8
3
]

Fractions add a degree of difficulty, but, if you follow the same routine as in the previous
examples, you should be able to get the needed result. Take half of the coefficient of x
and square the result; i.e., [(1/2)(4/3)]2 = [2/3]2 = 4/9.

Add and subtract this amount inside the parentheses so as to not change the equa-
tion.

f(x) = 3
[
x2 + 4

3x+ 4
9 −

4
9 −

8
3
]

Group the first three terms inside the parentheses. You’ll need a common denominator
to combine constants.

f(x) = 3
[(
x2 + 4

3x+ 4
9
)
− 4

9 −
24
9
]

The grouped terms inside the parentheses form a perfect square trinomial that is easily
factored.

f(x) = 3
[(
x+ 2

3
)2 − 28

9

]
Finally, redistribute the 3.

f(x) = 3
(
x+ 2

3
)2 − 28

3

This is a parabola that opens upward. It is also stretched by a factor of 3, so it
will be narrower than all of our previous examples. The parabola is also shifted 2/3
units to the left, then 28/3 units downward, placing the vertex at (−2/3,−28/3), as
shown in Figure 5(a). The table in Figure 5(b) calculates two points to the right of
the axis of symmetry, and mirror points on the left of the axis of symmetry make for
an accurate plot of the parabola.
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x10

y
5

x = −2/3

(−2/3,−28/3)

x y = 3(x+2/3)2−28/3
0 −8
1 −1

(a) (b)
Figure 5. Plotting the graph of the quadratic

function f(x) = 3(x + 2/3)2 − 28/3.
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5.2 Exercises

In Exercises 1-8, expand the binomial.

1.
(
x+ 4

5

)2

2.
(
x− 4

5

)2

3. (x+ 3)2

4. (x+ 5)2

5. (x− 7)2

6.
(
x− 2

5

)2

7. (x− 6)2

8.
(
x− 5

2

)2

In Exercises 9-16, factor the perfect square
trinomial.

9. x2 − 6
5
x+ 9

25

10. x2 + 5x+ 25
4

11. x2 − 12x+ 36

12. x2 + 3x+ 9
4

13. x2 + 12x+ 36

14. x2 − 3
2
x+ 9

16

15. x2 + 18x+ 81

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/5

16. x2 + 10x+ 25

In Exercises 17-24, transform the given
quadratic function into vertex form f(x) =
(x− h)2 + k by completing the square.

17. f(x) = x2 − x+ 8

18. f(x) = x2 + x− 7

19. f(x) = x2 − 5x− 4

20. f(x) = x2 + 7x− 1

21. f(x) = x2 + 2x− 6

22. f(x) = x2 + 4x+ 8

23. f(x) = x2 − 9x+ 3

24. f(x) = x2 − 7x+ 8

In Exercises 25-32, transform the given
quadratic function into vertex form f(x) =
a(x− h)2 + k by completing the square.

25. f(x) = −2x2 − 9x− 3

26. f(x) = −4x2 − 6x+ 1

27. f(x) = 5x2 + 5x+ 5

28. f(x) = 3x2 − 4x− 6

29. f(x) = 5x2 + 7x− 3

30. f(x) = 5x2 + 6x+ 4

31. f(x) = −x2 − x+ 4

32. f(x) = −3x2 − 6x+ 4
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In Exercises 33-38, find the vertex of
the graph of the given quadratic func-
tion.

33. f(x) = −2x2 + 5x+ 3

34. f(x) = x2 + 5x+ 8

35. f(x) = −4x2 − 4x+ 1

36. f(x) = 5x2 + 7x+ 8

37. f(x) = 4x2 + 2x+ 8

38. f(x) = x2 + x− 7

In Exercises 39-44, find the axis of sym-
metry of the graph of the given quadratic
function.

39. f(x) = −5x2 − 7x− 8

40. f(x) = x2 + 6x+ 3

41. f(x) = −2x2 − 5x− 8

42. f(x) = −x2 − 6x+ 2

43. f(x) = −5x2 + x+ 6

44. f(x) = x2 − 9x− 6

For each of the quadratic functions in
Exercises 45-66, perform each of the
following tasks.

i. Use the technique of completing the
square to place the given quadratic
function in vertex form.

ii. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

iii. Draw the axis of symmetry and label
it with its equation. Plot the vertex
and label it with its coordinates.

iv. Set up a table near your coordinate
system that calculates the coordinates
of two points on either side of the axis
of symmetry. Plot these points and
their mirror images across the axis of
symmetry. Draw the parabola and
label it with its equation

v. Use the graph of the parabola to de-
termine the domain and range of the
quadratic function. Describe the do-
main and range using interval nota-
tion.

45. f(x) = x2 − 8x+ 12

46. f(x) = x2 + 4x− 1

47. f(x) = x2 + 6x+ 3

48. f(x) = x2 − 4x+ 1

49. f(x) = x2 − 2x− 6

50. f(x) = x2 + 10x+ 23

51. f(x) = −x2 + 6x− 4

52. f(x) = −x2 − 6x− 3

53. f(x) = −x2 − 10x− 21

54. f(x) = −x2 + 12x− 33

55. f(x) = 2x2 − 8x+ 3

56. f(x) = 2x2 + 8x+ 4

57. f(x) = −2x2 − 12x− 13

58. f(x) = −2x2 + 24x− 70

59. f(x) = (1/2)x2 − 4x+ 5

60. f(x) = (1/2)x2 + 4x+ 6

61. f(x) = (−1/2)x2 − 3x+ 1/2

62. f(x) = (−1/2)x2 + 4x− 2
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63. f(x) = 2x2 + 7x− 2

64. f(x) = −2x2 − 5x− 4

65. f(x) = −3x2 + 8x− 3

66. f(x) = 3x2 + 4x− 6

In Exercises 67-72, find the range of
the given quadratic function. Express
your answer in both interval and set no-
tation.

67. f(x) = −2x2 + 4x+ 3

68. f(x) = x2 + 4x+ 8

69. f(x) = 5x2 + 4x+ 4

70. f(x) = 3x2 − 8x+ 3

71. f(x) = −x2 − 2x− 7

72. f(x) = x2 + x+ 9

Drill for Skill. In Exercises 73-76,
evaluate the function at the given value
b.

73. f(x) = 9x2 − 9x+ 4; b = −6

74. f(x) = −12x2 + 5x+ 2; b = −3

75. f(x) = 4x2 − 6x− 4; b = 11

76. f(x) = −2x2 − 11x− 10; b = −12

Drill for Skill. In Exercises 77-80,
evaluate the function at the given expres-
sion.

77. Evaluate f(x+4) if f(x) = −5x2 +
4x+ 2.

78. Evaluate f(−4x−5) if f(x) = 4x2+
x+ 1.

79. Evaluate f(4x− 1) if f(x) = 4x2 +
3x− 3.

80. Evaluate f(−5x−3) if f(x) = −4x2+
x+ 4.
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5.2 Answers

1. x2 + 8
5
x+ 16

25

3. x2 + 6x+ 9

5. x2 − 14x+ 49

7. x2 − 12x+ 36

9.
(
x− 3

5

)2

11. (x− 6)2

13. (x+ 6)2

15. (x+ 9)2

17.
(
x− 1

2

)2
+ 31

4

19.
(
x− 5

2

)2
− 41

4

21. (x+ 1)2 − 7

23.
(
x− 9

2

)2
− 69

4

25. −2
(
x+ 9

4

)2
+ 57

8

27. 5
(
x+ 1

2

)2
+ 15

4

29. 5
(
x+ 7

10

)2
− 109

20

31. −1
(
x+ 1

2

)2
+ 17

4

33.
(

5
4
,
49
8

)

35.
(
−1

2
, 2
)

37.
(
−1

4
,
31
4

)

39. x = − 7
10

41. x = −5
4

43. x = 1
10

45. f(x) = (x− 4)2 − 4

x
10

y
10

x=4

(4,−4)(4,−4)

f(x)=x2−8x+12

Domain = R, Range = [−4,∞)
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47. f(x) = (x+ 3)2 − 6

x
10

y
10

f(x)=x2+6x+3

x=−3

(−3,−6)(−3,−6)

Domain = R, Range = [−6,∞)

49. f(x) = (x− 1)2 − 7

x
10

y
10
f(x)=x2−2x−6

x=1

(1,−7)(1,−7)

Domain = R, Range = [−7,∞)

51. f(x) = −(x− 3)2 + 5

x
10

y
10

f(x)=−x2+6x−4

x=3

(3,5)(3,5)

Domain = R, Range = (−∞, 5]

53. f(x) = −(x+ 5)2 + 4

x
10

y
10

f(x)=−x2−10x−21

x=−5

(−5,4)(−5,4)

Domain = R, Range = (−∞, 4]
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55. f(x) = 2(x− 2)2 − 5

x
10

y
10 f(x)=2x2−8x+3

x=2

(2,−5)(2,−5)

Domain = R, Range = [−5,∞)

57. f(x) = −2(x+ 3)2 + 5

x
10

y
10

f(x)=−2x2−12x−13

x=−3

(−3,5)(−3,5)

Domain = R, Range = (−∞, 5]

59. f(x) = (1/2)(x− 4)2 − 3

x
10

y
10

f(x)=(1/2)x2−4x+5

x=4

(4,−3)(4,−3)

Domain = R, Range = [−3,∞)

61. f(x) = (−1/2)(x+ 3)2 + 5

x
10

y
10

f(x)=(−1/2)x2−3x+1/2
x=−3

(−3,5)(−3,5)

Domain = R, Range = (−∞, 5])
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63. f(x) = 2(x+ 7/4)2 − 65/8

x
10

y
10 f(x)=2x2+7x−2

x=−7/4

(−7/4,−65/8)(−7/4,−65/8)

Domain = R, Range = [−65/8,∞)

65. f(x) = −3(x− 4/3)2 + 7/3

x
10

y
10

f(x)=−3x2+8x−3
x=4/3

(4/3,7/3)(4/3,7/3)

Domain = R, Range = (−∞, 7/3]

67. (−∞, 5] = {x |x ≤ 5}

69.
[

16
5
,∞
)

=
{
x

∣∣∣∣x ≥ 16
5

}
71. (−∞,−6] = {x |x ≤ −6}

73. 382

75. 414

77. −5x2 − 36x− 62

79. 64x2 − 20x− 2
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5.3 Zeros of the Quadratic
We’ve seen how vertex form and intelligent use of the axis of symmetry can help to draw
an accurate graph of the quadratic function defined by the equation f(x) = ax2+bx+c.
When drawing the graph of the parabola it is helpful to know where the graph of the
parabola crosses the x-axis. That is the primary goal of this section, to find the zero
crossings or x-intercepts of the parabola.

Before we begin, you’ll need to review the techniques that will enable you to factor
the quadratic expression ax2 + bx+ c.

Factoring ax2 + bx+ c when a = 1
Our intent in this section is to provide a quick review of techniques used to factor
quadratic trinomials. We begin by showing how to factor trinomials having the form
ax2 + bx+ c, where the leading coefficient is a = 1; that is, trinomials having the form
x2 +bx+c. In the next section, we will address the technique used to factor ax2 +bx+c
when a 6= 1.

Let’s begin with an example.

I Example 1. Factor x2 + 16x− 36.

Note that the leading coefficient, the coefficient of x2, is a 1. This is an impor-
tant observation, because the technique presented here will not work when the leading
coefficient does not equal 1.

Note the constant term of the trinomial x2 + 16x− 36 is −36. List all integer pairs
whose product equals −36.

1, −36 −1, 36
2, −18 −2, 18
3, −12 −3, 12
4, −9 −4, 9
6, −6 −6, 6

Note that we’ve framed the pair −2, 18. We’ve done this because the sum of this
pair of integers equals the coefficient of x in the trinomial expression x2 + 16x − 36.
Use this framed pair to factor the trinomial.

x2 + 16x− 36 = (x− 2)(x+ 18)

It is important that you check your result. Use the distributive property to multiply.

(x− 2)(x+ 18) = x(x+ 18)− 2(x+ 18)
= x2 + 18x− 2x− 36
= x2 + 16x− 36

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/6
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Thus, our factorization is correct.

Let’s summarize the technique.

Algorithm. To factor the quadratic x2 + bx+ c, proceed as follows:

1. List all the integer pairs whose product equals c.
2. Circle or frame the pair whose sum equals the coefficient of x, namely b. Use

this pair to factor the trinomial.

Let’s look at another example.

I Example 2. Factor the trinomial x2 − 25x− 84.

List all the integer pairs whose product is −84.

1, −84 −1, 84
2, −42 −2, 42
3, −28 −3, 28

4, −21 −4, 21
6, −14 −6, 14
7, −12 −7, 12

We’ve framed the pair whose sum equals the coefficient of x, namely −25. Use this
pair to factor the trinomial.

x2 − 25x− 84 = (x+ 3)(x− 28)

Check.

(x+ 3)(x− 28) = x(x− 28) + 3(x− 28)
= x2 − 28x+ 3x− 84
= x2 − 25x− 84

With experience, there are a number of ideas that will quicken the process.

• As you are listing the integer pairs, should you happen to note that the current
pair has the appropriate sum, there is no need to list the remaining integer pairs.
Simply halt the process of listing the integer pairs and use the current pair to factor
the trinomial.

• Some students are perfectly happy being asked “Can you think of an integer pair
whose product is c and whose sum is b (where b and c refer to the coefficients of
x2 + bx+ c)?” If you can pick the pair “out of the air” like this, all is well and good.
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Use the integer pair to factor the trinomial and don’t bother listing any integer
pairs.

Now, let’s investigate how to proceed when the leading coefficient is not 1.

Factoring ax2 + bx+ c when a 6= 1
When a 6= 1, we use a technique called the ac-test to factor the trinomial ax2 + bx+ c.
The process is best explained with an example.

I Example 3. Factor 2x2 + 13x− 24.

Note that the leading coefficient does not equal 1. Indeed, the coefficient of x2 in
this example is a 2. Therefore, the technique of the previous examples will not work.
Thus, we turn to a similar technique called the ac-test.

First, compare

2x2 + 13x− 24 and ax2 + bx+ c

and note that a = 2, b = 13, and c = −24. Compute the product of a and c. This is
how the technique earns its name “ac-test.”

ac = (2)(−24) = −48

List all integer pairs whose product is ac = −48.

1, −48 −1, 48
2, −24 −2, 24
3, −16 −3, 16
4, −12 −4, 12
6, −8 −6, 8

We’ve framed the pair whose sum is b = 13. The next step is to rewrite the trinomial
2x2 + 13x− 24, splitting the middle term into a sum, using our framed integer pair.

2x2 + 13x− 24 = 2x2 − 3x+ 16x− 24

We factor an x out of the first two terms, then an 8 out of the last two terms. This
process is called factoring by grouping.

2x2 − 3x+ 16x− 24 = x(2x− 3) + 8(2x− 3)

We now factor out a common factor of 2x− 3.

x(2x− 3) + 8(2x− 3) = (x+ 8)(2x− 3)

It’s helpful to see the complete process as a coherent unit.
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2x2 + 13x− 24 = 2x2 − 3x+ 16x− 24
= x(2x− 3) + 8(2x− 3)
= (x+ 8)(2x− 3)

Check. Again, it is important to check the answer by multiplication.

(x+ 8)(2x− 3) = x(2x− 3) + 8(2x− 3)
= 2x2 − 3x+ 16x− 24
= 2x2 + 13x− 24

Because this is the original trinomial, our solution checks.7

Let’s summarize this process.

Algorithm: ac-Test. To factor the quadratic ax2 + bx+ c, proceed as follows:

1. List all integer pairs whose product equals ac.
2. Circle or frame the pair whose sum equals the coefficient of x, namely b.
3. Use the circled pair to express the middle term bx as a sum.
4. Factor by “grouping.”

Let’s look at another example.

I Example 4. Factor 3x2 + 34x− 24.

Compare

3x2 + 34x− 24 and ax2 + bx+ c

and note that a = 3, b = 34 and c = −24. List all integer pairs whose product equals
ac = (3)(−24) = −72.

1, −72 −1, 72
2, −36 −2, 36
3, −24 −3, 24
4, −18 −4, 18
6, −12 −6, 12
8, −9 −8, 9

We’ve framed the pair whose sum is the same as b = 34, the coefficient of x in
3x2 + 34x − 24. Again, possible shortcuts are possible. If you can “think” of a pair
whose product is ac = −72 and whose sum is b = 34, then it is not necessary to list
any integer pairs. Alternatively, if you come across the needed pair as you are listing

If you check a number of your results, it will soon become apparent why the ac-test works so well.7



Section 5.3 Zeros of the Quadratic 465

Version: Fall 2007

them, then you can halt the process. There is no need to list the remaining pairs if you
have the one you need.

Use the framed pair to express the middle term as a sum, then factor by grouping.

3x2 + 34x− 24 = 3x2 − 2x+ 36x− 24
= x(3x− 2) + 12(3x− 2)
= (x+ 12)(3x− 2)

We leave it to the reader to check this result.

Intercepts
The points where the graph of a function crosses the x-axis are called the x-intercepts
of graph of the function. Consider the graph of the quadratic function f in Figure 1.

x10

y
10

(−3, 0) (2, 0)

(0,−6)

f

Figure 1. The x- and y-intercepts
are key features of any graph.

Note that the graph of the f crosses the x-axis at (−3, 0) and (2, 0). These are the
x-intercepts of the parabola. Note that the y-coordinate of each x-intercept is zero.

In function notation, the solutions of f(x) = 0 (note the similarity to y = 0) are
the x-coordinates of the points where the graph of f crosses the x-axis. Analyzing the
graph of f in Figure 1, we see that both −3 and 2 are solutions of f(x) = 0.

Thus, the process for finding the x-intercepts is clear.

Finding x-intercepts. To find the x-intercepts of the graph of any function, set
y = 0 and solve for x. Alternatively, if function notation is used, set f(x) = 0 and
solve for x.

Let’s look at an example.
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I Example 5. Find the x-intercepts of the graph of the quadratic function defined
by y = x2 + 2x− 48.

To find the x-intercepts, first set y = 0.

0 = x2 + 2x− 48

Next, factor the trinomial on the right. Note that the coefficient of x2 is 1. We need
only think of two integers whose product equals the constant term −48 and whose sum
equals the coefficient of x, namely 2. The numbers 8 and −6 come to mind, so the
trinomial factors as follows (readers should check this result).

0 = (x+ 8)(x− 6)

To complete the solution, we need to use an important property of the real numbers
called the zero product property.

Zero Product Property. If a and b are any real numbers such that

ab = 0,

then either a = 0 or b = 0.

In our case, we have 0 = (x+ 8)(x− 6). Therefore, it must be the case that either

x+ 8 = 0 or x− 6 = 0.

These equations can be solved independently to produce

x = −8 or x = 6.

Thus, the x-intercepts of the graph of y = x2 +2x−48 are located at (−8, 0) and (6, 0).

Let’s look at another example.

I Example 6. Find the x-intercepts of the graph of the quadratic function f(x) =
2x2 − 7x− 15.

To find the x-intercepts of the graph of the quadratic function f , we begin by setting

f(x) = 0.

Of course, f(x) = 2x2 − 7x− 15, so we can substitute to obtain

2x2 − 7x− 15 = 0.

We will now use the ac-test to factor the trinomial on the left. Note that ac =
(2)(−15) = −30. List the integer pairs whose products equal −30.



Section 5.3 Zeros of the Quadratic 467

Version: Fall 2007

1, −30 −1, 20
2, −15 −2, 15
3, −10 −3, 10

5, −6 −5, 6

Note that the framed pair sum to the coefficient of x in 2x2 − 7x − 15. Use the
framed pair to express the middle term as a sum, then factor by grouping.

2x2 − 7x− 15 = 0
2x2 + 3x− 10x− 15 = 0
x(2x+ 3)− 5(2x+ 3) = 0

(x− 5)(2x+ 3) = 0

Now we can use the zero product property. Either

x− 5 = 0 or 2x+ 3 = 0.

Each of these can be solved independently to obtain

x = 5 or x = −3/2.

Thus, the x-intercepts of the graph of the quadratic function f(x) = 2x2 − 7x− 15 are
located at (−3/2, 0) and (5, 0).

One more definition is in order.

Definition 7. Zeros of a Function. The solutions of f(x) = 0 are called the
zeros of the function f .

Thus, in the last example, both −3/2 and 5 are zeros of the quadratic function
f(x) = 2x2−7x−15. Note the intimate relationship between the zeros of the quadratic
function and the x-intercepts of the graph. Note that −3/2 is a zero and (−3/2, 0) is
an x-intercept. Similarly, 5 is a zero and (5, 0) is an x-intercept.

The graphing calculator can be used to find the zeros of a function.

I Example 8. Use the graphing calculator to find the zeros of the function f(x) =
2x2 − 7x− 15.

Enter the function f(x) = 2x2 − 7x − 15 into Y1 in the Y= menu; then adjust the
window parameters as shown in Figure 2(b). Push the GRAPH button to produce the
parabola shown in Figure 2(c).

To find a zero of the function, proceed as follows:
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(a) (b) (c)
Figure 2. Plotting the quadratic function f(x) = 2x2 − 7x − 15.

• Press 2nd TRACE to open the CALCULATE window shown in Figure 3(a). From this
menu, select 2:zero.

• The calculator responds by asking for a “Left bound.” Use the arrow keys to move
the cursor slightly to the left of the leftmost x-intercept, as shown in Figure 3(b).
Press the ENTER key.

• The calculator responds by asking for a “Right bound.” Use the arrow keys to move
the cursor slightly to the right of the leftmost x-intercept, as shown in Figure 3(c).
Press the ENTER key.

• The calculator responds by asking for a “Guess.” You may use the arrow keys to
select a starting x-value any where between the left- and right-bounds you selected
(note that the calculator marks these on the screen in Figure 3(d)). However, the
cursor already lies between these marks, so we typically just hit ENTER at this point.
We suggest you do so also.

(a) (b) (c) (d)
Figure 3. Using the zero utility to find an x-intercept.

The calculator responds by marking the x-intercept and reporting its x-value at the
bottom of the screen, as shown in Figure 4(a). This is one of the zeros of the function.
Note that this value of −1.5 agrees nicely with our hand calculated result −3/2 in
Example 6. We followed precisely the same procedure outlined above to find the
second x-intercept shown in Figure 4(b). Note that it also agrees with the hand
calculated solution of Example 6.

In a similar vein, the point where the graph of a function crosses the y-axis is
called the y-intercept of the graph of the function. In Figure 1 the y-intercept of the
parabola is (0,−6). Note that the x-coordinate of this y-intercept is zero.

Thus, the process for finding y-intercepts should be clear.
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(a) (b)
Figure 4. The zeros of f(x)− 2x2 − 7x− 15.

Finding y-intercepts. To find the y-intercepts of the graph of any function, set
x = 0 and solve for y. Alternatively, if function notation is used, simply evaluate
f(0).

I Example 9. Find the y-intercept of the quadratic function defined by f(x) =
x2 − 3x− 11.

Evaluate the function at x = 0.

f(0) = (0)2 − 3(0)− 11 = −11.

The coordinates of the y-intercept are (0,−11).

Putting it All Together
We will find both x- and y-intercepts extremely useful when drawing the graph of a
quadratic function.

I Example 10. Place the quadratic function y = x2 + 2x− 24 in vertex form. Plot
the vertex and axis of symmetry and label them with their coordinates and equation,
respectively. Find and plot the x- and y-intercepts of the parabola and label them with
their coordinates.

Take half of the coefficient of x, square, then add and subtract this amount to
balance the equation. Factor and combine coefficients.

y = x2 + 2x+ 1− 1− 24
y = (x+ 1)2 − 25

The graph is a parabola that opens upward; it is shifted 1 unit to the left and 25 units
downward. This information is enough to plot and label the vertex, then plot and label
the axis of symmetry, as shown in Figure 5(a).

To find the x-intercepts, let y = 0 in y = x2 + 2x− 24.

0 = x2 + 2x− 24
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The leading coefficient is a 1. The integer pair −4 and 6 has product −24 and sum 2.
Thus, the right-hand side factors as follows.

0 = (x+ 6)(x− 4)

In order that this product equals zero, either

x+ 6 = 0 or x− 4 = 0.

Solve each of these linear equations independently.

x = −6 or x = 4.

Recall that we let y = 0. We’ve found two solutions, x = −6 and x = 4. Thus, we have
x-intercepts at (−6, 0) and (4, 0), as pictured in Figure 5(b).

Finally, to find the y-intercept, let x = 0 in y = x2 +2x−24. With this substitution,
y = −24. Thus, the y-intercept is (0,−24), as pictured in Figure 5(c). Note that we’ve
also included the mirror image of the y-intercept across the axis of symmetry.

x

y

x = −1

(−1,−25)

x

y

x = −1

(−6, 0) (4, 0)

(−1,−25)

x

y

x = −1

(−6, 0) (4, 0)

(0,−24)(−1,−25)

(a) Plotting the vertex
and axis of symmetry.

(b) Adding the x-intercepts
provides added accuracy.

(c) Adding the
y-intercept and its

mirror image provides
an excellent final graph.

Figure 5.

Let’s look at one final example.

I Example 11. Plot the parabola represented by the equation f(x) = −2x2−7x+15.
Plot and label the vertex, axis of symmetry, and the x- and y-intercepts.

First, factor out a −2.

f(x) = −2
[
x2 + 7

2
x− 15

2

]
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Half8 of 7/2 is 7/4. Squared, this amounts to 49/16. Add and subtract this last amount
to keep the equation balanced.

f(x) = −2
[
x2 + 7

2
x+ 49

16
− 49

16
− 15

2

]
The first three terms inside the parentheses form a perfect square trinomial. The last
two constants are combined with a common denominator.

f(x) = −2
[(
x2 + 7

2
x+ 49

16

)
− 49

16
− 120

16

]
f(x) = −2

[(
x+ 7

4

)2
− 169

16

]
Finally, redistribute the −2.

f(x) = −2
(
x+ 7

4

)2
+ 169

8

The graph of this last equation is a parabola that opens downward, translated 7/4 units
to the left and 169/8 units upward. This is enough information to plot and label the
vertex and axis of symmetry, as shown in Figure 6(a).

To find the y-intercepts, set f(x) = 0 in f(x) = −2x2 − 7x + 15. We will also
multiply both sides of the resulting equation by −1.

0 = −2x2 − 7x+ 15
0 = 2x2 + 7x− 15

After comparing 2x2 + 7x− 15 with ax2 + bx+ c, we note that the integer pair −3 and
10 have product equal to ac = −30 and sum equal to b = 7. Use this pair to express
the middle term of 2x2 + 7x− 15 as a sum and then factor by grouping.

0 = 2x2 − 3x+ 10x− 15
0 = x(2x− 3) + 5(2x− 3)
0 = (x+ 5)(2x− 3)

By the zero product property, either

x+ 5 = 0 or 2x− 3 = 0.

Solve these linear equations independently.

x = −5 or x = 3
2

These x-values are the zeros of f (they make f(x) = 0), so we have x-intercepts at
(−5, 0) and (3/2, 0), as shown in Figure 6(b).

1
2 ·

7
2 = 7

4
8
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x

y

x = −7/4

(−7/4, 169/8)

x

y

x = −7/4

(−5, 0) (3/2, 0)

(−7/4, 169/8)

x

y

x = −7/4

(−5, 0) (3/2, 0)
(0, 15)(−7/4, 169/8)

(a) Plotting the vertex
and axis of symmetry.

(b) Adding the x-intercepts
provides added accuracy.

(c) Adding the y-intercept
and its mirror image provide

an excellent final graph.
Figure 6.

Finally, to find the y-intercept, set x = 0 in f(x) = −2x2 − 7x + 15 to get f(0) = 15.
Note the positioning of the y-intercept (0, 15) and its mirror image across the axis of
symmetry in Figure 6(c).
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5.3 Exercises

In Exercises 1-8, factor the given qua-
dratic polynomial.

1. x2 + 9x+ 14

2. x2 + 6x+ 5

3. x2 + 10x+ 9

4. x2 + 4x− 21

5. x2 − 4x− 5

6. x2 + 7x− 8

7. x2 − 7x+ 12

8. x2 + 5x− 24

In Exercises 9-16, find the zeros of the
given quadratic function.

9. f(x) = x2 − 2x− 15

10. f(x) = x2 + 4x− 32

11. f(x) = x2 + 10x− 39

12. f(x) = x2 + 4x− 45

13. f(x) = x2 − 14x+ 40

14. f(x) = x2 − 5x− 14

15. f(x) = x2 + 9x− 36

16. f(x) = x2 + 11x− 26

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/9

In Exercises 17-22, perform each of the
following tasks for the quadratic func-
tions.

i. Load the function into Y1 of the Y= of
your graphing calculator. Adjust the
window parameters so that the vertex
is visible in the viewing window.

ii. Set up a coordinate system on your
homework paper. Label and scale each
axis with xmin, xmax, ymin, and ymax.
Make a reasonable copy of the image
in the viewing window of your calcu-
lator on this coordinate system and
label it with its equation.

iii. Use the zero utility on your graph-
ing calculator to find the zeros of the
function. Use these results to plot
the x-intercepts on your coordinate
system and label them with their co-
ordinates.

iv. Use a strictly algebraic technique (no
calculator) to find the zeros of the
given quadratic function. Show your
work next to your coordinate system.
Be stubborn! Work the problem until
your algebraic and graphically zeros
are a reasonable match.

17. f(x) = x2 + 5x− 14

18. f(x) = x2 + x− 20

19. f(x) = −x2 + 3x+ 18

20. f(x) = −x2 + 3x+ 40

21. f(x) = x2 − 16x− 36

22. f(x) = x2 + 4x− 96
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In Exercises 23-30, perform each of the
following tasks for the given quadratic
function.

i. Set up a coordinate system on graph
paper. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Use the technique of completing the
square to place the quadratic func-
tion in vertex form. Plot the vertex
on your coordinate system and label
it with its coordinates. Draw the axis
of symmetry on your coordinate sys-
tem and label it with its equation.

iii. Use a strictly algebraic technique (no
calculators) to find the x-intercepts
of the graph of the given quadratic
function. Plot them on your coor-
dinate system and label them with
their coordinates.

iv. Find the y-intercept of the graph of
the quadratic function. Plot the y-
intercept on your coordinate system
and its mirror image across the axis
of symmetry, then label these points
with their coordinates.

v. Using all the information plotted, draw
the graph of the quadratic function
and label it with the vertex form of
its equation. Use interval notation to
describe the domain and range of the
quadratic function.

23. f(x) = x2 + 2x− 8

24. f(x) = x2 − 6x+ 8

25. f(x) = x2 + 4x− 12

26. f(x) = x2 + 8x+ 12

27. f(x) = −x2 − 2x+ 8

28. f(x) = −x2 − 2x+ 24

29. f(x) = −x2 − 8x+ 48

30. f(x) = −x2 − 8x+ 20

In Exercises 31-38, factor the given qua-
dratic polynomial.

31. 42x2 + 5x− 2

32. 3x2 + 7x− 20

33. 5x2 − 19x+ 12

34. 54x2 − 3x− 1

35. −4x2 + 9x− 5

36. 3x2 − 5x− 12

37. 2x2 − 3x− 35

38. −6x2 + 25x+ 9

In Exercises 39-46, find the zeros of
the given quadratic functions.

39. f(x) = 2x2 − 3x− 20

40. f(x) = 2x2 − 7x− 30

41. f(x) = −2x2 + x+ 28

42. f(x) = −2x2 + 15x− 22

43. f(x) = 3x2 − 20x+ 12

44. f(x) = 4x2 + 11x− 20

45. f(x) = −4x2 + 4x+ 15

46. f(x) = −6x2 − x+ 12
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In Exercises 47-52, perform each of the
following tasks for the given quadratic
functions.

i. Load the function into Y1 of the Y= of
your graphing calculator. Adjust the
window parameters so that the vertex
is visible in the viewing window.

ii. Set up a coordinate system on your
homework paper. Label and scale each
axis with xmin, xmax, ymin, and ymax.
Make a reasonable copy of the image
in the viewing window of your calcu-
lator on this coordinate system and
label it with its equation.

iii. Use the zero utility on your graph-
ing calculator to find the zeros of the
function. Use these results to plot
the x-intercepts on your coordinate
system and label them with their co-
ordinates.

iv. Use a strictly algebraic technique (no
calculator) to find the zeros of the
given quadratic function. Show your
work next to your coordinate system.
Be stubborn! Work the problem until
your algebraic and graphically zeros
are a reasonable match.

47. f(x) = 2x2 + 3x− 35

48. f(x) = 2x2 − 5x− 42

49. f(x) = −2x2 + 5x+ 33

50. f(x) = −2x2 − 5x+ 52

51. f(x) = 4x2 − 24x− 13

52. f(x) = 4x2 + 24x− 45

In Exercises 53-60, perform each of the
following tasks for the given quadratic
functions.

i. Set up a coordinate system on graph
paper. Label and scale each axis. Re-

member to draw all lines with a ruler.
ii. Use the technique of completing the

square to place the quadratic func-
tion in vertex form. Plot the vertex
on your coordinate system and label
it with its coordinates. Draw the axis
of symmetry on your coordinate sys-
tem and label it with its equation.

iii. Use a strictly algebraic method (no
calculators) to find the x-intercepts
of the graph of the quadratic func-
tion. Plot them on your coordinate
system and label them with their co-
ordinates.

iv. Find the y-intercept of the graph of
the quadratic function. Plot the y-
intercept on your coordinate system
and its mirror image across the axis
of symmetry, then label these points
with their coordinates.

v. Using all the information plotted, draw
the graph of the quadratic function
and label it with the vertex form of
its equation. Use interval notation to
describe the domain and range of the
quadratic function.

53. f(x) = 2x2 − 8x− 24

54. f(x) = 2x2 − 4x− 6

55. f(x) = −2x2 − 4x+ 16

56. f(x) = −2x2 − 16x+ 40

57. f(x) = 3x2 + 18x− 48

58. f(x) = 3x2 + 18x− 216

59. f(x) = 2x2 + 10x− 48

60. f(x) = 2x2 − 10x− 100
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In Exercises 61-66, Use the graph of
f(x) = ax2 + bx+ c shown to find all so-
lutions of the equation f(x) = 0. (Note:
Every solution is an integer.)

61.

x

y

5

5

62.

x

y

5

5

63.

x

y

5

5

64.

x

y

5

5

65.

x

y

5

5

66.

x

y

5

5
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5.3 Answers

1. (x+ 2)(x+ 7)

3. (x+ 9)(x+ 1)

5. (x− 5)(x+ 1)

7. (x− 4)(x− 3)

9. Zeros: x = −3, x = 5

11. Zeros: x = −13, x = 3

13. Zeros: x = 4, x = 10

15. Zeros: x = −12, x = 3

17.

x
−10

10

y

−30

30
f(x)=x2−5x−14

(−7,0)(−7,0) (2,0)(2,0)

19.

x
−10 10

y

−30

30

f(x)=−x2+3x+18

(−3,0)(−3,0) (6,0)(6,0)

21.

x
−10

30

y

−100

100
f(x)=x2−16x−36

(−2,0)(−2,0) (18,0)(18,0)
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23. Domain = (−∞,∞),
Range = [−9,∞)

x
10

y
10 f(x)=(x+1)2−9
x=−1

(−1,−9)(−1,−9)

(−4,0)(−4,0) (2,0)(2,0)

(0,−8)(0,−8)(−2,−8)(−2,−8)

25. Domain = (−∞,∞),
Range = [−16,∞)

x
10

y
20 f(x)=(x+2)2−16

x=−2

(−2,−16)(−2,−16)

(−6,0)(−6,0) (2,0)(2,0)

(0,−12)(0,−12)(−4,−12)(−4,−12)

27. Domain = (−∞,∞),
Range = (−∞, 9]

x
10

y
20

f(x)=−(x+1)2+9

x=−1

(−1,9)(−1,9)

(−4,0)(−4,0) (2,0)(2,0)

(0,8)(0,8)(−2,8)(−2,8)

29. Domain = (−∞,∞),
Range = (−∞, 64]

x
20

y
100

f(x)=−(x+4)2+64

x=−4

(−4,64)(−4,64)

(−12,0)(−12,0) (4,0)(4,0)

(0,48)(0,48)(−8,48)(−8,48)

31. (7x+ 2)(6x− 1)

33. (x− 3)(5x− 4)

35. (4x− 5)(−x+ 1)

37. (2x+ 7)(x− 5)

39. Zeros: x = −5/2, x = 4

41. Zeros: x = −7/2, x = 4

43. Zeros: x = 2/3, x = 6
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45. Zeros: x = −3/2, x = 5/2

47.

x
−10

10

y

−50

50
f(x)=2x2+3x−35

(−5,0)(−5,0) (3.5,0)(3.5,0)

49.

x
−10 10

y

−50

50

f(x)=−2x2+5x+33

(−3,0)(−3,0) (5.5,0)(5.5,0)

51.

x
−10 10

y

−100

100
f(x)=4x2−24x−13

(−0.5,0)(−0.5,0) (6.5,0)(6.5,0)

53. Domain = (−∞,∞),
Range = [−32,∞)

x
10

y
50

f(x)=2(x−2)2−32

x=2

(2,−32)(2,−32)

(−2,0)(−2,0) (6,0)(6,0)

(0,−24)(0,−24) (4,−24)(4,−24)

55. Domain = (−∞,∞),
Range = (−∞, 18]

x
10

y
20

f(x)=−2(x+1)2+18
x=−1

(−1,18)(−1,18)

(−4,0)(−4,0) (2,0)(2,0)

(0,16)(0,16)(−2,16)(−2,16)
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57. Domain = (−∞,∞),
Range = [−75,∞)

x
20

y
100 f(x)=3(x+3)2−75

x=−3

(−3,−75)(−3,−75)

(−8,0)(−8,0) (2,0)(2,0)

(0,−48)(0,−48)(−6,−48)(−6,−48)

59. Domain = (−∞,∞),
Range = [−121/2,∞)

x
20

y
100 f(x)=2(x+5/2)2−121/2

x=−5/2

(−5/2,−121/2)(−5/2,−121/2)

(−8,0)(−8,0) (3,0)(3,0)

(0,−48)(0,−48)(−5,−48)(−5,−48)

61. −2, 3

63. −3, 0

65. −3, 0
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5.4 The Quadratic Formula
Consider the general quadratic function

f(x) = ax2 + bx+ c.

In the previous section, we learned that we can find the zeros of this function by solving
the equation

f(x) = 0.

If we substitute f(x) = ax2 + bx+ c, then the resulting equation

ax2 + bx+ c = 0 (1)

is called a quadratic equation. In the previous section, we solved equations of this type
by factoring and using the zero product property.

However, it is not always possible to factor the trinomial on the left-hand side of the
quadratic equation (1) as a product of factors with integer coefficients. For example,
consider the quadratic equation

2x2 + 7x− 3 = 0. (2)

Comparing 2x2 + 7x− 3 with ax2 + bx+ c, let’s list all integer pairs whose product is
ac = (2)(−3) = −6.

1, −6 −1, 6
2, −3 −2, 3

Not a single one of these integer pairs adds to b = 7. Therefore, the quadratic
trinomial 2x2 + 7x − 3 does not factor over the integers.11 Consequently, we’ll need
another method to solve the quadratic equation (2).

The purpose of this section is to develop a formula that will consistently provide
solutions of the general quadratic equation (1). However, before we can develop the
“Quadratic Formula,” we need to lay some groundwork involving the square roots of
numbers.

Square Roots
We begin our discussion of square roots by investigating the solutions of the equation
x2 = a. Consider the rather simple equation

x2 = 25. (3)

Because (−5)2 = 25 and (5)2 = 25, equation (3) has two solutions, x = −5 or x = 5.
We usually denote these solutions simultaneously, using a “plus or minus” sign:

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/10

This means that the trinomial 2x2 + 7x − 3 cannot be expressed as a product of factors with integral11

(integer) coefficients.
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x = ±5

These solutions are called square roots of 25. Because there are two solutions, we need
a different notation for each. We will denote the positive square root of 25 with the
notation

√
25 and the negative square root of 25 with the notation −

√
25. Thus,

√
25 = 5 and −

√
25 = −5.

In a similar vein, the equation x2 = 36 has two solutions, x = ±
√

36, or alternatively,
x = ±6. The notation

√
36 calls for the positive square root, while the notation −

√
36

calls for the negative square root. That is,
√

36 = 6 and −
√

36 = −6.

It is not necessary that the right-hand side of the equation x2 = a be a “perfect
square.” For example, the equation

x2 = 7 has solutions x = ±
√

7. (4)

There is no rational square root of 7. That is, there is no way to express the square
root of 7 in the form p/q, where p and q are integers. Therefore,

√
7 is an example of

an irrational number. However,
√

7 is a perfectly valid real number and we’re perfectly
comfortable leaving our answer in the form shown in equation (4).

However, if an approximation is needed for the square root of 7, we can reason that
because 7 lies between 4 and 9, the square root of 7 will lie between 2 and 3. Because
7 is closer to 9 than 4, a reasonable approximation might be12

√
7 ≈ 2.6.

A calculator can provide an even better approximation. For example, our TI83 reports
√

7 ≈ 2.645751311.

There are two degenerate cases involving the equation x2 = a that demand our
attention.

1. The equation x2 = 0 has only one solution, namely x = 0. Thus,
√

0 = 0.
2. The equation x2 = −4 has no real solutions.13 It is not possible to square a real

number and get −4. In this situation, we will simply state that “the equation
x2 = −4 has no real solutions (no solutions that are real numbers).”

The symbol ≈ means “approximately equal to.”12

It is incorrect to state that the equation x2 = −4 has “no solutions.” If we introduce the set of complex13

numbers (a set of numbers introduced in college algebra and trigonometry), then the equation x2 = −4
has two solutions, both of which are complex numbers.
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I Example 5. Find all real solutions of the equations x2 = 30, x2 = 0, and x2 =
−14.

The solutions follow.

• The equation x2 = 30 has two real solutions, namely x = ±
√

30.
• The equation x2 = 0 has one real solution, namely x = 0.
• The equation x2 = −14 has no real solutions.

Let’s try additional examples.

I Example 6. Find all real solutions of the equation (x+ 2)2 = 43.

There are two possibilities for x+ 2, namely

x+ 2 = ±
√

43.

To solve for x, subtract 2 from both sides of this last equation.

x = −2±
√

43.

Although this last answer is usually the preferable form of the answer, there are some
times when an approximation is needed. So, our TI83 gives the following approxima-
tions.

−2−
√

43 ≈ −8.557438524 and − 2 +
√

43 ≈ 4.557438524

I Example 7. Find all real solutions of the equation (x− 4)2 = −15.

If x is a real number, then so is x − 4. It’s not possible to square the real number
x− 4 and get −15. Thus, this problem has no real solutions.14

Development of the Quadratic Formula
We now have all the groundwork in place to pursue a solution of the general quadratic
equation

ax2 + bx+ c = 0. (8)

We’re going to use a form of “completing the square” to solve this equation for x. Let’s
begin by subtracting c from both sides of the equation.

ax2 + bx = −c

Again, when you study the complex numbers, you will learn that this equation has two complex solu-14

tions. Hence, it is important that you do not say that “this problem has no solutions,” as that is simply
not true. You must say that “this problem has no real solutions.”
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Next, divide both sides of the equation by a.

x2 + b
a
x = − c

a

Take half of the coefficient of x, as in (1/2)(b/a) = b/(2a). Square this result to get
b2/(4a2). Add this amount to both sides of the equation.

x2 + b
a
x+ b

2

4a2
= − c
a

+ b
2

4a2

On the left we factor the perfect square trinomial. On the right we get a common
denominator and add the resulting equivalent fractions.(

x+ b
2a

)2
= −4ac

4a2
+ b

2

4a2(
x+ b

2a

)2
= b

2 − 4ac
4a2

Provided the right-hand side of this last equation is positive, we have two real solutions.

x+ b
2a

= ±
√
b2 − 4ac

4a2

On the right, we take the square root of the top and the bottom of the fraction.15

x+ b
2a

= ±
√
b2 − 4ac

2a

To complete the solution, we need only subtract b/(2a) from both sides of the equation.

x = − b
2a
±
√
b2 − 4ac

2a
Although this last answer is a perfectly good solution, we customarily rewrite the
solution with a single common denominator.

x = −b±
√
b2 − 4ac

2a
(9)

This last result gives the solution to the general quadratic equation (8). The solu-
tion (9) is called the quadratic formula.

In a later section we will present a more formal approach to the symbolic manipulation of radicals.15

For now, you can compute (2/3)2 with the calculation (2/3)(2/3) = 4/9, or you can simply square
numerator and denominator of the fraction, as in (2/3)2 = (22/32) = 4/9. Conversely, one can take the
square root of a fraction by taking the square root of the numerator divided by the square root of the
denominator, as in

√
4/9 =

√
4/
√

9 = 2/3.
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The Quadratic Formula. The solutions to the quadratic equation

ax2 + bx+ c = 0 (10)

are given by the quadratic formula

x = −b±
√
b2 − 4ac

2a
. (11)

Although the development of the quadratic formula can be intimidating, in practice
its application is quite simple. Let’s look at some examples.

I Example 12. Use the quadratic formula to solve the equation

x2 = 27 − 6x.

The first step is to place the equation in the form ax2 + bx+ c = 0 by moving every
term to one side of the equation,16 arranging the terms in descending powers of x.

x2 + 6x− 27 = 0

Next, compare x2 + 6x − 27 = 0 with the general form of the quadratic equation
ax2 + bx + c = 0 and note that a = 1, b = 6, and c = −27. Copy down the quadratic
formula.

x = −b±
√
b2 − 4ac

2a
Substitute a = 1, b = 6, and c = −27 and simplify.

x =
−(6)±

√
(6)2 − 4(1)(−27)

2(1)

x = −6±
√

36 + 108
2

x = −6±
√

144
2

In this case, 144 is a perfect square. That is,
√

144 = 12, so we can continue to simplify.

x = −6± 12
2

It’s important to note that there are two real answers, namely

x = −6− 12
2

or x = −6 + 12
2
.

Simplifying,

x = −9 or x = 3.

We like to say “Make one side equal to zero.”16
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It’s interesting to note that this problem could have been solved by factoring. In-
deed,

x2 + 6x− 27 = 0
(x− 3)(x+ 9) = 0,

so the zero product property requires that either x − 3 = 0 or x + 9 = 0, which leads
to x = 3 or x = −9, answers identical to those found by the quadratic formula.

We’ll have more to say about the “discriminant” soon, but it’s no coincidence that
the quadratic x2 + 6x− 27 factored. Here is the relevant fact.

When the Discriminant is a Perfect Square. In the quadratic formula,

x = −b±
√
b2 − 4ac

2a
,

the number under the radical, b2 − 4ac, is called the discriminant. When the
discriminant is a perfect square, the quadratic function will always factor.

However, it is not always the case that we can factor the given quadratic. Let’s look
at another example.

I Example 13. Given the quadratic function f(x) = x2− 2x, find all real solutions
of f(x) = 2.

Because f(x) = x2 − 2x, the equation f(x) = 2 becomes

x2 − 2x = 2.

Set one side of the equation equal to zero by subtracting 2 from both sides of the
equation.17

x2 − 2x− 2 = 0

Compare x2 − 2x − 2 = 0 with the general quadratic equation ax2 + bx + c = 0 and
note that a = 1, b = −2 and c = −2. Write down the quadratic formula.

x = −b±
√
b2 − 4ac

2a

Next, substitute a = 1, b = −2, and c = −2. Note the careful use of parentheses.18

x =
−(−2)±

√
(−2)2 − 4(1)(−2)
2(1)

Note that the quadratic expression on the left-hand side of the resulting equation does not factor over17

the integers. There are no integer pairs whose product is −2 that sum to −2.
For example, without parentheses, −22 = −4, whereas with parentheses (−2)2 = 4.18
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Simplify.

x = 2±
√

4 + 8
2

x = 2±
√

12
2

In this case, 12 is not a perfect square, so we’ve simplified as much as is possible at
this time.19 However, we can approximate these solutions with the aid of a calculator.

x = 2−
√

12
2

≈ −0.7320508076 and x = 2 +
√

12
2

≈ 2.732050808. (14)

We will find these approximations useful in what follows.

The equations in Examples 12 and 13 represent a fundamental shift in our usual
technique for solving equations. In the past, we’ve tried to “isolate” the terms con-
taining x (or whatever unknown we are solving for) on one side of the equation, and
all other terms on the other side of the equation. Now, in Examples 12 and 13, we
find ourselves moving everything to one side of the equation, making one side of the
equation equal to zero. This bears some explanation.

Linear or Nonlinear. Let’s assume that the unknown we are solving for is x.

• If the highest power of x present in the equation is x to the first power, then
the equation is linear. Thus, for example, each of the equations

2x+ 3 = 7, 3− 4x = 5x+ 9, and ax+ b = cx+ d

is linear.
• If there are powers of x higher than x to the first power in the equation, then

the equation is nonlinear. Thus, for example, each of the equations

x2 − 4x = 9, x3 = 2x+ 3, and ax2 + bx = cx+ d

is nonlinear.

The strategy for solving an equation will shift, depending on whether the equation
is linear or nonlinear.

In a later chapter on irrational functions, we will take up the topic of simplifying radical expressions.19

Until then, this form of the final answer will have to suffice.
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Solution Strategy—Linear Versus Nonlinear. When solving equations, you
must first ask if the equation is linear or nonlinear. Again, let’s assume the un-
known we wish to solve for is x.

• If the equation is linear, move all terms containing x to one side of the equation,
all the remaining terms to the other side of the equation.

• If the equation is nonlinear, move all terms to one side of the equation, making
the other side of the equation zero.

Thus, because ax + b = cx + d is linear in x, the first step in solving the equation
would be to move all terms containing x to one side of the equation, all other terms to
the other side of the equation, as in

ax− cx = d− b.

On the other hand, the equation ax2 + bx = cx + d is nonlinear in x, so the first step
would be to move all terms to one side of the equation, making the other side of the
equation equal to zero, as in

ax2 + bx− cx− d = 0.

In Example 13, the equation x2−2x = 2 is nonlinear in x, so we moved everything
to the left-hand side of the equation, making the right-hand side of the equation equal
to zero, as in x2−2x−2 = 0. However, it doesn’t matter which side you make equal to
zero. Suppose instead that you move every term to the right-hand side of the equation,
as in

0 = −x2 + 2x+ 2.

Comparing 0 = −x2 + 2x + 2 with general quadratic equation 0 = ax2 + bx + c, note
that a = −1, b = 2, and c = 2. Write down the quadratic formula.

x = −b±
√
b2 − 4ac

2a
Next, substitute a = −1, b = 2, and c = 2. Again, note the careful use of parentheses.

x =
−(2)±

√
(2)2 − 4(−1)(2)
2(−1)

This leads to two solutions,

x = −2±
√

4 + 8
−2

= −2±
√

12
−2

.

In Example 13, we found the following solutions and their approximations.

x = 2−
√

12
2

≈ −0.7320508076 and x = 2 +
√

12
2

≈ 2.732050808.
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It is a fair question to ask if our solutions x = (−2 ±
√

12)/(−2) are the same. One
way to find out is to find decimal approximations of each on our calculator.

x = −2−
√

12
−2

≈ 2.732050808 and x = −2 +
√

12
−2

≈ −0.7320508076.

The fact that we get the same decimal approximations should spark confidence that
we have the same solutions. However, we can also manipulate the exact forms of our
solutions to show that they match the previous forms found in Example 13.

Take the two solutions and multiply both numerator and denominator by minus
one.

−2−
√

12
−2

= 2 +
√

12
2

and −2 +
√

12
−2

= 2−
√

12
2

This shows that our solutions are identical to those found in Example 13.
We can do the same negation of numerator and denominator in compact form.

−2±
√

12
−2

= 2∓
√

12
2

Note that this leads to the same two answers, (2−
√

12)/2 and (2 +
√

12)/2.
Of the two methods (move all the terms to the left or all the terms to the right), we

prefer the approach of Example 13. By moving the terms to the left-hand side of the
equation, as in x2 − 2x − 2 = 0, the coefficient of x2 is positive (a = 1) and we avoid
the minus sign in the denominator produced by the quadratic formula.

Intercepts
In Example 13, we used the quadratic formula to find the solutions of x2 − 2x− 2 =
0. These solutions, and their approximations, are shown in equation (14). It is
important to make the connection that the solutions in equation (14) are the zeros
of the quadratic function g(x) = x2 − 2x− 2. The zeros also provide the x-coordinates
of the x-intercepts of the graph of g (a parabola). To emphasize this point, let’s draw
the graph of the parabola having the equation g(x) = x2 − 2x− 2.

First, complete the square to place the quadratic function in vertex form. Take half
the middle coefficient and square, as in [(1/2)(−2)]2 = 1; then add and subtract this
term so the equation remains balanced.

g(x) = x2 − 2x− 2
g(x) = x2 − 2x+ 1− 1− 2

Factor the perfect square trinomial, then combine the constants at the end.

g(x) = (x− 1)2 − 3

This is a parabola that opens upward. It is shifted to the right 1 unit and down 3 units.
This makes it easy to identify the vertex and draw the axis of symmetry, as shown in
Figure 1(a).
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It will now be apparent why we used our calculator to approximate the solutions
in (14). These are the x-coordinates of the x-intercepts. One x-intercept is located at
approximately (−0.73, 0), the other at approximately (2.73, 0). These approximations
are used to plot the location of the intercepts as shown in Figure 1(b). However, the
actual values of the intercepts are ((2−

√
12)/2, 0) and ((2+

√
12)/2, 0), and these exact

values should be used to annotate the intercepts, as shown in Figure 1(b).
Finally, to find the y-intercept, let x = 0 in g(x) = x2 − 2x − 2. Thus, g(0) = −2

and the y-intercept is (0,−2). The y-intercept and its mirror image across the axis of
symmetry are both plotted in Figure 1(c), where the final graph of the parabola is
also shown.

x

y

x = 1

(1,−3)

x

y

x = 1

(
2−
√

12
2 , 0

) (
2+
√

12
2 , 0

)
(1,−3)

x

y

x = 1

(
2−
√

12
2 , 0

) (
2+
√

12
2 , 0

)
(1,−3)

(0,−2)

(a) Plotting the vertex
and axis of symmetry.

(b) Adding the x-intercepts
provides added accuracy.

(c) Adding the
y-intercept and its

mirror image provides
an excellent final graph.

Figure 1.

We’ve made an important point and we pause to provide emphasis.

Zeros and Intercepts. Whenever you use the quadratic formula to solve the
quadratic equation

ax2 + bx+ c = 0,

the solutions

x = −b±
√
b2 − 4ac

2a
are the zeros of the quadratic function

f(x) = ax2 + bx+ c.

The solutions also provide the x-coordinates of the x-intercepts of the graph of f .

We need to discuss one final concept.
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The Discriminant
Consider again the quadratic equation ax2 + bx + c = 0 and the solutions (zeros)
provided by the quadratic formula

x = −b±
√
b2 − 4ac

2a
.

The expression under the radical, b2− 4ac, is called the discriminant, which we denote
by the letter D. That is, the formula for the discriminant is given by

D = b2 − 4ac.

The discriminant is used to determine the nature and number of solutions to the qua-
dratic equation ax2+bx+c = 0. This is done without actually calculating the solutions.

Let’s look at three key examples.

I Example 15. Consider the quadratic equation

x2 − 4x− 4 = 0.

Calculate the discriminant and use it to determine the nature and number of the
solutions.

Compare x2 − 4x− 4 = 0 with ax2 + bx+ c = 0 and note that a = 1, b = −4, and
c = −4. The discriminant is given by the calculation

D = b2 − 4ac = (−4)2 − 4(1)(−4) = 32.

Note that the discriminant D is positive; i.e., D > 0.
Consider the quadratic function f(x) = x2− 4x− 4, which can be written in vertex

form

f(x) = (x− 2)2 − 8.

This is a parabola that opens upward. It is shifted to the right 2 units, then downward
8 units. Therefore, it will cross the x-axis in two locations. Hence, one would expect
that the quadratic formula would provide two real solutions (x-intercepts). Indeed,

x =
−(−4)±

√
(−4)2 − 4(1)(−4)
2(1)

= 4±
√

32
2
.

Note that the discriminant, D = 32 as calculated above, is the number under the square
root. These solutions have approximations

x = 4−
√

32
2

≈ −0.8284271247 and x = 4 +
√

32
2

≈ 4.828427125,

which aid in plotting an accurate graph of f(x) = (x− 2)2 − 8, as shown in Figure 2.
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x

y

(
4−
√

32
2 , 0

) (
4+
√

32
2 , 0

)

(2,−8)

Figure 2. If the discriminant is posi-
tive, there are two real x-intercepts.

Thus, if the discriminant is positive, the parabola will have two real x-intercepts.

Next, let’s look at an example where the discriminant equals zero.

I Example 16. Consider again the quadratic equation ax2 + bx + c = 0 and the
solutions (zeros) provided by the quadratic formula

x = −b±
√
b2 − 4ac

2a
.

The expression under the radical, b2− 4ac, is called the discriminant, which we denote
by the letter D. That is, the formula for the discriminant is given by

D = b2 − 4ac.

The discriminant is used to determine the nature and number of solutions to the qua-
dratic equation ax2+bx+c = 0. This is done without actually calculating the solutions.
Consider the quadratic equation

x2 − 4x+ 4 = 0.

Calculate the discriminant and use it to determine the nature and number of the
solutions.

Compare x2 − 4x+ 4 = 0 with ax2 + bx+ c = 0 and note that a = 1, b = −4, and
c = 4. The discriminant is given by the calculation

D = b2 − 4ac = (−4)2 − 4(1)(4) = 0.

Note that the discriminant equals zero.
Consider the quadratic function f(x) = x2− 4x+ 4, which can be written in vertex

form
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f(x) = (x− 2)2. (17)

This is a parabola that opens upward and is shifted 2 units to the right. Note that
there is no vertical shift, so the vertex of the parabola will rest on the x-axis, as shown
in Figure 3. In this case, we found it necessary to plot two points to the right of the
axis of symmetry, then mirror them across the axis of symmetry, in order to get an
accurate plot of the parabola.

x10

y
10

x = 2

(2, 0)

x f(x) = (x − 2)2

3 1
4 4

Figure 3. At the right is a table of points satisfying f(x) = (x−2)2. These
points and their mirror images are seen as solid dots superimposed on the
graph of f(x) = (x− 2)2 at the left.

Take a closer look at equation (17). If we set f(x) = 0 in this equation, then we
get 0 = (x − 2)2. This could be written 0 = (x − 2)(x − 2) and we could say that the
solutions are 2 and 2 again. However, mathematicians prefer to say that “2 is a solution
of multiplicity 2” or “2 is a double solution.”20 Note how the parabola is tangent to
the x-axis at the location of the “double solution.” That is, the parabola comes down
from positive infinity, touches (but does not cross) the x-axis at x = 2, then rises again
to positive infinity. Of course, the situation would be reversed in the parabola opened
downward, as in g(x) = −(x − 2)2, but the graph would still “kiss” the x-axis at the
location of the “double solution.”

Still, the key thing to note here is the fact that the discriminant D = 0 and the
parabola has only one x-intercept. That is, the equation x2 − 4x + 4 = 0 has a single
real solution.

Next, let’s look what happens when the discriminant is negative.

I Example 18. Consider the quadratic equation

x2 − 4x+ 8 = 0.

Actually, mathematicians call these “double roots,” but we prefer to postpone that language until the20

chapter on polynomial functions.
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Calculate the discriminant and use it to determine the nature and number of the
solutions.

Compare x2 − 4x+ 8 = 0 with ax2 + bx+ c = 0 and note that a = 1, b = −4, and
c = 8. The discriminant is given by the calculation

D = b2 − 4ac = (−4)2 − 4(1)(8) = −16.

Note that the discriminant is negative.
Consider the quadratic function f(x) = x2− 4x+ 8, which can be written in vertex

form

f(x) = (x− 2)2 + 4.

This is a parabola that opens upward. Moreover, it has to be shifted 2 units to the right
and 4 units upward, so there can be no x-intercepts, as shown in Figure 4. Again,
we found it necessary in this example to plot two points to the right of the axis of
symmetry, then mirror them, in order to get an accurate plot of the parabola.

x10

y
10

x = 2

(2, 4) x f(x) = (x−2)2+4
3 5
4 8

Figure 4. At the right is a table of points satisfying f(x) = (x − 2)2 + 4.
These points and their mirror images are seen as solid dots superimposed on
the graph of f(x) = (x− 2)2 + 4 at the left.

Once again, the key point in this example is the fact that the discriminant is negative
and there are no real solutions of the quadratic equation (equivalently, there are no
x-intercepts). Let’s see what happens if we actually try to find the solutions of x2 −
4x+ 8 = 0 using the quadratic formula. Again, a = 1, b = −4, and c = 8, so

x = −b±
√
b2 − 4ac

2a
=
−(−4)±

√
(−4)2 − 4(1)(8)
2(1)

.

Simplifying,

x = 4±
√
−16

2
.
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Again, remember that the number under the square root is the discriminant. In this
case the disriminant is −16. It is not possible to square a real number and get −16.
Thus, the quadratic equation x2 − 4x+ 8 = 0 has no real solutions, as predicted.

Let’s summarize the findings in our last three examples.

Summary 19. Consider the quadratic equation

ax2 + bx+ c = 0.

The discriminant is defined as

D = b2 − 4ac.

There are three possibilities:

1. If D > 0, then the quadratic equation has two real solutions.
2. If D = 0, then the quadratic equation has one real solution.
3. If D < 0, then the quadratic equation has no real solutions.

This key result is reflected in the graph of the quadratic function.

Summary 20. Consider the quadratic function

f(x) = ax2 + bx+ c.

The graph of this function is a parabola. Three possibilities exist depending upon
the value of the discriminant D = b2 − 4ac.

1. If D > 0, the parabola has two x-intercepts.
2. If D = 0, the parabola has exactly one x-intercept.
3. If D < 0, the parabola has no x-intercepts.
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5.4 Exercises

In Exercises 1-8, find all real solutions
of the given equation. Use a calculator to
approximate the answers, correct to the
nearest hundredth (two decimal places).

1. x2 = 36

2. x2 = 81

3. x2 = 17

4. x2 = 13

5. x2 = 0

6. x2 = −18

7. x2 = −12

8. x2 = 3

In Exercises 9-16, find all real solutions
of the given equation. Use a calculator to
approximate your answers to the nearest
hundredth.

9. (x− 1)2 = 25

10. (x+ 3)2 = 9

11. (x+ 2)2 = 0

12. (x− 3)2 = −9

13. (x+ 6)2 = −81

14. (x+ 7)2 = 10

15. (x− 8)2 = 15

16. (x+ 10)2 = 37

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/21

In Exercises 17-28, perform each of the
following tasks for the given quadratic
function.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Remember to draw all lines with
a ruler.

ii. Place the quadratic function in ver-
tex form. Plot the vertex on your co-
ordinate system and label it with its
coordinates. Draw the axis of sym-
metry on your coordinate system and
label it with its equation.

iii. Use the quadratic formula to find the
x-intercepts of the parabola. Use a
calculator to approximate each inter-
cept, correct to the nearest tenth, and
use these approximations to plot the
x-intercepts on your coordinate sys-
tem. However, label each x-intercept
with its exact coordinates.

iv. Plot the y-intercept on your coordi-
nate system and its mirror image across
the axis of symmetry and label each
with their coordinates.

v. Using all of the information on your
coordinate system, draw the graph of
the parabola, then label it with the
vertex form of the function. Use in-
terval notation to state the domain
and range of the quadratic function.

17. f(x) = x2 − 4x− 8

18. f(x) = x2 + 6x− 1

19. f(x) = x2 + 6x− 3

20. f(x) = x2 − 8x+ 1

21. f(x) = −x2 + 2x+ 10
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22. f(x) = −x2 − 8x− 8

23. f(x) = −x2 − 8x− 9

24. f(x) = −x2 + 10x− 20

25. f(x) = 2x2 − 20x+ 40

26. f(x) = 2x2 − 16x+ 12

27. f(x) = −2x2 + 16x+ 8

28. f(x) = −2x2 − 24x− 52

In Exercises 29-32, perform each of the
following tasks for the given quadratic
equation.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Remember to draw all lines with
a ruler.

ii. Show that the discriminant is nega-
tive.

iii. Use the technique of completing the
square to put the quadratic function
in vertex form. Plot the vertex on
your coordinate system and label it
with its coordinates. Draw the axis of
symmetry on your coordinate system
and label it with its equation.

iv. Plot the y-intercept and its mirror
image across the axis of symmetry
on your coordinate system and label
each with their coordinates.

v. Because the discriminant is negative
(did you remember to show that?),
there are no x-intercepts. Use the
given equation to calculate one addi-
tional point, then plot the point and
its mirror image across the axis of
symmetry and label each with their
coordinates.

vi. Using all of the information on your
coordinate system, draw the graph of
the parabola, then label it with the

vertex form of function. Use interval
notation to describe the domain and
range of the quadratic function.

29. f(x) = x2 + 4x+ 8

30. f(x) = x2 − 4x+ 9

31. f(x) = −x2 + 6x− 11

32. f(x) = −x2 − 8x− 20

In Exercises 33-36, perform each of the
following tasks for the given quadratic
function.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Remember to draw all lines with
a ruler.

ii. Use the discriminant to help deter-
mine the value of k so that the graph
of the given quadratic function has
exactly one x-intercept.

iii. Substitute this value of k back into
the given quadratic function, then use
the technique of completing the square
to put the quadratic function in ver-
tex form. Plot the vertex on your co-
ordinate system and label it with its
coordinates. Draw the axis of sym-
metry on your coordinate system and
label it with its equation.

iv. Plot the y-intercept and its mirror
image across the axis of symmetry
and label each with their coordinates.

v. Use the equation to calculate an addi-
tional point on either side of the axis
of symmetry, then plot this point and
its mirror image across the axis of
symmetry and label each with their
coordinates.

vi. Using all of the information on your
coordinate system, draw the graph
of the parabola, then label it with
the vertex form of the function. Use
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interval notation to describe the do-
main and range of the quadratic func-
tion.

33. f(x) = x2 − 4x+ 4k

34. f(x) = x2 + 6x+ 3k

35. f(x) = kx2 − 16x− 32

36. f(x) = kx2 − 24x+ 48

37. Find all values of k so that the graph
of the quadratic function f(x) = kx2 −
3x+ 5 has exactly two x-intercepts.

38. Find all values of k so that the graph
of the quadratic function f(x) = 2x2 +
7x− 4k has exactly two x-intercepts.

39. Find all values of k so that the graph
of the quadratic function f(x) = 2x2 −
x+ 5k has no x-intercepts.

40. Find all values of k so that the graph
of the quadratic function f(x) = kx2 −
2x− 4 has no x-intercepts.

In Exercises 41-50, find all real solu-
tions, if any, of the equation f(x) = b.

41. f(x) = 63x2 + 74x− 1; b = 8

42. f(x) = 64x2 + 128x+ 64; b = 0

43. f(x) = x2 − x− 5; b = 2

44. f(x) = 5x2 − 5x; b = 3

45. f(x) = 4x2 + 4x− 1; b = −2

46. f(x) = 2x2 − 9x− 3; b = −1

47. f(x) = 2x2 + 4x+ 6; b = 0

48. f(x) = 24x2 − 54x+ 27; b = 0

49. f(x) = −3x2 + 2x− 13; b = −5

50. f(x) = x2 − 5x− 7; b = 0

In Exercises 51-60, find all real solu-
tions, if any, of the quadratic equation.

51. −2x2 + 7 = −3x

52. −x2 = −9x+ 7

53. x2 − 2 = −3x

54. 81x2 = −162x− 81

55. 9x2 + 81 = −54x

56. −30x2 − 28 = −62x

57. −x2 + 6 = 7x

58. −8x2 = 4x+ 2

59. 4x2 + 3 = −x

60. 27x2 = −66x+ 16

In Exercises 61-66, find all of the x-
intercepts, if any, of the given function.

61. f(x) = −4x2 − 4x− 5

62. f(x) = 49x2 − 28x+ 4

63. f(x) = −56x2 + 47x+ 18

64. f(x) = 24x2 + 34x+ 12

65. f(x) = 36x2 + 96x+ 64

66. f(x) = 5x2 + 2x+ 3

In Exercises 67-74, determine the num-
ber of real solutions of the equation.

67. 9x2 + 6x+ 1 = 0
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68. 7x2 − 12x+ 7 = 0

69. −6x2 + 4x− 7 = 0

70. −8x2 + 11x− 4 = 0

71. −5x2 − 10x− 5 = 0

72. 6x2 + 11x+ 2 = 0

73. −7x2 − 4x+ 5 = 0

74. 6x2 + 10x+ 4 = 0
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5.4 Answers

1. x = ±6

3. x = ±
√

17 = ±4.12

5. x = 0

7. No real solutions.

9. x = −4 or x = 6

11. x = −2

13. No real solutions.

15. x = 8±
√

15 ≈ 4.13, 11.87

17. Domain = (−∞,∞),
Range = [−12,∞)

x
10

y
20

f(x)=(x−2)2−12

x=2

(2,−12)(2,−12)

((4−
√

48)/2,0)((4−
√

48)/2,0) ((4+
√

48)/2,0)((4+
√

48)/2,0)

(0,−8)(0,−8) (4,−8)(4,−8)

19. Domain = (−∞,∞),
Range = [−12,∞)

x
10

y
20 f(x)=(x+3)2−12

x=−3

(−3,−12)(−3,−12)

((−6−
√

48)/2,0)((−6−
√

48)/2,0) ((−6+
√

48)/2,0)((−6+
√

48)/2,0)

(0,−3)(0,−3)(−6,−3)(−6,−3)

21. Domain = (−∞,∞),
Range = (−∞, 11]

x
10

y
20

f(x)=−(x−1)2+11

x=1
(1,11)(1,11)

((−2+
√

44)/(−2),0)((−2+
√

44)/(−2),0) ((−2−
√

44)/(−2),0)((−2−
√

44)/(−2),0)

(0,10)(0,10) (2,10)(2,10)
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23. Domain = (−∞,∞),
Range = (−∞, 7]

x
10

y
20

f(x)=−(x+4)2+7

x=−4

(−4,7)(−4,7)

((8+
√

28)/(−2),0)((8+
√

28)/(−2),0) ((8−
√

28)/(−2),0)((8−
√

28)/(−2),0)

(0,−9)(0,−9)(−8,−9)(−8,−9)

25. Domain = (−∞,∞),
Range = [−10,∞)

x
20

y
50

f(x)=2(x−5)2−10

x=5

(5,−10)(5,−10)

((20−
√

80)/4,0)((20−
√

80)/4,0) ((20+
√

80)/4,0)((20+
√

80)/4,0)

(0,40)(0,40) (10,40)(10,40)

27. Domain = (−∞,∞),
Range = (−∞, 40]

x
20

y
50

f(x)=−2(x−4)2+40

x=4

(4,40)(4,40)

((−16+
√

320)/(−4),0)((−16+
√

320)/(−4),0) ((−16−
√

320)/(−4),0)((−16−
√

320)/(−4),0)
(0,8)(0,8) (8,8)(8,8)

29. Domain = (−∞,∞),
Range = [4,∞)

x
10

y
20 f(x)=(x+2)2+4

x=−2

(−2,4)(−2,4)

(0,8)(0,8)(−4,8)(−4,8)
(−3,5)(−3,5) (−1,5)(−1,5)
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31. Domain = (−∞,∞),
Range = (−∞,−2]

x
10

y
20

f(x)=−(x−3)2−2

x=3

(3,−2)(3,−2)

(0,−11)(0,−11) (6,−11)(6,−11)

(2,−3)(2,−3) (4,−3)(4,−3)

33. k = 1, Domain = (−∞,∞),
Range = [0,∞)

x
10

y
20

f(x)=(x−2)2

x=2

(2,0)(2,0)

(0,4)(0,4) (4,4)(4,4)

(−2,16)(−2,16) (6,16)(6,16)

35. k = −2, Domain = (−∞,∞),
Range = (−∞, 0]

x
10

y
50

f(x)=−2(x+4)2

x=−4

(−4,0)(−4,0)

(0,−32)(0,−32)(−8,−32)(−8,−32)

(−6,−8)(−6,−8) (−2,−8)(−2,−8)

37. {k : k < 9/20}

39. {k : k > 1/40}

41. −9
7 , 1

9

43. 1+
√

29
2 , 1−

√
29

2

45. −1
2

47. no real solutions

49. no real solutions

51. 3−
√

65
4 , 3+

√
65

4

53. −3−
√

17
2 , −3+

√
17

2

55. −3

57. −7+
√

73
2 , −7−

√
73

2

59. no real solutions

61. no x-intercepts

63. (9
8 , 0), (−2

7 , 0)

65. (−4
3 , 0)
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67. 1

69. 0

71. 1

73. 2
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5.5 Motion
If a particle moves with uniform or constant acceleration, then it must behave according
to certain standard laws of kinematics. In this section we will develop these laws of
motion and apply them to a number of interesting applications.

Uniform Speed
If an object travels with uniform (constant) speed v, then the distance d traveled in
time t is given by the formula

d = vt, (1)

or in words, “distance equals speed times time.” This concept is probably familiar to
those of us who drive our cars on the highway. For example, if I drive my car at a
constant speed of 50 miles per hour, in 3 hours I will travel 150 miles. That is,

150 mi = 50 mi
h
× 3 h

Note that this computation has the form “distance equals speed times time.” It is
important to note how the units balance on each side of this result. This is easily seen
by canceling units much as you would cancel numbers with ordinary fractions.

150 mi = 50 mi
h
× 3 h

In Figure 1(a) we’ve plotted the speed v of the car versus time t. Because the
speed is uniform (constant), the graph is a horizontal ray, starting at time t = 0 and
moving to the right. In Figure 1(b), we’ve shaded the area under the constant speed
ray over the time interval [0, 3] hours. Note that the area of the shaded rectangular
region has height equal to 50 miles per hour (50 mi/h) and width equal to 3 hours (3 h),
so the area of this rectangle is

Area = height× width = 50 mi
h
× 3 h = 150 mi.

Note the units on the answer. The area under the constant speed ray is 150 miles.
That is, the area under the speed curve is the distance traveled!

Our work has led us to the following result.

Uniform Speed. Suppose that an object travels with uniform (constant) speed
v.

• The distance traveled d is given by the formula d = vt, where t is the time of
travel.

• The graph of speed v versus time t will be a horizontal ray, starting at time
t = 0 and moving to the right.

• The area of the rectangular region under the graph of v over the time interval
[0, t] gives the distance traveled during that time period.
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t (h)

v (mi/h)

v=50

0 1 2 3
0

10

20

30

40

50

t (h)

v (mi/h)

v=50

0 1 2 3
0

10

20

30

40

50

50 mi/h

3 h

Area=150 mi

(a) Constant speed is
represented by a horizontal ray.

(b) The area under the speed
curve is the distance traveled.

Figure 1.

Let’s look at another example.

I Example 2. An object is traveling with uniform speed v. The graph of v versus
t is shown in the graph that follows.

t (s)

v (ft/s)

0 10 20
0

100 v

Figure 2. The graph of the speed of the object ver-
sus time.

What is the speed of the object at any time t? How far will the object travel in 20
seconds?

We read the speed from the graph. Note that the ray representing the speed is
level (constant) at 100 feet per second (100 ft/s). Therefore, the speed at any time t is
v = 100. In function notation, we would write v(t) = 100, being mindful that the units
are feet per second (ft/s).



Section 5.5 Motion 507

Version: Fall 2007

To find the distance traveled in 20 seconds, we have two choices:

1. If we use the formula d = vt, then

d = vt

d = 100 ft
s
× 20 s

d = 2000 ft

That is, the object travels 2000 feet in the 20 seconds.

2. We can also find the distance traveled by shading the area under the uniform speed
curve over the 20 second time interval.

2000 ft

t (s)

v (ft/s)

0 10 20
0

100 v

Figure 3. The area under the uniform speed curve
represents the distance traveled.

Note that the height of the shaded rectangular region in Figure 3 is 100 feet per
second (100 ft/s) and the width is 20 seconds (20 s). Hence, the area of the shaded
rectangular region is

Area = 100 ft
s
× 20 s = 2000 ft,

which is identical to the result found with the formula d = vt.

Uniform Acceleration
Let’s get back in the car again and drive down the highway at a steady (constant) speed
of v = 30 miles per hour. We decide to overtake a truck in front of us, so we step on
the accelerator of the car, which increases the speed of the car, allowing us to pass the
truck.

Definition 3. Acceleration is the rate at which an object’s speed is changing
with respect to time.
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For example, suppose that when we step on the accelerator of the car, the speed of
the car changes at a constant 20 miles per hour per hour. We would then say that the
acceleration is uniform (constant) and would write

Acceleration = 20 mi/h
h
,

or, more succinctly, as

Acceleration = 20 mi
h2 .

The latter notation is preferred by scientists, but the notation a = 20 (mi/h)/h is much
easier to understand. That is, the speed is increasing at a constant rate of 20 miles per
hour every hour.

• At the moment we step on the accelerator to pass the truck, the initial speed of the
car is v = 30 miles per hour. If we maintain a constant acceleration of 20 miles per
hour per hour, after 1 hour, the speed increases by 20 miles per hour, so the speed
of the car at the end of 1 hour is

v = 30 + 20(1),

or v = 50 miles per hour.
• At the end of two hours, the speed of the car is

v = 30 + 20(2),

or v = 70 miles per hour.
• At the end of three hours, the speed of the car is

v = 30 + 20(3),

or v = 90 miles per hour.

Continuing in this manner, it’s easy to see that the speed of the car at the end of t
hours will be given by the formula

v = 30 + 20t.

It’s important to note that we are making an assumption that we keep our foot on
that accelerator to maintain a uniform (constant) acceleration of 20 miles per hour per
hour. Granted, this is a pretty silly example with very low acceleration (is that Fred
Flintstone’s car?), but it does allow us to concentrate on the concept without having
to deal with messy units.

If we follow the argument above, it’s not hard to develop the first equation of motion.

First Equation of Motion. If an object having initial speed v0 experiences a
constant acceleration a, then its speed at time t is given by the formula

v = v0 + at.
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We follow the scientific practice of denoting the initial speed by v0, the speed at
time t = 0. That’s why we subscript v with zero.

Of course, the first equation of motion is valid only if each quantity possesses the
proper units.

I Example 4. Suppose that a particle has an initial speed of 20 feet per second
(20 ft/s) and is given a constant acceleration of 4 feet per second per second (4 ft/s2).
What will be the speed of the particle after 3 minutes (3 min)?

It is tempting to start with the formula

v = v0 + at

and substitute v0 = 20 ft/s, a = 4 ft/s2, and t = 3 min.

v = 20 ft
s

+ 4 ft
s2 × 3 min

However, note that the units will not cancel because the time is measured in minutes.
What we need to do is change the time to seconds with the conversion22

t = 3 min× 60 s
min

= 180 s.

Now the units should be correct. We substitute the time in seconds into the formula
v = v0 + at and obtain

v = 20 ft
s

+ 4 ft/s
s
× 180 s

= 20 ft
s

+ 720 ft
s

= 740 ft
s

Hence, the speed of the particle at three minutes is v = 740 ft/s.

Let’s look at another example.

I Example 5. A ball is thrown into the air with an initial velocity of 180 feet per
second (180 ft/s). It immediately begins to decelerate at a constant rate of 32 feet per
second per second (32 ft/s2). At what time will the ball reach its maximum height?

When the ball reaches its maximum height, its velocity will equal zero. That is,
at the exact moment when the ball is at its maximum height, it will stop before it
returns to the ground. Thus, to find the time when the ball is at its maximum height,
substitute v = 0 in the formula v = v0 + at and solve for t.

There are 60 seconds in 1 minute.22
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0 = v0 + at
at = −v0
t = −v0

a

(6)

When we say that the ball decelerates at a constant rate of 32 ft/s every second, we
are implying that the ball loses speed at a rate of 32 ft/s every second. Thus, the
acceleration is negative in this case and we write a = −32 ft/s2.

Finally, we need only substitute the initial speed (v0 = 180 ft/s) and the acceleration
(a = −32 ft/s2) into equation (6) and simplify.

t = − 180 ft/s
−32 ft/s2

An analysis of the units is a good check that we are doing things correctly. Note that
ft/s
ft/s2 = ft

s
× s2

ft
= s

Thus, the time for the ball to reach its maximum height is

t = 5 s.

Area is Distance Traveled
If we plot the graph of the speed v versus the time t, note that the equation v = v0 +at
has the form y = mx+b, particularly if we arrange the equation in the order v = at+v0.
It is then easily seen that the graph will be a line with intercept equaling the initial
velocity v0 and slope equaling the acceleration a. The graph of v = v0 + at is shown in
Figure 4(a).

In Figure 4(b), we’ve shaded the area under the graph of v = v0 + at over the
time interval [0, t]. There is a natural question to ask. Will the area under the graph
of v = v0 + at in Figure 4(b) represent the distance traveled during the time interval
[0, t]?

t

v v=v0+at

0 t
0

(0,v0)

(t,v)

t

v v=v0+at

0 t
0

(0,v0)

(t,v)

(a) (b)
Figure 4. The graph of v = v0 + at is a line with intercept v0 and slope a.
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We know the area under a uniform (constant) speed ray will equal the distance
traveled. Can we use this fact to answer our question on the shaded triangular region
in Figure 4(b)?

Let’s take the time interval [0, t] in Figure 4(b) and divide it up into 4 equal
subintervals of time, as shown in Figure 5(a).

t

v v=v0+at

0 t
0

(0,v0)

(t,v)

t

v v=v0+at

0 t
0

(0,v0)

(t,v)

(a) (b)
Figure 5. Subdividing the area into rectangles.

Next, use the left endpoint of each subinterval of time to draw four rectangles and
fill them with the color white, as shown in Figure 5(b). The top of each rectangle is
horizontal, so we know that this represents uniform (constant) speed. Therefore, the
area of each white rectangle represents the distance traveled during that subinterval of
time. If we sum the areas of all four rectangles, then we get the total distance traveled
during the time span [0, t], with, of course, the assumption that the speed is constant
during each of the subintervals of time.

However, the speed is not constant during each subinterval of time, so the sum of
the areas of the rectangles only approximates the total distance traveled on the time
interval [0, t].

The key idea is to draw more rectangles. In Figure 6(a), we’ve divided the time
interval [0, t] into 8 equal subintervals of time. In Figure 6(b), we again use the left
endpoints of each subinterval of time to draw rectangles and we fill them with the color
white.

Again, the top of each white rectangle is horizontal, which represents a uniform
(constant) speed on that subinterval of time. Therefore, the area of each white rectangle
again represents the distance traveled during that subinterval of time. The sum of all
8 rectangles represents the distance traveled during the time interval [0, t], assuming
that the speed is constant during each of the subintervals of time.

However, the speed is not constant on the time interval [0, t], so the sum of the
eight rectangles only offers an approximation of the distance traveled during the time
interval [0, t], albeit a better approximation than that offered by the sum of the areas
of only four rectangles in Figure 5(b).

As we subdivide the time interval [0, t] further, two things will happen.
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t

v v=v0+at

0 t
0

(0,v0)

(t,v)

t

v v=v0+at

0 t
0

(0,v0)

(t,v)

(a) (b)
Figure 6. Subdividing the area into rectangles.

1. The subintervals of time will become smaller (in fact, infinitesimally small). When
that happens, it becomes more and more reasonable to assume that the speed is
constant during that subinterval of time. Therefore, in the limit, the sum of the
areas of the rectangles will represent the total distance traveled over the time interval
[0, t].

2. The sum of the areas of the rectangles converges to the area of the shaded region
under the speed curve in Figure 4(a).

This argument leads to one compelling conclusion.

Area Equals Distance Traveled. The area under the speed curve v = v0 + at
over the time interval [0, t] represents the distance traveled during the time interval
[0, t].

In Figure 7, the shaded region under v = v0 +at is a trapezoid. To find the area of
this trapezoid, we add the bases (parallel sides) together, multiply by the height, then
take half of the result.

t

v v=v0+at

t

v0

v0+at

Figure 7. The area of the shaded trape-
zoidal region represents the distance trav-
eled.



Section 5.5 Motion 513

Version: Fall 2007

Thus, the area of the shaded region in Figure 7 is given by the formula

Area = 1
2
[
v0 + (v0 + at)

]
t.

Sum the quantity inside the parentheses, then distribute the 1/2 and the t to obtain

Area = v0 t+
1
2
at2. (7)

Motion in One Dimension
Suppose that a particle is constrained to move along the real line. In addition, suppose
that at time t = 0, the initial position of the particle is at x0 and the particle has initial
speed v0 and is moving to the right (as shown in Figure 8). Let’s assume that the
particle experiences uniform acceleration a that is positive so that the particle continues
to move to the right with increasing speed. At time t, let the particle’s position be
denoted by x and its speed by v (also shown in Figure 8).

0

x0,v0

t

x,v

Figure 8. A particle moves on the line with uni-
form acceleration.

Because we’ve assumed that the particle moves to the right with increasing speed,
the distance traveled by the particle is given by the expression x− x0. However, we’ve
also learned that the distance traveled is the area under the graph of the velocity (shown
in Figure 7), which we calculated in equation (7) to be v0 t+ (1/2)at2. We conclude
that

x− x0 = v0 t+
1
2
at2, (8)

which leads to the second equation of motion.

Second Equation of Motion. Suppose that a particle moves on the real line
with uniform acceleration a. Moreover, assume that the particle’s position and
speed at time t = 0 are given by x0 and v0, respectively. Let x represent the
particle’s position at time t. Then, the particle’s position at time t is given by the
formula

x = x0 + v0 t+
1
2
at2. (9)

In developing the equation of motion equation (9), we’ve avoided the notion of
velocity. However, if a particle is constrained to move along the real line, it can move
to the right or it can move to the left. This adds another dimension to speed.

Let’s draw a number line (as shown in Figure 9), locate the origin, and agree that
positive displacements are to the right and negative displacements are to the left.
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x
+− 0

P

Figure 9. Orienting the real line.

Next, we define what is meant by velocity.

Definition 10. Velocity is the rate at which an object’s position is changing
with respect to time.

For example, suppose that displacements on the oriented line in Figure 9 are mea-
sured in meters. Furthermore, suppose that the particle at point P in Figure 9 has
velocity v = 20 meters per second. This would mean that the position of the particle
is changing by a positive 20 meters each second. Because of the way we’ve oriented
the line Figure 9, this means that the particle is moving to the right at a rate of 20
meters per second.

On the other hand, if the velocity of the particle at point P was v = −20 meters per
second, this would mean that the position of the particle is changing by a negative 20
meters each second. Because of the orientation we’ve chosen in Figure 9, this would
mean that the particle is moving to the left at a rate of 20 meters per second.

Note that in each case (positive or negative velocity) the speed is 20 meters per
second. What velocity brings to the table is an additional attribute of orientation. The
sign of the velocity indicates a direction, while the magnitude of the velocity indicates
a speed.

It is important for us to state that the equations of motion apply equally well when
we introduce the notion of velocity. Thus, we can summarize as follows.

The Equations of Motion. Suppose that a particle moves on an oriented real
line with uniform acceleration a. Further, let x0 and v0 represent the initial posi-
tion and velocity of the particle at time t = 0.

• The velocity v of the particle at time t is given by the formula

v = v0 + at.

• The position x of the particle at time t is given by the formula

x = x0 + v0 t+
1
2
at2.

Let’s look at some applications of these Equations of Motion.
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I Example 11. Orient the real line as in Figure 9. Suppose that at time t = 0 the
particle is located 2 meters to the right of the origin and is moving at a rate of 3 meters
per second. Further, suppose that particle is moving with a uniform acceleration of
1.5 m/s2. Find the speed and position of the particle at the end of 10 seconds.

We’re given that v0 = 3 m/s and a = 1.5 m/s2. Thus, after t = 10 seconds,

v = v0 + at

v = 3 m
s

+ 1.5 m/s
s
× 10 s

v = 3 m
s

+ 15 m
s

v = 18 m
s
.

We’re also given that x0 = 2 m. Thus, after t = 10 seconds,

x = x0 + v0 t+
1
2
at2

x = 2 m +
(

3 m
s

)
(10 s) + 1

2

(
1.5 m

s2

)
(10 s)2

x = 2 m +
(

3 m
s

)
(10 s) + 1

2

(
1.5 m

s2

) (
100 s2)

x = 2 m + 30 m + 75 m
x = 107 m.

Thus, at the end of t = 10 seconds, the particle is located 107 meters to the right of
the origin and has velocity 18 meters per second (it is moving to the right with speed
18 meters per second).

Let’s look at another application of the Equations of Motion.

I Example 12. A car is traveling down the highway at a speed of 60 miles per
hour. Suddenly, a deer appears in the road ahead and the driver applies the brakes,
decelerating the car at a constant rate of 12.9 feet per second every second. How long
does it take the car to stop and how far does it travel during this time?

The velocity of the car is given by the formula v = v0 + at. The car will stop when
v = 0. Therefore, substitute v = 0 in the formula and solve for t.

v = v0 + at
0 = v0 + at

t = −v0
a

(13)

At time t = 0, the car’s initial velocity is v0 = 60 mi/h. The car is decelerating so it is
losing speed at the given rate of 12.9 feet per second every second; i.e., a = −12.9 ft/s2.
We could try substituting these numbers into our last result.
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t = − 60 mi/h
−12.9 ft/s2

The problem is immediately apparent: the units will not cancel. We have two choices;
we can either (1) change the initial velocity into feet per second, or (2) change the
acceleration into miles per hour per hour. We will do the former with the following
calculation.

v0 = 60 mi
h
× 5280 ft

mi
× 1 h

60 min
× 1 min

60 s
= 88 ft/s

We’ll substitute this number in equation (13).

t = −v0
a

t = − 88 ft/s
−12.9 ft/s2

t ≈ 6.8 s

Again, it is important to check the units. Note that

ft/s
ft/s2 = ft

s
× s2

ft
= s,

which is the correct unit for time.
We’ll now find the stopping distance by letting the initial position of the car be

x0 = 0 feet. Thus, x = x0 + v0 t+ (1/2)at2 becomes

x = v0 t+
1
2
at2,

and x will represent the stopping distance.
Now, substitute the initial speed v0 = 88 feet per second, the acceleration a = −12.9

feet per second each second, and the stopping time t = 6.8 seconds. Thus,

x = v0 t+
1
2
at2

x =
(

88 ft
s

)
(6.8 s) + 1

2

(
−12.9 ft/s

s

)
(6.8 s)2

x =
(

88 ft
s

)
(6.8 s) + 1

2

(
−12.9 ft

s2

)(
46.24 s2)

x = 598.4 ft− 298.248 ft
x ≈ 300 ft,

where we’ve rounded the stopping distance to the nearest foot.
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The Acceleration Due to Gravity
If we neglect air resistance, then a body will fall to the surface of the earth with uniform
acceleration. Physicists use the letter g to represent the acceleration due to gravity.
Near the surface of the earth, this acceleration is given by g = 32 ft/s2 or, in the metric
system, g = 9.8 m/s2.

Remember, acceleration is the rate at which a body’s velocity is changing with
respect to time. Consequently, if we drop a body from rest at a very large height, after
1 second, its velocity will be 32 feet per second. After 2 seconds, its speed will be 64
feet per second. After 3 seconds, its speed will be 96 feet per second. Note how the
speed is changing at a rate of 32 feet per second every second of time.

Gravity always attracts an object to the center of the earth, so we have to keep this
in mind when using the Equations of Motion.

Let’s look at an example.

I Example 14. A ball is released from rest from a hot-air balloon that is hovering
at a distance of 2000 feet above the surface of the earth. How long will it take until
the ball strikes the ground?

In this exercise, we’ll rotate the real line so that it is vertical, as shown in Figure 10(a).
We’ll set the origin at ground level and let the positive y-direction point upward (indi-
cated by the + sign at the top of the line in Figure 10(a).

y
+

−

groundy=0

y0=2000

y
−

+

groundy=2000

y0=0

(a) The origin
at ground level.

(b) The origin at
the release point.

Figure 10.

We’ll start with the equation y = y0 + v0 t + (1/2) at2, and then note that the initial
velocity is v0 = 0 feet per second (the ball is released from rest), so the equation
becomes
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y = y0 + 1
2
at2.

We’re asked to find when the ball hits the ground, so that means we’re asked to find
when y = 0 (see Figure 10(a). Set y = 0 in the last equation and solve for t.23

0 = y0 + 1
2
at2

t2 = −2y0
a

t =
√
−2y0
a

Note that positive displacements are upward (see Figure 10(a)). If the velocity is
positive, the ball is moving upward. In our case, the ball is moving downward, so the
velocity is negative. As the ball moves downward, its speed becomes greater, so the
velocity becomes more and more negative. Hence, the acceleration must be negative;
i.e., a = −32 ft/s2. Substitute this acceleration and the initial position y0 = 2000 ft
into the last result and simplify.

t =

√
−2(2000 ft)
−32 ft/s2

t ≈ 11.2 s

We’ve rounded the result to the nearest tenth of a second. Again, checking the units
is important. In this case, √

ft
ft/s2 =

√
ft× s2

ft
=
√

s2 = s.

Alternatively, we could set up the real line as shown in Figure 10(b), where we’ve
placed the origin at the point of release and reversed the orientation (the positive y-
direction is now downward). Thus, the initial position is y0 = 0 feet and the initial
velocity is v0 = 0 feet per second (the ball is released from rest). Set these values in
the equation y = y0 + v0 t+ (1/2) at2 and solve for t.

y = 1
2
at2

t2 = 2y
a

t =
√

2y
a

Positive displacements are in the downward direction (note the reversal of orien-
tation in Figure 10(b)). This means that when the velocity is positive, the ball is
moving downward. When we release the ball, it is going to pick up more speed, so the

There are actually two answers for t, namely t = ±
√
−2y0/a, but only the positive time makes sense23

in this problem situation.
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velocity becomes more and more positive. Hence, the acceleration is positive in this
orientation; i.e., a = 32 ft/s2.

When the ball hits ground level, the position is y = 2000 ft. Substitute this value
of y and the acceleration in the last result and simplify (check the units).

t =

√
2(2000 ft)
32 ft/s2

Note that this will give the same result as before; i.e., t ≈ 11.2 seconds.

I Example 15. A ball is thrown into the air from shoulder height (about 5 feet)
with an initial upward velocity of 100 feet per second. Find the time it takes the ball
to return to the ground.

Let’s find a solution using the graphing calculator. Using the orientation of Figure 10(a),
start with the equation

y = y0 + v0t+
1
2
at2

and note that the initial position is y0 = 5 feet, the initial velocity is v0 = 100 feet per
second, and the acceleration is a = −32 feet per second per second. Substitute these
numbers into the previous equation to obtain

y = 5 + 100t+ 1
2

(−32)t2

y = 5 + 100t− 16t2.

Enter this equation into the Y= menu as shown in Figure 11(a). Adjust the window
parameters as shown in Figure 11(b) to produce the image shown in Figure 11(c).24

(a) (b) (c)
Figure 11. Using the graphing calculator to determine the time to return to the ground.

To determine the time it takes the ball to return to the ground, we must locate
where the height of the ball is y = 0 feet. Because the graph in Figure 11(c) is a plot
of height or position (on the vertical axis) versus time (on the horizontal axis), this

It is important to understand that the curve in Figure 11(c) is not the actual flight path of the ball.24

Indeed, the ball goes straight up, then straight down, so all of its motion is constrained to a vertical
line. Rather, the graph in Figure 11(c) is a graph of the height or position of the ball versus time.
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occurs when the graph in Figure 11(c) crosses the horizontal axis; that is, at a zero
of the function defined by y = 5 + 100t− 16t2. To determine this time, use the utility
2:zero in the CALC menu to determine the zero. The result is shown in Figure 11(c),
where we determine it takes approximately t ≈ 6.29 seconds for the ball to return to
the ground.

Alternatively, we can set y = 0 in the equation y = y0 + v0 t+ (1/2) at2 and use the
quadratic formula to solve for the time t.

0 = y0 + v0t+
1
2
at2

t =
−v0 ±

√
v20 − 4

(1
2a
)

(y0)

2
(1

2 a
)

t = −v0 ±
√
v20 − 2ay0
a

We can now insert y0 = 5 ft, v0 = 100 ft/s, and a = −32 ft/s2, and then use a calculator
to obtain

t =
−100 ft/s±

√
(100 ft/s)2 − 2(−32 ft/s2)(5 ft)
−32 ft/s2

t ≈ −0.05, 6.29 s
.

The negative answer does not apply in this situation, so we keep the solution t ≈ 6.29
seconds. Note how this agrees with the solution found on the graphing calculator.

Again, it is important to make sure the units check. Underneath the radical, both
terms have units ft2/s2. When the square root is taken, these units become ft/s. Thus,
both terms in the numerator are in ft/s, but the denominator has units ft/s2. When
you invert and multiply, as we saw in Example 12, the units simplify to seconds.
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5.5 Exercises

In Exercises 1-12, write down the for-
mula d = vt and solve for the unknown
quantity in the problem. Once that is
completed, substitute the known quan-
tities in the result and simplify. Make
sure to check that your units cancel and
provide the appropriate units for your so-
lution.

1. If Martha maintains a constant speed
of 30 miles per hour, how far will she
travel in 5 hours?

2. If Jamal maintains a constant speed
of 25 miles per hour, how far will he
travel in 5 hours?

3. If Arturo maintains a constant speed
of 30 miles per hour, how long will it take
him to travel 120 miles?

4. If Mei maintains a constant speed of
25 miles per hour, how long will it take
her to travel 150 miles?

5. If Allen maintains a constant speed
and travels 250 miles in 5 hours, what is
is his constant speed?

6. If Jane maintains a constant speed
and travels 300 miles in 6 hours, what is
is her constant speed?

7. If Jose maintains a constant speed of
15 feet per second, how far will he travel
in 5 minutes?

8. If Tami maintains a constant speed
of 1.5 feet per second, how far will she
travel in 4 minutes?

9. If Carmen maintains a constant speed

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/25

of 80 meters per minute, how far will she
travel in 600 seconds?

10. If Alphonso maintains a constant
speed of 15 feet per second, how long will
it take him to travel 1 mile? Note: 1 mile
equals 5280 feet.

11. If Hoshi maintains a constant speed
of 200 centimeters per second, how long
will it take her to travel 20 meters? Note:
100 centimeters equals 1 meter.

12. If Maeko maintains a constant speed
and travels 5 miles in 12 minutes, what
is her speed in miles per hour?

In Exercises 13-18, a plot of speed v
versus time t is presented.

i. Make an accurate duplication of the
plot on graph paper. Label and scale
each axis. Mark the units on each
axis.

ii. Use the graph to determine the dis-
tance traveled over the time period
[0, 5], using the time units given on
the graph.

13.

t (s)

v (ft/s)

v

0 50

30

50
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14.

t (h)

v (mi/h)

v

0 50

40

20

15.

t (s)

v (m/s)

v

0 50

40

20

16.

t (s)

v (ft/s)

v

0 50

40

20

17.

t (h)

v (mi/h)

v

0 50

40

20

18.

t (s)

v (m/s)

v

0 50

40

20

19. You’re told that a car moves with
a constant acceleration of 7.5 ft/s2. In
your own words, explain what this means.

20. You’re told that an object will fall
on a distant planet with constant accel-
eration 6.5 m/s2. In your own words, ex-
plain what this means.

21. You’re told that the acceleration of
a car is −18 ft/s2. In your own words,
explain what this means.
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22. An observer on a distant planet throws
an object into the air and as it moves
upward he reports that the object has
a constant acceleration of −4.5 m/s2. In
your own words, explain what this means.

In Exercises 23-28, perform each of the
following tasks.

i. Solve the equation v = v0 +at for the
unknown quantity.

ii. Substitute the known quantities (with
units) into your result, then simplify.
Make sure the units cancel and pro-
vide appropriate units for your solu-
tion.

23. A rocket accelerates from rest with
constant acceleration 15.8 m/s2. What
will be the speed of the rocket after 3
minutes?

24. A stone is dropped from rest on
a distant planet and it accelerates to-
wards the ground with constant acceler-
ation 3.8 ft/s2. What will be the speed
of the stone after 2 minutes?

25. A stone is thrown downward on a
distant planet with an initial speed of
20 ft/s. If the stone experiences constant
acceleration of 32 ft/s2, what will be the
speed of the stone after 1 minute?

26. A ball is hurled upward with an ini-
tial speed of 80 m/s. If the ball experi-
ences a constant acceleration of−9.8 m/s2,
what will be the speed of the ball at the
end of 5 seconds?

27. An object is shot into the air with
an initial speed of 100 m/s. If the ob-
ject experiences constant deceleration of
9.8 m/s2, how long will it take the ball to
reach its maximum height?

28. An object is released from rest on
a distant planet and after 5 seconds, its
speed is 98 m/s. If the object falls with
constant acceleration, determine the ac-
celeration of the object.

In Exercises 29-42, use the appropri-
ate equation of motion, either v = v0+at
or x = x0 + v0t + (1/2)at2 or both, to
solve the question posed in the exercise.

i. Select the appropriate equation of mo-
tion and solve for the unknown quan-
tity.

ii. Substitute the known quantities (with
their units) into your result and sim-
plify. Check that cancellation of units
provide units appropriate for your so-
lution.

iii. Find a decimal approximation for your
answer.

29. A rocket with initial velocity 30 m/s
moves along a straight line with constant
acceleration 2.5 m/s2. Find the velocity
and the distance traveled by the rocket
at the end of 10 seconds.

30. A car is traveling at 88 ft/s when
it applies the brakes and begins to slow
with constant deceleration of 5 ft/s2. What
is its speed and how far has it traveled
at the end of 5 seconds?

31. A car is traveling at 88 ft/s when it
applies the brakes and slows to 58 ft/s in
10 seconds. Assuming constant deceler-
ation, find the deceleration and the dis-
tance traveled by the car in the 10 second
time interval. Hint: Compute the decel-
eration first.
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32. A stone is hurled downward from
above the surface of a distant planet with
initial speed 45 m/s. At then end of 10
seconds, the velocity of the stone is 145 m/s.
Assuming constant acceleration, find the
acceleration of the stone and the distance
traveled in the 10 second time period.

33. An object is shot into the air from
the surface of the earth with an initial
velocity of 180 ft/s. Find the maximum
height of the object and the time it takes
the object to reach that maximum height.
Hint: The acceleration due to gravity
near the surface of the earth is well known.

34. An object is shot into the air from
the surface of a distant planet with an
initial velocity of 180 m/s. Find the max-
imum height of the object and the time
it takes the object to reach that maxi-
mum height. Assume that the accelera-
tion due to gravity on this distant planet
is 5.8 m/s2. Hint: Calculate the time to
the maximum height first.

35. A car is traveling down the high-
way at 55 mi/h when the driver spots a
slide of rocks covering the road ahead
and hits the brakes, providing a constant
deceleration of 12 ft/s2. How long does it
take the car to come to a halt and how
far does it travel during this time period?

36. A car is traveling down the high-
way in Germany at 81 km/h when the
driver spots that traffic is stopped in the
road ahead and hits the brakes, provid-
ing a constant deceleration of 2.3 m/s2.
How long does it take the car to come
to a halt and how far does it travel dur-
ing this time period? Note: 1 kilometer
equals 1000 meters.

37. An object is released from rest at
some distance over the surface of the earth.
How far (in meters) will the object fall
in 5 seconds and what will be its veloc-
ity at the end of this 5 second time pe-
riod? Hint: You should know the accel-
eration due to gravity near the surface of
the earth.

38. An object is released from rest at
some distance over the surface of a dis-
tant planet. How far (in meters) will the
object fall in 5 seconds and what will be
its velocity at the end of this 5 second
time period? Assume the acceleration
due to gravity on the distant planet is
13.5 m/s2.

39. An object is released from rest at
a distance of 352 feet over the surface
of the earth. How long will it take the
object to impact the ground?

40. An object is released from rest at
a distance of 400 meters over the surface
of a distant planet. How long will it take
the object to impact the ground? As-
sume that the acceleration due to gravity
on the distant planet equals 5.3 m/s2.

41. On earth, a ball is thrown upward
from an initial height of 5 meters with an
initial velocity of 100 m/s. How long will
it take the ball to return to the ground?

42. On earth, a ball is thrown upward
from an initial height of 5 feet with an
initial velocity of 100 ft/s. How long will
it take the ball to return to the ground?
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A ball is thrown into the air near the sur-
face of the earth. In Exercises 43-46,
the initial height of the ball and the ini-
tial velocity of the ball are given. Com-
plete the following tasks.

i. Use y = y0 + v0t + (1/2)at2 to set
up a formula for the height y of the
ball as a function of time t. Use the
appropriate constant for the acceler-
ation due to gravity near the surface
of the earth.

ii. Load the equation from the previous
part into Y1 in your graphing calcu-
lator. Adjust your viewing window
so that both the vertex and the time
when the ball returns to the ground
are visible. Copy the image onto your
homework paper. Label and scale each
axis with xmin, xmax, ymin, and ymax.

iii. Use the zero utility in the CALC menu
of your graphing calculator to deter-
mine the time when the ball returns
to the ground. Record this answer
in the appropriate location on your
graph.

iv. Use the quadratic formula to deter-
mine the time the ball returns to the
ground. Use your calculator to find a
decimal approximation of your solu-
tion. It should agree with that found
using the zero utility on your graph-
ing calculator. Be stubborn! Check
your work until the answers agree.

43. y0 = 50 ft, v0 = 120 ft/s.

44. y0 = 30 m, v0 = 100 m/s.

45. y0 = 20 m, v0 = 110 m/s.

46. y0 = 100 ft, v0 = 200 ft/s.

47. A rock is thrown upward at an ini-
tial speed of 64 ft/s. How many sec-
onds will it take the rock to rise 61 feet?
Round your answer to the nearest hun-
dredth of a second.

48. A penny is thrown downward from
the top of a tree at an initial speed of
28 ft/s. How many seconds will it take
the penny to fall 289 feet? Round your
answer to the nearest hundredth of a sec-
ond.

49. A water balloon is thrown down-
ward from the roof of a building at an
initial speed of 24 ft/s. The building is
169 feet tall. How many seconds will it
take the water balloon to hit the ground?
Round your answer to the nearest hun-
dredth of a second.

50. A rock is thrown upward at an ini-
tial speed of 60 ft/s. How many sec-
onds will it take the rock to rise 51 feet?
Round your answer to the nearest hun-
dredth of a second.

51. A ball is thrown upward from a
height of 42 feet at an initial speed of
63 ft/s. How many seconds will it take
the ball to hit the ground? Round your
answer to the nearest hundredth of a sec-
ond.

52. A rock is thrown upward from a
height of 32 feet at an initial speed of
25 ft/s. How many seconds will it take
the rock to hit the ground? Round your
answer to the nearest hundredth of a sec-
ond.
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53. A penny is thrown downward from
the top of a tree at an initial speed of
16 ft/s. The tree is 68 feet tall. How
many seconds will it take the penny to
hit the ground? Round your answer to
the nearest hundredth of a second.

54. A penny is thrown downward off of
the edge of a cliff at an initial speed of
32 ft/s. How many seconds will it take
the penny to fall 210 feet? Round your
answer to the nearest hundredth of a sec-
ond.
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5.5 Answers

1. 150 miles

3. 4 hours

5. 50 miles per hour

7. 4500 feet

9. 800 meters

11. 10 seconds

13. The distance traveled is 150 feet.

150 ft

t (s)

v (ft/s)

v

0 50

30

50

15. The distance traveled is 100 me-
ters.

100 m

t (s)

v (m/s)

v

0 50

40

20

17. The distance traveled is 175 miles.

175 mi

t (h)

v (mi/h)

v

0 50

40

20

19. It means that the velocity of the
car increases at a rate of 7.5 feet per sec-
ond every second.

21. It means that the velocity of the
car is decreasing at a rate of 18 feet per
second every second.

23. 2, 844 m/s

25. 1, 940 ft/s

27. Approximately 10.2 seconds.

29. Velocity = 55 m/s,
Distance traveled = 425 m.

31. Acceleration = −3 ft/s2,
Distance traveled = 730 ft.

33. Time to max height = 5.625 s,
Max height = 506.25 ft.

35. Time to stop ≈ 6.72 s,
Distance traveled ≈ 271 ft.
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37. Distance = 122.5 m,
Velocity = −49 m/s.

39. Time ≈ 4.69 s

41. Time ≈ 20.5 s

43.

t (s)
0 10

y (ft)

−100

400

y=50+120t−16t2

(7.895781,0)(7.895781,0)

45.

t (s)
0 30

y (m)

−200

1000

y=20+110t−4.9t2

(22.629349,0)(22.629349,0)

47. 1.57 seconds

49. 2.59 seconds

51. 4.52 seconds

53. 1.62 seconds
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5.6 Optimization
In this section we will explore the science of optimization. Suppose that you are trying
to find a pair of numbers with a fixed sum so that the product of the two numbers is
a maximum. This is an example of an optimization problem. However, optimization
is not limited to finding a maximum. For example, consider the manufacturer who
would like to minimize his costs based on certain criteria. This is another example of
an optimization problem. As you can see, optimization can encompass finding either a
maximum or a minimum.

Optimization can be applied to a broad family of different functions. However, in
this section, we will concentrate on finding the maximums and minimums of quadratic
functions. There is a large body of real-life applications that can be modeled by qua-
dratic functions, so we will find that this is an excellent entry point into the study of
optimization.

Finding the Maximum or Minimum of a Quadratic Function
Consider the quadratic function

f(x) = −x2 + 4x+ 2.

Let’s complete the square to place this quadratic function in vertex form. First, factor
out a minus sign.

f(x) = −
[
x2 − 4x− 2

]
Take half of the coefficient of x and square, as in [(1/2)(−4)]2 = 4. Add and subtract
this amount to keep the equation balanced.

f(x) = −
[
x2 − 4x+ 4− 4− 2

]
Factor the perfect square trinomial, combine the constants at the end, and then redis-
tribute the minus sign to place the quadratic function in vertex form.

f(x) = −
[
(x− 2)2 − 6

]
f(x) = −(x− 2)2 + 6

This is a parabola that opens downward, has been shifted 2 units to the right and 6
units upward. This places the vertex of the parabola at (2, 6), as shown in Figure 1.
Note that the maximum function value (y-value) occurs at the vertex of the parabola.
A mathematician would say that the function “attains a maximum value of 6 at x
equals 2.”

Note that 6 is greater than or equal to any other y-value (function value) that occurs
on the parabola. This gives rise to the following definition.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/26
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x10

y
10

(2, 6)

Figure 1. The maximum value of the
function, 6, occurs at the vertex of the
parabola, (2, 6).

Definition 1. Let c be in the domain of f . The function f is said to achieve a
maximum at x = c if f(c) ≥ f(x) for all x in the domain of f .

Next, let’s look at a quadratic function that attains a minimum on its domain.

I Example 2. Find the minimum value of the quadratic function defined by the
equation

f(x) = 2x2 + 12x+ 12.

Factor out a 2.

f(x) = 2
[
x2 + 6x+ 6

]
(3)

Take half of the coefficient of x and square, as in [(1/2)(6)]2 = 9. Add and subtract
this amount to keep the equation balanced.

f(x) = 2
[
x2 + 6x+ 9− 9 + 6

]
Factor the trinomial and combine the constants, and then redistribute the 2 in the next
step.

f(x) = 2
[
(x+ 3)2 − 3

]
f(x) = 2(x+ 3)2 − 6

The graph is a parabola that opens upward, shifted 3 units to the left and 6 units
downward. This places the vertex at (−3,−6), as shown in Figure 2. Note that the
minimum function value (y-value) occurs at the vertex of the parabola. A mathemati-
cian would say that the function “attains a minimum value of −6 at x equals −3.
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x10

y
10

(−3,−6)

Figure 2. The minimum value of the
function, -6, occurs at the vertex of the
parabola, (−3,−6).

Note that −6 is less than or equal to any other y-value (function value) that occurs on
the parabola.

This last example gives rise to the following definition.

Definition 4. Let c be in the domain of f . The function f is said to achieve a
minimum at x = c if f(c) ≤ f(x) for all x in the domain of f .

A Shortcut for the Vertex
It should now be clear that the vertex of the parabola plays a crucial role when opti-
mizing a quadratic function. We also know that we can complete the square to find the
coordinates of the vertex. However, it would be nice if we had a quicker way of finding
the coordinates of the vertex. Let’s look at the general quadratic function

y = ax2 + bx+ c

and complete the square to find the coordinates of the vertex. First, factor out the a.

y = a
[
x2 + b

a
x+ c
a

]
Take half of the coefficient of x and square, as in [(1/2)(b/a)]2 = [b/(2a)]2 = b2/(4a2).
Add and subtract this amount to keep the equation balanced.

y = a
[
x2 + b

a
x+ b

2

4a2
− b

2

4a2
+ c
a

]
Factor the perfect square trinomial and make equivalent fractions for the constant terms
with a common denominator.
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y = a

[(
x+ b

2a

)2
− b

2

4a2
+ 4ac

4a2

]

y = a

[(
x+ b

2a

)2
+ 4ac− b2

4a2

]
Finally, redistribute that a. Note how multiplying by a cancels one a in the denominator
of the constant term.

y = a
(
x+ b

2a

)2
+ 4ac− b2

4a

Now, here’s the key idea. The results depend upon the values of a, b, and c, but it
should be clear that the coordinates of the vertex are(

− b
2a
,
4ac− b2

4a

)
.

The y-value of the vertex is a bit hard to memorize, but the x-value of the vertex is
easy to memorize.

Vertex Shortcut. Given the parabola represented by the quadratic function

y = ax2 + bx+ c,

the x-coordinate of the vertex is given by the formula

xvertex = − b
2a
.

Let’s test this with the quadratic function given in Example 2

I Example 5. Use the formula xvertex = −b/(2a) to find the x-coordinate of the
vertex of the parabola represented by the quadratic function in Example 2.

In Example 2, the quadratic function was represented by the equation

f(x) = 2x2 + 12x+ 12.

In vertex form

f(x) = 2(x+ 3)2 − 6,

the coordinates of the vertex were easily seen to be (−3,−6) (see Figure 2). Let’s see
what the new formula for the x-coordinate of the vertex reveals.

As usual, compare f(x) = 2x2 + 12x + 12 with f(x) = ax2 + bx + c and note that
a = 2, b = 12 and c = 12. Thus, the x-coordinate of the vertex is given by

xvertex = − b
2a

= − 12
2(2)

= −3.
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Note that this agrees with the previous result (see Figure 2). We could find the
y-coordinate of the vertex with

yvertex = 4ac− b2

4a
= 4(2)(12)− (12)2

4(2)
= −48

8
= −6,

but we find this formula for the y-coordinate of the vertex a bit hard to memorize.
We find it easier to do the following. Since we know the x-coordinate of the vertex is
x = −3, we can find the y-coordinate of the vertex by simply substituting x = −3 in
the equation of the parabola. That is, with f(x) = 2x2 + 12x− 12,

f(−3) = 2(−3)2 + 12(−3) + 12 = −6.

Let’s highlight this last technique.

Finding the y-coordinate of the Vertex. Given the parabola represented by
the quadratic function

f(x) = ax2 + bx+ c,

we’ve seen that the x-coordinate of the vertex is given by x = −b/(2a). To find
the y-coordinate of the vertex, it is probably easiest to evaluate the function at
x = −b/(2a). That is, the y-coordinate of the vertex is given by

yvertex = f
(
− b

2a

)
.

Let’s look at another example.

I Example 6. Consider the parabola having equation

f(x) = −2x2 + 3x− 8.

Find the coordinates of the vertex.

First, use the new formula to find the x-coordinate of the vertex.

xvertex = − b
2a

= − 3
2(−2)

= 3
4
.

Next, substitute x = 3/4 to find the corresponding y-coordinate.

f

(
3
4

)
= −2

(
3
4

)2
+ 3
(

3
4

)
− 8

= −2
(

9
16

)
+ 9

4
− 8

= −9
8

+ 18
8
− 64

8
= −55

8
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Thus, the coordinates of the vertex are (3/4,−55/8).

Applications
We’re now in a position to do some applications of optimization. Let’s start with an
easy example.

I Example 7. Find two real numbers x and y that sum to 50 and that have a
product that is a maximum.

Before we apply the theory of the previous examples, let’s just play with the numbers
a bit to get a feel for what we are being asked to do. We need to find two numbers that
sum to 50, so let’s start with x = 5 and y = 45. Clearly, the sum of these two numbers
is 50. On the other hand, their product is xy = (5)(45) = 225. Let’s place this result
in a table.

x y xy

5 45 225

For a second guess, select x = 10 and y = 40. The sum of these two numbers is 50
and their product is xy = 400. For a third guess, select x = 20 and y = 30. The sum
of these two numbers is 50 and their product is xy = 600. Let’s add these results to
our table.

x y xy

5 45 225
10 40 400
20 30 600

Thus far, the best pair is x = 20 and y = 30, because their product is the maximum
in the table above. But is there another pair with a larger product? Remember our
goal is to find a pair with a product that is a maximum. That is, our pair must have a
product larger than any other pair. Can you find a pair that has a product larger than
600?

Now that we have a feel for what we are being asked to do (find two numbers that
sum to 50 and that have a product that is a maximum), let’s try an approach that is
more abstract than the “guess and check” approach of our tables. Our first constraint is
the fact that the sum of the numbers x and y must be 50. We can model this constraint
with the equation

x+ y = 50. (8)

We’re being asked to maximize the product. Thus, you want to find a formula for the
product. Let’s let P represent the product of x and y and write
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P = xy. (9)

Note that P is a function of two variables x and y. However, all of our functions in
this course have thus far been a function of a single variable. So, how can we get rid
of one of the variables? Simple, first solve equation (8) for y.

x+ y = 50
y = 50− x

(10)

Now, substitute equation (10) into the product in equation (9).

P = x(50− x),

or, equivalently,

P = −x2 + 50x. (11)

Note that P is now a function of a single variable x. Note further that the function
defined by equation (11) is quadratic. If we compare P = −x2 +50x with the general
form P = ax2 + bx+ c, note that a = −1 and b = 50 (we have no need of the fact that
c = 0). Therefore, if we plot P versus x, the graph is a parabola that opens downward
(see Figure 3) and the maximum value of P will occur at the vertex. The x-coordinate
of the vertex is found with

xvertex = − b
2a

= − 50
2(−1)

= 25.

x60

P
800

(25, 625)

Figure 3. The maximum product
P=625 occurs at the vertex of the
parabola, (25, 625).

Thus, our first number is x = 25. We can find the second number y by substituting
x = 25 in equation (10).

y = 50− x = 50− 25 = 25.
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Note that the sum of x and y is x+ y = 25 + 25 = 50. There are two ways that we can
find their product. Since we now know the numbers x and y, we can multiply to find
P = xy = (25)(25) = 625. Alternatively, we could substitute x = 25 in equation (11)
to get

P = −x2 + 50x = −(25)2 + 50(25) = −625 + 1250 = 625.

When you compare this result with our experimental tables, things come together.
We’ve found two numbers x and y that sum to 50 with a product that is a maximum.
No other numbers that sum to 50 have a larger product.

Our little formula xvertex = −b/(2a) has proven to be a powerful ally. Let’s try
another example.

I Example 12. Find two real numbers with a difference of 8 such that the sum of
the squares of the two numbers is a minimum.

Let’s begin by letting x and y represent the numbers we seek. Next, let’s play
a bit as we did in the previous example. Try x = 9 and y = 1. The difference of
these two numbers is certainly 8. The sum of the squares of these two numbers is
S = 92 + 12 = 82. Let’s put this result in tabular form.

x y S = x2 + y2

9 1 82

For a second guess, select x = 8 and y = 0. The difference is x− y = 8− 0 = 8, but
this time the sum of the squares is S = 82 + 02 = 64. For a third guess, try x = 7 and
y = −1. Again, the difference is x − y = 7 − (−1) = 8, but the sum of the squares is
now S = 72 + (−1)2 = 50. Let’s add these results to our table.

x y S = x2 + y2

9 1 82
8 0 64
7 −1 50

Thus far, the pair that minimizes the sum of the squares is x = 7 and y = −1.
However, could there be another pair with a difference of 8 and the sum of the squares
is smaller than 50? Experiment further to see if you can best the current minimum of
50.

Let’s try an analytical approach. Our first constraint is the fact that the difference
of the two numbers must equal 8. This is easily expressed as

x− y = 8. (13)
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Next, we’re asked to minimize the sum of the squares of the two numbers. This requires
that we find a formula for the sum of the squares. Let S represent the sum of the squares
of x and y. Thus,

S = x2 + y2. (14)

Note that S is a function of two variables. We can eliminate one of the variables by
solving equation (13) for x,

x = y + 8, (15)

then substituting this result in equation (14).

S = (y + 8)2 + y2.

Expand and simplify.

S = 2y2 + 16y + 64 (16)

Compare S = 2y2 + 16y+ 64 with the general quadratic S = ay2 + by+ c and note that
a = 2 and b = 16. Thus, the plot of S versus y will be a parabola that opens upward
(see Figure 4) and the minimum value of S will occur at the vertex. The y-coordinate
of the vertex27 is found with

yvertex = − b
2a

= − 16
2(2)

= −4.

y
4

S
100

(−4, 32)

Figure 4. Plotting the sum of the
squares S versus y. The minimum S,
32, occurs at the vertex, (−4, 32).

Thus, the first number we seek is y = −4. We can find the second number by substi-
tuting y = −4 in equation (15).

Because we’ve plotted S versus y, the horizontal axis is labeled y. Thus, y has taken the usual role of27

x. That’s why we write yvertex = −b/(2a) instead of xvertex = −b/(2a) in this example.
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x = y + 8 = (−4) + 8 = 4.

Hence, the numbers we seek are x = 4 and y = −4. Note that the difference of these two
numbers is x−y = 4− (−4) = 8 and the sum of their squares is S = (4)2 + (−4)2 = 32,
which is smaller than the best result found in our tabular experiment above. Indeed,
our work show that this is the smallest possible value of S.

Alternatively, you can find S by substituting y = −4 in equation (16). We’ll leave
it to our readers to verify that this also gives a minimum value of S = 32.

Let’s look at another application.

I Example 17. Mary wants to fence a rectangular garden to keep the deer from
eating her fruit and vegetables. One side of her garden abuts her shed wall so she will
not need to fence that side. However, she also wants to use material to separate the
rectangular garden in two sections (see Figure 5). She can afford to buy 80 total feet
of fencing to use for the perimeter and the section dividing the rectangular garden.
What dimensions will maximize the total area of the rectangular garden?

y y y

x
Figure 5. Mary’s rectangular garden
needs fencing on three sides and also for
the fence to divide the garden.

Again, before we take an algebraic approach, let’s just experiment. Note that we’ve
labeled the width with the letter x and the height with the letter y in our sketch of the
garden in Figure 5.

There is a total of 80 feet of fence material. Suppose that we let y = 5 ft. Because
there are three sides of length y = 5 ft, we’ve used 15 feet of material. That leaves 65
feet of material which will be used to fence the width of the garden. That is, the width
is x = 65 ft. Thus, the dimensions of the garden are x = 65 ft by y = 5 ft. The area
equals the product of these two measures, so A = 325 ft2. Let’s put this result into a
table.

x y A = xy
65 ft 5 ft 325 ft2

Suppose instead that we let the height be y = 10 ft. Again, there are three sections
with this length, so this will take 30 ft of material. That leaves 50 ft of material, so the
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width x = 50 ft. The area is the product of these two measures, so A = 500 ft2. As
a third experiment, let the height y = 15 ft. Subtracting three of these lengths from
80 ft, we see that the width x = 35 ft. The area is the product of these measures, so
A = 525 ft2. Let’s add these last two number experiments to our table.

x y A = xy
65 ft 5 ft 325 ft2

50 ft 10 ft 500 ft2

35 ft 15 ft 525 ft2

At this point, the last set of dimensions yields the maximum area, but is it possible
that another choice of x and y will yield a larger area? Experiment further with numbers
of your choice to see if you can find dimensions that will yield an area larger than the
current maximum in the table, namely 525 ft2.

Let’s now call on what we’ve learned in this section to attack this model. First,
we’re constrained by the amount of material we have for the job, a total of 80 ft of
fencing. This constraint requires that 3 times the height of the garden, added to the
width of the garden, should equal the available amount of fencing material. In symbols,

x+ 3y = 80. (18)

We’re asked to maximize the area, so we focus our efforts on finding a formula for the
area of the rectangular garden. Because the area A of the rectangular garden is the
product of the width and the height,

A = xy. (19)

We now have a formula for the area of the rectangular garden, but unfortunately we
have the area A as a function of two variables. We need to eliminate one or the other
of these variables. This is easily done by solving equation (18) for x.

x = 80− 3y (20)

Next, substitute this result in equation (19) to get

A = (80− 3y)y,

or, equivalently,

A = −3y2 + 80y. (21)

Note that we have expressed the area A as a function of a single variable y. Also, the
function defined by equation (21) is quadratic. Compare A = −3y2 + 80y with the
general form A = ay2 + by + c and note that a = −3 and b = 80 (we have no need
of the fact that c = 0). Therefore, if we plot A versus y, the graph is a parabola that
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opens downward (see Figure 6), so the maximum value of A will occur at the vertex.
The y-coordinate of the vertex28 is found with

yvertex = − b
2a

= − 80
2(−3)

= 80
6

= 40
3
.

To find the width of the rectangular garden, substitute y = 40/3 into equation (20)
and solve for x.

x = 80− 3y = 80− 3
(

40
3

)
= 80− 40 = 40. (22)

Thus, the width of the rectangular garden is 40 ft. We can find the area of the garden
by multiplying the width and the height.

A = xy = (40)
(

40
3

)
= 1600

3
= 533 1

3

Note that the resulting area, A = 533 1
3 ft2, is only slightly bigger the last tabular entry

found with our numerical experiments.
You can also find the area of the rectangular region by substituting y = 40/3 into

equation (21). We’ll leave it to our readers to check that this provides the same
measure for the area. You will also notice that the second coordinate of the vertex in
Figure 6 is the maximum area A = 1600/3 ft2.

y
35

A
800

(40/3, 1600/3)

Figure 6. The maximum area, A =
1600/3 ft2, occurs at the vertex of the
parabola, (40/3, 1600/3).

Because we’ve plotted A versus y, the horizontal axis is labeled y. Thus, y has taken the usual role of28

x because the horizontal axis represents the height y of the rectangular garden. That’s why we write
yvertex = −b/(2a) instead of xvertex = −b/(2a) in this example.
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5.6 Exercises

1. Find the exact maximum value of
the function f(x) = −x2 − 3x.

2. Find the exact maximum value of
the function f(x) = −x2 − 5x− 2.

3. Find the vertex of the graph of the
function f(x) = −3x2 − x− 6.

4. Find the range of the function f(x) =
−2x2 − 9x+ 2.

5. Find the exact maximum value of
the function f(x) = −3x2 − 9x− 4.

6. Find the equation of the axis of sym-
metry of the graph of the function f(x) =
−x2 − 5x− 9.

7. Find the vertex of the graph of the
function f(x) = 3x2 + 3x+ 9.

8. Find the exact minimum value of the
function f(x) = x2 + x+ 1.

9. Find the exact minimum value of the
function f(x) = x2 + 9x.

10. Find the range of the function f(x) =
5x2 − 3x− 4.

11. Find the range of the function f(x) =
−3x2 + 8x− 2.

12. Find the exact minimum value of
the function f(x) = 2x2 + 5x− 6.

13. Find the range of the function f(x) =
4x2 + 9x− 8.

14. Find the exact maximum value of
the function f(x) = −3x2 − 8x− 1.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/29

15. Find the equation of the axis of
symmetry of the graph of the function
f(x) = −4x2 − 2x+ 9.

16. Find the exact minimum value of
the function f(x) = 5x2 + 2x− 3.

17. A ball is thrown upward at a speed
of 8 ft/s from the top of a 182 foot high
building. How many seconds does it take
for the ball to reach its maximum height?
Round your answer to the nearest hun-
dredth of a second.

18. A ball is thrown upward at a speed
of 9 ft/s from the top of a 143 foot high
building. How many seconds does it take
for the ball to reach its maximum height?
Round your answer to the nearest hun-
dredth of a second.

19. A ball is thrown upward at a speed
of 52 ft/s from the top of a 293 foot high
building. What is the maximum height
of the ball? Round your answer to the
nearest hundredth of a foot.

20. A ball is thrown upward at a speed
of 23 ft/s from the top of a 71 foot high
building. What is the maximum height
of the ball? Round your answer to the
nearest hundredth of a foot.

21. Find two numbers whose sum is 20
and whose product is a maximum.

22. Find two numbers whose sum is 36
and whose product is a maximum.

23. Find two numbers whose difference
is 12 and whose product is a minimum.
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24. Find two numbers whose difference
is 24 and whose product is a minimum.

25. One number is 3 larger than twice a
second number. Find two such numbers
so that their product is a minimum.

26. One number is 2 larger than 5 times
a second number. Find two such num-
bers so that their product is a minimum.

27. Among all pairs of numbers whose
sum is −10, find the pair such that the
sum of their squares is the smallest pos-
sible.

28. Among all pairs of numbers whose
sum is −24, find the pair such that the
sum of their squares is the smallest pos-
sible.

29. Among all pairs of numbers whose
sum is 14, find the pair such that the sum
of their squares is the smallest possible.

30. Among all pairs of numbers whose
sum is 12, find the pair such that the sum
of their squares is the smallest possible.

31. Among all rectangles having perime-
ter 40 feet, find the dimensions (length
and width) of the one with the greatest
area.

32. Among all rectangles having perime-
ter 100 feet, find the dimensions (length
and width) of the one with the greatest
area.

33. A farmer with 1700 meters of fenc-
ing wants to enclose a rectangular plot
that borders on a river. If no fence is re-
quired along the river, what is the largest
area that can be enclosed?

34. A rancher with 1500 meters of fenc-
ing wants to enclose a rectangular plot

that borders on a river. If no fence is re-
quired along the river, and the side par-
allel to the river is x meters long, find
the value of x which will give the largest
area of the rectangle.

35. A park ranger with 400 meters of
fencing wants to enclose a rectangular
plot that borders on a river. If no fence
is required along the river, and the side
parallel to the river is x meters long, find
the value of x which will give the largest
area of the rectangle.

36. A rancher with 1000 meters of fenc-
ing wants to enclose a rectangular plot
that borders on a river. If no fence is re-
quired along the river, what is the largest
area that can be enclosed?

37. Let x represent the demand (the
number the public will buy) for an object
and let p represent the object’s unit price
(in dollars). Suppose that the unit price
and the demand are linearly related by
the equation p = (−1/3)x+ 40.

a) Express the revenue R (the amount
earned by selling the objects) as a
function of the demand x.

b) Find the demand that will maximize
the revenue.

c) Find the unit price that will maxi-
mize the revenue.

d) What is the maximum revenue?

38. Let x represent the demand (the
number the public will buy) for an object
and let p represent the object’s unit price
(in dollars). Suppose that the unit price
and the demand are linearly related by
the equation p = (−1/5)x+ 200.

a) Express the revenue R (the amount
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earned by selling the objects) as a
function of the demand x.

b) Find the demand that will maximize
the revenue.

c) Find the unit price that will maxi-
mize the revenue.

d) What is the maximum revenue?

39. A point from the first quadrant is
selected on the line y = mx + b. Lines
are drawn from this point parallel to the
axes to form a rectangle under the line in
the first quadrant. Among all such rec-
tangles, find the dimensions of the rec-
tangle with maximum area. What is the
maximum area? Assume m < 0.

x

y

y=mx+b

(x,y)(x,y)

40. A rancher wishes to fence a rectan-
gular area. The east-west sides of the
rectangle will require stronger support
due to prevailing east-west storm winds.
Consequently, the cost of fencing for the
east-west sides of the rectangular area is
$18 per foot. The cost for fencing the
north-south sides of the rectangular area
is $12 per foot. Find the dimension of
the largest possible rectangular area that
can be fenced for $7200.
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5.6 Answers

1. 9
4

3.
(
−1

6
,−71

12

)

5. 11
4

7.
(
−1

2
,
33
4

)

9. −81
4

11.
(
−∞, 10

3

]
=
{
x

∣∣∣∣x ≤ 10
3

}

13.
[
−209

16
,∞
)

=
{
x

∣∣∣∣x ≥ −209
16

}

15. x = −1
4

17. 0.25

19. 335.25

21. 10 and 10

23. 6 and −6

25. 3/2 and −3/4

27. −5, −5

29. 7, 7

31. 10 feet by 10 feet

33. 361250 square meters

35. 200

37.

a) R = (−1/3)x2 + 40x

b) x = 60 objects

c) p = 20 dollars

d) R = $1200

39. x = −b/(2m), y = b/2, A = −b2/(4m)
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5.7 Index
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squaring 441

c
completing the square
a = 1 444
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f
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p
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r
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reflection
order 427

s
scaling 419 , 420 , 422

order 427
second equation of motion 513
square roots 481

degenerate cases 482
stretching 420

t
translation

order 427
trinomial

perfect square 443

u
uniform speed 505

v
velocity

definition 514
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down 427
up 426
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z
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finding

with calculator 467
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6 Polynomial Functions
Polynomial functions have the form p(x) = a0 + a1x + a2x2 + · · · + anxn and play an
important role in mathematics, science, and engineering. To model curves needed in
construction, engineers will piece special cubic (third degree) polynomials together to
form a construct called a spline. Statisticians will often model data with polynomials
and use the polynomial to make predictions between data points, a technique called
interpolation. Mathematicians will approximate complicated functions with polynomi-
als.

In this chapter, we introduce the polynomial function, discuss its end-behavior, its
zeros, and the extreme values of its graph, and then apply what we’ve learned to several
interesting applications.
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6.1 Polynomial Functions
We’ve seen in previous sections that a monomial is the product of a number and one
or more variable factors, each raised to a positive integral power, as in −3x2 or 4x3y4.
We’ve also seen that a binomial is the sum or difference of two monomial terms, as in
3x+5, x2 +4, or 3xy2−2x2y. We’ve also seen that a trinomial is the sum or difference
of three monomial terms, as in x2 − 2x− 3 or x2 − 4xy + 5y2.

The root word “poly” means “many,” as in polygon (many sides) or polyglot (speak-
ing many languages—multilingual). In algebra, the word polynomial means “many
terms,” where the phrase “many terms” can be construed to mean anywhere from
one to an arbitrary, but finite, number of terms. Consequently, a monomial could be
considered a polynomial, as could binomials and trinomials.

In our work, we will concentrate for the most part on polynomials of a single variable.
What follows is a more formal definition of a polynomial in a single variable x.

Definition 1. The function p, defined by

p(x) = a0 + a1x+ a2x2 + · · ·+ anxn (2)

is called a polynomial in x.

There are several important points to be made about this definition.

1. The polynomial in our definition is arranged in ascending powers of x. We
could just as easily arrange our polynomial in descending powers of x, as in

p(x) = anxn + · · ·+ a2x2 + a1x+ a0.

2. The numbers a0, a1, a2, . . ., an are called the coefficients of the polynomial p.
− If all of the coefficients are integers, then we say that “p is a polynomial

with integer coefficients.”
− If all of the coefficients are rational numbers, then we say that “p is a

polynomial with rational coefficients.”
− If all of the coefficients are real numbers, then we say that “p is a polynomial

with real coefficients.”
3. The degree of the polynomial p is n, the highest power of x.
4. The leading term of the polynomial p is the term with the highest power of x.

In the case of equation (2), the leading term is anxn.

Let’s look at an example.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1
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I Example 3. Consider the polynomial

p(x) = 3− 4x2 + 5x3 − 6x. (4)

Find the degree, the leading term, and make a statement about the coefficients of p.

First, put the polynomial terms in order. Whether you use ascending or descending
powers of x makes no difference. Choose one or the other. In descending powers of x,

p(x) = 5x3 − 4x2 − 6x+ 3, (5)

but in ascending powers of x,

p(x) = 3− 6x− 4x2 + 5x3. (6)

In either case, equation (5) or equation (6), the degree of the polynomial is 3. Also,
in either case, the leading term2 of the polynomial is 5x3. Because all coefficients of
this polynomial are integers, we say that “p is a polynomial with integer coefficients.”
However, all the coefficients are also rational numbers, so we could say that p is a
polynomial with rational coefficients. For that matter, all of the coefficients of p are
real numbers, so we could also say that p is a polynomial with real coefficients.

Let’s look at another example.

I Example 7. Consider the polynomial

p(x) = 3− 4
3x+ 2

5x
2 − 9x3 + 12x4.

Find the degree, the leading term, and make a statement about the coefficients of p.

Fortunately, the polynomial p is already arranged in ascending powers of x. The
degree of p is 4 and the leading term is 12x4. Not all of the coefficients are integers,
so we cannot say that “p is a polynomial with integer coefficients.” However, all of the
coefficients are rational numbers, so we can say that “p is a polynomial with rational
coefficients.” Because all of the coefficients of p are real numbers, we could also say
that “p is a polynomial with real coefficients.”

I Example 8. Consider the polynomial

p(x) = 3− 4
3x+

√
2x2 − 9x3 + πx5.

Find the degree, the leading term, and make a statement about the coefficients of p.

Fortunately, the polynomial p is already arranged in ascending powers of x. The
degree of p is 5 and the leading term is πx5. Not all of the coefficients are integers,
so we cannot say that “p is a polynomial with integer coefficients.” Not all of the

Note that in the ascending case, the phrase “leading term” is somewhat of a misnomer, as the term2

with the highest power of x comes last. Unfortunately, we’ll have to live with this terminology.
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coefficients are rational numbers, so we cannot say that “p is a polynomial with rational
coefficients.” However, because all of the coefficients of p are real numbers, we can say
that “p is a polynomial with real coefficients.”

The Graph of y = xn

The primary goal in this section is to discuss the end-behavior of arbitrary polynomials.
By “end-behavior,” we mean the behavior of the polynomial for very small values of
x (like −1 000, −10 000, −100 000, etc.) or very large values of x (like 1 000, 10 000,
100 000, etc.). Before we can explore the end-behavior of arbitrary polynomials, we
must first examine the end-behavior of some very basic monomials. Specifically, we
need to investigate the end-behavior of the graphs of y = xn, where n = 1, 2, 3, . . ..

Let’s first examine the graph of y = xn, when n is even. The graphs are simple
enough to draw, either by creating a table of points or by using your graphing calculator.
In Figure 1(a), (b), and (c), we’ve drawn the graphs of y = x2, y = x4, and y = x6,
respectively.

x10

y
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x10

y
10

x10

y
10

(a) The graph of y = x2. (b) The graph of y = x4. (c) The graph of y = x6.
Figure 1. Examples of the graph of y = xn, when n is an even integer.

The graphs in Figure 1 share an important trait. As you sweep your eyes from left
to right, each graph falls from positive infinity, wiggles through the origin, then rises
back to positive infinity.

Next, let’s examine the graph of y = xn, when n is odd. Again, a table of points or
a graphing calculator will help produce the graphs of y = x3, y = x5, and y = x7, as
shown in Figure 2(a), (b), and (c), respectively.

The graphs in Figure 2 share an important trait. As you sweep your eyes from left
to right, each graph rises from negative infinity, wiggles through the origin, then rises
up to positive infinity.

The behavior shown in Figure 1 and Figure 2 is typical.
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(a) The graph of y = x3. (b) The graph of y = x5. (c) The graph of y = x7.
Figure 2. Examples of the graph of y = xn, when n is an odd integer.

Property 9. When n is an even natural number, the graph of y = xn will look
like that shown in Figure 3(a). If n is an odd natural number, then the graph of
y = xn will be similar to that shown in Figure 3(b).

1. When n is even, as you sweep your eyes from left to right, the graph of y = xn
falls from positive infinity, wiggles through the origin, then rises back to positive
infinity.

2. If n is odd, as you sweep your eyes from left to right, the graph of y = xn rises
from negative infinity, wiggles through the origin, then rises to positive infinity.

x

y

x

y

(a) The graph of
y = xn, n even.

(b) The graph of
y = xn, n odd.

Figure 3.

The Graph of y = axn

Now that we know the general shape of the graph of y = xn, let’s scale this function
by multiplying by a constant, as in y = axn.

In our study of the parabola, we learned that if we multiply by a factor of a,
where a > 1, then we will stretch the graph in the vertical direction by a factor of a.
Conversely, if we multiply the graph by a factor of a, where 0 < a < 1, then we will
compress the graph in the vertical direction by a factor of 1/a. If a < 0, then not only
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will we scale the graph, but multiplying by this factor will also reflect the graph across
the horizontal axis.

Let’s look at a few examples.

I Example 10. Sketch the graph of y = −2x3.

We know what the graph of y = x3 looks like. As we sweep our eyes from left to
right, the graph rises from negative infinity, wiggles through the origin, then rises to
positive infinity. This behavior is shown in Figure 4(a).

If we multiply by a factor of 2, then we stretch the original graph by a factor of
2 in the vertical direction. The graph of y = 2x3 is shown in Figure 4(b). Note the
stretching in the vertical direction.

Finally, if we negate by multiplying by −2, this will stretch the graph by a factor
of 2, as in Figure 4(b), but it will also reflect the graph across the x-axis. The graph
of y = −2x3 is shown in Figure 4(c).
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y
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y
5

(a) The graph of y = x3. (b) The graph of y = 2x3. (c) The graph
of y = −2x3.

Figure 4. Scaling by −2 stretches vertically by a factor of 2, then reflects the graph
across the x-axis.

Let’s look at another example.

I Example 11. Sketch the graph of y = −1
2x

4.

We know what the graph of y = x4 looks like. As we sweep our eyes from left to
right, the graph falls from positive infinity, wiggles through the origin, then rises back
to positive infinity. This behavior is shown in Figure 5(a).

If we multiply by 1/2, then we will compress the graph by a factor of 2. Note that
the graph of y = 1

2x
4 in Figure 5(b) is compressed by a factor of 2 in the vertical

direction.
Finally, if we multiply by −1/2, not only will we compress the graph by a factor of

2, we will also reflect the graph across the x-axis. The graph of y = −1
2x

4 is shown in
Figure 5(c).
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(a) The graph of y = x4. (b) The graph of y = 1
2x

4. (c) The graph
of y = −1

2x
4.

Figure 5. Scaling by −1/2 compresses vertically by a factor of 2, then reflects the graph
across the x-axis.

Hopefully, at this point you can now sketch the graph of y = axn for any real number
a and any natural number n, either even or odd, without the use of a calculator.

Let’s put this new-found knowledge to use in investigating the end-behavior of
polynomials.

End Behavior
Consider the polynomial

p(x) = x3 − 7x2 + 7x+ 15. (12)

Here’s a key fact that we will use to determine the end-behavior of any polynomial.

Property 13. A polynomial’s end-behavior is completely determined by its
leading term. That is, the end-behavior of the graph of the polynomial will match
the end-behavior of the graph of its leading term.

In a moment, we will show why this property is true. In the meantime, let’s accept
the veracity of this statement and apply it to the polynomial defined by equation (12).
The leading term of the polynomial p(x) = x3 − 7x2 + 7x + 15 is x3. We know the
end behavior of graph of y = x3. As we sweep our eyes from left to right, the graph of
y = x3 will rise from negative infinity, wiggle through the origin, then continue to rise
to positive infinity. We pictured this behavior earlier in Figure 4(a).

Property 13 tells us that the graph of the polynomial p(x) = x3 − 7x2 + 7x+ 15
will exhibit the same end-behavior as the graph of its leading term, y = x3. We can
predict that, as we sweep our eyes from left to right, the graph of the polynomial
p(x) = x3 − 7x2 + 7x + 15 will rise from negative infinity, wiggle a bit, then rise to
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positive infinity. We don’t know what happens in-between,3 but we do know what
happens at far left- and right-hand ends.

Our conjecture is verified by drawing the graph (use a graphing calculator). The
graph of the polynomial p(x) = x3−7x2 + 7x+ 15 is shown in Figure 6. Sure enough,
as we sweep our eyes from left to right, the graph in Figure 6 rises from negative
infinity as predicted, wiggles a bit, then continues its rise to positive infinity.

x10

y
30 p

Figure 6. Note that this graph of
p(x) = x3− 7x2 + 7x+ 15 has the same
end-behavior as the graph of y = x3.

Why Does it Work? Why does Property 13 predict so accurately the end-behavior
of this polynomial?

p(x) = x3 − 7x2 + 7x+ 15

We can demonstrate why by first factoring out the leading term.

p(x) = x3
(

1− 7
x

+ 7
x2 + 15

x3

)
(14)

Now, ask the following question. What happens to the polynomial as we move to the
right end? That is, what happens to the polynomial as we use large values of x, such
as 1 000, 10 000, or even 100 000?

Consider the fraction 7/x. Because the numerator is fixed at 7, and the denominator
is getting bigger and bigger (growing without bound), the fraction is getting closer and
closer to zero. Calculus students would use the notation

lim
x→∞

7
x

= 0.

Don’t be put off by the notation. We’re using sophisticated mathematical notation for
a very simple idea that says “As x approaches infinity, the fraction 7/x approaches
zero.”

We’ll investigate what happens in-between in the next section.3
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Using similar reasoning, each of the fractions in equation (14) go to zero as x goes
to infinity (increases without bound). Thus, as x gets larger and larger (as we move
further and further to the right),

lim
x→∞
p(x) = lim

x→∞
x3
(

1− 7
x

+ 7
x2 + 15

x3

)
≈ x3(1− 0 + 0 + 0) ≈ x3. (15)

That is, as x increases without bound, the graph of p(x) = x3 − 7x2 + 7x+ 15 should
approximate the graph of y = x3.

Using similar reasoning, each of the fractions in equation (14) go to zero as x goes
to minus infinity. That is, if you are putting in numbers for x such as −1 000, −10 000,
−100 000, and the like, the fractions in equation (14) will go to zero. Hence, the
polynomial p(x) must still approach its leading term x3 for very small values of x (as
x approaches −∞).

If you superimpose the graph of y = x3 on the graph of p(x) = x3−7x2 +7x+15, as
in Figure 7, it’s clear that the polynomial p has the same end-behavior as the graph
of its leading term y = x3.

x10

y
30

y = x3

p

Figure 7. As you move to the ex-
treme left or right, the graph of p(x) =
x3−7x2 +7x+15 approaches the graph
of its leading term y = x3.

You can provide a more striking demonstration of the validity of the claim in
equation (15) by plotting both the polynomial p and its leading term y = x3 on
your calculator, then zooming out by adjusting the window parameters as shown in
Figure 8(b). Note how the graph of p(x) = x3− 7x2 + 7x+ 15 more closely resembles
the graph of its leading term y = x3, at least at the right and left edges of the viewing
window. When we zoom further out, by adjusting the window parameters as shown in
Figure 8(d), note how that graph of p approaches the graph of its leading term y = x3

even more closely at each edge of the viewing window.
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(a) (b) (c) (d)
Figure 8. Zooming out clearly demonstrates that the end-behavior of p(x) = x3−7x2 +7x+15
matches that of its leading term y = x3.

Let’s look at another example.

I Example 16. Consider the polynomial

p(x) = −x4 + 37x2 + 24x− 180.

Comment on the end-behavior of p and use your graphing calculator to sketch its graph.

The leading term of p(x) = −x4 + 37x2 + 24x − 180 is y = −x4. We know the
end-behavior of the graph of the leading term. As we sweep our eyes from left to right,
the graph of y = −x4 rises from negative infinity, wiggles through the origin, then falls
back to minus infinity. The graph of p should exhibit the same end-behavior. Indeed,
in Figure 9, note that the graph of y = −x4 and y = −x4 + 37x2 + 24x − 180 both
share the same end-behavior.

x
7

y
500

p
y = −x4

Figure 9. The polynomial p(x) =
−x4 + 37x2 + 24x − 180 has the same
end-behavior as the graph of its leading
term y = −x4.
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6.1 Exercises

In Exercises 1-8, arrange each polyno-
mial in descending powers of x, state the
degree of the polynomial, identify the lead-
ing term, then make a statement about
the coefficients of the given polynomial.

1. p(x) = 3x− x2 + 4− x3

2. p(x) = 4 + 3x2 − 5x+ x3

3. p(x) = 3x2 + x4 − x− 4

4. p(x) = −3 + x2 − x3 + 5x4

5. p(x) = 5x− 3
2x

3 + 4− 2
3x

5

6. p(x) = −3
2x+ 5− 7

3x
5 + 4

3x
3

7. p(x) = −x+ 2
3x

3 −
√

2x2 + πx6

8. p(x) = 3+
√

2x4 +
√

3x−2x2 +
√

5x6

In Exercises 9-14, you are presented with
the graph of y = axn. In each case, state
whether the degree is even or odd, then
state whether a is a positive or negative
number.

9.

x5

y
5

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/4

10.

x5

y
5

11.

x5

y
5

12.

x5

y
5
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13.

x5

y
5

14.

x5

y
5

In Exercises 15-20, you are presented
with the graph of the polynomial p(x) =
anx
n+ · · ·+a1x+a0. In each case, state

whether the degree of the polynomial is
even or odd, then state whether the lead-
ing coefficient an is positive or negative.

15.

x

y

16.

x

y

17.

x

y

18.

x

y



Section 6.1 Polynomial Functions 561

Version: Fall 2007

19.

x

y

20.

x

y

For each polynomial in Exercises 21-
30, perform each of the following tasks.

i. Predict the end-behavior of the poly-
nomial by drawing a very rough sketch
of the polynomial. Do this without
the assistance of a calculator. The
only concern here is that your graph
show the correct end-behavior.

ii. Draw the graph on your calculator,
adjust the viewing window so that
all “turning points” of the polyno-
mial are visible in the viewing win-
dow, and copy the result onto your
homework paper. As usual, label and
scale each axis with xmin, xmax, ymin,
and ymax. Does the actual end-behavior
agree with your predicted end-behavior?

21. p(x) = −3x3 + 2x2 + 8x− 4

22. p(x) = 2x3 − 3x2 + 4x− 8

23. p(x) = x3 + x2 − 17x+ 15

24. p(x) = −x4 + 2x2 + 29x− 30

25. p(x) = x4 − 3x2 + 4

26. p(x) = −x4 + 8x2 − 12

27. p(x) = −x5 + 3x4 − x3 + 2x

28. p(x) = 2x4 − 3x3 + x− 10

29. p(x) = −x6 − 4x5 + 27x4 + 78x3 +
4x2 + 376x− 480

30. p(x) = x5−27x3+30x2−124x+120
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6.1 Answers

1. p(x) = −x3−x2+3x+4, degree = 3,
leading term = −x3, “p is a polynomial
with integer coefficients,” “p is a polyno-
mial with rational coefficients,” or “p is
a polynomial with real coefficients.”

3. p(x) = x4 + 3x2− x− 4, degree = 4,
leading term = x4, “p is a polynomial
with integer coefficients,” “p is a polyno-
mial with rational coefficients,” or “p is
a polynomial with real coefficients.”

5. p(x) = −2
3x

5− 3
2x

3+5x+4, degree =
5, leading term = −2

3x
5, “p is a polyno-

mial with rational coefficients,” or “p is
a polynomial with real coefficients.”

7. p(x) = πx6+2
3x

3−
√

2x2−x, degree =
6, leading term = πx6, “p is a polyno-
mial with real coefficients.”

9. y = axn, n odd, a < 0.

11. y = axn, n even, a > 0.

13. y = axn, n odd, a < 0.

15. odd, positive

17. even, negative

19. odd, positive

21. Note that the leading term −3x3

(dashed) has the same end-behavior as
the polynomial p.

x
10−10

y
10

−10 p(x)=−3x3+2x2+8x−4

23. Note that the leading term x3 (dashed)
has the same end-behavior as the poly-
nomial p.

x
−10 10

y
−70

−70

p(x)=x3+x2−17x+15
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25. Note that the leading term x4 (dashed)
has the same end-behavior as the poly-
nomial p.

x
10−10

y
10

−10

p(x)=x4−3x2+4

27. Note that the leading term−x5 (dashed)
has the same end-behavior as the poly-
nomial p.

x
−10 10

y

−10

15

p(x)=−x5+3x4−x3+2x

29. Note that the leading term−x6 (dashed)
has the same end-behavior as the poly-
nomial p.

x
−10 10

y

−5000

5000

p
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6.2 Zeros of Polynomials
In the previous section we studied the end-behavior of polynomials. We know that
a polynomial’s end-behavior is identical to the end-behavior of its leading term. Our
focus was concentrated on the far right- and left-ends of the graph and not upon what
happens in-between.

In this section, our focus shifts to the interior. There are two important areas of
concentration: the local maxima and minima of the polynomial, and the location of
the x-intercepts or zeros of the polynomial. In this section we concentrate on finding
the zeros of the polynomial.

Zeros
Let’s begin with a formal definition of the zeros of a polynomial.

Definition 1. Let p(x) = a0 + a1x + a2x2 + · · · + anxn be a polynomial with
real coefficients. We say that a is a zero of the polynomial if and only if p(a) = 0.

The definition also holds if the coefficients are complex, but that’s a topic for a
more advanced course.

For example, −5 is a zero of the polynomial p(x) = x2 + 3x− 10 because

p(−5) = (−5)2 + 3(−5)− 10
= 25− 15− 10
= 0.

Similarly, −1 is a zero of the polynomial p(x) = x3 + 3x2 − x− 3 because

p(−1) = (−1)3 + 3(−1)2 − (−1)− 3
= −1 + 3 + 1− 3
= 0.

Let’s look at a more extensive example.

I Example 2. Find the zeros of the polynomial defined by

p(x) = (x+ 3)(x− 2)(x− 5). (3)

At first glance, the function does not appear to have the form of a polynomial.
However, two applications of the distributive property provide the product of the last
two factors.

p(x) = (x+ 3)(x(x− 5)− 2(x− 5))
= (x+ 3)(x2 − 5x− 2x+ 10)
= (x+ 3)(x2 − 7x+ 10)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/5
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A third and fourth application of the distributive property reveals the nature of our
function.

p(x) = x(x2 − 7x+ 10) + 3(x2 − 7x+ 10)
= x3 − 7x2 + 10x+ 3x2 − 21x+ 30
= x3 − 4x2 − 11x+ 30

(4)

Hence, p is clearly a polynomial. However, the original factored form provides quicker
access to the zeros of this polynomial. Using Definition 1, we need to find values of
x that make p(x) = 0. That is, we need to solve the equation

p(x) = 0.

Of course, p(x) = (x+ 3)(x− 2)(x− 5), so, equivalently, we need to solve the equation

(x+ 3)(x− 2)(x− 5) = 0.

By the zero product property, either

x+ 3 = 0 or x− 2 = 0 or x− 5 = 0.

These are linear (first degree) equations, each of which can be solved independently.
Thus, either

x = −3 or x = 2 or x = 5.

Hence, the zeros of the polynomial p are −3, 2, and 5.
Let’s use equation (4) to check that −3 is a zero of the polynomial p. Substitute

−3 for x in p(x) = x3 − 4x2 − 11x+ 30.

p(−3) = (−3)3 − 4(−3)2 − 11(−3) + 30
= −27 − 36 + 33 + 30
= 0

This calculation verifies that −3 is a zero of the polynomial p. However, it is much
easier to check that −3 is a zero of the polynomial using equation (3). Substitute −3
for x in p(x) = (x+ 3)(x− 2)(x− 5).

p(−3) = (−3 + 3)(−3− 2)(−3− 5)
= (0)(−5)(−8)
= 0

We’ll leave it to our readers to check that 2 and 5 are also zeros of the polynomial p.
It’s very important to note that once you know the linear (first degree) factors of a

polynomial, the zeros follow with ease. In the last example, p(x) = (x+3)(x−2)(x−5),
so the linear factors are x+ 3, x− 2, and x− 5. Consequently, the zeros are −3, 2, and
5.
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Before continuing, we take a moment to review an important multiplication pattern.

The Difference of Two Squares
A special multiplication pattern that appears frequently in this text is called the dif-
ference of two squares. Use the distributive property to expand (a+ b)(a− b).

(a+ b)(a− b) = a(a− b) + b(a− b)
= a2 − ab+ ba− b2

Since ab = ba, we have the following result.

Property 5. The Difference of Two Squares Pattern:

(a+ b)(a− b) = a2 − b2

Thus, if you have two binomials with identical first and second terms, but the terms
of one are separated by a plus sign, while the terms of the second are separated by a
minus sign, then you multiply by squaring the first and second terms and separating
these squares with a minus sign. Hence the name, the “difference of two squares.”

For example,

(2x+ 3)(2x− 3) = (2x)2 − (3)2 = 4x2 − 9.

Note how we simply squared the matching first and second terms and then separated
our squares with a minus sign. In similar fashion,

(x+ 5)(x− 5) = x2 − 25
(5x+ 4)(5x− 4) = 25x2 − 16
(3x− 7)(3x+ 7) = 9x2 − 49.

In each case, note how we squared the matching first and second terms, then separated
the squares with a minus sign.

Once you’ve mastered multiplication using the “Difference of Squares” pattern, it is
easy to factor using the same pattern. You simply reverse the procedure. For example,

4x2 − 9 = (2x+ 3)(2x− 3).

We start by taking the square root of the two squares. Thus, the square root of 4x2 is
2x and the square root of 9 is 3. We then form two binomials with the results 2x and
3 as matching first and second terms, separating one pair with a plus sign, the other
pair with a minus sign.

In similar fashion,

9x2 − 49 = (3x+ 7)(3x− 7).

Again, note how we take the square root of each term, form two binomials with the
results, then separate one pair with a plus, the other with a minus.
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We’ll find the “Difference of Squares” pattern handy in what follows.

Finding Zeros by Factoring
We will now explore how we can find the zeros of a polynomial by factoring, followed
by the application of the zero product property. It is important to understand that
the polynomials of this section have been carefully selected so that you will be able to
factor them using the various techniques that follow.

Let’s explore factoring by grouping.

I Example 6. Find the zeros of the polynomial

p(x) = x3 + 2x2 − 25x− 50.

In Example 2 we learned that it is easy to spot the zeros of a polynomial if the
polynomial is expressed as a product of linear (first degree) factors. In this example,
the polynomial is not factored, so it would appear that the first thing we’ll have to do
is factor our polynomial.

Whenever you are presented with a four term expression, one thing you can try is
factoring by grouping.6 So, with this thought in mind, let’s factor an x out of the first
two terms, then a −25 out of the second two terms.

p(x) = x3 + 2x2 − 25x− 50
= x2(x+ 2)− 25(x+ 2)

Note that this last result is the difference of two terms. The polynomial is not yet fully
factored as it is not yet a product of two or more factors. However, note that each of
the two terms has a common factor of x+ 2. Let’s factor out this common factor.

p(x) = (x2 − 25)(x+ 2)

We’ve still not completely factored our polynomial. The first factor is the difference of
two squares and can be factored further.

p(x) = (x+ 5)(x− 5)(x+ 2)

The polynomial p is now fully factored. To find the zeros of the polynomial p, we need
to solve the equation

p(x) = 0.

However, p(x) = (x+ 5)(x− 5)(x+ 2), so equivalently, we need to solve the equation

(x+ 5)(x− 5)(x+ 2) = 0.

It’s important to understand that the polynomial presented in Example 6 has been specially selected6

so that factoring by grouping will work. This method of grouping will not always be successful. For
example, the technique will not work on the polynomial p(x) = x3 − 6x2 − x + 30. To factor this
polynomial, you need more advanced theory typically taught in a college algebra course.



Section 6.2 Zeros of Polynomials 569

Version: Fall 2007

We can use the zero product property. Either

x+ 5 = 0 or x− 5 = 0 or x+ 2 = 0.

Again, each of these linear (first degree) equations can be solved independently. Either

x = −5 or x = 5 or x = −2.

Thus, the zeros of the polynomial p are −5, 5, and −2. We’ll leave it to our readers to
check these results.

Again, it is very important to realize that once the linear (first degree) factors are
determined, the zeros of the polynomial follow. In this example, the linear factors are
x+ 5, x− 5, and x+ 2. It immediately follows that the zeros of the polynomial are −5,
5, and −2.

In the next example, we will see that sometimes the first step is to factor out the
greatest common factor.

I Example 7. Find the zeros of the polynomial

p(x) = x4 + 2x3 − 16x2 − 32x (8)

To find the zeros of the polynomial, we need to solve the equation

p(x) = 0.

Equivalently, because p(x) = x4 + 2x3 − 16x2 − 32x, we need to solve the equation

x4 + 2x3 − 16x2 − 32x = 0.

Note that each term on the left-hand side has a common factor of x. Thus, our first
step is to factor out this common factor of x.

x[x3 + 2x2 − 16x− 32] = 0

The four-term expression inside the brackets looks familiar. Let’s try factoring by
grouping. Factor an x2 out of the first two terms, then a −16 from the third and fourth
terms.

x
[
x2(x+ 2)− 16(x+ 2)

]
= 0

We now have a common factor of x+ 2, so we factor it out.

x
[
(x2 − 16)(x+ 2)

]
= 0

The brackets are no longer needed (multiplication is associative) so we leave them off,
then use the difference of squares pattern to factor x2 − 16.

x(x+ 4)(x− 4)(x+ 2) = 0

The zero product property tells us that either
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x = 0 or x+ 4 = 0 or x− 4 = 0 or x+ 2 = 0.

Each of these linear (first degree) factors can be solved independently. Either

x = 0 or x = −4 or x = 4 or x = −2.

Thus, the zeros of the polynomial p are 0, −4, 4, and −2. We’ll leave it to our readers
to check these results.

Again, it is very important to note that once you’ve determined the linear (first
degree) factors of a polynomial, then you know the zeros. In this case, the linear
factors are x, x + 4, x − 4, and x + 2. Therefore, the zeros are 0, −4, 4, and −2,
respectively. This discussion leads to a result called the Factor Theorem.

Factor Theorem. Let p(x) = a0 + a1x+ a2x2 + . . .+ anxn be a polynomial with
real coefficients. If x− a is a factor of the polynomial p(x), then a is a zero of the
polynomial. That is, if x− a is a factor of the polynomial p(x), then p(a) = 0.

The upshot of all of these remarks is the fact that, if you know the linear factors
of the polynomial, then you know the zeros. The converse is also true, but we will not
need it in this course.7

Let’s examine the connection between the zeros of the polynomial and the x-
intercepts of the graph of the polynomial.

The x-intercepts and the Zeros of a Polynomial
For the discussion that follows, let’s assume that the independent variable is x and
the dependent variable is y. Corresponding to these assignments, we will also assume
that we’ve labeled the horizontal axis with x and the vertical axis with y, as shown in
Figure 1.

The key fact for the remainder of this section is that a function is zero at the points
where its graph crosses the x-axis. The phrases “function values” and “y-values” are
equivalent (provided your dependent variable is y), so when you are asked where your
function value is equal to zero, you are actually being asked “where is your y-value
equal to zero?” Of course, y = 0 where the graph of the function crosses the horizontal
axis (again, providing you are using the letter y for your dependent variable—labeling
the vertical axis with y).

A polynomial is a function, so, like any function, a polynomial is zero where its graph
crosses the horizontal axis. As you can see in Figure 1, the graph of the polynomial
crosses the horizontal axis at x = −6, x = 1, and x = 5. Note that at each of these
intercepts, the y-value (function value) equals zero. The zeros of the polynomial are

The converse is the statement “If a is a zero of a polynomial p(x), then x− a is a factor of p(x).” You’ll7

encounter this converse in a college algebra course.
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x

y
p

(5, 0)(1, 0)
(−6, 0)

Figure 1. A function is zero where its
graph crosses the horizontal axis.

−6, 1, and 5. Therefore the x-intercepts of the graph of the polynomial are located at
(−6, 0), (1, 0), and (5, 0).

Let’s use these ideas to plot the graphs of several polynomials.

I Example 9. Sketch the graph of the polynomial in Example 6.

In Example 6, the polynomial p(x) = x3 + 2x2 − 25x − 50 factored into linear
factors

p(x) = (x+ 5)(x− 5)(x+ 2).

Consequently, the zeros of the polynomial were −5, 5, and −2. Thus, the x-intercepts
of the graph of the polynomial are located at (−5, 0), (5, 0), and (−2, 0).

The polynomial p(x) = x3 +2x2−25x−50 has leading term x3. Consequently, as we
swing our eyes from left to right, the graph of the polynomial p must rise from negative
infinity, wiggle through its x-intercepts, then continue to rise to positive infinity. We
have no choice but to sketch a graph similar to that in Figure 2.

Note that there are two “turning points” of the polynomial in Figure 2. You might
ask how we knew where to put these “turning points” of the polynomial. The answer
is “we didn’t know where to put them.” We know they have to be there, but we don’t
know their precise location.8 That’s why we haven’t scaled the vertical axis, because
without the aid of a calculator, it’s hard to determine the precise location of the turning
points shown in Figure 2.

However, note that knowledge of the end-behavior and the zeros of the polynomial
allows us to construct a reasonable facsimile of the actual graph. If we want more accu-
racy than a rough approximation provides, such as the accuracy displayed in Figure 2,
we’ll have to use our graphing calculator, as demonstrated in Figure 3.

Finding these “turning points” or local extrema is an exercise that calculus students regularly perform.8
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x

y
p

(5, 0)
(−5, 0) (−2, 0)

100

−100
Figure 2. The graph rises from neg-
ative infinity, wiggles through its x-
intercepts, then rises to positive infin-
ity.

Figure 3. The graph of p(x) = x3 + 2x2 − 25x − 50 and
the window settings used.

We’ll have more to say about the “turning points” (relative extrema) in the next
section. For now, let’s continue to focus on the end-behavior and the zeros.

Let’s look at another example.

I Example 10. Sketch the graph of the polynomial in Example 7.

In Example 7, the polynomial p(x) = x4 +2x3−16x2−32x factored into a product
of linear factors

p(x) = x(x+ 4)(x− 4)(x+ 2).

Consequently, the zeros of the polynomial are 0, −4, 4, and −2. Thus, the x-intercepts
of the graph of the polynomial are located at (0, 0), (−4, 0), (4, 0) and (−2, 0).

The polynomial p(x) = x4 + 2x3 − 16x2 − 32x has leading term x4. Consequently,
as we swing our eyes from left to right, the graph of the polynomial p must fall from
positive infinity, wiggle through its x-intercepts, then rise back to positive infinity. We
have no choice but to sketch a graph similar to that in Figure 4.
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x

y
p

(−4, 0)
(−2, 0) (0, 0)

(4, 0)

100

−100
Figure 4. The graph falls from pos-
itive infinity, wiggles through its x-
intercepts, then rises back to positive
infinity.

Again, we can draw a sketch of the graph without the use of the calculator, using
only the end-behavior and zeros of the polynomial. However, if we want the accuracy
depicted in Figure 4, particularly finding correct locations of the “turning points,”
we’ll have to resort to the use of a graphing calculator. This is shown in Figure 5.

Figure 5. The graph of p(x) = x4 − 20x2 + 64 and the
window settings used.

Let’s look at a final example that requires factoring out a greatest common factor
followed by the ac-test.

I Example 11. Find the zeros of the polynomial

p(x) = 4x3 − 2x2 − 30x.

First, notice that each term of this trinomial is divisible by 2x. This is the greatest
common divisor, or equivalently, the greatest common factor. You should always look
to factor out the greatest common factor in your first step.

p(x) = 4x3 − 2x2 − 30x
= 2x[2x2 − x− 15]
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Next, compare the trinomial 2x2 − x − 15 with ax2 + bx + c and note that ac = −30.
The integer pair {5,−6} has product −30 and sum −1. Rewrite the middle term of
2x2 − x− 15 in terms of this pair and factor by grouping.

p(x) = 2x[2x2 + 5x− 6x− 15]
= 2x[x(2x+ 5)− 3(2x+ 5)]
= 2x(x− 3)(2x+ 5)

(12)

To find the zeros, we need to solve the polynomial equation p(x) = 0, or equivalently,

2x(x− 3)(2x+ 5) = 0.

Using the zero product property, either

2x = 0, or x− 3 = 0, or 2x+ 5 = 0.

Each of these linear factors can be solved independently. Thus, either

x = 0, or x = 3, or x = −5
2
.

Thus, the zeros of the polynomial are 0, 3, and −5/2.
Alternatively, one can factor out a 2 from the third factor in equation (12).

p(x) = 2x(x− 3)(2)
(
x+ 5

2

)
= 4x(x− 3)

(
x+ 5

2

)
In this form,

• x is a factor, so x = 0 is a zero,
• x− 3 is a factor, so x = 3 is a zero, and
• x+ 5/2 is a factor, so x = −5/2 is a zero.

The leading term of p(x) = 4x3− 2x2− 30x is 4x3, so as our eyes swing from left to
right, the graph of the polynomial must rise from negative infinity, wiggle through its
zeros, then rise to positive infinity. The graph must therefore be similar to that shown
in Figure 6.

Again, the intercepts and end-behavior provide ample clues to the shape of the
graph, but, if we want the accuracy portrayed in Figure 6, then we must rely on the
graphing calculator. The graph and window settings used are shown in Figure 7.
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x

y

p

(−5/2, 0) (0, 0)
(3, 0)

50

−50
Figure 6. The graph rises from nega-
tive infinity, wiggles through its zeros,
then rises to positive infinity.

Figure 7. The graph of p(x) = 4x3 − 2x2 − 30x and the
window settings used.
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6.2 Exercises

In Exercises 1-6, use direct substitu-
tion to show that the given value is a
zero of the given polynomial.

1. p(x) = x3−3x2−13x+15, x = −3

2. p(x) = x3 − 2x2 − 13x− 10, x = −2

3. p(x) = x4 − x3 − 12x2, x = 4

4. p(x) = x4 − 2x3 − 3x2, x = −1

5. p(x) = x4 + x2 − 20, x = −2

6. p(x) = x4 + x3 − 19x2 + 11x + 30,
x = −1

In Exercises 7-28, identify all of the
zeros of the given polynomial without
the aid of a calculator. Use an alge-
braic technique and show all work (fac-
tor when necessary) needed to obtain the
zeros.

7. p(x) = (x− 2)(x+ 4)(x− 5)

8. p(x) = (x− 1)(x− 3)(x+ 8)

9. p(x) = −2(x− 3)(x+ 4)(x− 2)

10. p(x) = −3(x+ 1)(x− 1)(x− 8)

11. p(x) = x(x− 3)(2x+ 1)

12. p(x) = −3x(x+ 5)(3x− 2)

13. p(x) = −2(x+ 3)(3x− 5)(2x+ 1)

14. p(x) = 3(x− 2)(2x+ 5)(3x− 4)

15. p(x) = 3x3 + 5x2 − 12x− 20

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/9

16. p(x) = 3x3 + x2 − 12x− 4

17. p(x) = 2x3 + 5x2 − 2x− 5

18. p(x) = 2x3 − 5x2 − 18x+ 45

19. p(x) = x4 + 4x3 − 9x2 − 36x

20. p(x) = −x4 + 4x3 + x2 − 4x

21. p(x) = −2x4 − 10x3 + 8x2 + 40x

22. p(x) = 3x4 + 6x3 − 75x2 − 150x

23. p(x) = 2x3 − 7x2 − 15x

24. p(x) = 2x3 − x2 − 10x

25. p(x) = −6x3 + 4x2 + 16x

26. p(x) = 9x3 + 3x2 − 30x

27. p(x) = −2x7 − 10x6 + 8x5 + 40x4

28. p(x) = 6x5 − 21x4 − 45x3
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In Exercises 29-34, the graph of a poly-
nomial is given. Perform each of the fol-
lowing tasks.

i. Copy the image onto your homework
paper. Label and scale your axes,
then label each x-intercept with its
coordinates.

ii. Identify the zeros of the polynomial.

29.

x10

y
10

30.

x10

y
10

31.

x10

y
10

32.

x10

y
10

33.

x10

y
10

34.

x10

y
10
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For each of the polynomials in Exercises 35-
46, perform each of the following tasks.

i. Factor the polynomial to obtain the
zeros. Show your work.

ii. Set up a coordinate system on graph
paper. Label and scale the horizontal
axis. Use the zeros and end-behavior
to help sketch the graph of the poly-
nomial without the use of a calcula-
tor.

iii. Verify your result with a graphing cal-
culator.

35. p(x) = 5x3 + x2 − 45x− 9

36. p(x) = 4x3 + 3x2 − 64x− 48

37. p(x) = 4x3 − 12x2 − 9x+ 27

38. p(x) = x3 + x2 − 16x− 16

39. p(x) = x4 + 2x3 − 25x2 − 50x

40. p(x) = −x4 − 5x3 + 4x2 + 20x

41. p(x) = −3x4 − 9x3 + 3x2 + 9x

42. p(x) = 4x4 − 29x2 + 25

43. p(x) = −x3 − x2 + 20x

44. p(x) = 2x3 − 7x2 − 30x

45. p(x) = 2x3 + 3x2 − 35x

46. p(x) = −2x3 − 11x2 + 21x
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6.2 Answers

1. p(−3) = (−3)3−3(−3)2−13(−3)+
15 = 0

3. p(4) = 44 − 43 − 12(4)2 = 0

5. p(−2) = (−2)4 + (−2)2 − 20 = 0

7. −4, 2, and 5

9. −4, 2 and 3

11. −1/2, 0, and 3

13. −3, −1/2, and 5/3,

15. −2, −5/3, and 2

17. −5/2, −1, and 1

19. 0, −3, 3, and −4

21. 0, −2, 2, and −5

23. −3/2, 0, and 5

25. −4/3, 0, and 2

27. 0, −2, 2, and −5

29. Zeros: −4, 1, and 2

31. Zeros: −4, 0, and 5

33. Zeros: 0, 6, −3, 2

35.

x

y

(−3,0) (−1/5,0)
(3,0)

37.

x

y

(−3/2,0) (3/2,0)
(3,0)
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39.

x

y

(−5,0)
(−2,0) (0,0)

(5,0)

41.

x

y

(−3,0)
(−1,0) (0,0)

(1,0)
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43.

x

y

(−5,0)
(0,0) (4,0)

45.

x

y

(−5,0)
(0,0) (7/2,0)
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6.3 Extrema and Models
In the last section, we used end-behavior and zeros to sketch the graph of a given
polynomial. We also mentioned that it takes a semester of calculus to learn an analytic
technique used to calculate the “turning points” of the polynomial. That said, we’ll
still pursue the coordinates of the “turning points” in this section, but we will use the
graphing calculator to assist us in this quest; and then we will use this technique with
some applications.

Extrema
Before we begin, we’d first like to differentiate between local extrema and absolute
extrema.11 This is best accomplished by means of an example. Consider, if you will,
the graphs of three polynomial functions in Figure 1.

In the first figure, Figure 1(a), the point A is the “absolute” lowest point on the
graph. Therefore, the y-value of point A is an absolute minimum value of the function.

In the second figure, Figure 1(b), there is no “absolute” highest point on the graph
(the graph goes up to positive infinity), nor is there an “absolute” lowest point on the
graph (the graph goes down to negative infinity). Therefore, this function has neither
an absolute minimum nor an absolute maximum.

However, point B in Figure 1(b) is the highest point in its immediate neighbor-
hood. If you wander too far to the right, there are points on the graph higher than
point B, but locally point B is the highest point. Therefore, the y-value of point B is
called a local maximum value of the function.

Similarly, point C in Figure 1(b) is the lowest point in its immediate neighborhood.
If you wander too far to the left, there are points on the graph lower than point C,
but, in its neighborhood, point C is the lowest point. Therefore, the y-value of point
C is called a local minimum of the function.

x

y

A

x

y

B

C

x

y

D

E

F
(a) (b) (c)

Figure 1. Differentiating between local and absolute extrema.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/10

The term extrema, the plural of extremum, is a mathematical term that is used to refer to absolute11

or local maxima or minima of a function. Note: Some mathematicians prefer the words global and
relative to the words absolute and local. They are equivalent.
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Finally, take a look at the graph in Figure 1(c). Point F is the “absolute” lowest
point on the graph, so the y-value of point F is an absolute minimum of the function.
On the other hand, there is no highest point on the graph in Figure 1(c), as each end
of the graph escapes to positive infinity. Hence, the function has no absolute maximum.

Locally, point D in Figure 1(c) is the lowest point, so the y-value of point D is a
local minimum of the function. Similarly, in its immediate neighborhood, point E is
the highest point, so the y-value of point E is a local maximum.

We now present the formal definitions.

Definition 1. Suppose that c is in the domain of a function f and f(c) ≥ f(x)
for all x in the domain of f . Then we say that f(c) is an absolute maximum of
the function f . Similarly, if f(c) ≤ f(x) for all x in the domain of f , then f(c) is
an absolute minimum of the function f .

The definition of local extrema is less restrictive.

Definition 2. Let c be in the domain of f . If f(c) ≥ f(x) for all x in a neigh-
borhood containing c, then we say that f(c) is a local maximum of the function f .
On the other hand, if f(c) ≤ f(x) for all x in a neighborhood containing c, then
we say that f(c) is a local minimum of the function f .

When mathematicians say “a neighborhood containing c,” they usually mean a
small open interval (a, b) that contains c.

Let’s explore the use of the graphing calculator in finding extrema.

I Example 3. Consider the polynomial function defined by the equation

p(x) = 2(x− 6)(x+ 2)(x+ 4). (4)

Use the graphing calculator to help find and classify all extrema of this function.

First, how much of the graph can you draw without the use of a calculator? The
linear factors of p(x) are x − 6, x + 2, and x + 4, so the zeros are 6, −2, and −4,
respectively. So we now know where the graph of p(x) crosses the x-axis.

To determine the end-behavior of p(x), we need to determine the leading term. It
is not necessary to completely expand the polynomial with the distributive property.12

A little thought quickly reveals that if we were to do just that, the leading term in
this case would be 2x3. Consequently, as we sweep our eyes from left to right, the
end-behavior of the polynomial should match that of its leading term 2x3, rising from
negative infinity, wiggling through its x-intercepts, then rising to positive infinity. The
only choice is a graph similar to that in Figure 2.

However, the careful reader will quietly use the distributive property to expand equation (4) to see12

that this is so.



Section 6.3 Extrema and Models 585

Version: Fall 2007

x

y

(−2, 0)(−4, 0)
(6, 0)

Figure 2. The graph of p(x) = 2(x−
6)(x+ 2)(x+ 4) rises from negative in-
finity, wiggles through its x-intercepts,
then continues to rise to positive infin-
ity.

Note that the graph achieves a local maximum somewhere near x = −3 and a local
minimum at approximately x = 3. We can find better approximations of the local
extrema by using the maximum and minimum utilities in the CALC menu of the graphing
calculator.

• First, plot the graph of the polynomial p(x) = 2(x− 6)(x+ 2)(x+ 4), as shown in
Figure 3(a), using the window parameters shown in Figure 3(b).

• Open the CALCULATE menu by pressing 2nd CALC. This reveals a menu of choices
as shown in Figure 3(c). To start the utility to help find the local maximum near
x = −3 (see Figure 2), press 4:maximum on the menu.

• The utility responds by asking for a “Left Bound.” Use the arrow keys to move the
cursor slightly left of the local maximum near x = −3, as shown in Figure 3(d),
then press the ENTER key.

(a) (b) (c) (d)
Figure 3. Using the graphing calculator to determine the local maximum.

• The utility responds by asking for a “Right Bound.” Use the arrow keys to move
the cursor slightly to the right of the local maximum near x = −3, as shown in
Figure 4(e), then press the ENTER key.

• The utility responds by asking for a “Guess.” Move the cursor so that it lies between
the “Left Bound” and “Right Bound” made earlier, as shown in Figure 4(f), then
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press the ENTER key. Anywhere between the left bound and right bound (note marks
at top of screen in Figure 4(f)) will do.

(e) (f) (g)
Figure 4. Using the graphing calculator to determine the local maximum (continued).

• The calculator responds by placing the cursor at the point where the local maxi-
mum occurs and reports its coordinates at the bottom of the screen, as shown in
Figure 4(g).

The coordinates of the point where the local maximum occurs are approximately

(−3.055047, 18.055217).

We say that the function achieves a local maximum value of 18.055217 and that maxi-
mum occurs at x ≈ −3.055047.

In a similar manner, one can use the minimum utility in the CALC menu to find the
local minimum that occurs near x = 3, as shown in Figure 5.

Figure 5. Use the minimum utility to
find the local minimum.

The coordinates of the point where the local minimum occurs are approximately

(3.0550516,−210.0552).

We say that the function achieves a local minimum value of −210.0552 and that mini-
mum occurs at x ≈ 3.0550516.
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Applications
In this section we will look at some applications that are modeled by polynomials.

I Example 5. A square piece of cardboard measures 24 inches per side. John cuts
four smaller squares from each corner of the cardboard, tossing the material aside.
He then bends up the sides of the remaining cardboard to form an open box with no
top. Find the dimensions of the squares cut from each corner of the original piece of
cardboard so that John maximizes the resulting volume of the box.

Let x represent the length of the side of the square cut from each corner of the
larger square (see Figure 6(a)). Because each side of the original square measures 24
inches, and we’re cutting two lengths of x inches off each end, the resulting length and
width of the box is 24− 2x inches (see Figure 6(a) and/or (b)). When we toss away
the square corners, then fold up the sides, we get a box with the dimensions shown in
Figure 6(b).

x

x

x

x

x

x

x

x

24− 2x

24− 2x

24
−

2x 24
−

2x

24− 2x

24− 2x
x

(a) (b)
Figure 6. Material and resulting box.

Because the volume of a box is computed by taking the product of the length and width
of the base, multiplied by the height of the box, the volume of the box is given by the
formula

V = x(24− 2x)(24− 2x). (6)

We can simplify equation (6) somewhat. Take a factor of 2 from each factor of 24−2x,
as in

V = x(2)(12− x)(2)(12− x),

then combine factors to write

V = 4x(12− x)2. (7)
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We see that x and 12− x are linear factors of V . Hence, the zeros of V are 0 and 12,
respectively. Because 12−x is used as a factor twice, 2 is a “double root,” so the graph
should be tangent13 to the x-axis at x = 2.

If we were to expand equation (7) completely, we would get a polynomial with
leading term 4x3. Hence, the end-behavior of our volume polynomial should match
the end-behavior of its leading term, rising from negative infinity, wiggling through it
zeros, then rising to positive infinity. However, because we have a “double root” at
x = 2, we expect the graph to “kiss” the horizontal axis at this zero rather than pass
through this zero.

Thus, the only possible shape the volume polynomial can assume is that shown in
Figure 7.

x20

V
1200

(0, 0)
(12, 0)

Figure 7. The volume of the box as
a function of the edge length of the re-
moved squares.

The domain of the polynomial defined by equation (7) is the set of all real numbers,
or, in interval notation, (−∞,∞). In Figure 7, if you project all the points on the
graph onto the x-axis, the entire x-axis would be shaded, further indicating that the
domain of the volume function is all real numbers.

However, this mathematical domain (−∞,∞) ignores the fact that x represents
the length of the square cut from each corner of the original square of cardboard (see
Figure 6(a)). You cannot cut a square having a side of negative length. Upon further
inspection, the largest square that could be cut from each corner would have an edge
measuring 12 inches. Remember, you have to cut four squares, one from each corner,
and the edge of the original square piece of cardboard measures just 24 inches. Thus,
the problem constrains x to the interval [0, 12]. This domain is called the empirical
domain, or, if you will, the practical domain.

This is similar to the graph of y = (x − 2)2. The graph is a parabola that “kisses” the x-axis at its13

vertex (2, 0). This point of tangency is typical of all “double roots.”
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Definition 8. The empirical domain of a function is a subset of the mathematical
domain, restricted so as to satisfy the constraints of the model.

Thus, only a portion of the graph in Figure 7 makes sense for this application—
the part that is drawn over the empirical domain [0, 12], as shown in Figure 8.

x

V

0 120

1200

Figure 8. Sketching the volume function
over the empirical domain [0, 12].

Remember, the original goal was to find the value of x that would maximize the
volume of the box. A quick glance at the graph in Figure 8 shows that there is an
absolute maximum (at least on the empirical domain [0, 12]) near x = 4. To obtain a
better approximation, use the maximum utility in the CALC menu on your calculator, as
we did to obtain the approximation shown in Figure 9(b).

(a) (b)
Figure 9. Finding the length of the edge that maximizes the
volume of the box.

Indeed, it would appear that a maximum volume of 1024 cubic inches (V = 1024 in3)
is attained at x ≈ 3.9999985. It’s probably safe to say that the maximum volume occurs
if squares having sides of length 4 inches are cut from the corners of the original piece
of cardboard. The 3.9999985 probably contains a bit of error due to roundoff error on
the calculator. Indeed, it is highly likely that some readers will get exactly x = 4 when
they use the maximum utility, depending on the bounds and initial guess used, so don’t
be worried if your calculator approximation differs slightly from ours.
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Let’s look at another example.

I Example 9. Find the dimensions of the rectangle of largest area that has its base
on the x-axis and its other two vertices above the x-axis and lying on the graph of the
parabola y = 4− x2.

The graph of y = 4− x2 is a parabola that opens downward and is shifted upward
4 units. The right side of this equation factors

y = (2 + x)(2− x),

so the zeros of this function are −2 and 2. Because the rectangle has its base on the
x-axis and its other vertices are on the parabola lying above the x-axis, we need only
sketch the parabola on the domain [−2, 2] (see Figure 10).

x

y

−2 2

5

4− x2

xx

(x, 4− x2)

Figure 10. A rectangle
inscribed under a parabola.

Because of symmetry, we can restrict x to the empirical domain [0, 2]. In Figure 10,
note that we’ve selected a value of x from [0, 2], then plotted the point having this x-
value on the parabola. Of course, the y-value of this point is y = 4 − x2. Thus, the
height of the rectangle is 4− x2 and the base (or width) of the rectangle is twice x, or
2x. The area of the rectangle is given by

A = width · height.

Hence, the area A as a function of x is given by the polynomial

A = 2x(4− x2). (10)

Note that equation (10) is a third degree polynomial having leading term −2x3.
Thus, the graph of the polynomial, as we sweep our eyes from left to right, must fall
from positive infinity, wiggle through its x-intercepts, then continue falling to negative
infinity.

We can factor equation (10) to obtain
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A = 2x(2 + x)(2− x).

Therefore, the zeros of the polynomial are 0, −2, and 2, respectively. Thus, the poly-
nomial must have shape similar to that shown in Figure 11. Note that the graph has
x-intercepts at (−2, 0), (0, 0), and (2, 0).

x10

A
10

Figure 11. The graph of the polyno-
mial A = 2x(2 + x)(2− x).

Because of the practical nature of this problem, we need to restrict x to the empirical
domain [0, 2], as discussed above (see Figure 10). The graph of A = 2x(2 +x)(2− x),
restricted to the domain [0, 2], is shown in Figure 12.

x

A

0 210

10

Figure 12. The graph of the polynomial
A = 2x(2 + x)(2− x) restricted to the em-
pirical domain [0, 2].

It appears (see Figure 12) that A achieves an absolute maximum (at least on the
empirical domain [0, 2]) near x ≈ 1.2. To obtain a better approximation, use the
maximum utility in the CALC menu of the graphing calculator, as we did to obtain the
approximation shown in Figure 13(b).
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(a) (b)
Figure 13. Use the maximum utility to obtain an approxima-
tion of the maximum value of A.

The result in Figure 13(b) shows that we achieve a rectangle of maximum area
A ≈ 6.1584029 if we choose x ≈ 1.1547002. Remember, your answers may differ
slightly according to the left and right bounds you select, your guess, and also due to
the inherent roundoff error in all calculators.
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6.3 Exercises

In Exercises 1-8, perform each of the
following tasks for the given polynomial.

i. Without the aid of a calculator, use
an algebraic technique to identify the
zeros of the given polynomial. Factor
if necessary.

ii. On graph paper, set up a coordinate
system. Label each axis, but scale
only the x-axis. Use the zeros and
the end-behavior to draw a “rough
graph” of the given polynomial with-
out the aid of a calculator.

iii. Classify each local extrema as a rela-
tive minimum or relative maximum.
Note: It is not necessary to find the
coordinates of the relative extrema.
Indeed, this would be difficult with-
out a calculator. All that is required
is that you label each extrema as a
relative maximum or minimum.

1. p(x) = (x+ 6)(x− 1)(x− 5)

2. p(x) = (x+ 2)(x− 4)(x− 7)

3. p(x) = x3 − 6x2 − 4x+ 24

4. p(x) = x3 + x2 − 36x− 36

5. p(x) = 2x3 + 5x2 − 42x

6. p(x) = 2x3 − 3x2 − 44x

7. p(x) = −2x3 + 4x2 + 70x

8. p(x) = −6x3 − 21x2 + 90x

In Exercises 9-16, perform each of the
following tasks for the given polynomial.

i. Use a graphing calculator to draw the

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/14

graph of the polynomial. Adjust the
viewing window so that the extrema
or “turning points” of the polynomial
are visible in the viewing window. Copy
the resulting image onto your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax.

ii. Use the maximum and/or minimum util-
ity in your calculator’s CALC menu to
find the coordinates of the extrema.
Label each extremum on your home-
work copy with its coordinates and
state whether the extremum is a rel-
ative or absolute maximum or mini-
mum.

9. p(x) = x3 − 8x2 − 5x+ 84

10. p(x) = x3 + 3x2 − 33x− 35

11. p(x) = −x3 + 21x− 20

12. p(x) = −x3 + 5x2 + 12x− 36

13. p(x) = x4 − 50x2 + 49

14. p(x) = x4 − 29x2 + 100

15. p(x) = x4− 2x3− 39x2 + 72x+ 108

16. p(x) = x4 − 3x3 − 31x2 + 63x+ 90

17. A square piece of cardboard mea-
sures 12 inches per side. Cherie cuts four
smaller squares from each corner of the
cardboard square, tossing the material
aside. She then bends up the sides of
the remaining cardboard to form an open
box with no top. Find the dimensions
of the squares cut from each corner of
the original piece of cardboard so that
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Cherie maximizes the volume of the re-
sulting box. Perform each of the follow-
ing steps in your analysis.

a) Set up an equation that determines
the volume of the box as a function
of x, the length of the edge of each
square cut from the four corners of
the cardboard. Include any pictures
used to determine this volume func-
tion.

b) State the empirical domain of the
function created in part (a). Use your
calculator to sketch the graph of the
function over this empirical domain.
Adjust the viewing window so that
all extrema are visible in the viewing
window.

c) Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Use the max-
imum utility to find the coordinates
of the absolute maximum on the func-
tion’s empirical domain.

d) What are the measures of the four
squares cut from each corner of the
original cardboard? What is the max-
imum volume of the box?

18. A rectangular piece of cardboard
measures 8 inches by 12 inches. Schuyler
cuts four smaller squares from each cor-
ner of the cardboard square, tossing the
material aside. He then bends up the
sides of the remaining cardboard to form
an open box with no top. Find the di-
mensions of the squares cut from each
corner of the original piece of cardboard
so that Schuyler maximizes the volume
of the resulting box. Perform each of the
following steps in your analysis.

a) Set up an equation that determines

the volume of the box as a function
of x, the length of the edge of each
square cut from the four corners of
the cardboard. Include any pictures
used to determine this volume func-
tion.

b) State the empirical domain of the
function created in part (a). Use your
calculator to sketch the graph of the
function over this empirical domain.
Adjust the viewing window so that
all extrema are visible in the viewing
window.

c) Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Use the max-
imum utility to find the coordinates
of the absolute maximum on the func-
tion’s empirical domain.

d) What are the measures of the four
squares cut from each corner of the
original cardboard? What is the max-
imum volume of the box?

19. Restrict the graph of the parabola
y = 4− x2/4 to the first quadrant, then
inscribe a rectangle inside the parabola,
as shown in the figure that follows.

x

y

(x, y)

a) Express the area of the inscribed rec-
tangle as a function of x.

b) State the empirical domain of the
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function defined in part (a). Use your
calculator to graph the area function
over its empirical domain. Adjust the
window parameters so that all extrema
are visible in the viewing window.

c) Copy the image in your viewing win-
dow to your homework paper. Label
and scale each axis with xmin, xmax,
ymin, and ymax. Use the maximum
utility to find the coordinates of the
absolute maximum on the function’s
empirical domain. Label your graph
with this result.

d) What are the dimensions of the rec-
tangle of maximum area?

20. Restrict the graph of the parabola
y = 4− x2/4 to the first quadrant, then
inscribe a triangle inside the parabola, as
shown in the figure that follows.

x

y

(x, y)

a) Express the area of the inscribed tri-
angle as a function of x.

b) State the empirical domain of the
function defined in part (a). Use your
calculator to graph the area function
over its empirical domain. Adjust the
window parameters so that all extrema
are visible in the viewing window.

c) Copy the image in your viewing win-
dow to your homework paper. Label
and scale each axis with xmin, xmax,
ymin, and ymax. Use the maximum

utility to find the coordinates of the
absolute maximum on the function’s
empirical domain. Label your graph
with this result.

d) What are the length of the base and
height of the triangle of maximum
area?



596 Chapter 6 Polynomial Functions

Version: Fall 2007

6.3 Answers

1.

x

y

(−6,0)
(1,0) (5,0)

Local Maximum

Local Minimum

3.

x

y

(−2,0)
(2,0) (6,0)

Local Maximum

Local Minimum

5.

x

y

(−6,0)
(0,0) (7/2,0)

Local Maximum

Local Minimum

7.

x

y

(−5,0) (0,0)
(7,0)

Local Minimum

Local Maximum

9. Relative max: (−0.2960664, 84.753138)
Relative min: (5.6293978,−19.27166)
Answers may differ slightly due to round-
off error.

x
−10 10

y

−100

100

p(x)=x3−8x2−5x+84

(−0.2960664,84.753138)(−0.2960664,84.753138)

(5.6293978,−19.27166)(5.6293978,−19.27166)
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11. Relative min: (−2.645751,−57.04052)

Relative max: (2.6457518, 17.040518)
Answers may differ slightly due to round-
off error.

x
−10 10

y

−100

100

p(x)=−x3+21x−20

(−2.645751,−57.04052)(−2.645751,−57.04052)

(2.6457518,17.040518)(2.6457518,17.040518)

13. Absolute min: (−5,−576)
Relative max: (0, 49)
Absolute min: (5,−576)
Answers may differ slightly due to round-
off error.

x
−10 10

y

−600

600
p(x)=x4−50x2+49

(−5,−576)(−5,−576)

(0,49)(0,49)

(5,−576)(5,−576)

15. Absolute min: (−4.189858,−423.0327)

Relative max: (0.89817915, 140.40823)
Relative min: (4.7876796,−135.313)
Answers may differ slightly due to round-
off error.

x
−10 10

y

−500

500
p(x)=x4−2x3−39x2+72x+108

(−4.189858,−423.0327)(−4.189858,−423.0327)

(0.89817915,140.40823)(0.89817915,140.40823)

(4.7876796,−135.313)(4.7876796,−135.313)

17.

a) V = x(12− 2x)2

b) [0, 6]

c) Absolute max: (2, 128)

x
0 6

V

0

200

V (x)=x(12−2x)2

(2,128)(2,128)

d) Cut square 2 inches on a side to pro-
duce a box having value 128 in3.
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19.

a) A = x(4− x2/4)

b) [0, 4]

c) Absolute max: (2.3094011, 6.1584029)

x
0 4

A

0

10

V (x)=x(4−x2/4)

(2.3094011,6.1584029)(2.3094011,6.1584029)

d) x = 2.3094011, y = 2.6666666
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7 Rational Functions
In this chapter, we begin our study of rational functions — functions of the form
p(x)/q(x), where p and q are both polynomials. Rational functions are similar in
structure to rational numbers (commonly thought of as fractions), and they are studied
and used extensively in mathematics, engineering, and science.

We will learn how to manipulate these functions, and discover the myriad algebraic
tricks and pitfalls that accompany them. We will also see some of the ways that they
can be applied to everyday situations, such as modeling the length of time it takes a
group of people to complete a task, or calculating the distance traveled by an object.

In more advanced mathematics courses, such as college algebra and calculus, you
will learn even more about the intricate nature of rational functions. In many science
and engineering courses, you will use rational functions to model what you are studying.
In your everyday life, you can use rational functions for a number of useful calculations,
such as the amount of time or work that a given task might require. For these reasons,
along with the fact that learning how to manipulate rational functions will further your
understanding of mathematics, this chapter warrants a good deal of attention.
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7.1 Introducing Rational Functions
In the previous chapter, we studied polynomials, functions having equation form

p(x) = a0 + a1x+ a2x2 + · · ·+ anxn. (1)

Even though this polynomial is presented in ascending powers of x, the leading term
of the polynomial is still anxn, the term with the highest power of x. The degree of
the polynomial is the highest power of x present, so in this case, the degree of the
polynomial is n.

In this section, our study will lead us to the rational functions. Note the root word
“ratio” in the term “rational.” Does it remind you of the word “fraction”? It should,
as rational functions are functions in a very specific fractional form.

Definition 2. A rational function is a function that can be written as a quotient
of two polynomial functions. In symbols, the function

f(x) = a0 + a1x+ a2x2 + · · ·+ anxn

b0 + b1x+ b2x2 + · · ·+ bmxm
(3)

is called a rational function.

For example,

f(x) = 1 + x
x+ 2

, g(x) = x
2 − 2x− 3
x+ 4

, and h(x) = 3− 2x− x2

x3 + 2x2 − 3x− 5
(4)

are rational functions, while

f(x) = 1 +
√
x

x2 + 1
, g(x) = x2 + 2x− 3

1 + x1/2 − 3x2 , and h(x) =
√
x2 − 2x− 3
x2 + 4x− 12

(5)

are not rational functions.
Each of the functions in equation (4) are rational functions, because in each case,

the numerator and denominator of the given expression is a valid polynomial.
However, in equation (5), the numerator of f(x) is not a polynomial (polynomials

do not allow the square root of the independent variable). Therefore, f is not a rational
function.

Similarly, the denominator of g(x) in equation (5) is not a polynomial. Fractions
are not allowed as exponents in polynomials. Thus, g is not a rational function.

Finally, in the case of function h in equation (5), although the radicand (the
expression inside the radical) is a rational function, the square root prevents h from
being a rational function.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1
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An important skill to develop is the ability to draw the graph of a rational function.
Let’s begin by drawing the graph of one of the simplest (but most fundamental) rational
functions.

The Graph of y = 1/x
In all new situations, when we are presented with an equation whose graph we’ve not
considered or do not recognize, we begin the process of drawing the graph by creating
a table of points that satisfy the equation. It’s important to remember that the graph
of an equation is the set of all points that satisfy the equation. We note that zero is
not in the domain of y = 1/x (division by zero makes no sense and is not defined), and
create a table of points satisfying the equation shown in Figure 1.

x10

y
10

x y = 1/x
−3 −1/3
−2 −1/2
−1 −1
1 1
2 1/2
3 1/3

Figure 1. At the right is a table of points satisfying the equation y =
1/x. These points are plotted as solid dots on the graph at the left.

At this point (see Figure 1), it’s pretty clear what the graph is doing between
x = −3 and x = −1. Likewise, it’s clear what is happening between x = 1 and x = 3.
However, there are some open areas of concern.

1. What happens to the graph as x increases without bound? That is, what happens
to the graph as x moves toward ∞?

2. What happens to the graph as x decreases without bound? That is, what happens
to the graph as x moves toward −∞?

3. What happens to the graph as x approaches zero from the right?
4. What happens to the graph as x approaches zero from the left?

Let’s answer each of these questions in turn. We’ll begin by discussing the “end-
behavior” of the rational function defined by y = 1/x. First, the right end. What
happens as x increases without bound? That is, what happens as x increases toward
∞? In Table 1(a), we computed y = 1/x for x equalling 100, 1 000, and 10 000. Note
how the y-values in Table 1(a) are all positive and approach zero.

Students in calculus use the following notation for this idea.

lim
x→∞
y = lim

x→∞

1
x

= 0 (6)
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They say “the limit of y as x approaches infinity is zero.” That is, as x approaches
infinity, y approaches zero.

x y = 1/x
100 0.01

1 000 0.001
10 000 0.0001

x y = 1/x
−100 −0.01
−1 000 −0.001
−10 000 −0.0001

(a) (b)
Table 1. Examining the end-behavior of y = 1/x.

A completely similar event happens at the left end. As x decreases without bound,
that is, as x decreases toward −∞, note that the y-values in Table 1(b) are all negative
and approach zero. Calculus students have a similar notation for this idea.

lim
x→−∞

y = lim
x→−∞

1
x

= 0. (7)

They say “the limit of y as x approaches negative infinity is zero.” That is, as x
approaches negative infinity, y approaches zero.

These numbers in Tables 1(a) and 1(b), and the ideas described above, predict the
correct end-behavior of the graph of y = 1/x. At each end of the x-axis, the y-values
must approach zero. This means that the graph of y = 1/x must approach the x-axis
for x-values at the far right- and left-ends of the graph. In this case, we say that the
x-axis acts as a horizontal asymptote for the graph of y = 1/x. As x approaches either
positive or negative infinity, the graph of y = 1/x approaches the x-axis. This behavior
is shown in Figure 2.

x10

y
10

Figure 2. The graph of 1/x ap-
proaches the x-axis as x increases or
decreases without bound.

Our last investigation will be on the interval from x = −1 to x = 1. Readers are
again reminded that the function y = 1/x is undefined at x = 0. Consequently, we will
break this region in half, first investigating what happens on the region between x = 0
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and x = 1. We evaluate y = 1/x at x = 1/2, x = 1/4, and x = 1/8, as shown in the
table in Figure 3, then plot the resulting points.

x10

y
10

x y = 1/x
1/2 2
1/4 4
1/8 8

Figure 3. At the right is a table of points satisfying the equation y =
1/x. These points are plotted as solid dots on the graph at the left.

Note that the x-values in the table in Figure 3 approach zero from the right, then
note that the corresponding y-values are getting larger and larger. We could continue
in this vein, adding points. For example, if x = 1/16, then y = 16. If x = 1/32, then
y = 32. If x = 1/64, then y = 64. Each time we halve our value of x, the resulting
value of x is closer to zero, and the corresponding y-value doubles in size. Calculus
students describe this behavior with the notation

lim
x→0+

y = lim
x→0+

1
x

=∞. (8)

That is, as “x approaches zero from the right, the value of y grows to infinity.” This is
evident in the graph in Figure 3, where we see the plotted points move closer to the
vertical axis while at the same time moving upward without bound.

A similar thing happens on the other side of the vertical axis, as shown in Figure 4.

x10

y
10

x y = 1/x
−1/2 −2
−1/4 −4
−1/8 −8

Figure 4. At the right is a table of points satisfying the equation y =
1/x. These points are plotted as solid dots on the graph at the left.
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Again, calculus students would write

lim
x→0−

y = lim
x→0−

1
x

= −∞. (9)

That is, “as x approaches zero from the left, the values of y decrease to negative infinity.”
In Figure 4, it is clear that as points move closer to the vertical axis (as x approaches
zero) from the left, the graph decreases without bound.

The evidence gathered to this point indicates that the vertical axis is acting as a
vertical asymptote. As x approaches zero from either side, the graph approaches the
vertical axis, either rising to infinity, or falling to negative infinity. The graph cannot
cross the vertical axis because the function is undefined there. The completed graph is
shown in Figure 5.

x10

y
10

Figure 5. The completed graph of
y = 1/x. Note how the x-axis acts as a
horizontal asymptote, while the y-axis
acts as a vertical asymptote.

The complete graph of y = 1/x in Figure 5 is called a hyperbola and serves as a
fundamental starting point for all subsequent discussion in this section.

We noted earlier that the domain of the function defined by the equation y = 1/x is
the set D = {x : x 6= 0}. Zero is excluded from the domain because division by zero is
undefined. It’s no coincidence that the graph has a vertical asymptote at x = 0. We’ll
see this relationship reinforced in further examples.
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Translations
In this section, we will translate the graph of y = 1/x in both the horizontal and vertical
directions.

I Example 10. Sketch the graph of

y = 1
x+ 3

− 4. (11)

Technically, the function defined by y = 1/(x + 3) − 4 does not have the general
form (3) of a rational function. However, in later chapters we will show how y =
1/(x+ 3)− 4 can be manipulated into the general form of a rational function.

We know what the graph of y = 1/x looks like. If we replace x with x+ 3, this will
shift the graph of y = 1/x three units to the left, as shown in Figure 6(a). Note that
the vertical asymptote has also shifted 3 units to the left of its original position (the
y-axis) and now has equation x = −3. By tradition, we draw the vertical asymptote
as a dashed line.

If we subtract 4 from the result in Figure 6(a), this will shift the graph in Figure 6(a)
four units downward to produce the graph shown in Figure 6(b). Note that the hori-
zontal asymptote also shifted 4 units downward from its original position (the x-axis)
and now has equation y = −4.

x10

y
10x = −3

x10

y
10x = −3

y = −4

(a) y = 1/(x + 3) (b) y = 1/(x + 3) − 4
Figure 6. Shifting the graph of y = 1/x.

If you examine equation (11), you note that you cannot use x = −3 as this will
make the denominator of equation (11) equal to zero. In Figure 6(b), note that
there is a vertical asymptote in the graph of equation (11) at x = −3. This is a
common occurrence, which will be a central theme of this chapter.
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Let’s ask another key question.

I Example 12. What are the domain and range of the rational function presented
in Example 10?

You can glance at the equation

y = 1
x+ 3

− 4

of Example 10 and note that x = −3 makes the denominator zero and must be
excluded from the domain. Hence, the domain of this function is D = {x : x 6= −3}.

However, you can also determine the domain by examining the graph of the function
in Figure 6(b). Note that the graph extends indefinitely to the left and right. One
might first guess that the domain is all real numbers if it were not for the vertical
asymptote at x = −3 interrupting the continuity of the graph. Because the graph of
the function gets arbitrarily close to this vertical asymptote (on either side) without
actually touching the asymptote, the graph does not contain a point having an x-value
equaling −3. Hence, the domain is as above, D = {x : x 6= −3}. This is comforting that
the graphical analysis agrees with our earlier analytical determination of the domain.

The graph is especially helpful in determining the range of the function. Note that
the graph rises to positive infinity and falls to negative infinity. One would first guess
that the range is all real numbers if it were not for the horizontal asymptote at y = −4
interrupting the continuity of the graph. Because the graph gets arbitrarily close to
the horizontal asymptote (on either side) without actually touching the asymptote, the
graph does not contain a point having a y-value equaling −4. Hence, −4 is excluded
from the range. That is, R = {y : y 6= −4}.

Scaling and Reflection
In this section, we will both scale and reflect the graph of y = 1/x. For extra measure,
we also throw in translations in the horizontal and vertical directions.

I Example 13. Sketch the graph of

y = − 2
x− 4

+ 3. (14)

First, we multiply the equation y = 1/x by −2 to get

y = −2
x
.

Multiplying by 2 should stretch the graph in the vertical directions (both positive and
negative) by a factor of 2. Note that points that are very near the x-axis, when doubled,
are not going to stray too far from the x-axis, so the horizontal asymptote will remain
the same. Finally, multiplying by −2 will not only stretch the graph, it will also reflect
the graph across the x-axis, as shown in Figure 7(b).2

Recall that we saw similar behavior when studying the parabola. The graph of y = −2x2 stretched2

(vertically) the graph of the equation y = x2 by a factor of 2, then reflected the result across the x-axis.
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x10

y
10

x10

y
10

(a) y = 1/x (b) y = −2/x
Figure 7. Scaling and reflecting the graph of y = 1/x.

Replacing x with x− 4 will shift the graph 4 units to the right, then adding 3 will
shift the graph 3 units up, as shown in Figure 8. Note again that x = 4 makes the
denominator of y = −2/(x− 4) + 3 equal to zero and there is a vertical asymptote at
x = 4. The domain of this function is D = {x : x 6= 4}.

As x approaches positive or negative infinity, points on the graph of y = −2/(x−4)+
3 get arbitrarily close to the horizontal asymptote y = 3 but never touch it. Therefore,
there is no point on the graph that has a y-value of 3. Thus, the range of the function
is the set R = {y : y 6= 3}.

x10

y
10 x = 4

y = 3

Figure 8. The graph of y = −2/(x −
4) + 3 is shifted 4 units right and 3 units
up.
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Difficulties with the Graphing Calculator
The graphing calculator does a very good job drawing the graphs of “continuous func-
tions.”

A continuous function is one that can be drawn in one continuous stroke, never
lifting pen or pencil from the paper during the drawing.

Polynomials, such as the one in Figure 9, are continuous functions.

x10

y
50

Figure 9. A polynomial is a continu-
ous function.

Unfortunately, a rational function with vertical asymptote(s) is not a continuous func-
tion. First, you have to lift your pen at points where the denominator is zero, because
the function is undefined at these points. Secondly, it’s not uncommon to have to
jump from positive infinity to negative infinity (or vice-versa) when crossing a vertical
asymptote. When this happens, we have to lift our pen and shift it before continuing
with our drawing.

However, the graphing calculator does not know how to do this “lifting” of the pen
near vertical asymptotes. The graphing calculator only knows one technique, plot a
point, then connect it with a segment to the last point plotted, move an incremental
distance and repeat. Consequently, when the graphing calculator crosses a vertical
asymptote where there is a shift from one type of infinity to another (e.g., from positive
to negative), the calculator draws a “false line” of connection, one that it should not
draw. Let’s demonstrate this aberration with an example.

I Example 15. Use a graphing calculator to draw the graph of the rational function
in Example 13.

Load the equation into your calculator, as shown in Figure 10(a). Set the window
as shown in Figure 10(b), then push the GRAPH button to draw the graph shown in
Figure 10(c). Results may differ on some calculators, but in our case, note the “false
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line” drawn from the top of the screen to the bottom, attempting to “connect” the two
branches of the hyperbola.

Some might rejoice and claim, “Hey, my graphing calculator draws vertical as-
ymptotes.” However, before you get too excited, note that in Figure 8 the vertical
asymptote should occur at exactly x = 4. If you look very carefully at the “vertical
line” in Figure 10(c), you’ll note that it just misses the tick mark at x = 4. This “ver-
tical line” is a line that the calculator should not draw. The calculator is attempting
to draw a continuous function where one doesn’t exist.

(a) (b) (c)
Figure 10. The calculator attempts to draw a continuous function when it shouldn’t.

One possible workaround3 is to press the MODE button on your keyboard, which
opens the menu shown in Figure 11(a). Use the arrow keys to highlight DOT instead
of CONNECTED and press the ENTER key to make the selection permanent. Press the
GRAPH button to draw the graph in Figure 11(b).

(a) (b)
Figure 11. The same graph in “dot mode.”

This “dot mode” on your calculator calculates the next point on the graph and plots
the point, but it does not connect it with a line segment to the previously plotted
point. This mode is useful in demonstrating that the vertical line in Figure 10(c) is
not really part of the graph, but we lose some parts of the graph we’d really like to see.
Compromise is in order.

This example clearly shows that intelligent use of the calculator is a required com-
ponent of this course. The calculator is not simply a “black box” that automatically
does what you want it to do. In particular, when you are drawing rational functions,
it helps to know ahead of time the placement of the vertical asymptotes. Knowledge

Instructors might discuss a number of alternative strategies to represent rational functions on the3

graphing calculator. What we present here is only one of a number of approaches.
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of the asymptotes, coupled with what you see on your calculator screen, should enable
you to draw a graph as accurate as that shown in Figure 8.

Gentle reminder. You’ll want to set your calculator back in “connected mode.”
To do this, press the MODE button on your keyboard to open the menu in Figure 10(a)
once again. Use your arrow keys to highlight CONNECTED, then press the ENTER key to
make the selection permanent.
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7.1 Exercises

In Exercises 1-14, perform each of the
following tasks for the given rational func-
tion.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

ii. Use geometric transformations as in
Examples 10, 12, and 13 to draw the
graphs of each of the following ra-
tional functions. Draw the vertical
and horizontal asymptotes as dashed
lines and label each with its equa-
tion. You may use your calculator to
check your solution, but you should
be able to draw the rational function
without the use of a calculator.

iii. Use set-builder notation to describe
the domain and range of the given
rational function.

1. f(x) = −2/x

2. f(x) = 3/x

3. f(x) = 1/(x− 4)

4. f(x) = 1/(x+ 3)

5. f(x) = 2/(x− 5)

6. f(x) = −3/(x+ 6)

7. f(x) = 1/x− 2

8. f(x) = −1/x+ 4

9. f(x) = −2/x− 5

10. f(x) = 3/x− 5

11. f(x) = 1/(x− 2)− 3

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/4

12. f(x) = −1/(x+ 1) + 5

13. f(x) = −2/(x− 3)− 4

14. f(x) = 3/(x+ 5)− 2

In Exercises 15-22, find all vertical as-
ymptotes, if any, of the graph of the given
function.

15. f(x) = − 5
x+ 1

− 3

16. f(x) = 6
x+ 8

+ 2

17. f(x) = − 9
x+ 2

− 6

18. f(x) = − 8
x− 4

− 5

19. f(x) = 2
x+ 5

+ 1

20. f(x) = − 3
x+ 9

+ 2

21. f(x) = 7
x+ 8

− 9

22. f(x) = 6
x− 5

− 8

In Exercises 23-30, find all horizontal
asymptotes, if any, of the graph of the
given function.

23. f(x) = 5
x+ 7

+ 9

24. f(x) = − 8
x+ 7

− 4
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25. f(x) = 8
x+ 5

− 1

26. f(x) = − 2
x+ 3

+ 8

27. f(x) = 7
x+ 1

− 9

28. f(x) = − 2
x− 1

+ 5

29. f(x) = 5
x+ 2

− 4

30. f(x) = − 6
x− 1

− 2

In Exercises 31-38, state the domain
of the given rational function using set-
builder notation.

31. f(x) = 4
x+ 5

+ 5

32. f(x) = − 7
x− 6

+ 1

33. f(x) = 6
x− 5

+ 1

34. f(x) = − 5
x− 3

− 9

35. f(x) = 1
x+ 7

+ 2

36. f(x) = − 2
x− 5

+ 4

37. f(x) = − 4
x+ 2

+ 2

38. f(x) = 2
x+ 6

+ 9

In Exercises 39-46, find the range of
the given function, and express your an-
swer in set notation.

39. f(x) = 2
x− 3

+ 8

40. f(x) = 4
x− 3

+ 5

41. f(x) = − 5
x− 8

− 5

42. f(x) = − 2
x+ 1

+ 6

43. f(x) = 7
x+ 7

+ 5

44. f(x) = − 8
x+ 3

+ 9

45. f(x) = 4
x+ 3

− 2

46. f(x) = − 5
x− 4

+ 9
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7.1 Answers

1. D = {x : x 6= 0}, R = {y : y 6= 0}

x10

y
10

y=0

x=0

3. D = {x : x 6= 4}, R = {y : y 6= 0}

x10

y
10

y=0

x=4

5. D = {x : x 6= 5}, R = {y : y 6= 0}

x10

y
10

y=0

x=5

7. D = {x : x 6= 0}, R = {y : y 6= −2}

x10

y
10

y=−2

x=0

9. D = {x : x 6= 0}, R = {y : y 6= −5}

x10

y
10

y=−5

x=0

11. D = {x : x 6= 2}, R = {y : y 6=
−3}

x10

y
10

y=−3

x=2
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13. D = {x : x 6= 3}, R = {y : y 6=
−4}

x10

y
10

y=−4

x=3

15. Vertical asymptote: x = −1

17. Vertical asymptote: x = −2

19. Vertical asymptote: x = −5

21. Vertical asymptote: x = −8

23. Horizontal asymptote: y = 9

25. Horizontal asymptote: y = −1

27. Horizontal asymptote: y = −9

29. Horizontal asymptote: y = −4

31. Domain = {x : x 6= −5}

33. Domain = {x : x 6= 5}

35. Domain = {x : x 6= −7}

37. Domain = {x : x 6= −2}

39. Range = {y : y 6= 8}

41. Range = {y : y 6= −5}

43. Range = {y : y 6= 5}

45. Range = {y : y 6= −2}
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7.2 Reducing Rational Functions
The goal of this section is to learn how to reduce a rational expression to “lowest terms.”
Of course, that means that we will have to understand what is meant by the phrase
“lowest terms.” With that thought in mind, we begin with a discussion of the greatest
common divisor of a pair of integers.

First, we define what we mean by “divisibility.”

Definition 1. Suppose that we have a pair of integers a and b. We say that “a
is a divisor of b,” or “a divides b” if and only if there is another integer k so that
b = ak. Another way of saying the same thing is to say that a divides b if, upon
dividing b by a, the remainder is zero.

Let’s look at an example.

I Example 2. What are the divisors of 12?

Because 12 = 1× 12, both 1 and 12 are divisors6 of 12. Because 12 = 2× 6, both 2
and 6 are divisors of 12. Finally, because 12 = 3 × 4, both 3 and 4 are divisors of 12.
If we list them in ascending order, the divisors of 12 are

1, 2, 3, 4, 6, and 12.

Let’s look at another example.

I Example 3. What are the divisors of 18?

Because 18 = 1 × 18, both 1 and 18 are divisors of 18. Similarly, 18 = 2 × 9 and
18 = 3× 6, so in ascending order, the divisors of 18 are

1, 2, 3, 6, 9, and 18.

The greatest common divisor of two or more integers is the largest divisor the
integers share in common. An example should make this clear.

I Example 4. What is the greatest common divisor of 12 and 18?

In Example 2 and Example 3, we saw the following.

Divisors of 12 : 1 , 2 , 3 , 4, 6 , 12
Divisors of 18 : 1 , 2 , 3 , 6 , 9, 18

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/5

The word “divisor” and the word “factor” are synonymous.6
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We’ve framed the divisors that 12 and 18 have in common. They are 1, 2, 3, and 6. The
“greatest” of these “common” divisors is 6. Hence, we say that “the greatest common
divisor of 12 and 18 is 6.”

Definition 5. The greatest common divisor of two integers a and b is the largest
divisor they have in common. We will use the notation

GCD(a, b)

to represent the greatest common divisor of a and b.

Thus, as we saw in Example 4, GCD(12, 18) = 6.
When the greatest common divisor of a pair of integers is one, we give that pair a

special name.

Definition 6. Let a and b be integers. If the greatest common divisor of a and
b is one, that is, if GCD(a, b) = 1, then we say that a and b are relatively prime.

For example:

• 9 and 12 are not relatively prime because GCD(9, 12) = 3.
• 10 and 15 are not relatively prime because GCD(10, 15) = 5.
• 8 and 21 are relatively prime because GCD(8, 21) = 1.

We can now define what is meant when we say that a rational number is reduced
to lowest terms.

Definition 7. A rational number in the form p/q, where p and q are integers,
is said to be reduced to lowest terms if and only if GCD(p, q) = 1. That is, p/q
is reduced to lowest terms if the greatest common divisor of both numerator and
denominator is 1.

As we saw in Example 4, the greatest common divisor of 12 and 18 is 6. Therefore,
the fraction 12/18 is not reduced to lowest terms. However, we can reduce 12/18 to
lowest terms by dividing both numerator and denominator by their greatest common
divisor. That is,

12
18

= 12÷ 6
18÷ 6

= 2
3
.

Note that GCD(2, 3) = 1, so 2/3 is reduced to lowest terms.
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When it is difficult to ascertain the greatest common divisor, we’ll find it more
efficient to proceed as follows:

• Prime factor both numerator and denominator.
• Cancel common factors.

Thus, to reduce 12/18 to lowest terms, first express both numerator and denomi-
nator as a product of prime numbers, then cancel common primes.

12
18

= 2 · 2 · 3
2 · 3 · 3

= 2 · 2 · 3
2 · 3 · 3

= 2
3

(8)

When you cancel a 2, you’re actually dividing both numerator and denominator by 2.
When you cancel a 3, you’re actually dividing both numerator and denominator by 3.
Note that doing both (dividing by 2 and then dividing by 3) is equivalent to dividing
both numerator and denominator by 6.

We will favor this latter technique, precisely because it is identical to the technique
we will use to reduce rational functions to lowest terms. However, this “cancellation”
technique has some pitfalls, so let’s take a moment to discuss some common cancellation
mistakes.

Cancellation
You can spark some pretty heated debate amongst mathematics educators by innocently
mentioning the word “cancellation.” There seem to be two diametrically opposed camps,
those who don’t mind when their students use the technique of cancellation, and on
the other side, those that refuse to even use the term “cancellation” in their classes.

Both sides of the argument have merit. As we showed in equation (8), we can
reduce 12/18 quite efficiently by simply canceling common factors. On the other hand,
instructors from the second camp prefer to use the phrase “factor out a 1” instead of
the phrase “cancel,” encouraging their students to reduce 12/18 as follows.

12
18

= 2 · 2 · 3
2 · 3 · 3

= 2
3
· 2 · 3
2 · 3

= 2
3
· 1 = 2

3
This is a perfectly valid technique and one that, quite honestly, avoids the quicksand
of “cancellation mistakes.” Instructors who grow weary of watching their students
“cancel” when they shouldn’t are quite likely to promote this latter technique.

However, if we can help our students avoid “cancellation mistakes,” we prefer to
allow our students to cancel common factors (as we did in equation (8)) when reducing
fractions such as 12/18 to lowest terms. So, with these thoughts in mind, let’s discuss
some of the most common cancellation mistakes.

Let’s begin with a most important piece of advice.

How to Avoid Cancellation Mistakes. You may only cancel factors, not
addends. To avoid cancellation mistakes, factor completely before you begin to
cancel.
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Warning 9. Many of the ensuing calculations are incorrect. They are examples
of common mistakes that are made when performing cancellation. Make sure that
you read carefully and avoid just “scanning” these calculations.

As a first example, consider the rational expression
2 + 6

2
,

which clearly equals 8/2, or 4. However, if you cancel in this situation, as in
2 + 6

2
= 2 + 6

2
, (10)

you certainly do not get the same result. So, what happened?
Note that in the numerator of equation (10), the 2 and the 6 are separated by a

plus sign. Thus, they are not factors; they are addends! You are not allowed to cancel
addends, only factors.

Suppose, for comparison, that the rational expression had been
2 · 6
2
,

which clearly equals 12/2, or 6. In this case, the 2 and the 6 in the numerator are
separated by a multiplication symbol, so they are factors and cancellation is allowed,
as in

2 · 6
2

= 2 · 6
2

= 6. (11)

Now, before you dismiss these examples as trivial, consider the following examples
which are identical in structure. First, consider

x+ (x+ 2)
x

= x+ (x+ 2)
x

= x+ 2.

This cancellation is identical to that performed in equation (10) and is not allowed.
In the numerator, note that x and (x+2) are separated by an addition symbol, so they
are addends. You are not allowed to cancel addends!

Conversely, consider the following example.

x(x+ 2)
x

= x(x+ 2)
x

= x+ 2

In the numerator of this example, x and (x+2) are separated by implied multiplication.
Hence, they are factors and cancellation is permissible.

Look again at equation (10), where the correct answer should have been 8/2, or 4.
We mistakenly found the answer to be 6, because we cancelled addends. A workaround
would be to first factor the numerator of equation (10), then cancel, as follows.
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2 + 6
2

= 2(1 + 3)
2

= 2(1 + 3)
2

= 1 + 3 = 4

Note that we cancelled factors in this approach, which is permissible, and got the
correct answer 4.

Warning 12. We are finished discussing common cancellation mistakes and
you may not continue reading with confidence that all mathematics is correctly
presented.

Reducing Rational Expressions in x
Now that we’ve discussed some fundamental ideas and techniques, let’s apply what
we’ve learned to rational expressions that are functions of an independent variable
(usually x). Let’s start with a simple example.

I Example 13. Reduce the rational expression
2x− 6

x2 − 7x+ 12
(14)

to lowest terms. For what values of x is your result valid?

In the numerator, factor out a 2, as in 2x− 6 = 2(x− 3).
The denominator is a quadratic trinomial with ac = (1)(12) = 12. The integer pair

−3 and −4 has product 12 and sum −7, so the denominator factors as shown.

2x− 6
x2 − 7x+ 12

= 2(x− 3)
(x− 3)(x− 4)

.

Now that both numerator and denominator are factored, we can cancel common factors.

2x− 6
x2 − 7x+ 12

= 2(x− 3)
(x− 3)(x− 4)

= 2
x− 4

Thus, we have shown that
2x− 6

x2 − 7x+ 12
= 2
x− 4

. (15)

In equation (15), we are stating that the expression on the left (the original expres-
sion) is identical to the expression on the right for all values of x.

Actually, there are two notable exceptions, the first of which is x = 3. If we
substitute x = 3 into the left-hand side of equation (15), we get

2x− 6
x2 − 7x+ 12

= 2(3)− 6
(3)2 − 7(3) + 12

= 0
0

We cannot divide by zero, so the left-hand side of equation (15) is undefined if x = 3.
Therefore, the result in equation (15) is not valid if x = 3.



624 Chapter 7 Rational Functions

Version: Fall 2007

Similarly, if we insert x = 4 in the left-hand side of equation (15),

2x− 6
x2 − 7x+ 12

= 2(4)− 6
(4)2 − 7(4) + 12

= 2
0
.

Again, division by zero is undefined. The left-hand side of equation (15) is undefined
if x = 4, so the result in equation (15) is not valid if x = 4. Note that the right-hand
side of equation (15) is also undefined at x = 4.

However, the algebraic work we did above guarantees that the left-hand side of
equation (15) will be identical to the right-hand side of equation (15) for all other
values of x. For example, if we substitute x = 5 into the left-hand side of equation (15),

2x− 6
x2 − 7x+ 12

= 2(5)− 6
(5)2 − 7(5) + 12

= 4
2

= 2.

On the other hand, if we substitute x = 5 into the right-hand side of equation (15),
2
x− 4

= 2
5− 4

= 2.

Hence, both sides of equation (15) are identical when x = 5. In a similar manner, we
could check the validity of the identity in equation (15) for all other values of x.

You can use the graphing calculator to verify the identity in equation (15). Load
the left- and right-hand sides of equation (15) in Y= menu, as shown in Figure 1(a).
Press 2nd TBLSET and adjust settings as shown in Figure 1(b). Be sure that you
highlight AUTO for both independent and dependent variables and press ENTER on each
to make the selection permanent. In Figure 1(b), note that we’ve set TblStart = 0
and ∆Tbl = 1. Press 2nd TABLE to produce the tabular results shown in Figure 1(c).

(a) (b) (c)
Figure 1. Using the graphing calculator to check that the left- and right-hand sides of
equation (15) are identical.

Remember that we placed the left- and right-hand sides of equation (15) in Y1 and
Y2, respectively.

• In the tabular results of Figure 1(c), note the ERR (error) message in Y1 when
x = 3 and x = 4. This agrees with our findings above, where the left-hand side of
equation (15) was undefined because of the presence of zero in the denominator
when x = 3 or x = 4.

• In the tabular results of Figure 1(c), note that the value of Y1 and Y2 agree for all
other values of x.
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We are led to the following key result.

Restrictions. In general, when you reduce a rational expression to lowest terms,
the expression obtained should be identical to the original expression for all values
of the variables in each expression, save those values of the variables that make
any denominator equal to zero. This applies to the denominator in the original
expression, all intermediate expressions in your work, and the final result. We will
refer to any values of the variable that make any denominator equal to zero as
restrictions.

Let’s look at another example.

I Example 16. Reduce the expression

2x2 + 5x− 12
4x3 + 16x2 − 9x− 36

(17)

to lowest terms. State all restrictions.

The numerator is a quadratic trinomial with ac = (2)(−12) = −24. The integer
pair −3 and 8 have product −24 and sum 5. Break the middle term of the polynomial
in the numerator into a sum using this integer pair, then factor by grouping.

2x2 + 5x− 12 = 2x2 − 3x+ 8x− 12
= x(2x− 3) + 4(2x− 3)
= (x+ 4)(2x− 3)

Factor the denominator by grouping.

4x3 + 16x2 − 9x− 36 = 4x2(x+ 4)− 9(x+ 4)
= (4x2 − 9)(x+ 4)
= (2x+ 3)(2x− 3)(x+ 4)

Note how the difference of two squares pattern was used to factor 4x2 − 9 = (2x +
3)(2x− 3) in the last step.

Now that we’ve factored both numerator and denominator, we cancel common fac-
tors.

2x2 + 5x− 12
4x3 + 16x2 − 9x− 36

= (x+ 4)(2x− 3)
(2x+ 3)(2x− 3)(x+ 4)

= (x+ 4)(2x− 3)
(2x+ 3)(2x− 3)(x+ 4)

= 1
2x+ 3

We must now determine the restrictions. This means that we must find those values
of x that make any denominator equal to zero.
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• In the body of our work, we have the denominator (2x + 3)(2x − 3)(x + 4). If we
set this equal to zero, the zero product property implies that

2x+ 3 = 0 or 2x− 3 = 0 or x+ 4 = 0.

Each of these linear factors can be solved independently.

x = −3/2 or x = 3/2 or x = −4

Each of these x-values is a restriction.
• In the final rational expression, the denominator is 2x + 3. This expression equals

zero when x = −3/2 and provides no new restrictions.
• Because the denominator of the original expression, namely 4x3 +16x2−9x−36, is

identical to its factored form in the body our work, this denominator will produce
no new restrictions.

Thus, for all values of x,

2x2 + 5x− 12
4x3 + 16x2 − 9x− 36

= 1
2x+ 3

, (18)

provided x 6= −3/2, 3/2, or −4. These are the restrictions. The two expressions are
identical for all other values of x.

Finally, let’s check this result with our graphing calculator. Load each side of
equation (18) into the Y= menu, as shown in Figure 2(a). We know that we have
a restriction at x = −3/2, so let’s set TblStart = −2 and ∆Tbl = 0.5, as shown
in Figure 2(b). Be sure that you have AUTO set for both independent and dependent
variables. Push the TABLE button to produce the tabular display shown in Figure 2(c).

(a) (b) (c) (c)
Figure 2. Using the graphing calculator to check that the left- and right-hand sides of equation (18)
are identical.

Remember that we placed the left- and right-hand sides of equation (18) in Y1 and
Y2, respectively.

• In Figure 2(c), note that the expressions Y1 and Y2 agree at all values of x except
x = −1.5. This is the restriction −3/2 we found above.

• Use the down arrow key to scroll down in the table shown in Figure 2(c) to produce
the tabular view shown in Figure 2(d). Note that Y1 and Y2 agree for all values of
x except x = 1.5. This is the restriction 3/2 we found above.

• We leave it to our readers to uncover the restriction at x = −4 by using the up-
arrow to scroll up in the table until you reach an x-value of −4. You should uncover
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another ERR (error) message at this x-value because it is a restriction. You get
the ERR message due to the fact that the denominator of the left-hand side of
equation (18) is zero at x = −4.

Sign Changes
It is not uncommon that you will have to manipulate the signs in a fraction in order to
obtain common factors that can be then cancelled. Consider, for example, the rational
expression

3− x
x− 3

. (19)

One possible approach is to factor −1 out of the numerator to obtain
3− x
x− 3

= −(x− 3)
x− 3

.

You can now cancel common factors.7

3− x
x− 3

= −(x− 3)
x− 3

= −(x− 3)
x− 3

= −1

This result is valid for all values of x, provided x 6= 3.
Let’s look at another example.

I Example 20. Reduce the rational expression

2x− 2x3

3x3 + 4x2 − 3x− 4
(21)

to lowest terms. State all restrictions.

In the numerator, factor out 2x, then complete the factorization using the difference
of two squares pattern.

2x− 2x3 = 2x(1− x2) = 2x(1 + x)(1− x)

The denominator can be factored by grouping.

3x3 + 4x2 − 3x− 4 = x2(3x+ 4)− 1(3x+ 4)
= (x2 − 1)(3x+ 4)
= (x+ 1)(x− 1)(3x+ 4)

Note how the difference of two squares pattern was applied in the last step.

When everything cancels, the resulting rational expression equals 1. For example, consider 6/6, which7

surely is equal to 1. If we factor and cancel common factors, everything cancels.
6
6 = 2 · 3

2 · 3 = 2 · 3
2 · 3 = 1
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At this point,
2x− 2x3

3x3 + 4x2 − 3x− 4
= 2x(1 + x)(1− x)

(x+ 1)(x− 1)(3x+ 4)
.

Because we have 1− x in the numerator and x− 1 in the denominator, we will factor
out a −1 from 1− x, and because the order of factors does not affect their product, we
will move the −1 out to the front of the numerator.

2x− 2x3

3x3 + 4x2 − 3x− 4
= 2x(1 + x)(−1)(x− 1)

(x+ 1)(x− 1)(3x+ 4)
= −2x(1 + x)(x− 1)

(x+ 1)(x− 1)(3x+ 4)

We can now cancel common factors.
2x− 2x3

3x3 + 4x2 − 3x− 4
= −2x(1 + x)(x− 1)

(x+ 1)(x− 1)(3x+ 4)

= −2x(1 + x)(x− 1)
(x+ 1)(x− 1)(3x+ 4)

= −2x
3x+ 4

Note that x+ 1 is identical to 1 + x and cancels. Thus,
2x− 2x3

3x3 + 4x2 − 3x− 4
= −2x

3x+ 4
(22)

for all values of x, provided x 6= −1, 1, or −4/3. These are the restrictions, values of x
that make denominators equal to zero.

The Sign Change Rule for Fractions
Let’s look at an alternative approach to the last example. First, let’s share the precept
that every fraction has three signs, one on the numerator, one on the denominator, and
a third on the fraction bar. Thus,

−2
3

has understood signs + −2
+3
.

Let’s state the sign change rule for fractions.

The Sign Change Rule for Fractions. Every fraction has three signs, one on
the numerator, one on the denominator, and one on the fraction bar. If you don’t
see an explicit sign, then a plus sign is understood. If you negate any two of these
parts,

• numerator and denominator, or
• numerator and fraction bar, or
• fraction bar and denominator,

then the fraction remains unchanged.
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For example, let’s start with −2/3, then do two negations: numerator and fraction
bar. Then,

+−2
+3

= −+2
+3
, or with understood plus signs, −2

3
= −2

3
.

This is a familiar result, as negative two divided by a positive three equals a negative
two-thirds.

On another note, we might decide to negate numerator and denominator. Then
−2/3 becomes

+−2
+3

= +2
−3
, or with understood plus signs, −2

3
= 2
−3
.

Again, a familiar result. Certainly, negative two divided by positive three is the same
as positive two divided by negative three. They both equal minus two-thirds.

So there you have it. Negate any two parts of a fraction and it remains unchanged.
On the surface, this seems a trivial remark, but it can be put to good use when reducing
rational expressions. Suppose, for example, that we take the original rational expression
from Example 20 and negate the numerator and fraction bar.

2x− 2x3

3x3 + 4x2 − 3x− 4
= − 2x3 − 2x

3x3 + 4x2 − 3x− 4

Note how we’ve made two sign changes. We’ve negated the fraction bar, we’ve negated
the numerator (−(2x − 2x3) = 2x3 − 2x), and left the denominator alone. Therefore,
the fraction is unchanged according to our sign change rule.

Now, factor and cancel common factors (we leave the steps for our readers — they’re
similar to those we took in Example 20).

2x− 2x3

3x3 + 4x2 − 3x− 4
= − 2x3 − 2x

3x3 + 4x2 − 3x− 4

= − 2x(x+ 1)(x− 1)
(x+ 1)(x− 1)(3x+ 4)

= − 2x(x+ 1)(x− 1)
(x+ 1)(x− 1)(3x+ 4)

= − 2x
3x+ 4

But does this answer match the answer in equation (22)? It does, as can be seen by
making two negations, fraction bar and numerator.

− 2x
3x+ 4

= −2x
3x+ 4
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The Secant Line
Consider the graph of the function f that we’ve drawn in Figure 3. Note that we’ve
chosen two points on the graph of f , namely (a, f(a)) and (x, f(x)), and we’ve drawn
a line L through them that mathematicians call the “secant line.”

x

y

f

L

a x

(a, f(a))

(x, f(x))

Figure 3. The secant line passes through
(a, f(a)) and (x, f(x)).

The slope of the secant line L is found by dividing the change in y by the change in x.

Slope = ∆y
∆x

= f(x)− f(a)
x− a

(23)

This slope provides the average rate of change of the variable y with respect to
the variable x. Students in calculus use this “average rate of change” to develop the
notion of “instantaneous rate of change.” However, we’ll leave that task for the calculus
students and concentrate on the challenge of simplifying the expression equation (23)
for the average rate of change.

I Example 24. Given the function f(x) = x2, simplify the expression for the
average rate of change, namely

f(x)− f(a)
x− a

.

First, note that f(x) = x2 and f(a) = a2, so we can write

f(x)− f(a)
x− a

= x
2 − a2

x− a
.

We can now use the difference of two squares pattern to factor the numerator and
cancel common factors.

x2 − a2

x− a
= (x+ a)(x− a)

x− a
= x+ a
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Thus,

f(x)− f(a)
x− a

= x+ a,

provided, of course, that x 6= a.

Let’s look at another example.

I Example 25. Consider the function f(x) = x2 − 3x− 5. Simplify

f(x)− f(2)
x− 2

.

First, f(x) = x2−3x−5 and therefore f(2) = (2)2−3(2)−5 = −7, so we can write

f(x)− f(2)
x− 2

= (x2 − 3x− 5)− (−7)
x− 2

= x
2 − 3x+ 2
x− 2

.

We can now factor the numerator and cancel common factors.

x2 − 3x+ 2
x− 2

= (x− 2)(x− 1)
x− 2

= x− 1

Thus,

f(x)− f(2)
x− 2

= x− 1,

provided, of course, that x 6= 2.
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7.2 Exercises

In Exercises 1-12, reduce each rational
number to lowest terms by applying the
following steps:

i. Prime factor both numerator and de-
nominator.

ii. Cancel common prime factors.
iii. Simplify the numerator and denomi-

nator of the result.

1. 147
98

2. 3087
245

3. 1715
196

4. 225
50

5. 1715
441

6. 56
24

7. 108
189

8. 75
500

9. 100
28

10. 98
147

11. 1125
175

12. 3087
8575

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/8

In Exercises 13-18, reduce the given ex-
pression to lowest terms. State all re-
strictions.

13. x
2 − 10x+ 9

5x− 5

14. x
2 − 9x+ 20
x2 − x− 20

15. x
2 − 2x− 35
x2 − 7x

16. x
2 − 15x+ 54
x2 + 7x− 8

17. x2 + 2x− 63
x2 + 13x+ 42

18. x
2 + 13x+ 42

9x+ 63

In Exercises 19-24, negate any two parts
of the fraction, then factor (if necessary)
and cancel common factors to reduce the
rational expression to lowest terms. State
all restrictions.

19. x+ 2
−x− 2

20. 4− x
x− 4

21. 2x− 6
3− x

22. 3x+ 12
−x− 4

23. 3x2 + 6x
−x− 2
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24. 8x− 2x2

x− 4

In Exercises 25-38, reduce each of the
given rational expressions to lowest terms.
State all restrictions.

25. x
2 − x− 20
25− x2

26. x− x2

x2 − 3x+ 2

27. x
2 + 3x− 28
x2 + 5x− 36

28. x2 + 10x+ 9
x2 + 15x+ 54

29. x
2 − x− 56
8x− x2

30. x
2 − 7x+ 10
5x− x2

31. x
2 + 13x+ 42
x2 − 2x− 63

32. x2 − 16
x2 − x− 12

33. x
2 − 9x+ 14
49− x2

34. x
2 + 7x+ 12

9− x2

35. x
2 − 3x− 18
x2 − 6x+ 5

36. x
2 + 5x− 6
x2 − 1

37. x
2 − 3x− 10
−9x− 18

38. x
2 − 6x+ 8
16− x2

In Exercises 39-42, reduce each ratio-
nal function to lowest terms, and then
perform each of the following tasks.

i. Load the original rational expression
into Y1 and the reduced rational ex-
pression (your answer) into Y2 of your
graphing calculator.

ii. In TABLE SETUP, set TblStart equal
to zero, ∆Tbl equal to 1, then make
sure both independent and dependent
variables are set to Auto. Select TA-
BLE and scroll with the up- and down-
arrows on your calculator until the
smallest restriction is in view. Copy
both columns of the table onto your
homework paper, showing the agree-
ment between Y1 and Y2 and what
happens at all restrictions.

39. x2 − 8x+ 7
x2 − 11x+ 28

40. x
2 − 5x
x2 − 9x

41. 8x− x2

x2 − x− 56

42. x
2 + 13x+ 40
−2x− 16

Given f(x) = 2x + 5, simplify each of
the expressions in Exercises 43-46. Be
sure to reduce your answer to lowest terms
and state any restrictions.

43. f(x)− f(3)
x− 3

44. f(x)− f(6)
x− 6

45. f(x)− f(a)
x− a

46. f(a+ h)− f(a)
h
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Given f(x) = x2 + 2x, simplify each of
the expressions in Exercises 47-50. Be
sure to reduce your answer to lowest terms
and state any restrictions.

47. f(x)− f(1)
x− 1

48. f(x)− f(a)
x− a

49. f(a+ h)− f(a)
h

50. f(x+ h)− f(x)
h

Drill for Skill. In Exercises 51-54,
evaluate the given function at the given
expression and simplify your answer.

51. Suppose that f is the function

f(x) = − x− 6
8x+ 7

.

Evaluate f(−3x + 2) and simplify your
answer.

52. Suppose that f is the function

f(x) = −5x+ 3
7x+ 6

.

Evaluate f(−5x + 1) and simplify your
answer.

53. Suppose that f is the function

f(x) = −3x− 6
4x+ 6

.

Evaluate f(−x−3) and simplify your an-
swer.

54. Suppose that f is the function

f(x) = 4x− 1
2x− 4

.

Evaluate f(5x) and simplify your answer.
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7.2 Answers

1. 3
2

3. 35
4

5. 35
9

7. 4
7

9. 25
7

11. 45
7

13. x− 9
5

, provided x 6= 1

15. x+ 5
x

, provided x 6= 0, 7

17. (x− 7)(x+ 9)
(x+ 7)(x+ 6)

, provided x 6= −7,
−6

19. −1, provided x 6= −2

21. −2, provided x 6= 3

23. −3x, provided x 6= −2

25. −x+ 4
x+ 5

, provided x 6= −5, 5

27. x+ 7
x+ 9

, provided x 6= 4, −9

29. −x+ 7
x

, provided x 6= 0, 8

31. x+ 6
x− 9

, provided x 6= −7, 9

33. −x− 2
x+ 7

, provided x 6= 7, −7

35. (x− 6)(x+ 3)
(x− 1)(x− 5)

, provided x 6= 1, 5

37. −x− 5
9

, provided x 6= −2

39. x− 1
x− 4

, provided x 6= 7, 4

X Y1 Y2
3 -2 -2
4 Err: Err:
5 4 4
6 2.5 2.5
7 Err: 2
8 1.75 1.75
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41. − x

x+ 7
, provided x 6= −7, 8

X Y1 Y2
-8 -8 -8
-7 Err: Err:
-6 6 6
-5 2.5 2.5
-4 1.33333 1.33333
-3 0.75 0.75
-2 0.4 0.4
-1 0.166667 0.166667
0 -0 -0
1 -0.125 -0.125
2 -0.222222 -0.222222
3 -0.3 -0.3
4 -0.363636 -0.363636
5 -0.416667 -0.416667
6 -0.461538 -0.461538
7 -0.5 -0.5
8 Err: -0.533333
9 -0.5625 -0.5625

43. 2, provided x 6= 3

45. 2, provided x 6= a

47. x+ 3, provided x 6= 1

49. 2a+ h+ 2, provided h 6= 0

51. − 3x+ 4
24x− 23

53. −3x+ 15
4x+ 6
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7.3 Graphing Rational Functions
We’ve seen that the denominator of a rational function is never allowed to equal zero;
division by zero is not defined. So, with rational functions, there are special values
of the independent variable that are of particular importance. Now, it comes as no
surprise that near values that make the denominator zero, rational functions exhibit
special behavior, but here, we will also see that values that make the numerator zero
sometimes create additional special behavior in rational functions.

We begin our discussion by focusing on the domain of a rational function.

The Domain of a Rational Function
When presented with a rational function of the form

f(x) = a0 + a1x+ a2x2 + · · ·+ anxn

b0 + b1x+ b2x2 + · · ·+ bmxm
, (1)

the first thing we must do is identify the domain. Equivalently, we must identify the
restrictions, values of the independent variable (usually x) that are not in the domain.
To facilitate the search for restrictions, we should factor the denominator of the rational
function (it won’t hurt to factor the numerator at this time as well, as we will soon
see). Once the domain is established and the restrictions are identified, here are the
pertinent facts.

Behavior of a Rational Function at Its Restrictions. A rational function
can only exhibit one of two behaviors at a restriction (a value of the independent
variable that is not in the domain of the rational function).

1. The graph of the rational function will have a vertical asymptote at the re-
stricted value.

2. The graph will exhibit a “hole” at the restricted value.

In the next two examples, we will examine each of these behaviors. In this first
example, we see a restriction that leads to a vertical asymptote.

I Example 2. Sketch the graph of

f(x) = 1
x+ 2

.

The first step is to identify the domain. Note that x = −2 makes the denominator
of f(x) = 1/(x+ 2) equal to zero. Division by zero is undefined. Hence, x = −2 is not
in the domain of f ; that is, x = −2 is a restriction. Equivalently, the domain of f is
{x : x 6= −2}.

Now that we’ve identified the restriction, we can use the theory of Section 7.1 to
shift the graph of y = 1/x two units to the left to create the graph of f(x) = 1/(x+2),
as shown in Figure 1.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/9
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x5

y
5

x=−2

y=0

Figure 1. The function f(x) =
1/(x + 2) has a restriction at x = −2.
The graph of f has a vertical asymptote
with equation x = −2.

The function f(x) = 1/(x + 2) has a restriction at x = −2 and the graph of f
exhibits a vertical asymptote having equation x = −2.

It is important to note that although the restricted value x = −2 makes the de-
nominator of f(x) = 1/(x+ 2) equal to zero, it does not make the numerator equal to
zero. We’ll soon have more to say about this observation.

Let’s look at an example of a rational function that exhibits a “hole” at one of its
restricted values.

I Example 3. Sketch the graph of

f(x) = x− 2
x2 − 4

.

We highlight the first step.

Factor Numerators and Denominators. When working with rational func-
tions, the first thing you should always do is factor both numerator and denomi-
nator of the rational function.

Following this advice, we factor both numerator and denominator of f(x) = (x −
2)/(x2 − 4).

f(x) = x− 2
(x− 2)(x+ 2)

It is easier to spot the restrictions when the denominator of a rational function is
in factored form. Clearly, x = −2 and x = 2 will both make the denominator of
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f(x) = (x−2)/((x−2)(x+2)) equal to zero. Hence, x = −2 and x = 2 are restrictions
of the rational function f .

Now that the restrictions of the rational function f are established, we proceed to
the second step.

Reduce to Lowest Terms. After you establish the restrictions of the rational
function, the second thing you should do is reduce the rational function to lowest
terms.

Following this advice, we cancel common factors and reduce the rational function
f(x) = (x− 2)/((x− 2)(x+ 2)) to lowest terms, obtaining a new function,

g(x) = 1
x+ 2

.

The functions f(x) = (x− 2)/((x− 2)(x+ 2)) and g(x) = 1/(x+ 2) are not identical
functions. They have different domains. The domain of f is Df = {x : x 6= −2, 2},
but the domain of g is Dg = {x : x 6= −2}. Hence, the only difference between the two
functions occurs at x = 2. The number 2 is in the domain of g, but not in the domain
of f .

We know what the graph of the function g(x) = 1/(x+ 2) looks like. We drew this
graph in Example 2 and we picture it anew in Figure 2.

x5

y
5

x=−2

y=0

Figure 2. The graph of g(x) =
1/(x+ 2) exhibits a vertical asymptote
at its restriction x = −2.

The difficulty we now face is the fact that we’ve been asked to draw the graph of
f , not the graph of g. However, we know that the functions f and g agree at all values
of x except x = 2. If we remove this value from the graph of g, then we will have the
graph of f .
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So, what point should we remove from the graph of g? We should remove the point
that has an x-value equal to 2. Therefore, we evaluate the function g(x) = 1/(x + 2)
at x = 2 and find

g(2) = 1
2 + 2

= 1
4
.

Because g(2) = 1/4, we remove the point (2, 1/4) from the graph of g to produce the
graph of f . The result is shown in Figure 3.

x5

y
5

x=−2

y=0 (2,1/4)

Figure 3. The graph of f(x) = (x −
2)/((x − 2)(x + 2)) exhibits a vertical
asymptote at its restriction x = −2 and
a hole at its second restriction x = 2.

We pause to make an important observation. In Example 3, we started with the
function

f(x) = x− 2
(x− 2)(x+ 2)

,

which had restrictions at x = 2 and x = −2. After reducing, the function

g(x) = 1
x+ 2

no longer had a restriction at x = 2. The function g had a single restriction at x = −2.
The result, as seen in Figure 3, was a vertical asymptote at the remaining restriction,
and a hole at the restriction that “went away” due to cancellation. This leads us to the
following procedure.
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Asymptote or Hole? To determine whether the graph of a rational function has
a vertical asymptote or a hole at a restriction, proceed as follows:

1. Factor numerator and denominator of the original rational function f . Identify
the restrictions of f .

2. Reduce the rational function to lowest terms, naming the new function g.
Identify the restrictions of the function g.

3. Those restrictions of f that remain restrictions of the function g will introduce
vertical asymptotes into the graph of f .

4. Those restrictions of f that are no longer restrictions of the function g will
introduce “holes” into the graph of f . To determine the coordinates of the
holes, substitute each restriction of f that is not a restriction of g into the
function g to determine the y-value of the hole.

We now turn our attention to the zeros of a rational function.

The Zeros of a Rational Function
We’ve seen that division by zero is undefined. That is, if we have a fraction N/D, then
D (the denominator) must not equal zero. Thus, 5/0, −15/0, and 0/0 are all undefined.
On the other hand, in the fraction N/D, if N = 0 and D 6= 0, then the fraction is equal
to zero. For example, 0/5, 0/(−15), and 0/π are all equal to zero.

Therefore, when working with an arbitrary rational function, such as

f(x) = a0 + a1x+ a2x2 + · · ·+ anxn

b0 + b1x+ b2x2 + · · ·+ bmxm
, (4)

whatever value of x that will make the numerator zero without simultaneously making
the denominator equal to zero will be a zero of the rational function f .

This discussion leads to the following procedure for identifying the zeros of a rational
function.

Finding Zeros of Rational Functions. To determine the zeros of a rational
function, proceed as follows.

1. Factor both numerator and denominator of the rational function f .
2. Identify the restrictions of the rational function f .
3. Identify the values of the independent variable (usually x) that make the nu-

merator equal to zero.
4. The zeros of the rational function f will be those values of x that make the

numerator zero but are not restrictions of the rational function f .

Let’s look at an example.

I Example 5. Find the zeros of the rational function defined by
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f(x) = x
2 + 3x+ 2
x2 − 2x− 3

. (6)

Factor numerator and denominator of the rational function f .

f(x) = (x+ 1)(x+ 2)
(x+ 1)(x− 3)

The values x = −1 and x = 3 make the denominator equal to zero and are restrictions.
Next, note that x = −1 and x = −2 both make the numerator equal to zero.

However, x = −1 is also a restriction of the rational function f , so it will not be a zero
of f . On the other hand, the value x = −2 is not a restriction and will be a zero of f .

Although we’ve correctly identified the zeros of f , it’s instructive to check the values
of x that make the numerator of f equal to zero. If we substitute x = −1 into original
function defined by equation (6), we find that

f(−1) = (−1)2 + 3(−1) + 2
(−1)2 − 2(−1)− 3

= 0
0

is undefined. Hence, x = −1 is not a zero of the rational function f . The difficulty in
this case is that x = −1 also makes the denominator equal to zero.

On the other hand, when we substitute x = −2 in the function defined by equation (6),

f(−2) = (−2)2 + 3(−2) + 2
(−2)2 − 2(−2)− 3

= 0
5

= 0.

In this case, x = −2 makes the numerator equal to zero without making the denomi-
nator equal to zero. Hence, x = −2 is a zero of the rational function f .

It’s important to note that you must work with the original rational function, and
not its reduced form, when identifying the zeros of the rational function.

I Example 7. Identify the zeros of the rational function

f(x) = x
2 − 6x+ 9
x2 − 9

.

Factor both numerator and denominator.

f(x) = (x− 3)2

(x+ 3)(x− 3)

Note that x = −3 and x = 3 are restrictions. Further, the only value of x that will
make the numerator equal to zero is x = 3. However, this is also a restriction. Hence,
the function f has no zeros.

The point to make here is what would happen if you work with the reduced form
of the rational function in attempting to find its zeros. Cancelling like factors leads to
a new function,
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g(x) = x− 3
x+ 3

.

Note that g has only one restriction, x = −3. Further, x = 3 makes the numerator of
g equal to zero and is not a restriction. Hence, x = 3 is a zero of the function g, but
it is not a zero of the function f .

This example demonstrates that we must identify the zeros of the rational function
before we cancel common factors.

Drawing the Graph of a Rational Function
In this section we will use the zeros and asymptotes of the rational function to help
draw the graph of a rational function. We will also investigate the end-behavior of
rational functions. Let’s begin with an example.

I Example 8. Sketch the graph of the rational function

f(x) = x+ 2
x− 3

. (9)

First, note that both numerator and denominator are already factored. The func-
tion has one restriction, x = 3. Next, note that x = −2 makes the numerator of
equation (9) zero and is not a restriction. Hence, x = −2 is a zero of the function.
Recall that a function is zero where its graph crosses the horizontal axis. Hence, the
graph of f will cross the x-axis at (−2, 0), as shown in Figure 4.

Note that the rational function (9) is already reduced to lowest terms. Hence, the
restriction at x = 3 will place a vertical asymptote at x = 3, which is also shown in
Figure 4.

x10

y
10

(−2, 0)

x = 3
Figure 4. Plot and label the x-
intercept and vertical asymptote.

At this point, we know two things:
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1. The graph will cross the x-axis at (−2, 0).
2. On each side of the vertical asymptote at x = 3, one of two things can happen.

Either the graph will rise to positive infinity or the graph will fall to negative
infinity.

To discover the behavior near the vertical asymptote, let’s plot one point on each
side of the vertical asymptote, as shown in Figure 5.

x10

y
10

(−2, 0)

x = 3

x y = (x+ 2)/(x− 3)
2 −4
4 6

Figure 5. Additional points help determine the behavior near the verti-
cal asymptote.

Consider the right side of the vertical asymptote and the plotted point (4, 6) through
which our graph must pass. As the graph approaches the vertical asymptote at x = 3,
only one of two things can happen. Either the graph rises to positive infinity or the
graph falls to negative infinity. However, in order for the latter to happen, the graph
must first pass through the point (4, 6), then cross the x-axis between x = 3 and x = 4
on its descent to minus infinity. But we already know that the only x-intercept is at the
point (2, 0), so this cannot happen. Hence, on the right, the graph must pass through
the point (4, 6), then rise to positive infinity, as shown in Figure 6.

x10

y
10

(−2, 0)

x = 3
Figure 6. Behavior near the vertical
asymptote.
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A similar argument holds on the left of the vertical asymptote at x = 3. The graph
cannot pass through the point (2,−4) and rise to positive infinity as it approaches the
vertical asymptote, because to do so would require that it cross the x-axis between
x = 2 and x = 3. However, there is no x-intercept in this region available for this
purpose. Hence, on the left, the graph must pass through the point (2,−4) and fall
to negative infinity as it approaches the vertical asymptote at x = 3. This behavior is
shown in Figure 6.

Finally, what about the end-behavior of the rational function? What happens to
the graph of the rational function as x increases without bound? What happens when
x decreases without bound? One simple way to answer these questions is to use a table
to investigate the behavior numerically. The graphing calculator facilitates this task.

First, enter your function as shown in Figure 7(a), then press 2nd TBLSET to open
the window shown in Figure 7(b). For what we are about to do, all of the settings in
this window are irrelevant, save one. Make sure you use the arrow keys to highlight ASK
for the Indpnt (independent) variable and press ENTER to select this option. Finally,
select 2nd TABLE, then enter the x-values 10, 100, 1 000, and 10 000, pressing ENTER
after each one.

(a) (b) (c)
Figure 7. Using the table feature of the graphing calculator to investigate the end-behavior
as x approaches positive infinity.

Note the resulting y-values in the second column of the table (the Y1 column) in
Figure 7(c). As x is increasing without bound, the y-values are greater than 1, yet
appear to be approaching the number 1. Therefore, as our graph moves to the extreme
right, it must approach the horizontal asymptote at y = 1, as shown in Figure 9.

A similar effort predicts the end-behavior as x decreases without bound, as shown
in the sequence of pictures in Figure 8. As x decreases without bound, the y-values
are less than 1, but again approach the number 1, as shown in Figure 8(c).
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(a) (b) (c)
Figure 8. Using the table feature of the graphing calculator to investigate the end-behavior
as x approaches negative infinity.

The evidence in Figure 8(c) indicates that as our graph moves to the extreme left,
it must approach the horizontal asymptote at y = 1, as shown in Figure 9.

x10

y
10

(−2, 0)

x = 3

y = 1

Figure 9. The graph approaches the
horizontal asymptote y = 1 at the ex-
treme right- and left-ends.

What kind of job will the graphing calculator do with the graph of this rational func-
tion? In Figure 10(a), we enter the function, adjust the window parameters as shown
in Figure 10(b), then push the GRAPH button to produce the result in Figure 10(c).

(a) (b) (c)
Figure 10. Drawing the graph of the rational function with the graphing calculator.

As was discussed in the first section, the graphing calculator manages the graphs of
“continuous” functions extremely well, but has difficulty drawing graphs with disconti-
nuities. In the case of the present rational function, the graph “jumps” from negative
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infinity to positive infinity across the vertical asymptote x = 3. The calculator knows
only one thing: plot a point, then connect it to the previously plotted point with a
line segment. Consequently, it does what it is told, and “connects” infinities when it
shouldn’t.

However, if we have prepared in advance, identifying zeros and vertical asymptotes,
then we can interpret what we see on the screen in Figure 10(c), and use that infor-
mation to produce the correct graph that is shown in Figure 9. We can even add the
horizontal asymptote to our graph, as shown in the sequence in Figure 11.

(a) (b) (c)
Figure 11. Adding a suspected horizontal asymptote.

This is an appropriate point to pause and summarize the steps required to draw the
graph of a rational function.
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Procedure for Graphing Rational Functions. Consider the rational function

f(x) = a0 + a1x+ a2x2 + · · ·+ anxn

b0 + b1x+ b2x2 + · · ·+ bmxm
.

To draw the graph of this rational function, proceed as follows:

1. Factor the numerator and denominator of the rational function f .
2. Identify the domain of the rational function f by listing each restriction, values

of the independent variable (usually x) that make the denominator equal to
zero.

3. Identify the values of the independent variable that make the numerator of f
equal to zero and are not restrictions. These are the zeros of f and they provide
the x-coordinates of the x-intercepts of the graph of the rational function. Plot
these intercepts on a coordinate system and label them with their coordinates.

4. Cancel common factors to reduce the rational function to lowest terms.
− The restrictions of f that remain restrictions of this reduced form will place

vertical asymptotes in the graph of f . Draw the vertical asymptotes on your
coordinate system as dashed lines and label them with their equations.

− The restrictions of f that are not restrictions of the reduced form will
place “holes” in the graph of f . We’ll deal with the holes in step 8 of this
procedure.

5. To determine the behavior near each vertical asymptote, calculate and plot one
point on each side of each vertical asymptote.

6. To determine the end-behavior of the given rational function, use the table
capability of your calculator to determine the limit of the function as x ap-
proaches positive and/or negative infinity (as we did in the sequences shown in
Figure 7 and Figure 8). This determines the horizontal asymptote. Sketch
the horizontal asymptote as a dashed line on your coordinate system and label
it with its equation.

7. Draw the graph of the rational function.
8. If you determined that a restriction was a “hole,” use the restriction and the

reduced form of the rational function to determine the y-value of the “hole.”
Draw an open circle at this position to represent the “hole” and label the “hole”
with its coordinates.

9. Finally, use your calculator to check the validity of your result.

Let’s look at another example.

I Example 10. Sketch the graph of the rational function

f(x) = x− 2
x2 − 3x− 4

. (11)

We will follow the outline presented in the Procedure for Graphing Rational Func-
tions.
Step 1: First, factor both numerator and denominator.
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f(x) = x− 2
(x+ 1)(x− 4)

(12)

Step 2: Thus, f has two restrictions, x = −1 and x = 4. That is, the domain of f is
Df = {s : x 6= −1, 4}.
Step 3: The numerator of equation (12) is zero at x = 2 and this value is not a
restriction. Thus, 2 is a zero of f and (2, 0) is an x-intercept of the graph of f , as
shown in Figure 12.
Step 4: Note that the rational function is already reduced to lowest terms (if it weren’t,
we’d reduce at this point). Note that the restrictions x = −1 and x = 4 are still
restrictions of the reduced form. Hence, these are the locations and equations of the
vertical asymptotes, which are also shown in Figure 12.

x10

y
10

(2, 0)

x = −1 x = 4
Figure 12. Plot the x-intercepts and
draw the vertical asymptotes.

All of the restrictions of the original function remain restrictions of the reduced form.
Therefore, there will be no “holes” in the graph of f .
Step 5: Plot points to the immediate right and left of each asymptote, as shown in
Figure 13. These additional points completely determine the behavior of the graph
near each vertical asymptote. For example, consider the point (5, 1/2) to the immediate
right of the vertical asymptote x = 4 in Figure 13. Because there is no x-intercept
between x = 4 and x = 5, and the graph is already above the x-axis at the point
(5, 1/2), the graph is forced to increase to positive infinity as it approaches the vertical
asymptote x = 4. Similar comments are in order for the behavior on each side of each
vertical asymptote.
Step 6: Use the table utility on your calculator to determine the end-behavior of the
rational function as x decreases and/or increases without bound. To determine the
end-behavior as x goes to infinity (increases without bound), enter the equation in
your calculator, as shown in Figure 14(a). Select 2nd TBLSET and highlight ASK for
the independent variable. Select 2nd TABLE, then enter 10, 100, 1 000, and 10 000, as
shown in Figure 14(c).
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x10

y
10

x = −1 x = 4

x y = x− 2
(x+ 1)(x− 4)

−2 −2/3
0 1/2
3 −1/4
5 1/2

Figure 13. Additional points help determine the behavior near the ver-
tical asymptote.

(a) (b) (c)
Figure 14. Examining end-behavior as x approaches positive infinity.

If you examine the y-values in Figure 14(c), you see that they are heading towards
zero (1e-4 means 1× 10−4, which equals 0.0001). This implies that the line y = 0 (the
x-axis) is acting as a horizontal asymptote.

You can also determine the end-behavior as x approaches negative infinity (decreases
without bound), as shown in the sequence in Figure 15. The result in Figure 15(c)
provides clear evidence that the y-values approach zero as x goes to negative infinity.
Again, this makes y = 0 a horizontal asymptote.

(a) (b) (c)
Figure 15. Examining end-behavior as x approaches negative infinity.

Add the horizontal asymptote y = 0 to the image in Figure 13.
Step 7: We can use all the information gathered to date to draw the image shown in
Figure 16.
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x10

y
10

y=0

x=−1 x=4

(2,0)

Figure 16. The completed graph
runs up against vertical and horizon-
tal asymptotes and crosses the x-axis
at the zero of the function.

Step 8: As stated above, there are no “holes” in the graph of f .
Step 9: Use your graphing calculator to check the validity of your result. Note how
the graphing calculator handles the graph of this rational function in the sequence in
Figure 17. The image in Figure 17(c) is nowhere near the quality of the image we
have in Figure 16, but there is enough there to intuit the actual graph if you prepare
properly in advance (zeros, vertical asymptotes, end-behavior analysis, etc.).

(a) (b) (c)
Figure 17. The user of the graphing calculator must decipher the image in the calculator’s
view screen.
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7.3 Exercises

For rational functions Exercises 1-20,
follow the Procedure for Graphing Ratio-
nal Functions in the narrative, perform-
ing each of the following tasks.
For rational functions Exercises 1-20,
perform each of the following tasks.

i. Set up a coordinate system on graph
paper. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Perform each of the nine steps listed
in the Procedure for Graphing Ratio-
nal Functions in the narrative.

1. f(x) = (x− 3)/(x+ 2)

2. f(x) = (x+ 2)/(x− 4)

3. f(x) = (5− x)/(x+ 1)

4. f(x) = (x+ 2)/(4− x)

5. f(x) = (2x− 5)/(x+ 1)

6. f(x) = (2x+ 5/(3− x)

7. f(x) = (x+ 2)/(x2 − 2x− 3)

8. f(x) = (x− 3)/(x2 − 3x− 4)

9. f(x) = (x+ 1)/(x2 + x− 2)

10. f(x) = (x− 1)/(x2 − x− 2)

11. f(x) = (x2 − 2x)/(x2 + x− 2)

12. f(x) = (x2 − 2x)/(x2 − 2x− 8)

13. f(x) = (2x2−2x−4)/(x2−x−12)

14. f(x) = (8x− 2x2)/(x2 − x− 6)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/10

15. f(x) = (x− 3)/(x2 − 5x+ 6)

16. f(x) = (2x− 4)/(x2 − x− 2)

17. f(x) = (2x2 − x− 6)/(x2 − 2x)

18. f(x) = (2x2 − x− 6)/(x2 − 2x)

19. f(x) = (4+2x−2x2)/(x2 +4x+3)

20. f(x) = (3x2 − 6x− 9)/(1− x2)

In Exercises 21-28, find the coordinates
of the x-intercept(s) of the graph of the
given rational function.

21. f(x) = 81− x2

x2 + 10x+ 9

22. f(x) = x− x2

x2 + 5x− 6

23. f(x) = x
2 − x− 12
x2 + 2x− 3

24. f(x) = x2 − 81
x2 − 4x− 45

25. f(x) = 6x− 18
x2 − 7x+ 12

26. f(x) = 4x+ 36
x2 + 15x+ 54

27. f(x) = x
2 − 9x+ 14
x2 − 2x

28. f(x) = x
2 − 5x− 36
x2 − 9x+ 20
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In Exercises 29-36, find the equations
of all vertical asymptotes.

29. f(x) = x
2 − 7x
x2 − 2x

30. f(x) = x
2 + 4x− 45
3x+ 27

31. f(x) = x
2 − 6x+ 8
x2 − 16

32. f(x) = x
2 − 11x+ 18

2x− x2

33. f(x) = x
2 + x− 12
−4x+ 12

34. f(x) = x
2 − 3x− 54
9x− x2

35. f(x) = 16− x2

x2 + 7x+ 12

36. f(x) = x
2 − 11x+ 30
−8x+ 48

In Exercises 37-42, use a graphing cal-
culator to determine the behavior of the
given rational function as x approaches
both positive and negative infinity by per-
forming the following tasks:

i. Load the rational function into the Y=
menu of your calculator.

ii. Use the TABLE feature of your calcula-
tor to determine the value of f(x) for
x = 10, 100, 1000, and 10000. Record
these results on your homework in ta-
ble form.

iii. Use the TABLE feature of your calcula-
tor to determine the value of f(x) for
x = −10, −100, −1000, and −10000.
Record these results on your home-
work in table form.

iv. Use the results of your tabular explo-
ration to determine the equation of

the horizontal asymptote.

37. f(x) = (2x+ 3)/(x− 8)

38. f(x) = (4− 3x)/(x+ 2)

39. f(x) = (4− x2)/(x2 + 4x+ 3)

40. f(x) = (10− 2x2)/(x2 − 4)

41. f(x) = (x2−2x−3)/(2x2−3x−2)

42. f(x) = (2x2 − 3x− 5)/(x2 − x− 6)

In Exercises 43-48, use a purely ana-
lytical method to determine the domain
of the given rational function. Describe
the domain using set-builder notation.

43. f(x) = x
2 − 5x− 6
−9x− 9

44. f(x) = x
2 + 4x+ 3
x2 − 5x− 6

45. f(x) = x
2 + 5x− 24
x2 − 3x

46. f(x) = x
2 − 3x− 4
x2 − 5x− 6

47. f(x) = x
2 − 4x+ 3
x− x2

48. f(x) = x2 − 4
x2 − 9x+ 14
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7.3 Answers

1.

x10

y
10

x=−2

y=1

(3,0)

3.

x10

y
10

x=−1

y=−1

(5,0)

5.

x
10

y
10

x=−1

y=2

(5/2,0)(5/2,0)

7.

x10

y
10

(−2,0)

x=3x=−1

y=0

9.

x
5

y
5

x=−2 x=1

y=0 (−1,0)(−1,0)

11.

x
10

y
10

x=−2 x=1

y=1 (0,0)(0,0)
(2,0)(2,0)



658 Chapter 7 Rational Functions

Version: Fall 2007

13.

x
10

y
10

x=−3 x=4

y=2 (−1,0)(−1,0) (2,0)(2,0)

15.

x
5

y
5

x=2

y=0
(3,1)

17.

x
10

y
10

x=0

y=2

(−3/2,0)(−3/2,0)

(2,7/2)

19.

x
10

y
10

x=−3

y=−2

(2,0)(2,0)

(−1,3)

21. (9, 0)

23. (4, 0)

25. no x-intercepts

27. (7, 0)

29. x = 2

31. x = −4

33. no vertical asymptotes

35. x = −3

37. Horizontal asymptote at y = 2.

X Y1 X Y1
10 11.5 -10 0.944444
100 2.20652 -100 1.82407
1000 2.01915 -1000 1.98115
10000 2.0019 -10000 1.998

39. Horizontal asymptote at y = −1.

X Y1 X Y1
10 -0.671329 -10 -1.52381
100 -0.960877 -100 -1.04092
1000 -0.996009 -1000 -1.00401
10000 -0.9996 -10000 -1
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41. Horizontal asymptote at y = 1/2.

X Y1 X Y1
10 0.458333 -10 0.513158
100 0.49736 -100 0.502365
1000 0.499749 -1000 0.500249
10000 0.49997 -10000 0.50002

43. Domain = {x : x 6= −1}

45. Domain = {x : x 6= 3, 0}

47. Domain = {x : x 6= 0, 1}
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7.4 Products and Quotients of Rational Functions
In this section we deal with products and quotients of rational expressions. Before we
begin, we’ll need to establish some fundamental definitions and technique. We begin
with the definition of the product of two rational numbers.

Definition 1. Let a/b and c/d be rational numbers. The product of these
rational numbers is defined by

a

b
× c
d

= a× c
b× d

, or more compactly, a

b
· c
d

= ac
bd
. (2)

The definition simply states that you should multiply the numerators of each ra-
tional number to obtain the numerator of the product, and you also multiply the
denominators of each rational number to obtain the denominator of the product. For
example,

2
3
· 5
7

= 2 · 5
3 · 7

= 10
21
.

Of course, you should also check to make sure your final answer is reduced to lowest
terms.

Let’s look at an example.

I Example 3. Simplify the product of rational numbers
6

231
· 35
10
. (4)

First, multiply numerators and denominators together as follows.
6

231
· 35
10

= 6 · 35
231 · 10

= 210
2310
.

However, the answer is not reduced to lowest terms. We can express the numerator as
a product of primes.

210 = 21 · 10 = 3 · 7 · 2 · 5 = 2 · 3 · 5 · 7

It’s not necessary to arrange the factors in ascending order, but every little bit helps.
The denominator can also be expressed as a product of primes.

2310 = 10 · 231 = 2 · 5 · 7 · 33 = 2 · 3 · 5 · 7 · 11

We can now cancel common factors.
210
2310

= 2 · 3 · 5 · 7
2 · 3 · 5 · 7 · 11

= 2 · 3 · 5 · 7
2 · 3 · 5 · 7 · 11

= 1
11

(5)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/11
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However, this approach is not the most efficient way to proceed, as multiplying numer-
ators and denominators allows the products to grow to larger numbers, as in 210/2310.
It is then a little bit harder to prime factor the larger numbers.

A better approach is to factor the smaller numerators and denominators immedi-
ately, as follows.

6
231
· 35
10

= 2 · 3
3 · 7 · 11

· 5 · 7
2 · 5

We could now multiply numerators and denominators, then cancel common factors,
which would match identically the last computation in equation (5).

However, we can also employ the following cancellation rule.

Cancellation Rule. When working with the product of two or more rational
expressions, factor all numerators and denominators, then cancel. The cancellation
rule is simple: cancel a factor “on the top” for an identical factor “on the bottom.”
Speaking more technically, cancel any factor in any numerator for an identical
factor in any denominator.

Thus, we can finish our computation by canceling common factors, canceling “some-
thing on the top for something on the bottom.”

6
231
· 35
10

= 2 · 3
3 · 7 · 11

· 5 · 7
2 · 5

= 2 · 3
3 · 7 · 11

· 5 · 7
2 · 5

= 1
11

Note that we canceled a 2, 3, 5, and a 7 “on the top” for a 2, 3, 5, and 7 “on the
bottom.”12

Thus, we have two choices when multiplying rational expressions:

• Multiply numerators and denominators, factor, then cancel.
• Factor numerators and denominators, cancel, then multiply numerators and denom-

inators.

It is the latter approach that we will use in this section. Let’s look at another
example.

Students will sometimes use the phrase “cross-cancel” when working with the product of rational ex-12

pressions. Unfortunately, this term implies that cancellation can occur only in a diagonal direction,
which is far from the truth. We like to tell our students that there is no such term as “cross-cancel.”
There is only “cancel,” and the rule is: cancel something on the top for something on the bottom, which
is vernacular for “cancel a factor from any numerator and the identical factor from any denominator.”
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I Example 6. Simplify the expression

x2 − x− 6
x2 + 2x− 15

· x
2 − x− 30
x2 − 2x− 8

(7)

State restrictions.

Use the ac-test to factor each numerator and denominator. Then cancel as shown.

x2 − x− 6
x2 + 2x− 15

· x
2 − x− 30
x2 − 2x− 8

= (x+ 2)(x− 3)
(x− 3)(x+ 5)

· (x+ 5)(x− 6)
(x+ 2)(x− 4)

= (x+ 2)(x− 3)
(x− 3)(x+ 5)

· (x+ 5)(x− 6)
(x+ 2)(x− 4)

= x− 6
x− 4

The first fraction’s denominator has factors x− 3 and x+ 5. Hence, x = 3 or x = −5
will make this denominator zero. Therefore, the 3 and −5 are restrictions.

The second fraction’s denominator has factors x + 2 and x − 4. Hence, x = −2 or
x = 4 will make this denominator zero. Therefore, −2 and 4 are restrictions.

Therefore, for all values of x, except the restrictions −5, −2, 3, and 4, the left side
of

x2 − x− 6
x2 + 2x− 15

· x
2 − x− 30
x2 − 2x− 8

= x− 6
x− 4

(8)

is identical to its right side.
It’s possible to use your graphing calculator to check your results. First, load the

left- and right-hand sides of equation (8) into the calculator’s into Y1 and Y2 in your
graphing calculator’s Y= menu, as shown in Figure 1(a). Press 2nd TBLSET and set
TblStart = −6 and ∆Tbl = 1, as shown in Figure 1(b). Make sure that AUTO is
highlighted and selected with the ENTER key on both the independent and dependent
variables. Press 2nd TABLE to produce the tabular display in Figure 1(c).

(a) (b) (c) (d)
Figure 1. Using the table features of the graphing calculator to check the result in equation (8).

Remember that the left- and right-hand sides of equation (8) are loaded in Y1 and
Y2, respectively.
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• In Figure 1(c), note the ERR (error) message at the restricted values of x = −5
and x = −2. However, other than at these two restrictions, the functions Y1 and
Y2 agree at all other values of x in Figure 1(c).

• Use the down arrow to scroll down in the table to produce the tabular results shown
in Figure 1(d). Note the ERR (error) message at the restricted values of x = 3 and
x = 4. However, other than at these two restrictions, the functions Y1 and Y2 agree
at all other values of x in Figure 1(d).

• If you scroll up or down in the table, you’ll find that the functions Y1 and Y2 agree
at all values of x other than the restricted values −5, −2, 3, and 4.

Let’s look at another example.

I Example 9. Simplify

9− x2

x2 + 3x
· 6x− 2x2

x2 − 6x+ 9
(10)

State any restrictions.

The first numerator can be factored using the difference of two squares pattern.

9− x2 = (3 + x)(3− x).

The second denominator is a perfect square trinomial and can be factored as the square
of a binomial.

x2 − 6x+ 9 = (x− 3)2

You will want to remove the greatest common factor from the first denominator and
second numerator.

x2 + 3x = x(x+ 3) and 6x− 2x2 = 2x(3− x)

Thus,

9− x2

x2 + 3x
· 6x− 2x2

x2 − 6x+ 9
. = (3 + x)(3− x)

x(x+ 3)
· 2x(3− x)

(x− 3)2 .

We’ll need to execute a sign change or two to create common factors in the numerators
and denominators. So, in both the first and second numerator, factor a −1 from the
factor 3 − x to obtain 3 − x = −1(x − 3). Because the order of factors in a product
doesn’t matter, we’ll slide the −1 to the front in each case.

9− x2

x2 + 3x
· 6x− 2x2

x2 − 6x+ 9
. = −(3 + x)(x− 3)

x(x+ 3)
· −2x(x− 3)

(x− 3)2 .

We can now cancel common factors.



Section 7.4 Products and Quotients of Rational Functions 665

Version: Fall 2007

9− x2

x2 + 3x
· 6x− 2x2

x2 − 6x+ 9
= −(3 + x)(x− 3)

x(x+ 3)
· −2x(x− 3)

(x− 3)2

= −(3 + x)(x− 3)
x(x+ 3)

· −2x(x− 3)
(x− 3)2

= 2

A few things to notice:

• The factors 3 + x and x+ 3 are identical, so they may be cancelled, one on the top
for one on the bottom.

• Two factors of x − 3 on the top are cancelled for (x − 3)2 (which is equivalent to
(x− 3)(x− 3)) on the bottom.

• An x on top cancels an x on the bottom.
• We’re left with two minus signs (two −1’s) and a 2. So the solution is a positive 2.

Finally, the first denominator has factors x and x + 3, so x = 0 and x = −3 are
restrictions (they make this denominator equal to zero). The second denominator has
two factors of x− 3, so x = 3 is an additional restriction.

Hence, for all values of x, except the restricted values −3, 0, and 3, the left-hand
side of

9− x2

x2 + 3x
· 6x− 2x2

x2 − 6x+ 9
= 2 (11)

is identical to the right-hand side. Again, this claim is easily tested on the graphing
calculator which is evidenced in the sequence of screen captures in Figure 2.

(a) (b) (c) (d)
Figure 2. Using the table features of the graphing calculator to check the result in equation (11).

An alternate approach to the problem in equation (10) is to note differing orders
in the numerators and denominators (descending, ascending powers of x) and anticipate
the need for a sign change. That is, make the sign change before you factor.

For example, negate (multiply by −1) both numerator and fraction bar of the first
fraction to obtain

9− x2

x2 + 3x
= − x

2 − 9
x2 + 3x

According to our sign change rule, negating any two parts of a fraction leaves the
fraction unchanged.
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If we perform a similar sign change on the second fraction (negate numerator and
fraction bar), then we can factor and cancel common factors.

9− x2

x2 + 3x
· 6x− 2x2

x2 − 6x+ 9
= − x

2 − 9
x2 + 3x

· − 2x2 − 6x
x2 − 6x+ 9

= −(x+ 3)(x− 3)
x(x+ 3)

· −2x(x− 3)
(x− 3)2

= −(x+ 3)(x− 3)
x(x+ 3)

· −2x(x− 3)
(x− 3)2

= 2

Division of Rational Expressions
A simple definition will change a problem involving division of two rational expressions
into one involving multiplication of two rational expressions. Then there’s nothing left
to explain, for we already know how to multiply two rational expressions.

So, let’s motivate our definition of division. Suppose we ask the question, how many
halves are in a whole? The answer is easy, as two halves make a whole. Thus, when
we divide 1 by 1/2, we should get 2. There are two halves in one whole.

Let’s raise the stakes a bit and ask how many halves are in six? To make the
problem more precise, imagine you’ve ordered 6 pizzas and you cut each in half. How
many halves do you have? Again, this is easy when you think about the problem in
this manner, the answer is 12. Thus,

6÷ 1
2

(how many halves are in six) is identical to

6 · 2,

which, of course, is 12. Hopefully, thanks to this opening motivation, the following
definition will not seem too strange.

Definition 12. To perform the division
a

b
÷ c
d
,

invert the second fraction and multiply, as in
a

b
· d
c
.

Thus, if we want to know how many halves are in 12, we change the division into
multiplication (“invert and multiply”).
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12÷ 1
2

= 12 · 2 = 24

This makes sense, as there are 24 “halves” in 12. Let’s look at a harder example.

I Example 13. Simplify
33
15
÷ 14

10
. (14)

Invert the second fraction and multiply. After that, all we need to do is factor
numerators and denominators, then cancel common factors.

33
15
÷ 14

10
= 33

15
· 10
14

= 3 · 11
3 · 5

· 2 · 5
2 · 7

= 3 · 11
3 · 5

· 2 · 5
2 · 7

= 11
7

An interesting way to check this result on your calculator is shown in the sequence of
screens in Figure 3.

(a) (b) (c)
Figure 3. Using the calculator to check division of fractions.

After entering the original problem in your calculator, press ENTER, then press the MATH
button, then select 1:I Frac from the menu and press ENTER. The result is shown in
Figure 3(c), which agrees with our calculation above.

Let’s look at another example.

I Example 15. Simplify

9 + 3x− 2x2

x2 − 16
÷ 4x3 − 9x

2x2 + 5x− 12
. (16)

State the restrictions.

Note the order of the first numerator differs from the other numerators and denom-
inators, so we “anticipate” the need for a sign change, negating the numerator and
fraction bar of the first fraction. We also invert the second fraction and change the
division to multiplication (“invert and multiply”).

−2x2 − 3x− 9
x2 − 16

· 2x
2 + 5x− 12
4x3 − 9x

(17)

The numerator in the first fraction in equation (17) is a quadratic trinomial, with
ac = (2)(−9) = −18. The integer pair 3 and −6 has product −18 and sum −3. Hence,
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2x2 − 3x− 9 = 2x2 + 3x− 6x− 9
= x(2x+ 3)− 3(2x+ 3)
= (x− 3)(2x+ 3).

The denominator of the first fraction in equation (17) easily factors using the differ-
ence of two squares pattern.

x2 − 16 = (x+ 4)(x− 4)

The numerator of the second fraction in equation (17) is a quadratic trinomial, with
ac = (2)(−12) = −24. The integer pair −3 and 8 have product −24 and sum 5. Hence,

2x2 + 5x− 12 = 2x2 − 3x+ 8x− 12
= x(2x− 3) + 4(2x− 3)
= (x+ 4)(2x− 3).

To factor the denominator of the last fraction in equation (17), first pull the greatest
common factor (in this case x), then complete the factorization using the difference of
two squares pattern.

4x3 − 9x = x(4x2 − 9) = x(2x+ 3)(2x− 3)

We can now replace each numerator and denominator in equation (17) with its fac-
torization, then cancel common factors.

−2x2 − 3x− 9
x2 − 16

· 2x
2 + 5x− 12
4x3 − 9x

= −(x− 3)(2x+ 3)
(x+ 4)(x− 4)

· (x+ 4)(2x− 3)
x(2x+ 3)(2x− 3)

= −(x− 3)(2x+ 3)
(x+ 4)(x− 4)

· (x+ 4)(2x− 3)
x(2x+ 3)(2x− 3)

= − x− 3
x(x− 4)

The last denominator has factors x and x − 4, so x = 0 and x = 4 are restrictions.
In the body of our work, the first fraction’s denominator has factors x + 4 and x − 4.
We’ve seen the factor x − 4 already, so only the factor x + 4 adds a new restriction,
x = −4. Again, in the body of our work, the second fraction’s denominator has factors
x, 2x+ 3, and 2x− 3, so we have added restrictions x = 0, x = −3/2, and x = 3/2.

There’s one bit of trickery here that can easily be overlooked. In the body of our
work, the second fraction’s numerator was originally a denominator before we inverted
the fraction. So, we must consider what makes this numerator zero as well. Fortunately,
the factors in this numerator are x + 4 and 2x − 3 and we’ve already considered the
restrictions produced by these factors.

Hence, for all values of x, except the restricted values −4, −3/2, 0, 3/2, and 4, the
left-hand side of

9 + 3x− 2x2

x2 − 16
÷ 4x3 − 9x

2x2 + 5x− 12
= − x− 3
x(x− 4)

(18)
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is identical to the right-hand side.
Again, this claim is easily checked by using a graphing calculator, as is partially

evidenced (you’ll have to scroll downward to see the last restriction come into view) in
the sequence of screen captures in Figure 4.

(a) (b) (c) (d)
Figure 4. Using the table feature of the calculator to check the result in equation (18).

Alternative Notation. Note that the fractional expression a/b means “a divided
by b,” so we can use this equivalent notation for a÷ b. For example, the expression

9 + 3x− 2x2

x2 − 16
÷ 4x3 − 9x

2x2 + 5x− 12
(19)

is equivalent to the expression

9 + 3x− 2x2

x2 − 16
4x3 − 9x

2x2 + 5x− 12

. (20)

Let’s look at an example of this notation in use.

I Example 21. Given that

f(x) = x

x+ 3
and g(x) = x2

x+ 3
,

simplify both f(x)g(x) and f(x)/g(x).

First, the multiplication. There is no possible cancellation, so we simply multiply
numerators and denominators.

f(x)g(x) = x

x+ 3
· x

2

x+ 3
= x3

(x+ 3)2 .

This result is valid for all values of x except −3.
On the other hand,

f(x)
g(x)

=

x

x+ 3
x2

x+ 3

= x

x+ 3
÷ x2

x+ 3
.
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When we “invert and multiply,” then cancel, we obtain

f(x)
g(x)

= x

x+ 3
· x+ 3
x2 = 1

x
.

This result is valid for all values of x except −3 and 0.
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7.4 Exercises

In Exercises 1-10, reduce the product
to a single fraction in lowest terms.

1. 108
14
· 6
100

2. 75
63
· 18
45

3. 189
56
· 12
27

4. 45
72
· 63
64

5. 15
36
· 28
100

6. 189
49
· 32
25

7. 21
100
· 125

16

8. 21
35
· 49
45

9. 56
20
· 98
32

10. 27
125
· 4
12

In Exercises 11-34, multiply and sim-
plify. State all restrictions.

11.

x+ 6
x2 + 16x+ 63

· x
2 + 7x
x+ 4

12.

x2 + 9x
x2 − 25

· x
2 − x− 20

−18− 11x− x2

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/13

13.

x2 + 7x+ 10
x2 − 1

· −9 + 10x− x2

x2 + 9x+ 20

14.

x2 + 5x
x− 4

· x− 2
x2 + 6x+ 5

15.

x2 − 5x
x2 + 2x− 48

· x
2 + 11x+ 24
x2 − x

16.

x2 − 6x− 27
x2 + 10x+ 24

· x
2 + 13x+ 42
x2 − 11x+ 18

17.

−x− x2

x2 − 9x+ 8
· x

2 − 4x+ 3
x2 + 4x+ 3

18.

x2 − 12x+ 35
x2 + 2x− 15

· 45 + 4x− x2

x2 + x− 30

19.

x+ 2
7 − x

· x
2 + x− 56
x2 + 7x+ 6

20.

x2 − 2x− 15
x2 + x

· x2 + 7x
x2 + 12x+ 27

21.

x2 − 9
x2 − 4x− 45

· x− 6
−3− x
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22.

x2 − 12x+ 27
x− 4

· x− 5
x2 − 18x+ 81

23.

x+ 5
x2 + 12x+ 32

· x
2 − 2x− 24
x+ 7

24.

x2 − 36
x2 + 11x+ 24

· −8− x
x+ 4

25.

x− 5
x2 − 8x+ 12

· x
2 − 12x+ 36
x− 8

26.

x2 − 5x− 36
x− 1

· x− 5
x2 − 81

27.

x2 + 2x− 15
x2 − 10x+ 16

· x
2 − 7x+ 10

3x2 + 13x− 10

28.

5x2 + 14x− 3
x+ 9

· x− 7
x2 + 10x+ 21

29.

x2 − 4
x2 + 2x− 63

· x
2 + 6x− 27
x2 − 6x− 16

30.

x2 + 5x+ 6
x2 − 3x

· x2 − 5x
x2 + 9x+ 18

31.

x− 1
x2 + 2x− 63

· x
2 − 81
x+ 4

32.

x2 + 9x
x2 + 7x+ 12

· 27 + 6x− x2

x2 − 5x

33.

5− x
x+ 3

· x
2 + 3x− 18

2x2 − 7x− 15

34.

4x2 + 21x+ 5
18− 7x− x2 ·

x2 + 11x+ 18
x2 − 25

In Exercises 35-58, divide and simplify.
State all restrictions.

35.

x2 − 14x+ 48
x2 + 10x+ 16
−24 + 11x− x2

x2 − x− 72

36.
x− 1

x2 − 14x+ 48
÷ x+ 5
x2 − 3x− 18

37.

x2 − 1
x2 − 7x+ 12

÷ x2 + 6x+ 5
−24 + 10x− x2

38.

x2 − 13x+ 42
x2 − 2x− 63

÷ x
2 − x− 42
x2 + 8x+ 7

39.

x2 − 25
x+ 1

÷ 5x2 + 23x− 10
x− 3



Section 7.4 Products and Quotients of Rational Functions 673

Version: Fall 2007

40.

x2 − 3x
x2 − 7x+ 6
x2 − 4x

3x2 − 11x− 42

41.

x2 + 10x+ 21
x− 4
x2 + 3x
x+ 8

42.

x2 + 8x+ 15
x2 − 14x+ 45

÷ x
2 + 11x+ 30
−30 + 11x− x2

43.

x2 − 6x− 16
x2 + x− 42
x2 − 64

x2 + 12x+ 35

44.

x2 + 3x+ 2
x2 − 9x+ 18
x2 + 7x+ 6
x2 − 6x

45.

x2 + 12x+ 35
x+ 4

x2 + 10x+ 25
x+ 9

46.

x2 − 8x+ 7
x2 + 3x− 18

÷ x2 − 7x
x2 + 6x− 27

47.

x2 + x− 30
x2 + 5x− 36

÷ −6− x
x+ 8

48.

2x− x2

x2 − 15x+ 54
x2 + x

x2 − 11x+ 30

49.

x2 − 9x+ 8
x2 − 9
x2 − 8x

−15− 8x− x2

50.
x+ 5

x2 + 2x+ 1
÷ x− 2
x2 + 10x+ 9

51.

x2 − 4
x+ 8

x2 − 10x+ 16
x+ 3

52.

27 − 6x− x2

x2 + 9x+ 20
÷ x

2 − 12x+ 27
x2 + 5x

53.

x2 + 5x+ 6
x2 − 36
x− 7
−6− x

54.

2− x
x− 5

÷ x
2 + 3x− 10
x2 − 14x+ 48
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55.
x+ 3

x2 + 4x− 12
x− 4
x2 − 36

56.
x+ 3
x2 − x− 2

÷ x

x2 − 3x− 4

57.

x2 − 11x+ 28
x2 + 5x+ 6

÷ 7x2 − 30x+ 8
x2 − x− 6

58.
x− 7
3− x

2x2 + 3x− 5
x2 − 12x+ 27

59. Let

f(x) = x
2 − 7x+ 10
x2 + 4x− 21

and

g(x) = 5x− x2

x2 + 15x+ 56

Compute f(x)/g(x) and simplify your an-
swer.

60. Let

f(x) = x
2 + 15x+ 56
x2 − x− 20

and

g(x) = −7 − x
x+ 1

Compute f(x)/g(x) and simplify your an-
swer.

61. Let

f(x) = x
2 + 12x+ 35
x2 + 4x− 32

and

g(x) = x
2 − 2x− 35
x2 + 8x

Compute f(x)/g(x) and simplify your an-
swer.

62. Let

f(x) = x
2 + 4x+ 3
x− 1

and

g(x) = x
2 − 4x− 21
x+ 5

Compute f(x)/g(x) and simplify your an-
swer.

63. Let

f(x) = x
2 + x− 20
x

and

g(x) = x− 1
x2 − 2x− 35

Compute f(x)g(x) and simplify your an-
swer.

64. Let

f(x) = x
2 + 10x+ 24
x2 − 13x+ 42

and

g(x) = x
2 − 6x− 7
x2 + 8x+ 12

Compute f(x)g(x) and simplify your an-
swer.
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65. Let

f(x) = x+ 5
−6− x

and

g(x) = x
2 + 8x+ 12
x2 − 49

Compute f(x)g(x) and simplify your an-
swer.

66. Let

f(x) = 8− 7x− x2

x2 − 8x− 9

and

g(x) = x
2 − 6x− 7
x2 − 6x+ 5

Compute f(x)g(x) and simplify your an-
swer.
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7.4 Answers

1. 81
175

3. 3
2

5. 7
60

7. 105
64

9. 343
40

11. Provided x 6= −9,−7,−4,

x(x+ 6)
(x+ 9)(x+ 4)

13. Provided x 6= 1,−1,−4,−5,

−(x+ 2)(x− 9)
(x+ 1)(x+ 4)

15. Provided x 6= −8, 6, 1, 0,

(x− 5)(x+ 3)
(x− 6)(x− 1)

17. Provided x 6= 1, 8,−3,−1,

− x(x− 3)
(x− 8)(x+ 3)

19. Provided x 6= 7,−1,−6,

−(x+ 2)(x+ 8)
(x+ 1)(x+ 6)

21. Provided x 6= −3,−5, 9,

−(x− 3)(x− 6)
(x+ 5)(x− 9)

23. Provided x 6= −8,−4,−7,
(x+ 5)(x− 6)
(x+ 8)(x+ 7)

25. Provided x 6= 2, 6, 8,
(x− 5)(x− 6)
(x− 2)(x− 8)

27. Provided x 6= 2, 8, 2/3,−5,
(x− 3)(x− 5)
(3x− 2)(x− 8)

29. Provided x 6= −9, 7, 8,−2,
(x− 2)(x− 3)
(x− 7)(x− 8)

31. Provided x 6= 7,−9,−4,
(x− 1)(x− 9)
(x− 7)(x+ 4)

33. Provided x 6= −3,−3/2, 5,

− (x+ 6)(x− 3)
(2x+ 3)(x+ 3)

35. Provided x 6= −8,−2, 9, 3, 8,

−(x− 6)(x− 9)
(x+ 2)(x− 3)

37. Provided x 6= 4, 3, 6,−5,−1,

−(x− 1)(x− 6)
(x− 3)(x+ 5)

39. Provided x 6= −1, 2/5,−5, 3,
(x− 5)(x− 3)
(5x− 2)(x+ 1)



Section 7.4 Products and Quotients of Rational Functions 677

Version: Fall 2007

41. Provided x 6= 4, 0,−3,−8,

(x+ 7)(x+ 8)
x(x− 4)

43. Provided x 6= −7, 6,−5,−8, 8,

(x+ 2)(x+ 5)
(x− 6)(x+ 8)

45. Provided x 6= −4,−5,−9,

(x+ 7)(x+ 9)
(x+ 4)(x+ 5)

47. Provided x 6= 4,−9,−8,−6,

−(x− 5)(x+ 8)
(x− 4)(x+ 9)

49. Provided x 6= −3, 3,−5, 0, 8,

−(x− 1)(x+ 5)
x(x− 3)

51. Provided x 6= −8, 8, 2,−3,

(x+ 2)(x+ 3)
(x+ 8)(x− 8)

53. Provided x 6= 6,−6, 7,

−(x+ 2)(x+ 3)
(x− 6)(x− 7)

55. Provided x 6= 2,−6, 4, 6,

(x+ 3)(x− 6)
(x− 2)(x− 4)

57. Provided x 6= −2,−3, 3, 2/7, 4,

(x− 7)(x− 3)
(7x− 2)(x+ 3)

59. Provided x 6= −7, 3,−8, 0, 5,

−(x− 2)(x+ 8)
x(x− 3)

61. Provided x 6= −8, 4, 0, 7,−5,

x(x+ 7)
(x− 4)(x− 7)

63. Provided x 6= 0, 7,−5,

(x− 4)(x− 1)
x(x− 7)

65. Provided x 6= −6,−7, 7,

−(x+ 5)(x+ 2)
(x+ 7)(x− 7)
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7.5 Sums and Differences of Rational Functions
In this section we concentrate on finding sums and differences of rational expressions.
However, before we begin, we need to review some fundamental ideas and technique.

First and foremost is the concept of the multiple of an integer. This is best explained
with a simple example. The multiples of 8 is the set of integers {8k : k is an integer}.
In other words, if you multiply 8 by 0, ±1, ±2, ±3, ±4, etc., you produce what is
known as the multiples of 8.

Multiples of 8 are: 0, ±8, ±16, ±24, ±32, etc.

However, for our purposes, only the positive multiples are of interest. So we will say:

Multiples of 8 are: 8, 16, 24 , 32, 40, 48 , 56, 64, 72 , . . .

Similarly, we can list the positive multiples of 6.

Multiples of 6 are: 6, 12, 18, 24 , 30, 36, 42, 48 , 54, 60, 66, 72 , . . .

We’ve framed those numbers that are multiples of both 8 and 6. These are called the
common multiples of 8 and 6.

Common multiples of 8 and 6 are: 24, 48, 72, . . .

The smallest of this list of common multiples of 8 and 6 is called the least common
multiple of 8 and 6. We will use the following notation to represent the least common
multiple of 8 and 6: LCM(8, 6).

Hopefully, you will now feel comfortable with the following definition.

Definition 1. Let a and b be integers. The least common multiple of a
and b, denoted LCM(a, b), is the smallest positive multiple that a and b have in
common.

For larger numbers, listing multiples until you find one in common can be imprac-
tical and time consuming. Let’s find the least common multiple of 8 and 6 a second
time, only this time let’s use a different technique.

First, write each number as a product of primes in exponential form.

8 = 23

6 = 2 · 3

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/14
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Here’s the rule.

A Procedure to Find the LCM. To find the LCM of two integers, proceed as
follows.

1. Express the prime factorization of each integer in exponential format.
2. To find the least common multiple, write down every prime number that ap-

pears, then affix the largest exponent of that prime that appears.

In our example, the primes that occur are 2 and 3. The highest power of 2 that
occurs is 23. The highest power of 3 that occurs is 31. Thus, the LCM(8, 6) is

LCM(8, 6) = 23 · 31 = 24.

Note that this result is identical to the result found above by listing all common mul-
tiples and choosing the smallest.

Let’s try a harder example.

I Example 2. Find the least common multiple of 24 and 36.

Using the first technique, we list the multiples of each number, framing the multiples
in common.

Multiples of 24: 24, 48, 72 , 96, 120, 144 , 168, . . .
Multiples of 36: 36, 72 , 108, 144 , 180 . . .

The multiples in common are 72, 144, etc., and the least common multiple is LCM(24, 36) =
72.

Now, let’s use our second technique to find the least common multiple (LCM). First,
express each number as a product of primes in exponential format.

24 = 23 · 3
36 = 22 · 32

To find the least common multiple, write down every prime that occurs and affix the
highest power of that prime that occurs. Thus, the highest power of 2 that occurs is
23, and the highest power of 3 that occurs is 32. Thus, the least common multiple is

LCM(24, 36) = 23 · 32 = 8 · 9 = 72.
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Addition and Subtraction Defined
Imagine a pizza that has been cut into 12 equal slices. Then, each slice of pizza
represents 1/12 of the entire pizza.

If Jimmy eats 3 slices, then he has consumed 3/12 of the entire pizza. If Margaret
eats 2 slices, then she has consumed 2/12 of the entire pizza. It’s clear that together
they have consumed

3
12

+ 2
12

= 5
12

of the pizza. It would seem that adding two fractions with a common denominator is
as simple as eating pizza! Hopefully, the following definition will seem reasonable.

Definition 3. To add two fractions with a common denominator, such as a/c
and b/c, add the numerators and divide by the common denominator. In symbols,

a

c
+ b
c

= a+ b
c
.

Note how this definition agrees precisely with our pizza consumption discussed
above. Here are some examples of adding fractions having common denominators.

5
21

+ 3
21

= 5 + 3
21

2
x+ 2

+ x− 3
x+ 2

= 2 + (x− 3)
x+ 2

= 8
21

= 2 + x− 3
x+ 2

= x− 1
x+ 2

Subtraction works in much the same way as does addition.

Definition 4. To subtract two fractions with a common denominator, such as
a/c and b/c, subtract the numerators and divide by the common denominator. In
symbols,

a

c
− b
c

= a− b
c
.

Here are some examples of subtracting fractions already having common denomi-
nators.

5
21
− 3

21
= 5− 3

21
2
x+ 2

− x− 3
x+ 2

= 2− (x− 3)
x+ 2

= 2
21

= 2− x+ 3
x+ 2

= 5− x
x+ 2
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In the example on the right, note that it is extremely important to use grouping symbols
when subtracting numerators. Note that the minus sign in front of the parenthetical
expression changes the sign of each term inside the parentheses.

There are times when a sign change will provide a common denominator.

I Example 5. Simplify
x

x− 3
− 2

3− x
. (6)

State all restrictions.

At first glance, it appears that we do not have a common denominator. On second
glance, if we make a sign change on the second fraction, it might help. So, on the
second fraction, let’s negate the denominator and fraction bar to obtain

x

x− 3
− 2

3− x
= x

x− 3
+ 2
x− 3

= x+ 2
x− 3

.

The denominators x−3 or 3−x are zero when x = 3. Hence, 3 is a restricted value.
For all other values of x, the left-hand side of

x

x− 3
− 2

3− x
= x+ 2
x− 3

. (7)

is identical to the right-hand side.
This is easily tested using the table utility on the graphing calculator, as shown in

the sequence of screenshots in Figure 1. First load the left- and right-hand sides of
equation (7) into Y1 and Y2 in the Y= menu of your graphing calculator, as shown in
Figure 1(a). Press 2nd TBLSET and make the changes shown in Figure 1(b). Press
2nd TABLE to produce the table shown in Figure 1(c). Note the ERR (error) message
at the restriction x = 3, but note also the agreement of Y1 and Y2 for all other values
of x.

(a) (b) (c)
Figure 1. Using the table feature of the graphing calculator to check the result in
equation (7).
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Equivalent Fractions
If you slice a pizza into four equal pieces, then consume two of the four slices, you’ve
consumed half of the pizza. This motivates the fact that

1
2

= 2
4
.

Indeed, if you slice the pizza into six equal pieces, then consume three slices, you’ve
consumed half of the pizza, so it’s fair to say that 3/6 = 1/2. Indeed, all of the following
fractions are equivalent:

1
2

= 2
4

= 3
6

= 4
8

= 5
10

= 6
12

= 7
14

= · · ·

A more formal way to demonstrate that 1/2 and 7/14 are equal is to start with the
fact that 1/2 = 1/2× 1, then replace 1 with 7/7 and multiply.

1
2

= 1
2
× 1 = 1

2
× 7

7
= 7

14
Here’s another example of this principle in action, only this time we replace 1 with

(x− 2)/(x− 2).

3
x+ 2

= 3
x+ 2

· 1 = 3
x+ 2

· x− 2
x− 2

= 3(x− 2)
(x+ 2)(x− 2)

In the next example we replace 1 with (x(x− 3))/(x(x− 3)).

2
x− 4

= 2
x− 4

· 1 = 2
x− 4

· x(x− 3)
x(x− 3)

= 2x(x− 3)
x(x− 4)(x− 3)

Now, let’s apply the concept of equivalent fractions to add and subtract fractions
with different denominators.

Adding and Subtracting Fractions with Different Denomina-
tors
In this section we show our readers how to add and subtract fractions having different
denominators. For example, suppose we are asked to add the following fractions.

5
12

+ 5
18

(8)

First, we must find a “common denominator.” Fortunately, the machinery to find
the “common denominator” is already in place. It turns out that the least common
denominator for 12 and 18 is the least common multiple of 12 and 18.

18 = 2 · 32

12 = 22 · 3
LCD(12, 18) = 22 · 32 = 36
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The next step is to create equivalent fractions using the LCD as the denominator.
So, in the case of 5/12,

5
12

= 5
12
· 1 = 5

12
· 3
3

= 15
36
.

In the case of 5/18,
5
18

= 5
18
· 1 = 5

18
· 2
2

= 10
36
.

If we replace the fractions in equation (8) with their equivalent fractions, we can
then add the numerators and divide by the common denominator, as in

5
12

+ 5
18

= 15
36

+ 10
36

= 15 + 10
36

= 25
36
.

Let’s examine a method of organizing the work that is more compact. Consider the
following arrangement, where we’ve used color to highlight the form of 1 required to
convert the fractions to equivalent fractions with a common denominator of 36.

5
12

+ 5
18

= 5
12
· 3
3

+ 5
18
· 2
2

= 15
36

+ 10
36

= 25
36

Let’s look at a more complicated example.

I Example 9. Simplify the expression
x+ 3
x+ 2

− x+ 2
x+ 3

. (10)

State all restrictions.

The denominators are already factored. If we take each factor that appears to the
highest exponential power that appears, our least common denominator is (x+2)(x+3).
Our first task is to make equivalent fractions having this common denominator.

x+ 3
x+ 2

− x+ 2
x+ 3

= x+ 3
x+ 2

· x+ 3
x+ 3

− x+ 2
x+ 3

· x+ 2
x+ 2

= x2 + 6x+ 9
(x+ 2)(x+ 3)

− x
2 + 4x+ 4

(x+ 2)(x+ 3)

Now, subtract the numerators and divide by the common denominator.
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x+ 3
x+ 2

− x+ 2
x+ 3

= (x2 + 6x+ 9)− (x2 + 4x+ 4)
(x+ 2)(x+ 3)

= x
2 + 6x+ 9− x2 − 4x− 4

(x+ 2)(x+ 3)

= 2x+ 5
(x+ 2)(x+ 3)

Note the use of parentheses when we subtracted the numerators. Note further how the
minus sign negates each term in the parenthetical expression that follows the minus
sign.

Tip 11. Always use grouping symbols when subtracting the numerators of frac-
tions.

In the final answer, the factors x + 2 and x + 3 in the denominator are zero when
x = −2 or x = −3. These are the restrictions. No other denominators, in the original
problem or in the body of our work, provide additional restrictions.

Thus, for all values of x, except the restricted values −2 and −3, the left-hand side
of

x+ 3
x+ 2

− x+ 2
x+ 3

= 2x+ 5
(x+ 2)(x+ 3)

(12)

is identical to the right-hand side. This claim is easily tested on the graphing calculator
which is evidenced in the sequence of screen captures in Figure 2. Note the ERR (error)
message at each restricted value of x in Figure 2(c), but also note the agreement of
Y1 and Y2 for all other values of x.

(a) (b) (c)
Figure 2. Using the table feature of the graphing calculator to check the result in
equation (12).
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Let’s look at another example.

I Example 13. Simplify the expression
4

x2 + 6x+ 5
− 2
x2 + 8x+ 15

.

State all restrictions.

First, factor each denominator.
4

x2 + 6x+ 5
− 2
x2 + 8x+ 15

= 4
(x+ 1)(x+ 5)

− 2
(x+ 3)(x+ 5)

The least common denominator, or least common multiple (LCM), requires that we
write down each factor that occurs, then affix the highest power of that factor that
occurs. Because all factors in the denominators are raised to an understood power of
one, the LCD (least common denominator) or LCM is (x+ 1)(x+ 5)(x+ 3).

Next, we make equivalent fractions having this common denominator.
4

x2 + 6x+ 5
− 2
x2 + 8x+ 15

= 4
(x+ 1)(x+ 5)

· x+ 3
x+ 3

− 2
(x+ 3)(x+ 5)

· x+ 1
x+ 1

= 4x+ 12
(x+ 3)(x+ 5)(x+ 1)

− 2x+ 2
(x+ 3)(x+ 5)(x+ 1)

Subtract the numerators and divide by the common denominator. Be sure to use
grouping symbols, particularly with the minus sign that is in play.

4
x2 + 6x+ 5

− 2
x2 + 8x+ 15

= (4x+ 12)− (2x+ 2)
(x+ 3)(x+ 5)(x+ 1)

= 4x+ 12− 2x− 2
(x+ 3)(x+ 5)(x+ 1)

= 2x+ 10
(x+ 3)(x+ 5)(x+ 1)

Finally, we should always make sure that our answer is reduced to lowest terms.
With that thought in mind, we factor the numerator in hopes that we can get a common
factor to cancel.

4
x2 + 6x+ 5

− 2
x2 + 8x+ 15

= 2(x+ 5)
(x+ 3)(x+ 5)(x+ 1)

= 2(x+ 5)
(x+ 3)(x+ 5)(x+ 1)

= 2
(x+ 3)(x+ 1)

The denominators have factors of x+3, x+5 and x+1, so the restrictions are x = −3,
x = −5, and x = −1, respectively. For all other values of x, the left-hand side of

4
x2 + 6x+ 5

− 2
x2 + 8x+ 15

= 2
(x+ 3)(x+ 1)

(14)
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is identical to its right-hand side. Again, this is easily tested using the table feature of
the graphing calculator, as shown in the screenshots in Figure 3. Again, note the ERR
(error) messages at each restricted value of x, but also note that Y1 and Y2 agree for
all other values of x.

(a) (b) (c)
Figure 3. Using the table feature of the graphing calculator to check the result in
equation (14).

Let’s look at another example.

I Example 15. Simplify the expression
x− 3
x2 − 1

+ 1
x+ 1

− 1
1− x

.

State all restrictions.

First, factor all denominators.
x− 3
x2 − 1

+ 1
x+ 1

− 1
1− x

= x− 3
(x+ 1)(x− 1)

+ 1
x+ 1

− 1
1− x

If we’re not careful, we might be tempted to take one of each factor and use (x+1)(x−
1)(1−x) as a common denominator. However, let’s first make two negations of the last
of the three fractions on the right, negating the fraction bar and denominator to get

x− 3
x2 − 1

+ 1
x+ 1

− 1
1− x

= x− 3
(x+ 1)(x− 1)

+ 1
x+ 1

+ 1
x− 1

.

Now we can see that a common denominator of (x+ 1)(x− 1) will suffice. Let’s make
equivalent fractions with this common denominator.

x− 3
x2 − 1

+ 1
x+ 1

− 1
1− x

= x− 3
(x+ 1)(x− 1)

+ 1
x+ 1

· x− 1
x− 1

+ 1
x− 1

· x+ 1
x+ 1

= x− 3
(x+ 1)(x− 1)

+ x− 1
(x+ 1)(x− 1)

+ x+ 1
(x+ 1)(x− 1)

Add the numerators and divide by the common denominator. Even though grouping
symbols are not as critical in this problem (because of the plus signs), we still think it
good practice to use them.
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x− 3
x2 − 1

+ 1
x+ 1

− 1
1− x

= (x− 3) + (x− 1) + (x+ 1)
(x+ 1)(x− 1)

= 3x− 3
(x+ 1)(x− 1)

Finally, always make sure that your final answer is reduced to lowest terms. With
that thought in mind, we factor the numerator in hopes that we can get a common
factor to cancel.

x− 3
x2 − 1

+ 1
x+ 1

− 1
1− x

= 3(x− 1)
(x+ 1)(x− 1)

= 3(x− 1)
(x+ 1)(x− 1)

= 3
x+ 1

The factors x + 1 and x − 1 in the denominator produce restrictions x = −1 and
x = 1, respectively. However, for all other values of x, the left-hand side of

x− 3
x2 − 1

+ 1
x+ 1

− 1
1− x

= 3
x+ 1

(16)

is identical to the right-hand side. Again, this is easily checked on the graphing calcu-
lator as shown in the sequence of screenshots in Figure 4.

(a) (b) (c)
Figure 4. Using the table feature of the graphing calculator to check the result in
equation (16).

Again, note the ERR (error) messages at each restriction, but also note that the values
of Y1 and Y2 agree for all other values of x.
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Let’s look at an example using function notation.

I Example 17. If the function f and g are defined by the rules

f(x) = x

x+ 2
and g(x) = 1

x
,

simplify f(x)− g(x).

First,

f(x)− g(x) = x

x+ 2
− 1
x
.

Note how tempting it would be to cancel. However, canceling would be an error in this
situation, because subtraction requires a common denominator.

f(x)− g(x) = x

x+ 2
· x
x
− 1
x
· x+ 2
x+ 2

= x2

x(x+ 2)
− x+ 2
x(x+ 2)

Subtract numerators and divide by the common denominator. This requires that we
“distribute” the minus sign.

f(x)− g(x) = x
2 − (x+ 2)
x(x+ 2)

= x
2 − x− 2
x(x+ 2)

This result is valid for all values of x except 0 and −2. We leave it to our readers to
verify that this result is reduced to lowest terms. You might want to check the result
on your calculator as well.
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7.5 Exercises

In Exercises 1-16, add or subtract the
rational expressions, as indicated, and
simplify your answer. State all restric-
tions.

1. 7x2 − 49x
x− 6

+ 42
x− 6

2. 2x2 − 110
x− 7

− 12
7 − x

3. 27x− 9x2

x+ 3
+ 162
x+ 3

4. 2x2 − 28
x+ 2

− 10x
x+ 2

5. 4x2 − 8
x− 4

+ 56
4− x

6. 4x2

x− 2
− 36x− 56
x− 2

7. 9x2

x− 1
+ 72x− 63

1− x

8. 5x2 + 30
x− 6

− 35x
x− 6

9. 4x2 − 60x
x− 7

+ 224
x− 7

10. 3x2

x− 7
− 63− 30x

7 − x

11. 3x2

x− 2
− 48− 30x

2− x

12. 4x2 − 164
x− 6

− 20
6− x

13. 9x2

x− 2
− 81x− 126
x− 2

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/15

14. 9x2

x− 8
+ 144x− 576

8− x

15. 3x2 − 12
x− 3

+ 15
3− x

16. 7x2

x− 9
− 112x− 441

x− 9

In Exercises 17-34, add or subtract the
rational expressions, as indicated, and
simplify your answer. State all restric-
tions.

17. 3x
x2 − 6x+ 5

+ 15
x2 − 14x+ 45

18. 7x
x2 − 4x

+ 28
x2 − 12x+ 32

19. 9x
x2 + 4x− 12

− 54
x2 + 20x+ 84

20. 9x
x2 − 25

− 45
x2 + 20x+ 75

21. 5x
x2 − 21x+ 98

− 35
7x− x2

22. 7x
7x− x2 + 147

x2 + 7x− 98

23. −7x
x2 − 8x+ 15

− 35
x2 − 12x+ 35

24. −6x
x2 + 2x

+ 12
x2 + 6x+ 8

25. −9x
x2 − 12x+ 32

− 36
x2 − 4x

26. 5x
x2 − 12x+ 32

− 20
4x− x2
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27. 6x
x2 − 21x+ 98

− 42
7x− x2

28. −2x
x2 − 3x− 10

+ 4
x2 + 11x+ 18

29. −9x
x2 − 6x+ 8

− 18
x2 − 2x

30. 6x
5x− x2 + 90

x2 + 5x− 50

31. 8x
5x− x2 + 120

x2 + 5x− 50

32. −5x
x2 + 5x

+ 25
x2 + 15x+ 50

33. −5x
x2 + x− 30

+ 30
x2 + 23x+ 102

34. 9x
x2 + 12x+ 32

− 36
x2 + 4x

35. Let

f(x) = 8x
x2 + 6x+ 8

and

g(x) = 16
x2 + 2x

Compute f(x) − g(x) and simplify your
answer.

36. Let

f(x) = −7x
x2 + 8x+ 12

and

g(x) = 42
x2 + 16x+ 60

Compute f(x) + g(x) and simplify your
answer.

37. Let

f(x) = 11x
x2 + 12x+ 32

and

g(x) = 44
−4x− x2

Compute f(x) + g(x) and simplify your
answer.

38. Let

f(x) = 8x
x2 − 6x

and

g(x) = 48
x2 − 18x+ 72

Compute f(x) + g(x) and simplify your
answer.

39. Let

f(x) = 4x
−x− x2

and

g(x) = 4
x2 + 3x+ 2

Compute f(x) + g(x) and simplify your
answer.

40. Let

f(x) = 5x
x2 − x− 12

and

g(x) = 15
x2 + 13x+ 30

Compute f(x) − g(x) and simplify your
answer.
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7.5 Answers

1. 7(x− 1), provided x 6= 6.

3. −9(x− 6), provided x 6= −3.

5. 4(x+ 4), provided x 6= 4.

7. 9(x− 7), provided x 6= 1.

9. 4(x− 8), provided x 6= 7.

11. 3(x− 8), provided x 6= 2.

13. 9(x− 7), provided x 6= 2.

15. 3(x+ 3), provided x 6= 3.

17. Provided x 6= 5, 1, 9,

3(x+ 1)
(x− 1)(x− 9)

19. Provided x 6= −6, 2,−14,

9(x+ 2)
(x− 2)(x+ 14)

21. Provided x 6= 7, 14, 0,

5(x+ 14)
x(x− 14)

23. Provided x 6= 5, 3, 7,

−7(x+ 3)
(x− 3)(x− 7)

25. Provided x 6= 4, 8, 0,

−9(x+ 8)
x(x− 8)

27. Provided x 6= 7, 14, 0,

6(x+ 14)
x(x− 14)

29. Provided x 6= 2, 4, 0,

−9(x+ 4)
x(x− 4)

31. Provided x 6= 5, 0,−10,
−8
x+ 10

33. Provided x 6= −6, 5,−17,

−5(x+ 5)
(x− 5)(x+ 17)

35. Provided x 6= −2,−4, 0,

8(x− 4)
x(x+ 4)

37. Provided x 6= −4,−8, 0,

11(x− 8)
x(x+ 8)

39. Provided x 6= −1, 0,−2,
−4
x+ 2
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7.6 Complex Fractions
In this section we learn how to simplify what are called complex fractions, an example
of which follows.

1
2

+ 1
3

1
4

+ 2
3

(1)

Note that both the numerator and denominator are fraction problems in their own
right, lending credence to why we refer to such a structure as a “complex fraction.”

There are two very different techniques we can use to simplify the complex fraction
(1). The first technique is a “natural” choice.

Simplifying Complex Fractions — First Technique. To simplify a complex
fraction, proceed as follows:

1. Simplify the numerator.
2. Simplify the denominator.
3. Simplify the division problem that remains.

Let’s follow this outline to simplify the complex fraction (1). First, add the fractions
in the numerator as follows.

1
2

+ 1
3

= 3
6

+ 2
6

= 5
6

(2)

Secondly, add the fractions in the denominator as follows.
1
4

+ 2
3

= 3
12

+ 8
12

= 11
12

(3)

Substitute the results from (2) and (3) into the numerator and denominator of (1),
respectively.

1
2

+ 1
3

1
4

+ 2
3

=

5
6
11
12

(4)

The right-hand side of (4) is equivalent to
5
6
÷ 11

12
.

This is a division problem, so invert and multiply, factor, then cancel common factors.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/16
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1
2

+ 1
3

1
4

+ 2
3

= 5
6
· 12
11

= 5
2 · 3
· 2 · 2 · 3

11
= 5

2 · 3
· 2 · 2 · 3

11
= 10

11
Here is an arrangement of the work, from start to finish, presented without comment.

This is a good template to emulate when doing your homework.
1
2

+ 1
3

1
4

+ 2
3

=

3
6

+ 2
6

3
12

+ 8
12

=

5
6
11
12

= 5
6
· 12
11

= 5
2 · 3
· 2 · 2 · 3

11
= 5

2 · 3
· 2 · 2 · 3

11
= 10

11
Now, let’s look at a second approach to the problem. We saw that simplifying the

numerator in (2) required a common denominator of 6. Simplifying the denominator in
(3) required a common denominator of 12. So, let’s choose another common denomina-
tor, this one a common denominator for both numerator and denominator, namely, 12.
Now, multiply top and bottom (numerator and denominator) of the complex fraction
(1) by 12, as follows.

1
2

+ 1
3

1
4

+ 2
3

=

(
1
2

+ 1
3

)
12(

1
4

+ 2
3

)
12

(5)

Distribute the 12 in both numerator and denominator and simplify.
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(
1
2

+ 1
3

)
12(

1
4

+ 2
3

)
12

=

(
1
2

)
12 +
(

1
3

)
12(

1
4

)
12 +
(

2
3

)
12

= 6 + 4
3 + 8

= 10
11

Let’s summarize this second technique.

Simplifying Complex Fractions — Second Technique. To simplify a com-
plex fraction, proceed as follows:

1. Find a common denominator for both numerator and denominator.
2. Clear fractions from the numerator and denomaintor by multiplying each by

the common denominator found in the first step.

Note that for this particular problem, the second method is much more efficient. It
saves both space and time and is more aesthetically pleasing. It is the technique that
we will favor in the rest of this section.

Let’s look at another example.

I Example 6. Use both the First and Second Techniques to simplify the expression
1
x
− 1

1− 1
x2

. (7)

State all restrictions.

Let’s use the first technique, simplifying numerator and denominator separately
before dividing. First, make equivalent fractions with a common denominator for the
subtraction problem in the numerator of (7) and simplify. Do the same for the denom-
inator.

1
x
− 1

1− 1
x2

=

1
x
− x
x

x2

x2 −
1
x2

=

1− x
x

x2 − 1
x2

Next, invert and multiply, then factor.
1
x
− 1

1− 1
x2

= 1− x
x
· x

2

x2 − 1
= 1− x
x
· x2

(x+ 1)(x− 1)

Let’s invoke the sign change rule and negate two parts of the fraction (1 − x)/x, nu-
merator and fraction bar, then cancel the common factors.
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1
x
− 1

1− 1
x2

= −x− 1
x
· x2

(x+ 1)(x− 1)
= −x− 1

x
· xx

(x+ 1)(x− 1)

Hence,
1
x
− 1

1− 1
x2

= − x

x+ 1
.

Now, let’s try the problem a second time, multiplying numerator and denominator
by x2 to clear fractions from both the numerator and denominator.

1
x
− 1

1− 1
x2

=

(
1
x
− 1
)
x2

(
1− 1
x2

)
x2

=

(
1
x

)
x2 − (1)x2

(1)x2 −
(

1
x2

)
x2

= x− x
2

x2 − 1

The order in the numerator of the last fraction intimates that a sign change would be
helpful. Negate the numerator and fraction bar, factor, then cancel common factors.

1
x
− 1

1− 1
x2

= −x
2 − x
x2 − 1

= − x(x− 1)
(x+ 1)(x− 1)

= − x(x− 1)
(x+ 1)(x− 1)

= − x

x+ 1

This is precisely the same answer found with the first technique. To list the restrictions,
we must make sure that no values of x make any denominator equal to zero, at the
beginning of the problem, in the body of our work, or in the final answer.

In the original problem, if x = 0, then both 1/x and 1/x2 are undefined, so x = 0
is a restriction. In the body of our work, the factors x+ 1 and x− 1 found in various
denominators make x = −1 and x = 1 restrictions. No other denominators supply
restrictions that have not already been listed. Hence, for all x other than −1, 0, and
1, the left-hand side of

1
x
− 1

1− 1
x2

= − x

x+ 1
(8)

is identical to the right-hand side. Again, the calculator’s table utility provides ample
evidence of this fact in the screenshots shown in Figure 1.

Note the ERR (error) messages at each of the restricted values of x, but also note
the perfect agreement of Y1 and Y2 at all other values of x.

Let’s look at another example, an important example involving function notation.
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(a) (b) (c)
Figure 1. Using the table feature of the graphing calculator to check the identity in (8).

I Example 9. Given that

f(x) = 1
x
,

simplify the expression

f(x)− f(2)
x− 2

.

List all restrictions.

Remember, f(2) means substitute 2 for x. Because f(x) = 1/x, we know that
f(2) = 1/2, so

f(x)− f(2)
x− 2

=

1
x
− 1

2
x− 2

.

To clear the fractions from the numerator, we’d use a common denominator of 2x. There
are no fractions in the denominator that need clearing, so the common denominator
for numerator and denominator is 2x. Multiply numerator and denominator by 2x.

f(x)− f(2)
x− 2

=

(
1
x
− 1

2

)
2x

(x− 2)2x
=

(
1
x

)
2x−

(
1
2

)
2x

(x− 2)2x
= 2− x

2x(x− 2)

Negate the numerator and fraction bar, then cancel common factors.

f(x)− f(2)
x− 2

= − x− 2
2x(x− 2)

= − x− 2
2x(x− 2)

= − 1
2x

In the original problem, we have a denominator of x − 2, so x = 2 is a restriction. If
the body of our work, there is a fraction 1/x, which is undefined when x = 0, so x = 0
is also a restriction. The remaining denominators provide no other restrictions. Hence,
for all values of x except 0 and 2, the left-hand side of

f(x)− f(2)
x− 2

= − 1
2x

is identical to the right-hand side.
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Let’s look at another example involving function notation.

I Example 10. Given

f(x) = 1
x2 ,

simplify the expression
f(x+ h)− f(x)

h
. (11)

List all restrictions.

The function notation f(x + h) is asking us to replace each instance of x in the
formula 1/x2 with x+ h. Thus, f(x+ h) = 1/(x+ h)2.

Here is another way to think of this substitution. Suppose that we remove the x
from

f(x) = 1
x2 ,

so that it reads

f( ) = 1
( )2 . (12)

Now, if you want to compute f(2), simply insert a 2 in the blank area between paren-
theses. In our case, we want to compute f(x + h), so we insert an x + h in the blank
space between parentheses in (12) to get

f(x+ h) = 1
(x+ h)2 .

With these preliminary remarks in mind, let’s return to the problem. First, we
interpret the function notation as in our preliminary remarks and write

f(x+ h)− f(x)
h

=

1
(x+ h)2 −

1
x2

h
.

The common denominator for the numerator is found by listing each factor to the
highest power that it occurs. Hence, the common denominator is x2(x + h)2. The
denominator has no fractions to be cleared, so it suffices to multiply both numerator
and denominator by x2(x+ h)2.

f(x+ h)− f(x)
h

=

(
1

(x+ h)2 −
1
x2

)
x2(x+ h)2

hx2(x+ h)2

=

(
1

(x+ h)2

)
x2(x+ h)2 −

(
1
x2

)
x2(x+ h)2

hx2(x+ h)2

= x
2 − (x+ h)2

hx2(x+ h)2
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We will now expand the numerator. Don’t forget to use parentheses and distribute
that minus sign.

f(x+ h)− f(x)
h

= x
2 − (x2 + 2xh+ h2)
hx2(x+ h)2

= x
2 − x2 − 2xh− h2

hx2(x+ h)2

= −2xh− h2

hx2(x+ h)2

Finally, factor a −h out of the numerator in hopes of finding a common factor to cancel.

f(x+ h)− f(x)
h

= −h(2x+ h)
hx2(x+ h)2

= −h(2x+ h)
hx2(x+ h)2

= −(2x+ h)
x2(x+ h)2

We must now discuss the restrictions. In the original question (11), the h in the
denominator must not equal zero. Hence, h = 0 is a restriction. In the final simplified
form, the factor of x2 in the denominator is undefined if x = 0. Hence, x = 0 is
a restriction. Finally, the factor of (x + h)2 in the final denominator is undefined if
x+h = 0, so x = −h is a restriction. The remaining denominators provide no additional
restrictions. Hence, provided h 6= 0, x 6= 0, and x 6= −h, for all other combinations of
x and h, the left-hand side of

f(x+ h)− f(x)
h

= −(2x+ h)
x2(x+ h)2

is identical to the right-hand side.

Let’s look at one final example using function notation.

I Example 13. If

f(x) = x

x+ 1
(14)

simplify f(f(x)).

We first evaluate f at x, then evaluate f at the result of the first computation.
Thus, we work the inner function first to obtain

f(f(x)) = f
(
x

x+ 1

)
.
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The notation f(x/(x + 1)) is asking us to replace each occurrence of x in the formula
x/(x + 1) with the expression x/(x + 1). Confusing? Here is an easy way to think of
this substitution. Suppose that we remove x from

f(x) = x

x+ 1
,

replacing each occurrence of x with empty parentheses, which will produce the template

f( ) = ( )
( ) + 1

. (15)

Now, if asked to compute f(3), simply insert 3 into the blank areas between parentheses.
In this case, we want to compute f(x/(x+1)), so we insert x/(x+1) in the blank space
between each set of parentheses in (15) to obtain

f

(
x

x+ 1

)
=

x

x+ 1
x

x+ 1
+ 1
.

We now have a complex fraction. The common denominator for both top and bottom
of this complex fraction is x+ 1. Thus, we multiply both numerator and denominator
of our complex fraction by x+ 1 and use the distributive property as follows.

x

x+ 1
x

x+ 1
+ 1

=

(
x

x+ 1

)
(x+ 1)(

x

x+ 1
+ 1
)

(x+ 1)
=

(
x

x+ 1

)
(x+ 1)(

x

x+ 1

)
(x+ 1) + (1)(x+ 1)

Cancel and simplify. (
x

x+ 1

)
(x+ 1)(

x

x+ 1

)
(x+ 1) + (1)(x+ 1)

= x

x+ (x+ 1)
= x

2x+ 1

In the final denominator, the value x = −1/2 makes the denominator 2x + 1 equal
to zero. Hence, x = −1/2 is a restriction. In the body of our work, several fractions
have denominators of x+ 1 and are therefore undefined at x = −1. Thus, x = −1 is a
restriction. No other denominators add additional restrictions.

Hence, for all values of x, except x = −1/2 and x = −1, the left-hand side of

f(f(x)) = x

2x+ 1

is identical to the right-hand side.



Section 7.6 Complex Fractions 703

Version: Fall 2007

7.6 Exercises

In Exercises 1-6, evaluate the function
at the given rational number. Then use
the first or second technique for simpli-
fying complex fractions explained in the
narrative to simplify your answer.

1. Given

f(x) = x+ 1
2− x

,

evaluate and simplify f(1/2).

2. Given

f(x) = 2− x
x+ 5

,

evaluate and simplify f(3/2).

3. Given

f(x) = 2x+ 3
4− x

,

evaluate and simplify f(1/3).

4. Given

f(x) = 3− 2x
x+ 5

,

evaluate and simplify f(2/5).

5. Given

f(x) = 5− 2x
x+ 4

,

evaluate and simplify f(3/5).

6. Given

f(x) = 2x− 9
11− x

,

evaluate and simplify f(4/3).

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/17

In Exercises 7-46, simplify the given
complex rational expression. State all re-
strictions.

7.

5 + 6
x

25
x
− 36
x3

8.

7 + 9
x

49
x
− 81
x3

9.
7
x− 2

− 5
x− 7

8
x− 7

+ 3
x+ 8

10.
9
x+ 4

− 7
x− 9

9
x− 9

+ 5
x− 4

11.

3 + 7
x

9
x2 −

49
x4



704 Chapter 7 Rational Functions

Version: Fall 2007

12.

2− 5
x

4
x2 −

25
x4

13.
9
x+ 4

+ 7
x+ 9

9
x+ 9

+ 2
x− 8

14.
4
x− 6

+ 9
x− 9

9
x− 6

+ 8
x− 9

15.
5
x− 7

− 4
x− 4

10
x− 4

− 5
x+ 2

16.
3
x+ 6

+ 7
x+ 9

9
x+ 6

− 4
x+ 9

17.
6
x− 3

+ 5
x− 8

9
x− 3

+ 7
x− 8

18.
7
x− 7

− 4
x− 2

7
x− 7

− 6
x− 2

19.
4
x− 2

+ 7
x− 7

5
x− 2

+ 2
x− 7

20.
9
x+ 2

− 7
x+ 5

4
x+ 2

+ 3
x+ 5

21.

5 + 4
x

25
x
− 16
x3

22.
6
x+ 5

+ 5
x+ 4

8
x+ 5

− 3
x+ 4

23.
9
x− 5

+ 8
x+ 4

5
x− 5

− 4
x+ 4

24.
4
x− 6

+ 4
x− 9

6
x− 6

+ 6
x− 9

25.
6
x+ 8

+ 5
x− 2

5
x− 2

− 2
x+ 2
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26.
7
x+ 9

+ 9
x− 2

4
x− 2

+ 7
x+ 1

27.
7
x+ 7

− 5
x+ 4

8
x+ 7

− 3
x+ 4

28.

25− 16
x2

5 + 4
x

29.
64
x
− 25
x3

8− 5
x

30.
4
x+ 2

+ 5
x− 6

7
x− 6

− 5
x+ 7

31.
2
x− 6

− 4
x+ 9

3
x− 6

− 6
x+ 9

32.
3
x+ 6

− 4
x+ 4

6
x+ 6

− 8
x+ 4

33.
9
x2 −

64
x4

3− 8
x

34.
9
x2 −

25
x4

3− 5
x

35.
4
x− 4

− 8
x− 7

4
x− 7

+ 2
x+ 2

36.

2− 7
x

4− 49
x2

37.
3

x2 + 8x− 9
+ 3
x2 − 81

9
x2 − 81

+ 9
x2 − 8x− 9

38.
7

x2 − 5x− 14
+ 2
x2 − 7x− 18

5
x2 − 7x− 18

+ 8
x2 − 6x− 27

39.
2

x2 + 8x+ 7
+ 5
x2 + 13x+ 42

7
x2 + 13x+ 42

+ 6
x2 + 3x− 18
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40.
3

x2 + 5x− 14
+ 3
x2 − 7x− 98

3
x2 − 7x− 98

+ 3
x2 − 15x+ 14

41.
6

x2 + 11x+ 24
− 6
x2 + 13x+ 40

9
x2 + 13x+ 40

− 9
x2 − 3x− 40

42.
7

x2 + 13x+ 30
+ 7
x2 + 19x+ 90

9
x2 + 19x+ 90

+ 9
x2 + 7x− 18

43.
7

x2 − 6x+ 5
+ 7
x2 + 2x− 35

8
x2 + 2x− 35

+ 8
x2 + 8x+ 7

44.
2

x2 − 4x− 12
− 2
x2 − x− 30

2
x2 − x− 30

− 2
x2 − 4x− 45

45.
4

x2 + 6x− 7
− 4
x2 + 2x− 3

4
x2 + 2x− 3

− 4
x2 + 5x+ 6

46.
9

x2 + 3x− 4
+ 8
x2 − 7x+ 6

4
x2 − 7x+ 6

+ 9
x2 − 10x+ 24

47. Given f(x) = 2/x, simplify

f(x)− f(3)
x− 3

.

State all restrictions.

48. Given f(x) = 5/x, simplify

f(x)− f(2)
x− 2

.

State all restrictions.

49. Given f(x) = 3/x2, simplify

f(x)− f(1)
x− 1

.

State all restrictions.

50. Given f(x) = 5/x2, simplify

f(x)− f(2)
x− 2

.

State all restrictions.

51. Given f(x) = 7/x, simplify

f(x+ h)− f(x)
h

.

State all restrictions.

52. Given f(x) = 4/x, simplify

f(x+ h)− f(x)
h

.

State all restrictions.

53. Given

f(x) = x+ 1
3− x

,

find and simplify f(1/x). State all re-
strictions.
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54. Given

f(x) = 2− x
3x+ 4

,

find and simplify f(2/x). State all re-
strictions.

55. Given

f(x) = x+ 1
2− 5x

,

find and simplify f(5/x). State all re-
strictions.

56. Given

f(x) = 2x− 3
4 + x

,

find and simplify f(1/x). State all re-
strictions.

57. Given

f(x) = x

x+ 2
,

find and simplify f(f(x)). State all re-
strictions.

58. Given

f(x) = 2x
x+ 5

,

find and simplify f(f(x)). State all re-
strictions.
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7.6 Answers

1. 1

3. 1

5. 19/23

7. Provided x 6= 0, −6/5, or 6/5,

x2

5x− 6
.

9. Provided x 6= 2, 7, −8, of −43/11,
(2x− 39)(x+ 8)
(11x+ 43)(x− 2)

.

11. Provided x 6= 0, −7/3, or 7/3,

x3

3x− 7
.

13. Provided x 6= −4, −9, 8, or 54/11,
(16x+ 109)(x− 8)
(11x− 54)(x+ 4)

.

15. Provided x 6= 7, 4, −2, or −8,
x+ 2

5(x− 7)
.

17. Provided x 6= 3, 8, or 93/16,
11x− 63
16x− 93

.

19. Provided x 6= 2, 7, or 39/7,
11x− 42
7x− 39

.

21. Provided x 6= 0, −4/5, or 4/5,

x2

5x− 4
.

23. Provided x 6= 5, −4, or −40,
17x− 4
x+ 40

.

25. Provided x 6= −8, 2, −2, or −14/3,

(11x+ 28)(x+ 2)
(3x+ 14)(x+ 8)

.

27. Provided x 6= −7, −4, or −11/5,
2x− 7
5x+ 11

.

29. Provided x 6= 0 or 5/8,
8x+ 5
x2 .

31. Provided x 6= 6, −9, or 21,
2
3
.

33. Provided x 6= 0 or 8/3,
3x+ 8
x3 .

35. Provided x 6= 4, 7, −2, or 1,

−2(x+ 2)
3(x− 4)

.

37. Provided x 6= 1,−9, 9,−1,−5,

(x− 5)(x+ 1)
3(x+ 5)(x− 1)

39. Provided x 6= −1,−7,−6, 3,−21/13,

(7x+ 17)(x− 3)
(13x+ 21)(x+ 1)



Section 7.6 Complex Fractions 709

Version: Fall 2007

41. Provided x 6= −3,−8,−5, 8,

−1(x− 8)
12(x+ 3)

43. Provided x 6= 1, 5,−7,−1, 2,

7(x+ 3)(x+ 1)
8(x− 2)(x− 1)

45. Provided x 6= −7, 1,−3,−2,

−4(x+ 2)
3(x+ 7)

47. Provided x 6= 0, 3,

− 2
3x

49. Provided x 6= 0, 1,

−3(x+ 1)
x2

51. Provided x 6= 0,−h, and h 6= 0,

− 7
h(x+ h)

53. Provided x 6= 0, 1/3,
x+ 1
3x− 1

55. Provided x 6= 0, 25/2,
x+ 5

2x− 25

57. Provided x 6= −2, −4/3,
x

3x+ 4
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7.7 Solving Rational Equations
When simplifying complex fractions in the previous section, we saw that multiplying
both numerator and denominator by the appropriate expression could “clear” all frac-
tions from the numerator and denominator, greatly simplifying the rational expression.

In this section, a similar technique is used.

Clear the Fractions from a Rational Equation. If your equation has rational
expressions, multiply both sides of the equation by the least common denominator
to clear the equation of rational expressions.

Let’s look at an example.

I Example 1. Solve the following equation for x.
x

2
− 2

3
= 3

4
(2)

To clear this equation of fractions, we will multiply both sides by the common
denominator for 2, 3, and 4, which is 12. Distribute 12 in the second step.

12
(
x

2
− 2

3

)
=
(

3
4

)
12

12
(x

2

)
− 12
(

2
3

)
=
(

3
4

)
12

Multiply.

6x− 8 = 9

We’ve succeeded in clearing the rational expressions from the equation by multiply-
ing through by the common denominator. We now have a simple linear equation which
can be solved by first adding 8 to both sides of the equation, followed by dividing both
sides of the equation by 6.

6x = 17

x = 17
6

We’ll leave it to our readers to check this solution.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/18
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Let’s try another example.

I Example 3. Solve the following equation for x.

6 = 5
x

+ 6
x2 (4)

In this equation, the denominators are 1, x, and x2, and the common denominator
for both sides of the equation is x2. Consequently, we begin the solution by first
multiplying both sides of the equation by x2.

x2 (6) =
(

5
x

+ 6
x2

)
x2

x2 (6) =
(

5
x

)
x2 +
(

6
x2

)
x2

Simplify.

6x2 = 5x+ 6

Note that multiplying both sides of the original equation by the least common
denominator clears the equation of all rational expressions. This last equation is non-
linear,19 so make one side of the equation equal to zero by subtracting 5x and 6 from
both sides of the equation.

6x2 − 5x− 6 = 0

To factor the left-hand side of this equation, note that it is a quadratic trinomial with
ac = (6)(−6) = −36. The integer pair 4 and −9 have product −36 and sum −5. Split
the middle term using this pair and factor by grouping.

6x2 + 4x− 9x− 6 = 0
2x(3x+ 2)− 3(3x+ 2) = 0

(2x− 3)(3x+ 2) = 0

The zero product property forces either

2x− 3 = 0 or 3x+ 2 = 0.

Each of these linear equations is easily solved.

x = 3
2

or x = −2
3

Of course, we should always check our solutions. Substituting x = 3/2 into the
right-hand side of the original equation (4),

Whenever an equation in x has a power of x other than 1, the equation is nonlinear (the graphs19

involved are not all lines). As we’ve seen in previous chapters, the approach to solving a quadratic
(second degree) equation should be to make one side of the equation equal to zero, then factor or use
the quadratic formula to find the solutions.
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5
x

+ 6
x2 = 5

3/2
+ 6

(3/2)2 = 5
3/2

+ 6
9/4
.

In the final expression, multiply top and bottom of the first fraction by 2, top and
bottom of the second fraction by 4.

5
3/2
· 2
2

+ 6
9/4
· 4
4

= 10
3

+ 24
9

Make equivalent fractions with a common denominator of 9 and add.
10
3
· 3
3

+ 24
9

= 30
9

+ 24
9

= 54
9

= 6

Note that this result is identical to the left-hand side of the original equation (4).
Thus, x = 3/2 checks.

This example clearly demonstrates that the check can be as difficult and as time
consuming as the computation used to originally solve the equation. For this reason,
we tend to get lazy and not check our answers as we should. There is help, however,
as the graphing calculator can help us check the solutions of equations.

First, enter the solution 3/2 in your calculator screen, push the STOI button, then
push the X button, and execute the resulting command on the screen by pushing the
ENTER key. The result is shown in Figure 1(a).

Next, enter the expression 5/X+6/Xˆ2 and execute the resulting command on the
screen by pushing the ENTER key. The result is shown in Figure 1(b). Note that the
result is 6, the same as computed by hand above, and it matches the left-hand side of
the original equation (4). We’ve also used the calculator to check the second solution
x = −2/3. This is shown in Figure 4(c).

(a) (b) (c)
Figure 1. Using the graphing calculator to check the solutions of equation (4).

Let’s look at another example.

I Example 5. Solve the following equation for x.
2
x2 = 1− 2

x
(6)

First, multiply both sides of equation (6) by the common denominator x2.
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x2
(

2
x2

)
=
(

1− 2
x

)
x2

2 = x2 − 2x

Make one side zero.

0 = x2 − 2x− 2

The right-hand side is a quadratic trinomial with ac = (1)(−2) = −2. There are
no integer pairs with product −2 that sum to −2, so this quadratic trinomial does
not factor. Fortunately, the equation is quadratic (second degree), so we can use the
quadratic formula with a = 1, b = −2, and c = −2.

x = −b±
√
b2 − 4ac

2a
=
−(−2)±

√
(−2)2 − 4(1)(−2)
2(1)

= 2±
√

12
2

This gives us two solutions, x = (2 −
√

12)/2 and x = (2 +
√

12)/2. Let’s check
the solution x = (2 −

√
12)/2. First, enter this result in your calculator, press the

STOI button, press X, then press the ENTER key to execute the command and store the
solution in the variable X. This command is shown in Figure 2(a).

Enter the left-hand side of the original equation (6) as 2/xˆ2 and press the ENTER
key to execute this command. This is shown in Figure 2(b).

Enter the right-hand side of the original equation (6) as 1-2/X and press the
ENTER key to execute this command. This is shown in Figure 2(c). Note that the
left- and right-hand sides of equation (6) are both shown to equal 3.732050808 at
x = (2−

√
12)/2 (at X = -0.7320508076), as shown in Figure 2(c). This shows that

x = (2−
√

12)/2 is a solution of equation (6).
We leave it to our readers to check the second solution, x = (2 +

√
12)/2.

(a) (b) (c)
Figure 2. Using the graphing calculator to check the solutions of equation (6).

Let’s look at another example, this one involving function notation.

I Example 7. Consider the function defined by

f(x) = 1
x

+ 1
x− 4

. (8)
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Solve the equation f(x) = 2 for x using both graphical and analytical techniques, then
compare solutions. Perform each of the following tasks.

a. Sketch the graph of f on graph paper. Label the zeros of f with their coordinates
and the asymptotes of f with their equations.

b. Add the graph of y = 2 to your plot and estimate the coordinates of where the
graph of f intersects the graph of y = 2.

c. Use the intersect utility on your calculator to find better approximations of the
points where the graphs of f and y = 2 intersect.

d. Solve the equation f(x) = 2 algebraically and compare your solutions to those found
in part (c).

For the graph in part (a), we need to find the zeros of f and the equations of any
vertical or horizontal asymptotes.

To find the zero of the function f , we find a common denominator and add the two
rational expressions in equation (8).

f(x) = 1
x

+ 1
x− 4

= x− 4
x(x− 4)

+ x

x(x− 4)
= 2x− 4
x(x− 4)

(9)

Note that the numerator of this result equal zero (but not the denominator) when
x = 2. This is the zero of f . Thus, the graph of f has x-intercept at (2, 0), as shown
in Figure 4.

Note that the rational function in equation (9) is reduced to lowest terms. The
denominators of x and x + 4 in equation (9) are zero when x = 0 and x = 4. These
are our vertical asymptotes, as shown in Figure 4.

To find the horizontal asymptotes, we need to examine what happens to the function
values as x increases (or decreases) without bound. Enter the function in the Y= menu
with 1/X+1/(X-4), as shown in Figure 3(a). Press 2nd TBLSET, then highlight ASK for
the independent variable and press ENTER to make this selection permanent, as shown
in Figure 3(b).

Press 2nd TABLE, then enter 10, 100, 1,000, and 10,000, as shown in Figure 3(c).
Note how the values of Y1 approach zero. In Figure 3(d), as x decreases without
bound, the end-behavior is the same. This is an indication of a horizontal asymptote
at y = 0, as shown in Figure 4.

(a) (b) (c) (d)
Figure 3. Examining the end-behavior of f with the graphing calculator.
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x10

y
10

(2, 0)

x = 0 x = 4

y = 0

Figure 4. Placing the horizontal and
vertical asymptotes and the x-intercept
of the graph of the function f .

At this point, we already have our function f loaded in Y1, so we can press the
ZOOM button and select 6:ZStandard to produce the graph shown in Figure 5. As
expected, the graphing calculator does not do a very good job with the rational function
f , particularly near the discontinuities at the vertical asymptotes. However, there
is enough information in Figure 5, couple with our advanced work summarized in
Figure 4, to draw a very nice graph of the rational function on our graph paper,
as shown in Figure 6(a). Note: We haven’t labeled asymptotes with equations, nor
zeros with coordinates, in Figure 6(a), as we thought the picture might be a little
crowded. However, you should label each of these parts on your graph paper, as we
did in Figure 4.

Figure 5. The graph of f as drawn
on the calculator.

Let’s now address part (b) by adding the horizontal line y = 2 to the graph, as
shown in Figure 6(b). Note that the graph of y = 2 intersects the graph of the
rational function f at two points A and B. The x-values of points A and B are the
solutions to our equation f(x) = 2.

We can get a crude estimate of the x-coordinates of points A and B right off our
graph paper. The x-value of point A is approximately x ≈ 0.3, while the x-value of
point B appears to be approximately x ≈ 4.6.
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x10

y
10

x10

y
10

y = 2 A B

(a) (b)
Figure 6. Solving f(x) = 2 graphically.

Next, let’s address the task required in part (c). We have very reasonable estimates
of the solutions of f(x) = 2 based on the data presented in Figure 6(b). Let’s use the
graphing calculator to improve upon these estimates.

First, load the equation Y2=2 into the Y= menu, as shown in Figure 7(a). We need
to find where the graph of Y1 intersects the graph of Y2, so we press 2nd CALC and
select 5:intersect from the menu. In the usual manner, select “First curve,” “Second
curve,” and move the cursor close to the point you wish to estimate. This is your
“Guess.” Perform similar tasks for the second point of intersection.

Our results are shown in Figures 7(b) and Figures 7(c). The estimate in Figure 7(b)
has x ≈ 0.43844719, while that in Figure 7(c) has x ≈ 4.5615528. Note that these
are more accurate than the approximations of x ≈ 0.3 and x ≈ 4.6 captured from our
hand drawn image in Figure 6(b).

(a) (b) (c)
Figure 7. Solving f(x) = 2 graphically.

Finally, let’s address the request for an algebraic solution of f(x) = 2 in part (d).
First, replace f(x) with 1/x+ 1/(x− 4) to obtain

f(x) = 2
1
x

+ 1
x− 4

= 2.

Multiply both sides of this equation by the common denominator x(x− 4).
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x(x− 4)
[

1
x

+ 1
x− 4

]
= [2]x(x− 4)

x(x− 4)
[

1
x

]
+ x(x− 4)

[
1
x− 4

]
= [2]x(x− 4)

Cancel.

x(x− 4)
[

1
x

]
+ x(x− 4)

[
1
x− 4

]
= [2]x(x− 4)

(x− 4) + x = 2x(x− 4)

Simplify each side.

2x− 4 = 2x2 − 8x

This last equation is nonlinear, so we make one side zero by subtracting 2x and adding
4 to both sides of the equation.

0 = 2x2 − 8x− 2x+ 4
0 = 2x2 − 10x+ 4

Note that each coefficient on the right-hand side of this last equation is divisible by
2. Let’s divide both sides of the equation by 2, distributing the division through each
term on the right-hand side of the equation.

0 = x2 − 5x+ 2

The trinomial on the right is a quadratic with ac = (1)(2) = 2. There are no integer
pairs having product 2 and sum −5, so this trinomial doesn’t factor. We will use the
quadratic formula instead, with a = 1, b = −5 and c = 2.

x = −b±
√
b2 − 4ac

2a
=
−(−5)±

√
(−5)2 − 4(1)(2)
2(1)

= 5±
√

17
2

It remains to compare these with the graphical solutions found in part (c). So, enter the
solution (5-

√
(17))/(2) in your calculator screen, as shown in Figure 8(a). Enter

(5+
√

(17))/(2), as shown in Figure 8(b). Thus,

5−
√

17
2

≈ 0.4384471872 and 5 +
√

17
2

≈ 4.561552813.

Note the close agreement with the approximations found in part (c).

(a) (b)
Figure 8. Approximating the exact solutions.
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Let’s look at another example.

I Example 10. Solve the following equation for x, both graphically and analytically.
1
x+ 2

− x

2− x
= x+ 6
x2 − 4

(11)

We start the graphical solution in the usual manner, loading the left- and right-hand
sides of equation (11) into Y1 and Y2, as shown in Figure 9(a). Note that in the
resulting plot, shown in Figure 9(b), it is very difficult to interpret where the graph
of the left-hand side intersects the graph of the right-hand side of equation (11).

(a) (b)
Figure 9. Sketch the left- and

right-hand sides of equation (11).

In this situation, a better strategy is to make one side of equation (11) equal to zero.
1
x+ 2

− x

2− x
− x+ 6
x2 − 4

= 0 (12)

Our approach will now change. We’ll plot the left-hand side of equation (12), then
find where the left-hand side is equal to zero; that is, we’ll find where the graph of the
left-hand side of equation (12) intercepts the x-axis.

With this thought in mind, load the left-hand side of equation (12) into Y1,
as shown in Figure 10(a). Note that the graph in Figure 10(b) appears to have
only one vertical asymptote at x = −2 (some cancellation must remove the factor
of x − 2 from the denominator when you combine the terms of the left-hand side of
equation (12)20). Further, when you use the zero utility in the CALC menu of the
graphing calculator, there appears to be a zero at x = −4, as shown in Figure 10(b).

(a) (b)
Figure 10. Finding the zero of

the left-hand side of equation (12).

Closer analysis might reveal a “hole” in the graph, but we push on because our check at the end of the20

problem will reveal a false solution.
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Therefore, equation (12) seems to have only one solution, namely x = 4.
Next, let’s seek an analytical solution of equation (11). We’ll need to factor the

denominators in order to discover a common denominator.
1
x+ 2

− x

2− x
= x+ 6

(x+ 2)(x− 2)

It’s tempting to use a denominator of (x+2)(2−x)(x− 2). However, the denominator
of the second term on the left-hand side of this last equation, 2 − x, is in a different
order than the factors in the other denominators, x−2 and x+2, so let’s perform a sign
change on this term and reverse the order. We will negate the fraction bar and negate
the denominator. That’s two sign changes, so the term remains unchanged when we
write

1
x+ 2

+ x

x− 2
= x+ 6

(x+ 2)(x− 2)
.

Now we see that a common denominator of (x + 2)(x − 2) will suffice. Let’s multiply
both sides of the last equation by (x+ 2)(x− 2).

(x+ 2)(x− 2)
[

1
x+ 2

+ x

x− 2

]
=
[

x+ 6
(x+ 2)(x− 2)

]
(x+ 2)(x− 2)

(x+ 2)(x− 2)
[

1
x+ 2

]
+ (x+ 2)(x− 2)

[
x

x− 2

]
=
[

x+ 6
(x+ 2)(x− 2)

]
(x+ 2)(x− 2)

Cancel.

(x+ 2)(x− 2)
[

1
x+ 2

]
+ (x+ 2)(x− 2)

[
x

x− 2

]
=
[

x+ 6
(x+ 2)(x− 2)

]
(x+ 2)(x− 2)

(x− 2) + x(x+ 2) = x+ 6

Simplify.

x− 2 + x2 + 2x = x+ 6
x2 + 3x− 2 = x+ 6

This last equation is nonlinear because of the presence of a power of x larger than 1
(note the x2 term). Therefore, the strategy is to make one side of the equation equal
to zero. We will subtract x and subtract 6 from both sides of the equation.

x2 + 3x− 2− x− 6 = 0
x2 + 2x− 8 = 0

The left-hand side is a quadratic trinomial with ac = (1)(−8) = −8. The integer pair
4 and −2 have product −8 and sum 2. Thus,

(x+ 4)(x− 2) = 0.

Using the zero product property, either

x+ 4 = 0 or x− 2 = 0,
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so

x = −4 or x = 2.

The fact that we have found two answers using an analytical method is troubling.
After all, the graph in Figure 10(b) indicates only one solution, namely x = −4. It is
comforting that one of our analytical solutions is also x = −4, but it is still disconcerting
that our analytical approach reveals a second “answer,” namely x = 2.

However, notice that we haven’t paid any attention to the restrictions caused by
denominators up to this point. Indeed, careful consideration of equation (11) reveals
factors of x+2 and x−2 in the denominators. Hence, x = −2 and x = 2 are restrictions.

Note that one of our answers, namely x = 2, is a restricted value. It will make some
of the denominators in equation (11) equal to zero, so it cannot be a solution. Thus,
the only viable solution is x = −4. One can certainly check this solution by hand, but
let’s use the graphing calculator to assist us in the check.

First, enter -4, press the STOI button, press X, then press ENTER to execute the
resulting command and store -4 in the variable X. The result is shown in Figure 11(a).

Next, we calculate the value of the left-hand side of equation (11) at this value
of X. Enter the left-hand side of equation (11) as 1/(X+2)-X/(2-X), then press the
ENTER key to execute the statement and produce the result shown in Figure 11(b).

Finally, enter the right-hand side of equation (11) as (X+6)/(xˆ2-4) and press
the ENTER key to execute the statement. The result is shown in Figure 11(c). Note
that both sides of the equation equal .1666666667 at X=-4. Thus, the solution x = −4
checks.

(a) (b) (c)
Figure 11. Using the graphing calculator to check the solution x = −4 of equation (11).
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7.7 Exercises

For each of the rational functions given
in Exercises 1-6, perform each of the
following tasks.

i. Set up a coordinate system on graph
paper. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Plot the zero of the rational function
on your coordinate system and label
it with its coordinates. Plot the verti-
cal and horizontal asymptotes on your
coordinate system and label them with
their equations. Use this informa-
tion (and your graphing calculator)
to draw the graph of f .

iii. Plot the horizontal line y = k on your
coordinate system and label this line
with its equation.

iv. Use your calculator’s intersect util-
ity to help determine the solution of
f(x) = k. Label this point on your
graph with its coordinates.

v. Solve the equation f(x) = k alge-
braically, placing the work for this
solution on your graph paper next to
your coordinate system containing the
graphical solution. Do the answers
agree?

1. f(x) = x− 1
x+ 2

; k = 3

2. f(x) = x+ 1
x− 2

; k = −3

3. f(x) = x+ 1
3− x

; k = 2

4. f(x) = x+ 3
2− x

; k = 2

5. f(x) = 2x+ 3
x− 1

; k = −3

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/21

6. f(x) = 5− 2x
x− 1

; k = 3

In Exercises 7-14, use a strictly alge-
braic technique to solve the equation f(x) =
k for the given function and value of k.
You are encouraged to check your result
with your calculator.

7. f(x) = 16x− 9
2x− 1

; k = 8

8. f(x) = 10x− 3
7x+ 7

; k = 1

9. f(x) = 5x+ 8
4x+ 1

; k = −11

10. f(x) = −6x− 11
7x− 2

; k = −6

11. f(x) = − 35x
7x+ 12

; k = −5

12. f(x) = −66x− 5
6x− 10

; k = −11

13. f(x) = 8x+ 2
x− 11

; k = 11

14. f(x) = 36x− 7
3x− 4

; k = 12

In Exercises 15-20, use a strictly alge-
braic technique to solve the given equa-
tion. You are encouraged to check your
result with your calculator.

15. x
7

+ 8
9

= −8
7

16. x
3

+ 9
2

= −3
8
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17. −57
x

= 27 − 40
x2

18. −117
x

= 54 + 54
x2

19. 7
x

= 4− 3
x2

20. 3
x2 = 5− 3

x

For each of the rational functions given
in Exercises 21-26, perform each of the
following tasks.

i. Set up a coordinate system on graph
paper. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Plot the zero of the rational function
on your coordinate system and label
it with its coordinates. You may use
your calculator’s zero utility to find
this, if you wish.

iii. Plot the vertical and horizontal as-
ymptotes on your coordinate system
and label them with their equations.
Use the asymptote and zero informa-
tion (and your graphing calculator)
to draw the graph of f .

iv. Plot the horizontal line y = k on your
coordinate system and label this line
with its equation.

v. Use your calculator’s intersect util-
ity to help determine the solution of
f(x) = k. Label this point on your
graph with its coordinates.

vi. Solve the equation f(x) = k alge-
braically, placing the work for this
soluton on your graph paper next to
your coordinate system containing the
graphical solution. Do the answers
agree?

21. f(x) = 1
x

+ 1
x+ 5

, k = 9/14

22. f(x) = 1
x

+ 1
x− 2

, k = 8/15

23. f(x) = 1
x− 1

− 1
x+ 1

, k = 1/4

24. f(x) = 1
x− 1

− 1
x+ 2

, k = 1/6

25. f(x) = 1
x− 2

+ 1
x+ 2

, k = 4

26. f(x) = 1
x− 3

+ 1
x+ 2

, k = 5

In Exercises 27-34, use a strictly alge-
braic technique to solve the given equa-
tion. You are encouraged to check your
result with your calculator.

27. 2
x+ 1

+ 4
x+ 2

= −3

28. 2
x− 5

− 7
x− 7

= 9

29. 3
x+ 9

− 2
x+ 7

= −3

30. 3
x+ 9

− 6
x+ 7

= 9

31. 2
x+ 9

+ 2
x+ 6

= −1

32. 5
x− 6

− 8
x− 7

= −1

33. 3
x+ 3

+ 6
x+ 2

= −2

34. 2
x− 4

− 2
x− 1

= 1
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For each of the equations in Exercises 35-
40, perform each of the following tasks.

i. Follow the lead of Example 10 in the
text. Make one side of the equation
equal to zero. Load the nonzero side
into your calculator and draw its graph.

ii. Determine the vertical asymptotes of
by analyzing the equation and the re-
sulting graph on your calculator. Use
the TABLE feature of your calculator
to determine any horizontal asymp-
tote behavior.

iii. Use the zero finding utility in the
CALC menu to determine the zero of
the nonzero side of the resulting equa-
tion.

iv. Set up a coordinate system on graph
paper. Label and scale each axis. Re-
member to draw all lines with a ruler.
Draw the graph of the nonzero side
of the equation. Draw the vertical
and horizontal asymptotes and label
them with their equations. Plot the
x-intercept and label it with its coor-
dinates.

v. Use an algebraic technique to deter-
mine the solution of the equation and
compare it with the solution found by
the graphical analysis above.

35. x

x+ 1
+ 8
x2 − 2x− 3

= 2
x− 3

36. x

x+ 4
− 2
x+ 1

= 12
x2 + 5x+ 4

37. x

x+ 1
− 4

2x+ 1
= 2x− 1

2x2 + 3x+ 2

38. 2x
x− 4

− 1
x+ 1

= 4x+ 24
x2 − 3x− 4

39. x

x− 2
+ 3
x+ 2

= 8
4− x2

40. x

x− 1
− 4
x+ 1

= x− 6
1− x2

In Exercises 41-68, use a strictly alge-
braic technique to solve the given equa-
tion. You are encouraged to check your
result with your calculator.

41. x

3x− 9
− 9
x

= 1
x− 3

42. 5x
x+ 2

+ 5
x− 5

= x+ 6
x2 − 3x− 10

43. 3x
x+ 2

− 7
x

= − 1
2x+ 4

44. 4x
x+ 6

− 4
x+ 4

= x− 4
x2 + 10x+ 24

45. x

x− 5
+ 9

4− x
= x+ 5
x2 − 9x+ 20

46. 6x
x− 5

− 2
x− 3

= x− 8
x2 − 8x+ 15

47. 2x
x− 4

+ 5
2− x

= x+ 8
x2 − 6x+ 8

48. x

x− 7
− 8

5− x
= x+ 7
x2 − 12x+ 35

49. − x

2x+ 2
− 6
x

= − 2
x+ 1

50. 7x
x+ 3

− 4
2− x

= x+ 8
x2 + x− 6

51. 2x
x+ 5

− 2
6− x

= x− 2
x2 − x− 30

52. 4x
x+ 1

+ 6
x+ 3

= x− 9
x2 + 4x+ 3

53. x

x+ 7
− 2
x+ 5

= x+ 1
x2 + 12x+ 35

54. 5x
6x+ 4

+ 6
x

= 1
3x+ 2

55. 2x
3x+ 9

− 4
x

= − 2
x+ 3
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56. 7x
x+ 1

− 4
x+ 2

= x+ 6
x2 + 3x+ 2

57. x

2x− 8
+ 8
x

= 2
x− 4

58. 3x
x− 6

+ 6
x− 6

= x+ 2
x2 − 12x+ 36

59. x

x+ 2
+ 2
x

= − 5
2x+ 4

60. 4x
x− 2

+ 2
2− x

= x+ 4
x2 − 4x+ 4

61. − 2x
3x− 9

− 3
x

= − 2
x− 3

62. 2x
x+ 1

− 2
x

= 1
2x+ 2

63. x

x+ 1
+ 5
x

= 1
4x+ 4

64. 2x
x− 4

− 8
x− 7

= x+ 2
x2 − 11x+ 28

65. − 9x
8x− 2

+ 2
x

= − 2
4x− 1

66. 2x
x− 3

− 4
4− x

= x− 9
x2 − 7x+ 12

67. 4x
x+ 6

− 5
7 − x

= x− 5
x2 − x− 42

68. x

x− 1
− 4
x

= 1
5x− 5
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7.7 Answers

1. x = −7/2

x
10

y
10

x=−2

y=1
(1,0)(1,0)

y=3(−3.5,3)(−3.5,3)

−3.5−3.5

3. x = 5/3

x
10

y
10

x=3

y=−1

(−1,0)(−1,0)
y=2 (1.6667,2)(1.6667,2)

1.6667

5. x = 0

x
10

y
10

x=1

y=2
(−3/2,0)(−3/2,0)

y=−3 (0,−3)(0,−3)

0

7. none

9. −19
49

11. none

13. 41

15. −128
9

17. −8
3

, 5
9

19. 7 +
√

97
8

, 7 −
√

97
8

21. x = −35/9 or x = 2

x
10

y
10

x=0x=−5

y=0
(−2.5,0)(−2.5,0)

y=9/14
(−3.8889,9/14)(−3.8889,9/14) (2,9/14)(2,9/14)

23. x = −3 or x = 3

x
10

y
10

x=−1 x=1

y=0 y=1/4
(−3,1/4)(−3,1/4) (3,1/4)(3,1/4)
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25. x = 1 +
√

65
4
,
1−
√

65
4

x
10

y
10

x=−2 x=2

y=0
(0,0)(0,0)

y=4
((1−
√

65)/4,4)((1−
√

65)/4,4) ((1+
√

65)/4,4)((1+
√

65)/4,4)

27. −15 +
√

57
6

, −15−
√

57
6

29. −49 +
√

97
6

, −49−
√

97
6

31. −7, −12

33. −19 +
√

73
4

, −19−
√

73
4

35. x = 2

x
10

y
10

x=−1

y=1
(2,0)(2,0)

37. x = 3

x
10

y
10

x=−1

y=1
(3,0)(3,0)

39. x = −5 +
√

17
2

,
−5−

√
17

2

x
10

y
10

x=−2 x=2

y=1
((−5−

√
17)/2,0)((−5−
√

17)/2,0) ((−5+
√

17)/2,0)((−5+
√

17)/2,0)

41. 27

43. 7
2

, −4
3

45. 10

47. 3

49. −6, −2

51. 4, 3
2

53. 3

55. 6

57. −16
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59. −9 +
√

17
4

, −9−
√

17
4

61. −9
2

63. −19 +
√

41
8

, −19−
√

41
8

65. 2
9

, 2

67. 7
2 , 5

2
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7.8 Applications of Rational Functions
In this section, we will investigate the use of rational functions in several applications.

Number Problems
We start by recalling the definition of the reciprocal of a number.

Definition 1. For any nonzero real number a, the reciprocal of a is the number
1/a. Note that the product of a number and its reciprocal is always equal to the
number 1. That is,

a · 1
a

= 1.

For example, the reciprocal of the number 3 is 1/3. Note that we simply “invert”
the number 3 to obtain its reciprocal 1/3. Further, note that the product of 3 and its
reciprocal 1/3 is

3 · 1
3

= 1.

As a second example, to find the reciprocal of −3/5, we could make the calculation

1

−3
5

= 1÷
(
−3

5

)
= 1 ·

(
−5

3

)
= −5

3
,

but it’s probably faster to simply “invert” −3/5 to obtain its reciprocal −5/3. Again,
note that the product of −3/5 and its reciprocal −5/3 is(

−3
5

)
·
(
−5

3

)
= 1.

Let’s look at some applications that involve the reciprocals of numbers.

I Example 2. The sum of a number and its reciprocal is 29/10. Find the number(s).

Let x represent a nonzero number. The reciprocal of x is 1/x. Hence, the sum of x
and its reciprocal is represented by the rational expression x + 1/x. Set this equal to
29/10.

x+ 1
x

= 29
10

To clear fractions from this equation, multiply both sides by the common denominator
10x.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/22
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10x
(
x+ 1
x

)
=
(

29
10

)
10x

10x2 + 10 = 29x

This equation is nonlinear (it has a power of x larger than 1), so make one side equal
to zero by subtracting 29x from both sides of the equation.

10x2 − 29x+ 10 = 0

Let’s try to use the ac-test to factor. Note that ac = (10)(10) = 100. The integer pair
{−4,−25} has product 100 and sum −29. Break up the middle term of the quadratic
trinomial using this pair, then factor by grouping.

10x2 − 4x− 25x+ 10 = 0
2x(5x− 2)− 5(5x− 2) = 0

(2x− 5)(5x− 2) = 0

Using the zero product property, either

2x− 5 = 0 or 5x− 2 = 0.

Each of these linear equations is easily solved.

x = 5
2

or x = 2
5

Hence, we have two solutions for x. However, they both lead to the same number-
reciprocal pair. That is, if x = 5/2, then its reciprocal is 2/5. On the other hand, if
x = 2/5, then its reciprocal is 5/2.

Let’s check our solution by taking the sum of the solution and its reciprocal. Note
that

5
2

+ 2
5

= 25
10

+ 4
10

= 29
10
,

as required by the problem statement.

Let’s look at another application of the reciprocal concept.

I Example 3. There are two numbers. The second number is 1 larger than twice
the first number. The sum of the reciprocals of the two numbers is 7/10. Find the two
numbers.

Let x represent the first number. If the second number is 1 larger than twice the
first number, then the second number can be represented by the expression 2x+ 1.

Thus, our two numbers are x and 2x+1. Their reciprocals, respectively, are 1/x and
1/(2x+ 1). Therefore, the sum of their reciprocals can be represented by the rational
expression 1/x+ 1/(2x+ 1). Set this equal to 7/10.
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1
x

+ 1
2x+ 1

= 7
10

Multiply both sides of this equation by the common denominator 10x(2x+ 1).

10x(2x+ 1)
[

1
x

+ 1
2x+ 1

]
=
[

7
10

]
10x(2x+ 1)

10(2x+ 1) + 10x = 7x(2x+ 1)

Expand and simplify each side of this result.

20x+ 10 + 10x = 14x2 + 7x
30x+ 10 = 14x2 + 7x

Again, this equation is nonlinear. We will move everything to the right-hand side of
this equation. Subtract 30x and 10 from both sides of the equation to obtain

0 = 14x2 + 7x− 30x− 10
0 = 14x2 − 23x− 10.

Note that the right-hand side of this equation is quadratic with ac = (14)(−10) = −140.
The integer pair {5,−28} has product −140 and sum −23. Break up the middle term
using this pair and factor by grouping.

0 = 14x2 + 5x− 28x− 10
0 = x(14x+ 5)− 2(14x+ 5)
0 = (x− 2)(14x+ 5)

Using the zero product property, either

x− 2 = 0 or 14x+ 5 = 0.

These linear equations are easily solved for x, providing

x = 2 or x = − 5
14
.

We still need to answer the question, which was to find two numbers such that the
sum of their reciprocals is 7/10. Recall that the second number was 1 more than twice
the first number and the fact that we let x represent the first number.

Consequently, if the first number is x = 2, then the second number is 2x + 1, or
2(2) + 1. That is, the second number is 5. Let’s check to see if the pair {2, 5} is a
solution by computing the sum of the reciprocals of 2 and 5.

1
2

+ 1
5

= 5
10

+ 2
10

= 7
10

Thus, the pair {2, 5} is a solution.
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However, we found a second value for the first number, namely x = −5/14. If this
is the first number, then the second number is

2
(
− 5

14

)
+ 1 = −5

7
+ 7

7
= 2

7
.

Thus, we have a second pair {−5/14, 2/7}, but what is the sum of the reciprocals of
these two numbers? The reciprocals are −14/5 and 7/2, and their sum is

−14
5

+ 7
2

= −28
10

+ 35
10

= 7
10
,

as required by the problem statement. Hence, the pair {−14/5, 7/2} is also a solution.

Distance, Speed, and Time Problems
When we developed the Equations of Motion in the chapter on quadratic functions, we
showed that if an object moves with constant speed, then the distance traveled is given
by the formula

d = vt, (4)

where d represents the distance traveled, v represents the speed, and t represents the
time of travel.

For example, if a car travels down a highway at a constant speed of 50 miles per
hour (50 mi/h) for 4 hours (4 h), then it will travel

d = vt

d = 50 mi
h
× 4 h

d = 200 mi.

Let’s put this relation to use in some applications.

I Example 5. A boat travels at a constant speed of 3 miles per hour in still water.
In a river with unknown current, it takes the boat twice as long to travel 60 miles
upstream (against the current) than it takes for the 60 mile return trip (with the
current). What is the speed of the current in the river?

The speed of the boat in still water is 3 miles per hour. When the boat travels
upstream, the current is against the direction the boat is traveling and works to reduce
the actual speed of the boat. When the boat travels downstream, then the actual speed
of the boat is its speed in still water increased by the speed of the current. If we let c
represent the speed of the current in the river, then the boat’s speed upstream (against
the current) is 3 − c, while the boat’s speed downstream (with the current) is 3 + c.
Let’s summarize what we know in a distance-speed-time table (see Table 1).
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d (mi) v (mi/h) t (h)
Upstream 60 3 − c ?
Downstream 60 3 + c ?

Table 1. A distance,
speed, and time table.

Here is a useful piece of advice regarding distance, speed, and time tables.

Distance, Speed, and Time Tables. Because distance, speed, and time are
related by the equation d = vt, whenever you have two boxes in a row of the table
completed, the third box in that row can be calculated by means of the formula
d = vt.

Note that each row of Table 1 has two entries entered. The third entry in each
row is time. Solve the equation d = vt for t to obtain

t = d
v
.

The relation t = d/v can be used to compute the time entry in each row of Table 1.
For example, in the first row, d = 60 miles and v = 3− c miles per hour. Therefore,

the time of travel is

t = d
v

= 60
3− c

.

Note how we’ve filled in this entry in Table 2. In similar fashion, the time to travel
downstream is calculated with

t = d
v

= 60
3 + c

.

We’ve also added this entry to the time column in Table 2.

d (mi) v (mi/h) t (h)
Upstream 60 3 − c 60

3− c
Downstream 60 3 + c 60

3 + c
Table 2. Calculating

the time column entries.

To set up an equation, we need to use the fact that the time to travel upstream is
twice the time to travel downstream. This leads to the result

60
3− c

= 2
(

60
3 + c

)
,

or equivalently,
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60
3− c

= 120
3 + c

.

Multiply both sides by the common denominator, in this case, (3− c)(3 + c).

(3− c)(3 + c)
[

60
3− c

]
=
[

120
3 + c

]
(3− c)(3 + c)

60(3 + c) = 120(3− c)

Expand each side of this equation.

180 + 60c = 360− 120c

This equation is linear (no power of c other than 1). Hence, we want to isolate all terms
containing c on one side of the equation. We add 120c to both sides of the equation,
then subtract 180 from both sides of the equation.

60c+ 120c = 360− 180

From here, it is simple to solve for c.

180c = 180
c = 1.

Hence, the speed of the current is 1 mile per hour.
It is important to check that the solution satisfies the constraints of the problem

statement.

• If the speed of the boat in still water is 3 miles per hour and the speed of the current
is 1 mile per hour, then the speed of the boat upstream (against the current) will
be 2 miles per hour. It will take 30 hours to travel 60 miles at this rate.

• The speed of the boat as it goes downstream (with the current) will be 4 miles per
hour. It will take 15 hours to travel 60 miles at this rate.

Note that the time to travel upstream (30 hours) is twice the time to travel down-
stream (15 hours), so our solution is correct.

Let’s look at another example.

I Example 6. A speedboat can travel 32 miles per hour in still water. It travels
150 miles upstream against the current then returns to the starting location. The total
time of the trip is 10 hours. What is the speed of the current?

Let c represent the speed of the current. Going upstream, the boat struggles against
the current, so its net speed is 32−cmiles per hour. On the return trip, the boat benefits
from the current, so its net speed on the return trip is 32 + c miles per hour. The trip
each way is 150 miles. We’ve entered this data in Table 3.
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d (mi) v (mi/h) t (h)
Upstream 150 32 − c ?
Downstream 150 32 + c ?

Table 3. Entering the given data in a dis-
tance, speed, and time table.

Solving d = vt for the time t,

t = d
v
.

In the first row of Table 3, we have d = 150 miles and v = 32 − c miles per hour.
Hence, the time it takes the boat to go upstream is given by

t = d
v

= 150
32− c

.

Similarly, upon examining the data in the second row of Table 3, the time it takes the
boat to return downstream to its starting location is

t = d
v

= 150
32 + c

.

These results are entered in Table 4.

d (mi) v (mi/h) t (h)
Upstream 150 32 − c 150/(32− c)
Downstream 150 32 + c 150/(32 + c)

Table 4. Calculating the time
to go upstream and return.

Because the total time to go upstream and return is 10 hours, we can write
150

32− c
+ 150

32 + c
= 10.

Multiply both sides by the common denominator (32− c)(32 + c).

(32− c)(32 + c)
(

150
32− c

+ 150
32 + c

)
= 10(32− c)(32 + c)

150(32 + c) + 150(32− c) = 10(1024− c2)

We can make the numbers a bit smaller by noting that both sides of the last equation
are divisible by 10.

15(32 + c) + 15(32− c) = 1024− c2

Expand, simplify, make one side zero, then factor.



738 Chapter 7 Rational Functions

Version: Fall 2007

480 + 15c+ 480− 15c = 1024− c2

960 = 1024− c2

0 = 64− c2

0 = (8 + c)(8− c)

Using the zero product property, either

8 + c = 0 or 8− c = 0,

providing two solutions for the current,

c = −8 or c = 8.

Discarding the negative answer (speed is a positive quantity in this case), the speed of
the current is 8 miles per hour.

Does our answer make sense?

• Because the speed of the current is 8 miles per hour, the boat travels 150 miles
upstream at a net speed of 24 miles per hour. This will take 150/24 or 6.25 hours.

• The boat travels downstream 150 miles at a net speed of 40 miles per hour. This
will take 150/40 or 3.75 hours.

Note that the total time to go upstream and return is 6.25 + 3.75, or 10 hours.

Let’s look at another class of problems.

Work Problems
A nice application of rational functions involves the amount of work a person (or team
of persons) can do in a certain amount of time. We can handle these applications
involving work in a manner similar to the method we used to solve distance, speed, and
time problems. Here is the guiding principle.

Work, Rate, and Time. The amount of work done is equal to the product of
the rate at which work is being done and the amount of time required to do the
work. That is,

Work = Rate× Time.

For example, suppose that Emilia can mow lawns at a rate of 3 lawns per hour.
After 6 hours,

Work = 3 lawns
hr
× 6 hr = 18 lawns.

A second important concept is the fact that rates add. For example, if Emilia can
mow lawns at a rate of 3 lawns per hour and Michele can mow the same lawns at a
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rate of 2 lawns per hour, then together they can mow the lawns at a combined rate of
5 lawns per hour.

Let’s look at an example.

I Example 7. Bill can finish a report in 2 hours. Maria can finish the same report
in 4 hours. How long will it take them to finish the report if they work together?

A common misconception is that the times add in this case. That is, it takes Bill 2
hours to complete the report and it takes Maria 4 hours to complete the same report,
so if Bill and Maria work together it will take 6 hours to complete the report. A little
thought reveals that this result is nonsense. Clearly, if they work together, it will take
them less time than it takes Bill to complete the report alone; that is, the combined
time will surely be less than 2 hours.

However, as we saw above, the rates at which they are working will add. To take
advantage of this fact, we set up what we know in a Work, Rate, and Time table (see
Table 5).

• It takes Bill 2 hours to complete 1 report. This is reflected in the entries in the first
row of Table 5.

• It takes Maria 4 hours to complete 1 report. This is reflected in the entries in the
second row of Table 5.

• Let t represent the time it takes them to complete 1 report if they work together.
This is reflected in the entries in the last row of Table 5.

w (reports) r (reports/h) t (h)
Bill 1 ? 2
Maria 1 ? 4
Together 1 ? t

Table 5. A work, rate, and time table.

We have advice similar to that given for distance, speed, and time tables.

Work, Rate, and Time Tables. Because work, rate, and time are related by
the equation

Work = Rate× Time,

whenever you have two boxes in a row completed, the third box in that row can
be calculated by means of the relation Work = Rate× Time.

In the case of Table 5, we can calculate the rate at which Bill is working by solving
the equation Work = Rate × Time for the Rate, then substitute Bill’s data from row
one of Table 5.

Rate = Work
Time

= 1 report
2 h

.
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Thus, Bill is working at a rate of 1/2 report per hour. Note how we’ve entered this
result in the first row of Table 6. Similarly, Maria is working at a rate of 1/4 report
per hour, which we’ve also entered in Table 6.

We’ve let t represent the time it takes them to write 1 report if they are working
together (see Table 5), so the following calculation gives us the combined rate.

Rate = Work
Time

= 1 report
t h

.

That is, together they work at a rate of 1/t reports per hour. This result is also recorded
in Table 6.

w (reports) r (reports/h) t (h)
Bill 1 1/2 2
Maria 1 1/4 4
Together 1 1/t t

Table 6. Calculating the Rate entries.

In our discussion above, we pointed out the fact that rates add. Thus, the equation
we seek lies in the Rate column of Table 6. Bill is working at a rate of 1/2 report per
hour and Maria is working at a rate of 1/4 report per hour. Therefore, their combined
rate is 1/2+1/4 reports per hour. However, the last row of Table 6 indicates that the
combined rate is also 1/t reports per hour. Thus,

1
2

+ 1
4

= 1
t
.

Multiply both sides of this equation by the common denominator 4t.

(4t)
[
1
2

+ 1
4

]
=
[
1
t

]
(4t)

2t+ t = 4,

This equation is linear (no power of t other than 1) and is easily solved.

3t = 4
t = 4/3

Thus, it will take 4/3 of an hour to complete 1 report if Bill and Maria work together.
Again, it is very important that we check this result.

• We know that Bill does 1/2 reports per hour. In 4/3 of an hour, Bill will complete

Work = 1
2

reports
h
× 4

3
h = 2

3
reports.

That is, Bill will complete 2/3 of a report.
• We know that Maria does 1/4 reports per hour. In 4/3 of an hour, Maria will

complete
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Work = 1
4

reports
h
× 4

3
h = 1

3
reports.

That is, Maria will complete 1/3 of a report.

Clearly, working together, Bill and Maria will complete 2/3 + 1/3 reports, that is,
one full report.

Let’s look at another example.

I Example 8. It takes Liya 7 more hours to paint a kitchen than it takes Hank to
complete the same job. Together, they can complete the same job in 12 hours. How
long does it take Hank to complete the job if he works alone?

Let H represent the time it take Hank to complete the job of painting the kitchen
when he works alone. Because it takes Liya 7 more hours than it takes Hank, let H+7
represent the time it takes Liya to paint the kitchen when she works alone. This leads
to the entries in Table 7.

w (kitchens) r (kitchens/h) t (h)
Hank 1 ? H

Liya 1 ? H + 7
Together 1 ? 12

Table 7. Entering the given data for Hank and Liya.

We can calculate the rate at which Hank is working alone by solving the equation
Work = Rate × Time for the Rate, then substituting Hank’s data from row one of
Table 7.

Rate = Work
Time

= 1 kitchen
H hour

Thus, Hank is working at a rate of 1/H kitchens per hour. Similarly, Liya is working
at a rate of 1/(H + 7) kitchens per hour. Because it takes them 12 hours to complete
the task when working together, their combined rate is 1/12 kitchens per hour. Each
of these rates is entered in Table 8.

w (kitchens) r (kitchens/h) t (h)
Hank 1 1/H H

Liya 1 1/(H + 7) H + 7
Together 1 1/12 12

Table 8. Calculating the rates.

Because the rates add, we can write
1
H

+ 1
H + 7

= 1
12
.
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Multiply both sides of this equation by the common denominator 12H(H + 7).

12H(H + 7)
(

1
H

+ 1
H + 7

)
=
(

1
12

)
12H(H + 7)

12(H + 7) + 12H = H(H + 7)

Expand and simplify.

12H + 84 + 12H = H2 + 7H
24H + 84 = H2 + 7H

This last equation is nonlinear, so make one side zero by subtracting 24H and 84 from
both sides of the equation.

0 = H2 + 7H − 24H − 84
0 = H2 − 17H − 84

Note that ac = (1)(−84) = −84. The integer pair {4,−21} has product −84 and sums
to −17. Hence,

0 = (H + 4)(H − 21).

Using the zero product property, either

H + 4 = 0 or H − 21 = 0,

leading to the solutions

H = −4 or H = 21.

We eliminate the solution H = −4 from consideration (it doesn’t take Hank negative
time to paint the kitchen), so we conclude that it takes Hank 21 hours to paint the
kitchen.

Does our solution make sense?

• It takes Hank 21 hours to complete the kitchen, so he is finishing 1/21 of the kitchen
per hour.

• It takes Liya 7 hours longer than Hank to complete the kitchen, namely 28 hours,
so she is finishing 1/28 of the kitchen per hour.

Together, they are working at a combined rate of
1
21

+ 1
28

= 4
84

+ 3
84

= 7
84

= 1
12
,

or 1/12 of a kitchen per hour. This agrees with the combined rate in Table 8.
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7.8 Exercises

1. The sum of the reciprocals of two
consecutive odd integers is −16

63 . Find
the two numbers.

2. The sum of the reciprocals of two
consecutive odd integers is 28

195 . Find the
two numbers.

3. The sum of the reciprocals of two
consecutive integers is−19

90 . Find the two
numbers.

4. The sum of a number and its recip-
rocal is 41

20 . Find the number(s).

5. The sum of the reciprocals of two
consecutive even integers is 5

12 . Find the
two numbers.

6. The sum of the reciprocals of two
consecutive integers is 19

90 . Find the two
numbers.

7. The sum of a number and twice its
reciprocal is 9

2 . Find the number(s).

8. The sum of a number and its recip-
rocal is 5

2 . Find the number(s).

9. The sum of the reciprocals of two
consecutive even integers is 11

60 . Find the
two numbers.

10. The sum of a number and twice its
reciprocal is 17

6 . Find the number(s).

11. The sum of the reciprocals of two
numbers is 15/8, and the second number
is 2 larger than the first. Find the two
numbers.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/23

12. The sum of the reciprocals of two
numbers is 16/15, and the second num-
ber is 1 larger than the first. Find the
two numbers.

13. Moira can paddle her kayak at a
speed of 2 mph in still water. She pad-
dles 3 miles upstream against the cur-
rent and then returns to the starting lo-
cation. The total time of the trip is 9
hours. What is the speed (in mph) of
the current? Round your answer to the
nearest hundredth.

14. Boris is kayaking in a river with a 6
mph current. Suppose that he can kayak
4 miles upstream in the same amount of
time as it takes him to kayak 9 miles
downstream. Find the speed (mph) of
Boris’s kayak in still water.

15. Jacob can paddle his kayak at a
speed of 6 mph in still water. He pad-
dles 5 miles upstream against the cur-
rent and then returns to the starting lo-
cation. The total time of the trip is 5
hours. What is the speed (in mph) of
the current? Round your answer to the
nearest hundredth.

16. Boris can paddle his kayak at a speed
of 6 mph in still water. If he can paddle
5 miles upstream in the same amount of
time as it takes his to paddle 9 miles
downstream, what is the speed of the
current?
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17. Jacob is canoeing in a river with a
5 mph current. Suppose that he can ca-
noe 4 miles upstream in the same amount
of time as it takes him to canoe 8 miles
downstream. Find the speed (mph) of
Jacob’s canoe in still water.

18. The speed of a freight train is 16
mph slower than the speed of a passenger
train. The passenger train travels 518
miles in the same time that the freight
train travels 406 miles. Find the speed
of the freight train.

19. The speed of a freight train is 20
mph slower than the speed of a passenger
train. The passenger train travels 440
miles in the same time that the freight
train travels 280 miles. Find the speed
of the freight train.

20. Emily can paddle her canoe at a
speed of 2 mph in still water. She pad-
dles 5 miles upstream against the cur-
rent and then returns to the starting lo-
cation. The total time of the trip is 6
hours. What is the speed (in mph) of
the current? Round your answer to the
nearest hundredth.

21. Jacob is canoeing in a river with a
2 mph current. Suppose that he can ca-
noe 2 miles upstream in the same amount
of time as it takes him to canoe 5 miles
downstream. Find the speed (mph) of
Jacob’s canoe in still water.

22. Moira can paddle her kayak at a
speed of 2 mph in still water. If she
can paddle 4 miles upstream in the same
amount of time as it takes her to paddle
8 miles downstream, what is the speed of
the current?

23. Boris can paddle his kayak at a speed
of 6 mph in still water. If he can paddle
5 miles upstream in the same amount of
time as it takes his to paddle 10 miles
downstream, what is the speed of the
current?

24. The speed of a freight train is 19
mph slower than the speed of a passenger
train. The passenger train travels 544
miles in the same time that the freight
train travels 392 miles. Find the speed
of the freight train.

25. It takes Jean 15 hours longer to
complete an inventory report than it takes
Sanjay. If they work together, it takes
them 10 hours. How many hours would
it take Sanjay if he worked alone?

26. Jean can paint a room in 5 hours.
It takes Amelie 10 hours to paint the
same room. How many hours will it take
if they work together?

27. It takes Amelie 18 hours longer to
complete an inventory report than it takes
Jean. If they work together, it takes
them 12 hours. How many hours would
it take Jean if she worked alone?

28. Sanjay can paint a room in 5 hours.
It takes Amelie 9 hours to paint the same
room. How many hours will it take if
they work together?

29. It takes Ricardo 12 hours longer
to complete an inventory report than it
takes Sanjay. If they work together, it
takes them 8 hours. How many hours
would it take Sanjay if he worked alone?
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30. It takes Ricardo 8 hours longer to
complete an inventory report than it takes
Amelie. If they work together, it takes
them 3 hours. How many hours would it
take Amelie if she worked alone?

31. Jean can paint a room in 4 hours.
It takes Sanjay 7 hours to paint the same
room. How many hours will it take if
they work together?

32. Amelie can paint a room in 5 hours.
It takes Sanjay 9 hours to paint the same
room. How many hours will it take if
they work together?
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7.8 Answers

1. −9, −7

3. −10, −9

5. 4, 6

7. 1
2

, 4

9. 10, 12

11. {2/3, 8/3} and {−8/5, 2/5}

13. 1.63 mph

15. 4.90 mph

17. 15 mph

19. 35 mph

21. 14
3

mph

23. 2 mph

25. 15 hours

27. 18 hours

29. 12 hours

31. 28
11

hours
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8 Exponential and Logarithmic Functions
In this chapter, we will investigate two more families of functions: exponential functions
and logarithmic functions. These are two of the most important functions in math-
ematics, and both types of functions are used extensively in the study of real-world
phenomena. In particular, a good understanding of the concepts of exponential growth
and decay is necessary for students in both the natural and social sciences.

Our main focus will be on the nature of exponential functions, and their use in
describing and solving problems involving compound interest, population growth, and
radioactive decay. Our work with logarithmic functions will be a more limited introduc-
tion, mostly concentrating on their relationship with exponential functions and their
use in solving exponential equations.
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8.1 Exponents and Roots
Before defining the next family of functions, the exponential functions, we will need to
discuss exponent notation in detail. As we shall see, exponents can be used to describe
not only powers (such as 52 and 23), but also roots (such as square roots and cube
roots). Along the way, we’ll define higher roots and develop a few of their properties.
More detailed work with roots will then be taken up in the next chapter.

Integer Exponents
Recall that use of a positive integer exponent is simply a shorthand for repeated mul-
tiplication. For example,

52 = 5 · 5 (1)

and

23 = 2 · 2 · 2. (2)

In general, bn stands for the quanitity bmultiplied by itself n times. With this definition,
the following Laws of Exponents hold.

Laws of Exponents

1. brbs = br+s

2. b
r

bs
= br−s

3. (br)s = brs

The Laws of Exponents are illustrated by the following examples.

I Example 3.

a) 2322 = (2 · 2 · 2)(2 · 2) = 2 · 2 · 2 · 2 · 2 = 25 = 23+2

b) 24

22 = 2 · 2 · 2 · 2
2 · 2

= 2 · 2 · 2 · 2
2 · 2

= 2 · 2 = 22 = 24−2

c) (23)2 = (23)(23) = (2 · 2 · 2)(2 · 2 · 2) = 2 · 2 · 2 · 2 · 2 · 2 = 26 = 23·2

Note that the second law only makes sense for r > s, since otherwise the exponent
r − s would be negative or 0. But actually, it turns out that we can create definitions
for negative exponents and the 0 exponent, and consequently remove this restriction.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1
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Negative exponents, as well as the 0 exponent, are simply defined in such a way that
the Laws of Exponents will work for all integer exponents.

• For the 0 exponent, the first law implies that b0b1 = b0+1, and therefore b0b = b. If
b 6= 0, we can divide both sides by b to obtain b0 = 1 (there is one exception: 00 is
not defined).

• For negative exponents, the second law implies that

b−n = b0−n = b
0

bn
= 1
bn
,

provided that b 6= 0. For example, 2−3 = 1/23 = 1/8, and 2−4 = 1/24 = 1/16.
Therefore, negative exponents and the 0 exponent are defined as follows:

Definition 4.

b−n = 1
bn

and b0 = 1

provided that b 6= 0.

I Example 5. Compute the exact values of 4−3, 60, and
(1

5
)−2.

a) 4−3 = 1
43 = 1

64

b) 60 = 1

c)
(

1
5

)−2
= 1(1

5
)2 = 1

1
25

= 25

We now have bn defined for all integers n, in such a way that the Laws of Exponents
hold. It may be surprising to learn that we can likewise define expressions using rational
exponents, such as 21/3, in a consistent manner. Before doing so, however, we’ll need
to take a detour and define roots.

Roots
Square Roots: Let’s begin by defining the square root of a real number. We’ve
used the square root in many sections in this text, so it should be a familiar concept.
Nevertheless, in this section we’ll look at square roots in more detail.

Definition 6. Given a real number a, a “square root of a” is a number x such
that x2 = a.



Section 8.1 Exponents and Roots 753

Version: Fall 2007

For example, 3 is a square root of 9 since 32 = 9. Likewise, −4 is a square root of 16
since (−4)2 = 16. In a sense, taking a square root is the “opposite” of squaring, so the
definition of square root must be intimately connected with the graph of y = x2, the
squaring function. We investigate square roots in more detail by looking for solutions
of the equation

x2 = a. (7)

There are three cases, each depending on the value and sign of a. In each case, the
graph of the left-hand side of x2 = a is the parabola shown in Figures 1(a), (b), and
(c).

• Case I: a < 0

The graph of the right-hand side of x2 = a is a horizontal line located a units below
the x-axis. Hence, the graphs of y = x2 and y = a do not intersect and the equation
x2 = a has no real solutions. This case is shown in Figure 1(a). It follows that a
negative number has no square root.

• Case II: a = 0

The graph of the right-hand side of x2 = 0 is a horizontal line that coincides with
the x-axis. The graph of y = x2 intersects the graph of y = 0 at one point, at
the vertex of the parabola. Thus, the only solution of x2 = 0 is x = 0, as seen in
Figure 1(b). The solution is the square root of 0, and is denoted

√
0, so it follows

that
√

0 = 0.

• Case III: a > 0

The graph of the right-hand side of x2 = a is a horizontal line located a units above
the x-axis. The graphs of y = x2 and y = a have two points of intersection, and
therefore the equation x2 = a has two real solutions, as shown in Figure 1(c). The
solutions of x2 = a are x = ±

√
a. Note that we have two notations, one that calls

for the positive solution and a second that calls for the negative solution.

x

y
y=x2

y=a

x

y
y=x2

y=0

0
x

y
y=x2

y=a

−
√
a
√
a

(a) No real solutions. (b) One real solution. (c) Two real solutions.
Figure 1. The solutions of x2 = a depend upon the sign and value of a.
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Let’s look at some examples.

I Example 8. What are the solutions of x2 = −5?

The graph of the left-hand side of x2 = −5 is the parabola depicted in Figure 1(a).
The graph of the right-hand side of x2 = −5 is a horizontal line located 5 units below
the x-axis. Thus, the graphs do not intersect and the equation x2 = −5 has no real
solutions.

You can also reason as follows. We’re asked to find a solution of x2 = −5, so you
must find a number whose square equals −5. However, whenever you square a real
number, the result is always nonnegative (zero or positive). It is not possible to square
a real number and get −5.

Note that this also means that it is not possible to take the square root of a negative
number. That is,

√
−5 is not a real number.

I Example 9. What are the solutions of x2 = 0?

There is only one solution, namely x = 0. Note that this means that
√

0 = 0.

I Example 10. What are the solutions of x2 = 25?

The graph of the left-hand side of x2 = 25 is the parabola depicted in Figure 1(c).
The graph of the right-hand side of x2 = 25 is a horizontal line located 25 units above
the x-axis. The graphs will intersect in two points, so the equation x2 = 25 has two
real solutions.

The solutions of x2 = 25 are called square roots of 25 and are written x = ±
√

25.
In this case, we can simplify further and write x = ±5.

It is extremely important to note the symmetry in Figure 1(c) and note that we
have two real solutions, one negative and one positive. Thus, we need two notations,
one for the positive square root of 25 and one for the negative square root 25.

Note that (5)2 = 25, so x = 5 is the positive solution of x2 = 25. For the positive
solution, we use the notation

√
25 = 5.

This is pronounced “the positive square root of 25 is 5.”
On the other hand, note that (−5)2 = 25, so x = −5 is the negative solution of

x2 = 25. For the negative solution, we use the notation

−
√

25 = −5.

This is pronounced “the negative square root of 25 is −5.”
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This discussion leads to the following detailed summary.

Summary: Square Roots

The solutions of x2 = a are called “square roots of a.”

• Case I: a < 0. The equation x2 = a has no real solutions.

• Case II: a = 0. The equation x2 = a has one real solution, namely x = 0.
Thus,

√
0 = 0.

• Case III: a > 0. The equation x2 = a has two real solutions, x = ±
√
a. The

notation
√
a calls for the positive square root of a, that is, the positive solution

of x2 = a. The notation −
√
a calls for the negative square root of a, that is,

the negative solution of x2 = a.

Cube Roots: Let’s move on to the definition of cube roots.

Definition 11. Given a real number a, a “cube root of a” is a number x such
that x3 = a.

For example, 2 is a cube root of 8 since 23 = 8. Likewise, −4 is a cube root of
−64 since (−4)3 = −64. Thus, taking the cube root is the “opposite” of cubing, so the
definition of cube root must be closely connected to the graph of y = x3, the cubing
function. Therefore, we look for solutions of

x3 = a. (12)

Because of the shape of the graph of y = x3, there is only one case to consider. The
graph of the left-hand side of x3 = a is shown in Figure 2. The graph of the right-
hand side of x3 = a is a horizontal line, located a units above, on, or below the x-axis,
depending on the sign and value of a. Regardless of the location of the horizontal line
y = a, there will only be one point of intersection, as shown in Figure 2.

A detailed summary of cube roots follows.

Summary: Cube Roots

The solutions of x3 = a are called the “cube roots of a.” Whether a is negative,
zero, or positive makes no difference. There is exactly one real solution, namely
x = 3
√
a.
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x

y
y=x3

y=a

3√a

Figure 2. The graph of y = x3 inter-
sect the graph of y = a in exactly one
place.

Let’s look at some examples.

I Example 13. What are the solutions of x3 = 8?

The graph of the left-hand side of x3 = 8 is the cubic polynomial shown in Figure 2.
The graph of the right-hand side of x3 = 8 is a horizontal line located 8 units above the
x-axis. The graphs have one point of intersection, so the equation x3 = 8 has exactly
one real solution.2

The solutions of x3 = 8 are called “cube roots of 8.” As shown from the graph,
there is exactly one real solution of x3 = 8, namely x = 3√8. Now since (2)3 = 8, it
follows that x = 2 is a real solution of x3 = 8. Consequently, the cube root of 8 is 2,
and we write

3√8 = 2.

Note that in the case of cube root, there is no need for the two notations we saw in the
square root case (one for the positive square root, one for the negative square root).
This is because there is only one real cube root. Thus, the notation 3√8 is pronounced
“the cube root of 8.”

I Example 14. What are the solutions of x3 = 0?

There is only one solution of x3 = 0, namely x = 0. This means that 3√0 = 0.

There are also two other solutions, but they are both complex numbers, not real numbers. This textbook2

does not discuss complex numbers, but you may learn about them in more advanced courses.
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I Example 15. What are the solutions of x3 = −8?

The graph of the left-hand side of x3 = −8 is the cubic polynomial shown in
Figure 2. The graph of the right-hand side of x3 = −8 is a horizontal line located 8
units below the x-axis. The graphs have only one point of intersection, so the equation
x3 = −8 has exactly one real solution, denoted x = 3√−8. Now since (−2)3 = −8, it
follows that x = −2 is a real solution of x3 = −8. Consequently, the cube root of −8
is −2, and we write

3√−8 = −2.

Again, because there is only one real solution of x3 = −8, the notation 3√−8 is pro-
nounced “the cube root of −8.” Note that, unlike the square root of a negative number,
the cube root of a negative number is allowed.

Higher Roots: The previous discussions generalize easily to higher roots, such as
fourth roots, fifth roots, sixth roots, etc.

Definition 16. Given a real number a and a positive integer n, an “nth root of
a” is a number x such that xn = a.

For example, 2 is a 6th root of 64 since 26 = 64, and −3 is a fifth root of −243 since
(−3)5 = −243.

The case of even roots (i.e., when n is even) closely parallels the case of square roots.
That’s because when the exponent n is even, the graph of y = xn closely resembles
that of y = x2. For example, observe the case for fourth roots shown in Figures 3(a),
(b), and (c).

x

y
y=x4

y=a

x

y
y=x4

y=0

0
x

y
y=x4

y=a

− 4√a 4√a

(a) No real solutions. (b) One real solution. (c) Two real solutions.
Figure 3. The solutions of x4 = a depend upon the sign and value of a.

The discussion for even nth roots closely parallels that presented in the introduction
of square roots, so without further ado, we go straight to the summary.
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Summary: Even nth Roots

If n is a positive even integer, then the solutions of xn = a are called “nth roots
of a.”

• Case I: a < 0. The equation xn = a has no real solutions.
• Case II: a = 0. The equation xn = a has exactly one real solution, namely
x = 0. Thus, n

√
0 = 0.

• Case III: a > 0. The equation xn = a has two real solutions, x = ± n
√
a. The

notation n
√
a calls for the positive nth root of a, that is, the positive solution

of xn = a. The notation − n
√
a calls for the negative nth root of a, that is, the

negative solution of xn = a.

Likewise, the case of odd roots (i.e., when n is odd) closely parallels the case of cube
roots. That’s because when the exponent n is odd, the graph of y = xn closely resembles
that of y = x3. For example, observe the case for fifth roots shown in Figure 4.

x

y
y=x5

y=a

5√a

Figure 4. The graph of y = x5 inter-
sects the graph of y = a in exactly one
place.

The discussion of odd nth roots closely parallels the introduction of cube roots which
we discussed earlier. So, without further ado, we proceed straight to the summary.

Summary: Odd nth Roots

If n is a positive odd integer, then the solutions of xn = a are called the “nth
roots of a.” Whether a is negative, zero, or positive makes no difference. There is
exactly one real solution of xn = a, denoted x = n

√
a.

Remark 17. The symbols
√

and n
√

for square root and nth root, respectively,
are also called radicals.
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We’ll close this section with a few more examples.

I Example 18. What are the solutions of x4 = 16?

The graph of the left-hand side of x4 = 16 is the quartic polynomial shown in
Figure 3(c). The graph of the right-hand side of x4 = 16 is a horizontal line, located
16 units above the x-axis. The graphs will intersect in two points, so the equation
x4 = 16 has two real solutions.

The solutions of x4 = 16 are called fourth roots of 16 and are written x = ± 4√16.
It is extremely important to note the symmetry in Figure 3(c) and note that we have
two real solutions of x4 = 16, one of which is negative and the other positive. Hence,
we need two notations, one for the positive fourth root of 16 and one for the negative
fourth root of 16.

Note that 24 = 16, so x = 2 is the positive real solution of x4 = 16. For this positive
solution, we use the notation

4√16 = 2.

This is pronounced “the positive fourth root of 16 is 2.”
On the other hand, note that (−2)4 = 16, so x = −2 is the negative real solution

of x4 = 16. For this negative solution, we use the notation

− 4√16 = −2. (19)

This is pronounced “the negative fourth root of 16 is −2.”

I Example 20. What are the solutions of x5 = −32?

The graph of the left-hand side of x5 = −32 is the quintic polynomial pictured in
Figure 4. The graph of the right-hand side of x5 = −32 is a horizontal line, located
32 units below the x-axis. The graphs have one point of intersection, so the equation
x5 = −32 has exactly one real solution.

The solutions of x5 = −32 are called “fifth roots of −32.” As shown from the
graph, there is exactly one real solution of x5 = −32, namely x = 5√−32. Now since
(−2)5 = −32, it follows that x = −2 is a solution of x5 = −32. Consequently, the fifth
root of −32 is −2, and we write

5√−32 = −2.

Because there is only one real solution, the notation 5√−32 is pronounced “the fifth
root of −32.” Again, unlike the square root or fourth root of a negative number, the
fifth root of a negative number is allowed.

Not all roots simplify to rational numbers. If that were the case, it would not even
be necessary to implement radical notation. Consider the following example.
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I Example 21. Find all real solutions of the equation x2 = 7, both graphically and
algebraically, and compare your results.

We could easily sketch rough graphs of y = x2 and y = 7 by hand, but let’s seek a
higher level of accuracy by asking the graphing calculator to handle this task.

• Load the equation y = x2 and y = 7 into Y1 and Y2 in the calculator’s Y= menu,
respectively. This is shown in Figure 5(a).

• Use the intersect utility on the graphing calculator to find the coordinates of the
points of intersection. The x-coordinates of these points, shown in Figure 5(b) and
(c), are the solutions to the equation x2 = 7.

(a) (b) (c)
Figure 5. The solutions of x2 = 7 are x ≈ −2.645751 or x ≈ 2.6457513.

Guidelines for Reporting Graphing Calculator Solutions. Recall the standard
method for reporting graphing calculator results on your homework:

• Copy the image from your viewing window onto your homework paper. Label and
scale each axis with xmin, xmax, ymin, and ymax, then label each graph with its
equation, as shown in Figure 6.

• Drop dashed vertical lines from each point of intersection to the x-axis. Shade and
label your solutions on the x-axis.

x
−10 10

y

−10

10
y=x2

y=7

−2.645751 2.6457513

Figure 6. The solutions of x2 = 7 are
x ≈ −2.645751 or x ≈ 2.6457513.
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Hence, the approximate solutions are x ≈ −2.645751 or x ≈ 2.6457513.
On the other hand, to find analytic solutions of x2 = 7, we simply take plus or

minus the square root of 7.

x2 = 7
x = ±

√
7

To compare these exact solutions with the approximate solutions found by using the
graphing calculator, use a calculator to compute ±

√
7, as shown in Figure 7.

Figure 7. Approximating ±
√

7.

Note that these approximations of −
√

7 and
√

7 agree quite nicely with the solutions
found using the graphing calculator’s intersect utility and reported in Figure 6.

Both −
√

7 and
√

7 are examples of irrational numbers, that is, numbers that cannot
be expressed in the form p/q, where p and q are integers.

Rational Exponents
As with the definition of negative and zero exponents, discussed earlier in this section,
it turns out that rational exponents can be defined in such a way that the Laws of
Exponents will still apply (and in fact, there’s only one way to do it).

The third law gives us a hint on how to define rational exponents. For example,
suppose that we want to define 21/3. Then by the third law,(

2
1
3

)3
= 2

1
3 ·3 = 21 = 2,

so, by taking cube roots of both sides, we must define 21/3 by the formula3

2
1
3 = 3√2.

The same argument shows that if n is any odd positive integer, then 21/n must be
defined by the formula

2
1
n = n
√

2.

However, for an even integer n, there appears to be a choice. Suppose that we want
to define 21/2. Then

Recall that the equation x3 = a has a unique solution x = 3√a.3
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(
2

1
2

)2
= 2

1
2 ·2 = 21 = 2,

so

2
1
2 = ±

√
2.

However, the negative choice for the exponent 1/2 leads to problems, because then
certain expressions are not defined. For example, it would follow from the third law
that

(2
1
2 )

1
2 = −

√
−
√

2.

But −
√

2 is negative, so
√
−
√

2 is not defined. Therefore, it only makes sense to use
the positive choice. Thus, for all n, even and odd, 21/n is defined by the formula

2
1
n = n
√

2.

In a similar manner, for a general positive rational mn , the third law implies that

2
m
n = (2m)

1
n = n
√

2m.

But also,

2
m
n = (2

1
n )m = ( n

√
2)m.

Thus,

2
m
n = n
√

2m = ( n
√

2)m.

Finally, negative rational exponents are defined in the usual manner for negative
exponents:

2−
m
n = 1

2
m
n

More generally, here is the final general definition. With this definition, the Laws
of Exponents hold for all rational exponents.

Definition 22. For a positive rational exponent mn , and b > 0,

b
m
n = n
√
bm = ( n

√
b)m. (23)

For a negative rational exponent −mn ,

b−
m
n = 1
b
m
n

. (24)

Remark 25. For b < 0, the same definitions make sense only when n is odd. For
example (−2)

1
4 is not defined.
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I Example 26. Compute the exact values of (a) 4
5
2 , (b) 64

2
3 , and (c) 81−

3
4 .

a) 4
5
2 =

(
4

1
2

)5
= (
√

4)5 = 25 = 32

b) 64
2
3 =

(
64

1
3

)2
= ( 3√64)2 = 42 = 16

c) 81−
3
4 = 1

81
3
4

= 1(
81

1
4

)3 = 1
( 4√81)3

= 1
33 = 1

27

I Example 27. Simplify the following expressions, and write them in the form xr:

a) x
2
3x

1
4 , b) x

2
3

x
1
4
, c)

(
x−

2
3

) 1
4

a) x
2
3x

1
4 = x

2
3 + 1

4 = x
8

12 + 3
12 = x

11
12

b) x
2
3

x
1
4

= x
2
3−

1
4 = x

8
12−

3
12 = x

5
12

c)
(
x−

2
3

) 1
4 = x−

2
3 ·

1
4 = x−

2
12 = x−

1
6

I Example 28. Use rational exponents to simplify 5
√√
x, and write it as a single

radical.

5
√√
x = (

√
x)

1
5 =

(
x

1
2

) 1
5 = x

1
2 ·

1
5 = x

1
10 = 10√x

I Example 29. Use a calculator to approximate 25/8.

Figure 8. 25/8 ≈ 1.542210825
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Irrational Exponents

What about irrational exponents? Is there a way to define numbers like 2
√

2 and 3π? It
turns out that the answer is yes. While a rigorous definition of bs when s is irrational
is beyond the scope of this book, it’s not hard to see how one could proceed to find
a value for such a number. For example, if we want to compute the value of 2

√
2, we

can start with rational approximations for
√

2. Since
√

2 = 1.41421356237310 . . ., the
successive powers

21, 21.4, 21.41, 21.414, 21.4142, 21.41421, 21.414213,

21.4142135, 21.41421356, 21.414213562, 21.4142135623, . . .

should be closer and closer approximations to the desired value of 2
√

2.
In fact, using more advanced mathematical theory (ultimately based on the actual

construction of the real number system), it can be shown that these powers approach
a single real number, and we define 2

√
2 to be that number. Using your calculator, you

can observe this convergence and obtain an approximation by computing the powers
above.

t f(t) = 2t

1 2
1.4 2.639015822
1.41 2.657371628
1.414 2.664749650
1.4142 2.665119089
1.41421 2.665137562
1.414213 2.665143104
1.4142135 2.665144027
1.41421356 2.665144138
1.414213562 2.665144142
1.4142135623 2.665144143

(a) Approximations of 2
√

2 (b) 2
√

2 ≈ 2.665144143
Figure 9.

The last value in the table in Figure 9(a) is a correct approximation of 2
√

2 to 10 digits
of accuracy. Your calculator will obtain this same approximation when you ask it to
compute 2

√
2 directly (see Figure 9(b)).

In a similar manner, bs can be defined for any irrational exponent s and any b > 0.
Combined with the earlier work in this section, it follows that bs is defined for every
real exponent s.
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8.1 Exercises

In Exercises 1-12, compute the exact
value.

1. 3−5

2. 42

3. (3/2)3

4. (2/3)1

5. 6−2

6. 4−3

7. (2/3)−3

8. (1/3)−3

9. 71

10. (3/2)−4

11. (5/6)3

12. 32

In Exercises 13-24, perform each of the
following tasks for the given equation.

i. Load the left- and right-hand sides of
the given equation into Y1 and Y2, re-
spectively. Adjust the WINDOW para-
meters until all points of intersection
(if any) are visible in your viewing
window. Use the intersect utility
in the CALC menu to determine the
coordinates of any points of intersec-
tion.

ii. Make a copy of the image in your
viewing window on your homework
paper. Label and scale each axis with

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/4

xmin, xmax, ymin, and ymax. Label
each graph with its equation. Drop
dashed vertical lines from each point
of intersection to the x-axis, then shade
and label each solution of the given
equation on the x-axis. Remember
to draw all lines with a ruler.

iii. Solve each problem algebraically. Use
a calculator to approximate any radi-
cals and compare these solutions with
those found in parts (i) and (ii).

13. x2 = 5

14. x2 = 7

15. x2 = −7

16. x2 = −3

17. x3 = −6

18. x3 = −4

19. x4 = 4

20. x4 = −7

21. x5 = 8

22. x5 = 4

23. x6 = −5

24. x6 = 9

In Exercises 25-40, simplify the given
radical expression.

25.
√

49

26.
√

121
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27.
√
−36

28.
√
−100

29. 3√27

30. 3√−1

31. 3√−125

32. 3√64

33. 4√−16

34. 4√81

35. 4√16

36. 4√−625

37. 5√−32

38. 5√243

39. 5√1024

40. 5√−3125

41. Compare and contrast
√

(−2)2 and
(
√
−2)2.

42. Compare and contrast 4
√

(−3)4 and
( 4√−3)4.

43. Compare and contrast 3
√

(−5)3 and
( 3√−5)3.

44. Compare and contrast 5
√

(−2)5 and
( 5√−2)5.

In Exercises 45-56, compute the exact
value.

45. 25−
3
2

46. 16−
5
4

47. 8
4
3

48. 625−
3
4

49. 16
3
2

50. 64
2
3

51. 27
2
3

52. 625
3
4

53. 256
5
4

54. 4−
3
2

55. 256−
3
4

56. 81−
5
4

In Exercises 57-64, simplify the prod-
uct, and write your answer in the form
xr.

57. x
5
4x

5
4

58. x
5
3x−

5
4

59. x−
1
3x

5
2

60. x−
3
5x

3
2

61. x
4
5x−

4
3

62. x−
5
4x

1
2

63. x−
2
5x−

3
2

64. x−
5
4x

5
2

In Exercises 65-72, simplify the quo-
tient, and write your answer in the form
xr.

65. x
− 5

4

x
1
5
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66. x
− 2

3

x
1
4

67. x
− 1

2

x−
3
5

68. x
− 5

2

x
2
5

69. x
3
5

x−
1
4

70. x
1
3

x−
1
2

71. x
− 5

4

x
2
3

72. x
1
3

x
1
2

In Exercises 73-80, simplify the expres-
sion, and write your answer in the form
xr.

73.
(
x

1
2

) 4
3

74.
(
x−

1
2

)− 1
2

75.
(
x−

5
4

) 1
2

76.
(
x−

1
5

)− 3
2

77.
(
x−

1
2

) 3
2

78.
(
x−

1
3

)− 1
2

79.
(
x

1
5

)− 1
2

80.
(
x

2
5

)− 1
5
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8.1 Answers

1. 1
243

3. 27
8

5. 1
36

7. 27
8

9. 7

11. 125
216

13. Solutions: x = ±
√

5

x
−10 10

y

−10

10
y=x2

y=5

−2.2361 2.2361

15. No real solutions.

x
−10 10

y

−10

10
y=x2

y=−7

17. x = 3√−6

x
−10 10

y

−10

10 y=x3

y=−6

−1.8171
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19. Solutions: x = ± 4√4

x
−10 10

y

−10

10 y=x4

y=4

−1.4142 1.4142

21. x = 5√8

x
−10 10

y

−10

10 y=x5
y=8

1.5157

23. No real solutions.

x
−10 10

y

−10

10 y=x6

y=−5

25. 7

27. Not a real number.

29. 3

31. −5

33. Not a real number.

35. 2

37. −2

39. 4

41.
√

(−2)2 = 2, while (
√
−2)2 is not

a real number.

43. Both equal −5.

45. 1
125

47. 16

49. 64

51. 9

53. 1024

55. 1
64

57. x
5
2

59. x
13
6

61. x−
8

15

63. x−
19
10

65. x−
29
20

67. x
1

10

69. x
17
20

71. x−
23
12
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73. x
2
3

75. x−
5
8

77. x−
3
4

79. x−
1

10
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8.2 Exponential Functions
Let’s suppose that the current population of the city of Pleasantville is 10 000 and that
the population is growing at a rate of 2% per year. In order to analyze the population
growth over a period of years, we’ll try to develop a formula for the population as a
function of time, and then graph the result.

First, note that at the end of one year, the population increase is 2% of 10 000,
or 200 people. We would now have 10 200 people in Pleasantville. At the end of the
second year, take another 2% of 10 200, which is an increase of 204 people, for a total of
10 404. Because the increase each year is not constant, the graph of population versus
time cannot be a line. Hence, our eventual population function will not be linear.

To develop our population formula, we start by letting the function P (t) represent
the population of Pleasantville at time t, where we measure t in years. We will start
time at t = 0 when the initial population of Pleasantville is 10 000. In other words,
P (0) = 10 000. The key to understanding this example is the fact that the population
increases by 2% each year. We are making an assumption here that this overall growth
accounts for births, deaths, and people coming into and leaving Pleasantville. That is,
at the end of the first year, the population of Pleasantville will be 102% of the initial
population. Thus,

P (1) = 1.02P (0) = 1.02(10 000). (1)

We could multiply out the right side of this equation, but it will actually be more useful
to leave it in its current form.

Now each year the population increases by 2%. Therefore, at the end of the second
year, the population will be 102% of the population at the end of the first year. In
other words,

P (2) = 1.02P (1). (2)

If we replace P (1) in equation (2) with the result found in equation (1), then

P (2) = (1.02)(1.02)(10 000) = (1.02)2(10 000). (3)

Let’s iterate one more year. At the end of the third year, the population will be
102% of the population at the end of the second year, so

P (3) = 1.02P (2). (4)

However, if we replace P (2) in equation (4) with the result found in equation (3),
we obtain

P (3) = (1.02)(1.02)2(10 000) = (1.02)3(10 000). (5)

The pattern should now be clear. The population at the end of t years is given by
the function

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/5
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P (t) = (1.02)t(10 000).

It is traditional in mathematics and science to place the initial population in front in
this formula, writing instead

P (t) = 10 000(1.02)t. (6)

Our function P (t) is defined by equation (6) for all positive integers {1, 2, 3, . . .},
and P (0) = 10 000, the initial population. Figure 1 shows a plot of our function.
Although points are plotted only at integer values of t from 0 to 40, that’s enough to
show the trend of the population over time. The population starts at 10 000, increases
over time, and the yearly increase (the difference in population from one year to the
next) also gets larger as time passes.

t (years)

P (population)
P (t)=10 000(1.02)t

400
10000

23000

Figure 1. Graph of population P (t)
of Pleasantville for t = 0, 1, 2, 3, . . .

I Example 7. We can now use the function P (t) to predict the population in later
years. Assuming that the growth rate of 2% continues, what will the population of
Pleasantville be after 40 years? What will it be after 100 years?

Substitute t = 40 and t = 100 into equation (6). The population in 40 years will be

P (40) = 10 000(1.02)40 ≈ 22 080,

and the population in 100 years will be

P (100) = 10 000(1.02)100 ≈ 72 446.

What would be different if we had started with a population of 12 000? By tracing
over our previous steps, it should be easy to see that the new formula would be

P (t) = 12 000(1.02)t.

Similarly, if the growth rate had been 3% per year instead of 2%, then we would have
ended up with the formula

P (t) = 10 000(1.03)t.
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Thus, by letting P0 represent the initial population, and r represent the growth rate
(in decimal form), we can generalize the formula to

P (t) = P0(1 + r)t. (8)

Note that our formula for the function P (t) is different from the previous functions
that we’ve studied so far, in that the input variable t is part of the exponent in the
formula. Thus, this is a new type of function.

Now let’s contrast the situation in Pleasantville with the population dynamics of
Ghosttown. Ghosttown also starts with a population of 10 000, but several factories
have closed, so some people are leaving for better opportunities. In this case, the
population of Ghosttown is decreasing at a rate of 2% per year. We’ll again develop a
formula for the population as a function of time, and then graph the result.

First, note that at the end of one year, the population decrease is 2% of 10 000,
or 200 people. We would now have 9 800 people left in Ghosttown. At the end of
the second year, take another 2% of 9 800, which is a decrease of 196 people, for a
total of 9 604. As before, because the decrease each year is not constant, the graph of
population versus time cannot be a line, so our eventual population function will not
be linear.

Now let the function P (t) represent the population of Ghosttown at time t, where
we measure t in years. The initial population of Ghosttown at t = 0 is 10 000, so
P (0) = 10 000. Since the population decreases by 2% each year, at the end of the first
year the population of Ghosttown will be 98% of the initial population. Thus,

P (1) = 0.98P (0) = 0.98(10 000). (9)

Each year the population deccreases by 2%. Therefore, at the end of the second year,
the population will be 98% of the population at the end of the first year. In other
words,

P (2) = 0.98P (1). (10)

If we replace P (1) in equation (10) with the result found in equation (9), then

P (2) = (0.98)(0.98)(10 000) = (0.98)2(10 000). (11)

Let’s iterate one more year. At the end of the third year, the population will be
98% of the population at the end of the second year, so

P (3) = 0.98P (2). (12)

However, if we replace P (2) in equation (12) with the result found in equation (11),
we obtain

P (3) = (0.98)(0.98)2(10 000) = (0.98)3(10 000). (13)

The pattern should now be clear. The population at the end of t years is given by
the function
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P (t) = (0.98)t(10 000),

or equivalently,

P (t) = 10 000(0.98)t. (14)

Our function P (t) is defined by equation (14) for all positive integers {1, 2, 3, . . .},
and P (0) = 10 000, the initial population. Figure 2 shows a plot of our function.
Although points are plotted only at integer values of t from 0 to 40, that’s enough to
show the trend of the population over time. The population starts at 10 000, decreases
over time, and the yearly decrease (the difference in population from one year to the
next) also gets smaller as time passes.

t (years)

P (population)

P (t)=10 000(0.98)t

400

10000

5000

0

Figure 2. Graph of population P (t)
of Ghosttown for t = 0, 1, 2, 3, . . .

I Example 15. Assuming that the rate of decrease continues at 2%, predict the
population of Ghosttown after 40 years and after 100 years.

Substitute t = 40 and t = 100 into equation (14). The population in 40 years will be

P (40) = 10 000(0.98)40 ≈ 4457,

and the population in 100 years will be

P (100) = 10 000(0.98)100 ≈ 1326.

Note that if we had instead started with a population of 9 000, for example, then
the new formula would be

P (t) = 9 000(0.98)t.

Similarly, if the rate of decrease had been 5% per year instead of 2%, then we would
have ended up with the formula

P (t) = 10 000(0.95)t.

Thus, by letting P0 represent the initial population, and r represent the growth rate
(in decimal form), we can generalize the formula to

P (t) = P0(1− r)t. (16)
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Definition
As noted before, our functions P (t) in our Pleasantville and Ghosttown examples are
a new type of function, because the input variable t is part of the exponent in the
formula.

Definition 17. An exponential function is a function of the form

f(t) = bt,

where b > 0 and b 6= 1. b is called the base of the exponential function.
More generally, a function of the form

f(t) = Abt,

where b > 0, b 6= 1, and A 6= 0, is also referred to as an exponential function. In
this case, the value of the function when t = 0 is f(0) = A, so A is the initial
amount.

In applications, you will almost always encounter exponential functions in the more
general form Abt. In fact, note that in the previous population examples, the function
P (t) has this form P (t) = Abt, with A = P0, b = 1 + r in Pleasantville, and b = 1− r
in Ghosttown. In particular, A = P0 is the initial population.

Since exponential functions are often used to model processes that vary with time,
we usually use the input variable t (although of course any variable can be used). Also,
you may be curious why the definition says b 6= 1, since 1t just equals 1. We’ll explain
this curiosity at the end of this section.

Graphs of Exponential Functions
We’ll develop the properties for the basic exponential function bt first, and then note
the minor changes for the more general form Abt. For a working example, let’s use base
b = 2, and let’s compute some values of f(t) = 2t and plot the result (see Figure 3).

t f(t) = 2t

1 2
2 4
3 8
4 16

t4

y
16 f(t)=2t

(a) (b)
Figure 3. Plotting points (t, f(t)) defined by the function f(t) =
2t, with t = 1, 2, 3, 4, . . ..
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Recall from the previous section that 2t is also defined for negative exponents t
and the 0 exponent. Thus, the exponential function f(t) = 2t is defined for all integers.
Figure 4 shows a new table and plot with points added at 0 and negative integer
values.

t f(t) = 2t

−4 1/16
−3 1/8
−2 1/4
−1 1/2
0 0
1 2
2 4
3 8
4 16

t4

y
16 f(t)=2t

(a) (b)
Figure 4. Plotting points (t, f(t)) defined by the function f(t) =
2t, with t = . . . ,−3,−2,−1, 0, 1, 2, 3 . . ..

However, the previous section showed that 2t is also defined for rational and irra-
tional exponents. Therefore, the domain of the exponential function f(t) = 2t is the
set of all real numbers. When we add in the values of the function at all rational and
irrational values of t, we obtain a final continuous curve as shown in Figure 5.

t4

y
16 f(t)=2t

Figure 5.

Note several properties of the graph in Figure 5:

a) Moving from left to right, the curve rises, which means that the function increases
as t increases. In fact, the function increases rapidly for positive t.

b) The graph lies above the t-axis, so the values of the function are always positive.
Therefore, the range of the function is (0,∞).

c) The graph has a horizontal asymptote y = 0 (the t-axis) on the left side. This
means that the function almost “dies out” (the values get closer and closer to 0) as
t approaches −∞.
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What about the graphs of other exponential functions with different bases? We’ll
use the calculator to explore several of these.

First, use your calculator to compare y1(x) = 2x and y2(x) = 3x. As can be seen
in Figure 6(a), the graph of 3x rises faster that 2x for x > 0, and dies out faster for
x < 0.

x2

y
10

y1

y2

x2

y
10

y1

y2

y3

(a) (b)
Figure 6. Comparing functions y1(x) = 2x, y2(x) = 3x, and
y3(x) = 4x

Next, add in y3(x) = 4x. The result is shown in Figure 6(b). Again, increasing
the size of the base to b = 4 results in a function which rises even faster on the right
and likewise dies out faster on the left. If you continue to increase the size of the base
b, you’ll see that this trend continues. That’s not terribly surprising because, if we
compute the value of these functions at a fixed positive x, for example at x = 2, then
the values increase: 22 < 32 < 42 < . . .. Similarly, at x = −2, the values decrease:
2−2 > 3−2 > 4−2 > . . ..

All of the functions in our experiments so far share the properties listed in (a)–
(c) above: the function increases, the range is (0,∞), and the graph has a horizontal
asymptote y = 0 on the left side. Now let’s try smaller values of the base b. First use
the calculator to plot the graph of y1(x) = (1/2)x (see Figure 7(a)).

x2

y
10

y1

y2
y3

(a) Graph of
y1(x) = (1/2)x

(b) Comparing functions
y1(x) = (1/2)x,
y2(x) = (1/3)x,

and y3(x) = (1/4)x

Figure 7.
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This graph is much different. It rises rapidly to the left, and almost dies out on the
right. Compare this with y2(x) = (1/3)x and y3(x) = (1/4)x (see Figure 7(b)). As
the base gets smaller, the graph rises faster on the left, and dies out faster on the right.

Using reflection properties, it’s easy to understand the appearance of these last
three graphs. Note that (

1
2

)x
= (2−1)x = 2−x, (18)

so it follows that the graph of
(1

2
)x is just a reflection in the y-axis of the graph of 2x

(see Figure 8).

x2

y
5

g f

Figure 8. Comparing functions
f(x) = 2x and g(x) = (1/2)x = 2−x

Thus, we seem to have two different types of graphs, and therefore two types of expo-
nential functions: one type is increasing, and the other decreasing. Our experiments
above, along with a little more experimentation, should convince you that bx is increas-
ing for b > 1, and decreasing for 0 < b < 1. The first type of functions are called
exponential growth functions, and the second type are exponential decay functions.

Properties of Exponential Growth Functions: f(x) = bx with b > 1

• The domain is the set of all real numbers.

• Moving from left to right, the graph rises, which means that the function
increases as x increases. The function increases rapidly for positive x.

• The graph lies above the x-axis, so the values of the function are always positive.
Therefore, the range is (0,∞).

• The graph has a horizontal asymptote y = 0 (the x-axis) on the left side. This
means that the function almost “dies out” (the values get closer and closer to
0) as x approaches −∞.

The second property above deserves some additional explanation. Looking at
Figure 6(b), it appears that y2 and y3 increase rapidly as x increases, but y1 ap-
pears to increase slowly. However, this is due to the fact that the graph of y1(x) = 2x
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is only shown on the interval [−2, 2]. In Figure 5, the same function is graphed on the
interval [−4, 4], and it certainly appears to increase rapidly in that graph. The point
here is that exponential growth functions eventually increase rapidly as x increases.
If you graph the function on a large enough interval, the function will eventually be-
come very steep on the right side of the graph. This is an important property of the
exponential growth functions, and will be explored further in the exercises.

Properties of Exponential Decay Functions: f(x) = bx with 0 < b < 1

• The domain is the set of all real numbers.

• Moving from left to right, the graph falls, which means that the function de-
creases as x increases. The function decreases rapidly for negative x.

• The graph lies above the x-axis, so the values of the function are always positive.
Therefore, the range is (0,∞).

• The graph has a horizontal asymptote y = 0 (the x-axis) on the right side. This
means that the function almost “dies out” (the values get closer and closer to
0) as x approaches ∞.

Why do we refrain from using the base b = 1? After all, 1x is certainly defined:
it has the value 1 for all x. But that means that f(x) = 1x is just a constant linear
function – its graph is a horizontal line. Therefore, this function doesn’t share the same
properties as the other exponential functions, and we’ve already classified it as a linear
function. Thus, 1x is not considered to be an exponential function.

I Example 19. Plot the graph of the function f(x) = (1.5)x. Identify the range of
the function and the horizontal asymptote.

Since the base 1.5 is larger than 1, this is an exponential growth function. Therefore,
its graph will have a shape similar to the graphs in Figure 6. The graph rises, there
will be a horizontal asymptote y = 0 on the left side, and the range of the function is
(0,∞). The graph can then be plotted by hand by using this knowledge along with
approximate values at x = −2,−1, 0, 1, 2. See Figure 9.

x f(x) = (1.5)x

−2 0.44
−1 0.67
0 1
1 1.5
2 2.25 x3

y
5

f

(a) (b)
Figure 9. Graph of f(x) = (1.5)x
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I Example 20. Plot the graph of the function g(x) = (0.2)x. Identify the range of
the function and the horizontal asymptote.

Since the base 0.2 is smaller than 1, this is an exponential decay function. Therefore,
its graph will have a shape similar to the graphs in Figure 7. The graph falls, there
will be a horizontal asymptote y = 0 on the right side, and the range of the function
is (0,∞). The graph can then be plotted by hand by using this knowledge along with
approximate values at x = −2,−1, 0, 1, 2. See Figure 10.

x g(x) = (0.2)x

−2 25
−1 5
0 1
1 0.2
2 0.04

x2

y
28g

(a) (b)
Figure 10. Graph of g(x) = (0.2)x

I Example 21. Plot the graph of the function h(x) = 2x − 1. Identify the range of
the function and the horizontal asymptote.

The graph of h can be obtained from the graph of f(x) = 2x (see Figure 5) by a
vertical shift down 1 unit. Therefore, the horizontal asymptote y = 0 of the graph of f
will also be shifted down 1 unit, so the graph of h has a horizontal asymptote y = −1.
Similarly, the range of f will be shifted down to (−1,∞) = Range(h). The graph can
then be plotted by hand by using this knowledge along with approximate values at
x = −2,−1, 0, 1, 2. See Figure 11.

x h(x) = 2x − 1
−2 −0.75
−1 −0.5
0 0
1 1
2 3 x3

y
8

h

y=−1

(a) (b)
Figure 11. Graph of h(x) = 2x − 1

In later sections of this chapter, we will also see more general exponential functions
of the form f(x) = Abx (in fact, the Pleasantville and Ghosttown functions at the
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beginning of this section are of this form). If A is positive, then the graphs of these
functions can be obtained from the basic exponential graphs by vertical scaling, so the
graphs will have the same general shape as either the exponential growth curves (if
b > 1) or the exponential decay curves (if 0 < b < 1) we plotted earlier.



782 Chapter 8 Exponential and Logarithmic Functions

Version: Fall 2007



Section 8.2 Exponential Functions 783

Version: Fall 2007

8.2 Exercises

1. The current population of Fortuna
is 10,000 hearty souls. It is known that
the population is growing at a rate of
4% per year. Assuming this rate remains
constant, perform each of the following
tasks.

a. Set up an equation that models the
population P (t) as a function of time
t.

b. Use the model in the previous part to
predict the population 40 years from
now.

c. Use your calculator to sketch the graph
of the population over the next 40
years.

2. The population of the town of Imag-
ination currently numbers 12,000 people.
It is known that the population is grow-
ing at a rate of 6% per year. Assuming
this rate remains constant, perform each
of the following tasks.

a. Set up an equation that models the
population P (t) as a function of time
t.

b. Use the model in the previous part to
predict the population 30 years from
now.

c. Use your calculator to sketch the graph
of the population over the next 30
years.

3. The population of the town of De-
spairia currently numbers 15,000 individ-
uals. It is known that the population is
decaying at a rate of 5% per year. As-
suming this rate remains constant, per-
form each of the following tasks.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/6

a. Set up an equation that models the
population P (t) as a function of time
t.

b. Use the model in the previous part to
predict the population 50 years from
now.

c. Use your calculator to sketch the graph
of the population over the next 50
years.

4. The population of the town of Hope-
less currently numbers 25,000 individu-
als. It is known that the population is
decaying at a rate of 6% per year. As-
suming this rate remains constant, per-
form each of the following tasks.

a. Set up an equation that models the
population P (t) as a function of time
t.

b. Use the model in the previous part to
predict the population 40 years from
now.

c. Use your calculator to sketch the graph
of the population over the next 40
years.

In Exercises 5-12, perform each of the
following tasks for the given function.

a. Find the y-intercept of the graph of
the function. Also, use your calcula-
tor to find two points on the graph to
the right of the y-axis, and two points
to the left.

b. Using your five points from (a) as a
guide, set up a coordinate system on
graph paper. Choose and label ap-
propriate scales for each axis. Plot
the five points, and any additional
points you feel are necessary to dis-
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cern the shape of the graph.
c. Draw the horizontal asymptote with

a dashed line, and label it with its
equation.

d. Sketch the graph of the function.
e. Use interval notation to describe both

the domain and range of the function.

5. f(x) = (2.5)x

6. f(x) = (0.1)x

7. f(x) = (0.75)x

8. f(x) = (1.1)x

9. f(x) = 3x + 1

10. f(x) = 4x − 5

11. f(x) = 2x − 3

12. f(x) = 5x + 2

In Exercises 13-20, the graph of an ex-
ponential function of the form f(x) =
bx + c is shown. The dashed red line is
a horizontal asymptote. Determine the
range of the function. Express your an-
swer in interval notation.

13.

x

y

5

5

14.

x

y

5

5

15.

x

y

5

5

16.

x

y

5

5

17.

x

y

5

5
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18.

x

y

5

5

19.

x

y

5

5

20.

x

y

5

5

In Exercises 21-32, compute f(p) at the
given value p.

21. f(x) = (1/3)x; p = −4

22. f(x) = (3/4)x; p = 1

23. f(x) = 5x; p = 5

24. f(x) = (1/3)x; p = 4

25. f(x) = 4x; p = −4

26. f(x) = 5x; p = −3

27. f(x) = (5/2)x; p = −3

28. f(x) = 9x; p = 3

29. f(x) = 5x; p = −4

30. f(x) = 9x; p = 0

31. f(x) = (6/5)x; p = −4

32. f(x) = (3/5)x; p = 0

In Exercises 33-40, use your calcula-
tor to evaluate the function at the given
value p. Round your answer to the near-
est hundredth.

33. f(x) = 10x; p = −0.7.

34. f(x) = 10x; p = −1.60.

35. f(x) = (2/5)x; p = 3.67.

36. f(x) = 2x; p = −3/4.

37. f(x) = 10x; p = 2.07.

38. f(x) = 7x; p = 4/3.

39. f(x) = 10x; p = −1/5.

40. f(x) = (4/3)x; p = 1.15.

41. This exercise explores the property
that exponential growth functions even-
tually increase rapidly as x increases. Let
f(x) = 1.05x. Use your graphing calcu-
lator to graph f on the intervals

(a) [0, 10] and (b) [0, 100].
For (a), use Ymin = 0 and Ymax = 10.
For (b), use Ymin = 0 and Ymax = 100.
Make accurate copies of the images in
your viewing window on your homework
paper. What do you observe when you
compare the two graphs?
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8.2 Answers

1.

a) P (t) = 10 000(1.04)t

b) P (40) ≈ 48 101

c)

3.

a) P (t) = 15 000(0.95)t

b) P (50) ≈ 1 154

c)

5.

a) The y-intercept is (0, 1). Evaluate
the function at x = 1, 2,−1,−2 to
obtain the points (1, 2.5), (2, 6.25),
(−1, 0.4), (−2, 0.16) (other answers are
possible).

b) See the graph in part (d).

c) The horizontal asymptote is y = 0.
See the graph in part (d).

d)

x3

y
10

y=0

f(x)=(2.5)x

e) Domain = (−∞,∞), Range = (0,∞)
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7.

a) The y-intercept is (0, 1). Evaluate
the function at x = 1, 2,−1,−2 to
obtain the points (1, 0.75), (2, 0.56),
(−1, 1.34), (−2, 1.78) (other answers
are possible).

b) See the graph in part (d).

c) The horizontal asymptote is y = 0.
See the graph in part (d).

d)

x5

y
5

y=0

f(x)=(0.75)x

e) Domain = (−∞,∞), Range = (0,∞)

9.

a) The y-intercept is (0, 2). Evaluate
the function at x = 1, 2,−1,−2 to ob-
tain the points (1, 4), (2, 10), (−1, 1.34),
(−2, 1.11) (other answers are possi-
ble).

b) See the graph in part (d).

c) The horizontal asymptote is y = 1.
See the graph in part (d).

d)

x3

y
20

y=1

f(x)=3x+1

e) Domain = (−∞,∞), Range = (1,∞)

11.

a) The y-intercept is (0,−2). Evalu-
ate the function at x = 1, 2,−1,−2
to obtain the points (1,−1), (2, 1),
(−1,−2.5), (−2,−2.75) (other answers
are possible).

b) See the graph in part (d).

c) The horizontal asymptote is y = −3.
See the graph in part (d).

d)

x5

y
5

y=−3

f(x)=2x−3

e) Domain = (−∞,∞), Range = (−3,∞)

13. (−1,∞)

15. (2,∞)

17. (2,∞)
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19. (−2,∞)

21. 81

23. 3125

25. 1
256

27. 8
125

29. 1
625

31. 625
1296

33. 0.20

35. 0.03

37. 117.49

39. 0.63

41.

a) The graph on the interval [0, 10] in-
creases very slowly. In fact, the graph
looks almost linear.

b) The graph on the interval [0, 100] in-
creases slowly at first, but then in-
creases very rapidly on the second half
of the interval.
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8.3 Applications of Exponential Functions
In the preceding section, we examined a population growth problem in which the popu-
lation grew at a fixed percentage each year. In that case, we found that the population
can be described by an exponential function. A similar analysis will show that any
process in which a quantity grows by a fixed percentage each year (or each day, hour,
etc.) can be modeled by an exponential function. Compound interest is a good example
of such a process.

Discrete Compound Interest
If you put money in a savings account, then the bank will pay you interest (a percentage
of your account balance) at the end of each time period, typically one month or one
day. For example, if the time period is one month, this process is called monthly
compounding. The term compounding refers to the fact that interest is added to your
account each month and then in subsequent months you earn interest on the interest.
If the time period is one day, it’s called daily compounding.

Let’s look at monthly compounding in more detail. Suppose that you deposit $100
in your account, and the bank pays interest at an annual rate of 5%. Let the function
P (t) represent the amount of money that you have in your account at time t, where
we measure t in years. We will start time at t = 0 when the initial amount, called the
principal, is $100. In other words, P (0) = 100.

In the discussion that follows, we will compute the account balance at the end of
each month. Since one month is 1/12 of a year, P (1/12) represents the balance at the
end of the first month, P (2/12) represents the balance at the end of the second month,
etc.

At the end of the first month, interest is added to the account balance. Since the
annual interest rate 5%, the monthly interest rate is 5%/12, or .05/12 in decimal form.
Although we could approximate .05/12 by a decimal, it will be more useful, as well as
more accurate, to leave it in this form. Therefore, at the end of the first month, the
interest earned will be 100(.05/12), so the total amount will be

P (1/12) = 100 + 100
(
.05
12

)
= 100

(
1 + .05

12

)
. (1)

Now at the end of the second month, you will have the amount that you started that
month with, namely P (1/12), plus another month’s worth of interest on that amount.
Therefore, the total amount will be

P (2/12) = P (1/12) + P (1/12)
(
.05
12

)
= P (1/12)

(
1 + .05

12

)
. (2)

If we replace P (1/12) in equation (2) with the result found in equation (1), then

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/7
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P (2/12) = 100
(

1 + .05
12

)(
1 + .05

12

)
= 100

(
1 + .05

12

)2
. (3)

Let’s iterate one more month. At the end of the third month, you will have the
amount that you started that month with, namely P (2/12), plus another month’s worth
of interest on that amount. Therefore, the total amount will be

P (3/12) = P (2/12) + P (2/12)
(
.05
12

)
= P (2/12)

(
1 + .05

12

)
. (4)

However, if we replace P (2/12) in equation (4) with the result found in equation (3),
then

P (3/12) = 100
(

1 + .05
12

)2(
1 + .05

12

)
= 100

(
1 + .05

12

)3
. (5)

The pattern should now be clear. The amount of money you will have in the account
at the end of m months is given by the function

P (m/12) = 100
(

1 + .05
12

)m
.

We can rewrite this formula in terms of years t by replacing m/12 by t. Then m = 12t,
so the formula becomes

P (t) = 100
(

1 + .05
12

)12t
. (6)

What would be different if you had started with a principal of 200? By tracing over
our previous steps, it should be easy to see that the new formula would be

P (t) = 200
(

1 + .05
12

)12t
.

Similarly, if the interest rate had been 4% per year instead of 5%, then we would have
ended up with the formula

P (t) = 100
(

1 + .04
12

)12t
.

Thus, if we let P0 represent the principal, and r represent the annual interest rate (in
decimal form), then we can generalize the formula to

P (t) = P0

(
1 + r

12

)12t
. (7)

I Example 8. If the principal is $100, the annual interest rate is 5%, and interest
is compounded monthly, how much money will you have after ten years?

In formula (7), let P0 = 100, r = .05, and t = 10:

P (10) = 100
(

1 + .05
12

)12·10

We can use our graphing calculator to approximate this solution, as shown in Figure 1.
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Figure 1. Computing the amount af-
ter compounding monthly for 10 years.

Thus, you would have $164.70 after ten years.

I Example 9. If the principal is $10 000, the annual interest rate is 5%, and interest
is compounded monthly, how much money will you have after forty years?

In formula (7), let P0 = 10 000, r = .05, and t = 40:

P (40) = 10 000
(

1 + .05
12

)12·40
≈ 73 584.17

Thus, you would have $73,584.17 after forty years.
These examples illustrate the “miracle of compound interest.” In the last exam-

ple, your account is more than seven times as large as the original, and your total
“profit” (the amount of interest you’ve received) is $63 584.17. Compare this to the
amount you would have received if you had withdrawn the interest each month (i.e.,
no compounding). In that case, your “profit” would only be $20 000:

years · months
year

· interest
month

= 40 · 12 ·
[
(10 000)

(
.05
12

)]
= 20 000

The large difference can be attributed to the shape of the graph of the function P (t).
Recall from the preceding section that this is an exponential growth function, so as t
gets large, the graph will eventually rise steeply. Thus, if you can leave your money in
the bank long enough, it will eventually grow dramatically.

What about daily compounding? Let’s again analyze the situation in which the
principal is $100 and the annual interest rate is 5%. In this case, the time period over
which interest is paid is one day, or 1/365 of a year, and the daily interest rate is
5%/365, or .05/365 in decimal form. Since we are measuring time in years, P (1/365)
represents the balance at the end of the first day, P (2/365) represents the balance at
the end of the second day, etc. We’ll follow the same steps as in the earlier analysis for
monthly compounding.

At the end of the first day, you will have

P (1/365) = 100 + 100
(
.05
365

)
= 100

(
1 + .05

365

)
. (10)

At the end of the second day, you will have the amount that you started that day
with, namely P (1/365), plus another day’s worth of interest on that amount. Therefore,
the total amount will be
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P (2/365) = P (1/365) + P (1/365)
(
.05
365

)
= P (1/365)

(
1 + .05

365

)
. (11)

If we replace P (1/365) in equation (11) with the result found in equation (10), then

P (2/365) = 100
(

1 + .05
365

)(
1 + .05

365

)
= 100

(
1 + .05

365

)2
. (12)

At the end of the third day, you will have the amount that you started that day
with, namely P (2/365), plus another day’s worth of interest on that amount. Therefore,
the total amount will be

P (3/365) = P (2/365) + P (2/365)
(
.05
365

)
= P (2/365)

(
1 + .05

365

)
. (13)

Again, replacing P (2/365) in equation (13) with the result found in equation (12)
yields

P (3/365) = 100
(

1 + .05
365

)2(
1 + .05

365

)
= 100

(
1 + .05

365

)3
. (14)

Continuing this pattern shows that the amount of money you will have in the
account at the end of d days is given by the function

P (d/365) = 100
(

1 + .05
365

)d
.

We can rewrite this formula in terms of years t by replacing d/365 by t. Then d = 365t,
so the formula becomes

P (t) = 100
(

1 + .05
365

)365t
. (15)

More generally, if you had started with a principal of P0 and an annual interest rate
of r (in decimal form), then the formula would be

P (t) = P0

(
1 + r

365

)365t
. (16)

Comparing formulas (7) and (16) for monthly and daily compounding, it should
be apparent that the only difference is that the number 12 is used in the monthly
compounding formula and the number 365 is used in the daily compounding formula.
Looking at the respective analyses shows that this number arises from the portion of
the year that interest is paid (1/12 in the case of monthly compounding, and 1/365 in
the case of daily compounding). Thus, in each case, this number (12 or 365) also equals
the number of times that interest is compounded per year. It follows that if interest
is compounded quarterly (every three months, or 4 times per year), the formula would
be

P (t) = P0

(
1 + r

4

)4t
.
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Similarly, if interest is compounded hourly (8760 times per year), the formula would
be

P (t) = P0

(
1 + r

8760

)8760t
.

Summarizing, we have one final generalization:

Discrete Compound Interest

If P0 is the principal, r is the annual interest rate, and n is the number of times
that interest is compounded per year, then the balance at time t years is

P (t) = P0

(
1 + r
n

)nt
. (17)

I Example 18. If the principal is $100, the annual interest rate is 5%, and interest
is compounded daily, what will be the balance after ten years?

In formula (17), let P0 = 100, r = .05, n = 365, and t = 10:

P (10) = 100
(

1 + .05
365

)365·10
≈ 164.87

Thus, you would have $164.87 after ten years.

I Example 19. If the principal is $10 000, the annual interest rate is 5%, and
interest is compounded daily, what will be the balance after forty years?

In formula (17), let P0 = 10 000, r = .05, n = 365, and t = 40:

P (40) = 10 000
(

1 + .05
365

)365·40
≈ 73 880.44

Thus, you would have $73 880.44 after forty years.
As you can see from comparing Examples 8 and 18, and Examples 9 and 19, the

difference between monthly and daily compounding is generally small. However, the
difference can be substantial for large principals and/or large time periods.

I Example 20. If the principal is $500, the annual interest rate is 8%, and interest
is compounded quarterly, what will be the balance after 42 months?

42 months is 3.5 years, so let P0 = 500, r = .08, n = 4, and t = 3.5 in formula (17):

P (5) = 500
(

1 + .08
4

)4·3.5
≈ 659.74

Thus, you would have $659.74 after 42 months.
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Continuous Compound Interest and the Number e
Using formula (17), it is a simple matter to calculate the total amount for any type
of compounding. Although most banks compound interest either daily or monthly, it
could be done every hour, or every minute, or every second, etc. What happens to the
total amount as the time period shortens? Equivalently, what happens as n increases in
formula (17)? Table 1 shows the amount after one year with a principal of P0 = 100,
r = .05, and various values of n:

compounding n P (1)
monthly 12 105.11619

daily 365 105.12675
hourly 8760 105.12709

every minute 525600 105.12711
every second 31536000 105.12711

Table 1. Comparison of discrete compounding with
P0 = 100, r = .05, and t = 1 year.

Even if we carry out our computations to eight digits, it appears that the amounts in
the right hand column of Table 1 are stabilizing. In fact, using calculus, it can be
shown that these amounts do indeed get closer and closer to a particular number, and
we can calculate that number.

Starting with formula (17), we will let n approach ∞. In other words, we will let n
get larger and larger without bound, as we started to do in Table 1. The first step is
to use the Laws of Exponents to write

P0

(
1 + r
n

)nt
= P0

[(
1 + r
n

)n
r

]rt
.

In the next step, replace n/r by m. Since n/r = m, it follows that r/n = 1/m, and we
have

P0

[(
1 + r
n

)n
r

]rt
= P0

[(
1 + 1
m

)m]rt
.

Now let n approach ∞. Since m = n/r and r is fixed, it follows that m also
approaches ∞. We can use the TABLE feature of the graphing calculator to investigate
the convergence of the expression in brackets as m approaches infinity.

• Load (1+1/m)m into the Y= menu of the graphing calculator, as shown in Figure 2(a).
Of course, you must use x instead of m and enter (1+1/X)^X.

• Use TBLSET and set Indepnt to Ask, select TABLE, then enter the numbers 10, 100,
1 000, 10 000, 100 000, and 1 000 000 to produce the result shown in Figure 2(b).
Note that (1+1/X)^X appears to converge to the number 2.7183. If you move
the cursor over the last result in the Y1 column, you can see more precision,
2.71828046932.
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(a) (b) (c)
Figure 2. Illustration of the convergence of (1 + 1/m)m to e as m increases to infinity

Note that the numbers in the second column in Figure 2(b) appear to stabilize.
Indeed, it can be shown by using calculus that the expression in brackets above gets
closer and closer to a single number, which is called e. To represent this convergence,
we write (

1 + 1
m

)m
→ e. (21)

e is an irrational number, approximately 2.7183, as shown by the computations in
Figure 2(b). It follows that

P0

[(
1 + 1
m

)m]rt
→ P0e

rt.

Because we took the discrete compound interest formula (17) and let the number
of times compounded per year (n) approach ∞, this process is known as continuous
compounding.

Continuous Compound Interest

If P0 is the principal, r is the annual interest rate, and interest is compounded
continuously, then the balance at time t years is

P (t) = P0e
rt. (22)

Before working the next examples, find the buttons on your calculator for the num-
ber e and for the exponential function ex. Typing either e or e^(1) (using the ex
button) will yield an approximation to the number e, as shown in Figure 2(c). Com-
pare this approximation with the one you obtained earlier in Figure 2(b).

I Example 23. If the principal is $100, the annual interest rate is 5%, and interest
is compounded continuously, what will be the balance after ten years?

In formula (22), let P0 = 100, r = 0.05, and t = 10:

P (10) = 100e(0.05)(10)

Use your calculator to approximate this result, as shown in Figure 3.



796 Chapter 8 Exponential and Logarithmic Functions

Version: Fall 2007

Figure 3. Computing the amount af-
ter compounding continuously for 10
years.

Thus, you would have $164.87 after ten years.

I Example 24. If the principal is $10,000, the annual interest rate is 5%, and
interest is compounded continuously, what will be the balance after forty years?

In formula (22), let P0 = 10 000, r = 0.05, and t = 40:

P (10) = 10 000e(0.05)(40) ≈ 73 890.56

Thus, you would have $73 890.56 after forty years.
Notice that the continuous compounding formula (22) is much simpler than the

discrete compounding formula (17). Unless the principal is very large or the time
period is very long, the preceding examples show that continuous compounding is also
a close approximation to daily compounding. In Example 23, the amount $164.87 is
the same (rounded to the nearest cent) as the amount for daily compounding found in
Example 18. With a larger principal and longer time period, the amount $73 890.56
in Example 24 using continuous compounding is still only about $10 more than the
amount $73 880.44 for daily compounding found in Example 19.

Remarks 25.

1. The number e may strike you as a mere curiosity. If so, that would be a big
misconception. The number e is actually one of the most important numbers in
mathematics (it’s probably the second most famous number, following π), and it
arises naturally as the limit described in (21) above. Using notation from calculus,
we write

lim
m→∞

(
1 + 1
m

)m
= e ≈ 2.71828. (26)

Although in our discussion above this limit arose in a man-made process, compound
interest, it shows up in a similar manner in studies of many natural phenomena.
We’ll look at some of these applications later in this chapter.

2. Likewise, the exponential function ex is one of the most important functions used
in mathematics, statistics, and many fields of science. For a variety of reasons, the
base e turns out to be the most natural base to use for an exponential function.
Consequently, the function f(x) = ex is known as the natural exponential function.
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Future Value and Present Value
In this section we have derived two formulas, one for discrete compound interest, and
the other for continuous compound interest. However, in the examples presented so
far, we’ve only used these formulas to calculate future value: given a principal P0 and
interest rate r, how much will you have in your account in t years?

Another type of question we can solve is known as a present value problem: how
much money would you have to invest at interest r in order to have Q dollars in t years?
Here are a couple of examples:

I Example 27. How much money would you have to invest at 4% interest com-
pounded daily in order to have $8000 dollars in 6 years?

In this case, the principal P0 is unknown, and we substitute r = 0.04, n = 365, and
t = 6, into the discrete compounding formula (17). Since P (6) = 8000, we have the
equation

8000 = P (6) = P0

(
1 + 0.04

365

)(365)(6)
.

This equation can be solved by division:
8000(

1 + 0.04
365
)(365)(6) = P0

Figure 4 shows a calculator approximation for this result.

Figure 4. The present value of $8000,
compounded daily for six years.

Thus, the present value is approximately P0 ≈ $6293.11. If this amount is invested now
at 4% compounded daily, then its future value in 6 years will be $8000.

I Example 28. How much money would you have to invest at 7% interest com-
pounded continuously in order to have $5000 dollars in 4 years?

As in the last example, the principal P0 is unknown, and this time r = 0.07 and t = 4
in the continuous compounding formula (22). Then P (4) = 5000 yields the equation

5000 = P (4) = P0e
(0.07)(4).

As in the last example, this equation can also be solved by division:
5000
e(0.07)(4) = P0

A calculator approximation for this result is shown in Figure 5.
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Figure 5. The present value of $5000,
compounded continuously for four
years.

Thus, the present value is approximately P0 ≈ $3778.92. If this amount is invested now
at 7% compounded continuously, then its future value in 4 years will be $5000.

Additional Questions
In terms of practical applications, there are also other types of questions that would
be interesting to consider. Here are two examples:

1. If you deposit $1000 in an account paying 6% compounded continuously, how long
will it take for you to have $1500 in your account?

2. If you deposit $1000 in an account paying 5% compounded monthly, how long will
it take for your money to double?

Let’s look at the first question (the second is similar). In this case, P0 = 1000 and
r = 0.06. Inserting these values into the continuous compounding formula (22), we
obtain

P (t) = 1000e0.06t.

Now we want the future value P (t) of the account at some time t to equal $1500.
Therefore, we must solve the equation

1500 = 1000e0.06t.

However, now we have a problem, because the variable t is located in the exponent
of the expression on the right side of the equation. Although we could approximate
a solution graphically, we currently have no algebraic method for solving an equation
such as this, where the variable is in the exponent (these types of equations are called
exponential equations). Over the course of the next few sections, we will define another
type of function, the logarithm function, which will in turn provide us with a method
for solving exponential equations. Then we will return to these questions, and also
discuss additional applications.
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8.3 Exercises

1. Suppose that you invest $15,000 at
7% interest compounded monthly. How
much money will be in your account in 4
years? Round your answer to the nearest
cent.

2. Suppose that you invest $14,000 at
3% interest compounded monthly. How
much money will be in your account in 7
years? Round your answer to the nearest
cent.

3. Suppose that you invest $14,000 at
4% interest compounded daily. How much
money will be in your account in 6 years?
Round your answer to the nearest cent.

4. Suppose that you invest $15,000 at
8% interest compounded monthly. How
much money will be in your account in 8
years? Round your answer to the nearest
cent.

5. Suppose that you invest $4,000 at
3% interest compounded monthly. How
much money will be in your account in 7
years? Round your answer to the nearest
cent.

6. Suppose that you invest $3,000 at
5% interest compounded monthly. How
much money will be in your account in 4
years? Round your answer to the nearest
cent.

7. Suppose that you invest $1,000 at
3% interest compounded monthly. How
much money will be in your account in 4
years? Round your answer to the nearest
cent.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/8

8. Suppose that you invest $19,000 at
2% interest compounded daily. How much
money will be in your account in 9 years?
Round your answer to the nearest cent.

9. Suppose that you can invest money
at 4% interest compounded monthly. How
much should you invest in order to have
$20,000 in 2 years? Round your answer
to the nearest cent.

10. Suppose that you can invest money
at 6% interest compounded daily. How
much should you invest in order to have
$1,000 in 2 years? Round your answer to
the nearest cent.

11. Suppose that you can invest money
at 3% interest compounded daily. How
much should you invest in order to have
$20,000 in 3 years? Round your answer
to the nearest cent.

12. Suppose that you can invest money
at 3% interest compounded monthly. How
much should you invest in order to have
$10,000 in 7 years? Round your answer
to the nearest cent.

13. Suppose that you can invest money
at 9% interest compounded daily. How
much should you invest in order to have
$4,000 in 9 years? Round your answer to
the nearest cent.

14. Suppose that you can invest money
at 8% interest compounded daily. How
much should you invest in order to have
$18,000 in 6 years? Round your answer
to the nearest cent.
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15. Suppose that you can invest money
at 8% interest compounded daily. How
much should you invest in order to have
$17,000 in 6 years? Round your answer
to the nearest cent.

16. Suppose that you can invest money
at 9% interest compounded daily. How
much should you invest in order to have
$5,000 in 7 years? Round your answer to
the nearest cent.

In Exercises 17-24, evaluate the func-
tion at the given value p. Round your
answer to the nearest hundredth.

17. f(x) = ex; p = 1.57.

18. f(x) = ex; p = 2.61.

19. f(x) = ex; p = 3.07.

20. f(x) = ex; p = −4.33.

21. f(x) = ex; p = 1.42.

22. f(x) = ex; p = −0.8.

23. f(x) = ex; p = 4.75.

24. f(x) = ex; p = 3.60.

25. Suppose that you invest $3,000 at
4% interest compounded continuously. How
much money will be in your account in 9
years? Round your answer to the nearest
cent.

26. Suppose that you invest $8,000 at
8% interest compounded continuously. How
much money will be in your account in 7
years? Round your answer to the nearest
cent.

27. Suppose that you invest $1,000 at
2% interest compounded continuously. How

much money will be in your account in 3
years? Round your answer to the nearest
cent.

28. Suppose that you invest $3,000 at
8% interest compounded continuously. How
much money will be in your account in 4
years? Round your answer to the nearest
cent.

29. Suppose that you invest $15,000 at
2% interest compounded continuously. How
much money will be in your account in 4
years? Round your answer to the nearest
cent.

30. Suppose that you invest $8,000 at
2% interest compounded continuously. How
much money will be in your account in 6
years? Round your answer to the nearest
cent.

31. Suppose that you invest $13,000 at
9% interest compounded continuously. How
much money will be in your account in 8
years? Round your answer to the nearest
cent.

32. Suppose that you invest $16,000 at
4% interest compounded continuously. How
much money will be in your account in 6
years? Round your answer to the nearest
cent.

33. Suppose that you can invest money
at 6% interest compounded continuously.
How much should you invest in order to
have $17,000 in 9 years? Round your
answer to the nearest cent.

34. Suppose that you can invest money
at 8% interest compounded continuously.
How much should you invest in order to
have $5,000 in 6 years? Round your an-
swer to the nearest cent.
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35. Suppose that you can invest money
at 8% interest compounded continuously.
How much should you invest in order to
have $10,000 in 6 years? Round your
answer to the nearest cent.

36. Suppose that you can invest money
at 6% interest compounded continuously.
How much should you invest in order to
have $17,000 in 13 years? Round your
answer to the nearest cent.

37. Suppose that you can invest money
at 2% interest compounded continuously.
How much should you invest in order to
have $13,000 in 8 years? Round your
answer to the nearest cent.

38. Suppose that you can invest money
at 9% interest compounded continuously.
How much should you invest in order to
have $10,000 in 15 years? Round your
answer to the nearest cent.

39. Suppose that you can invest money
at 7% interest compounded continuously.
How much should you invest in order to
have $18,000 in 10 years? Round your
answer to the nearest cent.

40. Suppose that you can invest money
at 9% interest compounded continuously.
How much should you invest in order to
have $14,000 in 12 years? Round your
answer to the nearest cent.
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8.3 Answers

1. $19830.81

3. $17797.25

5. $4933.42

7. $1127.33

9. $18464.78

11. $18278.69

13. $1779.61

15. $10519.87

17. 4.81

19. 21.54

21. 4.14

23. 115.58

25. $4299.99

27. $1061.84

29. $16249.31

31. $26707.63

33. $9906.72

35. $6187.83

37. $11077.87

39. $8938.54
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8.4 Inverse Functions
As we saw in the last section, in order to solve application problems involving expo-
nential functions, we will need to be able to solve exponential equations such as

1500 = 1000e0.06t or 300 = 2x.

However, we currently don’t have any mathematical tools at our disposal to solve for
a variable that appears as an exponent, as in these equations. In this section, we will
develop the concept of an inverse function, which will in turn be used to define the tool
that we need, the logarithm, in Section 8.5.

One-to-One Functions

Definition 1. A given function f is said to be one-to-one if for each value y in
the range of f , there is just one value x in the domain of f such that y = f(x).
In other words, f is one-to-one if each output y of f corresponds to precisely one
input x.

It’s easiest to understand this definition by looking at mapping diagrams and graphs
of some example functions.

I Example 2. Consider the two functions h and k defined according to the mapping
diagrams in Figure 1. In Figure 1(a), there are two values in the domain that are
both mapped onto 3 in the range. Hence, the function h is not one-to-one. On the
other hand, in Figure 1(b), for each output in the range of k, there is only one input
in the domain that gets mapped onto it. Therefore, k is a one-to-one function.

1

2

3
h

1

2

3

4

k

(a) (b)
Figure 1. Mapping diagrams help to determine
if a function is one-to-one.

I Example 3. The graph of a function is shown in Figure 2(a). For this function
f , the y-value 4 is the output corresponding to two input values, x = −1 and x = 3 (see
the corresponding mapping diagram in Figure 2(b)). Therefore, f is not one-to-one.

Graphically, this is apparent by drawing horizontal segments from the point (0, 4) on
the y-axis over to the corresponding points on the graph, and then drawing vertical
segments to the x-axis. These segments meet the x-axis at −1 and 3.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/9
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x

y f

4

3−1
−1

3

4
f

(a) (b)
Figure 2. A function which is not one-to-one.

I Example 4. In Figure 3, each y-value in the range of f corresponds to just one
input value x. Therefore, this function is one-to-one.

Graphically, this can be seen by mentally drawing a horizontal segment from each point
on the y-axis over to the corresponding point on the graph, and then drawing a vertical
segment to the x-axis. Several examples are shown in Figure 3. It’s apparent that
this procedure will always result in just one corresponding point on the x-axis, because
each y-value only corresponds to one point on the graph. In fact, it’s easiest to just
note that since each horizontal line only intersects the graph once, then there can be
only one corresponding input to each output.

x

y f

Figure 3. A
one-to-one function

The graphical process described in the previous example, known as the horizontal
line test, provides a simple visual means of determining whether a function is one-to-
one.
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Horizontal Line Test

If each horizontal line intersects the graph of f at most once, then f is one-to-one.
On the other hand, if some horizontal line intersects the graph of f more than
once, then f is not one-to-one.

Remark 5. It follows from the horizontal line test that if f is a strictly increasing
function, then f is one-to-one. Likewise, every strictly decreasing function is also one-
to-one.

Inverse Functions
If f is one-to-one, then we can define an associated function g, called the inverse
function of f . We will give a formal definition below, but the basic idea is that the
inverse function g simply sends the outputs of f back to their corresponding inputs.
In other words, the mapping diagram for g is obtained by reversing the arrows in the
mapping diagram for f .

I Example 6. The function f in Figure 4(a) maps 1 to 5 and 2 to −3. Therefore,
the inverse function g in Figure 4(b) maps the outputs of f back to their corresponding
inputs: 5 to 1 and −3 to 2. Note that reversing the arrows on the mapping diagram
for f yields the mapping diagram for g.

1

2

5

−3

f
5

−3

1

2

g

(a) (b)
Figure 4. Reversing the arrows on the mapping
diagram for f yields the mapping diagram for g.

Since the inverse function g sends the outputs of f back to their corresponding
inputs, it follows that the inputs of g are the outputs of f , and vice versa. Thus, the
functions g and f are related by simply interchanging their inputs and outputs.

The original function must be one-to-one in order to have an inverse. For example,
consider the function h in Example 2. h is not one-to-one. If we reverse the arrows
in the mapping diagram for h (see Figure 1(a)), then the resulting relation will not
be a function, because 3 would map to both 1 and 2.

Before giving the formal definition of an inverse function, it’s helpful to review the
description of a function given in Section 2.1. While functions are often defined by
means of a formula, remember that in general a function is just a rule that dictates
how to associate a unique output value to each input value.
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Definition 7. Suppose that f is a given one-to-one function. The inverse func-
tion g is defined as follows: for each y in the range of f , define g(y) to be the
unique value x such that y = f(x).

To understand this definition, it’s helpful to look at a diagram:

x

y f

y

g(y)

Figure 5.

The input for g is any y-value in the range of f . Thus, the input in the above diagram
is a value on the y-axis. The output of g is the corresponding value on the x-axis which
satisfies the condition y = f(x). Note in particular that the x-value is unique because
f is one-to-one.

The relationship between the original function f and its inverse function g can be
described by:10

Property 8. If g is the inverse function of f , then

x = g(y) ⇐⇒ y = f(x).

In fact, this is really the defining relationship for the inverse function. An easy way
to understand this relationship (and the entire concept of an inverse function) is to
realize that it states that inputs and outputs are interchanged. The inputs of g are the
outputs of f , and vice versa. It follows that the Domain and Range of f and g are
interchanged:

Property 9. If g is the inverse function of f , then

Domain(g) = Range(f) and Range(g) = Domain(f).

The ⇐⇒ symbol means that these two statements are equivalent: if one is true, then so is the other.10
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The defining relationship in Property 8 is also equivalent to the following two
identities, so these provide an alternative characterization of inverse functions:

Property 10. If g is the inverse function of f , then

g(f(x)) = x for every x in Domain(f)

and

f(g(y)) = y for every y in Domain(g).

Note that the first statement in Property 10 says that g maps the output f(x) back
to the input x. The second statement says the same with the roles of f and g reversed.
Therefore, f and g must be inverses.

Property 10 can also be interpreted to say that the functions g and f “undo”
each other. If we first apply f to an input x, and then apply g, we get x back again.
Likewise, if we apply g to an input y, and then apply f , we get y back again. So
whatever action f performs, g reverses it, and vice versa.

I Example 11. Suppose f(x) = x3. Thus, f is the “cubing” function. What
operation will reverse the cubing process? Taking a cube root. Thus, the inverse of f
should be the function g(y) = 3

√
y.

Let’s verify Property 10:

g(f(x)) = g(x3) = 3√
x3 = x

and

f(g(y)) = f( 3
√
y) = ( 3

√
y)3 = y.

I Example 12. Suppose f(x) = 4x − 1. f acts on an input x by first multiplying
by 4, and then subtracting 1. The inverse function must reverse the process: first add
1, and then divide by 4. Thus, the inverse function should be g(y) = (y + 1)/4.

Again, let’s verify Property 10:

g(f(x)) = g(4x− 1) = (4x− 1) + 1
4

= 4x
4

= x

and

f(g(y)) = f
(
y + 1

4

)
= 4

(
y + 1

4

)
− 1 = (y + 1)− 1 = y.
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Remarks 13.

1. The computation g(f(x)), in which the output of one function is used as the input of
another, is called the composition of g with f . Thus, inverse functions “undo” each
other in the sense of composition. Composition of functions is an important concept
in many areas of mathematics, so more practice with composition of functions is
provided in the exercises.

2. If g is the inverse function of f , then f is also the inverse of g. This follows from
either Property 8 or Property 10. (Note that the labels x and y for the variables
are unimportant. The key idea is that two functions are inverses if their inputs and
outputs are interchanged.)

Notation: In order to indicate that two functions f and g are inverses, we usually
use the notation f−1 for g. The symbol f−1 is read “f inverse”. In addition, to avoid
confusion with the typical roles of x and y, it’s often useful to use different labels for
the variables. Rewriting Property 8 with the f−1 notation, and using new labels for
the variables, we have the defining relationship:

Property 14.

v = f−1(u) ⇐⇒ u = f(v)

Likewise, rewriting Property 10, we have the composition relationships:

Property 15.

f−1(f(z)) = z for every z in Domain(f)

and

f(f−1(z)) = z for every z in Domain(f−1)

However, the new notation comes with an important warning:

Warning 16.

f−1 does not mean 1
f

The −1 exponent is just notation in this context. When applied to a function, it
stands for the inverse of the function, not the reciprocal of the function.

The Graph of an Inverse Function
How are the graphs of f and f−1 related? Suppose that the point (a, b) is on the graph
of f . That means that b = f(a). Since inputs and outputs are interchanged for the
inverse function, it follows that a = f−1(b), so (b, a) is on the graph of f−1. Now (a, b)
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and (b, a) are just reflections of each other across the line y = x (see the discussion
below for a detailed explanation), so it follows that the same is true of the graphs of f
and f−1 if we graph both functions on the same coordinate system (i.e., as functions
of x).

For example, consider the functions from Example 11. The functions f(x) = x3

and f−1(x) = 3
√
x are graphed in Figure 6 along with the line y = x. Several reflected

pairs of points are also shown on the graph.

x5

y
5

f

f−1

y = x

Figure 6. Graphs of f(x) = x3 and
f−1(x) = 3

√
x are reflections across the

line y = x.

To see why the points (a, b) and (b, a) are just reflections of each other across the
line y = x, consider the segment S between these two points (see Figure 7). It will
be enough to show: (1) that S is perpendicular to the line y = x, and (2) that the
intersection point P of the segment S and the line y = x is equidistant from each of
(a, b) and (b, a).

x

y y=x

(a,b)

(b,a)

P
S

Figure 7. Switching the abscissa and
ordinate reflects the point across the
line y = x.

1. The slope of S is
a− b
b− a

= −1,
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and the slope of the line y = x is 1, so they are perpendicular.
2. The line containing S has equation y−b = −(x−a), or equivalently, y = −x+(a+b).

To find the intersection of S and the line y = x, set x = −x+ (a+ b) and solve for
x to get

x = a+ b
2
.

Since y = x, it follows that the intersection point is

P =
(
a+ b

2
,
a+ b

2

)
.

Finally, we can use the distance formula presented in section 9.6 to compute the
distance from P to (a, b) and the distance from P to (b, a). In both cases, the
computed distance turns out to be

|a− b|√
2
.

Computing the Formula of an Inverse Function
How does one find the formula of an inverse function? In Example 11, it was easy to
see that the inverse of the “cubing” function must be the cube root function. But how
was the formula for the inverse in Example 12 obtained?

Actually, there is a simple procedure for finding the formula for the inverse function
(provided that such a formula exists; remember that not all functions can be described
by a simple formula, so the procedure will not work for such functions). The following
procedure works because the inputs and outputs (the x and y variables) are switched
in step 3.

Computing the Formula of an Inverse Function

1. Check the graph of the original function f(x) to see if it passes the horizontal
line test. If so, then f is one-to-one and you can proceed.

2. Write the formula in xy-equation form, as y = f(x).
3. Interchange the x and y variables.
4. Solve the new equation for y, if possible. The result will be the formula for
f−1(x).
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I Example 17. Let’s start by finding the inverse of the function f(x) = 4x−1 from
Example 12.

Step 1: A check of the graph shows that f is one-to-one (see Figure 8).

Figure 8. The graph of f(x) = 4x−1
passes the horizontal line test.

Step 2: Write the formula in xy-equation form: y = 4x− 1

Step 3: Interchange x and y: x = 4y − 1

Step 4: Solve for y:

x = 4y − 1

=⇒ x+ 1 = 4y

=⇒ x+ 1
4

= y

Thus, f−1(x) = x+ 1
4

.

Figure 9 demonstrates that the graph of f−1(x) = (x+ 1)/4 is a reflection of the
graph of f(x) = 4x− 1 across the line y = x. In this figure, the ZSquare command in
the ZOOM menu has been used to better illustrate the reflection (the ZSquare command
equalizes the scales on both axes).

(a) (b)
Figure 9. Symmetry across the line y = x
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I Example 18. This time we’ll find the inverse of f(x) = 2x5 + 3.

Step 1: A check of the graph shows that f is one-to-one (this is left for the reader to
verify).

Step 2: Write the formula in xy-equation form: y = 2x5 + 3

Step 3: Interchange x and y: x = 2y5 + 3

Step 4: Solve for y:

x = 2y5 + 3

=⇒ x− 3 = 2y5

=⇒ x− 3
2

= y5

=⇒ 5

√
x− 3

2
= y

Thus, f−1(x) = 5

√
x− 3

2
.

Again, note that the graph of f−1(x) = 5
√

(x− 3)/2 is a reflection of the graph of
f(x) = 2x5 + 3 across the line y = x (see Figure 10).

(a) (b)
Figure 10. Symmetry across the line y = x

I Example 19. Find the inverse of f(x) = 5/(7 + x).

Step 1: A check of the graph shows that f is one-to-one (this is left for the reader to
verify).

Step 2: Write the formula in xy-equation form: y = 5
7 + x

Step 3: Interchange x and y: x = 5
7 + y
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Step 4: Solve for y:

x = 5
7 + y

=⇒ x(7 + y) = 5

=⇒ 7 + y = 5
x

=⇒ y = 5
x
− 7 = 5− 7x

x

Thus, f−1(x) = 5− 7x
x

.

I Example 20. This example is a bit more complicated: find the inverse of the
function f(x) = (5x+ 2)/(x− 3).

Step 1: A check of the graph shows that f is one-to-one (this is left for the reader to
verify).

Step 2: Write the formula in xy-equation form: y = 5x+ 2
x− 3

Step 3: Interchange x and y: x = 5y + 2
y − 3

Step 4: Solve for y:

x = 5y + 2
y − 3

=⇒ x(y − 3) = 5y + 2

=⇒ xy − 3x = 5y + 2

This equation is linear in y. Isolate the terms containing the variable y on one side of
the equation, factor, then divide by the coefficient of y.

xy − 3x = 5y + 2

=⇒ xy − 5y = 3x+ 2

=⇒ y(x− 5) = 3x+ 2

=⇒ y = 3x+ 2
x− 5

Thus, f−1(x) = 3x+ 2
x− 5

.

I Example 21. According to the horizontal line test, the function h(x) = x2 is
certainly not one-to-one. However, if we only consider the right half or left half of
the function (i.e., restrict the domain to either the interval [0,∞) or (−∞, 0]), then
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the function would be one-to-one, and therefore would have an inverse (Figure 11(a)
shows the left half). For example, suppose f is the function

f(x) = x2, x ≤ 0.

In this case, the procedure still works, provided that we carry along the domain condi-
tion in all of the steps, as follows:

Step 1: The graph in Figure 11(a) passes the horizontal line test, so f is one-to-one.

Step 2: Write the formula in xy-equation form:

y = x2, x ≤ 0

Step 3: Interchange x and y:

x = y2, y ≤ 0

Note how x and y must also be interchanged in the domain condition.

Step 4: Solve for y:

y = ±
√
x, y ≤ 0

Now there are two choices for y, one positive and one negative, but the condition y ≤ 0
tells us that the negative choice is the correct one. Thus, the last statement is equivalent
to

y = −
√
x.

Thus, f−1(x) = −
√
x. The graph of f−1 is shown in Figure 11(b), and the graphs of

both f and f−1 are shown in Figure 11(c) as reflections across the line y = x.

x5

y
5

f

x5

y
5

f−1

x5

y
5

f

f−1

y = x

(a) (b) (c)
Figure 11.
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8.4 Exercises

In Exercises 1-12, use the graph to de-
termine whether the function is one-to-
one.

1.

x

y

5

5

2.

x

y

5

5

3.

x

y

5

5

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/11

4.

x

y

5

5

5.

x

y

5

5

6.

x

y

5

5

7.

x

y

5

5
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8.

x

y

5

5

9.

x

y

5

5

10.

x

y

5

5

11.

x

y

5

5

12.

x

y

5

5

In Exercises 13-28, evaluate the com-
position g(f(x)) and simplify your an-
swer.

13. g(x) = 9
x

, f(x) = −2x2 + 5x− 2

14. f(x) = −5
x

, g(x) = −4x2 + x− 1

15. g(x) = 2
√
x, f(x) = −x− 3

16. f(x) = 3x2 − 3x− 5, g(x) = 6
x

17. g(x) = 3
√
x, f(x) = 4x+ 1

18. f(x) = −3x− 5, g(x) = −x− 2

19. g(x) = −5x2 + 3x− 4, f(x) = 5
x

20. g(x) = 3x+ 3, f(x) = 4x2− 2x− 2

21. g(x) = 6
√
x, f(x) = −4x+ 4

22. g(x) = 5x− 3, f(x) = −2x− 4

23. g(x) = 3
√
x, f(x) = −2x+ 1

24. g(x) = 3
x

, f(x) = −5x2 − 5x− 4

25. f(x) = 5
x

, g(x) = −x+ 1

26. f(x) = 4x2 + 3x− 4, g(x) = 2
x
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27. g(x) = −5x+ 1, f(x) = −3x− 2

28. g(x) = 3x2 + 4x− 3, f(x) = 8
x

In Exercises 29-36, first copy the given
graph of the one-to-one function f(x) onto
your graph paper. Then on the same co-
ordinate system, sketch the graph of the
inverse function f−1(x).

29.

x

y

5

5

30.

x

y

5

5

31.

x

y

5

5

32.

x

y

5

5

33.

x

y

5

5

34.

x

y

5

5

35.

x

y

5

5



818 Chapter 8 Exponential and Logarithmic Functions

Version: Fall 2007

36.

x

y

5

5

In Exercises 37-68, find the formula for
the inverse function f−1(x).

37. f(x) = 5x3 − 5

38. f(x) = 4x7 − 3

39. f(x) = −9x− 3
7x+ 6

40. f(x) = 6x− 4

41. f(x) = 7x− 9

42. f(x) = 7x+ 4

43. f(x) = 3x5 − 9

44. f(x) = 6x+ 7

45. f(x) = 4x+ 2
4x+ 3

46. f(x) = 5x7 + 4

47. f(x) = 4x− 1
2x+ 2

48. f(x) = 7√8x− 3

49. f(x) = 3√−6x− 4

50. f(x) = 8x− 7
3x− 6

51. f(x) = 7√−3x− 5

52. f(x) = 9√8x+ 2

53. f(x) = 3√6x+ 7

54. f(x) = 3x+ 7
2x+ 8

55. f(x) = −5x+ 2

56. f(x) = 6x+ 8

57. f(x) = 9x9 + 5

58. f(x) = 4x5 − 9

59. f(x) = 9x− 3
9x+ 7

60. f(x) = 3√9x− 7

61. f(x) = x4, x ≤ 0

62. f(x) = x4, x ≥ 0

63. f(x) = x2 − 1, x ≤ 0

64. f(x) = x2 + 2, x ≥ 0

65. f(x) = x4 + 3, x ≤ 0

66. f(x) = x4 − 5, x ≥ 0

67. f(x) = (x− 1)2, x ≤ 1

68. f(x) = (x+ 2)2, x ≥ −2
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8.4 Answers

1. not one-to-one

3. not one-to-one

5. not one-to-one

7. one-to-one

9. one-to-one

11. one-to-one

13. − 9
2x2 − 5x+ 2

15. 2
√
−x− 3

17. 3
√

4x+ 1

19. −125
x2 + 15

x
− 4

21. 6
√
−4x+ 4

23. 3
√
−2x+ 1

25. −5/x+ 1

27. 15x+ 11

29.

x

y

5

5

31.

x

y

5

5

33.

x

y

5

5

35.

x

y

5

5

37. 3

√
x+ 5

5

39. −6x− 3
7x+ 9

41. x+ 9
7

43. 5

√
x+ 9

3
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45. −3x− 2
4x− 4

47. −2x+ 1
2x− 4

49. −x
3 + 4
6

51. −x
7 + 5
3

53. x
3 − 7
6

55. −x− 2
5

57. 9

√
x− 5

9

59. −7x+ 3
9x− 9

61. − 4√x

63. −
√
x+ 1

65. − 4√x− 3

67. −
√
x+ 1
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8.5 Logarithmic Functions
We can now apply the inverse function theory from the previous section to the exponen-
tial function. From Section 8.2, we know that the function f(x) = bx is either increasing
(if b > 1) or decreasing (if 0 < b < 1), and therefore is one-to-one. Consequently, f has
an inverse function f−1.

As an example, let’s consider the exponential function f(x) = 2x. f is increasing,
has domainDf = (−∞,∞), and range Rf = (0,∞). Its graph is shown in Figure 1(a).
The graph of the inverse function f−1 is a reflection of the graph of f across the line
y = x, and is shown in Figure 1(b). Since domains and ranges are interchanged, the
domain of the inverse function is Df−1 = (0,∞) and the range is Rf−1 = (−∞,∞).

x5

y
5

f y = x

x5

y
5

f−1

y = x

(a) (b)
Figure 1. The graphs of f(x) = 2x and its inverse f−1(x) are reflec-
tions across the line y = x.

Unfortunately, when we try to use the procedure given in Section 8.4 to find a
formula for f−1, we run into a problem. Starting with y = 2x, we then interchange x
and y to obtain x = 2y. But now we have no algebraic method for solving this last
equation for y. It follows that the inverse of f(x) = 2x has no formula involving the
usual arithmetic operations and functions that we’re familiar with. Thus, the inverse
function is a new function. The name of this new function is the logarithm of x to base
2, and it’s denoted by f−1(x) = log2(x).

Recall that the defining relationship between a function and its inverse (Property
14 in Section 8.4) simply states that the inputs and outputs of the two functions
are interchanged. Thus, the relationship between 2x and its inverse log2(x) takes the
following form:

v = log2(u) ⇐⇒ u = 2v

More generally, for each exponential function f(x) = bx (b > 0, b 6= 1), the inverse
function f−1(x) is called the logarithm of x to base b, and is denoted by logb(x). The
defining relationship is given in the following definition.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/12
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Definition 1. If b > 0 and b 6= 1, then the logarithm of u to base b is defined
by the relationship

v = logb(u) ⇐⇒ u = bv. (2)

In order to understand the logarithm function better, let’s work through a few
simple examples.

I Example 3. Compute log2(8).

Label the required value by v, so v = log2(8). Then by (2), using b = 2 and u = 8, it
follows that 2v = 8, and therefore v = 3 (solving by inspection).

In the last example, note that log2(8) = 3 is the exponent v such that 2v = 8. Thus,
in general, one way to interpret the definition of the logarithm in (2) is that logb(u)
is the exponent v such that bv = u. In other words, the value of the logarithm is the
exponent!

I Example 4. Compute log10(10 000).

Again, label the required value by v, so v = log10(10 000). By (2), it follows that
10v = 10 000, and therefore v = 4. Note that here again we have found the exponent
v=4 that is needed for base 10 in order to get 10v = 10 000.

I Example 5. Compute log3
(1

9
)
.

v = log3

(
1
9

)
=⇒ 3v = 1

9
by (2)

=⇒ v = −2 since 3−2 = 1
9

I Example 6. Solve the equation log5(x) = 1.

log5(x) = 1

=⇒ 51 = x by (2)

=⇒ x = 5
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I Example 7. Solve the equation logb(64) = 3 for b.

logb(64) = 3

=⇒ b3 = 64 by (2)

=⇒ b = 3√64 = 4

I Example 8. Solve the equation log1/2(x) = −2.

log1/2(x) = −2

=⇒
(

1
2

)−2
= x by (2)

=⇒ x = 1(1
2
)2

= 1
1
4

= 4

The composition relationships in Property 15 of Section 8.4, applied to bx and
logb(x), become

Property 9.

logb(bx) = x (10)

and

blogb(x) = x. (11)

Both equations are important. Note that (11) again shows that the logb(x) is the
exponent v such that bv = x. Equation (10) will be used frequently in this and later
sections to help us solve exponential equations.

Logarithmic functions are used in many areas of science and engineering. For ex-
ample, they are used to define the Richter scale for the magnitudes of earthquakes, the
decibel scale for the loudness of sound, and the astronomical scale for stellar brightness.
They are also important tools for use in computation (as we will see in Section 8.8).
Our main use of logarithms in this textbook will be to solve exponential equations, and
thereby help us study physical phenomena that are described by exponential functions
(as in Section 8.7).

Computing Logarithms
In Examples 3–8 above, we were able to compute the logarithms by converting to
exponential equations that could be solved by inspection. But it’s easy to see that most
of the time this won’t work. For example, how would we compute the value of log2(7)?
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Fortunately, mathematicians have found other methods for computing logarithms to
high accuracy, and they can now be easily approximated using a calculator or computer.

Your calculator has built-in buttons for computing two different logarithms, log10(x)
and loge(x). log10(x) is called the common logarithm, and loge(x) is called the natural
logarithm.

Common Logarithm: The common logarithm log10(x) is computed using the LOG
button on your calculator. Notice also that its inverse function 10x, can be computed
using the same button in conjunction with the 2ND button. The common logarithm is
usually the most convenient one to use for computations involving scientific notation
(because we use a base 10 number system), and therefore is the logarithm most often
used in the physical sciences. Because of that, it’s often just abbreviated by log(x),
and we’ll do that as well in the remainder of the text.

Common Logarithm. log(x) and log10(x) are equivalent notations. Thus, we
have the defining relationship

v = log(u) ⇐⇒ u = 10v.

The composition properties for the common logarithm are

log(10x) = x (12)

and

10log(x) = x.

Natural Logarithm: The natural logarithm loge(x) is computed using the LN
button on your calculator. Its inverse function, ex, is computed using the same button
in conjunction with the 2ND button. The natural logarithm turns out to be the most
convenient one to use in mathematics, because a lot of formulas, especially in calcu-
lus, are much simpler when the natural logarithm is used. The natural logarithm is
abbreviated by ln(x).

Natural Logarithm. ln(x) and loge(x) are equivalent notations. Thus, we have
the defining relationship

v = ln(u) ⇐⇒ u = ev.

The composition properties for the common logarithm are

ln(ex) = x (13)

and

eln(x) = x.
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Note that when using your calculator to compute log(x) and ln(x), you will usually
only obtain approximate values, as these values frequently are irrational numbers.

What about other bases? You can also compute these on your calculator, but we’ll
first need to develop the Change of Base Formula in the next section. However, at this
point, we can at least solve exponential equations involving bases 10 and e, as shown
in the next two examples.

I Example 14. Solve the equation 704 = 2(10)x.

The first step is to isolate the exponential on the right side by dividing both sides by
2:

352 = 10x

Then simply apply the log10(x) function to both sides of the equation:

log10(352) = log10(10x)

But (10) implies that log10(10x) = x. Therefore, x = log10(352) = log(352) is the exact
solution. The approximate value, using a calculator, is 2.546542663 (see Figure 2).

Alternatively, instead of taking the logarithm of both sides in the second step, you
can apply (2) to the equation 352 = 10x to get x = log10(352).

Figure 2. Approximation of log(352) =
log10(352).

This last example shows how logarithms can be used for solving exponential equa-
tions. The basic strategy is to first isolate the exponential on one side of the equation,
and then take appropriate logarithms of both sides. Here’s one more example for now,
and then we’ll return to this process repeatedly in the remaining sections, especially
when we work with application problems.

I Example 15. Solve the equation 30 = 20ex.

First isolate the exponential on the right side by dividing both sides by 20:

1.5 = ex

This time, since the base of the exponential function is e, apply the natural logarithm
function to both sides:

loge(1.5) = loge(ex)
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Simplify the right side, since loge(ex) = x by (10):

loge(1.5) = x

Therefore, x = loge(1.5) = ln(1.5) is the exact solution. The approximate value, using
a calculator, is 0.4054651081 (see Figure 3).

Figure 3. Approximation
of ln 1.5 = loge(1.5).

In the next section, we’ll learn how to solve exponential equations involving other
bases.

Graphs of Logarithmic Functions
At the beginning of this section, we looked at the graphs of f(x) = 2x and its inverse
function f−1(x) = log2(x). More generally, the graph of the exponential function
f(x) = bx for b > 1 is shown in Figure 4(a), along with its inverse logarithmic function
f−1(x) = logb(x). According to Section 8.4, the two graphs are reflections across the
line y = x. Similarly, the graph for 0 < b < 1 is shown in Figure 4(b).

x

y f

f−1

y = x

x

yf

f−1

y = x

(a) b > 1 (b) 0 < b < 1
Figure 4. The graphs of f(x) = bx and f−1(x) = logb(x) are reflec-
tions across the line y = x.

Because domains and ranges of inverse functions are interchanged, it follows that
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Property 16.

Domain(logb(x)) = (0,∞)

and

Range(logb(x)) = (−∞,∞).

In particular, note that the logarithm of a negative number, as well as the logarithm
of 0, are not defined.

Two particular points on the graph of the logarithm are noteworthy. Since b0 = 1,
it follows that logb(1) = 0, and therefore the x-intercept of the graph of logb(x) is (1, 0).
Similarly, since b1 = b, it follows that logb(b) = 1, and therefore (b, 1) is on the graph.

Property 17.

logb(1) = 0 and logb(b) = 1

Finally, since the graph of bx has a horizontal asymptote y = 0, the graph of logb(x)
must have a vertical asymptote x = 0. This behavior is a consequence of the fact
that inputs and outputs of inverse functions are interchanged, and can be observed in
Figure 4.

In the final example below, we’ll apply a transformation to the logarithm and see
how that affects the graph.

I Example 18. Plot the graph of the function f(x) = log2(x+ 1).

The graph of f(x) = log2(x+1) will be the same as the graph of g(x) = log2(x) shifted
one unit to the left. The graph of g is shown in Figure 1(b). The x-intercept (1, 0) on
the graph of g will be shifted one unit to the left to (0, 0) on the graph of f . Likewise,
the vertical asymptote x = 0 on the graph of g will be shifted one unit to the left to
the line x = −1 on the graph of f . The final graph of f is shown in Figure 5.

x5

y
5

f

Figure 5. The graph
of f(x) = log2(x + 1).
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8.5 Exercises

In Exercises 1-18, find the exact value
of the function at the given value b.

1. f(x) = log3(x); b = 5√3.

2. f(x) = log5(x); b = 3125.

3. f(x) = log2(x); b = 1
16

.

4. f(x) = log2(x); b = 4.

5. f(x) = log5(x); b = 5.

6. f(x) = log2(x); b = 8.

7. f(x) = log2(x); b = 32.

8. f(x) = log4(x); b = 1
16

.

9. f(x) = log5(x); b = 1
3125

.

10. f(x) = log5(x); b = 1
25

.

11. f(x) = log5(x); b = 6√5.

12. f(x) = log3(x); b = 3√3.

13. f(x) = log6(x); b = 6√6.

14. f(x) = log5(x); b = 5√5.

15. f(x) = log2(x); b = 6√2.

16. f(x) = log4(x); b = 1
4

.

17. f(x) = log3(x); b = 1
9

.

18. f(x) = log4(x); b = 64.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/13

In Exercises 19-26, use a calculator to
evaluate the function at the given value
p. Round your answer to the nearest
hundredth.

19. f(x) = ln(x); p = 10.06.

20. f(x) = ln(x); p = 9.87.

21. f(x) = ln(x); p = 2.40.

22. f(x) = ln(x); p = 9.30.

23. f(x) = log(x); p = 7.68.

24. f(x) = log(x); p = 652.22.

25. f(x) = log(x); p = 6.47.

26. f(x) = log(x); p = 86.19.

In Exercises 27-34, solve the given equa-
tion, and round your answer to the near-
est hundredth.

27. 13 = e8x

28. 2 = 8ex

29. 19 = 108x

30. 17 = 102x

31. 7 = 6(10)x

32. 7 = e9x

33. 13 = 8ex

34. 5 = 7(10)x
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In Exercises 35-42, the graph of a log-
arithmic function of the form f(x) =
logb(x − a) is shown. The dashed red
line is a vertical asymptote. Determine
the domain of the function. Express your
answer in interval notation.

35.

x

y

5

5

36.

x

y

5

5

37.

x

y

5

5

38.

x

y

5

5

39.

x

y

5

5

40.

x

y

5

5

41.

x

y

5

5
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42.

x

y

5

5
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8.5 Answers

1. 1
5

3. −4

5. 1

7. 5

9. −5

11. 1
6

13. 1
6

15. 1
6

17. −2

19. 2.31

21. 0.88

23. 0.89

25. 0.81

27. 0.32

29. 0.16

31. 0.07

33. 0.49

35. (0,∞)

37. (−1,∞)

39. (0,∞)

41. (−3,∞)
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8.6 Properties of Logarithms;
Solving Exponential Equations
Logarithms were actually discovered and used in ancient times by both Indian and Is-
lamic mathematicians. They were not used widely, though, until the 1600âĂŹs, when
logarithms simplified the large amounts of hand computations needed in the scientific
explorations of the times. In particular, after the invention of the telescope, calcula-
tions involving astronomical data became very important, and logarithms became an
essential mathematical tool. Indeed, until the invention of the computer and electronic
calculator in recent times, hand calculations using logarithms were a staple of every
science student’s curriculum.

The usefulness of logarithms in calculations is based on the following three important
properties, known generally as the properties of logarithms.

Properties of Logarithms

a) logb(MN) = logb(M) + logb(N)

b) logb
(
M

N

)
= logb(M)− logb(N)

c) logb(M r) = r logb(M)

provided that M,N, b > 0.

The first property says that the “log of a product is the sum of the logs.” The second
says that the “log of a quotient is the difference of the logs.” And the third property is
sometimes referred to as the “power rule”. Loosely speaking, when taking the log of a
power, you can just move the exponent out in front of the log.

We won’t go into the details of the computation procedures using properties (a) and
(b), since these procedures are no longer necessary after the invention of the calculator.
But the idea is that a time-consuming product of two numbers, for example two 10-digit
numbers, can be transformed by property (a) into a much simpler addition problem.
Similarly, a large and difficult quotient can be transformed by property (b) into a much
simpler subtraction problem. Properties (a) and (b) are also the basis for the slide rule,
a mechanical computation device that preceded the electronic calculator (very fast and
useful, but only accurate to about three digits).

Property (c), on the other hand, is still useful for difficult computations. If you try
to compute a large power, say 2100, on a calculator or computer, you’ll get an error
message. That’s because all calculators and computers can only handle numbers and
exponents within a certain range. So to compute a large power, it’s necessary to use

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/14
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property (c) to turn it into a multiplication problem. The details of this procedure are
given in Section 8.8.

Even though properties (a) and (b) are no longer necessary for computation pur-
poses, that does not mean they are not important. Logarithmic functions serve many
purposes in mathematics and the sciences, and all of the logarithm properties are useful
in various ways.

Where do the logarithm properties come from? Actually, they’re all derived from
the laws of exponents, using the fact that the exponential function is the inverse of the
logarithm function. Since we’ll only be using property (c) in this book, we’ll show how
that property is derived. Properties (a) and (b) are derived in a similar manner.
Proof of (c): Start on the right side of the equation, and label logb(M) by x:

x = logb(M)

Use Definition 1 in Section 8.5 to rewrite the equation in exponential form:

bx =M

Raise both sides to the rth power:

(bx)r =M r

Apply one of the Laws of Exponents to the left side:

brx =M r

Apply the base b logarithmic function to both sides:

logb(brx) = logb(M r)

Apply formula (10) in Section 8.5 to the left side:

rx = logb(M r)

Substitute back for x from the first line above:

r logb(M) = logb(M r)

This is the formula in property (c).

Change of Base Formula
We can now prove a conversion formula that will enable us to compute the logarithm
to any base.

Change of Base Formula:

loga(x) = logb(x)
logb(a)



Section 8.6 Properties of Logarithms; Solving Exponential Equations 835

Version: Fall 2007

Proof: Start on the left side of the equation, and label loga(x) by r:

r = loga(x)

Use Definition 1 in Section 8.5 to rewrite the equation in exponential form:

ar = x

Apply the base b logarithmic function to both sides:

logb(ar) = logb(x)

Apply property (c) to the left side:

r logb(a) = logb(x)

Divide by logb(a):

r = logb(x)
logb(a)

Substitute back for r from the first line above:

loga(x) = logb(x)
logb(a)

This is the Change of Base Formula.

I Example 1. Compute log2(5).

Before applying the Change of Base Formula, let’s see if we can estimate the value of
log2(5). First recall from Property 9 in Section 8.5 that 2log2(5) = 5. Now how large
would the exponent on a base of 2 need to be for the power to equal 5? Since 22 = 4
(too small) and 23 = 8 (too large), we should expect log2(5) to lie somewhere between
2 and 3. Indeed, applying the Change of Base Formula with the common logarithm
yields

log2(5) = log10(5)
log10(2)

= log(5)
log(2)

≈ .6989700043
.3010299957

≈ 2.321928095.

According to the formula, we could instead use the natural logarithm to obtain the
same answer, as in

log2(5) = loge(5)
loge(2)

= ln(5)
ln(2)

≈ 1.609437912
.6931471806

≈ 2.321928095.

Calculator keystrokes are shown in Figure 1.
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Figure 1. Computing log2(5)
using the Change of Base Formula.

Another way to view the Change of Base Formula is that it says that all logarithms
are multiples of each other, since

loga(x) =
(

1
logb(a)

)
logb(x).

Thus, loga(x) is a constant multiple of logb(x), where the constant is 1/ logb(a).

Solving Exponential Equations
Property (c) (logb(M r) = r logb(M)) is also used extensively to help solve exponential
equations, and thus will be an important tool when we work with applications in the
next section. In general terms, the main strategy for solving exponential equations is
to (1) first isolate the exponential, then (2) apply a logarithmic function to both sides,
and then (3) use property (c). We’ll illustrate the strategy with several examples.

I Example 2. Solve 8 = 5(3x).

Before trying the procedure outlined above, let’s first approximate the solution using
a graphical approach. Graph both sides of the equation in your calculator, and then
find the intersection of the two curves to obtain x ≈ 0.42781574 (see Figure 2).

Figure 2. Approximating the solution of 8 = 5(3x) graphically.

Now we’ll solve the equation algebraically. First isolate the exponential function on
one side of the equation by dividing both sides by 5:

1.6 = 3x

Then take the logarithm of both sides. Use either the common or natural log:

log(1.6) = log(3x)
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Now use property (c) to move the exponent in front of the log on the right side:

log(1.6) = x log(3)

Finally, solve for x by dividing both sides by log(3):

log(1.6)
log(3)

= x

Thus, the exact value of x is log(1.6)
log(3)

, and the approximate value is 0.42781574. Note

that this is the same as the graphical approximation found earlier.

I Example 3. Solve 300 = 100(1.055x).

300 = 100(1.055x)

=⇒ 3 = 1.055x isolate the exponential

=⇒ log(3) = log(1.055x) apply the common log function

=⇒ log(3) = 5x log(1.05) use property (c)

=⇒ log(3)
5 log(1.05)

= x divide

=⇒ x ≈ 4.503417061

If the base of the exponential is either 10 or e, the correct choice of logarithm leads
to a faster solution:

I Example 4. Solve 3 = 4ex.

3 = 4ex

=⇒ 0.75 = ex isolate the exponential

=⇒ ln(0.75) = ln(ex) apply the natural log function

=⇒ ln(0.75) = x since ln(ex) = x

=⇒ x ≈ −.2876820725

In this case, because the base of the exponential function is e, the use of the natural
log function simplifies the solution.

We can now turn our attention to solving more interesting application problems,
such as the questions raised at the end of Section 8.3.
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I Example 5. If you deposit $1000 in an account paying 6% interest compounded
continuously, how long will it take for you to have $1500 in your account?

First, recall the continuous compound interest formula from Section 8.3:

P (t) = P0e
rt (6)

In this case, P0 = 1000 and r = .06. Inserting these values into the formula, we obtain

P (t) = 1000e0.06t.

Now we want the future value P (t) of the account at some time t to equal $1500.
Therefore, we must solve the equation

1500 = 1000e0.06t.

Following the steps in the previous example,

1500 = 1000e0.06t

=⇒ 1.5 = e0.06t isolate the exponential

=⇒ ln(1.5) = ln(e0.06t) apply the natural log function

=⇒ ln(1.5) = 0.06t since ln(ex) = x

=⇒ ln(1.5)
0.06

= t divide

=⇒ t ≈ 6.757751802.

Thus, it would take about 6 years and 9 months.

I Example 7. If you deposit $1000 in an account paying 5% interest compounded
monthly, how long will it take for your money to double?

First, recall the discrete compound interest formula from Section 8.3:

P (t) = P0

(
1 + r
n

)nt
(8)

In this case, P0 = 1000, r = .05, and n = 12. Inserting these values into the formula,
we obtain

P (t) = 1000
(

1 + .05
12

)12t
.

Now we want the future value P (t) of the account at some time t to equal twice the
initial amount. In other words, we want P (t) to equal 2000. Therefore, we must solve
the equation

2000 = 1000
(

1 + .05
12

)12t
.
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Following the steps in Examples 2 and 3,

2000 = 1000
(

1 + .05
12

)12t

=⇒ 2 =
(

1 + .05
12

)12t
isolate the exponential

=⇒ log(2) = log

((
1 + .05

12

)12t
)

apply the common log function

=⇒ log(2) = 12t log
(

1 + .05
12

)
use property (c)

=⇒ log(2)
12 log

(
1 + .05

12
) = t divide

=⇒ t ≈ 13.89180473.

Thus, it would take about 13.9 years for your money to double.
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8.6 Exercises

In Exercises 1-10, use a calculator to
evaluate the function at the given value
p. Round your answer to the nearest
hundredth.

1. f(x) = log4(x); p = 57.60.

2. f(x) = log4(x); p = 11.22.

3. f(x) = log7(x); p = 2.98.

4. f(x) = log3(x); p = 2.27.

5. f(x) = log6(x); p = 2.56.

6. f(x) = log8(x); p = 289.27.

7. f(x) = log8(x); p = 302.67.

8. f(x) = log5(x); p = 15.70.

9. f(x) = log8(x); p = 46.13.

10. f(x) = log4(x); p = 15.59.

In Exercises 11-18, perform each of the
following tasks.

a) Approximate the solution of the given
equation using your graphing calcu-
lator. Load each side of the equa-
tion into the Y= menu of your calcu-
lator. Adjust the WINDOW parameters
so that the point of intersection of
the graphs is visible in the viewing
window. Use the intersect utility
in the CALC menu of your calculator
to determine the x-coordinate of the
point of intersection. Then make an
accurate copy of the image in your
viewing window on your homework

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/15

paper.
b) Solve the given equation algebraically,

and round your answer to the nearest
hundredth.

11. 20 = 3(1.2)x

12. 15 = 2(1.8)x

13. 14 = 1.45x

14. 16 = 1.84x

15. −4 = 0.2x − 9

16. 12 = 2.9x + 2

17. 13 = 0.1x+1

18. 19 = 1.2x−6

In Exercises 19-34, solve the given equa-
tion algebraically, and round your an-
swer to the nearest hundredth.

19. 20 = ex−3

20. −4 = ex − 9

21. 23 = 0.9x + 9

22. 10 = ex + 7

23. 19 = ex + 5

24. 4 = 7(2.3)x

25. 18 = ex+4

26. 15 = ex+6

27. 8 = 2.73x
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28. 7 = ex+1

29. 7 = 1.18x

30. 6 = 0.2x−8

31. −7 = 1.3x − 9

32. 11 = 3(0.7)x

33. 23 = ex + 9

34. 20 = 3.2x+1

35. Suppose that you invest $17,000 at
6% interest compounded daily. How many
years will it take for your investment to
double? Round your answer to the near-
est hundredth.

36. Suppose that you invest $6,000 at
9% interest compounded continuously. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

37. Suppose that you invest $16,000 at
6% interest compounded daily. How many
years will it take for your investment to
reach $26,000? Round your answer to
the nearest hundredth.

38. Suppose that you invest $15,000 at
5% interest compounded monthly. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

39. Suppose that you invest $18,000 at
3% interest compounded monthly. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

40. Suppose that you invest $7,000 at
5% interest compounded daily. How many
years will it take for your investment to
reach $13,000? Round your answer to
the nearest hundredth.

41. Suppose that you invest $16,000 at
9% interest compounded continuously. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

42. Suppose that you invest $16,000 at
2% interest compounded continuously. How
many years will it take for your invest-
ment to reach $25,000? Round your an-
swer to the nearest hundredth.

43. Suppose that you invest $2,000 at
5% interest compounded continuously. How
many years will it take for your invest-
ment to reach $10,000? Round your an-
swer to the nearest hundredth.

44. Suppose that you invest $4,000 at
6% interest compounded continuously. How
many years will it take for your invest-
ment to reach $10,000? Round your an-
swer to the nearest hundredth.

45. Suppose that you invest $4,000 at
3% interest compounded daily. How many
years will it take for your investment to
reach $14,000? Round your answer to
the nearest hundredth.

46. Suppose that you invest $13,000 at
2% interest compounded monthly. How
many years will it take for your invest-
ment to reach $20,000? Round your an-
swer to the nearest hundredth.

47. Suppose that you invest $20,000 at
7% interest compounded continuously. How
many years will it take for your invest-
ment to reach $30,000? Round your an-
swer to the nearest hundredth.
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48. Suppose that you invest $16,000 at
4% interest compounded continuously. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

49. Suppose that you invest $8,000 at
8% interest compounded continuously. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

50. Suppose that you invest $3,000 at
3% interest compounded daily. How many
years will it take for your investment to
double? Round your answer to the near-
est hundredth.
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8.6 Answers

1. 2.92

3. 0.56

5. 0.52

7. 2.75

9. 1.84

11.

a)

b) 10.41

13.

a)

b) 1.57

15.

a)

b) −1.00

17.

a)

b) −2.11

19. 6.00

21. −25.05

23. 2.64

25. −1.11

27. 0.70

29. 2.55

31. 2.64

33. 2.64

35. 11.55 years
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37. 8.09 years

39. 23.13 years

41. 7.70 years

43. 32.19 years

45. 41.76 years

47. 5.79 years

49. 8.66 years
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8.7 Exponential Growth and Decay

Exponential Growth Models
Recalling the investigations in Section 8.3, we started by developing a formula for
discrete compound interest. This led to another formula for continuous compound
interest,

P (t) = P0e
rt, (1)

where P0 is the initial amount (principal) and r is the annual interest rate in decimal
form. If money in a bank account grows at an annual rate r (via payment of interest),
and if the growth is continually added in to the account (i.e., interest is continuously
compounded), then the balance in the account at time t years is P (t), as given by
formula (1).

But we can use the exact same analysis for quantities other than money. If P (t)
represents the amount of some quantity at time t years, and if P (t) grows at an annual
rate r with the growth continually added in, then we can conclude in the same manner
that P (t) must have the form

P (t) = P0e
rt, (2)

where P0 is the initial amount at time t = 0, namely P (0).
A classic example is uninhibited population growth. If a population P (t) of a certain

species is placed in a good environment, with plenty of nutrients and space to grow,
then it will grow according to formula (2). For example, the size of a bacterial culture
in a petri dish will follow this formula very closely if it is provided with optimal living
conditions. Many other species of animals and plants will also exhibit this behavior
if placed in an environment in which they have no predators. For example, when the
British imported rabbits into Australia in the late 18th century for hunting, the rabbit
population exploded because conditions were good for living and reproducing, and there
were no natural predators of the rabbits.

Exponential Growth

If a function P (t) grows continually at a rate r > 0, then P (t) has the form

P (t) = P0e
rt, (3)

where P0 is the initial amount P (0). In this case, the quantity P (t) is said to
exhibit exponential growth, and r is the growth rate.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/16
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Remarks 4.

1. If a physical quantity (such as population) grows according to formula (3), we say
that the quantity is modeled by the exponential growth function P (t).

2. Some may argue that population growth of rabbits, or even bacteria, is not really
continuous. After all, rabbits are born one at a time, so the population actually
grows in discrete chunks. This is certainly true, but if the population is large, then
the growth will appear to be continuous. For example, consider the world population
of humans. There are so many people in the world that there are many new births
and deaths each second. Thus, the time difference between each 1 unit change in the
population is just a tiny fraction of a second, and consequently the discrete growth
will act virtually the same as continuous growth. (This is analogous to the almost
identical results for continuous compounding and discrete daily compounding that
we found in Section 8.3; compounding each second or millisecond would be even
closer.)

3. Likewise, using the continuous exponential growth formula (3) to model discrete
quantities will sometimes result in fractional answers. In this case, the results will
need to be rounded off in order to make sense. For example, an answer of 224.57
rabbits is not actually possible, so the answer should be rounded to 225.

4. In formula (3), if time is measured in years (as we have done so far in this chapter),
then r is the annual growth rate. However, time can instead be measured in any
convenient units. The same formula applies, except that the growth rate r is given
in terms of the particular time units used. For example, if time t is measured in
hours, then r is the hourly growth rate.

In Section 8.2, we showed that a function of the form bt with b > 1 is an exponential
growth function. Likewise, if A > 0, then the more general exponential function Abt
also exhibits exponential growth, since the graph of Abt is just a vertical scaling of the
graph of bt. However, the exponential growth function in formula (3) appears to be
different. We will show below that the function P0e

rt can in fact be written in the form
Abt with b > 1.

Let’s first look at a specific example. Suppose P (t) = 4e0.8t. Using the Laws of
Exponents, we can rewrite P (t) as

P (t) = 4e0.8t = 4(e0.8)t. (5)

Since e0.8 ≈ 2.22554, it follows that

P (t) ≈ 4(2.22554)t.

Because the base ≈ 2.22554 is larger than 1, this shows that P (t) is an exponential
growth function, as seen in Figure 1(a)).

Now suppose that P (t) is any function of the form P0e
rt with r > 0. As in (5)

above, we can use the Laws of Exponents to rewrite P (t) as

P (t) = P0e
rt = P0(er)t = P0b

t with b = er.
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To prove that b > 1, consider the graph of y = ex shown in Figure 1(b). Recall that
e ≈ 2.718, so e > 1, and therefore y = ex is itself an exponential growth curve. Also,
the y-intercept is (0, 1) since e0 = 1. It follows that b = er > 1 since r > 0 (see
Figure 1(b)).

Therefore, functions of the form P (t) = P0e
rt with r > 0 are exponential growth

functions.

t2

y
20 P

x5

y
5

f y = x

(a) P (t) = 4e0.8t (b) b = er > 1 since r > 0
Figure 1.

Applications of Exponential Growth
We will now examine the role of exponential growth functions in some real-world ap-
plications. In the following examples, assume that the population is modeled by an
exponential growth function as in formula (3).

I Example 6. Suppose that the population of a certain country grows at an annual
rate of 2%. If the current population is 3 million, what will the population be in 10
years?

This is a future value problem. If we measure population in millions and time in years,
then P (t) = P0e

rt with P0 = 3 and r = 0.02. Inserting these particular values into
formula (3), we obtain

P (t) = 3e0.02t.

The population in 10 years is P (10) = 3e(0.02)(10) ≈ 3.664208 million.

I Example 7. In the same country as in Example 6, how long will it take the
population to reach 5 million?

As before,

P (t) = 3e0.02t.

Now we want to know when the future value P (t) of the population at some time t will
equal 5 million. Therefore, we need to solve the equation P (t) = 5 for time t, which
leads to the exponential equation
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5 = 3e0.02t.

Using the procedure for solving exponential equations that was presented in Section
8.6,

5 = 3e0.02t

=⇒ 5
3

= e0.02t isolate the exponential

=⇒ ln
(

5
3

)
= ln(e0.02t) apply the natural log function

=⇒ ln
(

5
3

)
= 0.02t since ln(ex) = x

=⇒
ln
(5

3
)

0.02
= t division

=⇒ t ≈ 25.54128.

Thus, it would take about 25.54 years for the population to reach 5 million.

The population of bacteria is typically measured by weight, as in the next two
examples.

I Example 8. Suppose that a size of a bacterial culture is given by the function

P (t) = 100e0.15t,

where the size P (t) is measured in grams and time t is measured in hours. How long
will it take for the culture to double in size?

The initial size is P0 = 100 grams, so we want to know when the future value P (t) at
some time t will equal 200. Therefore, we need to solve the equation P (t) = 200 for
time t, which leads to the exponential equation

200 = 100e0.15t.

Using the same procedure as in the last example,

200 = 100e0.15t

=⇒ 2 = e0.15t isolate the exponential

=⇒ ln(2) = ln(e0.15t) apply the natural log function

=⇒ ln(2) = 0.15t since ln(ex) = x

=⇒ ln(2)
0.15

= t division

=⇒ t ≈ 4.620981.
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Thus, it would take about 4.62 hours for the size to double.
The last example deserves an additional comment. Suppose that we had started

with 1000 grams instead of 100. Then to double in size would require a future value of
2000 grams. Therefore, in this case, we would have to solve the equation

2000 = 1000e0.15t.

But the first step is to isolate the exponential by dividing both sides by 1000 to get

2 = e0.15t,

and this is the same as the second line of the solution in the last example, so the answer
will be the same. Likewise, repeating this argument for any initial amount will lead to
the same second line, and therefore the same answer. Thus, the doubling time depends
only on r, not on the initial amount P0.

Exponential Decay Models
We’ve observed that if a quantity increases continually at a rate r, then it is modeled
by a function of the form P (t) = P0e

rt. But what if a quantity decreases instead?
Although we won’t present the details here, the analysis can be carried out in the same
way as the derivation of the continuous compounding formula in Section 8.3. The only
difference is that the growth rate r in the formulas must be replaced by −r since the
quantity is decreasing. The conclusion is that the quantity is modeled by a function of
the form P (t) = P0e

−rt instead of P0e
rt.

Exponential Decay

If a function P (t) decreases continually at a rate r > 0, then P (t) has the form

P (t) = P0e
−rt, (9)

where P0 is the initial amount P (0). In this case, the quantity P (t) is said to
exhibit exponential decay, and r is the decay rate.

In Section 8.2, we showed that a function of the form bt with b < 1 is an exponential
decay function. Likewise, if A > 0, then the more general exponential function Abt also
exhibits exponential decay, since the graph of Abt is just a vertical scaling of the graph
of bt. However, the exponential decay function in formula (9) appears to be different.
We will show below that the function P0e

−rt can in fact be written in the form Abt
with b < 1.

Let’s first look at a specific example. Suppose P (t) = 4e−0.8t. Using the Laws of
Exponents, we can rewrite P (t) as

P (t) = 4e−0.8t = 4(e−0.8)t. (10)
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Since e−0.8 ≈ 0.44933, it follows that

P (t) ≈ 4(0.44933)t.

Because the base ≈ 0.44933 is less than 1, this shows that P (t) is an exponential decay
function, as seen in Figure 2(a)).

Now suppose that P (t) is any function of the form P0e
−rt with r > 0. As in (10)

above, we can use the Laws of Exponents to rewrite P (t) as

P (t) = P0e
−rt = P0(e−r)t = P0b

t with b = e−r.

To prove that b < 1, consider the graph of y = e−x shown in Figure 2(b). Now

e−x = (e−1)x =
(

1
e

)x
and 1/e ≈ 0.36788 < 1, so y = e−x is itself an exponential decay curve. (Alternatively,
you can observe that the graph of y = e−x is the reflection of the graph of y = ex across
the y-axis.) Also, the y-intercept is (0, 1) since e−0 = 1. It follows that b = e−r < 1
since r > 0 (see Figure 2(b)).

Therefore, functions of the form P (t) = P0e
−rt with r > 0 are exponential decay

functions.

t2

y
20P

x2

y
5

y = e−x

e−r

r

1

(a) P (t) = 4e−0.8t (b) b = e−r < 1 since r > 0
Figure 2.

Applications of Exponential Decay
The main example of exponential decay is radioactive decay. Radioactive elements and
isotopes spontaneously emit subatomic particles, and this process gradually changes
the substance into a different isotope. For example, the radioactive isotope Uranium-
238 eventually decays into the stable isotope Lead-206. This is a random process for
individual atoms, but overall the mass of the substance decreases according to the
exponential decay formula (9).

I Example 11. Suppose that a certain radioactive element has an annual decay
rate of 10%. Starting with a 200 gram sample of the element, how many grams will be
left in 3 years?
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This is a future value problem. If we measuring size in grams and time in years, then
P (t) = P0e

−rt with P0 = 200 and r = 0.10. Inserting these particular values into
formula (9), we obtain

P (t) = 200e−0.10t.

The amount in 3 years is P (3) = 200e−(0.10)(3) ≈ 148.1636 grams.

I Example 12. Using the same element as in Example 11, if a particular sample
of the element decays to 50 grams after 5 years, how big was the original sample?

This is a present value problem, where the unknown is the initial amount P0. As before,
r = 0.10, so

P (t) = P0e
−0.10t.

Since P (5) = 50, we have the equation

50 = P (5) = P0e
−(0.10)(5).

This equation can be solved by division:
50

e−(0.10)(5) = P0

Finish by calculating the value of the left side to get P0 ≈ 82.43606 grams.

I Example 13. Suppose that a certain radioactive isotope has an annual decay rate
of 5%. How many years will it take for a 100 gram sample to decay to 40 grams?

Use P (t) = P0e
−rt with P0 = 100 and r = 0.05, so

P (t) = 100e−0.05t.

Now we want to know when the future value P (t) of the size of the sample at some
time t will equal 40. Therefore, we need to solve the equation P (t) = 40 for time t,
which leads to the exponential equation

40 = 100e−0.05t.

Using the procedure for solving exponential equations that was presented in Section
8.6,

40 = 100e−0.05t

=⇒ 0.4 = e−0.05t isolate the exponential

=⇒ ln(0.4) = ln(e−0.05t) apply the natural log function

=⇒ ln(0.4) = −0.05t since ln(ex) = x

=⇒ ln(0.4)
−0.05

= t division

=⇒ t ≈ 18.32581.
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Thus, it would take approximately 18.33 years for the sample to decay to 40 grams.

We saw earlier that exponential growth processes have a fixed doubling time. Sim-
ilarly, exponential decay processes have a fixed half-life, the time in which one-half the
original amount decays.

I Example 14. Using the same element as in Example 13, what is the half-life of
the element?

As before, r = 0.05, so

P (t) = P0e
−0.05t.

The initial size is P0 grams, so we want to know when the future value P (t) at some
time t will equal one-half the initial amount, P0/2. Therefore, we need to solve the
equation P (t) = P0/2 for time t, which leads to the exponential equation

P0
2

= P0e
−0.05t.

Using the same procedure as in the last example,
P0
2

= P0e
−0.05t

=⇒ 1
2

= e−0.05t isolate the exponential

=⇒ ln
(

1
2

)
= ln(e−0.05t) apply the natural log function

=⇒ ln
(

1
2

)
= −0.05t since ln(ex) = x

=⇒
ln
(1

2
)

−0.05
= t division

=⇒ t ≈ 13.86294.

Thus, the half-life is approximately 13.86 years.
The process of radioactive decay also forms the basis of the carbon-14 dating tech-

nique. The Earth’s atmosphere contains a tiny amount of the radioactive isotope
carbon-14, and therefore plants and animals also contain some carbon-14 due to their
interaction with the atmosphere. However, this interaction ends when a plant or ani-
mal dies, so the carbon-14 begins to decay (the decay rate is 0.012%). By comparing
the amount of carbon-14 in a bone, for example, with the normal amount in a living
animal, scientists can compute the age of the bone.
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I Example 15. Suppose that only 1.5% of the normal amount of carbon-14 remains
in a fragment of bone. How old is the bone?

Use P (t) = P0e
−rt with r = 0.00012, so

P (t) = P0e
−0.00012t.

The initial size is P0 grams, so we want to know when the future value P (t) at some
time t will equal 1.5% of the initial amount, 0.015P0. Therefore, we need to solve the
equation P (t) = 0.015P0 for time t, which leads to the exponential equation

0.015P0 = P0e
−0.00012t.

Using the same procedure as in Example 14,

0.015P0 = P0e
−0.00012t

=⇒ 0.015 = e−0.00012t isolate the exponential

=⇒ ln (0.015) = ln(e−0.00012t) apply the natural log function

=⇒ ln (0.015) = −0.00012t since ln(ex) = x

=⇒ ln (0.015)
−0.00012

= t division

=⇒ t ≈ 34998.

Thus, the bone is approximately 34998 years old.
While the carbon-14 technique only works on plants and animals, there are other

similar dating techniques, using other radioactive isotopes, that are used to date rocks
and other inorganic matter.
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8.7 Exercises

1. Suppose that the population of a
certain town grows at an annual rate of
6%. If the population is currently 5, 000,
what will it be in 7 years? Round your
answer to the nearest integer.

2. Suppose that the population of a cer-
tain town grows at an annual rate of 5%.
If the population is currently 2,000, how
many years will it take for it to double?
Round your answer to the nearest hun-
dredth.

3. Suppose that a certain radioactive
isotope has an annual decay rate of 7.2%.
How many years will it take for a 227
gram sample to decay to 93 grams? Round
your answer to the nearest hundredth.

4. Suppose that a certain radioactive
isotope has an annual decay rate of 6.8%.
How many years will it take for a 399
gram sample to decay to 157 grams? Round
your answer to the nearest hundredth.

5. Suppose that the population of a cer-
tain town grows at an annual rate of 8%.
If the population is currently 4,000, how
many years will it take for it to double?
Round your answer to the nearest hun-
dredth.

6. Suppose that a certain radioactive
isotope has an annual decay rate of 19.2%.
Starting with a 443 gram sample, how
many grams will be left after 9 years?
Round your answer to the nearest hun-
dredth.

7. Suppose that a certain radioactive
isotope has an annual decay rate of 17.4%.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/17

What is the half-life (in years) of the iso-
tope? Round your answer to the nearest
hundredth.

8. Suppose that the population of a cer-
tain town grows at an annual rate of 7%.
If the population is currently 8,000, how
many years will it take for it to reach
18,000? Round your answer to the near-
est hundredth.

9. Suppose that a certain radioactive
isotope has an annual decay rate of 17.3%.
Starting with a 214 gram sample, how
many grams will be left after 5 years?
Round your answer to the nearest hun-
dredth.

10. Suppose that the population of a
certain town grows at an annual rate of
7%. If the population grows to 2, 000 in
7 years, what was the original popula-
tion? Round your answer to the nearest
integer.

11. Suppose that the population of a
certain town grows at an annual rate of
3%. If the population is currently 3,000,
how many years will it take for it to dou-
ble? Round your answer to the nearest
hundredth.

12. Suppose that a certain radioactive
isotope has an annual decay rate of 12.5%.
Starting with a 127 gram sample, how
many grams will be left after 6 years?
Round your answer to the nearest hun-
dredth.

13. Suppose that a certain radioactive
isotope has an annual decay rate of 13.1%.
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Starting with a 353 gram sample, how
many grams will be left after 7 years?
Round your answer to the nearest hun-
dredth.

14. Suppose that the population of a
certain town grows at an annual rate of
2%. If the population grows to 9, 000 in
4 years, what was the original popula-
tion? Round your answer to the nearest
integer.

15. Suppose that the population of a
certain town grows at an annual rate of
2%. If the population is currently 7,000,
how many years will it take for it to dou-
ble? Round your answer to the nearest
hundredth.

16. Suppose that a certain radioactive
isotope has an annual decay rate of 5.3%.
How many years will it take for a 217
gram sample to decay to 84 grams? Round
your answer to the nearest hundredth.

17. Suppose that a certain radioactive
isotope has an annual decay rate of 18.7%.
How many years will it take for a 324
gram sample to decay to 163 grams? Round
your answer to the nearest hundredth.

18. Suppose that the population of a
certain town grows at an annual rate of
8%. If the population is currently 8,000,
how many years will it take for it to reach
18,000? Round your answer to the near-
est hundredth.

19. Suppose that a certain radioactive
isotope has an annual decay rate of 2.3%.
If a particular sample decays to 25 grams
after 8 years, how big (in grams) was the
original sample? Round your answer to
the nearest hundredth.

20. Suppose that the population of a
certain town grows at an annual rate of
4%. If the population is currently 7,000,
how many years will it take for it to reach
17,000? Round your answer to the near-
est hundredth.

21. Suppose that a certain radioactive
isotope has an annual decay rate of 9.8%.
If a particular sample decays to 11 grams
after 6 years, how big (in grams) was the
original sample? Round your answer to
the nearest hundredth.

22. Suppose that the population of a
certain town grows at an annual rate of
5%. If the population grows to 6, 000 in
3 years, what was the original popula-
tion? Round your answer to the nearest
integer.

23. Suppose that the population of a
certain town grows at an annual rate of
8%. If the population is currently 6, 000,
what will it be in 5 years? Round your
answer to the nearest integer.

24. Suppose that a certain radioactive
isotope has an annual decay rate of 15.8%.
What is the half-life (in years) of the iso-
tope? Round your answer to the nearest
hundredth.

25. Suppose that the population of a
certain town grows at an annual rate of
9%. If the population grows to 7, 000 in
5 years, what was the original popula-
tion? Round your answer to the nearest
integer.

26. Suppose that a certain radioactive
isotope has an annual decay rate of 18.6%.
If a particular sample decays to 41 grams
after 3 years, how big (in grams) was the
original sample? Round your answer to
the nearest hundredth.
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27. Suppose that a certain radioactive
isotope has an annual decay rate of 5.2%.
What is the half-life (in years) of the iso-
tope? Round your answer to the nearest
hundredth.

28. Suppose that a certain radioactive
isotope has an annual decay rate of 6.5%.
What is the half-life (in years) of the iso-
tope? Round your answer to the nearest
hundredth.

29. Suppose that the population of a
certain town grows at an annual rate of
8%. If the population is currently 2,000,
how many years will it take for it to reach
7,000? Round your answer to the nearest
hundredth.

30. Suppose that a certain radioactive
isotope has an annual decay rate of 3.7%.
If a particular sample decays to 47 grams
after 8 years, how big (in grams) was the
original sample? Round your answer to
the nearest hundredth.

31. Suppose that the population of a
certain town grows at an annual rate of
6%. If the population is currently 7, 000,
what will it be in 7 years? Round your
answer to the nearest integer.

32. Suppose that the population of a
certain town grows at an annual rate of
4%. If the population is currently 1, 000,
what will it be in 3 years? Round your
answer to the nearest integer.

In Exercises 33-40, use the fact that
the decay rate of carbon-14 is 0.012%.
Round your answer to the nearest year.

33. Suppose that only 8.6% of the nor-
mal amount of carbon-14 remains in a
fragment of bone. How old is the bone?

34. Suppose that only 5.2% of the nor-
mal amount of carbon-14 remains in a
fragment of bone. How old is the bone?

35. Suppose that 90.1% of the normal
amount of carbon-14 remains in a piece
of wood. How old is the wood?

36. Suppose that 83.6% of the normal
amount of carbon-14 remains in a piece
of cloth. How old is the cloth?

37. Suppose that only 6.2% of the nor-
mal amount of carbon-14 remains in a
fragment of bone. How old is the bone?

38. Suppose that only 1.3% of the nor-
mal amount of carbon-14 remains in a
fragment of bone. How old is the bone?

39. Suppose that 96.7% of the normal
amount of carbon-14 remains in a piece
of cloth. How old is the cloth?

40. Suppose that 84.9% of the normal
amount of carbon-14 remains in a piece
of wood. How old is the wood?
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8.7 Answers

1. 7610 people

3. 12.39 yrs

5. 8.66 yrs

7. 3.98 yrs

9. 90.11g

11. 23.10 yrs

13. 141.10g

15. 34.66 yrs

17. 3.67 yrs

19. 30.05g

21. 19.80g

23. 8, 951 people

25. 4, 463 people

27. 13.33 yrs

29. 15.66 yrs

31. 10, 654 people

33. 20445 years

35. 869 years

37. 23172 years

39. 280 years
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8.8 Additional Topics

Computing Large Powers
Logarithms were originally used to compute large products and powers. Prior to the
age of calculators and computers, mathematics students spent many hours learning and
practicing these procedures. In current times, most of these computations can be done
easily on a calculator, so the original use of logarithms is usually not taught anymore.

However, calculators are still limited. They cannot compute large powers such as
253789 (try it!), and most computer programs can’t either (all such tools have a limit
on the size of the computations they can perform).

So how can we compute large powers such as these? The idea is to use our knowledge
of the properties of logarithmic and exponential functions. Here is the procedure:

1. First, let y = 253789, and take the log of both sides:

log(y) = log(253789)

= 789 log(253) (property of logs)

≈ 1896.062091 (calculator approximation)

2. Now the idea is to exponentiate both sides, using the function 10x. However, your
calculator still cannot compute 101896.062091 (try it). So now we separate out the
integer part, and our final answer will be in scientific notation:

y = 10log(y) = 101896.062091 = 101896+0.062091 = 101896 · 100.062091

≈ 101896 · 1.153694972 (calculator approximation)

Thus, the final answer is approximately 1.153695 · 101896.
Here is one additional example:

I Example 1. Compute the value 2400, and express your answer in scientific nota-
tion.

1. Let y = 2400, and take the log of both sides:

log(y) = log(2400)

= 400 log(2) (property of logs)

≈ 120.4119983 (calculator approximation)

2. Exponentiate both sides, using the function 10x and separating out the integer part
of the exponent:

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/18
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y = 10log(y) = 10120.4119983 = 10120+4119983 = 10120 · 100.4119983

≈ 10120 · 2.582250083 (calculator approximation)

The final answer is approximately 2.582250 · 10120.
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8.8 Exercises

In Exercises 1-10, compute the value
of the expression. Express your answer
in scientific notation c · 10n.

1. 131808

2. 132759

3. 148524

4. 143697

5. 187642

6. 198693

7. 162803

8. 142569

9. 134550

10. 153827

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/19
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8.8 Answers

1. 5.691 · 101710

3. 1.649 · 101137

5. 3.329 · 101458

7. 1.740 · 101774

9. 8.084 · 101169
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9 Radical Functions
In this chapter, we will study radical functions — in other words, functions that involve
square, cubic, and other roots of algebraic expressions (for example,

√
x or 3√x+ 2).

There are a number of subtleties and tricks to these functions, and it is important to
learn how to manipulate them.

Radical functions are closely related to power functions (for example, x2 or (2−x)5).
In fact, the graph of

√
x is exactly what you would see if you reflected the graph of

x2 across the line y = x and erased everything below the x-axis! It turns out that
√
x

is so closely related to x2 that we say that those functions are inverses of each other;
whatever one does, the other undoes.

Radical functions have many interesting applications, are studied extensively in
many mathematics courses, and are used often in science and engineering. If you have
ever wanted to calculate the shortest distance between two places, or predict how long
a stairway is based upon the height it reaches, radical functions can help you with these
calculations.
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9.1 The Square Root Function
In this section we turn our attention to the square root function, the function defined
by the equation

f(x) =
√
x. (1)

We begin the section by drawing the graph of the function, then we address the domain
and range. After that, we’ll investigate a number of different transformations of the
function.

The Graph of the Square Root Function
Let’s create a table of points that satisfy the equation of the function, then plot the
points from the table on a Cartesian coordinate system on graph paper. We’ll continue
creating and plotting points until we are convinced of the eventual shape of the graph.

We know we cannot take the square root of a negative number. Therefore, we don’t
want to put any negative x-values in our table. To further simplify our computations,
let’s use numbers whose square root is easily calculated. This brings to mind perfect
squares such as 0, 1, 4, 9, and so on. We’ve placed these numbers as x-values in the
table in Figure 1(b), then calculated the square root of each. In Figure 1(a), you see
each of the points from the table plotted as a solid dot. If we continue to add points
to the table, plot them, the graph will eventually fill in and take the shape of the solid
curve shown in Figure 1(c).

x10

y
10

x f(x) =
√
x

0 0
1 1
4 2
9 3

x10

y
10

f

(a) (b) (c)
Figure 1. Creating the graph of f(x) =

√
x.

The point plotting approach used to draw the graph of f(x) =
√
x in Figure 1 is

a tested and familiar procedure. However, a more sophisticated approach involves the
theory of inverses developed in the previous chapter.

In a sense, taking the square root is the “inverse” of squaring. Well, not quite, as
the squaring function f(x) = x2 in Figure 2(a) fails the horizontal line test and is not
one-to-one. However, if we limit the domain of the squaring function, then the graph
of f(x) = x2 in Figure 2(b), where x ≥ 0, does pass the horizontal line test and is

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1
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one-to-one. Therefore, the graph of f(x) = x2, x ≥ 0, has an inverse, and the graph of
its inverse is found by reflecting the graph of f(x) = x2, x ≥ 0, across the line y = x
(see Figure 2(c)).

x10

y
10

f

x10

y
10

f

x10

y
10

f

f−1

y = x

(a) f(x) = x2. (b) f(x) = x2, x ≥ 0. (c) Reflecting the graph in (b)
across the line y = x produces

the graph of f−1(x) =
√
x.

Figure 2. Sketching the inverse of f(x) = x2, x ≥ 0.

To find the equation of the inverse, recall that the procedure requires that we switch
the roles of x and y, then solve the resulting equation for y. Thus, first write f(x) = x2,
x ≥ 0, in the form

y = x2, x ≥ 0.

Next, switch x and y.

x = y2, y ≥ 0 (2)

When we solve this last equation for y, we get two solutions,

y = ±
√
x. (3)

However, in equation (2), note that y must be greater than or equal to zero. Hence,
we must choose the nonnegative answer in equation (3), so the inverse of f(x) = x2,
x ≥ 0, has equation

f−1(x) =
√
x.

This is the equation of the reflection of the graph of f(x) = x2, x ≥ 0, that is pictured
in Figure 2(c). Note the exact agreement with the graph of the square root function
in Figure 1(c).

The sequence of graphs in Figure 2 also help us identify the domain and range of
the square root function.
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• In Figure 2(a), the parabola opens outward indefinitely, both left and right. Con-
sequently, the domain is Df = (−∞,∞), or all real numbers. Also, the graph has
vertex at the origin and opens upward indefinitely, so the range is Rf = [0,∞).

• In Figure 2(b), we restricted the domain. Thus, the graph of f(x) = x2, x ≥ 0,
now has domain Df = [0,∞). The range is unchanged and is Rf = [0,∞).

• In Figure 2(c), we’ve reflected the graph of f(x) = x2, x ≥ 0, across the line y = x
to obtain the graph of f−1(x) =

√
x. Because we’ve interchanged the role of x and

y, the domain of the square root function must equal the range of f(x) = x2, x ≥ 0.
That is, Df−1 = [0,∞). Similarly, the range of the square root function must equal
the domain of f(x) = x2, x ≥ 0. Hence, Rf−1 = [0,∞).

Of course, we can also determine the domain and range of the square root function
by projecting all points on the graph onto the x- and y-axes, as shown in Figures 3(a)
and (b), respectively.

x10

y
10

f

x10

y
10

f

(a) Domain = [0,∞) (b) Range = [0,∞)
Figure 3. Project onto the axes

to find the domain and range.

Some might object to the range, asking “How do we know that the graph of the square
root function picture in Figure 3(b) rises indefinitely?” Again, the answer lies in the
sequence of graphs in Figure 2. In Figure 2(c), note that the graph of f(x) = x2,
x ≥ 0, opens indefinitely to the right as the graph rises to infinity. Hence, after reflecting
this graph across the line y = x, the resulting graph must rise upward indefinitely as it
moves to the right. Thus, the range of the square root function is [0,∞).

Translations
If we shift the graph of y =

√
x right and left, or up and down, the domain and/or

range are affected.

I Example 4. Sketch the graph of f(x) =
√
x− 2. Use your graph to determine

the domain and range.

We know that the basic equation y =
√
x has the graph shown in Figure 1(c). If

we replace x with x − 2, the basic equation y =
√
x becomes y =

√
x− 2. From our

previous work with geometric transformations, we know that this will shift the graph
two units to the right, as shown in Figures 4(a) and (b).
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x10

y
10

f

x10

y
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(a) Domain = [2,∞) (b) Range = [0,∞)
Figure 4. To draw the graph of f(x) =

√
x− 2, shift the

graph of y =
√
x two units to the right.

To find the domain, we project each point on the graph of f onto the x-axis, as
shown in Figure 4(a). Note that all points to the right of or including 2 are shaded
on the x-axis. Consequently, the domain of f is

Domain = [2,∞) = {x : x ≥ 2}.

As there has been no shift in the vertical direction, the range remains the same.
To find the range, we project each point on the graph onto the y-axis, as shown in
Figure 4(b). Note that all points at and above zero are shaded on the y-axis. Thus,
the range of f is

Range = [0,∞) = {y : y ≥ 0}.

We can find the domain of this function algebraically by examining its defining
equation f(x) =

√
x− 2. We understand that we cannot take the square root of a

negative number. Therefore, the expression under the radical must be nonnegative
(positive or zero). That is,

x− 2 ≥ 0.

Solving this inequality for x,

x ≥ 2.

Thus, the domain of f is Domain = [2,∞), which matches the graphical solution above.

Let’s look at another example.

I Example 5. Sketch the graph of f(x) =
√
x+ 4+2. Use your graph to determine

the domain and range of f .

Again, we know that the basic equation y =
√
x has the graph shown in Figure 1(c).

If we replace x with x+ 4, the basic equation y =
√
x becomes y =

√
x+ 4. From our
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previous work with geometric transformations, we know that this will shift the graph
of y =

√
x four units to the left, as shown in Figure 5(a).

If we now add 2 to the equation y =
√
x+ 4 to produce the equation y =

√
x+ 4+2,

this will shift the graph of y =
√
x+ 4 two units upward, as shown in Figure 5(b).

x10

y
10

x10

y
10

(a) To draw the graph
of y =

√
x+ 4, shift

the graph of y =
√
x

four units to the left.

(b) To draw the graph
of y =

√
x+ 4 + 2, shift

the graph of y =
√
x+ 4

two units upward.
Figure 5. Translating the original equation y =

√
x to get the

graph of y =
√
x+ 4 + 2.

To identify the domain of f(x) =
√
x+ 4 + 2, we project all points on the graph

of f onto the x-axis, as shown in Figure 6(a). Note that all points to the right of or
including −4 are shaded on the x-axis. Thus, the domain of f(x) =

√
x+ 4 + 2 is

Domain = [−4,∞) = {x : x ≥ −4}.

x10

y
10

f

x10

y
10

f

(a) Shading the
domain of f .

(b) Shading
the range of f .

Figure 6. Project points of f onto the axes to determine the
domain and range.

Similarly, to find the range of f , project all points on the graph of f onto the y-axis,
as shown in Figure 6(b). Note that all points on the y-axis greater than or including
2 are shaded. Consequently, the range of f is
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Range = [2,∞) = {y : y ≥ 2}.

We can also find the domain of f algebraically by examining the equation f(x) =√
x+ 4 + 2. We cannot take the square root of a negative number, so the expression

under the radical must be nonnegative (zero or positive). Consequently,

x+ 4 ≥ 0.

Solving this inequality for x,

x ≥ −4.

Thus, the domain of f is Domain = [−4,∞), which matches the graphical solution
presented above.

Reflections
If we start with the basic equation y =

√
x, then replace x with −x, then the graph

of the resulting equation y =
√
−x is captured by reflecting the graph of y =

√
x

(see Figure 1(c)) horizontally across the y-axis. The graph of y =
√
−x is shown in

Figure 7(a).
Similarly, the graph of y = −

√
x would be a vertical reflection of the graph of

y =
√
x across the x-axis, as shown in Figure 7(b).

x10

y
10

x10

y
10

(a) To obtain the graph
of y =

√
−x, reflect

the graph of y =
√
x

across the y-axis.

(b) To obtain the graph
of y = −

√
x, reflect

the graph of y =
√
x

across the x-axis.
Figure 7. Reflecting the graph of
y =
√
x across the x- and y-axes.

More often than not, you will be asked to perform a reflection and a translation.

I Example 6. Sketch the graph of f(x) =
√

4− x. Use the resulting graph to
determine the domain and range of f .



Section 9.1 The Square Root Function 875

Version: Fall 2007

First, rewrite the equation f(x) =
√

4− x as follows:

f(x) =
√
−(x− 4).

Reflections First. It is usually more intuitive to perform reflections before trans-
lations.

With this thought in mind, we first sketch the graph of y =
√
−x, which is a

reflection of the graph of y =
√
x across the y-axis. This is shown in Figure 8(a).

Now, in y =
√
−x, replace x with x − 4 to obtain y =

√
−(x− 4). This shifts the

graph of y =
√
−x four units to the right, as pictured in Figure 8(b).

x10

y
10

x10

y
10

(a) The graph
of y =

√
−x.

(b) The graph of
y =
√
−(x− 4).

Figure 8. A reflection followed by a translation.

To find the domain of the function f(x) =
√
−(x− 4), or equivalently, f(x) =

√
4− x,

project each point on the graph of f onto the x-axis, as shown in Figure 9(a). Note
that all real numbers less than or equal to 4 are shaded on the x-axis. Hence, the
domain of f is

Domain = (−∞, 4] = {x : x ≤ 4}.

Similarly, to obtain the range of f , project each point on the graph of f onto the
y-axis, as shown in Figure 9(b). Note that all real numbers greater than or equal to
zero are shaded on the y-axis. Hence, the range of f is

Range = [0,∞) = {y : y ≥ 0}.

We can also find the domain of the function f by examining the equation f(x) =√
4− x. We cannot take the square root of a negative number, so the expression under

the radical must be nonnegative (zero or positive). Consequently,

4− x ≥ 0.
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x10

y
10

x10

y
10

(a) Project onto
the x-axis to

determine the domain.

(b) Project onto
the y-axis to

determine the range.
Figure 9. Determining the domain

and range of f(x) =
√

4− x.

Solve this last inequality for x. First subtract 4 from both sides of the inequality, then
multiply both sides of the resulting inequality by −1. Of course, multiplying by a
negative number reverses the inequality symbol.

−x ≥ −4
x ≤ 4

Thus, the domain of f is {x : x ≤ 4}. In interval notation, Domain = (−∞, 4]. This
agree nicely with the graphical result found above.

More often than not, it will take a combination of your graphing calculator and a
little algebraic manipulation to determine the domain of a square root function.

I Example 7. Sketch the graph of f(x) =
√

5− 2x. Use the graph and an algebraic
technique to determine the domain of the function.

Load the function into Y1 in the Y= menu of your calculator, as shown in Figure 10(a).
Select 6:ZStandard from the ZOOM menu to produce the graph shown in Figure 10(b).

(a) (b)
Figure 10. Drawing the graph of f(x) =

√
5− 2x on the

graphing calculator.



Section 9.1 The Square Root Function 877

Version: Fall 2007

Look carefully at the graph in Figure 10(b) and note that it’s difficult to tell if the
graph comes all the way down to “touch” the x-axis near x ≈ 2.5. However, our
previous experience with the square root function makes us believe that this is just an
artifact of insufficient resolution on the calculator that is preventing the graph from
“touching” the x-axis at x ≈ 2.5.

An algebraic approach will settle the issue. We can determine the domain of f by
examining the equation f(x) =

√
5− 2x. We cannot take the square root of a negative

number, so the expression under the radical must be nonnegative (zero or positive).
Consequently,

5− 2x ≥ 0.

Solve this last inequality for x. First, subtract 5 from both sides of the inequality.

−2x ≥ −5

Next, divide both sides of this last inequality by −2. Remember that we must reverse
the inequality the moment we divide by a negative number.

−2x
−2
≤ −5
−2

x ≤ 5
2

Thus, the domain of f is {x : x ≤ 5/2}. In interval notation, Domain = (−∞, 5/2].
Further introspection reveals that this argument also settles the issue of whether

or not the graph “touches” the x-axis at x = 5/2. If you remain unconvinced, then
substitute x = 5/2 in f(x) =

√
5− 2x to see

f(5/2) =
√

5− 2(5/2) =
√

0 = 0.

Thus, the graph of f “touches” the x-axis at the point (5/2, 0).
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9.1 Exercises

In Exercises 1-10, complete each of the
following tasks.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

ii. Complete the table of points for the
given function. Plot each of the points
on your coordinate system, then use
them to help draw the graph of the
given function.

iii. Use different colored pencils to project
all points onto the x- and y-axes to
determine the domain and range. Use
interval notation to describe the do-
main of the given function.

1. f(x) = −
√
x

x 0 1 4 9
f(x)

2. f(x) =
√
−x

x 0 −1 −4 −9
f(x)

3. f(x) =
√
x+ 2

x −2 −1 2 7
f(x)

4. f(x) =
√

5− x

x −4 1 4 5
f(x)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/2

5. f(x) =
√
x+ 2

x 0 1 4 9
f(x)

6. f(x) =
√
x− 1

x 0 1 4 9
f(x)

7. f(x) =
√
x+ 3 + 2

x −3 −2 1 6
f(x)

8. f(x) =
√
x− 1 + 3

x 1 2 5 10
f(x)

9. f(x) =
√

3− x

x −6 −1 2 3
f(x)

10. f(x) = −
√
x+ 3

x −3 −2 1 6
f(x)
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In Exercises 11-20, perform each of the
following tasks.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Remember to draw all lines with
a ruler.

ii. Use geometric transformations to draw
the graph of the given function on
your coordinate system without the
use of a graphing calculator. Note:
You may check your solution with
your calculator, but you should be
able to produce the graph without
the use of your calculator.

iii. Use different colored pencils to project
the points on the graph of the func-
tion onto the x- and y-axes. Use in-
terval notation to describe the domain
and range of the function.

11. f(x) =
√
x+ 3

12. f(x) =
√
x+ 3

13. f(x) =
√
x− 2

14. f(x) =
√
x− 2

15. f(x) =
√
x+ 5 + 1

16. f(x) =
√
x− 2− 1

17. f(x) = −
√
x+ 4

18. f(x) = −
√
x+ 4

19. f(x) = −
√
x+ 3

20. f(x) = −
√
x+ 3

21. To draw the graph of the function
f(x) =

√
3− x, perform each of the fol-

lowing steps in sequence without the aid
of a calculator.

i. Set up a coordinate system and sketch

the graph of y =
√
x. Label the graph

with its equation.
ii. Set up a second coordinate system

and sketch the graph of y =
√
−x.

Label the graph with its equation.
iii. Set up a third coordinate system and

sketch the graph of y =
√
−(x− 3).

Label the graph with its equation. This
is the graph of f(x) =

√
3− x. Use

interval notation to state the domain
and range of this function.

22. To draw the graph of the function
f(x) =

√
−x− 3, perform each of the

following steps in sequence.

i. Set up a coordinate system and sketch
the graph of y =

√
x. Label the graph

with its equation.
ii. Set up a second coordinate system

and sketch the graph of y =
√
−x.

Label the graph with its equation.
iii. Set up a third coordinate system and

sketch the graph of y =
√
−(x+ 3).

Label the graph with its equation. This
is the graph of f(x) =

√
−x− 3. Use

interval notation to state the domain
and range of this function.

23. To draw the graph of the function
f(x) =

√
−x− 1, perform each of the

following steps in sequence without the
aid of a calculator.

i. Set up a coordinate system and sketch
the graph of y =

√
x. Label the graph

with its equation.
ii. Set up a second coordinate system

and sketch the graph of y =
√
−x.

Label the graph with its equation.
iii. Set up a third coordinate system and

sketch the graph of y =
√
−(x+ 1).

Label the graph with its equation. This
is the graph of f(x) =

√
−x− 1. Use

interval notation to state the domain
and range of this function.
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24. To draw the graph of the function
f(x) =

√
1− x, perform each of the fol-

lowing steps in sequence.

i. Set up a coordinate system and sketch
the graph of y =

√
x. Label the graph

with its equation.
ii. Set up a second coordinate system

and sketch the graph of y =
√
−x.

Label the graph with its equation.
iii. Set up a third coordinate system and

sketch the graph of y =
√
−(x− 1).

Label the graph with its equation. This
is the graph of f(x) =

√
1− x. Use

interval notation to state the domain
and range of this function.

In Exercises 25-28, perform each of the
following tasks.

i. Draw the graph of the given func-
tion with your graphing calculator.
Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Label your
graph with its equation. Use the graph
to determine the domain of the func-
tion and describe the domain with in-
terval notation.

ii. Use a purely algebraic approach to
determine the domain of the given
function. Use interval notation to de-
scribe your result. Does it agree with
the graphical result from part (i)?

25. f(x) =
√

2x+ 7

26. f(x) =
√

7 − 2x

27. f(x) =
√

12− 4x

28. f(x) =
√

12 + 2x

In Exercises 29-40, find the domain of
the given function algebraically.

29. f(x) =
√

2x+ 9

30. f(x) =
√
−3x+ 3

31. f(x) =
√
−8x− 3

32. f(x) =
√
−3x+ 6

33. f(x) =
√
−6x− 8

34. f(x) =
√

8x− 6

35. f(x) =
√
−7x+ 2

36. f(x) =
√

8x− 3

37. f(x) =
√

6x+ 3

38. f(x) =
√
x− 5

39. f(x) =
√
−7x− 8

40. f(x) =
√

7x+ 8
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9.1 Answers

1. Domain = [0,∞), Range = (−∞, 0].

x 0 1 4 9
f(x) 0 −1 −2 −3

x
10

y
10

f(x)=−
√
x

3. Domain = [−2,∞), Range = [0,∞).

x −2 −1 2 7
f(x) 0 1 2 3

x
10

y
10

f(x)=
√
x+2

5. Domain = [0,∞), Range = [2,∞).

x 0 1 4 9
f(x) 2 3 4 5

x
10

y
10

f(x)=
√
x+2

7. Domain = [−3,∞), Range = [2,∞).

x −3 −2 1 6
f(x) 2 3 4 5

x
10

y
10

f(x)=
√
x+3+2
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9. Domain = (−∞, 3], Range = [0,∞).

x −6 −1 2 3
f(x) 3 2 1 0

x
10

y
10

f(x)=
√

3−x

11. Domain = [0,∞), Range = [3,∞).

x
10

y
10

f(x)=
√
x+3

13. Domain = [2,∞), Range = [0,∞).

x
10

y
10

f(x)=
√
x−2

15. Domain = [−5,∞), Range = [1,∞).

x
10

y
10

f(x)=
√
x+5+1

17. Domain = [−4,∞), Range = (−∞, 0].

x
10

y
10

f(x)=−
√
x+4

19. Domain = [0,∞), Range = (−∞, 3].

x
10

y
10

f(x)=−
√
x+3



884 Chapter 9 Radical Functions

Version: Fall 2007

21. Domain = (−∞, 3], Range = [0,∞).

x
10

y
10

f(x)=
√

3−x

23. Domain = (−∞,−1], Range = [0,∞).

x
10

y
10

f(x)=
√
−x−1

25. Domain = [−7/2,∞)

x
−10 10

y

−10

10

f(x)=
√

2x+7

−3.5

27. Domain = (−∞, 3]

x
−10 10

y

−10

10
f(x)=

√
12−4x

3

29.
[
−9

2 ,∞
)

31.
(
−∞,−3

8
]

33.
(
−∞,−4

3
]

35.
(
−∞, 2

7
]

37.
[
−1

2 ,∞
)

39.
(
−∞,−8

7
]
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9.2 Multiplication Properties of Radicals
Recall that the equation x2 = a, where a is a positive real number, has two solutions,
as indicated in Figure 1.

x

y
y=x2

y=a

−
√
a

√
a

Figure 1. The equation x2 = a,
where a is a positive real number, has
two solutions.

Here are the key facts.

Solutions of x2 = a. If a is a positive real number, then:

1. The equation x2 = a has two real solutions.
2. The notation

√
a denotes the unique positive real solution.

3. The notation −
√
a denotes the unique negative real solution.

Note the use of the word unique. When we say that
√
a is the unique positive real

solution,4 we mean that it is the only one. There are no other positive real numbers
that are solutions of x2 = a. A similar statement holds for the unique negative solution.

Thus, the equations x2 = a and x2 = b have unique positive solutions x =
√
a and

x =
√
b, respectively, provided that a and b are positive real numbers. Furthermore,

because they are solutions, they can be substituted into the equations x2 = a and
x2 = b to produce the results(√

a
)2 = a and

(√
b
)2

= b,

respectively. Again, these results are dependent upon the fact that a and b are positive
real numbers.

Similarly, the equation

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/3

Technically, the notation
√

calls for a nonnegative real square root, so as to include the possibility4
√

0.
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x2 = ab

has unique positive solution x =
√
ab, provided a and b are positive numbers. However,

note that (√
a
√
b
)2

=
(√
a
)2 (√

b
)2

= ab,

making
√
a
√
b a second positive solution of x2 = ab. However, because

√
ab is the

unique positive solution of x2 = ab, this forces
√
ab =

√
a
√
b.

This discussion leads to the following property of radicals.

Property 1. Let a and b be positive real numbers. Then,
√
ab =

√
a
√
b. (2)

This result can be used in two distinctly different ways.

• You can use the result to multiply two square roots, as in
√

7
√

5 =
√

35.

• You can also use the result to factor, as in
√

35 =
√

5
√

7.

It is interesting to check this result on the calculator, as shown in Figure 2.

Figure 2. Checking the result
√

5
√

7 =√
35.

Simple Radical Form
In this section we introduce the concept of simple radical form, but let’s first start with
a little story. Martha and David are studying together, working a homework problem
from their textbook. Martha arrives at an answer of

√
32, while David gets the result

2
√

8. At first, David and Martha believe that their solutions are different numbers,
but they’ve been mistaken before so they decide to compare decimal approximations
of their results on their calculators. Martha’s result is shown in Figure 3(a), while
David’s is shown in Figure 3(b).
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(a) Martha’s result. (b) David’s result.
Figure 3. Comparing

√
32 with 2

√
8.

Martha finds that
√

32 ≈ 5.656854249 and David finds that his solution 2
√

8 ≈
5.656854249. David and Martha conclude that their solutions match, but they want to
know why the two very different looking radical expressions are identical.

The following calculation, using Property 1, shows why David’s result is identical
to Martha’s.

√
32 =

√
4
√

8 = 2
√

8

Indeed, there is even a third possibility, one that is much different from the results
found by David and Martha. Consider the following calculation, which again uses
Property 1.

√
32 =

√
16
√

2 = 4
√

2

In Figure 4, note that the decimal approximation of 4
√

2 is identical to the decimal
approximations for

√
32 (Martha’s result in Figure 3(a)) and 2

√
8 (David’s result in

Figure 3(b)).

Figure 4. Approximating 4
√

2.

While all three of these radical expressions (
√

32, 2
√

8, and 4
√

2) are identical, it
is somewhat frustrating to have so many different forms, particularly when we want
to compare solutions. Therefore, we offer a set of guidelines for a special form of the
answer which we will call simple radical form.

The First Guideline for Simple Radical Form. When possible, factor out a
perfect square.

Thus,
√

32 is not in simple radical form, as it is possible to factor out a perfect
square, as in
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x x2

2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100
11 121
12 144
13 169
14 196
15 225
16 256
17 289
18 324
19 361
20 400
21 441
22 484
23 529
24 576
25 625

Table 1.
Squares.

√
32 =

√
16
√

2 = 4
√

2.

Similarly, David’s result (2
√

8) is not in simple radical form, because he too can factor
out a perfect square as follows.

2
√

8 = 2(
√

4
√

2) = 2(2
√

2) = (2 · 2)
√

2 = 4
√

2.

If both Martha and David follow the “first guideline for simple radical form,” their
answers will look identical (both equal 4

√
2). This is one of the primary advantages of

simple radical form: the ability to compare solutions.
In the examples that follow (and in the exercises), it is helpful if you know the

squares of the first 25 positive integers. We’ve listed them in the margin for you in
Table 1 for future reference.

Let’s place a few more radical expressions in simple radical form.

I Example 3. Place
√

50 in simple radical form.

In Table 1, 25 is a square. Because 50 = 25 · 2, we can use Property 1 to write
√

50 =
√

25
√

2 = 5
√

2.

I Example 4. Place
√

98 in simple radical form.

In Table 1, 49 is a square. Because 98 = 49 · 2, we can again use Property 1 and
write

√
98 =

√
49
√

2 = 7
√

2.

I Example 5. Place
√

288 in simple radical form.

Some students seem able to pluck the optimal “perfect square” out of thin air. If
you consult Table 1, you’ll note that 144 is a square. Because 288 = 144 · 2, we can
write

√
288 =

√
144
√

2 = 12
√

2.

However, what if you miss that higher perfect square, think 288 = 4 · 72, and write
√

288 =
√

4
√

72 = 2
√

72.

This approach is not incorrect, provided you realize that you’re not finished. You can
still factor a perfect square out of 72. Because 72 = 36 · 2, you can continue and write

2
√

72 = 2(
√

36
√

2) = 2(6
√

2) = (2 · 6)
√

2 = 12
√

2.

Note that we arrived at the same simple radical form, namely 12
√

2. It just took us a
little longer. As long as we realize that we must continue until we can no longer factor
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out a perfect square, we’ll arrive at the same simple radical form as the student who
seems to magically pull the higher square out of thin air.

Indeed, here is another approach that is equally valid.
√

288 =
√

4
√

72 = 2(
√

4
√

18) = 2(2
√

18) = (2 · 2)
√

18 = 4
√

18

We need to recognize that we are still not finished because we can extract another
perfect square as follows.

4
√

18 = 4(
√

9
√

2) = 4(3
√

2) = (4 · 3)
√

2 = 12
√

2

Once again, same result. However, note that it behooves us to extract the largest
square possible, as it minimizes the number of steps required to attain simple radical
form.

Checking Results with the Graphing Calculator. Once you’ve placed a rad-
ical expression in simple radical form, you can use your graphing calculator to check
your result. In this example, we found that

√
288 = 12

√
2. (6)

Enter the left- and right-hand sides of this result as shown in Figure 5. Note that each
side produces the same decimal approximation, verifying the result in equation (6).

Figure 5. Comparing
√

288 with its
simple radical form 12

√
2.

Helpful Hints
Recall that raising a power of a base to another power requires that we multiply expo-
nents.

Raising a Power of a Base to another Power.

(am)n = amn

In particular, when you square a power of a base, you must multiply the exponent
by 2. For example,

(25)2 = 210.
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Conversely, because taking a square root is the “inverse” of squaring,5 when taking
a square root we must divide the existing exponent by 2, as in

√
210 = 25.

Note that squaring 25 gives 210, so taking the square root of 210 must return you to
25. When you square, you double the exponent. Therefore, when you take the square
root, you must halve the exponent.

Similarly,

• (26)2 = 212 so
√

212 = 26.

• (27)2 = 214 so
√

214 = 27.

• (28)2 = 216 so
√

216 = 28.

This leads to the following result.

Taking the Square Root of an Even Power. When taking a square root of
xn, when x is a positive real number and n is an even natural number, divide the
exponent by two. In symbols,

√
xn = xn/2.

Note that this agrees with the definition of rational exponents presented in Chapter
8, as in

√
xn = (xn)1/2 = xn/2.

On another note, recall that raising a product to a power requires that we raise
each factor to that power.

Raising a Product to a Power.

(ab)n = anbn.

In particular, if you square a product, you must square each factor. For example,

(5374)2 = (53)2(74)2 = 5678.

Note that we multiplied each existing exponent in this product by 2.

Well, not always. Consider (−2)2 = 4, but
√

4 = 2 does not return to −2. However, when you start5

with a postive number and square, then taking the positive square root is the inverse operation and
returns you to the original positive number. Return to Chapter 8 (the section on inverse functions) if
you want to reread a full discussion of this trickiness.
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Property 1 is similar, in that when we take the square root of a product, we take
the square root of each factor. Because taking a square root is the inverse of squaring,
we must divide each existing exponent by 2, as in

√
5678 =

√
56
√

78 = 5374.

Let’s look at some examples that employ this technique.

I Example 7. Simplify
√

2436510.

When taking the square root of a product of exponential factors, divide each expo-
nent by 2.

√
2436510 = 223355

If needed, you can expand the exponential factors and multiply to provide a single
numerical answer.

223355 = 4 · 27 · 3125 = 337 500

A calculator was used to obtain the final solution.

I Example 8. Simplify
√

2533.

In this example, the difficulty is the fact that the exponents are not divisible by 2.
However, if possible, the “first guideline of simple radical form” requires that we factor
out a perfect square. So, extract each factor raised to the highest possible power that
is divisible by 2, as in

√
2533 =

√
24 32
√

2 · 3

Now, divide each exponent by 2.
√

24 32
√

2 · 3 = 2231√2 · 3

Finally, simplify by expanding each exponential factor and multiplying.

2231√2 · 3 = 4 · 3
√

2 · 3 = 12
√

6

I Example 9. Simplify
√

375275.

Extract each factor to the highest possible power that is divisible by 2.
√

375275 =
√

365274
√

3 · 7

Divide each exponent by 2.
√

365274
√

3 · 7 = 335172√3 · 7
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Expand each exponential factor and multiply.

335172√3 · 7 = 27 · 5 · 49
√

3 · 7 = 6 615
√

21

I Example 10. Place
√

216 in simple radical form.

If we prime factor 216, we can attack this problem with the same technique used
in the previous examples. Before we prime factor 216, here are a few divisibility tests
that you might find useful.

Divisibility Tests.

• If a number ends in 0, 2, 4, 6, or 8, it is an even number and is divisible by 2.
• If the last two digits of a number form a number that is divisible by 4, then

the entire number is divisible by 4.
• If a number ends in 0 or 5, it is divisible by 5.
• If the sum of the digits of a number is divisible by 3, then the entire number

is divisible by 3.
• If the sum of the digits of a number is divisible by 9, then the entire number

is divisible by 9.

For example, in order:

• The number 226 ends in a 6, so it is even and divisible by 2. Indeed, 226 = 2 · 113.
• The last two digits of 224 are 24, which is divisible by 4, so the entire number is

divisible by 4. Indeed, 224 = 4 · 56.
• The last digit of 225 is a 5. Therefore 225 is divisible by 5. Indeed, 225 = 5 · 45.
• The sum of the digits of 222 is 2 + 2 + 2 = 6, which is divisible by 3. Therefore, 222

is divisible by 3. Indeed, 222 = 3 · 74.
• The sum of the digits of 684 is 6 + 8 + 4 = 18, which is divisible by 9. Therefore,

684 is divisible by 9. Indeed, 684 = 9 · 76.

Now, let’s prime factor 216. Note that 2+1+6 = 9, so 216 is divisible by 9. Indeed,
216 = 9 · 24. In Figure 6, we use a “factor tree” to continue factoring until all of the
“leaves” are prime numbers.

216
9 24

3 3 4 6
2 2 2 3

Figure 6. Using a factor tree to prime
factor 216.

Thus,
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216 = 2 · 2 · 2 · 3 · 3 · 3,

or in exponential form,

216 = 23 · 33.

Thus,
√

216 =
√

23 33 =
√

22 32
√

2 · 3 = 2 · 3
√

2 · 3 = 6
√

6.

Prime factorization is an unbelievably useful tool!
Let’s look at another example.

I Example 11. Place
√

2592 in simple radical form.

If we find the prime factorization for 2592, we can attack this example using the
same technique we used in the previous example. We note that the sum of the digits
of 2592 is 2 + 5 + 9 + 2 = 18, which is divisible by 9. Therefore, 2592 is also divisible
by 9.

2592 = 9 · 288

The sum of the digits of 288 is 2 + 8 + 8 = 18, which is divisible by 9, so 288 is also
divisible by 9.

2592 = 9 · (9 · 32)

Continue in this manner until the leaves of your “factor tree” are all primes. Then, you
should get

2592 = 25 34.

Thus,
√

2592 =
√

2534 =
√

2434
√

2 = 2232√2 = 4 · 9
√

2 = 36
√

2.

Let’s use the graphing calculator to check this result. Enter each side of
√

2592 =
36
√

2 separately and compare approximations, as shown in Figure 7.

Figure 7. Comparing
√

2592 with its
simple radical form 36

√
2.
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An Important Property of Square Roots
One of the most common mistakes in algebra occurs when practitioners are asked to
simplify the expression

√
x2, where x is any arbitrary real number. Let’s examine two

of the most common errors.

• Some will claim that the following statement is true for any arbitrary real number
x.

√
x2 = ±x.

This is easily seen to be incorrect. Simply substitute any real number for x to check
this claim. We will choose x = 3 and substitute it into each side of the proposed
statement.

√
32 = ±3

If we simplify the left-hand side, we produce the following result.
√

32 = ±3
3 = ±3

It is not correct to state that 3 and ±3 are equal.
• A second error is to claim that

√
x2 = x

for any arbitrary real number x. Although this is certainly true if you substitute
nonnegative numbers for x, look what happens when you substitute −3 for x.√

(−3)2 = −3

If we simplify the left-hand side, we produce the following result.
√

9 = −3
3 = −3

Clearly, 3 and −3 are not equal.

In both cases, what has been forgotten is the fact that
√

calls for a positive (non-
negative if you want to include the case

√
0) square root. In both of the errors above,

namely
√
x2 = ±x and

√
x2 = x, the left-hand side is calling for a nonnegative response,

but nothing has been done to insure that the right-hand side is also nonnegative. Does
anything come to mind?

Sure, if we wrap the right-hand side in absolute values, as in
√
x2 = |x|,
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then both sides are calling for a nonnegative response. Indeed, note that√
(−3)2 = | − 3|,

√
02 = |0|, and

√
32 = |3|

are all valid statements.
This discussion leads to the following result.

The Positive Square Root of the Square of x. If x is any real number, then
√
x2 = |x|.

The next task is to use this new property to produce a extremely useful property
of absolute value.

A Multiplication Property of Absolute Value
If we combine the law of exponents for squaring a product with our property for taking
the square root of a product, we can write√

(ab)2 =
√
a2b2 =

√
a2
√
b2.

However,
√

(ab)2 = |ab|, while
√
a2
√
b2 = |a||b|. This discussion leads to the following

result.

Product Rule for Absolute Value. If a and b are any real numbers,

|ab| = |a||b|. (12)

In words, the absolute value of a product is equal to the product of the absolute
values.

We saw this property previously in the chapter on the absolute value function, where
we provided a different approach to the proof of the property. It’s interesting that we
can prove this property in a completely new way using the properties of square root.
We’ll see we have need for the Product Rule for Absolute Value in the examples that
follow.

For example, using the product rule, if x is any real number, we could write

|3x| = |3||x| = 3|x|

However, there is no way we can remove the absolute value bars that surround x unless
we know the sign of x. If x ≥ 0, then |x| = x and the expression becomes

3|x| = 3x.

On the other hand, if x < 0, then |x| = −x and the expression becomes

3|x| = 3(−x) = −3x.
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Let’s look at another example. Using the product rule, if x is any real number, the
expression | − 4x3| can be manipulated as follows.

| − 4x3| = | − 4||x2||x|

However, | − 4| = 4 and since x2 ≥ 0 for any value of x, |x2| = x2. Thus,

| − 4||x2||x| = 4x2|x|.

Again, there is no way we can remove the absolute value bars around x unless we know
the sign of x. If x ≥ 0, then |x| = x and

4x2|x| = 4x2(x) = 4x3.

On the other hand, if x < 0, then |x| = −x and

4x2|x| = 4x2(−x) = −4x3.

Let’s use these ideas to simplify some radical expressions that contain variables.

Variable Expressions

I Example 13. Given that the x represents any real numbers, place the radical
expression

√
48x6

in simple radical form.

Simple radical form demands that we factor out a perfect square, if possible. In
this case, 48 = 16 · 3 and we factor out the highest power of x that is divisible by 2.

√
48x6 =

√
16x6
√

3

We can now use Property 1 to take the square root of each factor.
√

16x6
√

3 =
√

16
√
x6
√

3

Now, remember that the notation
√

calls for a nonnegative square root, so we must
insure that each response in the equation above is nonnegative. Thus,

√
16
√
x6
√

3 = 4|x3|
√

3.

Some comments are in order.

• The nonnegative square root of 16 is 4. That is,
√

16 = 4.
• The nonnegative square root of x6 is trickier. It is incorrect to say

√
x6 = x3,

because x3 could be negative (if x is negative). To insure a nonnegative square
root, in this case we need to wrap our answer in absolute value bars. That is,√
x6 = |x3|.
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We can use the Product Rule for Absolute Value to write |x3| = |x2||x|. Because x2 is
nonnegative, absolute value bars are redundant and not needed. That is, |x2||x| = x2|x|.
Thus, we can simplify our solution a bit further and write

4|x3|
√

3 = 4x2|x|
√

3.

Thus,
√

48x6 = 4x2|x|
√

3. (14)

Alternate Solution. There is a variety of ways that we can place a radical expression
in simple radical form. Here is another approach. Starting at the step above, where we
first factored out a perfect square,

√
48x6 =

√
16x6
√

3,

we could write
√

16x6
√

3 =
√

(4x3)2
√

3.

Now, remember that the nonnegative square root of the square of an expression is the
absolute value of that expression (we have to guarantee a nonnegative answer), so√

(4x3)2
√

3 = |4x3|
√

3.

However, |4x3| = |4||x3| by our product rule and |4||x3| = 4|x3|. Thus,

|4x3|
√

3 = 4|x3|
√

3.

Finally, |x3| = |x2||x| = x2|x| because x2 ≥ 0, so we can write

4|x3|
√

3 = 4x2|x|
√

3. (15)

We cannot remove the absolute value bar that surrounds x unless we know the sign of
x.

Note that the simple radical form (15) in the alternate solution is identical to the
simple radical form (14) found with the previous solution technique.

Let’s look at another example.

I Example 16. Given that x < 0, place
√

24x6 in simple radical form.

First, factor out a perfect square and write
√

24x6 =
√

4x6
√

6.

Now, use Property 1 and take the square root of each factor.
√

4x6
√

6 =
√

4
√
x6
√

6

To insure a nonnegative response to
√
x6, wrap your response in absolute values.



898 Chapter 9 Radical Functions

Version: Fall 2007

√
4
√
x6
√

6 = 2|x3|
√

6

However, as in the previous problem, |x3| = |x2||x| = x2|x|, since x2 ≥ 0. Thus,

2|x3|
√

6 = 2x2|x|
√

6.

In this example, we were given the extra fact that x < 0, so |x| = −x and we can
write

2x2|x|
√

6 = 2x2(−x)
√

6 = −2x3√6.

It is instructive to test the validity of the answer
√

24x6 = −2x3√6, x < 0,

using a calculator. So, set x = −1 with the command -1 STOIX. That is, enter −1,
then push the STOI button, followed by X, then press the ENTER key. The result is shown
in Figure 8(a). Next, enter

√
(24*Xˆ6) and press ENTER to capture the second result

shown in Figure 8(a). Finally, enter -2*Xˆ3
√

(6) and press ENTER. Note that the
two expressions

√
24x6 and −2x3√6 agree at x = −1, as seen in Figure 8(a). We’ve

also checked the validity of the result at x = −2 in Figure 8(b). However, note that
our result is not valid at x = 2 in Figure 8(c). This occurs because

√
24x6 = −2x3√6

only if x is negative.

(a) Check with x = −1. (b) Check with x = −2. (c) Check with x = 2.

Figure 8. Spot-checking the validity of
√

24x6 = −2x3√6.

It is somewhat counterintuitive that the result
√

24x6 = −2x3√6, x < 0,

contains a negative sign. After all, the expression
√

24x6 calls for a nonnegative result,
but we have a negative sign. However, on closer inspection, if x < 0, then x is a
negative number and the right-hand side −2x3√6 is a positive number (−2 is negative,
x3 is negative because x is negative, and the product of two negatives is a positive).

Let’s look at another example.

I Example 17. If x < 3, simplify
√
x2 − 6x+ 9.

The expression under the radical is a perfect square trinomial and factors.
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√
x2 − 6x+ 9 =

√
(x− 3)2

However, the nonnegative square root of the square of an expression is the absolute
value of that expression, so √

(x− 3)2 = |x− 3|.

Finally, because we are told that x < 3, this makes x− 3 a negative number, so

|x− 3| = −(x− 3). (18)

Again, the result
√
x2 − 6x+ 9 = −(x− 3), provided x < 3, is somewhat counterintu-

itive as we are expecting a positive result. However, if x < 3, the result −(x − 3) is
positive. You can test this by substituting several values of x that are less than 3 into
the expression −(x − 3) and noting that the result is positive. For example, if x = 2,
then x is less than 3 and

−(x− 3) = −(2− 3) = −(−1) = 1,

which, of course, is a positive result.
It is even more informative to note that our result is equivalent to√

x2 − 6x+ 9 = −x+ 3, x < 3.

This is easily seen by distributing the minus sign in the result (18).
We’ve drawn the graph of y =

√
x2 − 6x+ 9 on our calculator in Figure 9(a). In

Figure 9(b), we’ve drawn the graph of y = −x+ 3. Note that the graphs agree when
x < 3. Indeed, when you consider the left-hand branch of the “V” in Figure 9(a), you
can see that the slope of this branch is −1 and the y-intercept is 3. The equation of
this branch is y = −x + 3, so it agrees with the graph of y = −x + 3 in Figure 9(b)
when x is less than 3.

(a) The graph of
y =
√
x2 − 6x+ 9.

(b) The graph
of y = −x + 3.

Figure 9. Verifying graphically that
√
x2 − 6x+ 9 = −x + 3

when x < 3.
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9.2 Exercises

1. Use a calculator to first approxi-
mate

√
5
√

2. On the same screen, ap-
proximate

√
10. Report the results on

your homework paper.

2. Use a calculator to first approximate√
7
√

10. On the same screen, approxi-
mate

√
70. Report the results on your

homework paper.

3. Use a calculator to first approximate√
3
√

11. On the same screen, approxi-
mate

√
33. Report the results on your

homework paper.

4. Use a calculator to first approximate√
5
√

13. On the same screen, approxi-
mate

√
65. Report the results on your

homework paper.

In Exercises 5-20, place each of the rad-
ical expressions in simple radical form.
As in Example 3 in the narrative, check
your result with your calculator.

5.
√

18

6.
√

80

7.
√

112

8.
√

72

9.
√

108

10.
√

54

11.
√

50

12.
√

48

13.
√

245

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/6

14.
√

150

15.
√

98

16.
√

252

17.
√

45

18.
√

294

19.
√

24

20.
√

32

In Exercises 21-26, use prime factor-
ization (as in Examples 10 and 11 in the
narrative) to assist you in placing the
given radical expression in simple radi-
cal form. Check your result with your
calculator.

21.
√

2016

22.
√

2700

23.
√

14175

24.
√

44000

25.
√

20250

26.
√

3564

In Exercises 27-46, place each of the
given radical expressions in simple rad-
ical form. Make no assumptions about
the sign of the variables. Variables can
either represent positive or negative num-
bers.

27.
√

(6x− 11)4
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28.
√

16h8

29.
√

25f2

30.
√

25j8

31.
√

16m2

32.
√

25a2

33.
√

(7x+ 5)12

34.
√

9w10

35.
√

25x2 − 50x+ 25

36.
√

49x2 − 42x+ 9

37.
√

25x2 + 90x+ 81

38.
√

25f14

39.
√

(3x+ 6)12

40.
√

(9x− 8)12

41.
√

36x2 + 36x+ 9

42.
√

4e2

43.
√

4p10

44.
√

25x12

45.
√

25q6

46.
√

16h12

47. Given that x < 0, place the radical
expression

√
32x6 in simple radical form.

Check your solution on your calculator
for x = −2.

48. Given that x < 0, place the radical
expression

√
54x8 in simple radical form.

Check your solution on your calculator

for x = −2.

49. Given that x < 0, place the radi-
cal expression

√
27x12 in simple radical

form. Check your solution on your cal-
culator for x = −2.

50. Given that x < 0, place the radi-
cal expression

√
44x10 in simple radical

form. Check your solution on your cal-
culator for x = −2.

In Exercises 51-54, follow the lead of
Example 17 in the narrative to simplify
the given radical expression and check
your result with your graphing calcula-
tor.

51. Given that x < 4, place the rad-
ical expression

√
x2 − 8x+ 16 in simple

radical form. Use a graphing calculator
to show that the graphs of the original
expression and your simple radical form
agree for all values of x such that x < 4.

52. Given that x ≥ −2, place the rad-
ical expression

√
x2 + 4x+ 4 in simple

radical form. Use a graphing calculator
to show that the graphs of the original
expression and your simple radical form
agree for all values of x such that x ≥ −2.

53. Given that x ≥ 5, place the radi-
cal expression

√
x2 − 10x+ 25 in simple

radical form. Use a graphing calculator
to show that the graphs of the original
expression and your simple radical form
agree for all values of x such that x ≥ 5.

54. Given that x < −1, place the rad-
ical expression

√
x2 + 2x+ 1 in simple

radical form. Use a graphing calculator
to show that the graphs of the original
expression and your simple radical form
agree for all values of x such that x < −1.
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In Exercises 55-72, place each radical
expression in simple radical form. As-
sume that all variables represent positive
numbers.

55.
√

9d13

56.
√

4k2

57.
√

25x2 + 40x+ 16

58.
√

9x2 − 30x+ 25

59.
√

4j11

60.
√

16j6

61.
√

25m2

62.
√

9e9

63.
√

4c5

64.
√

25z2

65.
√

25h10

66.
√

25b2

67.
√

9s7

68.
√

9e7

69.
√

4p8

70.
√

9d15

71.
√

9q10

72.
√

4w7

In Exercises 73-80, place each given rad-
ical expression in simple radical form. As-
sume that all variables represent positive
numbers.

73.
√

2f5
√

8f3

74.
√

3s3
√

243s3

75.
√

2k7
√

32k3

76.
√

2n9
√

8n3

77.
√

2e9
√

8e3

78.
√

5n9
√

125n3

79.
√

3z5
√

27z3

80.
√

3t7
√

27t3
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9.2 Answers

1.

3.

5. 3
√

2

7. 4
√

7

9. 6
√

3

11. 5
√

2

13. 7
√

5

15. 7
√

2

17. 3
√

5

19. 2
√

6

21. 12
√

14

23. 45
√

7

25. 45
√

10

27. (6x− 11)2

29. 5|f |

31. 4|m|

33. (7x+ 5)6

35. |5x− 5|

37. |5x+ 9|

39. (3x+ 6)6

41. |6x+ 3|

43. 2p4|p|

45. 5q2|q|

47. −4x3√2

49. 3x6√3
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51. −x + 4. The graphs of y = −x +
4 and y =

√
x2 − 8x+ 16 follow. Note

that they agree for x < 4.

53. x− 5. The graphs of y = x− 5 and
y =

√
x2 − 10x+ 25 follow. Note that

they agree for x ≥ 5.

55. 3d6
√
d

57. 5x+ 4

59. 2j5
√
j

61. 5m

63. 2c2
√
c

65. 5h5

67. 3s3
√
s

69. 2p4

71. 3q5

73. 4f4

75. 8k5

77. 4e6

79. 9z4
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9.3 Division Properties of Radicals
Each of the equations x2 = a and x2 = b has a unique positive solution, x =

√
a and

x =
√
b, respectively, provided a and b are positive real numbers. Further, because

they are solutions, they can be substituted into the equations x2 = a and x2 = b to
produce the results

(
√
a)2 = a and (

√
b)2 = b,

respectively. These results are dependent upon the fact that a and b are positive real
numbers.

Similarly, the equation

x2 = a
b

has the unique positive solution

x =
√
a

b
,

provided a and b are positive real numbers. However, note that(√
a√
b

)2
= (
√
a)2

(
√
b)2

= a
b
,

making
√
a/
√
b a second positive solution of x2 = a/b. However, because

√
a/b is the

unique positive solution of x2 = a/b, this forces√
a

b
=
√
a√
b
.

This discussion leads us to the following property of radicals.

Property 1. Let a and b be positive real numbers. Then,√
a

b
=
√
a√
b
.

This result can be used in two distinctly different ways.

• You can use the result to divide two square roots, as in
√

13√
7

=
√

13
7
.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/7
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• You can also use the result to take the square root of a fraction. Simply take the
square root of both numerator and denominator, as in√

13
7

=
√

13√
7
.

It is interesting to check these results on a calculator, as shown in Figure 1.

Figure 1. Checking
that
√

13/7 =
√

13/
√

7.

Simple Radical Form Continued
David and Martha are again working on a homework problem. Martha obtains the
solution

√
1/12, but David’s solution 1/(2

√
3) is seemingly different. Having learned

their lesson in an earlier assignment, they use their calculators to find decimal ap-
proximations of their solutions. Martha’s approximation is shown in Figure 2(a) and
David’s approximation is shown in Figure 2(b).

(a) Approximating
Martha’s

√
1/12.

(b) Approximating
David’s 1/(2

√
3).

Figure 2. Comparing Martha’s√
1/12 with David’s 1/(2

√
3).

Martha finds that
√

1/12 ≈ 0.2886751346 and David finds that 1/(2
√

3) ≈ 0.2886751346.
They conclude that their answers match, but they want to know why such different
looking answers are identical.

The following calculation shows why Martha’s result is identical to David’s. First,
use the division property of radicals (Property 1) to take the square root of both
numerator and denominator. √

1
12

=
√

1√
12

= 1√
12
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Next, use the “first guideline for simple radical form” and factor a perfect square from
the denominator.

1√
12

= 1√
4
√

3
= 1

2
√

3

This clearly demonstrates that David and Martha’s solutions are identical.
Indeed, there are other possible forms for the solution of David and Martha’s home-

work exercise. Start with Martha’s solution, then multiply both numerator and de-
nominator of the fraction under the radical by 3.√

1
12

=
√

1
12
· 3

3
=
√

3
36

Now, use the division property of radicals (Property 1), taking the square root of
both numerator and denominator.√

3
36

=
√

3√
36

=
√

3
6

Note that the approximation of
√

3/6 in Figure 3 is identical to Martha’s and David’s
approximations in Figures 2(a) and (b).

Figure 3. Finding an approximation
of
√

3/6.

While all three of the solution forms (
√

1/12, 1/(2
√

3), and
√

3/6) are identical,
it is very frustrating to have so many forms, particularly when we want to compare
solutions. So, we are led to establish two more guidelines for simple radical form.

The Second Guideline for Simple Radical Form. Don’t leave fractions under
a radical.

Thus, Martha’s
√

1/12 is not in simple radical form, because it contains a fraction
under the radical.

The Third Guideline for Simple Radical Form. Don’t leave radicals in the
denominator of a fraction.
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x x2

2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100
11 121
12 144
13 169
14 196
15 225
16 256
17 289
18 324
19 361
20 400
21 441
22 484
23 529
24 576
25 625

Table 1.
Squares.

Thus, David’s 1/(2
√

3) is not in simple radical form, because the denominator of
his fraction contains a radical.

Only the equivalent form
√

3/6 obeys all three rules of simple radical form.

1. It is not possible to factor a perfect square from any radical in the expression
√

3/6.
2. There are no fractions under a radical in the expression

√
3/6.

3. The denominator in the expression
√

3/6 contains no radicals.

In this text and in this course, we will always follow the three guidelines for simple
radical form.8

Simple Radical Form. When your answer is a radical expression:

1. If possible, factor out a perfect square.
2. Don’t leave fractions under a radical.
3. Don’t leave radicals in the denominator of a fraction.

In the examples that follow (and in the exercises), it is helpful if you know the
squares of the first 25 positive integers. We’ve listed them in the margin for you in
Table 1 for future reference.

Let’s place a few radical expressions in simple radical form. We’ll start with some
radical expressions that contain fractions under a radical.

I Example 2. Place the expression
√

1/8 in simple radical form.

The expression
√

1/8 contains a fraction under a radical. We could take the square
root of both numerator and denominator, but that would produce

√
1/
√

8, which puts
a radical in the denominator.

The better strategy is to change the form of 1/8 so that we have a perfect square
in the denominator before taking the square root of the numerator and denominator.
We note that if we multiply 8 by 2, the result is 16, a perfect square. This is hopeful,
so we begin the simplification by multiplying both numerator and denominator of 1/8
by 2. √

1
8

=
√

1
8
· 2

2
=
√

2
16

We now take the square root of both numerator and denominator. Because the denom-
inator is now a perfect square, the result will not have a radical in the denominator.√

2
16

=
√

2√
16

=
√

2
4

In some courses, such as trigonometry and calculus, your instructor may relax these guidelines a bit.8

In some cases, it is easier to work with 1/
√

2, for example, than it is to work with
√

2/2, even though
they are equivalent.
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This last result,
√

2/4 is in simple radical form. It is not possible to factor a perfect
square from any radical, there are no fractions under any radical, and the denominator
is free of radicals.

You can easily check your solution by using your calculator to compare the original
expression with your simple radical form. In Figure 4(a), we’ve approximated the
original expression,

√
1/8. In Figure 4(b), we’ve approximated our simple radical

form,
√

2/4. Note that they yield identical decimal approximations.

(a) Approximating
√

1/8. (b) Approximating
√

2/4.

Figure 4. Comparing
√

1/8 and
√

2/4.

Let’s look at another example.

I Example 3. Place
√

3/20 in simple radical form.

Following the lead from Example 2, we note that 5 · 20 = 100, a perfect square.
So, we multiply both numerator and denominator by 5, then take the square root of
both numerator and denominator once we have a perfect square in the denominator.√

3
20

=
√

3
20
· 5

5
=
√

15
100

=
√

15√
100

=
√

15
10

Note that the decimal approximation of the simple radical form
√

15/10 in Figure 5(b)
matches the decimal approximation of the original expression

√
3/20 in Figure 5(a).

(a) Approximating√
3/20.

(b) Approximating√
15/10.

Figure 5. Comparing the original
√

3/20 with the simple rad-
ical form

√
15/10.
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We will now show how to deal with an expression having a radical in its denominator,
but first we pause to explain a new piece of terminology.

Rationalizing the Denominator. The process of eliminating radicals from the
denominator is called rationalizing the denominator because it results in a
fraction where the denominator is free of radicals and is a rational number.

I Example 4. Place the expression 5/
√

18 in simple radical form.

In the previous examples, making the denominator a perfect square seemed a good
tactic. We apply the same tactic in this example, noting that 2 · 18 = 36 is a per-
fect square. However, the strategy is slightly different, as we begin the solution by
multiplying both numerator and denominator by

√
2.

5√
18

= 5√
18
·
√

2√
2

We now multiply numerators and denominators. In the denominator, the multiplication
property of radicals is used,

√
18
√

2 =
√

36.

5√
18
·
√

2√
2

= 5
√

2√
36

The strategy should now be clear. Because the denominator is a perfect square,
√

36 =
6, clearing all radicals from the denominator of our result.

5
√

2√
36

= 5
√

2
6

The last result is in simple radical form. It is not possible to extract a perfect square
root from any radical, there are no fractions under any radical, and the denominator
is free of radicals.

In Figure 6, we compare the approximation for our original expression 5/
√

18 with
our simple radical form 5

√
2/6.

Figure 6. Comparing
5/
√

18 with 5
√

2/6.

Let’s look at another example.
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I Example 5. Place the expression 18/
√

27 in simple radical form.

Note that 3 · 27 = 81 is a perfect square. We begin by multiplying both numerator
and denominator of our expression by

√
3.

18√
27

= 18√
27
·
√

3√
3

Multiply numerators and denominators. In the denominator,
√

27
√

3 =
√

81.

18√
27
·
√

3√
3

= 18
√

3√
81

Of course,
√

81 = 9, so

18
√

3√
81

= 18
√

3
9

We can now reduce to lowest terms, dividing numerator and denominator by 9.

18
√

3
9

= 2
√

3

In Figure 7, we compare approximations of the original expression 18/
√

27 and its
simple radical form 2

√
3.

Figure 7. Comparing 18/
√

27 with
its simple radical form 2

√
3.

Helpful Hints
In the previous section, we learned that if you square a product of exponential expres-
sions, you multiply each of the exponents by 2.

(233455)2 = 2638510

Because taking the square root is the “inverse” of squaring,9 we divide each of the
exponents by 2.

As we have pointed out in previous sections, taking the positive square root is the inverse of squaring,9

only if we restrict the domain of the squaring function to nonnegative real numbers, which we do here.
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√
2638510 = 233455

We also learned that prime factorization is an extremely powerful tool that is quite
useful when placing radical expressions in simple radical form. We’ll see that this is
even more true in this section.

Let’s look at an example.

I Example 6. Place the expression
√

1/98 in simple radical form.

Sometimes it is not easy to figure out how to scale the denominator to get a perfect
square, even when provided with a table of perfect squares. This is when prime factor-
ization can come to the rescue and provide a hint. So, first express the denominator as
a product of primes in exponential form: 98 = 2 · 49 = 2 · 72.√

1
98

=
√

1
2 · 72

We can now easily see what is preventing the denominator from being a perfect square.
The problem is the fact that not all of the exponents in the denominator are divisible
by 2. We can remedy this by multiplying both numerator and denominator by 2.√

1
2 · 72 =

√
1

2 · 72 ·
2
2

=
√

2
2272

Note that each prime in the denominator now has an exponent that is divisible by 2.
We can now take the square root of both numerator and denominator.√

2
2272 =

√
2√

2272

Take the square root of the denominator by dividing each exponent by 2.
√

2√
2272

=
√

2
21 · 71

Then, of course, 2 · 7 = 14.
√

2
2 · 7

=
√

2
14

In Figure 8, note how the decimal approximations of the original expression
√

1/98
and its simple radical form

√
2/14 match, strong evidence that we’ve found the correct

simple radical form. That is, we cannot take a perfect square out of any radical, there
are no fractions under any radical, and the denominators are clear of all radicals.

Let’s look at another example.

I Example 7. Place the expression 12/
√

54 in simple radical form.

Prime factor the denominator: 54 = 2 · 27 = 2 · 33.
12√
54

= 12√
2 · 33
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Figure 8. Comparing the original√
1/98 with its simple radical form√
2/14.

Neither prime in the denominator has an exponent divisible by 2. If we had another
2 and one more 3, then the exponents would be divisible by 2. This encourages us to
multiply both numerator and denominator by

√
2 · 3.

12√
2 · 33

= 12√
2 · 33

·
√

2 · 3√
2 · 3

= 12
√

2 · 3√
2234

Divide each of the exponents in the denominator by 2.

12
√

2 · 3√
2234

= 12
√

2 · 3
21 · 32

Then, in the numerator, 2 · 3 = 6, and in the denominator, 2 · 32 = 18.

12
√

2 · 3
2 · 32 = 12

√
6

18
Finally, reduce to lowest terms by dividing both numerator and denominator by 6.

12
√

6
18

= 2
√

6
3

In Figure 9, the approximation for the original expression 12/
√

54 matches that of its
simple radical form 2

√
6/3.

Figure 9. Comparing approxima-
tions of the original expression 12/

√
54

with its simple radical form 2
√

6/3.
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Variable Expressions
If x is any real number, recall again that

√
x2 = |x|.

If we combine the law of exponents for squaring a quotient with our property for taking
the square root of a quotient, we can write√(a

b

)2
=
√
a2

b2
=
√
a2√
b2

However,
√

(a/b)2 = |a/b|, while
√
a2/
√
b2 = |a|/|b|. This discussion leads to the

following key result.

Quotient Rule for Absolute Value. If a and b are any real numbers, then∣∣∣a
b

∣∣∣ = |a||b| ,
provided b 6= 0. In words, the absolute value of a quotient is the quotient of the
absolute values.

We saw this property previously in the chapter on the absolute value function, where
we provided a different approach to the proof of the property. It’s interesting that we
can prove this property in a completely new way using the properties of square root.
We’ll see we have need for the Quotient Rule for Absolute Value in the examples that
follow.

For example, if x is any real number except zero, using the quotient rule for absolute
value we could write ∣∣∣∣3x

∣∣∣∣ = |3||x| = 3
|x|
.

However, there is no way to remove the absolute value bars that surround x unless we
know the sign of x. If x > 0 (remember, no zeros in the denominator), then |x| = x
and the expression becomes

3
|x|

= 3
x
.

On the other hand, if x < 0, then |x| = −x and the expression becomes
3
|x|

= 3
−x

= −3
x
.
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Let’s look at another example.

I Example 8. Place the expression
√

18/x6 in simple radical form. Discuss the
domain.

Note that x cannot equal zero, otherwise the denominator of
√

18/x6 would be zero,
which is not allowed. However, whether x is positive or negative, x6 will be a positive
number (raising a nonzero number to an even power always produces a positive real
number), and

√
18/x6 is well-defined.

Keeping in mind that x is nonzero, but could either be positive or negative, we pro-
ceed by first invoking Property 1, taking the positive square root of both numerator
and denominator of our radical expression.√

18
x6 =

√
18√
x6

From the numerator, we factor a perfect square. In the denominator, we use absolute
value bars to insure a positive square root.

√
18√
x6

=
√

9
√

2
|x3|

= 3
√

2
|x3|

We can use the Product Rule for Absolute Value to write |x3| = |x2||x| = x2|x|. Note
that we do not need to wrap x2 in absolute value bars because x2 is already positive.

3
√

2
|x3|

= 3
√

2
x2|x|

Because x could be positive or negative, we cannot remove the absolute value bars
around x. We are done.

Let’s look at another example.

I Example 9. Place the expression
√

12/x5 in simple radical form. Discuss the
domain.

Note that x cannot equal zero, otherwise the denominator of
√

12/x5 would be zero,
which is not allowed. Further, if x is a negative number, then x5 will also be a negative
number (raising a negative number to an odd power produces a negative number). If
x were negative, then 12/x5 would also be negative and

√
12/x5 would be undefined

(you cannot take the square root of a negative number). Thus, x must be a positive
real number or the expression

√
12/x5 is undefined.

We proceed, keeping in mind that x is a positive real number. One possible approach
is to first note that another factor of x is needed to make the denominator a perfect
square. This motivates us to multiply both numerator and denominator inside the
radical by x. √

12
x5 =

√
12
x5 ·
x

x
=
√

12x
x6 .
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We can now use Property 1 to take the square root of both numerator and denomi-
nator. √

12x
x6 =

√
12x√
x6

In the numerator, we factor out a perfect square. In the denominator, absolute value
bars would insure a positive square root. However, we’ve stated that x must be a
positive number, so x3 is already positive and absolute value bars are not needed.

√
12x√
x6

=
√

4
√

3x
x3 = 2

√
3x
x3

Let’s look at another example.

I Example 10. Given that x < 0, place
√

27/x10 in simple radical form.

One possible approach would be to factor out a perfect square and write√
27
x10 =

√
9
x10

√
3 =

√(
3
x5

)2√
3 =
∣∣∣∣ 3
x5

∣∣∣∣√3.

Now, |3/x5| = |3|/(|x4||x|) = 3/(x4|x|), since x4 > 0. Thus,∣∣∣∣ 3
x5

∣∣∣∣√3 = 3
x4|x|
√

3.

However, we are given that x < 0, so |x| = −x and we can write
3
x4|x|
√

3 = 3
(x4)(−x)

√
3 = − 3

x5

√
3.

We can move
√

3 into the numerator and write

− 3
x5

√
3 = −3

√
3
x5 . (11)

Again, it’s instructive to test the validity of this result using your graphing calculator.
Supposedly, the result is true for all values of x < 0. So, store −1 in x, then enter the
original expression and its simple radical form, then compare the approximations, as
shown in Figures 10(a), (b), and (c).

(a) Store −1 in x. (b) Approximate√
27/x10.

(c) Approximate
−3
√

3/x5.
Figure 10. Comparing the original expression and its simple radical form at x = −1.
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Alternative approach. A slightly different approach would again begin by taking
the square root of both numerator and denominator.√

27
x10 =

√
27√
x10

Now,
√

27 =
√

9
√

3 = 3
√

3 and we insure that
√
x10 produces a positive number by

using absolute value bars. That is,
√
x10 = |x5| and
√

27√
x10

= 3
√

3
|x5|
.

However, using the product rule for absolute value and the fact that x4 > 0, |x5| =
|x4||x| = x4|x| and

3
√

3
|x5|

= 3
√

3
x4|x|
.

Finally, we are given that x < 0, so |x| = −x and we can write

3
√

3
x4|x|

= 3
√

3
(x4)(−x)

= −3
√

3
x5 . (12)

Note that the simple radical form (12) of our alternative approach matches perfectly
the simple radical form (11) of our first approach.
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9.3 Exercises

1. Use a calculator to first approxi-
mate

√
5/
√

2. On the same screen, ap-
proximate

√
5/2. Report the results on

your homework paper.

2. Use a calculator to first approximate√
7/
√

5. On the same screen, approxi-
mate

√
7/5. Report the results on your

homework paper.

3. Use a calculator to first approximate√
12/
√

2. On the same screen, approx-
imate

√
6. Report the results on your

homework paper.

4. Use a calculator to first approximate√
15/
√

5. On the same screen, approx-
imate

√
3. Report the results on your

homework paper.

In Exercises 5-16, place each radical ex-
pression in simple radical form. As in
Example 2 in the narrative, check your
result with your calculator.

5.
√

3
8

6.
√

5
12

7.
√

11
20

8.
√

3
2

9.
√

11
18

10.
√

7
5

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/10

11.
√

4
3

12.
√

16
5

13.
√

49
12

14.
√

81
20

15.
√

100
7

16.
√

36
5

In Exercises 17-28, place each radical
expression in simple radical form. As in
Example 4 in the narrative, check your
result with your calculator.

17. 1√
12

18. 1√
8

19. 1√
20

20. 1√
27

21. 6√
8

22. 4√
12
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23. 5√
20

24. 9√
27

25. 6
2
√

3

26. 10
3
√

5

27. 15
2
√

20

28. 3
2
√

18

In Exercises 29-36, place the given rad-
ical expression in simple form. Use prime
factorization as in Example 8 in the nar-
rative to help you with the calculations.
As in Example 6, check your result with
your calculator.

29. 1√
96

30. 1√
432

31. 1√
250

32. 1√
108

33.
√

5
96

34.
√

2
135

35.
√

2
1485

36.
√

3
280

In Exercises 37-44, place each of the
given radical expressions in simple rad-
ical form. Make no assumptions about
the sign of any variable. Variables can
represent either positive or negative num-
bers.

37.
√

8
x4

38.
√

12
x6

39.
√

20
x2

40.
√

32
x14

41. 2√
8x8

42. 3√
12x6

43. 10√
20x10

44. 12√
6x4

In Exercises 45-48, follow the lead of
Example 8 in the narrative to craft a so-
lution.

45. Given that x < 0, place the radi-
cal expression 6/

√
2x6 in simple radical

form. Check your solution on your cal-
culator for x = −1.

46. Given that x > 0, place the radi-
cal expression 4/

√
12x3 in simple radical

form. Check your solution on your cal-
culator for x = 1.
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47. Given that x > 0, place the radi-
cal expression 8/

√
8x5 in simple radical

form. Check your solution on your cal-
culator for x = 1.

48. Given that x < 0, place the radi-
cal expression 15/

√
20x6 in simple rad-

ical form. Check your solution on your
calculator for x = −1.

In Exercises 49-56, place each of the
radical expressions in simple form. As-
sume that all variables represent positive
numbers.

49.
√

12
x

50.
√

18
x

51.
√

50
x3

52.
√

72
x5

53. 1√
50x

54. 2√
18x

55. 3√
27x3

56. 5√
10x5
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9.3 Answers

1.

3.

5.
√

6/4

7.
√

55/10

9.
√

22/6

11. 2
√

3/3

13. 7
√

3/6

15. 10
√

7/7

17.
√

3/6

19.
√

5/10

21. 3
√

2/2

23.
√

5/2

25.
√

3

27. 3
√

5/4

29.
√

6/24

31.
√

10/50

33.
√

30/24

35.
√

330/495

37. 2
√

2/x2

39. 2
√

5/|x|

41.
√

2/(2x4)

43.
√

5/(x4|x|)

45. −3
√

2/x3

47. 2
√

2x/x3

49. 2
√

3x/x

51. 5
√

2x/x2

53.
√

2x/(10x)

55.
√

3x/(3x2)
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9.4 Radical Expressions
In the previous two sections, we learned how to multiply and divide square roots.
Specifically, we are now armed with the following two properties.

Property 1. Let a and b be any two real nonnegative numbers. Then,
√
a
√
b =
√
ab,

and, provided b 6= 0,
√
a√
b

=
√
a

b
.

In this section, we will simplify a number of more extensive expressions containing
square roots, particularly those that are fundamental to your work in future mathe-
matics courses.

Let’s begin by building some fundamental skills.

The Associative Property
We recall the associative property of multiplication.

Associative Property of Multiplication. Let a, b, and c be any real numbers.
The associative property of multiplication states that

(ab)c = a(bc). (2)

Note that the order of the numbers on each side of equation (2) has not changed.
The numbers on each side of the equation are in the order a, b, and then c.

However, the grouping has changed. On the left, the parentheses around the product
of a and b instruct us to perform that product first, then multiply the result by c. On the
right, the grouping is different; the parentheses around b and c instruct us to perform
that product first, then multiply by a. The key point to understand is the fact that
the different groupings make no difference. We get the same answer in either case.

For example, consider the product 2 ·3 ·4. If we multiply 2 and 3 first, then multiply
the result by 4, we get

(2 · 3) · 4 = 6 · 4 = 24.

On the other hand, if we multiply 3 and 4 first, then multiply the result by 2, we get

2 · (3 · 4) = 2 · 12 = 24.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/11
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Note that we get the same result in either case. That is,

(2 · 3) · 4 = 2 · (3 · 4).

The associative property, seemingly trivial, takes on an extra level of sophistication
if we apply it to expressions containing radicals. Let’s look at an example.

I Example 3. Simplify the expression 3(2
√

5). Place your answer in simple radical
form.

Currently, the parentheses around 2 and
√

5 require that we multiply those two
numbers first. However, the associative property of multiplication allows us to regroup,
placing the parentheses around 3 and 2, multiplying those two numbers first, then
multiplying the result by

√
5. We arrange the work as follows.

3(2
√

5) = (3 · 2)
√

5 = 6
√

5.

Readers should note the similarity to a very familiar manipulation.

3(2x) = (3 · 2)x = 6x

In practice, when we became confident with this regrouping, we began to skip the
intermediate step and simply state that 3(2x) = 6x. In a similar vein, once you become
confident with regrouping, you should simply state that 3(2

√
5) = 6

√
5. If called upon

to explain your answer, you must be ready to explain how you regrouped according to
the associative property of multiplication. Similarly,

−4(5
√

7) = −20
√

7, 12(5
√

11) = 60
√

11, and − 5(−3
√

3) = 15
√

3.

The Commutative Property of Multiplication
We recall the commutative property of multiplication.

Commutative Property of Multiplication. Let a and b be any real numbers.
The commutative property of multiplication states that

ab = ba. (4)

The commutative property states that the order of multiplication is irrelevant. For
example, 2 · 3 is the same as 3 · 2; they both equal 6. This seemingly trivial property,
coupled with the associative property of multiplication, allows us to change the order
of multiplication and regroup as we please.
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I Example 5. Simplify the expression
√

5(2
√

3). Place your answer in simple radical
form.

What we’d really like to do is first multiply
√

5 and
√

3. In order to do this, we
must first regroup, then switch the order of multiplication as follows.

√
5(2
√

3) = (
√

5 · 2)
√

3 = (2
√

5)
√

3

This is allowed by the associative and commutative properties of multiplication. Now,
we regroup again and multiply.

(2
√

5)
√

3 = 2(
√

5
√

3) = 2
√

15

In practice, this is far too much work for such a simple calculation. Once we
understand the associative and commutative properties of multiplication, the expression
a · b · c is unambiguous. Parentheses are not needed. We know that we can change the
order of multiplication and regroup as we please. Therefore, when presented with the
product of three numbers, simply multiply two of your choice together, then multiply
the result by the third remaining number.

In the case of
√

5(2
√

3), we choose to first multiply
√

5 and
√

3, which is
√

15, then
multiply this result by 2 to get 2

√
15. Similarly,

√
5(2
√

7) = 2
√

35 and
√
x(3
√

5) = 3
√

5x.

I Example 6. Simplify the expression
√

6(4
√

8). Place your answer in simple radical
form.

We start by multiplying
√

6 and
√

8, then the result by 4.
√

6(4
√

8) = 4
√

48

Now, 48 = 16 · 3, so we can extract a perfect square.

4
√

48 = 4(
√

16
√

3) = 4(4
√

3)

Again, we choose to multiply the fours, then the result by the square root of three.
That is,

4(4
√

3) = 16
√

3.

By induction, we can argue that the associative and commutative properties will
allow us to group and arrange the product of more than three numbers in any order
that we please.
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I Example 7. Simplify the expression (2
√

12)(3
√

3). Place your answer in simple
radical form.

We’ll first take the product of 2 and 3, then the product of
√

12 and
√

3, then
multiply these results together.

(2
√

12)(3
√

3) = (2 · 3)(
√

12
√

3) = 6
√

36

Of course,
√

36 = 6, so we can simplify further.

6
√

36 = 6 · 6 = 36

The Distributive Property
Recall the distributive property for real numbers.

Distributive Property. Let a, b, and c be any real numbers. Then,

a(b+ c) = ab+ ac. (8)

You might recall the following operation, where you “distribute the 2,” multiplying
each term in the parentheses by 2.

2(3 + x) = 6 + 2x

You can do precisely the same thing with radical expressions.

2(3 +
√

5) = 6 + 2
√

5

Like the familiar example above, we “distributed the 2,” multiplying each term in the
parentheses by 2.

Let’s look at more examples.

I Example 9. Use the distributive property to expand the expression
√

12(3+
√

3),
placing your final answer in simple radical form.

First, distribute the
√

12, multiplying each term in the parentheses by
√

12. Note
that
√

12
√

3 =
√

36.
√

12(3 +
√

3) = 3
√

12 +
√

36 = 3
√

12 + 6
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However, this last expression is not in simple radical form, as we can factor out a perfect
square (12 = 4 · 3).

3
√

12 + 6 = 3(
√

4
√

3) + 6
= 3(2

√
3) + 6

= 6
√

3 + 6

It doesn’t matter whether the monomial factor is in the front or rear of the sum,
you still distribute the monomial times each term in the parentheses.

I Example 10. Use the distributive property to expand (
√

3+2
√

2)
√

6. Place your
answer in simple radical form.

First, multiply each term in the parentheses by
√

6.

(
√

3 + 2
√

2)
√

6 =
√

18 + 2
√

12

To obtain the second term of this result, we chose to first multiply
√

2 and
√

6, which
is
√

12, then we multiplied this result by 2. Now, we can factor perfect squares from
both 18 and 12.

√
18 + 2

√
12 =

√
9
√

2 + 2(
√

4
√

3)
= 3
√

2 + 2(2
√

3)
= 3
√

2 + 4
√

3

Remember, you can check your results with your calculator. In Figure 1(a), we’ve
found a decimal approximation for the original expression (

√
3 + 2

√
2)
√

6, and in
Figure 1(b) we have a decimal approximation for our solution 3

√
2 + 4

√
3. Note

that they are the same, providing evidence that our solution is correct.

(a) Approximating
(
√

3 + 2
√

2)
√

6.
(b) Approximating

3
√

2 + 4
√

3.
Figure 1. Comparing the original expression with its simple
radical form.

The distributive property is also responsible in helping us combine “like terms.” For
example, you might remember that 3x+ 5x = 8x, a seemingly simple calculation, but
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it is the distributive property that actually provides this solution. Note how we use the
distributive property to factor x from each term.

3x+ 5x = (3 + 5)x

Hence, 3x+ 5x = 8x. You can do the same thing with radical expressions.

3
√

2 + 5
√

2 = (3 + 5)
√

2

Hence, 3
√

2 + 5
√

2 = 8
√

2, and the structure of this result is identical to that shown
in 3x+ 5x = 8x. There is no difference in the way we combine these “like terms.” We
repeat the common factor and add coefficients. For example,

2
√

3 + 9
√

3 = 11
√

3, −4
√

2 + 2
√

2 = −2
√

2, and − 3x
√
x+ 5x

√
x = 2x

√
x.

In each case above, we’re adding “like terms,” by repeating the common factor and
adding coefficients.

In the case that we don’t have like terms, as in 3x + 5y, there is nothing to be
done. In like manner, each of the following expressions have no like terms that you can
combine. They are as simplified as they are going to get.

3
√

2 + 5
√

3, 2
√

11− 8
√

10, and 2
√
x+ 5√y

However, there are times when it can look as if you don’t have like terms, but when
you place everything in simple radical form, you discover that you do have like terms
that can be combined by adding coefficients.

I Example 11. Simplify the expression 5
√

27 + 8
√

3, placing the final expression in
simple radical form.

We can extract a perfect square (27 = 9 · 3).

5
√

27 + 8
√

3 = 5(
√

9
√

3) + 8
√

3
= 5(3

√
3) + 8

√
3

= 15
√

3 + 8
√

3

Note that we now have “like terms” that can be combined by adding coefficients.

15
√

3 + 8
√

3 = 23
√

3

A comparison of the original expression and its simplified form is shown in Figures 2(a)
and (b).

I Example 12. Simplify the expression 2
√

20 +
√

8 + 3
√

5 + 4
√

2, placing the result
in simple radical form.

We can extract perfect squares (20 = 4 · 5 and 8 = 4 · 2).
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(a) Approximating
5
√

27 + 8
√

3.
(b) Approximating 23

√
3.

Figure 2. Comparing the original
expression with its simplified form.

2
√

20 +
√

8 + 3
√

5 + 4
√

2 = 2(
√

4
√

5) +
√

4
√

2 + 3
√

5 + 4
√

2
= 2(2

√
5) + 2

√
2 + 3
√

5 + 4
√

2
= 4
√

5 + 2
√

2 + 3
√

5 + 4
√

2

Now we can combine like terms by adding coefficients.

4
√

5 + 2
√

2 + 3
√

5 + 4
√

2 = 7
√

5 + 6
√

2

Fractions can be a little tricky.

I Example 13. Simplify
√

27 + 1/
√

12, placing the result in simple radical form.

We can extract a perfect square root (27 = 9 · 3). The denominator in the second
term is 12 = 22 · 3, so one more 3 is needed in the denominator to make a perfect
square.

√
27 + 1√

12
=
√

9
√

3 + 1√
12
·
√

3√
3

= 3
√

3 +
√

3√
36

= 3
√

3 +
√

3
6

To add these fractions, we need a common denominator of 6.

3
√

3 +
√

3
6

= 3
√

3
1
· 6

6
+
√

3
6

= 18
√

3
6

+
√

3
6

We can now combine numerators by adding coefficients.

18
√

3
6

+
√

3
6

= 19
√

3
6

Decimal approximations of the original expression and its simplified form are shown in
Figures 3(a) and (b).
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(a) Approximating√
27 + 1/

√
12.

(b) Approximating
19
√

3/6.
Figure 3. Comparing the original expression and its simple
radical form.

At first glance, the lack of a monomial in the product (x + 1)(x + 3) makes one
think that the distributive property will not help us find the product. However, if we
think of the second factor as a single unit, we can distribute it times each term in the
first factor.

(x+ 1)(x+ 3) = x(x+ 3) + 1(x+ 3)

Apply the distributive property a second time, then combine like terms.

x(x+ 3) + 1(x+ 3) = x2 + 3x+ x+ 3
= x2 + 4x+ 3

We can handle products with radical expressions in the same manner.

I Example 14. Simplify (2 +
√

2)(3 + 5
√

2). Place your result in simple radical
form.

Think of the second factor as a single unit and distribute it times each term in the
first factor.

(2 +
√

2)(3 + 5
√

2) = 2(3 + 5
√

2) +
√

2(3 + 5
√

2)

Now, use the distributive property again.

2(3 + 5
√

2) +
√

2(3 + 5
√

2) = 6 + 10
√

2 + 3
√

2 + 5
√

4

Note that in finding the last term,
√

2
√

2 =
√

4. Now,
√

4 = 2, then we can combine
like terms.

6 + 10
√

2 + 3
√

2 + 5
√

4 = 6 + 10
√

2 + 3
√

2 + 5(2)
= 6 + 10

√
2 + 3
√

2 + 10
= 16 + 13

√
2

Decimal approximations of the original expression and its simple radical form are shown
in Figures 4(a) and (b).



Section 9.4 Radical Expressions 933

Version: Fall 2007

(a) Approximating
(2 +
√

2)(3 + 5
√

2).
(b) Approximating

16 + 13
√

2.
Figure 4. Comparing the original expression with its simple
radical form.

Special Products
There are two special products that have important applications involving radical ex-
pressions, perhaps one more than the other. The first is the well-known difference of
two squares pattern.

Difference of Squares. Let a and b be any numbers. Then,

(a+ b)(a− b) = a2 − b2.

This pattern involves two binomial factors having identical first and second terms,
the terms in one factor separated by a plus sign, the terms in the other factor separated
by a minus sign. When we see this pattern of multiplication, we should square the first
term of either factor, square the second term, then subtract the results. For example,

(2x+ 3)(2x− 3) = 4x2 − 9.

This special product applies equally well when the first and/or second terms involve
radical expressions.

I Example 15. Use the difference of squares pattern to multiply (2+
√

11)(2−
√

11).

Note that this multiplication has the form (a+ b)(a− b), so we apply the difference
of squares pattern to get

(2 +
√

11)(2−
√

11) = (2)2 − (
√

11)2.

Of course, 22 = 4 and (
√

11)2 = 11, so we can finish as follows.

(2)2 − (
√

11)2 = 4− 11 = −7
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I Example 16. Use the difference of squares pattern to multiply (2
√

5+3
√

7)(2
√

5−
3
√

7).

Again, this product has the special form (a + b)(a − b), so we apply the difference
of squares pattern to get

(2
√

5 + 3
√

7)(2
√

5− 3
√

7) = (2
√

5)2 − (3
√

7)2.

Next, we square a product of two factors according to the rule (ab)2 = a2b2. Thus,

(2
√

5)2 = (2)2(
√

5)2 = 4 · 5 = 20

and

(3
√

7)2 = (3)2(
√

7)2 = 9 · 7 = 63.

Thus, we can complete the multiplication (2
√

5 + 3
√

7)(2
√

5− 3
√

7) with

(2
√

5)2 − (3
√

7)2 = 20− 63 = −43.

This result is easily verified with a calculator, as shown in Figure 5.

Figure 5. Approximating (2
√

5 +
3
√

7)(2
√

5− 3
√

7).

The second pattern of interest is the shortcut for squaring a binomial.

Squaring a Binomial. Let a and b be numbers. Then,

(a+ b)2 = a2 + 2ab+ b2.

Here we square the first and second terms of the binomial, then produce the middle
term of the result by multiplying the first and second terms and doubling that result.
For example,

(2x+ 9)2 = (2x)2 + 2(2x)(9) + (9)2 = 4x2 + 36x+ 81.

This pattern can also be applied to binomials containing radical expressions.
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I Example 17. Use the squaring a binomial pattern to expand (2
√
x+
√

5)2. Place
your result in simple radical form. Assume that x is a positive real number (x > 0).

Applying the squaring a binomial pattern, we get

(2
√
x+
√

5)2 = (2
√
x)2 + 2(2

√
x)(
√

5) + (
√

5)2.

As before, (2
√
x)2 = (2)2(

√
x)2 = 4x and (

√
5)2 = 5. In the case of 2(2

√
x)(
√

5),
note that we are multiplying four numbers together. The associative and commutative
properties state that we can multiply these four numbers in any order that we please.
So, the product of 2 and 2 is 4, the product of

√
x and

√
5 is
√

5x, then we multiply
these results to produce the result 4

√
5x. Thus,

(2
√
x)2 + 2(2

√
x)(
√

5) + (
√

5)2 = 4x+ 4
√

5x+ 5.

Rationalizing Denominators
As we saw in the previous section, the instruction “rationalize the denominator” is a
request to remove all radical expressions from the denominator. Of course, this is the
“third guideline of simple radical form,” but there are times, particularly in calculus,
when the instruction changes to “rationalize the numerator.” Of course, this is a request
to remove all radicals from the numerator.

You can’t have both worlds. You can either remove radical expressions from the
denominator or from the numerator, but not both. If no instruction is given, assume
that the “third guideline of simple radical form” is in play and remove all radical
expressions from the denominator. We’ve already done a little of this in previous
sections, but here we address a slightly more complicated type of expression.

I Example 18. In the expression
3

2 +
√

2
,

rationalize the denominator.

The secret lies in the difference of squares pattern, (a + b)(a − b) = a2 − b2. For
example,

(2 +
√

2)(2−
√

2) = (2)2 − (
√

2)2 = 4− 2 = 2.

This provides a terrific hint at how to proceed with rationalizing the denominator of
the expression 3/(2 +

√
2). Multiply both numerator and denominator by 2−

√
2.

3
2 +
√

2
= 3

2 +
√

2
· 2−

√
2

2−
√

2
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Multiply numerators and denominators.

3
2 +
√

2
· 2−

√
2

2−
√

2
= 3(2−

√
2)

(2 +
√

2)(2−
√

2)

= 6− 3
√

2
(2)2 − (

√
2)2

= 6− 3
√

2
4− 2

= 6− 3
√

2
2

Note that it is tempting to cancel the 2 in the denominator into the 6 in the numerator,
but you are not allowed to cancel terms that are separated by a minus sign. This is a
common error, so don’t fall prey to this mistake.

In Figures 6(a) and (b), we compare decimal approximations of the original ex-
pression and its simple radical form.

(a) Approximating
3/(2 +

√
2).

(b) Approximating
(6 − 3

√
2)/2.

Figure 6. Comparing the original expression with its simple
radical form.

I Example 19. In the expression
√

3 +
√

2√
3−
√

2
,

rationalize the denominator.

Multiply numerator and denominator by
√

3 +
√

2.
√

3 +
√

2√
3−
√

2
=
√

3 +
√

2√
3−
√

2
·
√

3 +
√

2√
3 +
√

2

Multiply numerators and denominators.
√

3 +
√

2√
3−
√

2
·
√

3 +
√

2√
3 +
√

2
= (

√
3 +
√

2)2

(
√

3−
√

2)(
√

3 +
√

2)
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In the denominator, we have the difference of two squares. Thus,

(
√

3−
√

2)(
√

3 +
√

2) = (
√

3)2 − (
√

2)2 = 3− 2 = 1.

Note that this clears the denominator of radicals. This is the reason we multiply
numerator and denominator by

√
3 +
√

2. In the numerator, we can use the squaring
a binomial shortcut to multiply.

(
√

3 +
√

2)2 = (
√

3)2 + 2(
√

3)(
√

2) + (
√

2)2

= 3 + 2
√

6 + 2
= 5 + 2

√
6

Thus, we can complete the simplification started above.

(
√

3 +
√

2)2

(
√

3−
√

2)(
√

3 +
√

2)
= 5 + 2

√
6

1
= 5 + 2

√
6

In Figures 7(a) and (b), we compare the decimal approximations of the original ex-
pression with its simple radical form.

(a) Approximating
(
√

3 +
√

2)/(
√

3 −
√

2).
(b) Approximating

5 + 2
√

6.
Figure 7. Comparing the original expression with its simple
radical form.

Revisiting the Quadratic Formula
We can use what we’ve learned to place solutions provided by the quadratic formula in
simple form. Let’s look at an example.

I Example 20. Solve the equation x2 = 2x+ 2 for x. Place your solution in simple
radical form.

The equation is nonlinear, so make one side zero.

x2 − 2x− 2 = 0

Compare this result with the general form ax2 +bx+c = 0 and note that a = 1, b = −2
and c = −2. Write down the quadratic formula, make the substitutions, then simplify.
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x = −b±
√
b2 − 4ac

2a
=
−(−2)±

√
(−2)2 − 4(1)(−2)
2(1)

= 2±
√

12
2

Note that we can factor a perfect square from the radical in the numerator.

x = 2±
√

12
2

= 2±
√

4
√

3
2

= 2± 2
√

3
2

At this point, note that both numerator and denominator are divisible by 2. There are
several ways that we can proceed with the reduction.

• Some people prefer to factor, then cancel.

x = 2± 2
√

3
2

= 2(1±
√

3)
2

= 2(1±
√

3)
2

= 1±
√

3

• Some prefer to use the distributive property.

x = 2± 2
√

3
2

= 2
2
± 2
√

3
2

= 1±
√

3

In each case, the final form of the answer is in simple radical form and it is reduced
to lowest terms.

Warning 21. When working with the quadratic formula, one of the most com-
mon algebra mistakes is to cancel addends instead of factors, as in

2± 2
√

3
2

= 2± 2
√

3
2

= ±2
√

3.

Please try to avoid making this mistake.

Let’s look at another example.

I Example 22. Solve the equation 3x2−2x = 6 for x. Place your solution in simple
radical form.

This equation is nonlinear. Move every term to one side of the equation, making
the other side of the equation equal to zero.

3x2 − 2x− 6 = 0

Compare with the general form ax2 + bx + c = 0 and note that a = 3, b = −2, and
c = −6. Write down the quadratic formula and substitute.

x = −b±
√
b2 − 4ac

2a
=
−(−2)±

√
(−2)2 − 4(3)(−6)
2(3)

= 2±
√

76
6

Factor a perfect square from the radical in the numerator.
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x = 2±
√

76
6

= 2±
√

4
√

19
6

= 2± 2
√

19
6

We choose to factor and cancel.

x = 2± 2
√

19
6

= 2(1±
√

19)
2 · 3

= 2(1±
√

19)
2 · 3

= 1±
√

19
3
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9.4 Exercises

In Exercises 1-14, place each of the rad-
ical expressions in simple radical form.
Check your answer with your calculator.

1. 2(5
√

7)

2. −3(2
√

3)

3. −
√

3(2
√

5)

4.
√

2(3
√

7)

5.
√

3(5
√

6)

6.
√

2(−3
√

10)

7. (2
√

5)(−3
√

3)

8. (−5
√

2)(−2
√

7)

9. (−4
√

3)(2
√

6)

10. (2
√

5)(−3
√

10)

11. (2
√

3)2

12. (−3
√

5)2

13. (−5
√

2)2

14. (7
√

11)2

In Exercises 15-22, use the distributive
property to multiply. Place your final
answer in simple radical form. Check
your result with your calculator.

15. 2(3 +
√

5)

16. −3(4−
√

7)

17. 2(−5 + 4
√

2)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/12

18. −3(4− 3
√

2)

19.
√

2(2 +
√

2)

20.
√

3(4−
√

6)

21.
√

2(
√

10 +
√

14)

22.
√

3(
√

15−
√

33)

In Exercises 23-30, combine like terms.
Place your final answer in simple radical
form. Check your solution with your cal-
culator.

23. −5
√

2 + 7
√

2

24. 2
√

3 + 3
√

3

25. 2
√

6− 8
√

6

26.
√

7 − 3
√

7

27. 2
√

3− 4
√

2 + 3
√

3

28. 7
√

5 + 2
√

7 − 3
√

5

29. 2
√

3 + 5
√

2− 7
√

3 + 2
√

2

30. 3
√

11− 2
√

7 − 2
√

11 + 4
√

7

In Exercises 31-40, combine like terms
where possible. Place your final answer
in simple radical form. Use your calcu-
lator to check your result.

31.
√

45 +
√

20

32. −4
√

45− 4
√

20

33. 2
√

18−
√

8
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34. −
√

20 + 4
√

45

35. −5
√

27 + 5
√

12

36. 3
√

12− 2
√

27

37. 4
√

20 + 4
√

45

38. −2
√

18− 5
√

8

39. 2
√

45 + 5
√

20

40. 3
√

27 − 4
√

12

In Exercises 41-48, simplify each of the
given rational expressions. Place your fi-
nal answer in simple radical form. Check
your result with your calculator.

41.
√

2− 1√
2

42. 3
√

3− 3√
3

43. 2
√

2− 2√
2

44. 4
√

5− 5√
5

45. 5
√

2 + 3√
2

46. 6
√

3 + 2√
3

47.
√

8− 12√
2
− 3
√

2

48.
√

27 − 6√
3
− 5
√

3

In Exercises 49-60, multiply to expand
each of the given radical expressions. Place
your final answer in simple radical form.
Use your calculator to check your result.

49. (2 +
√

3)(3−
√

3)

50. (5 +
√

2)(2−
√

2)

51. (4 + 3
√

2)(2− 5
√

2)

52. (3 + 5
√

3)(1− 2
√

3)

53. (2 + 3
√

2)(2− 3
√

2)

54. (3 + 2
√

5)(3− 2
√

5)

55. (2
√

3 + 3
√

2)(2
√

3− 3
√

2)

56. (8
√

2 +
√

5)(8
√

2−
√

5)

57. (2 +
√

5)2

58. (3−
√

2)2

59. (
√

3− 2
√

5)2

60. (2
√

3 + 3
√

2)2

In Exercises 61-68, place each of the
given rational expressions in simple rad-
ical form by “rationalizing the denomi-
nator.” Check your result with your cal-
culator.

61. 1√
5 +
√

3

62. 1
2
√

3−
√

2

63. 6
2
√

5−
√

2

64. 9
3
√

3−
√

6
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65. 2 +
√

3
2−
√

3

66. 3−
√

5
3 +
√

5

67.
√

3 +
√

2√
3−
√

2

68. 2
√

3 +
√

2√
3−
√

2

In Exercises 69-76, use the quadratic
formula to find the solutions of the given
equation. Place your solutions in simple
radical form and reduce your solutions to
lowest terms.

69. 3x2 − 8x = 5

70. 5x2 − 2x = 1

71. 5x2 = 2x+ 1

72. 3x2 − 2x = 11

73. 7x2 = 6x+ 2

74. 11x2 + 6x = 4

75. x2 = 2x+ 19

76. 100x2 = 40x− 1

In Exercises 77-80, we will suspend the
usual rule that you should rationalize the
denominator. Instead, just this one time,
rationalize the numerator of the resulting
expression.

77. Given f(x) =
√
x, evaluate the ex-

pression
f(x)− f(2)
x− 2

,

and then “rationalize the numerator.”

78. Given f(x) =
√
x+ 2, evaluate the

expression

f(x)− f(3)
x− 3

,

and then “rationalize the numerator.”

79. Given f(x) =
√
x, evaluate the ex-

pression

f(x+ h)− f(x)
h

,

and then “rationalize the numerator.”

80. Given f(x) =
√
x− 3, evaluate the

expression

f(x+ h)− f(x)
h

,

and then “rationalize the numerator.”
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9.4 Answers

1. 10
√

7

3. −2
√

15

5. 15
√

2

7. −6
√

15

9. −24
√

2

11. 12

13. 50

15. 6 + 2
√

5

17. −10 + 8
√

2

19. 2
√

2 + 2

21. 2
√

5 + 2
√

7

23. 2
√

2

25. −6
√

6

27. 5
√

3− 4
√

2

29. 7
√

2− 5
√

3

31. 5
√

5

33. 4
√

2

35. −5
√

3

37. 20
√

5

39. 16
√

5

41.
√

2/2

43.
√

2

45. 13
√

2/2

47. −7
√

2

49. 3 +
√

3

51. −22− 14
√

2

53. −14

55. −6

57. 9 + 4
√

5

59. 23− 4
√

15

61.
√

5−
√

3
2

63. 2
√

5 +
√

2
3

65. 7 + 4
√

3

67. 5 + 2
√

6

69. (4±
√

31)/3

71. (1±
√

6)/5

73. (3±
√

23)/7

75. 1± 2
√

5

77. 1
√
x+
√

2

79. 1√
x+ h+

√
x



Section 9.5 Radical Equations 945

Version: Fall 2007

9.5 Radical Equations
In this section we are going to solve equations that contain one or more radical ex-
pressions. In the case where we can isolate the radical expression on one side of the
equation, we can simply raise both sides of the equation to a power that will eliminate
the radical expression. For example, if

√
x− 1 = 2, (1)

then we can square both sides of the equation, eliminating the radical.(√
x− 1

)2 = (2)2

x− 1 = 4

Now that the radical is eliminated, we can appeal to well understood techniques to
solve the equation that remains. In this case, we need only add 1 to both sides of the
equation to obtain

x = 5.

This solution is easily checked. Substitute x = 5 in the original equation (1).
√
x− 1 = 2
√

5− 1 = 2
√

4 = 2

The last line is valid because the “positive square root of 4” is indeed 2.
This seems pretty straight forward, but there are some subtleties. Let’s look at

another example, one with an equation quite similar to equation (1).

I Example 2. Solve the equation
√
x− 1 = −2 for x.

If you carefully study the equation
√
x− 1 = −2, (3)

you might immediately detect a difficulty. The left-hand side of the equation calls for a
“positive square root,” but the right-hand side of the equation is negative. Intuitively,
there can be no solutions.

A look at the graphs of each side of the equation also reveals the problem. The
graphs of y =

√
x− 1 and y = −2 are shown in Figure 1. Note that the graphs do

not intersect, so the equation
√
x− 1 = −2 has no solution.

However, note what happens when we square both sides of equation (3).

(
√
x− 1)2 = (−2)2

x− 1 = 4
(4)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/13
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x

y

y =
√
x− 1

y = −2

Figure 1. The graphs of y =
√
x− 1 and

y = −2 do not intersect.

This result is identical to the result we got when we squared both sides of the equation√
x− 1 = 2 above. If we continue, adding 1 to both sides of the equation, we get

x = 5.

But this cannot be correct, as both intuition and the graphs in Figure 1 have shown
that the equation

√
x− 1 = −2 has no solutions.

Let’s check the solution x = 5 in the original equation (3).
√
x− 1 = −2
√

5− 1 = −2
√

4 = −2

Because the “positive square root of 4” does not equal −2, this last line is incorrect
and the “solution” x = 5 does not check in the equation

√
x− 1 = −2. Because the

only solution we found does not check, the equation has no solutions.

The discussion in Example 2 dictates caution.

Warning 5. Whenever you square both sides of an equation, there is a possibility
that you can introduce extraneous solutions, “extra” solutions that will not check
in the original problem.

There is only one way to avoid this dilemma of extraneous equations.

Checking Solutions. Whenever you square both sides of an equation, you must
check each of your solutions in the original equation. This is the only way you
can be sure you have a valid solution.
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Squaring a Binomial
As we’ve seen time and time again, the squaring a binomial pattern is of utmost im-
portance.

Squaring a Binomial. If a and b are any real numbers, then

(a+ b)2 = a2 + 2ab+ b2.

The squaring a binomial pattern will play a major role in the rest of the examples
in this section.

Let’s look at some examples of its use.

I Example 6. Expand and simplify (1 +
√
x)2 by using the squaring a binomial

pattern. Assume that x ≥ 0.

The assumption that x ≥ 0 is required, otherwise the expression
√
x involves the

square root of a negative number, which is not a real number.
The squaring a binomial pattern tells us to square the first and second terms.

However, there is also a middle term, which is found by taking the product of the first
and second terms, then multiplying the result by 2.

(1 +
√
x)2 = (1)2 + 2(1)(

√
x) + (

√
x)2

= 1 + 2
√
x+ x

Let’s look at another example.

I Example 7. Expand and simplify (
√
x+ 1−

√
x)2 by using the squaring a binomial

pattern. Comment on the domain of this expression.

In order for this expression to make sense, we must avoid taking the square root of a
negative number. Hence, both expressions under the square roots must be nonnegative
(positive or zero). That is,

x+ 1 ≥ 0 and x ≥ 0

Solving each of these inequalities independently, we get the fact that

x ≥ −1 and x ≥ 0.

Because of the word “and,” the requested domain is the set of all numbers that satisfy
both inequalities, namely, the set of all real numbers that are greater than or equal to
zero. That is, the domain of the expression is {x : x ≥ 0}.

We will now expand the expression (
√
x+ 1−

√
x)2 using the squaring a binomial

pattern.
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(
√
x+ 1−

√
x)2 = (

√
x+ 1)2 − 2(

√
x+ 1)(

√
x) + (

√
x)2

= x+ 1 + 2
√

(x+ 1)x+ x

= 2x+ 1 + 2
√
x2 + x

Isolate the Radical
Our mantra will be the strategy phrase “Isolate the radical.”

Isolate the Radical. When you solve equations containing one radical, isolate
the radical by itself on one side of the equation.

Although this is not always possible (some equations might contain more than one
radical exprssion), it is possible in our next example.

I Example 8. Solve the equation

1 +
√

4x+ 13 = 2x (9)

for x.

Let’s look at a graphing calculator solution. We’ve loaded the left- and right-hand
sides of 1 +

√
4x+ 13 = 2x into Y1 and Y2, respectively, as shown in Figure 2(a). We

then use 6:ZStandard and the intersect utility on the CALC menu to determine the
coordinates of the point of intersection of y = 1 +

√
4x+ 13 and y = 2x, as shown in

Figure 2(b).

(a) Loading
y = 1 +

√
4x+ 13 and

y = 2x into the Y= menu.

(b) The solution is x ≈ 3.

Figure 2. Solving 1 +
√

4x+ 13 = 2x on the graphing calcu-
lator. Note that there is only one point of intersection.

We will now present an algebraic solution, but note that we are forewarned that
there is only one solution and we believe that the solution is x ≈ 3. Of course, this
is only an approximation, as is always the case when we pick up our calculator (our
approximating machine).
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Chant the strategy phrase “isolate the radical,” then isolate the radical on one side
of the equation. We will accomplish this directive by subtracting 1 from both sides of
the equation.

1 +
√

4x+ 13 = 2x
√

4x+ 13 = 2x− 1

Next, square both sides of the equation.

(
√

4x+ 13)2 = (2x− 1)2

Squaring eliminates the radical on the left, but we must use the squaring a binomial
pattern to square the binomial on the right-side of the equation.

4x+ 13 = (2x)2 − 2(2x)(1) + (1)2

4x+ 13 = 4x2 − 4x+ 1

We’ve succeed in clearing all square roots from the equation with our “isolate the
radical” strategy. The equation that remains is nonlinear (there is a power of x higher
than 1), so we want to make one side of the equation equal to zero. We will do this by
subtracting 4x and 13 from both sides of the equation.

0 = 4x2 − 4x+ 1− 4x− 13
0 = 4x2 − 8x− 12

At this point, note that each term on the right-hand side of the equation is divisible
by 4. Divide both sides of the equation by 4, then use the ac-test to factor the result.

0 = x2 − 2x− 3
0 = (x− 3)(x+ 1)

Set each factor on the right-hand side of this last equation to obtain the solutions x = 3
and x = −1.

Note that x = 3 matches the solution found by graphing in Figure 2(b). However,
an “extra” solution x = −1 has appeared. Remember that we squared both sides of the
original equation, so it is possible that extraneous solutions have been introduced. We
need to check each of our solutions by substituting them into the original equation.

Our graph in Figure 2(b) adds credence to the analytical solution x = 3, so let’s
check that one first. Substitute x = 3 in the original equation.

1 +
√

4x+ 13 = 2x
1 +
√

4(3) + 13 = 2(3)
1 +
√

25 = 6
1 + 5 = 6

Clearly, x = 3 checks and is a valid solution.
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Next, let’s check the “suspect” solution x = −1 by substituting it into the original
equation.

1 +
√

4x+ 13 = 2x
1 +
√

4(−1) + 13 = 2(−1)
1 +
√

9 = −2
1 + 3 = −2

Clearly, x = −1 does not check and is not a solution.
Thus, the only solution of 1 +

√
4x+ 13 = 2x is x = 3. Readers should take note

how that graphical solution and the analytic solution complement one another.

Before looking at another example, let’s look at one of the most common mistakes
made in the algebraic solution of equation (9).

A Common Algebraic Mistake
In this section we discuss one of the most common algebraic mistakes encountered when
solving equations that contain radical expressions.

Warning 10. Many of the computations in this section are incorrect. They
are examples of common algebra mistakes made when solving equations containing
radicals. Keep this in mind and read the material in this section very carefully.

When presented with the equation

1 +
√

4x+ 13 = 2x, (11)

some will square both sides of the equation in the following manner.

(1)2 + (
√

4x+ 13)2 = (2x)2, (12)

arriving at

1 + 4x+ 13 = 4x2.

Make one side zero, then divide both sides of the resulting equation by 2.

0 = 4x2 − 4x− 14
0 = 2x2 − 2x− 7
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The careful reader will already realize that we’ve traveled the wrong path, as this
result is quite different from that at a similar point in the solution of Example 8.
However, we can continue with the solution by using the quadratic formula to solve the
last equation for x. When we compare 2x2− 2x− 7 with ax2 + bx+ c, note that a = 2,
b = −2, and c = −7. Thus,

x = −b±
√
b2 − 4ac

2a

=
−(−2)±

√
(−2)2 − 4(2)(−7)
2(2)

= 2±
√

60
4
.

However, neither of these “solutions” represent the correct solution found in Example 8,
namely, x = 3. So, what have we done wrong?

The mistake occurred in the very first step when we squared both sides of the
equation (11). Indeed, to get equation (12), we did not actually square both sides
of equation (11). Rather, we squared each of the individual terms on each side of the
equation.

This is a serious mistake. In essence, we started with an equation having the form

a+ b = c, (13)

then squared “both sides” in the following manner.

a2 + b2 = c2. (14)

This is not valid. For example, start with

2 + 3 = 5,

a completely valid equation as the sum of 2 and 3 is 5. Now “square" as we did in
equation (14) to get

22 + 32 = 52.

However, note that this simplifies as

4 + 9 = 25,

so we no longer have a valid equation.
The mistake made here is that we squared each of the individual terms on each side

of the equation instead of squaring “each side” of the equation. If we had done that,
we would have been all right, as is seen in this calculation.

2 + 3 = 5
(2 + 3)2 = 52

22 + 2(2)(3) + 32 = 52

4 + 12 + 9 = 25
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Just remember, a+ b = c does not imply a2 + b2 = c2.

Warning 15. We will now return to correct computations.

More than One Radical
Let’s look at an equation that contains more than one radical.

I Example 16. Solve the equation
√

2x+
√

2x+ 3 = 3 (17)

for x.

We’ll start with a graphical solution of the equation. First, load the equations
y =
√

2x+
√

2x+ 3 and y = 3 into the Y= menu, as shown in Figure 3(a).
We cannot take the square root of a negative number, so when we consider the

function defined by the equation y =
√

2x +
√

2x+ 3, both expressions under the
radicals must be nonnegative. That is,

2x ≥ 0 and 2x+ 3 ≥ 0.

Solving each of these independently,

x ≥ 0 and x ≥ −3
2
.

The numbers that are greater than or equal to zero and greater than or equal to −3/2
are the numbers greater than or equal to zero. Hence, the domain of the function
defined by the equation y =

√
2x+

√
2x+ 3 is {x : x ≥ 0}. Thus, it should not come

as a shock when the graph of y =
√

2x +
√

2x+ 3 lies entirely to the right of zero, as
shown in Figure 3(b).

(a) Load each side
of equation (17)

into Y1 and Y2.

(b) The graph of
y =
√

2x +
√

2x+ 3
lies completely to
the right of zero.

Figure 3. Drawing the graphs of
y =
√

2x +
√

2x+ 3 and y = 3.
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It’s a bit difficult to see the point of intersection in Figure 3(b), so let’s adjust the
WINDOW settings as shown in Figure 4(a). As you can see Figure 4(b), this highlights
the point of intersection a bit more clearly and the 5:intersect utility in the CALC
menu finds the point of intersection shown in Figure 4(b).

(a) Adjust the view. (b) Use 5:intersect
to find the point
of intersection.

Figure 4. Solving
√

2x +
√

2x+ 3 = 3 graphically.

The graphing calculator reports one solution (there’s only one point of intersection),
and the x-value of the point of intersection is approximately x ≈ 0.5.

Now, let’s look at an algebraic solution. Since are two radical expressions in this
equation, we will isolate one of them on one side of the equation. We choose to isolate
the more complex of the two radical expressions on the left-hand side of the equation,
then square both sides of the resulting equation.

√
2x+

√
2x+ 3 = 3
√

2x+ 3 = 3−
√

2x
(
√

2x+ 3)2 = (3−
√

2x)2

On the left, squaring eliminates the radical. To square the binomial on the right, we
use the squaring a binomial pattern to obtain

2x+ 3 = (3)2 − 2(3)(
√

2x) + (
√

2x)2

2x+ 3 = 9− 6
√

2x+ 2x.

We still have one radical expression left on the right-hand side of this equation, so
we’ll follow the mantra “isolate the radical.” First, subtract 2x from both sides of the
equation to obtain

3 = 9− 6
√

2x,

then subtract 9 from both sides of the equation.

−6 = −6
√

2x
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We’ve succeeded in isolating the radical term on one side of the equation. Now, divide
both sides of the equation by −6, then square both sides of the resulting equation.

1 =
√

2x
(1)2 = (

√
2x)2

1 = 2x

Divide both sides of the last result by 2.

x = 1
2

Note that this agrees nicely with our graphical solution (x ≈ 0.5), but let’s check our
solution by substituting x = 1/2 into the original equation.

√
2x+

√
2x+ 3 = 3√

2(1/2) +
√

2(1/2) + 3 = 3
√

1 +
√

4 = 3
1 + 2 = 3

This last statement is true, so the solution x = 1/2 checks.
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9.5 Exercises

For the rational functions in Exercises 1-
6, perform each of the following tasks.

i. Load the function f and the line y =
k into your graphing calculator. Ad-
just the viewing window so that all
point(s) of intersection of the two graphs
are visible in your viewing window.

ii. Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Label the
graphs with their equations. Remem-
ber to draw all lines with a ruler.

iii. Use the intersect utility to deter-
mine the coordinates of the point(s)
of intersection. Plot the point of in-
tersection on your homework paper
and label it with its coordinates.

iv. Solve the equation f(x) = k alge-
braically. Place your work and so-
lution next to your graph. Do the
solutions agree?

1. f(x) =
√
x+ 3, k = 2

2. f(x) =
√

4− x, k = 3

3. f(x) =
√

7 − 2x, k = 4

4. f(x) =
√

3x+ 5, k = 5

5. f(x) =
√

5 + x, k = 4

6. f(x) =
√

4− x, k = 5

In Exercises 7-12, use an algebraic tech-
nique to solve the given equation. Check
your solutions.

7.
√
−5x+ 5 = 2

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/14

8.
√

4x+ 6 = 7

9.
√

6x− 8 = 8

10.
√

2x+ 4 = 2

11.
√
−3x+ 1 = 3

12.
√

4x+ 7 = 3

For the rational functions in Exercises 13-
16, perform each of the following tasks.

i. Load the function f and the line y =
k into your graphing calculator. Ad-
just the viewing window so that all
point(s) of intersection of the two graphs
are visible in your viewing window.

ii. Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Label the
graphs with their equations. Remem-
ber to draw all lines with a ruler.

iii. Use the intersect utility to deter-
mine the coordinates of the point(s)
of intersection. Plot the point of in-
tersection on your homework paper
and label it with its coordinates.

iv. Solve the equation f(x) = k alge-
braically. Place your work and so-
lution next to your graph. Do the
solutions agree?

13. f(x) =
√
x+ 3 + x, k = 9

14. f(x) =
√
x+ 6− x, k = 4

15. f(x) =
√
x− 5− x, k = −7

16. f(x) =
√
x+ 5 + x, k = 7
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In Exercises 17-24, use an algebraic tech-
nique to solve the given equation. Check
your solutions.

17.
√
x+ 1 + x = 5

18.
√
x+ 8− x = 8

19.
√
x+ 4 + x = 8

20.
√
x+ 8− x = 2

21.
√
x+ 5− x = 3

22.
√
x+ 5 + x = 7

23.
√
x+ 9− x = 9

24.
√
x+ 7 + x = 5

For the rational functions in Exercises 25-
28, perform each of the following tasks.

i. Load the function f and the line y =
k into your graphing calculator. Ad-
just the viewing window so that all
point(s) of intersection of the two graphs
are visible in your viewing window.

ii. Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Label the
graphs with their equations. Remem-
ber to draw all lines with a ruler.

iii. Use the intersect utility to deter-
mine the coordinates of the point(s)
of intersection. Plot the point of in-
tersection on your homework paper
and label it with its coordinates.

iv. Solve the equation f(x) = k alge-
braically. Place your work and so-
lution next to your graph. Do the
solutions agree?

25. f(x) =
√
x− 1 +

√
x+ 6, k = 7

26. f(x) =
√
x+ 2 +

√
x+ 9, k = 7

27. f(x) =
√
x+ 2 +

√
3x+ 4, k = 2

28. f(x) =
√

6x+ 7 +
√

3x+ 3, k = 1

In Exercises 29-40, use an algebraic tech-
nique to solve the given equation. Check
your solutions.

29.
√
x+ 46−

√
x− 35 = 1

30.
√
x− 16 +

√
x+ 16 = 8

31.
√
x− 19 +

√
x− 6 = 13

32.
√
x+ 31−

√
x+ 12 = 1

33.
√
x− 2−

√
x− 49 = 1

34.
√
x+ 13 +

√
x+ 8 = 5

35.
√
x+ 27 −

√
x− 22 = 1

36.
√
x+ 10 +

√
x+ 13 = 3

37.
√
x+ 30−

√
x− 38 = 2

38.
√
x+ 36−

√
x+ 11 = 1

39.
√
x− 17 +

√
x+ 3 = 10

40.
√
x+ 18 +

√
x+ 13 = 5
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9.5 Answers

1. x = 1

x
10

y
10

f(x)=
√
x+3

y=2
(1,2)(1,2)

3. x = −9/2

x
10

y
10

f(x)=
√

7−2x
y=4

(−4.5,4)(−4.5,4)

5. x = 11

x
20

y
10

f(x)=
√
x+5
y=4

(11,4)(11,4)

7. 1
5

9. 12

11. −8
3

13. x = 6

x
20

y
20

f(x)=
√
x+3+x

y=9
(6,9)(6,9)

15. x = 9

x
20

y
20

f(x)=
√
x−5−x

y=−7
(9,−7)(9,−7)

17. 3

19. 5

21. −1
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23. −8, −9

25. x = 10

x
20

y
20

f(x)=
√
x−1+

√
x+6

y=7
(10,7)(10,7)

27. x = −1

x
20

y
20

f(x)=
√
x+2+

√
3x+4

y=2
(−1,2)(−1,2)

29. 1635

31. 55

33. 578

35. 598

37. 294

39. 33
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9.6 The Pythagorean Theorem

Pythagoras.

Pythagoras was a Greek mathematician and philosopher, born on the island of Samos
(ca. 582 BC). He founded a number of schools, one in particular in a town in south-
ern Italy called Crotone, whose members eventually became
known as the Pythagoreans. The inner circle at the school,
the Mathematikoi, lived at the school, rid themselves of all
personal possessions, were vegetarians, and observed a strict
vow of silence. They studied mathematics, philosophy, and
music, and held the belief that numbers constitute the true
nature of things, giving numbers a mystical or even spiritual
quality.

Today, nothing is known of Pythagoras’s writings, per-
haps due to the secrecy and silence of the Pythagorean so-
ciety. However, one of the most famous theorems in all of
mathematics does bear his name, the Pythagorean Theorem.

Pythagorean Theorem. Let c represent the length of the hypotenuse, the side
of a right triangle directly opposite the right angle (a right angle measures 90◦) of
the triangle. The remaining sides of the right triangle are called the legs of the
right triangle, whose lengths are designated by the letters a and b.

a

b
c

The relationship involving the legs and hypotenuse of the right triangle, given by

a2 + b2 = c2, (1)

is called the Pythagorean Theorem.

Note that the Pythagorean Theorem can only be applied to right triangles.
Let’s look at a simple application of the Pythagorean Theorem (1).

I Example 2. Given that the length of one leg of a right triangle is 4 centimeters
and the hypotenuse has length 8 centimeters, find the length of the second leg.

Let’s begin by sketching and labeling a right triangle with the given information.
We will let x represent the length of the missing leg.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/15
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x

4 cm8 cm

Figure 1. A sketch makes things a
bit easier.

Here is an important piece of advice.

Tip 3. The hypotenuse is the longest side of the right triangle. It is located di-
rectly opposite the right angle of the triangle. Most importantly, it is the quantity
that is isolated by itself in the Pythagorean Theorem.

a2 + b2 = c2

Always isolate the quantity representing the hypotenuse on one side of the equa-
tion. The legs go on the other side of the equation.

So, taking the tip to heart, and noting the lengths of the legs and hypotenuse in
Figure 1, we write

42 + x2 = 82.

Square, then isolate x on one side of the equation.

16 + x2 = 64
x2 = 48

Normally, we would take plus or minus the square root in solving this equation, but x
represents the length of a leg, which must be a positive number. Hence, we take just
the positive square root of 48.

x =
√

48

Of course, place your answer in simple radical form.

x =
√

16
√

3
x = 4

√
3

If need be, you can use your graphing calculator to approximate this length. To the
nearest hundredth of a centimeter, x ≈ 6.93 centimeters.
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Proof of the Pythagorean Theorem
It is not known whether Pythagoras was the first to provide a proof of the Pythagorean
Theorem. Many mathematical historians think not. Indeed, it is not even known if
Pythagoras crafted a proof of the theorem that bears his name, let alone was the first
to provide a proof.

There is evidence that the ancient Babylonians were aware of the Pythagorean
Theorem over a 1000 years before the time of Pythagoras. A clay tablet, now referred
to as Plimpton 322 (see Figure 2), contains examples of Pythagorean Triples, sets of
three numbers that satisfy the Pythagorean Theorem (such as 3, 4, 5).

Figure 2. A photograph of Plimpton 322.

One of the earliest recorded proofs of the Pythagorean Theorem dates from the
Han dynasty (206 BC to AD 220), and is recorded in the Chou Pei Suan Ching (see
Figure 3). You can see that this figure specifically addresses the case of the 3, 4, 5
right triangle. Mathematical historians are divided as to whether or not the image was
meant to be part of a general proof or was just devised to address this specific case.
There is also disagreement over whether the proof was provided by a more modern
commentator or dates back further in time.
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Figure 3. A figure from the Chou Pei Suan
Ching.

However, Figure 3 does suggest a path
we might take on the road to a proof of
the Pythagorean Theorem. Start with
an arbitrary right triangle having legs
of lengths a and b, and hypotenuse hav-
ing length c, as shown in Figure 4(a).

Next, make four copies of the trian-
gle shown in Figure 4(a), then rotate
and translate them into place as shown
in Figure 4(b). Note that this forms a
big square that is c units on a side.

Further, the position of the trian-
gles in Figure 4(b) allows for the for-
mation of a smaller, unshaded square in the middle of the larger square. It is not hard
to calculate the length of the side of this smaller square. Simply subtract the length of
the smaller leg from the larger leg of the original triangle. Thus, the side of the smaller
square has length b− a.

c

ab

c

c

c

c

b−
a

(a) (b)
Figure 4. Proof of the Pythagorean Theorem.

Now, we will calculate the area of the large square in Figure 4(b) in two separate
ways.

• First, the large square in Figure 4(b) has a side of length c. Therefore, the area of
the large square is

Area = c2.

• Secondly, the large square in Figure 4(b) is made up of 4 triangles of the same size
and one smaller square having a side of length b− a. We can calculate the area of
the large square by summing the area of the 4 triangles and the smaller square.
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1. The area of the smaller square is (b− a)2.
2. The area of each triangle is ab/2. Hence, the area of four triangles of equal size

is four times this number; i.e., 4(ab/2).
Thus, the area of the large square is

Area = Area of small square + 4 ·Area of triangle

= (b− a)2 + 4
(
ab

2

)
.

We calculated the area of the larger square twice. The first time we got c2; the
second time we got (b− a)2 + 4(ab/2). Therefore, these two quantities must be equal.

c2 = (b− a)2 + 4
(
ab

2

)
Expand the binomial and simplify.

c2 = b2 − 2ab+ a2 + 2ab
c2 = b2 + a2

That is,

a2 + b2 = c2,

and the Pythagorean Theorem is proven.

Applications of the Pythagorean Theorem

Figure 5. A basic 3-
4-5 right triangle for
squaring corners.

In this section we will look at a few applications of the
Pythagorean Theorem, one of the most applied theorems in
all of mathematics. Just ask your local carpenter.

The ancient Egyptians would take a rope with 12 equally
spaced knots like that shown in Figure 5, and use it to
square corners of their buildings. The tool was instrumental
in the construction of the pyramids.

The Pythagorean theorem is also useful in surveying, car-
tography, and navigation, to name a few possibilities.

Let’s look at a few examples of the Pythagorean Theorem
in action.

I Example 4. One leg of a right triangle is 7 meters longer than the other leg. The
length of the hypotenuse is 13 meters. Find the lengths of all sides of the right triangle.

Let x represent the length of one leg of the right triangle. Because the second leg
is 7 meters longer than the first leg, the length of the second leg can be represented by
the expression x+ 7, as shown in Figure 6, where we’ve also labeled the length of the
hypotenuse (13 meters).
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x+ 7

13x

Figure 6. The second leg is 7 meters
longer than the first.

Remember to isolate the length of the hypotenuse on one side of the equation repre-
senting the Pythagorean Theorem. That is,

x2 + (x+ 7)2 = 132.

Note that the legs go on one side of the equation, the hypotenuse on the other. Square
and simplify. Remember to use the squaring a binomial pattern.

x2 + x2 + 14x+ 49 = 169
2x2 + 14x+ 49 = 169

This equation is nonlinear, so make one side zero by subtracting 169 from both sides
of the equation.

2x2 + 14x+ 49− 169 = 0
2x2 + 14x− 120 = 0

Note that each term on the left-hand side of the equation is divisible by 2. Divide both
sides of the equation by 2.

x2 + 7x− 60 = 0

Let’s use the quadratic formula with a = 1, b = 7, and c = −60.

x = −b±
√
b2 − 4ac

2a
=
−7 ±

√
72 − 4(1)(−60)

2(1)

Simplify.

x = −7 ±
√

289
2

Note that 289 is a perfect square (172 = 289). Thus,

x = −7 ± 17
2
.

Thus, we have two solutions,

x = 5 or x = −12.
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Because length must be a positive number, we eliminate −12 from consideration. Thus,
the length of the first leg is x = 5 meters. The length of the second leg is x+ 7, or 12
meters.

Check. Checking is an easy matter. The legs are 5 and 12 meters, respectively,
and the hypotenuse is 13 meters. Note that the second leg is 7 meters longer than the
first. Also,

52 + 122 = 25 + 144 = 169,

which is the square of 13.

The integral sides of the triangle in the previous example, 5, 12, and 13, are an
example of a Pythagorean Triple.

Pythagorean Triple. A set of positive integers a, b, and c, is called a
Pythagorean Triple if they satisfy the Pythagorean Theorem; that is, if

a2 + b2 = c2.

If the greatest common factor of a, b, and c is 1, then the triple (a, b, c) is called a
primitive Pythagorean Triple.

Thus, for example, the Pythagorean Triple (5, 12, 13) is primitive.
Let’s look at another example.

I Example 5. If (a, b, c) is a Pythagorean Triple, show that any positive integral
multiple is also a Pythagorean Triple.

Thus, if the positive integers (a, b, c) is a Pythagorean Triple, we must show that
(ka, kb, kc), where k is a positive integer, is also a Pythagorean Triple.

However, we know that

a2 + b2 = c2.

Multiply both sides of this equation by k2.

k2a2 + k2b2 = k2c2

This last result can be written

(ka)2 + (kb)2 = (kc)2.

Hence, (ka, kb, kc) is a Pythagorean Triple.

Hence, because (3, 4, 5) is a Pythagorean Triple, you can double everything to get
another triple (6, 8, 10). Note that 62 + 82 = 102 is easily checked. Similarly, tripling
gives another triple (9, 12, 15), and so on.
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In Example 5, we showed that (5, 12, 13) was a triple, so we can take multiples to
generate other Pythagorean Triples, such as (10, 24, 26) or (15, 36, 39), and so on.

Formulae for generating Pythagorean Triples have been know since antiquity.

I Example 6. The following formula for generating Pythagorean Triples was pub-
lished in Euclid’s (325–265 BC) Elements, one of the most successful textbooks in the
history of mathematics. If m and n are positive integers with m > n, show

a = m2 − n2,

b = 2mn,
c = m2 + n2,

(7)

generates Pythagorean Triples.

We need only show that the formulae for a, b, and c satisfy the Pythagorean Theo-
rem. With that is mind, let’s first compute a2 + b2.

a2 + b2 = (m2 − n2)2 + (2mn)2

= m4 − 2m2n2 + n4 + 4m2n2

= m4 + 2m2n2 + n4

On the other hand,

c2 = (m2 + n2)2

= m4 + 2m2n2 + n4.

Hence, a2 + b2 = c2, and the expressions for a, b, and c form a Pythagorean Triple.

It is both interesting and fun to generate Pythagorean Triples with the formulae
from Example 6. Choose m = 4 and n = 2, then

a = m2 − n2 = (4)2 − (2)2 = 12,
b = 2mn = 2(4)(2) = 16,
c = m2 + n2 = (4)2 + (2)2 = 20.

It is easy to check that the triple (12, 16, 20) will satisfy 122 + 162 = 202. Indeed, note
that this triple is a multiple of the basic (3, 4, 5) triple, so it must also be a Pythagorean
Triple.

It can also be shown that if m and n are relatively prime, and are not both odd or
both even, then the formulae in Example 6 will generate a primitive Pythagorean
Triple. For example, choose m = 5 and n = 2. Note that the greatest common divisor
of m = 5 and n = 2 is one, so m and n are relatively prime. Moreover, m is odd while
n is even. These values of m and n generate

a = m2 − n2 = (5)2 − (2)2 = 21,
b = 2mn = 2(5)(2) = 20,
c = m2 + n2 = (5)2 + (2)2 = 29.
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Note that

212 + 202 = 441 + 400
= 841
= 292.

Hence, (21, 20, 29) is a Pythagorean Triple. Moreover, the greatest common divisor of
21, 20, and 29 is one, so (21, 20, 29) is primitive.

The practical applications of the Pythagorean Theorem are numerous.

I Example 8. A painter leans a 20 foot ladder against the wall of a house. The
base of the ladder is on level ground 5 feet from the wall of the house. How high up
the wall of the house will the ladder reach?

Consider the triangle in Figure 7. The hypotenuse of the triangle represents the
ladder and has length 20 feet. The base of the triangle represents the distance of the
base of the ladder from the wall of the house and is 5 feet in length. The vertical leg
of the triangle is the distance the ladder reaches up the wall and the quantity we wish
to determine.

5

h
20

Figure 7. A ladder leans against the
wall of a house.

Applying the Pythagorean Theorem,

52 + h2 = 202.

Again, note that the square of the length of the hypotenuse is the quantity that is
isolated on one side of the equation.

Next, square, then isolate the term containing h on one side of the equation by
subtracting 25 from both sides of the resulting equation.

25 + h2 = 400
h2 = 375
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We need only extract the positive square root.

h =
√

375

We could place the solution in simple form, that is, h = 5
√

15, but the nature of the
problem warrants a decimal approximation. Using a calculator and rounding to the
nearest tenth of a foot,

h ≈ 19.4.

Thus, the ladder reaches about 19.4 feet up the wall.

The Distance Formula
We often need to calculate the distance between two points P and Q in the plane.
Indeed, this is such a frequently recurring need, we’d like to develop a formula that
will quickly calculate the distance between the given points P and Q. Such a formula
is the goal of this last section.

Let P (x1, y1) and Q(x2, y2) be two arbitrary points in the plane, as shown in
Figure 8(a) and let d represent the distance between the two points.

x

y

d

P (x1, y1)

Q(x2, y2)

x

y

d

P (x1, y1)

Q(x2, y2)

R(x2, y1)

|y2 − y1|

|x2 − x1|

(a) (b)
Figure 8. Finding the distance between the points P and Q.

To find the distance d, first draw the right triangle 4PQR, with legs parallel to the
axes, as shown in Figure 8(b). Next, we need to find the lengths of the legs of the
right triangle 4PQR.

• The distance between P and R is found by subtracting the x coordinate of P from
the x-coordinate of R and taking the absolute value of the result. That is, the
distance between P and R is |x2 − x1|.

• The distance between R and Q is found by subtracting the y-coordinate of R from
the y-coordinate of Q and taking the absolute value of the result. That is, the
distance between R and Q is |y2 − y1|.
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We can now use the Pythagorean Theorem to calculate d. Thus,

d2 = (|x2 − x1|)2 + (|y2 − y1|)2.

However, for any real number a,

(|a|)2 = |a| · |a| = |a2| = a2,

because a2 is nonnegative. Hence, (|x2−x1|)2 = (x2−x1)2 and (|y2−y1|)2 = (y2−y1)2

and we can write

d2 = (x2 − x1)2 + (y2 − y1)2.

Taking the positive square root leads to the Distance Formula.

The Distance Formula. Let P (x1, y1) and Q(x2, y2) be two arbitrary points in
the plane. The distance d between the points P and Q is given by the formula

d =
√

(x2 − x1)2 + (y2 − y1)2. (9)

The direction of subtraction is unimportant. Because you square the result of the
subtraction, you get the same response regardless of the direction of subtraction (e.g.
(5 − 2)2 = (2 − 5)2). Thus, it doesn’t matter which point you designate as the point
P , nor does it matter which point you designate as the point Q. Simply subtract x-
coordinates and square, subtract y-coordinates and square, add, then take the square
root.

Let’s look at an example.

I Example 10. Find the distance between the points P (−4,−2) and Q(4, 4).

It helps the intuition if we draw a picture, as we have in Figure 9. One can now
take a compass and open it to the distance between points P and Q. Then you can
place your compass on the horizontal axis (or any horizontal gridline) to estimate the
distance between the points P and Q. We did that on our graph paper and estimate
the distance d ≈ 10.

x

y

d

P (−4,−2)

Q(4, 4)

Figure 9. Gauging the distance between
P (−4,−2) and Q(4, 4).
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Let’s now use the distance formula to obtain an exact value for the distance d. With
(x1, y1) = P (−4,−2) and (x2, y2) = Q(4, 4),

d =
√

(x2 − x1)2 + (y2 − y1)2

=
√

(4− (−4))2 + (4− (−2))2

=
√

82 + 62

=
√

64 + 36
=
√

100
= 10.

It’s not often that your exact result agrees with your approximation, so never worry if
you’re off by just a little bit.
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9.6 Exercises

In Exercises 1-8, state whether or not
the given triple is a Pythagorean Triple.
Give a reason for your answer.

1. (8, 15, 17)

2. (7, 24, 25)

3. (8, 9, 17)

4. (4, 9, 13)

5. (12, 35, 37)

6. (12, 17, 29)

7. (11, 17, 28)

8. (11, 60, 61)

In Exercises 9-16, set up an equation
to model the problem constraints and solve.
Use your answer to find the missing side
of the given right triangle. Include a
sketch with your solution and check your
result.

9.

2
√

3

2

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/16

10.

2

2

11.

4 8

12.

10

12

13.

2

2
√

3
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14.

12 4
√

3

15.

5 10

16.

8
√

2

8

In Exercises 17-20, set up an equation
that models the problem constraints. Solve
the equation and use the result to answer
the question. Look back and check your
result.

17. The legs of a right triangle are con-
secutive positive integers. The hypotenuse
has length 5. What are the lengths of the
legs?

18. The legs of a right triangle are con-
secutive even integers. The hypotenuse
has length 10. What are the lengths of
the legs?

19. One leg of a right triangle is 1 cen-
timeter less than twice the length of the
first leg. If the length of the hypotenuse
is 17 centimeters, find the lengths of the

legs.

20. One leg of a right triangle is 3 feet
longer than 3 times the length of the first
leg. The length of the hypotenuse is 25
feet. Find the lengths of the legs.

21. Pythagoras is credited with the fol-
lowing formulae that can be used to gen-
erate Pythagorean Triples.

a = m

b = m
2 − 1
2
,

c = m
2 + 1
2

Use the technique of Example 6 to demon-
strate that the formulae given above will
generate Pythagorean Triples, provided
that m is an odd positive integer larger
than one. Secondly, generate at least
3 instances of Pythagorean Triples with
Pythagoras’s formula.

22. Plato (380 BC) is credited with the
following formulae that can be used to
generate Pythagorean Triples.

a = 2m
b = m2 − 1,
c = m2 + 1

Use the technique of Example 6 to demon-
strate that the formulae given above will
generate Pythagorean Triples, provided
that m is a positive integer larger than
1. Secondly, generate at least 3 instances
of Pythagorean Triples with Plato’s for-
mula.
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In Exercises 23-28, set up an equation
that models the problem constraints. Solve
the equation and use the result to answer
the question. Look back and check your
result.

23. Fritz and Greta are planting a 12-
foot by 18-foot rectangular garden, and
are laying it out using string. They would
like to know the length of a diagonal to
make sure that right angles are formed.
Find the length of a diagonal. Approxi-
mate your answer to within 0.1 feet.

24. Angelina and Markos are planting
a 20-foot by 28-foot rectangular garden,
and are laying it out using string. They
would like to know the length of a diag-
onal to make sure that right angles are
formed. Find the length of a diagonal.
Approximate your answer to within 0.1
feet.

25. The base of a 36-foot long guy wire
is located 16 feet from the base of the
telephone pole that it is anchoring. How
high up the pole does the guy wire reach?
Approximate your answer to within 0.1
feet.

26. The base of a 35-foot long guy wire
is located 10 feet from the base of the
telephone pole that it is anchoring. How
high up the pole does the guy wire reach?
Approximate your answer to within 0.1
feet.

27. A stereo receiver is in a corner of
a 13-foot by 16-foot rectangular room.
Speaker wire will run under a rug, diag-
onally, to a speaker in the far corner. If 3
feet of slack is required on each end, how
long a piece of wire should be purchased?
Approximate your answer to within 0.1
feet.

28. A stereo receiver is in a corner of
a 10-foot by 15-foot rectangular room.
Speaker wire will run under a rug, diag-
onally, to a speaker in the far corner. If 4
feet of slack is required on each end, how
long a piece of wire should be purchased?
Approximate your answer to within 0.1
feet.

In Exercises 29-38, use the distance for-
mula to find the exact distance between
the given points.

29. (−8,−9) and (6,−6)

30. (1, 0) and (−9,−2)

31. (−9, 1) and (−8, 7)

32. (0, 9) and (3, 1)

33. (6,−5) and (−9,−2)

34. (−9, 6) and (1, 4)

35. (−7, 7) and (−3, 6)

36. (−7,−6) and (−2,−4)

37. (4,−3) and (−9, 6)

38. (−7,−1) and (4,−5)

In Exercises 39-42, set up an equation
that models the problem constraints. Solve
the equation and use the result to answer
the question. Look back and check your
result.

39. Find k so that the point (4, k) is
2
√

2 units away from the point (2, 1).

40. Find k so hat the point (k, 1) is
2
√

2 units away from the point (0,−1).
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41. Find k so that the point (k, 1) is√
17 units away from the point (2,−3).

42. Find k so that the point (−1, k) is√
13 units away from the point (−4,−3).

43. Set up a coordinate system on a
sheet of graph paper. Label and scale
each axis. Plot the points P (0, 5) and
Q(4,−3) on your coordinate system.

a) Plot several points that are equidis-
tant from the points P and Q on your
coordinate system. What graph do
you get if you plot all points that are
equidistant from the points P and Q?
Determine the equation of the graph
by examining the resulting image on
your coordinate system.

b) Use the distance formula to find the
equation of the graph of all points
that are equidistant from the points
P and Q. Hint: Let (x, y) represent
an arbitrary point on the graph of all
points equidistant from points P and
Q. Calculate the distances from the
point (x, y) to the points P and Q
separately, then set them equal and
simplify the resulting equation. Note
that this analytical approach should
provide an equation that matches that
found by the graphical approach in
part (a).

44. Set up a coordinate system on a
sheet of graph paper. Label and scale
each axis. Plot the point P (0, 2) and la-
bel it with its coordinates. Draw the line
y = −2 and label it with its equation.

a) Plot several points that are equidis-
tant from the point P and the line
y = −2 on your coordinate system.
What graph do you get if you plot
all points that are equidistant from
the points P and the line y = −2.

b) Use the distance formula to find the
equation of the graph of all points
that are equidistant from the points
P and the line y = −2. Hint: Let
(x, y) represent an arbitrary point on
the graph of all points equidistant from
points P and the line y = −2. Cal-
culate the distances from the point
(x, y) to the points P and the line y =
−2 separately, then set them equal
and simplify the resulting equation.
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45. Copy the following figure onto a
sheet of graph paper. Cut the pieces of
the first figure out with a pair of scis-
sors, then rearrange them to form the
second figure. Explain how this proves
the Pythagorean Theorem.

46. Compare this image to the one that
follows and explain how this proves the
Pythagorean Theorem.

a b

a

b

ab

a

b

c

c
c

c

b a

a

b

ab

b

a

c

c
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9.6 Answers

1. Yes, because 82 + 152 = 172

3. No, because 82 + 92 6= 172

5. Yes, because 122 + 352 = 372

7. No, because 112 + 172 6= 282

9. 4

11. 4
√

3

13. 2
√

2

15. 5
√

3

17. The legs have lengths 3 and 4.

19. The legs have lengths 8 and 15 cen-
timeters.

21. (3, 4, 5), (5, 12, 13), and (7, 24, 25),
with m = 3, 5, and 7, respectively.

23. 21.63 ft

25. 32.25 ft

27. 26.62 ft

29.
√

205

31.
√

37

33.
√

234 = 3
√

26

35.
√

17

37.
√

250 = 5
√

10

39. k = 3, −1.

41. k = 1, 3.

43.

a) In the figure that follows,XP = XQ.

x
−5 10

y

−5

10

P (0,5)P (0,5)

Q(4,−3)Q(4,−3)

y=(1/2)x

X(x,y)X(x,y)

b) y = (1/2)x
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9.7 Index
ac-test 949

a
absolute value

product rule 895
quotient rule 916

algebraic 872
associative property 925

c
common algebraic mistake 950
commutative property 926

d
difference of squares 933
distance formula 969
distributive property 928
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e
exponent

multiplication 889
product to a power 890

extraneous equation 946

f
factor tree 892

g
greatest common divisor 966
greatest common factor 965

h
hypotenuse 959 , 960

i
induction 927

n
nonlinear 949 , 964

p
perfect square 887 , 909
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to another power 889

pythagorean theorem 959
applications 963

distance formula 968 , 969
proof 961

pythagorean triple 965 , 966
primitive 965

r
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division 907
equations 945 , 950 , 952
helpful hints 913
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multiplication 886
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935

rationalizing the numerator 935
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right triangle

legs 959

s
simple radical form 886 , 887 , 908 ,

909 , 910
special product 933
square root 869

division 925
graph 869
multiplication 925
of an even power 890
reflections 874
simplifying 925
translations 871

squaring a binomial 934 , 947
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1.1 Exercises

In Exercises 1-8, find the prime factor-
ization of the given natural number.

1. 80

2. 108

3. 180

4. 160

5. 128

6. 192

7. 32

8. 72

In Exercises 9-16, convert the given dec-
imal to a fraction.

9. 0.648

10. 0.62

11. 0.240

12. 0.90

13. 0.14

14. 0.760

15. 0.888

16. 0.104

In Exercises 17-24, convert the given
repeating decimal to a fraction.

17. 0.27

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

18. 0.171

19. 0.24

20. 0.882

21. 0.84

22. 0.384

23. 0.63

24. 0.60

25. Prove that
√

3 is irrational.

26. Prove that
√

5 is irrational.

In Exercises 27-30, copy the given ta-
ble onto your homework paper. In each
row, place a check mark in each column
that is appropriate. That is, if the num-
ber at the start of the row is rational,
place a check mark in the rational col-
umn. Note: Most (but not all) rows will
have more than one check mark.

27.

N W Z Q R
0
−2
−2/3
0.15
0.2
√

5
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28.

N W Z Q R
10/2
π

−6
0.9
√

2
0.37

29.

N W Z Q R
−4/3

12
0
√

11
1.3
6/2

30.

N W Z Q R
−3/5
√

10
1.625
10/2
0/5
11

In Exercises 31-42, consider the given
statement and determine whether it is
true or false. Write a sentence explaining
your answer. In particular, if the state-
ment is false, try to give an example that
contradicts the statement.

31. All natural numbers are whole num-
bers.

32. All whole numbers are rational num-
bers.

33. All rational numbers are integers.

34. All rational numbers are whole num-
bers.

35. Some natural numbers are irrational.

36. Some whole numbers are irrational.

37. Some real numbers are irrational.

38. All integers are real numbers.

39. All integers are rational numbers.

40. No rational numbers are natural num-
bers.

41. No real numbers are integers.

42. All whole numbers are natural num-
bers.
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1.1 Answers

1. 2 · 2 · 2 · 2 · 5

3. 2 · 2 · 3 · 3 · 5

5. 2 · 2 · 2 · 2 · 2 · 2 · 2

7. 2 · 2 · 2 · 2 · 2

9. 81
125

11. 6
25

13. 7
50

15. 111
125

17. 3
11

19. 8
33

21. 28
33

23. 7
11

25. Suppose that
√

3 is rational. Then
it can be expressed as the ratio of two
integers p and q as follows:

√
3 = p
q

Square both sides,

3 = p
2

q2
,

then clear the equation of fractions by
multiplying both sides by q2:

p2 = 3q2 (1)

Now p and q each have their own unique
prime factorizations. Both p2 and q2 have
an even number of factors in their prime
factorizations. But this contradicts equa-
tion (1), because the left side would have
an even number of factors in its prime
factorization, while the right side would
have an odd number of factors in its prime
factorization (there’s one extra 3 on the
right side).
Therefore, our assumption that

√
3 was

rational is false. Thus,
√

3 is irrational.

27.

N W Z Q R
0 x x x x
−2 x x x
−2/3 x x
0.15 x x
0.2 x x
√

5 x

29.

N W Z Q R
−4/3 x x

12 x x x x x
0 x x x x
√

11 x
1.3 x x
6/2 x x x x x

31. True. The only difference between
the two sets is that the set of whole num-
bers contains the number 0.
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33. False. For example, 1
2 is not an in-

teger.

35. False. All natural numbers are ra-
tional, and therefore not irrational.

37. True. For example, π and
√

2 are
real numbers which are irrational.

39. True. Every integer b can be writ-
ten as a fraction b/1.

41. False. For example, 2 is a real num-
ber that is also an integer.
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1.2 Exercises

In Exercises 1-12, solve each of the given
equations for x.

1. 45x+ 12 = 0

2. 76x− 55 = 0

3. x− 7 = −6x+ 4

4. −26x+ 84 = 48

5. 37x+ 39 = 0

6. −48x+ 95 = 0

7. 74x− 6 = 91

8. −7x+ 4 = −6

9. −88x+ 13 = −21

10. −14x− 81 = 0

11. 19x+ 35 = 10

12. −2x+ 3 = −5x− 2

In Exercises 13-24, solve each of the
given equations for x.

13. 6− 3(x+ 1) = −4(x+ 6) + 2

14. (8x+ 3)− (2x+ 6) = −5x+ 8

15. −7 − (5x− 3) = 4(7x+ 2)

16. −3− 4(x+ 1) = 2(x+ 4) + 8

17. 9− (6x− 8) = −8(6x− 8)

18. −9− (7x− 9) = −2(−3x+ 1)

19. (3x− 1)− (7x− 9) = −2x− 6

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

20. −8− 8(x− 3) = 5(x+ 9) + 7

21. (7x− 9)− (9x+ 4) = −3x+ 2

22. (−4x− 6) + (−9x+ 5) = 0

23. −5− (9x+ 4) = 8(−7x− 7)

24. (8x− 3) + (−3x+ 9) = −4x− 7

In Exercises 25-36, solve each of the
given equations for x. Check your solu-
tions using your calculator.

25. −3.7x− 1 = 8.2x− 5

26. 8.48x− 2.6 = −7.17x− 7.1

27. −2
3x+ 8 = 4

5x+ 4

28. −8.4x = −4.8x+ 2

29. −3
2x+ 9 = 1

4x+ 7

30. 2.9x− 4 = 0.3x− 8

31. 5.45x+ 4.4 = 1.12x+ 1.6

32. −1
4x+ 5 = −4

5x− 4

33. −3
2x− 8 = 2

5x− 2

34. −4
3x− 8 = −1

4x+ 5

35. −4.34x− 5.3 = 5.45x− 8.1

36. 2
3x− 3 = −1

4x− 1



28 Chapter 1 Preliminaries

Version: Fall 2007

In Exercises 37-50, solve each of the
given equations for the indicated vari-
able.

37. P = IRT for R

38. d = vt for t

39. v = v0 + at for a

40. x = v0 + vt for v

41. Ax+By = C for y

42. y = mx+ b for x

43. A = πr2 for π

44. S = 2πr2 + 2πrh for h

45. F = kqq0
r2

for k

46. C = Q

mT
for T

47. V
t

= k for t

48. λ = h

mv
for v

49. P1V1
n1T1

= P2V2
n2T2

for V2

50. π = nRT
V
i for n

51. Tie a ball to a string and whirl it
around in a circle with constant speed.
It is known that the acceleration of the
ball is directly toward the center of the
circle and given by the formula

a = v
2

r
, (1)

where a is acceleration, v is the speed of
the ball, and r is the radius of the circle

of motion.

i. Solve formula (1) for r.
ii. Given that the acceleration of the ball

is 12 m/s2 and the speed is 8 m/s, find
the radius of the circle of motion.

52. A particle moves along a line with
constant acceleration. It is known the
velocity of the particle, as a function of
the amount of time that has passed, is
given by the equation

v = v0 + at, (2)

where v is the velocity at time t, v0 is the
initial velocity of the particle (at time
t = 0), and a is the acceleration of the
particle.

i. Solve formula (2) for t.
ii. You know that the current velocity

of the particle is 120 m/s. You also
know that the initial velocity was 40 m/s
and the acceleration has been a con-
stant a = 2 m/s2. How long did it
take the particle to reach its current
velocity?

53. Like Newton’s Universal Law of Grav-
itation, the force of attraction (repulsion)
between two unlike (like) charged parti-
cles is proportional to the product of the
charges and inversely proportional to the
distance between them.

F = kC
q1q2
r2

(3)

In this formula, kC ≈ 8.988×109 Nm2/C2

and is called the electrostatic constant.
The variables q1 and q2 represent the charges
(in Coulombs) on the particles (which
could either be positive or negative num-
bers) and r represents the distance (in
meters) between the charges. Finally, F
represents the force of the charge, mea-
sured in Newtons.
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i. Solve formula (3) for r.
ii. Given a force F = 2.0 × 1012 N, two

equal charges q1 = q2 = 1 C, find the
approximate distance between the two
charged particles.
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1.2 Answers

1. − 4
15

3. 11
7

5. −39
37

7. 97
74

9. 17
44

11. −25
19

13. −25

15. − 4
11

17. 47
42

19. 7

21. 15

23. −1

25. 40
119

27. 30
11

29. 8
7

31. −280
433

33. −60
19

35. 280
979

37. R = P
IT

39. a = v − v0
t

41. y = C −Ax
B

43. π = A
r2

45. k = Fr
2

qq0

47. t = V
k

49. V2 = n2P1V1T2
n1P2T1

51. r = v2/a, r = 16/3 meters.

53. r ≈ 0.067 meters.
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1.3 Exercises

Perform each of the following tasks in
Exercises 1-4.

i. Write out in words the meaning of
the symbols which are written in set-
builder notation.

ii. Write some of the elements of this set.
iii. Draw a real line and plot some of the

points that are in this set.

1. A = {x ∈ N : x > 10}

2. B = {x ∈ N : x ≥ 10}

3. C = {x ∈ Z : x ≤ 2}

4. D = {x ∈ Z : x > −3}

In Exercises 5-8, use the sets A, B, C,
andD that were defined in Exercises 1-
4. Describe the following sets using set
notation, and draw the corresponding Venn
Diagram.

5. A ∩B

6. A ∪B

7. A ∪ C.

8. C ∩D.

In Exercises 9-16, use both interval and
set notation to describe the interval shown
on the graph.

9.

3

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

10.

0

11.

−7

12.

1

13.

0

14.

1

15.

−8

16.

9

In Exercises 17-24, sketch the graph of
the given interval.

17. [2, 5)

18. (−3, 1]

19. [1,∞)
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20. (−∞, 2)

21. {x : −4 < x < 1}

22. {x : 1 ≤ x ≤ 5}

23. {x : x < −2}

24. {x : x ≥ −1}

In Exercises 25-32, use both interval
and set notation to describe the inter-
section of the two intervals shown on the
graph. Also, sketch the graph of the in-
tersection on the real number line.

25.

1
−3

26.

−6
−3

27.

2

−4

28.

11
8

29.

−6
2

30.

1
5

31.

9
5

32.

−14

−6

In Exercises 33-40, use both interval
and set notation to describe the union
of the two intervals shown on the graph.
Also, sketch the graph of the union on
the real number line.

33.

−10
−8

34.

−3
−2

35.

15
9
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36.

5
14

37.

−5
3

38.

11
9

39.

10
9

40.

7
−2

In Exercises 41-56, use interval nota-
tion to describe the given set. Also, sketch
the graph of the set on the real number
line.

41. {x : x ≥ −6 and x > −5}

42. {x : x ≤ 6 and x ≥ 4}

43. {x : x ≥ −1 or x < 3}

44. {x : x > −7 and x > −4}

45. {x : x ≥ −1 or x > 6}

46. {x : x ≥ 7 or x < −2}

47. {x : x ≥ 6 or x > −3}

48. {x : x ≤ 1 or x > 0}

49. {x : x < 2 and x < −7}

50. {x : x ≤ −3 and x < −5}

51. {x : x ≤ −3 or x ≥ 4}

52. {x : x < 11 or x ≤ 8}

53. {x : x ≥ 5 and x ≤ 1}

54. {x : x < 5 or x < 10}

55. {x : x ≤ 5 and x ≥ −1}

56. {x : x > −3 and x < −6}
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1.3 Answers

1.

i. A is the set of all x in the natural
numbers such that x is greater than
10.

ii. A = {11, 12, 13, 14, . . .}
iii.

11 17

3.

i. C is the set of all x in the set of inte-
gers such that x is less than or equal
to 2.

ii. C = {. . . ,−4,−3,−2,−1, 0, 1, 2}
iii.

−4 2

5. A ∩ B = {x ∈ N : x > 10} =
{11, 12, 13, . . .}

A

B

7. A ∪ C = {x ∈ Z : x ≤ 2 or x >
10} = {. . . ,−3,−2−1, 0, 1, 2, 11, 12, 13 . . .}

A C

9. [3,∞) = {x : x ≥ 3}

11. (−∞,−7) = {x : x < −7}

13. (0,∞) = {x : x > 0}

15. (−8,∞) = {x : x > −8}

17.

2 5

19.

1

21.

−4 1

23.

−2

25. [1,∞) = {x : x ≥ 1}

1

27. no intersection

29. [−6, 2] = {x : −6 ≤ x ≤ 2}

−6 2

31. [9,∞) = {x : x ≥ 9}

9
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33. (−∞,−8] = {x : x ≤ −8}

−8

35. (−∞, 9] ∪ (15,∞)
={x : x ≤ 9 or x > 15}

159

37. (−∞, 3) = {x : x < 3}

3

39. [9,∞) = {x : x ≥ 9}

9

41. (−5,∞)

−5

43. (−∞,∞)

45. [−1,∞)

−1

47. (−3,∞)

−3

49. (−∞,−7)

−7

51. (−∞,−3] ∪ [4,∞)

4−3

53. the set is empty

55. [−1, 5]

−1 5
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1.4 Exercises

In Exercises 1-12, solve the inequality.
Express your answer in both interval and
set notations, and shade the solution on
a number line.

1. −8x− 3 ≤ −16x− 1

2. 6x− 6 > 3x+ 3

3. −12x+ 5 ≤ −3x− 4

4. 7x+ 3 ≤ −2x− 8

5. −11x− 9 < −3x+ 1

6. 4x− 8 ≥ −4x− 5

7. 4x− 5 > 5x− 7

8. −14x+ 4 > −6x+ 8

9. 2x− 1 > 7x+ 2

10. −3x− 2 > −4x− 9

11. −3x+ 3 < −11x− 3

12. 6x+ 3 < 8x+ 8

In Exercises 13-50, solve the compound
inequality. Express your answer in both
interval and set notations, and shade the
solution on a number line.

13. 2x− 1 < 4 or 7x+ 1 ≥ −4

14. −8x+ 9 < −3 and − 7x+ 1 > 3

15. −6x−4 < −4 and −3x+7 ≥ −5

16. −3x+ 3 ≤ 8 and − 3x− 6 > −6

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

17. 8x+ 5 ≤ −1 and 4x− 2 > −1

18. −x− 1 < 7 and − 6x− 9 ≥ 8

19. −3x+ 8 ≤ −5 or − 2x− 4 ≥ −3

20. −6x− 7 < −3 and − 8x ≥ 3

21. 9x− 9 ≤ 9 and 5x > −1

22. −7x+ 3 < −3 or − 8x ≥ 2

23. 3x− 5 < 4 and − x+ 9 > 3

24. −8x− 6 < 5 or 4x− 1 ≥ 3

25. 9x+ 3 ≤ −5 or − 2x− 4 ≥ 9

26. −7x+ 6 < −4 or − 7x− 5 > 7

27. 4x− 2 ≤ 2 or 3x− 9 ≥ 3

28. −5x+ 5 < −4 or − 5x− 5 ≥ −5

29. 5x+ 1 < −6 and 3x+ 9 > −4

30. 7x+ 2 < −5 or 6x− 9 ≥ −7

31. −7x− 7 < −2 and 3x ≥ 3

32. 4x+ 1 < 0 or 8x+ 6 > 9

33. 7x+ 8 < −3 and 8x+ 3 ≥ −9

34. 3x < 2 and − 7x− 8 ≥ 3

35. −5x+ 2 ≤ −2 and − 6x+ 2 ≥ 3

36. 4x− 1 ≤ 8 or 3x− 9 > 0

37. 2x− 5 ≤ 1 and 4x+ 7 > 7

38. 3x+ 1 < 0 or 5x+ 5 > −8
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39. −8x+ 7 ≤ 9 or − 5x+ 6 > −2

40. x− 6 ≤ −5 and 6x− 2 > −3

41. −4x− 8 < 4 or − 4x+ 2 > 3

42. 9x− 5 < 2 or − 8x− 5 ≥ −6

43. −9x− 5 ≤ −3 or x+ 1 > 3

44. −5x− 3 ≤ 6 and 2x− 1 ≥ 6

45. −1 ≤ −7x− 3 ≤ 2

46. 0 < 5x− 5 < 9

47. 5 < 9x− 3 ≤ 6

48. −6 < 7x+ 3 ≤ 2

49. −2 < −7x+ 6 < 6

50. −9 < −2x+ 5 ≤ 1

In Exercises 51-62, solve the given in-
equality for x. Graph the solution set on
a number line, then use interval and set-
builder notation to describe the solution
set.

51. −1
3 <
x

2 + 1
4 <

1
3

52. −1
5 <
x

2 −
1
4 <

1
5

53. −1
2 <

1
3 −
x

2 <
1
2

54. −2
3 ≤

1
2 −
x

5 ≤
2
3

55. −1 < x− x+ 1
5 < 2

56. −2 < x− 2x− 1
3 < 4

57. −2 < x+ 1
2 − x+ 1

3 ≤ 2

58. −3 < x− 1
3 − 2x− 1

5 ≤ 2

59. x < 4− x < 5

60. −x < 2x+ 3 ≤ 7

61. −x < x+ 5 ≤ 11

62. −2x < 3− x ≤ 8

63. Aeron has arranged for a demon-
stration of “How to make a Comet” by
Professor O’Commel. The wise profes-
sor has asked Aeron to make sure the
auditorium stays between 15 and 20 de-
grees Celsius (C). Aeron knows the ther-
mostat is in Fahrenheit (F) and he also
knows that the conversion formula be-
tween the two temperature scales is C =
(5/9)(F − 32).

a) Setting up the compound inequality
for the requested temperature range
in Celsius, we get 15 ≤ C ≤ 20. Us-
ing the conversion formula above, set
up the corresponding compound in-
equality in Fahrenheit.

b) Solve the compound inequality in part
(a) for F. Write your answer in set
notation.

c) What are the possible temperatures
(integers only) that Aeron can set the
thermostat to in Fahrenheit?
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1.4 Answers

1. (−∞, 1
4 ] = {x|x ≤ 1

4}

1
4

3. [1,∞) = {x|x ≥ 1}

1

5. (−5
4 ,∞) = {x|x > −5

4}

−5
4

7. (−∞, 2) = {x|x < 2}

2

9. (−∞,−3
5) = {x|x < −3

5}

−3
5

11. (−∞,−3
4) = {x|x < −3

4}

−3
4

13. (−∞,∞) = {all real numbers}

15. (0, 4] = {x|0 < x ≤ 4}

0 4

17. no solution

19.
(
−∞,−1

2
]⋃ [13

3 ,∞
)

={x|x ≤ −1
2 or x ≥ 13

3 }

−1
2

13
3

21. (−1
5 , 2] = {x|− 1

5 < x ≤ 2}

−1
5

2

23. (−∞, 3) = {x|x < 3}

3

25. (−∞,−8
9 ] = {x|x ≤ −8

9}

−8
9

27. (−∞, 1]
⋃

[4,∞) = {x|x ≤ 1 or x ≥
4}

1 4

29. (−13
3 ,−

7
5) = {x|− 13

3 < x < −
7
5}

−13
3 −7

5

31. [1,∞) = {x|x ≥ 1}

1

33. no solution
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35. no solution

37. (0, 3] = {x|0 < x ≤ 3}

0 3

39. (−∞,∞) = {all real numbers}

41. (−∞,∞) = {all real numbers}

43. [−2
9 ,∞) = {x|x ≥ −2

9}

−2
9

45. [−5
7 ,−

2
7 ] = {x|− 5

7 ≤ x ≤ −
2
7}

−5
7 −2

7

47. (8
9 , 1] = {x|89 < x ≤ 1}

8
9

1

49. (0, 8
7 ) = {x|0 < x < 8

7}

0 8
7

51. (−7/6, 1/6) = {x : −7/6 < x <
1/6}

−7/6 1/6

53. (−1/3, 5/3) = {x : −1/3 < x <
5/3}

−1/3 5/3

55. (−1, 11/4) = {x : −1 < x < 11/4}

−1 11/4

57. (−13, 11] = {x : −13 < x ≤ 11}

−13 11

59. (−1, 2) = {x : −1 < x < 2}

−1 2

61. (−5/2, 6] = {x : −5/2 < x ≤ 6}

−5/2 6

63.

a) 15 ≤ 5
9(F − 32) ≤ 20

b) {F : 59 ≤ F ≤ 68}

c) {59, 60, 61, 62, 63, 64, 65, 66, 67, 68}
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1.1 Exercises

In Exercises 1-8, find the prime factor-
ization of the given natural number.

1. 80

2. 108

3. 180

4. 160

5. 128

6. 192

7. 32

8. 72

In Exercises 9-16, convert the given dec-
imal to a fraction.

9. 0.648

10. 0.62

11. 0.240

12. 0.90

13. 0.14

14. 0.760

15. 0.888

16. 0.104

In Exercises 17-24, convert the given
repeating decimal to a fraction.

17. 0.27

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

18. 0.171

19. 0.24

20. 0.882

21. 0.84

22. 0.384

23. 0.63

24. 0.60

25. Prove that
√

3 is irrational.

26. Prove that
√

5 is irrational.

In Exercises 27-30, copy the given ta-
ble onto your homework paper. In each
row, place a check mark in each column
that is appropriate. That is, if the num-
ber at the start of the row is rational,
place a check mark in the rational col-
umn. Note: Most (but not all) rows will
have more than one check mark.

27.

N W Z Q R
0
−2
−2/3
0.15
0.2
√

5



12 Chapter 1 Preliminaries

Version: Fall 2007

28.

N W Z Q R
10/2
π

−6
0.9
√

2
0.37

29.

N W Z Q R
−4/3

12
0
√

11
1.3
6/2

30.

N W Z Q R
−3/5
√

10
1.625
10/2
0/5
11

In Exercises 31-42, consider the given
statement and determine whether it is
true or false. Write a sentence explaining
your answer. In particular, if the state-
ment is false, try to give an example that
contradicts the statement.

31. All natural numbers are whole num-
bers.

32. All whole numbers are rational num-
bers.

33. All rational numbers are integers.

34. All rational numbers are whole num-
bers.

35. Some natural numbers are irrational.

36. Some whole numbers are irrational.

37. Some real numbers are irrational.

38. All integers are real numbers.

39. All integers are rational numbers.

40. No rational numbers are natural num-
bers.

41. No real numbers are integers.

42. All whole numbers are natural num-
bers.
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1.1 Solutions

1. 80 = 2 · 2 · 2 · 2 · 5

3. 180 = 2 · 2 · 3 · 3 · 5

5. 128 = 2 · 2 · 2 · 2 · 2 · 2 · 2

7. 32 = 2 · 2 · 2 · 2 · 2

9. There are three decimal places, so 0.648 = 648
1000 = 81

125 .

11. There are three decimal places, so 0.240 = 240
1000 = 6

25 .

13. There are two decimal places, so 0.14 = 14
100 = 7

50 .

15. There are three decimal places, so 0.888 = 888
1000 = 111

125 .

17. Let x = 0.27. Then 100x = 27.27. Subtracting on both sides of these equations

100x = 27.27
x = 0.27

yields 99x = 27. Finally, solve for x by dividing by 99: x = 27
99 = 3

11 .

19. Let x = 0.24. Then 100x = 24.24. Subtracting on both sides of these equations

100x = 24.24
x = 0.24

yields 99x = 24. Finally, solve for x by dividing by 99: x = 24
99 = 8

33 .

21. Let x = 0.84. Then 100x = 84.84. Subtracting on both sides of these equations

100x = 84.84
x = 0.84

yields 99x = 84. Finally, solve for x by dividing by 99: x = 84
99 = 28

33 .

23. Let x = 0.63. Then 100x = 63.63. Subtracting on both sides of these equations

100x = 63.63
x = 0.63
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yields 99x = 63. Finally, solve for x by dividing by 99: x = 63
99 = 7

11 .

25. Suppose that
√

3 is rational. Then it can be expressed as the ratio of two integers
p and q as follows:

√
3 = p
q

Square both sides,

3 = p
2

q2
,

then clear the equation of fractions by multiplying both sides by q2:

p2 = 3q2 (1)

Now p and q each have their own unique prime factorizations. Both p2 and q2 have an
even number of factors in their prime factorizations. But this contradicts equation (1),
because the left side would have an even number of factors in its prime factorization,
while the right side would have an odd number of factors in its prime factorization
(there’s one extra 3 on the right side).
Therefore, our assumption that

√
3 was rational is false. Thus,

√
3 is irrational.

27.

N W Z Q R
0 x x x x
−2 x x x
−2/3 x x
0.15 x x
0.2 x x
√

5 x

29.

N W Z Q R
−4/3 x x

12 x x x x x
0 x x x x
√

11 x
1.3 x x
6/2 x x x x x
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31. True. The only difference between the two sets is that the set of whole numbers
contains the number 0.

33. False. For example, 1
2 is not an integer.

35. False. All natural numbers are rational, and therefore not irrational.

37. True. For example, π and
√

2 are real numbers which are irrational.

39. True. Every integer b can be written as a fraction b/1.

41. False. For example, 2 is a real number that is also an integer.
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1.2 Exercises

In Exercises 1-12, solve each of the given
equations for x.

1. 45x+ 12 = 0

2. 76x− 55 = 0

3. x− 7 = −6x+ 4

4. −26x+ 84 = 48

5. 37x+ 39 = 0

6. −48x+ 95 = 0

7. 74x− 6 = 91

8. −7x+ 4 = −6

9. −88x+ 13 = −21

10. −14x− 81 = 0

11. 19x+ 35 = 10

12. −2x+ 3 = −5x− 2

In Exercises 13-24, solve each of the
given equations for x.

13. 6− 3(x+ 1) = −4(x+ 6) + 2

14. (8x+ 3)− (2x+ 6) = −5x+ 8

15. −7 − (5x− 3) = 4(7x+ 2)

16. −3− 4(x+ 1) = 2(x+ 4) + 8

17. 9− (6x− 8) = −8(6x− 8)

18. −9− (7x− 9) = −2(−3x+ 1)

19. (3x− 1)− (7x− 9) = −2x− 6

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

20. −8− 8(x− 3) = 5(x+ 9) + 7

21. (7x− 9)− (9x+ 4) = −3x+ 2

22. (−4x− 6) + (−9x+ 5) = 0

23. −5− (9x+ 4) = 8(−7x− 7)

24. (8x− 3) + (−3x+ 9) = −4x− 7

In Exercises 25-36, solve each of the
given equations for x. Check your solu-
tions using your calculator.

25. −3.7x− 1 = 8.2x− 5

26. 8.48x− 2.6 = −7.17x− 7.1

27. −2
3x+ 8 = 4

5x+ 4

28. −8.4x = −4.8x+ 2

29. −3
2x+ 9 = 1

4x+ 7

30. 2.9x− 4 = 0.3x− 8

31. 5.45x+ 4.4 = 1.12x+ 1.6

32. −1
4x+ 5 = −4

5x− 4

33. −3
2x− 8 = 2

5x− 2

34. −4
3x− 8 = −1

4x+ 5

35. −4.34x− 5.3 = 5.45x− 8.1

36. 2
3x− 3 = −1

4x− 1
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In Exercises 37-50, solve each of the
given equations for the indicated vari-
able.

37. P = IRT for R

38. d = vt for t

39. v = v0 + at for a

40. x = v0 + vt for v

41. Ax+By = C for y

42. y = mx+ b for x

43. A = πr2 for π

44. S = 2πr2 + 2πrh for h

45. F = kqq0
r2

for k

46. C = Q

mT
for T

47. V
t

= k for t

48. λ = h

mv
for v

49. P1V1
n1T1

= P2V2
n2T2

for V2

50. π = nRT
V
i for n

51. Tie a ball to a string and whirl it
around in a circle with constant speed.
It is known that the acceleration of the
ball is directly toward the center of the
circle and given by the formula

a = v
2

r
, (1)

where a is acceleration, v is the speed of
the ball, and r is the radius of the circle

of motion.

i. Solve formula (1) for r.
ii. Given that the acceleration of the ball

is 12 m/s2 and the speed is 8 m/s, find
the radius of the circle of motion.

52. A particle moves along a line with
constant acceleration. It is known the
velocity of the particle, as a function of
the amount of time that has passed, is
given by the equation

v = v0 + at, (2)

where v is the velocity at time t, v0 is the
initial velocity of the particle (at time
t = 0), and a is the acceleration of the
particle.

i. Solve formula (2) for t.
ii. You know that the current velocity

of the particle is 120 m/s. You also
know that the initial velocity was 40 m/s
and the acceleration has been a con-
stant a = 2 m/s2. How long did it
take the particle to reach its current
velocity?

53. Like Newton’s Universal Law of Grav-
itation, the force of attraction (repulsion)
between two unlike (like) charged parti-
cles is proportional to the product of the
charges and inversely proportional to the
distance between them.

F = kC
q1q2
r2

(3)

In this formula, kC ≈ 8.988×109 Nm2/C2

and is called the electrostatic constant.
The variables q1 and q2 represent the charges
(in Coulombs) on the particles (which
could either be positive or negative num-
bers) and r represents the distance (in
meters) between the charges. Finally, F
represents the force of the charge, mea-
sured in Newtons.
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i. Solve formula (3) for r.
ii. Given a force F = 2.0 × 1012 N, two

equal charges q1 = q2 = 1 C, find the
approximate distance between the two
charged particles.
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1.2 Solutions

1.

45x+ 12 = 0
=⇒ 45x = −12

=⇒ x = −12
45 = − 4

15

3.

x− 7 = −6x+ 4
=⇒ x+ 6x = 4 + 7
=⇒ 7x = 11

=⇒ x = 11
7

5.

37x+ 39 = 0
=⇒ 37x = −39

=⇒ x = −39
37

7.

74x− 6 = 91
=⇒ 74x = 97

=⇒ x = 97
74

9.

− 88x+ 13 = −21
=⇒ − 88x = −34

=⇒ x = −34
−88 = 17

44
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11.

19x+ 35 = 10
=⇒ 19x = −25

=⇒ x = −25
19

13.

6− 3(x+ 1) = −4(x+ 6) + 2
=⇒ 6− 3x− 3 = −4x− 24 + 2
=⇒ − 3x+ 3 = −4x− 22
=⇒ − 3x+ 4x = −22− 3
=⇒ x = −25

15.

− 7 − (5x− 3) = 4(7x+ 2)
=⇒ − 7 − 5x+ 3 = 28x+ 8
=⇒ − 5x− 4 = 28x+ 8
=⇒ − 5x− 28x = 8 + 4
=⇒ − 33x = 12

=⇒ x = −12
33 = − 4

11

17.

9− (6x− 8) = −8(6x− 8)
=⇒ 9− 6x+ 8 = −48x+ 64
=⇒ − 6x+ 17 = −48x+ 64
=⇒ − 6x+ 48x = 64− 17
=⇒ 42x = 47

=⇒ x = 47
42
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19.

(3x− 1)− (7x− 9) = −2x− 6
=⇒ 3x− 1− 7x+ 9 = −2x− 6
=⇒ − 4x+ 8 = −2x− 6
=⇒ − 4x+ 2x = −6− 8
=⇒ − 2x = −14
=⇒ x = 7

21.

(7x− 9)− (9x+ 4) = −3x+ 2
=⇒ 7x− 9− 9x− 4 = −3x+ 2
=⇒ − 2x− 13 = −3x+ 2
=⇒ − 2x+ 3x = 2 + 13
=⇒ x = 15

23.

− 5− (9x+ 4) = 8(−7x− 7)
=⇒ − 5− 9x− 4 = −56x− 56
=⇒ − 9x− 9 = −56x− 56
=⇒ − 9x+ 56x = −56 + 9
=⇒ 47x = −47
=⇒ x = −1

25. First clear decimals by multiplying by 10.

− 3.7x− 1 = 8.2x− 5
=⇒ − 37x− 10 = 82x− 50
=⇒ − 37x− 82x = −50 + 10
=⇒ − 119x = −40

=⇒ x = 40
119

Here is a check of the solutions on the graphing calculator. The left-hand side of the
equation is evaluated at the solution in (a), the right-hand side of the equation is
evaluated at the solution in (b). Note that they match.
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(a) (b)

27. First clear fractions by multiplying by 15.

− 2
3x+ 8 = 4

5x+ 4

=⇒ − 10x+ 120 = 12x+ 60
=⇒ − 10x− 12x = 60− 120
=⇒ − 22x = −60

=⇒ x = −60
−22 = 30

11
Here is a check of the solutions on the graphing calculator. The left-hand side of the
equation is evaluated at the solution in (a), the right-hand side of the equation is
evaluated at the solution in (b). Note that they match.

(a) (b)

29. First clear fractions by multiplying by 4.

− 3
2x+ 9 = 1

4x+ 7

=⇒ − 6x+ 36 = x+ 28
=⇒ − 6x− x = 28− 36
=⇒ − 7x = −8

=⇒ x = 8
7

Here is a check of the solutions on the graphing calculator. The left-hand side of the
equation is evaluated at the solution in (a), the right-hand side of the equation is
evaluated at the solution in (b). Note that they match.
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(a) (b)

31. First clear decimals by multiplying by 100.

5.45x+ 4.4 = 1.12x+ 1.6
=⇒ 545x+ 440 = 112x+ 160
=⇒ 545x− 112x = 160− 440
=⇒ 433x = −280

=⇒ x = −280
433

Here is a check of the solutions on the graphing calculator. The left-hand side of the
equation is evaluated at the solution in (a), the right-hand side of the equation is
evaluated at the solution in (b). Note that they match.

(a) (b)

33. First clear fractions by multiplying by 10.

− 3
2x− 8 = 2

5x− 2

=⇒ − 15x− 80 = 4x− 20
=⇒ − 15x− 4x = −20 + 80
=⇒ − 19x = 60

=⇒ x = −60
19

Here is a check of the solutions on the graphing calculator. The left-hand side of the
equation is evaluated at the solution in (a), the right-hand side of the equation is
evaluated at the solution in (b). Note that they match.
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(a) (b)

35. First clear decimals by multiplying by 100.

− 4.34x− 5.3 = 5.45x− 8.1
=⇒ − 434x− 530 = 545x− 810
=⇒ − 434x− 545x = −810 + 530
=⇒ − 979x = −280

=⇒ x = 280
979

Here is a check of the solutions on the graphing calculator. The left-hand side of the
equation is evaluated at the solution in (a), the right-hand side of the equation is
evaluated at the solution in (b). Note that they match.

(a) (b)

37.

P = IRT
=⇒ P = (IT )R

=⇒ P

IT
= (IT )R
IT

=⇒ P

IT
= R
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39.

v = v0 + at
=⇒ v − v0 = at

=⇒ v − v0
t

= a

41.

Ax+By = C
=⇒ By = C −Ax

=⇒ y = C −Ax
B

43.

A = πr2

=⇒ A

r2
= π

45.

F = kqq0
r2

=⇒ Fr2 = kqq0

=⇒ Fr2

qq0
= k

47.
V

t
= k

=⇒ V = kt

=⇒ V

k
= t

49. Cross multiply, then divide by the coefficient of V2.
P1V1
n1T1

= P2V2
n2T2

=⇒ n2P1V1T2 = n1P2V2T1

=⇒ n2P1V1T2
n1P2T1

= V2
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51. Cross multiply, then divide by the coefficient of r.

a = v
2

r
ar = v2

r = v
2

a

To find the radius, substitute the acceleration a = 12 m/s2 and speed v = 8 m/s.

r = v
2

a
= (8)2

12 = 64
12 = 16

3

Hence, the radius is r = 16/3 m, or 51
3 meters.

53. Cross multiply, then divide by the coefficient of r.

F = kC
q1q2
r2

Fr2 = kCq1q2

r2 = kCq1q2
F

Finally, to find r, take the square root.

r =
√
kCq1q2
F

To find the distance between the charged particles, substitute kC = 8.988×109 Nm2/C2,
q1 = q2 = 1 C, and F = 2.0× 1012 N.

r =
√

(8.988× 109)(1)(1)
2.0× 1012

A calculator produces an approximation, r ≈ 0.067 meters.
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1.3 Exercises

Perform each of the following tasks in
Exercises 1-4.

i. Write out in words the meaning of
the symbols which are written in set-
builder notation.

ii. Write some of the elements of this set.
iii. Draw a real line and plot some of the

points that are in this set.

1. A = {x ∈ N : x > 10}

2. B = {x ∈ N : x ≥ 10}

3. C = {x ∈ Z : x ≤ 2}

4. D = {x ∈ Z : x > −3}

In Exercises 5-8, use the sets A, B, C,
andD that were defined in Exercises 1-
4. Describe the following sets using set
notation, and draw the corresponding Venn
Diagram.

5. A ∩B

6. A ∪B

7. A ∪ C.

8. C ∩D.

In Exercises 9-16, use both interval and
set notation to describe the interval shown
on the graph.

9.

3

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

10.

0

11.

−7

12.

1

13.

0

14.

1

15.

−8

16.

9

In Exercises 17-24, sketch the graph of
the given interval.

17. [2, 5)

18. (−3, 1]

19. [1,∞)
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20. (−∞, 2)

21. {x : −4 < x < 1}

22. {x : 1 ≤ x ≤ 5}

23. {x : x < −2}

24. {x : x ≥ −1}

In Exercises 25-32, use both interval
and set notation to describe the inter-
section of the two intervals shown on the
graph. Also, sketch the graph of the in-
tersection on the real number line.

25.

1
−3

26.

−6
−3

27.

2

−4

28.

11
8

29.

−6
2

30.

1
5

31.

9
5

32.

−14

−6

In Exercises 33-40, use both interval
and set notation to describe the union
of the two intervals shown on the graph.
Also, sketch the graph of the union on
the real number line.

33.

−10
−8

34.

−3
−2

35.

15
9
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36.

5
14

37.

−5
3

38.

11
9

39.

10
9

40.

7
−2

In Exercises 41-56, use interval nota-
tion to describe the given set. Also, sketch
the graph of the set on the real number
line.

41. {x : x ≥ −6 and x > −5}

42. {x : x ≤ 6 and x ≥ 4}

43. {x : x ≥ −1 or x < 3}

44. {x : x > −7 and x > −4}

45. {x : x ≥ −1 or x > 6}

46. {x : x ≥ 7 or x < −2}

47. {x : x ≥ 6 or x > −3}

48. {x : x ≤ 1 or x > 0}

49. {x : x < 2 and x < −7}

50. {x : x ≤ −3 and x < −5}

51. {x : x ≤ −3 or x ≥ 4}

52. {x : x < 11 or x ≤ 8}

53. {x : x ≥ 5 and x ≤ 1}

54. {x : x < 5 or x < 10}

55. {x : x ≤ 5 and x ≥ −1}

56. {x : x > −3 and x < −6}
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1.3 Solutions

1.

i. A is the set of all x in the natural numbers such that x is greater than 10.
ii. A = {11, 12, 13, 14, . . .}
iii.

11 17

3.

i. C is the set of all x in the integers such that x is less than or equal to 2.
ii. C = {. . . ,−4,−3,−2,−1, 0, 1, 2}
iii.

−4 2

5. A ∩B = {x ∈ N : x > 10} = {11, 12, 13, . . .}

A

B

7. A ∪ C = {x ∈ Z : x ≤ 2 or x > 10} = {. . . ,−3,−2− 1, 0, 1, 2, 11, 12, 13 . . .}

A C

9. The filled circle at the endpoint 3 indicates this point is included in the set. Thus,
the set in interval notation is [3,∞), and in set notation {x : x ≥ 3}.

11. The empty circle at the endpoint −7 indicates this point is not included in the
set. Thus, the set in interval notation is (−∞,−7), and in set notation is {x : x < −7}.

13. The empty circle at the endpoint 0 indicates this point is not included in the set.
Thus, the set in interval notation is (0,∞), and in set notation is {x : x > 0}.
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15. The empty circle at the endpoint −8 indicates this point is not included in the
set. Thus, the set in interval notation is (−8,∞), and in set notation is {x : x > −8}.

17.

2 5

19.

1

21.

−4 1

23.

−2

25. The intersection is the set of points that are in both intervals (shaded on both
graphs).
Graph of the intersection:

1

[1,∞) = {x : x ≥ 1}

27. There are no points that are in both intervals (shaded in both), so there is no
intersection.
Graph of the intersection:

no intersection

29. The intersection is the set of points that are in both intervals (shaded in both).
Graph of the intersection:

−6 2

[−6, 2] = {x : −6 ≤ x ≤ 2}
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31. The intersection is the set of points that are in both intervals (shaded in both).
Graph of the intersection:

9

[9,∞) = {x : x ≥ 9}

33. The union is the set of all points that are in one interval or the other (shaded in
either graph).
Graph of the union:

−8

(−∞,−8] = {x : x ≤ −8}

35. The union is the set of all points that are in one interval or the other (shaded in
either graph).
Graph of the union:

159

(−∞, 9] ∪ (15,∞)
={x : x ≤ 9 or x > 15}

37. The union is the set of all points that are in one interval or the other (shaded in
either).
Graph of the union:

3

(−∞, 3) = {x : x < 3}

39. The union is the set of all points that are in one interval or the other (shaded in
either).
Graph of the union:

9

[9,∞) = {x : x ≥ 9}

41. This set is the same as {x : x > −5}, which is (−5,∞) in interval notation.
Graph of the set:

−5
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43. Every real number is in one or the other of the two intervals. Therefore, the set
is the set of all real numbers (−∞,∞). Graph of the set:

45. This set is the same as {x : x ≥ −1}, which is [−1,∞) in interval notation.
Graph of the set:

−1

47. This set is the same as {x : x > −3}, which is (−3,∞) in interval notation.
Graph of the set:

−3

49. This set is the same as {x : x < −7}, which is (−∞,−7) in interval notation.
Graph of the set:

−7

51. This set is the union of two intervals, (−∞,−3] ∪ [4,∞). Graph of the set:

4−3

53. There are no numbers that satisfy both inequalities. Thus, there is no intersection.
Graph of the set:

55. This set is the same as {x : −1 ≤ x ≤ 5}, which is [−1, 5] in interval notation.
Graph of the set:

−1 5
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1.4 Exercises

In Exercises 1-12, solve the inequality.
Express your answer in both interval and
set notations, and shade the solution on
a number line.

1. −8x− 3 ≤ −16x− 1

2. 6x− 6 > 3x+ 3

3. −12x+ 5 ≤ −3x− 4

4. 7x+ 3 ≤ −2x− 8

5. −11x− 9 < −3x+ 1

6. 4x− 8 ≥ −4x− 5

7. 4x− 5 > 5x− 7

8. −14x+ 4 > −6x+ 8

9. 2x− 1 > 7x+ 2

10. −3x− 2 > −4x− 9

11. −3x+ 3 < −11x− 3

12. 6x+ 3 < 8x+ 8

In Exercises 13-50, solve the compound
inequality. Express your answer in both
interval and set notations, and shade the
solution on a number line.

13. 2x− 1 < 4 or 7x+ 1 ≥ −4

14. −8x+ 9 < −3 and − 7x+ 1 > 3

15. −6x−4 < −4 and −3x+7 ≥ −5

16. −3x+ 3 ≤ 8 and − 3x− 6 > −6

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

17. 8x+ 5 ≤ −1 and 4x− 2 > −1

18. −x− 1 < 7 and − 6x− 9 ≥ 8

19. −3x+ 8 ≤ −5 or − 2x− 4 ≥ −3

20. −6x− 7 < −3 and − 8x ≥ 3

21. 9x− 9 ≤ 9 and 5x > −1

22. −7x+ 3 < −3 or − 8x ≥ 2

23. 3x− 5 < 4 and − x+ 9 > 3

24. −8x− 6 < 5 or 4x− 1 ≥ 3

25. 9x+ 3 ≤ −5 or − 2x− 4 ≥ 9

26. −7x+ 6 < −4 or − 7x− 5 > 7

27. 4x− 2 ≤ 2 or 3x− 9 ≥ 3

28. −5x+ 5 < −4 or − 5x− 5 ≥ −5

29. 5x+ 1 < −6 and 3x+ 9 > −4

30. 7x+ 2 < −5 or 6x− 9 ≥ −7

31. −7x− 7 < −2 and 3x ≥ 3

32. 4x+ 1 < 0 or 8x+ 6 > 9

33. 7x+ 8 < −3 and 8x+ 3 ≥ −9

34. 3x < 2 and − 7x− 8 ≥ 3

35. −5x+ 2 ≤ −2 and − 6x+ 2 ≥ 3

36. 4x− 1 ≤ 8 or 3x− 9 > 0

37. 2x− 5 ≤ 1 and 4x+ 7 > 7

38. 3x+ 1 < 0 or 5x+ 5 > −8
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39. −8x+ 7 ≤ 9 or − 5x+ 6 > −2

40. x− 6 ≤ −5 and 6x− 2 > −3

41. −4x− 8 < 4 or − 4x+ 2 > 3

42. 9x− 5 < 2 or − 8x− 5 ≥ −6

43. −9x− 5 ≤ −3 or x+ 1 > 3

44. −5x− 3 ≤ 6 and 2x− 1 ≥ 6

45. −1 ≤ −7x− 3 ≤ 2

46. 0 < 5x− 5 < 9

47. 5 < 9x− 3 ≤ 6

48. −6 < 7x+ 3 ≤ 2

49. −2 < −7x+ 6 < 6

50. −9 < −2x+ 5 ≤ 1

In Exercises 51-62, solve the given in-
equality for x. Graph the solution set on
a number line, then use interval and set-
builder notation to describe the solution
set.

51. −1
3 <
x

2 + 1
4 <

1
3

52. −1
5 <
x

2 −
1
4 <

1
5

53. −1
2 <

1
3 −
x

2 <
1
2

54. −2
3 ≤

1
2 −
x

5 ≤
2
3

55. −1 < x− x+ 1
5 < 2

56. −2 < x− 2x− 1
3 < 4

57. −2 < x+ 1
2 − x+ 1

3 ≤ 2

58. −3 < x− 1
3 − 2x− 1

5 ≤ 2

59. x < 4− x < 5

60. −x < 2x+ 3 ≤ 7

61. −x < x+ 5 ≤ 11

62. −2x < 3− x ≤ 8

63. Aeron has arranged for a demon-
stration of “How to make a Comet” by
Professor O’Commel. The wise profes-
sor has asked Aeron to make sure the
auditorium stays between 15 and 20 de-
grees Celsius (C). Aeron knows the ther-
mostat is in Fahrenheit (F) and he also
knows that the conversion formula be-
tween the two temperature scales is C =
(5/9)(F − 32).

a) Setting up the compound inequality
for the requested temperature range
in Celsius, we get 15 ≤ C ≤ 20. Us-
ing the conversion formula above, set
up the corresponding compound in-
equality in Fahrenheit.

b) Solve the compound inequality in part
(a) for F. Write your answer in set
notation.

c) What are the possible temperatures
(integers only) that Aeron can set the
thermostat to in Fahrenheit?
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1.4 Solutions

1.

− 8x− 3 ≤ −16x− 1
=⇒ − 8x+ 16x ≤ −1 + 3
=⇒ 8x ≤ 2

=⇒ x ≤ 1
4

Thus, the solution interval is (−∞, 1
4 ] = {x|x ≤ 1

4}.

1
4

3.

− 12x+ 5 ≤ −3x− 4
=⇒ − 12x+ 3x ≤ −4− 5
=⇒ − 9x ≤ −9
=⇒ x ≥ 1

Thus, the solution interval is [1,∞) = {x|x ≥ 1}.

1

5.

− 11x− 9 < −3x+ 1
=⇒ − 11x+ 3x < 1 + 9
=⇒ − 8x < 10

=⇒ x > −5
4

Thus, the solution interval is (−5
4 ,∞) = {x|x > −5

4}.

−5
4
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7.

4x− 5 > 5x− 7
=⇒ 4x− 5x > −7 + 5
=⇒ − x > −2
=⇒ x < 2

Thus, the solution interval is (−∞, 2) = {x|x < 2}.

2

9.

2x− 1 > 7x+ 2
=⇒ 2x− 7x > 2 + 1
=⇒ − 5x > 3

=⇒ x < −3
5

Thus, the solution interval is (−∞,−3
5) = {x|x < −3

5}.

−3
5

11.

− 3x+ 3 < −11x− 3
=⇒ − 3x+ 11x < −3− 3
=⇒ 8x < −6

=⇒ x < −3
4

Thus, the solution interval is (−∞,−3
4) = {x|x < −3

4}.

−3
4

13.

2x− 1 < 4 or 7x+ 1 ≥ −4
=⇒ 2x < 5 or 7x ≥ −5

=⇒ x <
5
2 or x ≥ −5

7
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5/2

−5/7

For the union, shade anything shaded in either graph. The solution is the set of all real
numbers (−∞,∞).

15.

− 6x− 4 < −4 and − 3x+ 7 ≥ −5
=⇒ − 6x < 0 and − 3x ≥ −12
=⇒ x > 0 and x ≤ 4
=⇒ 0 < x ≤ 4

0

4

The intersection is all points shaded in both graphs, so the solution is (0, 4] = {x|0 <
x ≤ 4}.

0 4

17.

8x+ 5 ≤ −1 and 4x− 2 > −1
=⇒ 8x ≤ −6 and 4x > 1

=⇒ x ≤ −3
4 and x >

1
4

−3/4

1/4

Shade all numbers that are shaded in both graphs. There are no such numbers, so the
solution set is empty. No solution.
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19.

− 3x+ 8 ≤ −5 or − 2x− 4 ≥ −3
=⇒ − 3x ≤ −13 or − 2x ≥ 1

=⇒ x ≥ 13
3 or x ≤ −1

2

13/3

−1/2

For the union, shade all points that are shaded in either graph:
(
−∞,−1

2

]⋃[13
3 ,∞

)
= {x|x ≤ −1

2 or x ≥ 13
3 }

−1
2

13
3

21.

9x− 9 ≤ 9 and 5x > −1
=⇒ 9x ≤ 18 and 5x > −1

=⇒ x ≤ 2 and x > −1
5

2

−1/5

For the intersection, shade any points that are shaded in both graphs. The solution set
is (−1

5 , 2] = {x|− 1
5 < x ≤ 2}.

−1
5

2

23.

3x− 5 < 4 and − x+ 9 > 3
=⇒ 3x < 9 and − x > −6
=⇒ x < 3 and x < 6

3



Section 1.4 Compound Inequalities

Version: Fall 2007

6

For the intersection, shade all points shaded in both graphs. The solution set is
(−∞, 3) = {x|x < 3}.

3

25.

9x+ 3 ≤ −5 or − 2x− 4 ≥ 9
=⇒ 9x ≤ −8 or − 2x ≥ 13

=⇒ x ≤ −8
9 or x ≤ −13

2

−8/9

−13/2

Note that −8
9 > −

13
2 . For the union, shade any points that are shaded in either graph.

The solution set is (−∞,−8
9 ] = {x|x ≤ −8

9}.

−8
9

27.

4x− 2 ≤ 2 or 3x− 9 ≥ 3
=⇒ 4x ≤ 4 or 3x ≥ 12
=⇒ x ≤ 1 or x ≥ 4

1

4

For the union, shade any points that are shaded in either graph:

(−∞, 1]
⋃

[4,∞) = {x|x ≤ 1 or x ≥ 4}

1 4
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29.

5x+ 1 < −6 and 3x+ 9 > −4
=⇒ 5x < −7 and 3x > −13

=⇒ x < −7
5 and x > −13

3

−7/5

−13/3

For the intersection, shade any points that are shaded in both graphs. The solution set
is (−13

3 ,−
7
5) = {x|− 13

3 < x < −
7
5}.

−13
3 −7

5

31.

− 7x− 7 < −2 and 3x ≥ 3
=⇒ − 7x < 5 and 3x ≥ 3

=⇒ x > −5
7 and x ≥ 1

−5/7

1

For the intersection, shade any points that are shaded in both graphs. The solution set
is [1,∞) = {x|x ≥ 1}.

1

33.

7x+ 8 < −3 and 8x+ 3 ≥ −9
=⇒ 7x < −11 and 8x ≥ −12

=⇒ x < −11
7 and x ≥ −3

2

−11/7
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−3/2

For the intersection, shade all points that are shaded in both graphs. There are no
such points, so there is no intersection.

35.

− 5x+ 2 ≤ −2 and − 6x+ 2 ≥ 3
=⇒ − 5x ≤ −4 and − 6x ≥ 1

=⇒ x ≥ 4
5 and x ≤ −1

6

4/5

−1/6

For the intersection, shade all points that are shaded in both graphs. There are no
such points, so there is no solution.

37.

2x− 5 ≤ 1 and 4x+ 7 > 7
=⇒ 2x ≤ 6 and 4x > 0
=⇒ x ≤ 3 and x > 0

3

0

For the intersection, shade all points that are shaded in both graphs. Thus, the solution
set is (0, 3] = {x|0 < x ≤ 3}.

0 3
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39.

− 8x+ 7 ≤ 9 or − 5x+ 6 > −2
=⇒ − 8x ≤ 2 or − 5x > −8

=⇒ x ≥ −1
4 or x <

8
5

−1/4

8/5

For the union, shade all points that are shaded in either graph. Every number is shaded
in one graph or the other, so the solution is the set of all real numbers (−∞,∞).

41.

− 4x− 8 < 4 or − 4x+ 2 > 3
=⇒ − 4x < 12 or − 4x > 1

=⇒ x > −3 or x < −1
4

−3

−1/4

For the union, shade all numbers that are shaded in either graph. Every number is
shaded in one of the graphs, so the solution is the set of all real numbers (−∞,∞).

43.

− 9x− 5 ≤ −3 or x+ 1 > 3
=⇒ − 9x ≤ 2 or x > 2

=⇒ x ≥ −2
9 or x > 2

−2/9

2
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For the union, shade all numbers that shaded in either graph. The solution interval is
[−2

9 ,∞) = {x|x ≥ −2
9}.

−2
9

45.

− 1 ≤ −7x− 3 ≤ 2
=⇒ 2 ≤ −7x ≤ 5

=⇒ − 2
7 ≥ x ≥ −

5
7

=⇒ − 5
7 ≤ x ≤ −

2
7

Thus, the solution interval is [−5
7 ,−

2
7 ] = {x|− 5

7 ≤ x ≤ −
2
7}.

−5
7 −2

7

47.

5 < 9x− 3 ≤ 6
=⇒ 8 < 9x ≤ 9

=⇒ 8
9 < x ≤ 1

Thus, the solution interval is (8
9 , 1] = {x|89 < x ≤ 1}.

8
9

1

49.

− 2 < −7x+ 6 < 6
=⇒ − 8 < −7x < 0

=⇒ 8
7 > x > 0

=⇒ 0 < x < 8
7

Thus, the solution set is (0, 8
7 ){x|0 < x < 8

7}.

0 8
7
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51. Multiply by 12 to clear the fractions.

−1
3 <
x

2 + 1
4 <

1
3

12
(
−1

3

)
< 12
(
x

2 + 1
4

)
< 12
(1

3

)

−4 < 6x+ 3 < 4

Subtract 3 from all three members, then divide all three members of the resulting
inequality by 6.

−7 < 6x < 1
−7

6 < x <
1
6

Thus, the solution interval is (−7/6, 1/6), or equivalently, {x : −7/6 < x < 1/6}.

−7/6 1/6

53. Multiply by 6 to clear the fractions.

−1
2 <

1
3 −
x

2 <
1
2

6
(
−1

2

)
< 6
(1

3 −
x

2

)
< 6
(1

2

)

−3 < 2− 3x < 3

Subtract 2 from all three members, then divide all three members of the resulting
inequality by −3. Remember to reverse the inequality symbols.

−5 < −3x < 1
5
3 > x > −

1
3

It is conventional to change the order of this solution to match the order of the shaded
solution on the number line. So, equivalently,

−1
3 < x <

5
3 .

Thus, the solution interval is (−1/3, 5/3), or equivalently, {x : −1/3 < x < 5/3}.

−1/3 5/3
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55. Multiply by 5 to clear the fractions.

−1 < x− x+ 1
5 < 2

5(−1) < 5
(
x− x+ 1

5

)
< 5(2)

−5 < 5x− (x+ 1) < 10
−5 < 5x− x− 1 < 10
−5 < 4x− 1 < 10

Add 1 to all three members, then divide all three members of the resulting inequality
by 4.

−4 < 4x < 11
−1 < x < 11

4
Thus, the solution interval is (−1, 11/4), or equivalently, {x : −1 < x < 11/4}.

−1 11/4

57. Multiply by 6 to clear the fractions.

−2 < x+ 1
2 − x+ 1

3 ≤ 2

6(−2) < 6
(
x+ 1

2 − x+ 1
3

)
≤ 6(2)

−12 < 3(x+ 1)− 2(x+ 1) ≤ 12
−12 < 3x+ 3− 2x− 2 ≤ 12
−12 < x+ 1 ≤ 12

Subtract 1 from all three members.

−13 < x ≤ 11

Thus, the solution interval is (−13, 11], or equivalently, {x : −13 < x ≤ 11}.

−13 11

59. We’ll need to split the compound inequality

x < 4− x < 5

and write it using “and.” Then we can solve each part independently.
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x < 4− x and 4− x < 5
2x < 4 and − x < 1
x < 2 and x > −1

Thus, the solution interval is (−1, 2), or equivalently, {x : −1 < x < 2}.

−1 2

61. We’ll want to split the compound inequality

−x < x+ 5 ≤ 11

and write it using “and.” Then we can solve each part independently.

− x < x+ 5 and x+ 5 ≤ 11
− 2x < 5 and x ≤ 6
x > −5/2

Thus, the solution interval is (−5/2, 6], or equivalently, {x : −5/2 < x ≤ 6}.

−5/2 6

63.

a) 15 ≤ 5
9(F − 32) ≤ 20

b)

15 ≤ 5
9(F − 32) ≤ 20

=⇒ 9(15) ≤ (9)5
9(F − 32) ≤ (9)20

=⇒ 135 ≤ 5(F − 32) ≤ 180
=⇒ 135 ≤ 5F − 160 ≤ 180
=⇒ 295 ≤ 5F ≤ 340

=⇒ 295
5 ≤

5F
5 ≤

340
5

=⇒ 59 ≤ F ≤ 68

The solution is {F |59 ≤ F ≤ 68}.

c) In roster form, the solutions are {59, 60, 61, 62, 63, 64, 65, 66, 67, 68}.
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2.1 Exercises

In Exercises 1-6, state the domain and
range of the given relation.

1. R = {(1, 3), (2, 4), (3, 4)}

2. R = {(1, 3), (2, 4), (2, 5)}

3. R = {(1, 4), (2, 5), (2, 6)}

4. R = {(1, 5), (2, 4), (3, 6)}

5.

x
5

y
5

6.

x
5

y
5

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

In Exercises 7-12, create a mapping di-
agram for the given relation and state
whether or not it is a function.

7. The relation in Exercise 1.

8. The relation in Exercise 2.

9. The relation in Exercise 3.

10. The relation in Exercise 4.

11. The relation in Exercise 5.

12. The relation in Exercise 6.

13. Given that g takes a real number
and doubles it, then g : x −→?.

14. Given that f takes a real number
and divides it by 3, then f : x −→ ?.

15. Given that g takes a real number
and adds 3 to it, then g : x −→ ?.

16. Given that h takes a real number
and subtracts 4 from it, then h : x −→ ?.

17. Given that g takes a real number,
doubles it, then adds 5, then g : x −→ ?.

18. Given that h takes a real number,
subtracts 3 from it, then divides the re-
sult by 4, then h : x −→ ?.

Given that the function f is defined by
the rule f : x −→ 3x − 5, determine
where the input number is mapped in
Exercises 19-22.

19. f : 3 −→ ?
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20. f : −5 −→ ?

21. f : a −→ ?

22. f : 2a+ 3 −→ ?

Given that the function f is defined by
the rule f : x −→ 4 − 5x, determine
where the input number is mapped in
Exercises 23-26.

23. f : 2 −→ ?

24. f : −3 −→ ?

25. f : a −→ ?

26. f : 2a+ 11 −→ ?

Given that the function f is defined by
the rule f : x −→ x2 − 4x − 6, deter-
mine where the input number is mapped
in Exercises 27-30.

27. f : 1 −→ ?

28. f : −2 −→ ?

29. f : −1 −→ ?

30. f : a −→ ?

Given that the function f is defined by
the rule f : x −→ 3x − 9, determine
where the input number is mapped in
Exercises 31-34.

31. f : a −→ ?

32. f : a+ 1 −→ ?

33. f : 2a− 5 −→ ?

34. f : a+ h −→ ?

Given that the functions f and g are de-
fined by the rules f : x −→ 2x + 3 and
g : x −→ 4− x, determine where the in-
put number is mapped in Exercises 35-
38.

35. f : 2 −→ ?

36. g : 2 −→ ?

37. f : a+ 1 −→ ?

38. g : a− 3 −→ ?

39. Given that g takes a real number
and triples it, then g(x) = ?.

40. Given that f takes a real number
and divides it by 5, then f(x) = ?.

41. Given that g takes a real number
and subtracts it from 10, then g(x) = ?.

42. Given that f takes a real number,
multiplies it by 5 and then adds 4 to the
result, then f(x) = ?.

43. Given that f takes a real number,
doubles it, then subtracts the result from
11, then f(x) = ?.

44. Given that h takes a real number,
doubles it, adds 5, then takes the square
root of the result, then h(x) = ?.

In Exercises 45-54, evaluate the given
function at the given value b.

45. f(x) = 12x+ 2 for b = 6.

46. f(x) = −11x− 4 for b = −3.

47. f(x) = −9x− 1 for b = −5.

48. f(x) = 11x+ 4 for b = −4.
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49. f(x) = 4 for b = −12.

50. f(x) = 7 for b = −7.

51. f(x) = 0 for b = −7.

52. f(x) = 12x+ 8 for b = −3.

53. f(x) = −9x+ 3 for b = −1.

54. f(x) = 6x− 3 for b = 3.

In Exercises 55-58, given that the func-
tion f is defined by the rule f(x) = 2x+
7, determine where the input number is
mapped.

55. f(a) = ?

56. f(a+ 1) = ?

57. f(3a− 2) = ?

58. f(a+ h) = ?

In Exercises 59-62, given that the func-
tion g is defined by the rule g(x) = 3 −
2x, determine where the input number is
mapped.

59. g(a) = ?

60. g(a+ 3) = ?

61. g(2− 5a) = ?

62. g(a+ h) = ?

Given that the functions f and g are
defined by the rules f(x) = 1 − x and
g(x) = 2x+ 13, determine where the in-
put number is mapped in Exercises 63-
66.

63. f(a) = ?

64. g(a) = ?

65. f(a+ 3) = ?

66. g(4− a) = ?

Given that the functions f and g are de-
fined by the rules f(x) = 3x + 4 and
g(x) = 2x−5, determine where the input
number is mapped in Exercises 67-70.

67. f(g(2)) = ?

68. g(f(2)) = ?

69. f(g(a)) = ?

70. g(f(a)) = ?

Given that the functions f and g are de-
fined by the rules f(x) = 2x − 9 and
g(x) = 11, determine where the input
number is mapped in Exercises 71-74.

71. f(g(2)) = ?

72. g(f(2)) = ?

73. f(g(a)) = ?

74. g(f(a)) = ?

Use set-builder notation to describe the
domain of each of the functions defined
in Exercises 75-78.

75. f(x) = 93
x+ 98

76. f(x) = 54
x+ 65

77. f(x) = − 87
x− 88

78. f(x) = − 30
x− 52
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Use set-builder and interval notation to
describe the domain of the functions de-
fined in Exercises 79-82.

79. f(x) =
√
x+ 69

80. f(x) =
√
x+ 62

81. f(x) =
√
x− 81

82. f(x) =
√
x− 98

Two integers are said to be relatively prime
if their greatest common divisor is 1. For
example, the greatest common divisor of
6 and 35 is 1, so 6 and 35 are relatively
prime. On the other hand, the greatest
common divisor of 14 and 21 is not 1
(it is 7), so 14 and 21 are not relatively
prime. The Euler φ-function is defined
as follows:

• If n = 1, then φ(n) = 1.
• If n > 1, then φ(n) is the number of

positive integers less than n that are
relatively prime to n. In Exercises 83-
84, evaluate the Euler φ-function at
the given input.

83. φ(12)

84. φ(36)
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2.1 Answers

1. Domain = {1, 2, 3}, Range = {3, 4}

3. Domain = {1, 2}, Range = {4, 5, 6}

5. Domain = {1, 2, 3}, Range = {1, 2, 3, 4}

7.

R

1
2
3

3
4

Function.

9.

R

1
2

4
5
6

Not a function.

11.

R

1
2
3

1
2
3
4

Not a function.

13. g : x −→ 2x

15. g : x −→ x+ 3

17. g : x −→ 2x+ 5

19. f : 3 −→ 4

21. f : a −→ 3a− 5

23. f : 2 −→ −6

25. f : a −→ 4− 5a

27. f : 1 −→ −9

29. f : −1 −→ −1

31. f : a −→ 3a− 9

33. f : 2a− 5 −→ 6a− 24

35. f : 2 −→ 7

37. f : a+ 1 −→ 2a+ 5

39. g(x) = 3x

41. g(x) = 10− x

43. f(x) = 11− 2x

45. 74

47. 44

49. 4

51. 0

53. 12

55. f(a) = 2a+ 7

57. f(3a− 2) = 6a+ 3

59. g(a) = 3− 2a

61. g(2− 5a) = 10a− 1

63. f(a) = 1− a

65. f(a+ 3) = −a− 2
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67. f(g(2)) = 1

69. f(g(a)) = 6a− 11

71. f(g(2)) = 13

73. f(g(a)) = 13

75. Domain = {x : x $= −98}

77. Domain = {x : x $= 88}

79. Domain = [−69,∞) = {x : x ≥
−69}

81. Domain = [81,∞) = {x : x ≥ 81}

83. φ(12) = 4
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2.2 Exercises

Perform each of the following tasks for
the functions defined by the equations in
Exercises 1-8.

i. Set up a table of points that satisfy
the given equation. Please place this
table of points next to your graph on
your graph paper.

ii. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis, then plot each of the points from
your table on your coordinate system.

iii. If you are confident that you “see”
the shape of the graph, make a “leap
of faith” and plot all pairs that sat-
isfy the given equation by drawing
a smooth curve (free-hand) on your
coordinate system that contains all
previously plotted points (use a ruler
only if the graph of the equation is
a line). If you are not confident that
you “see” the shape of the graph, then
add more points to your table, plot
them on your coordinate system, and
see if this helps. Continue this process
until you “see” the shape of the graph
and can fill in the rest of the points
that satisfy the equation by drawing
a smooth curve (or line) on your co-
ordinate system.

1. f(x) = 2x+ 1

2. f(x) = 1− x

3. f(x) = 3− 1
2 x

4. f(x) = −1 + 1
2 x

5. f(x) = x2 − 2

6. f(x) = 4− x2

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

7. f(x) = 1
2 x

2 − 6

8. f(x) = 8− 1
2 x

2

Perform each of the following tasks for
the functions Exercises 9-10.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

ii. Use the table feature of your graph-
ing calculator to evaluate the func-
tion at the given values of x. Record
these results in a table next to your
coordinate system on your graph pa-
per.

iii. Plot the points in the table on your
coordinate system then use them to
draw the graph of the given function.
Label the graph with its equation.

9. f(x) =
√
x− 4 at x = 4, 5, 6, 7, 8,

9, and 10.

10. f(x) =
√

4− x at x = −10, −8,
−6, −4, −2, 0, 2, and 4.

In Exercises 11-14, the graph of the
given function is a parabola, a graph that
has a “U-shape.” A parabola has only
one turning point. For each exercise, per-
form the following tasks.

i. Load the equation into the Y= menu
of your graphing calculator. Adjust
the WINDOW parameters so that the
“turning point” (actually called the
vertex) is visible in the viewing win-
dow.

ii. Make a reasonable copy of the image
in the viewing window on your home-
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work paper. Draw all lines with a
ruler (including the axes), but draw
curves freehand. Label and scale each
axis with xmin, xmax, ymin, and ymax.
Label the graph with its equation.

11. f(x) = x2 − x− 30

12. f(x) = 24− 2x− x2

13. f(x) = 11 + 10x− x2

14. f(x) = x2 + 11x− 12

Each of the equations in Exercises 15-
18 are called “cubic polynomials.” Each
equation has been carefully chosen so that
its graph has exactly two “turning points.”
For each exercise, perform each of the
following tasks.

i. Load the equation into the Y= menu
of your graphing calculator and ad-
just the WINDOW parameters so that
both “turning points” are visible in
the viewing window.

ii. Make a reasonable copy of the graph
in the viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
then label the graph with its equa-
tion. Remember to draw all lines with
a ruler.

15. f(x) = x3 − 2x2 − 29x+ 30

16. f(x) = −x3 + 2x2 + 19x− 20

17. f(x) = x3 + 8x2 − 53x− 60

18. f(x) = −x3 + 16x2 − 43x− 60

Perform each of the following tasks for
the equations in Exercises 19-22.

i. Load the equation into the Y= menu.
Adjust the WINDOW parameters until
you think all important behavior (“turn-
ing points,” etc.) is visible in the
viewing window. Note: This is more
difficult than it sounds, particularly
when we have no advance notion of
what the graph might look like. How-
ever, experiment with several settings
until you “discover” the settings that
exhibit the most important behavior.

ii. Copy the image on the screen onto
your homework paper. Label and scale
each axis with xmin, xmax, ymin, and
ymax. Label the graph with its equa-
tion.

19. f(x) = 2x2 − x− 465

20. f(x) = x3 − 24x2 + 65x+ 1050

21. f(x) = x4 − 2x3 − 168x2 + 288x+
3456

22. f(x) = −x4−3x3 +141x2 +523x−
660
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2.2 Answers

1.

x f(x) = 2x+ 1 (x, f(x))
−2 −3 (−2,−3)
−1 −1 (−1,−1)
0 1 (0, 1)
1 3 (1, 3)

x
5

y
5 f(x)=2x+1

3.

x f(x) = 3− x/2 (x, f(x))
−2 4 (−2, 4)
0 3 (0, 3)
2 2 (2, 2)
4 1 (4, 1)

x
5

y
5f(x)=3−x/2

5.

x f(x) = x2 − 2 (x, f(x))
−3 7 (−3, 7)
−2 2 (−2, 2)
−1 −1 (−1,−1)
0 −2 (0,−2)
1 −1 (1,−1)
2 2 (2, 2)
3 7 (3, 7)

x
10

y
10 f(x)=x2−2

7.

x f(x) = x2/2− 6 (x, f(x))
−4 2 (−4, 2)
−2 −4 (−2,−4)
0 −6 (0,−6)
2 −4 (2,−4)
4 2 (4, 2)
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x
10

y
10 f(x)=x2/2−6

9.

x f(x) =
√
x− 4 (x, f(x))

4 0 (4, 0)
5 1 (5, 1)
6 1.4142 (6, 1.4142)
7 1.7321 (7, 1.7321)
8 2 (8, 2)
9 2.2361 (9, 2.2361)
10 2.4495 (10, 2.4495)

x
10

y
10

f(x)=
√
x−4

11.

x
−10 10

y

−50

50
f(x)=x2−x−30

13.

x
−5 15

y

−50

50

f(x)=11+10x−x2

15.

x
−10 10

y

−100

100
f(x)=x3−2x2−29x+30
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17.

x
−15 10

y

−400

400

f(x)=x3+8x2−53x−60

19.

x
−20 20

y

−600

600

f(x)=2x2−x−465

21.

x
−15 15

y

−6000

6000

f(x)=x4−2x3−168x2+288x+3456
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2.3 Exercises

For Exercises 1-6, perform each of the
following tasks.

i. Make a copy of the graph on a sheet
of graph paper and apply the vertical
line test.

ii. Write a complete sentence stating whether
or not the graph represents a func-
tion. Explain the reason for your re-
sponse.

1.

x

y

5

5

2.

x

y

5

5

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

3.

x

y

5

5

4.

x

y

5

5

5.

x

y

5

5
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6.

x

y

5

5

In Exercises 7-12, perform each of the
following tasks.

i. Make an exact copy of the graph of
the function f on a sheet of graph pa-
per. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Use the technique of Examples 3 and
4 in the narrative to evaluate the func-
tion at the given value. Draw and la-
bel the arrows as shown in Figures 4
and 5 in the narrative.

7. Use the graph of f to determine f(2).

x

y

5

5

f

8. Use the graph of f to determine f(3).

x

y

5

5

f

9. Use the graph of f to determine f(−2).

x

y

5

5

f

10. Use the graph of f to determine
f(1).

x

y

5

5

f
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11. Use the graph of f to determine
f(1).

x

y

5

5

f

12. Use the graph of f to determine
f(−2).

x

y

5

5

f

In Exercises 13-18, perform each of the
following tasks.

i. Make an exact copy of the graph of
the function f on a sheet of graph pa-
per. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Use the technique of Example 5 in the
narrative to find the value of x that
maps onto the given value. Draw and
label the arrows as shown in Figure 6
in the narrative.

13. Use the graph of f to solve the
equation f(x) = −2.

x

y

5

5

f

14. Use the graph of f to solve the
equation f(x) = 1.

x

y

5

5

f

15. Use the graph of f to solve the
equation f(x) = 2.

x

y

5

5
f
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16. Use the graph of f to solve the
equation f(x) = −2.

x

y

5

5

f

17. Use the graph of f to solve the
equation f(x) = 2.

x

y

5

5f

18. Use the graph of f to solve the
equation f(x) = −3.

x

y

5

5

f

In the Exercises 19-22, perform each of
the following tasks.

i. Make a copy of the graph of f on a
sheet of graph paper. Label and scale
each axis.

ii. Using a different colored pen or pen-
cil, project each point on the graph
of f onto the x-axis. Shade the re-
sulting domain on the x-axis.

iii. Use both set-builder and interval no-
tation to describe the domain.

19.

x

y
5

5

f

20.

x

y
5

5
f
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21.

x

y
5

5

f

22.

x

y
5

5

f

In Exercises 23-26, perform each of the
following tasks.

i. Make a copy of the graph of f on a
sheet of graph paper. Label and scale
each axis.

ii. Using a different colored pen or pen-
cil, project each point on the graph
of f onto the y-axis. Shade the re-
sulting range on the y-axis.

iii. Use both set-builder and interval no-
tation to describe the range.

23.

x

y
5

5

f

24.

x

y
5

5

f

25.

x

y
5

5

f



134 Chapter 2 Functions

Version: Fall 2007

26.

x

y
5

5

f

In Exercises 27-30, perform each of the
following tasks.

i. Use your graphing calculator to draw
the graph of the given function. Make
a reasonably accurate copy of the im-
age in your viewing screen on your
homework paper. Label and scale each
axis with the WINDOW parameters xmin,
xmax, ymin, and ymax. Label the
graph with its equation.

ii. Using a colored pencil, project each
point on the graph onto the x-axis;
i.e., shade the domain on the x-axis.
Use interval and set-builder notation
to describe the domain.

iii. Use a purely algebraic technique, as
demonstrated in Example 8 in the nar-
rative, to find the domain. Compare
this result with that found in part (ii).

iv. Using a different colored pencil, project
each point on the graph onto the y-
axis; i.e., shade the range on the y-
axis. Use interval and set-builder no-
tation to describe the range.

27. f(x) =
√
x+ 5.

28. f(x) =
√

5− x.

29. f(x) = −
√

4− x.

30. f(x) = −
√
x+ 4.
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2.3 Answers

1. Note that in the figure below a ver-
tical line cuts the graph more than once.
Therefore, the graph does not represent
the graph of a function.

x

y

5

5

3. No vertical line cuts the graph more
than once (see figure below). Therefore,
the graph represents a function.

x

y

5

5

5. Note that in the figure below a ver-
tical line cuts the graph more than once.
Therefore, the graph does not represent
the graph of a function.

x

y

5

5

7. f(2) = −1

x

y

5

5

f

2
f(2)

9. f(−2) = 1

x

y

5

5

f

−2
f(−2)
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11. f(1) = 3

x

y

5

5

f 1

f(1)

13. The solution of f(x) = −2 is x =
−3.

x

y

5

5

f

−2

−3

15. The solution of f(x) = 2 is x = −2.

x

y

5

5
f

2

−2

17. The solution of f(x) = 2 is x = −1.

x

y

5

5f

2

−1

19. {x : x > −3} = (−3,∞)

x

y
5

5

f

21. {x : x < 0} = (−∞, 0)

x

y
5

5

f
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23. {y : y < 1} = (−∞, 1)

x

y
5

5

f

25. {y : y > −2} = (−2,∞)

x

y
5

5

f

27. Domain = [−5,∞)
={x : x ≥ −5}

x
10−10

y
10

−10

f

−5

Range = {y : y ≥ 0} = [0,∞)

x
10−10

y
10

−10

f

0

29. Domain = (−∞, 4] = {x : x ≤ 4}

x
10−10

y
10

−10

f

4

Range = {y : y ≤ 0} = (−∞, 0]

x
10−10

y
10

−10

f

0
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2.4 Exercises

In Exercises 1-6, you are given the de-
finition of two functions f and g. Com-
pare the functions, as in Example 1 of
the narrative, at the given values of x.

1. f(x) = x+2, g(x) = 4−x at x = −3,
1, and 2.

2. f(x) = 2x − 3, g(x) = 3 − x at x =
−4, 2, and 5.

3. f(x) = 3−x, g(x) = x+9 at x = −4,
−3, and −2.

4. f(x) = x2, g(x) = 4x+ 5 at x = −2,
1, and 6.

5. f(x) = x2, g(x) = −3x − 2 at x =
−3, −1, and 0.

6. f(x) = |x|, g(x) = 4− x at x = 1, 2,
and 3.

In Exercises 7-12, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Make an accurate copy of the image
on graph paper (label each equation,
label and scale each axis), drop a dashed
vertical line through the point of in-
tersection, then label and shade the
solution of f(x) = g(x) on the x-axis.

ii. Make a second copy of the image on
graph paper, drop a dashed, vertical
line through the point of intersection,
then label and shade the solution of
f(x) > g(x) on the x-axis. Use set-
builder and interval notation to de-
scribe your solution set.

iii. Make a third copy of the image on

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

graph paper, drop a dashed, vertical
line through the point of intersection,
then label and shade the solution of
f(x) < g(x) on the x-axis. Use set-
builder and interval notation to de-
scribe your solution set.

7.

x
5

y
5 f

g

8.

x
5

y
5

f

g
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9.

x
5

y
5

f

g

10.

x
5

y
5

f

g

11.

x
5

y
5

f

g

12.

x
5

y
5

f

g

In Exercises 13-16, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Make an accurate copy of the image
on graph paper, drop dashed, verti-
cal lines through the points of inter-
section, then label and shade the so-
lution of f(x) ≥ g(x) on the x-axis.
Use set-builder and interval notation
to describe your solution set.

ii. Make a second copy of the image on
graph paper, drop dashed, vertical lines
through the points of intersection, then
label and shade the solution of f(x) <
g(x) on the x-axis. Use set-builder
and interval notation to describe your
solution set.
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13.

x
5

y
5

f

g

14.

x
5

y
5 f

g

15.

x
5

y
5 f

g

16.

x
5

y
5

f

g

In Exercises 17-20, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Load each side of the equation into
the Y= menu of your calculator. Ad-
just the WINDOW parameters so that
the point of intersection of the graphs
is visible in the viewing window. Use
the intersect utility in the CALC menu
of your calculator to determine the
x-coordinate of the point of intersec-
tion.

ii. Make an accurate copy of the image
in your viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
and label each graph with its equa-
tion.

iii. Draw a dashed, vertical line through
the point of intersection. Shade and
label the solution of the equation on
the x-axis.

17. 1.23x− 4.56 = 3.46− 2.3x

18. 2.23x− 1.56 = 5.46− 3.3x

19. 5.46− 1.3x = 2.2x− 5.66

20. 2.46− 1.4x = 1.2x− 2.66
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In Exercises 21-26, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Load each side of the inequality into
the Y= menu of your calculator. Ad-
just the WINDOW parameters so that
the point(s) of intersection of the graphs
is visible in the viewing window. Use
the intersect utility in the CALC menu
of your calculator to determine the
coordinates of the point(s) of inter-
section.

ii. Make an accurate copy of the image
in your viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
and label each graph with its equa-
tion.

iii. Draw a dashed, vertical line through
the point(s) of intersection. Shade
and label the solution of the inequal-
ity on the x-axis. Use both set-builder
and interval notation to describe the
solution set.

21. 1.6x+ 1.23 ≥ −2.3x− 4.2

22. 1.24x+ 5.6 < 1.2− 0.52x

23. 0.15x− 0.23 > 8.2− 0.6x

24. −1.23x− 9.76 ≤ 1.44x+ 22.8

25. 0.5x2 − 5 < 1.23− 0.75x

26. 4− 0.5x2 ≤ 0.72x− 1.34

In Exercises 27-30, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Make an accurate copy of the image
on graph paper (label the graph with
the letter f and label and scale each
axis), drop a dashed vertical line through
the x-intercept of the graph of f , then
label and shade the solution of f(x) =
0 on the x-axis. Use set-builder no-
tation to describe your solution.

ii. Make a second copy of the image on
graph paper, drop a dashed, verti-
cal line through the x-intercept of the
graph of f , then label and shade the
solution of f(x) > 0 on the x-axis.
Use set-builder and interval notation
to describe your solution set.

iii. Make a third copy of the image on
graph paper, drop a dashed, verti-
cal line through the x-intercept of the
graph of f , then label and shade the
solution of f(x) < 0 on the x-axis.
Use set-builder and interval notation
to describe your solution set.

27.

x
5

y
5

f
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28.

x
5

y
5

f

29.

x
5

y
5

f

30.

x
5

y
5 f

In Exercises 31-34, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Make an accurate copy of the image
on graph paper, drop dashed, ver-
tical lines through the x-intercepts,
then label and shade the solution of
f(x) ≥ 0 on the x-axis. Use set-
builder and interval notation to de-
scribe your solution set.

ii. Make a second copy of the image on
graph paper, drop dashed, vertical lines
through the x-intercepts, then label
and shade the solution of f(x) < 0 on
the x-axis. Use set-builder and inter-
val notation to describe your solution
set.

31.

x
5

y
5

f
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32.

x
5

y
5 f

33.

x
5

y
5

f

34.

x
5

y
5

f

In Exercises 35-38, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Load the given function f into the
Y= menu of your calculator. Adjust
the WINDOW parameters so that the x-
intercept(s) of the graph of f is vis-
ible in the viewing window. Use the
zero utility in the CALC menu of your
calculator to determine the coordi-
nates of the x-intercept(s) of the graph
of f .

ii. Make an accurate copy of the image
in your viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
and label the graph with its equation.

iii. Draw a dashed, vertical line through
the x-intercept(s). Shade and label
the solution of the inequality f(x) >
0 on the x-axis. Use both set-builder
and interval notation to describe the
solution set.

35. f(x) = −1.25x+ 3.58

36. f(x) = 1.34x− 4.52

37. f(x) = 1.25x2 + 4x− 5.9125

38. f(x) = −1.32x2 − 3.96x+ 5.9532

In Exercises 39-42, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Load the given function f into the
Y= menu of your calculator. Adjust
the WINDOW parameters so that the x-
intercept(s) of the graph of f is vis-
ible in the viewing window. Use the
zero utility in the CALC menu of your
calculator to determine the coordi-
nates of the x-intercept(s) of the graph
of f .

ii. Make an accurate copy of the image
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in your viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
and label the graph with its equation.

iii. Draw a dashed, vertical line through
the x-intercept(s). Shade and label
the solution of the inequality f(x) ≤
0 on the x-axis. Use both set-builder
and interval notation to describe the
solution set.

39. f(x) = −1.45x− 5.6

40. f(x) = 1.35x+ 8.6

41. f(x) = −1.11x2−5.9940x+ 1.2432

42. f(x) = 1.22x2 − 6.3440x+ 1.3176
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2.4 Answers

1. f(−3) < g(−3), f(1) = g(1), and
f(2) > g(2).

3. f(−4) > g(−4), f(−3) = g(−3), and
f(−2) < g(−2).

5. f(−3) > g(−3), f(−1) = g(−1), and
f(0) > g(0).

7. The solution of f(x) = g(x) is x = 3.

x
5

y
5 f

g

3

The solution of f(x) > g(x) is (3,∞) =
{x : x > 3}.

x
5

y
5 f

g

3

The solution of f(x) < g(x) is (−∞, 3) =
{x : x < 3}.

x
5

y
5 f

g

3

9. The solution of f(x) = g(x) is x =
−2.

x
5

y
5

f

g

−2



Section 2.4 Solving Equations and Inequalities by Graphing 161

Version: Fall 2007

The solution of f(x) > g(x) is (−∞,−2) =
{x : x < −2}.

x
5

y
5

f

g

−2

The solution of f(x) < g(x) is (−2,∞) =
{x : x > −2}.

x
5

y
5

f

g

−2

11. The solution of f(x) = g(x) is x =
3.

x
5

y
5

f

g
3

The solution of f(x) > g(x) is (3,∞) =
{x : x > 3}.

x
5

y
5

f

g
3

The solution of f(x) < g(x) is (−∞, 3) =
{x : x < 3}.

x
5

y
5

f

g
3

13. The solution of f(x) ≥ g(x) is [−3, 3] =
{x : −3 ≤ x ≤ 3}.

x
5

y
5

f

g

−3 3
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The solution of f(x) < g(x) is
(−∞,−3) ∪ (3,∞)
={x : x < −3 or x > 3}.

x
5

y
5

f

g

−3 3

15. The solution of f(x) ≥ g(x) is
(−∞,−2] ∪ [2,∞)
={x : x ≤ −2 or x ≥ 2}.

x
5

y
5 f

g

−2 2

The solution of f(x) < g(x) is (−2, 2) =
{x : −2 < x < 2}.

x
5

y
5 f

g

−2 2

17. x = 2.271955

x
10−10

y
10

−10

y=1.23x−4.56

y=3.46−2.3x

2.271955

19. x = 3.177143

x
10−10

y
10

−10

y=5.46−1.3x

y=2.2x−5.66

3.177143
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21. [−1.392308,∞) = {x : x ≥ −1.392308}

x
10−10

y
10

−10

y=1.6x+1.23

y=−2.3x−4.2

−1.392308

23. (11.24,∞) = {x : x > 11.24}

x
−5 15

y

−10

10

y=0.15x−0.23

y=8.2−0.6x11.24

25. (−4.358670, 2.858670)
= {x : −4.358670 < x < 2.858670}

x
10−10

y
10

−10

y=0.5x2−5

y=1.23−0.75x

−4.358670 2.858670

27. The solution of f(x) = 0 is x = −1.

x
5

y
5

f

−1

The solution of f(x) > 0 is (−1,∞) =
{x : x > −1}.

x
5

y
5

f

−1

The solution of f(x) < 0 is (−∞,−1) =
{x : x < −1}

x
5

y
5

f

−1



164 Chapter 2 Functions

Version: Fall 2007

29. The solution of f(x) = 0 is x = 2.

x
5

y
5

f

2

The solution of f(x) > 0 is (−∞, 2) =
{x : x < 2}.

x
5

y
5

f

2

The solution of f(x) < 0 is (2,∞) = {x :
x > 2}

x
5

y
5

f

2

31. The solution of f(x) ≥ 0 is [−3, 2] =
{x : −3 ≤ x ≤ 2}.

x
5

y
5

f

−3 2

The solution of f(x) < 0 is (−∞,−3) ∪
(2,∞) = {x : x < −3 or x > 2}.

x
5

y
5

f

−3 2

33. The solution of f(x) ≥ 0 is (−∞,−2]∪
[1,∞) = {x : x ≤ −2 or x ≥ 1}.

x
5

y
5

f

−2 1
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The solution of f(x) < 0 is (−2, 1) = {x :
−2 < x < 1}.

x
5

y
5

f

−2 1

35. (−∞, 2.8640) = {x : x < 2.8640}

x
10−10

y
10

−10 f(x)=−1.25x+3.58

2.8640

37. (−∞,−4.3) ∪ (1.1,∞) = {x : x <
−4.3 or x > 1.1}

x
10−10

y
10

−10

f(x)=1.25x2+4x−5.9125

−4.3 1.1

39. [−3.8621,∞) = {x : x ≥ −3.8621}

x
10−10

y
10

−10

f(x)=−1.45x−5.6

−3.8621

41. (−∞,−5.6] ∪ [0.2,∞) = {x : x ≤
−5.6 or x ≥ 0.2}

x
10−10

y
10

−10

f(x)=−1.11x2−5.9940x+1.2432

−5.6 0.2
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2.5 Exercises

Pictured below is the graph of a function
f .

x
10

y
10

f

The table that follows evaluates the
function f in the plot at key values of x.
Notice the horizontal format, where the
first point in the table is the ordered pair
(−4, 0).

x −4 −3 0 2 5 6
f(x) 0 4 4 −4 −4 0

Use the graph and the table to complete
each of following tasks for Exercises 1-
10.

i. Set up a coordinate system on graph
paper. Label and scale each axis, then
copy and label the original graph of
f onto your coordinate system. Re-
member to draw all lines with a ruler.

ii. Use the original table to help com-
plete the table for the given function
in the exercise.

iii. Using a different colored pencil, plot
the data from your completed table
on the same coordinate system as the
original graph of f . Use these points

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

to help complete the graph of the given
function in the exercise, then label
this graph with its equation given in
the exercise.

1. y = 2f(x).

x −4 −3 0 2 5 6
y

2. y = (1/2)f(x).

x −4 −3 0 2 5 6
y

3. y = −f(x).

x −4 −3 0 2 5 6
y

4. y = f(x)− 2.

x −4 −3 0 2 5 6
y

5. y = f(x) + 4.

x −4 −3 0 2 5 6
y

6. y = −2f(x).

x −4 −3 0 2 5 6
y
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7. y = (−1/2)f(x).

x −4 −3 0 2 5 6
y

8. y = −f(x) + 3.

x −4 −3 0 2 5 6
y

9. y = −f(x)− 2.

x −4 −3 0 2 5 6
y

10. y = (−1/2)f(x) + 3.

x −4 −3 0 2 5 6
y

11. Use your graphing calculator to draw
the graph of y = √x. Then, draw the
graph of y = −√x. In your own words,
explain what you learned from this exer-
cise.

12. Use your graphing calculator to draw
the graph of y = |x|. Then, draw the
graph of y = −|x|. In your own words,
explain what you learned from this exer-
cise.

13. Use your graphing calculator to draw
the graph of y = x2. Then, in succession,
draw the graphs of y = x2−2, y = x2−4,
and y = x2 − 6. In your own words, ex-
plain what you learned from this exer-
cise.

14. Use your graphing calculator to draw
the graph of y = x2. Then, in succession,

draw the graphs of y = x2+2, y = x2+4,
and y = x2 + 6. In your own words, ex-
plain what you learned from this exer-
cise.

15. Use your graphing calculator to draw
the graph of y = |x|. Then, in succession,
draw the graphs of y = 2|x|, y = 3|x|,
and y = 4|x|. In your own words, explain
what you learned from this exercise.

16. Use your graphing calculator to draw
the graph of y = |x|. Then, in succession,
draw the graphs of y = (1/2)|x|, y =
(1/3)|x|, and y = (1/4)|x|. In your own
words, explain what you learned from
this exercise.

Pictured below is the graph of a function
f . In Exercises 17-22, use this graph
to perform each of the following tasks.

x
10

y
10

f

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-
member to draw all lines with a ruler.

ii. In the narrative, a shadow box at the
end of the section summarizes the con-
cepts and technique of vertical scal-
ing, vertical reflection, and vertical
translation. Use the shortcut ideas
presented in this summary shadow box



Section 2.5 Vertical Geometric Transformations 185

Version: Fall 2007

to draw the graphs of the functions
that follow without using tables.

iii. Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

17. y = (1/2)f(x).

18. y = 2f(x).

19. y = −f(x).

20. y = f(x)− 1.

21. y = f(x) + 3.

22. y = f(x)− 4.

Pictured below is the graph of a function
f . In Exercises 23-28, use this graph
to perform each of the following tasks.

x
10

y
10

f

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-
member to draw all lines with a ruler.

ii. In the narrative, a shadow box at the

end of the section summarizes the con-
cepts and technique of vertical scal-
ing, vertical reflection, and vertical
translation. Use the shortcut ideas
presented in this summary shadow box
to draw the graphs of the functions
that follow without using tables.

iii. Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

23. y = 2f(x).

24. y = (1/2)f(x).

25. y = −f(x).

26. y = f(x) + 3.

27. y = f(x)− 2.

28. y = f(x)− 1.

Pictured below is the graph of a function
f . In Exercises 29-34, use this graph
to perform each of the following tasks.

x
10

y
10

f

i. Set up a coordinate system on a sheet
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of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-
member to draw all lines with a ruler.

ii. In the narrative, a shadow box at the
end of the section summarizes the con-
cepts and technique of vertical scal-
ing, vertical reflection, and vertical
translation. Use the shortcut ideas
presented in this summary shadow box
to draw the graphs of the functions
that follow without using tables.

iii. Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

29. y = (−1/2)f(x).

30. y = −2f(x).

31. y = −f(x) + 2.

32. y = −f(x)− 3.

33. y = 2f(x)− 3.

34. y = (−1/2)f(x) + 1.
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2.5 Answers

1.

x
10

y
10

f

y=2f(x)

3.

x
10

y
10

f

y=−f(x)

5.

x
10

y
10

f

y=f(x)+4

7.

x
10

y
10

f

y=(−1/2)f(x)



188 Chapter 2 Functions

Version: Fall 2007

9.

x
10

y
10

f

y=−f(x)−2

11. Mutiplying by −1, as in y = −√x,
reflects the graph across the x-axis.

13. Subtracting c, where c > 0, moves
the graph c units downward.

15. Multiply by a scalar a, such that
a is larger than 1, stretches the graph
vertically by a factor of a.

17.

x
10

y
10

f

y=(1/2)f(x)

19.

x
10

y
10

f

y=−f(x)

21.

x
10

y
10

f

y=f(x)+3

23.

x
10

y
10

f

y=2f(x)
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25.

x
10

y
10

f

y=−f(x)

27.

x
10

y
10

f

y=f(x)−2

29.

x
10

y
10

f

y=(−1/2)f(x)

31.

x
10

y
10

f

y=−f(x)+2

33.

x
10

y
10

f

y=2f(x)−3
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2.6 Exercises

Pictured below is the graph of a function
f .

x
10

y
10

f

The table that follows evaluates the
function f in the plot at key values of x.
Notice the horizontal format, where the
first point in the table is the ordered pair
(−6, 0).

x −6 −4 −2 0 2 4
f(x) 0 4 4 0 −2 0

Use the graph and the table to complete
each of following tasks for Exercises 1-
10.

i. Set up a coordinate system on graph
paper. Label and scale each axis, then
copy and label the original graph of
f onto your coordinate system. Re-
member to draw all lines with a ruler.

ii. Use the original table to help com-
plete the table for the given function
in the exercise.

iii. Using a different colored pencil, plot
the data from your completed table
on the same coordinate system as the
original graph of f . Use these points

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

to help complete the graph of the given
function in the exercise, then label
this graph with its equation given in
the exercise.

1. y = f(2x).

x −3 −2 −1 0 1 2
y

2. y = f((1/2)x).

x −12 −8 −4 0 4 8
y

3. y = f(−x).

x −4 −2 0 2 4 6
y

4. y = f(x+ 3).

x −9 −7 −5 −3 −1 1
y

5. y = f(x− 1).

x −5 −3 −1 1 3 5
y

6. y = f(−2x).

x −2 −1 0 1 2 3
y
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7. y = f((−1/2)x).

x −8 −4 0 4 8 12
y

8. y = f(−x− 2).

x −6 −4 −2 0 2 4
y

9. y = f(−x+ 1).

x −3 −1 1 3 5 7
y

10. y = f(−x/4).

x −16 −8 0 8 16 24
y

11. Use your graphing calculator to draw
the graph of y = √x. Then, draw the
graph of y =

√
−x. In your own words,

explain what you learned from this exer-
cise.

12. Use your graphing calculator to draw
the graph of y = |x|. Then, draw the
graph of y = | − x|. In your own words,
explain what you learned from this exer-
cise.

13. Use your graphing calculator to draw
the graph of y = x2. Then, in succession,
draw the graphs of y = (x − 2)2, y =
(x− 4)2, and y = (x− 6)2. In your own
words, explain what you learned from
this exercise.

14. Use your graphing calculator to draw
the graph of y = x2. Then, in succession,

draw the graphs of y = (x + 2)2, y =
(x+ 4)2, and y = (x+ 6)2. In your own
words, explain what you learned from
this exercise.

15. Use your graphing calculator to draw
the graph of y = |x|. Then, in succession,
draw the graphs of y = |2x|, y = |3x|,
and y = |4x|. In your own words, explain
what you learned from this exercise.

16. Use your graphing calculator to draw
the graph of y = |x|. Then, in succession,
draw the graphs of y = |(1/2)x|, y =
|(1/3)x|, and y = |(1/4)x|. In your own
words, explain what you learned from
this exercise.

Pictured below is the graph of a function
f . In Exercises 17-22, use this graph
to perform each of the following tasks.

x
10

y
10

f

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-
member to draw all lines with a ruler.

ii. In the narrative, a shadow box at the
end of the section summarizes the con-
cepts and technique of horizontal scal-
ing, horizontal reflection, and hori-
zontal translation. Use the shortcut
ideas presented in this summary shadow
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box to draw the graphs of the func-
tions that follow without using ta-
bles.

iii. Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

17. y = f(2x).

18. y = f((1/2)x).

19. y = f(−x).

20. y = f(x− 1).

21. y = f(x+ 3).

22. y = f(x− 2).

Pictured below is the graph of a function
f . In Exercises 23-28, use this graph
to perform each of the following tasks.

x
10

y
10

f

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-

member to draw all lines with a ruler.
ii. In the narrative, a shadow box at the

end of the section summarizes the con-
cepts and technique of horizontal scal-
ing, horizontal reflection, and hori-
zontal translation. Use the shortcut
ideas presented in this summary shadow
box to draw the graphs of the func-
tions that follow without using ta-
bles.

iii. Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

23. y = f(2x).

24. y = f((1/2)x).

25. y = f(−x).

26. y = f(x+ 3).

27. y = f(x− 2).

28. y = f(x+ 1).
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2.6 Answers

1.

x
10

y
10

f

y=f(2x)

3.

x
10

y
10

f

y=f(−x)

5.

x
10

y
10

f

y=f(x−1)

7.

x
10

y
10

f

y=f((−1/2)x)
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9.

x
10

y
10

f

y=f(−x+1)

11. Mutiplying on the inside by −1, as
in y =

√
−x, reflects the graph across

the y-axis.

13. Replacing x with x − c, where c is
positive, moves the graph c units to the
right.

15. Multiplying by a scalar a, such that
a is larger than 1, compresses the graph
horizonally by a factor of a.

17.

x
10

y
10

f

y=f(2x)

19.

x
10

y
10

fy=f(−x)

21.

x
10

y
10

f

y=f(x+3)

23.

x
10

y
10

fy=f(2x)
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25.

x
10

y
10

f

y=f(−x)

27.

x
10

y
10

f

y=f(x−2)
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2.1 Exercises

In Exercises 1-6, state the domain and
range of the given relation.

1. R = {(1, 3), (2, 4), (3, 4)}

2. R = {(1, 3), (2, 4), (2, 5)}

3. R = {(1, 4), (2, 5), (2, 6)}

4. R = {(1, 5), (2, 4), (3, 6)}

5.

x
5

y
5

6.

x
5

y
5

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

In Exercises 7-12, create a mapping di-
agram for the given relation and state
whether or not it is a function.

7. The relation in Exercise 1.

8. The relation in Exercise 2.

9. The relation in Exercise 3.

10. The relation in Exercise 4.

11. The relation in Exercise 5.

12. The relation in Exercise 6.

13. Given that g takes a real number
and doubles it, then g : x −→?.

14. Given that f takes a real number
and divides it by 3, then f : x −→ ?.

15. Given that g takes a real number
and adds 3 to it, then g : x −→ ?.

16. Given that h takes a real number
and subtracts 4 from it, then h : x −→ ?.

17. Given that g takes a real number,
doubles it, then adds 5, then g : x −→ ?.

18. Given that h takes a real number,
subtracts 3 from it, then divides the re-
sult by 4, then h : x −→ ?.

Given that the function f is defined by
the rule f : x −→ 3x − 5, determine
where the input number is mapped in
Exercises 19-22.

19. f : 3 −→ ?
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20. f : −5 −→ ?

21. f : a −→ ?

22. f : 2a+ 3 −→ ?

Given that the function f is defined by
the rule f : x −→ 4 − 5x, determine
where the input number is mapped in
Exercises 23-26.

23. f : 2 −→ ?

24. f : −3 −→ ?

25. f : a −→ ?

26. f : 2a+ 11 −→ ?

Given that the function f is defined by
the rule f : x −→ x2 − 4x − 6, deter-
mine where the input number is mapped
in Exercises 27-30.

27. f : 1 −→ ?

28. f : −2 −→ ?

29. f : −1 −→ ?

30. f : a −→ ?

Given that the function f is defined by
the rule f : x −→ 3x − 9, determine
where the input number is mapped in
Exercises 31-34.

31. f : a −→ ?

32. f : a+ 1 −→ ?

33. f : 2a− 5 −→ ?

34. f : a+ h −→ ?

Given that the functions f and g are de-
fined by the rules f : x −→ 2x + 3 and
g : x −→ 4− x, determine where the in-
put number is mapped in Exercises 35-
38.

35. f : 2 −→ ?

36. g : 2 −→ ?

37. f : a+ 1 −→ ?

38. g : a− 3 −→ ?

39. Given that g takes a real number
and triples it, then g(x) = ?.

40. Given that f takes a real number
and divides it by 5, then f(x) = ?.

41. Given that g takes a real number
and subtracts it from 10, then g(x) = ?.

42. Given that f takes a real number,
multiplies it by 5 and then adds 4 to the
result, then f(x) = ?.

43. Given that f takes a real number,
doubles it, then subtracts the result from
11, then f(x) = ?.

44. Given that h takes a real number,
doubles it, adds 5, then takes the square
root of the result, then h(x) = ?.

In Exercises 45-54, evaluate the given
function at the given value b.

45. f(x) = 12x+ 2 for b = 6.

46. f(x) = −11x− 4 for b = −3.

47. f(x) = −9x− 1 for b = −5.

48. f(x) = 11x+ 4 for b = −4.
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49. f(x) = 4 for b = −12.

50. f(x) = 7 for b = −7.

51. f(x) = 0 for b = −7.

52. f(x) = 12x+ 8 for b = −3.

53. f(x) = −9x+ 3 for b = −1.

54. f(x) = 6x− 3 for b = 3.

In Exercises 55-58, given that the func-
tion f is defined by the rule f(x) = 2x+
7, determine where the input number is
mapped.

55. f(a) = ?

56. f(a+ 1) = ?

57. f(3a− 2) = ?

58. f(a+ h) = ?

In Exercises 59-62, given that the func-
tion g is defined by the rule g(x) = 3 −
2x, determine where the input number is
mapped.

59. g(a) = ?

60. g(a+ 3) = ?

61. g(2− 5a) = ?

62. g(a+ h) = ?

Given that the functions f and g are
defined by the rules f(x) = 1 − x and
g(x) = 2x+ 13, determine where the in-
put number is mapped in Exercises 63-
66.

63. f(a) = ?

64. g(a) = ?

65. f(a+ 3) = ?

66. g(4− a) = ?

Given that the functions f and g are de-
fined by the rules f(x) = 3x + 4 and
g(x) = 2x−5, determine where the input
number is mapped in Exercises 67-70.

67. f(g(2)) = ?

68. g(f(2)) = ?

69. f(g(a)) = ?

70. g(f(a)) = ?

Given that the functions f and g are de-
fined by the rules f(x) = 2x − 9 and
g(x) = 11, determine where the input
number is mapped in Exercises 71-74.

71. f(g(2)) = ?

72. g(f(2)) = ?

73. f(g(a)) = ?

74. g(f(a)) = ?

Use set-builder notation to describe the
domain of each of the functions defined
in Exercises 75-78.

75. f(x) = 93
x+ 98

76. f(x) = 54
x+ 65

77. f(x) = − 87
x− 88

78. f(x) = − 30
x− 52
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Use set-builder and interval notation to
describe the domain of the functions de-
fined in Exercises 79-82.

79. f(x) =
√
x+ 69

80. f(x) =
√
x+ 62

81. f(x) =
√
x− 81

82. f(x) =
√
x− 98

Two integers are said to be relatively prime
if their greatest common divisor is 1. For
example, the greatest common divisor of
6 and 35 is 1, so 6 and 35 are relatively
prime. On the other hand, the greatest
common divisor of 14 and 21 is not 1
(it is 7), so 14 and 21 are not relatively
prime. The Euler φ-function is defined
as follows:

• If n = 1, then φ(n) = 1.
• If n > 1, then φ(n) is the number of

positive integers less than n that are
relatively prime to n. In Exercises 83-
84, evaluate the Euler φ-function at
the given input.

83. φ(12)

84. φ(36)
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2.1 Solutions

1. The domain is the set of all first coordinates = {1, 2, 3}. The range is the set of
all second coordinates {3, 4} (note that in a set you do not list an object twice, so we
only list 4 once).

3. The domain is the set of all first coordinates = {1, 2} (note that in a set you do
not list an object twice, so we only list 2 once). The range is the set of all second
coordinates {4, 5, 6}.

5. Read off the x-coordinate of each point to get that the domain is {1, 2, 3}. Then
read off the y-coordinates to get that the range is {1, 2, 3, 4}.

7. Create a mapping diagram for R.

R

1
2
3

3
4

Since no domain value is paired with two range values, this is a function (each x maps
to a single y). Note that having two different domain values go to a single range value
(2 and 3 both map to 4) is permissible for a function.

9. Create a mapping diagram for R.

R

1
2

4
5
6

The number 2 is mapped to two different range values (one x maps to two y’s), so this
is not a function.

11. Create a mapping diagram for R.

R

1
2
3

1
2
3
4

The number 3 is mapped to two different range values (one x maps to two y’s), so this
is not a function.
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13. Doubles means ’multiplies by 2,’ so g : x −→ 2x.

15. g : x −→ x+ 3

17. For an x put into g, g doubles it, giving 2x, and then adds five, resulting in 2x +
5. Therefore, g : x −→ 2x+ 5

19. Put 3 into f . This means, replace x with 3 and compute the output. f : 3 −→
3(3)− 5 = 4, so f : 3 −→ 4.

21. Put a into f , just like you would a number. This means, replace x with a and
compute the output. f : a −→ 3(a)− 5 = 3a− 5, so f : 3 −→ 3a− 5.

23. Put 2 into f by replacing x with it. f : 2 −→ 4− 5(2) = −6, so f : 2 −→ −6.

25. Put a into f by replacing x with it, just as you would with a number. f : a −→
4− 5(a), so f : 2 −→ 4− 5a.

27. Put 1 into f by replacing x with it. f : 1 −→ (1)2 − 4(1)− 6 = 1− 4− 6 = −9,
so f : 1 −→ −9.

29. Put −1 into f by replacing x with it. f : −1 −→ (−1)2−4(−1)−6 = 1+4−6 =
−1, so f : 1 −→ −1.

31. Put a into f by replacing x with it, just as you would with a number. f : a −→
3a− 9.

33. Put 2a − 5 into f by replacing x with it, just as you would with a number. We
get f : 2a− 5 −→ 3(2a− 5)− 9 = 6a− 15− 9 = 6a− 24, so f : 2a− 5 −→ 6a− 24

35. Put 2 into f by replacing x with it. We get f : 2 −→ 2(2)+3 = 7, so f : 2 −→ 7.

37. Put a+ 1 into f by replacing x with it, just as you would with a number. We get
f : a+ 1 −→ 2(a+ 1) + 3 = 2a+ 2 + 3 = 2a+ 5, so f : a+ 1 −→ 2a+ 5

39. Triples means ’multiplies by 3,’ so g(x) = 3x

41. g takes an input x and subtracts it FROM 10, so g(x) = 10− x.

43. f takes an input x, doubles it to get 2x, and takes this away FROM 11, getting
11− 2x. Therefore, f(x) = 11− 2x.

45. Substitute 6 for x in 12x+ 2 and simplify to get 74: f(6) = 12(6) + 2 = 74.

47. Substitute −5 for x in −9x−1 and simplify to get 44: f(−5) = −9(−5)−1 = 44.

49. f is a constant function, so f(x) = 4 for all x. Therefore, f(−12) = 4.
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51. f is a constant function, so f(x) = 0 for all x. Therefore, f(−7) = 0.

53. Substitute −1 for x in −9x+3 and simplify to get 12: f(−1) = −9(−1)+3 = 12.

55. Put a into f by replacing x with it, just as you would with a number. This yields
f(a) = 2a+ 7.

57. Put 3a− 2 into f by replacing x with it, just as you would with a number. This
yields f(3a− 2) = 2(3a− 2) + 7 = 6a− 4 + 7 = 6a+ 3.

59. Put a into g by replacing x with it, just as you would with a number. This yields
g(a) = 3− 2a.

61. Put 2− 5a into g by replacing x with it, just as you would with a number. This
yields g(2− 5a) = 3− 2(2− 5a) = 3− 4 + 10a = −1 + 10a or 10a− 1.

63. Put a into f by replacing x with it, just as you would with a number. This yields
f(a) = 1− a.

65. Put a + 3 into f by replacing x with it, just as you would with a number. This
yields f(a+ 3) = 1− (a+ 3) = 1− a− 3 = −a− 2.

67. First compute g(2) = 2(2) − 5 = −1. This means that f(g(2)) is really f(−1).
Plugging −1 in for x into the function f , we get f(g(2)) = f(−1) = 3(−1) + 4 =
−3 + 4 = 1.

69. First compute g(a) = 2a−5. This means that f(g(a)) is really f(2a−5). Plugging
2a − 5 in for x into the function f , we get f(g(a)) = f(2a − 5) = 3(2a − 5) + 4 =
6a− 15 + 4 = 6a− 11.

71. First compute g(2) = 11 (note that, no matter what you put into g, it outputs
11). This means that f(g(2)) is really f(11). Plugging 11 in for x into the function f ,
we get f(g(2)) = f(11) = 2(11)− 9 = 22− 9 = 13.

73. First compute g(a) = 11 (note that, no matter what you put into g, it outputs
11). This means that f(g(a)) is really f(11). Plugging 11 in for x into the function f ,
we get f(g(2)) = f(11) = 2(11)− 9 = 22− 9 = 13.

75. An input of x = −98 would cause division by zero, so−98 is not in the domain. All
other possible inputs are valid. The domain, in set-builder notation, is {x : x $= −98}.

77. An input of x = 88 would cause division by zero, so 88 is not in the domain. All
other possible inputs are valid. The domain, in set-builder notation, is {x : x $= 88}.

79. The square root of a negative number is not defined as a real number. Thus,
x+ 69 must be greater than or equal to zero. Then x+ 69 ≥ 0 implies that x ≥ −69,
so the domain is the interval [−69,∞), or in set-builder notation, {x : x ≥ −69}.
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81. The square root of a negative number is not defined as a real number. Thus,
x− 81 must be greater than or equal to zero. Then x− 81 ≥ 0 implies that x ≥ 81, so
the domain is the interval [81,∞), or in set-builder notation, {x : x ≥ 81}.

83. 1, 5, 7, and 11 are less than 12 and are each relatively prime to 12. Therefore,
φ(12) = 4.
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2.2 Exercises

Perform each of the following tasks for
the functions defined by the equations in
Exercises 1-8.

i. Set up a table of points that satisfy
the given equation. Please place this
table of points next to your graph on
your graph paper.

ii. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis, then plot each of the points from
your table on your coordinate system.

iii. If you are confident that you “see”
the shape of the graph, make a “leap
of faith” and plot all pairs that sat-
isfy the given equation by drawing
a smooth curve (free-hand) on your
coordinate system that contains all
previously plotted points (use a ruler
only if the graph of the equation is
a line). If you are not confident that
you “see” the shape of the graph, then
add more points to your table, plot
them on your coordinate system, and
see if this helps. Continue this process
until you “see” the shape of the graph
and can fill in the rest of the points
that satisfy the equation by drawing
a smooth curve (or line) on your co-
ordinate system.

1. f(x) = 2x+ 1

2. f(x) = 1− x

3. f(x) = 3− 1
2 x

4. f(x) = −1 + 1
2 x

5. f(x) = x2 − 2

6. f(x) = 4− x2

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

7. f(x) = 1
2 x

2 − 6

8. f(x) = 8− 1
2 x

2

Perform each of the following tasks for
the functions Exercises 9-10.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

ii. Use the table feature of your graph-
ing calculator to evaluate the func-
tion at the given values of x. Record
these results in a table next to your
coordinate system on your graph pa-
per.

iii. Plot the points in the table on your
coordinate system then use them to
draw the graph of the given function.
Label the graph with its equation.

9. f(x) =
√
x− 4 at x = 4, 5, 6, 7, 8,

9, and 10.

10. f(x) =
√

4− x at x = −10, −8,
−6, −4, −2, 0, 2, and 4.

In Exercises 11-14, the graph of the
given function is a parabola, a graph that
has a “U-shape.” A parabola has only
one turning point. For each exercise, per-
form the following tasks.

i. Load the equation into the Y= menu
of your graphing calculator. Adjust
the WINDOW parameters so that the
“turning point” (actually called the
vertex) is visible in the viewing win-
dow.

ii. Make a reasonable copy of the image
in the viewing window on your home-
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work paper. Draw all lines with a
ruler (including the axes), but draw
curves freehand. Label and scale each
axis with xmin, xmax, ymin, and ymax.
Label the graph with its equation.

11. f(x) = x2 − x− 30

12. f(x) = 24− 2x− x2

13. f(x) = 11 + 10x− x2

14. f(x) = x2 + 11x− 12

Each of the equations in Exercises 15-
18 are called “cubic polynomials.” Each
equation has been carefully chosen so that
its graph has exactly two “turning points.”
For each exercise, perform each of the
following tasks.

i. Load the equation into the Y= menu
of your graphing calculator and ad-
just the WINDOW parameters so that
both “turning points” are visible in
the viewing window.

ii. Make a reasonable copy of the graph
in the viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
then label the graph with its equa-
tion. Remember to draw all lines with
a ruler.

15. f(x) = x3 − 2x2 − 29x+ 30

16. f(x) = −x3 + 2x2 + 19x− 20

17. f(x) = x3 + 8x2 − 53x− 60

18. f(x) = −x3 + 16x2 − 43x− 60

Perform each of the following tasks for
the equations in Exercises 19-22.

i. Load the equation into the Y= menu.
Adjust the WINDOW parameters until
you think all important behavior (“turn-
ing points,” etc.) is visible in the
viewing window. Note: This is more
difficult than it sounds, particularly
when we have no advance notion of
what the graph might look like. How-
ever, experiment with several settings
until you “discover” the settings that
exhibit the most important behavior.

ii. Copy the image on the screen onto
your homework paper. Label and scale
each axis with xmin, xmax, ymin, and
ymax. Label the graph with its equa-
tion.

19. f(x) = 2x2 − x− 465

20. f(x) = x3 − 24x2 + 65x+ 1050

21. f(x) = x4 − 2x3 − 168x2 + 288x+
3456

22. f(x) = −x4−3x3 +141x2 +523x−
660
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2.2 Solutions

1. Evaluate the function f(x) = 2x+ 1 at −2, −1, 0, and 1.

f(−2) = 2(−2) + 1 = −3
f(−1) = 2(−1) + 1 = −1
f(0) = 2(0) + 1 = 1
f(1) = 2(1) + 1 = 3

Place these results in table (a) and plot them as shown in (b). There is enough evidence
here to intuit that the graph of f is the line shown in (b).

x f(x) = 2x+ 1 (x, f(x))
−2 −3 (−2,−3)
−1 −1 (−1,−1)
0 1 (0, 1)
1 3 (1, 3)

x
5

y
5 f(x)=2x+1

(a) (b)

3. Evaluate the function f(x) = 3− (1/2)x at x = −2, 0, 2, and 4.

f(−2) = 3− (1/2)(−2) = 4
f(0) = 3− (1/2)(0) = 3
f(2) = 3− (1/2)(2) = 2
f(4) = 3− (1/2)(4) = 1

Place these results in table (a) and plot them as shown in (b). There is enough evidence
here to intuit that the graph of f is the line shown in (b).
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x f(x) = 3− x/2 (x, f(x))
−2 4 (−2, 4)
0 3 (0, 3)
2 2 (2, 2)
4 1 (4, 1)

x
5

y
5f(x)=3−x/2

(a) (b)

5. Evaluate f(x) = x2 − 2 at x = −3, −2, −1, 0, 1, 2, and 3.
f(−3) = (−3)2 − 2 = 7
f(−2) = (−2)2 − 2 = 2
f(−1) = (−1)2 − 2 = −1
f(0) = (0)2 − 2 = −2
f(1) = (1)2 − 2 = −1
f(2) = (2)2 − 2 = 2
f(3) = (3)2 − 2 = 7

Place these results in table (a) and plot them as shown in (b). There is enough evidence
here to intuit that the graph of f is the curve shown in (b).

x f(x) = x2 − 2 (x, f(x))
−3 7 (−3, 7)
−2 2 (−2, 2)
−1 −1 (−1,−1)
0 −2 (0,−2)
1 −1 (1,−1)
2 2 (2, 2)
3 7 (3, 7)

x
10

y
10 f(x)=x2−2

(a) (b)

7. Evaluate f(x) = x2/2− 6 at x = −4, −2, 0, 2, and 4.
f(−4) = (−4)2/2− 6 = 2
f(−2) = (−2)2/2− 6 = −4
f(0) = (0)2/2− 6 = −6
f(2) = (2)2/2− 6 = −4
f(4) = (4)2/2− 6 = 2
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Place these results in table (a) and plot them as shown in (b). There is enough evidence
here to intuit that the graph of f is the curve shown in (b).

x f(x) = x2/2− 6 (x, f(x))
−4 2 (−4, 2)
−2 −4 (−2,−4)
0 −6 (0,−6)
2 −4 (2,−4)
4 2 (4, 2)

x
10

y
10 f(x)=x2/2−6

(a) (b)

9. Load the function f(x) =
√
x− 4 into Y1 as shown in (a). Select TBLSET, then

highlight ASK for the independent variable and press ENTER (see (b)). It doesn’t matter
what is entered for TblStart or ∆ Tbl. Select TABLE and enter the x-values 4, 5, 6, 7,
8, 9, and 10, as shown in (c).

(a) (b) (c)

Plot the points in table (c) in (d). This is enough to intuit that the graph of f is the
curve shown in (d).

x
10

y
10

f(x)=
√
x−4

(d)
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11. Load the function f(x) = x2−x− 30 into Y1 as shown in (a). Adjust the WINDOW
parameters as shown in (b). Push the GRAPH button to obtain the graph of f in (c).

(a) (b) (c)

Copy the image onto your homework as shown in (d).

x
−10 10

y

−50

50
f(x)=x2−x−30

(d)

13. Load the function f(x) = 11 + 10x − x2 into Y1 as shown in (a). Adjust the
WINDOW parameters as shown in (b). Push the GRAPH button to obtain the graph of f
in (c).

(a) (b) (c)

Copy the image onto your homework as shown in (d).
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x
−5 15

y

−50

50

f(x)=11+10x−x2

(d)

15. Load the function f(x) = x3 − 2x2 − 29x + 30 into Y1 as shown in (a). Adjust
the WINDOW parameters as shown in (b). Push the GRAPH button to obtain the graph of
f in (c).

(a) (b) (c)

Copy the image onto your homework as shown in (d).

x
−10 10

y

−100

100
f(x)=x3−2x2−29x+30

(d)
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17. Load the function f(x) = x3 + 8x2 − 53x − 60 into Y1 as shown in (a). Adjust
the WINDOW parameters as shown in (b). Push the GRAPH button to obtain the graph of
f in (c).

(a) (b) (c)

Copy the image onto your homework as shown in (d).

x
−15 10

y

−400

400

f(x)=x3+8x2−53x−60

(d)

19. Load the function f(x) = 2x2 − x − 465 into Y1 as shown in (a). Adjust the
WINDOW parameters as shown in (b). Push the GRAPH button to obtain the graph of f
in (c).

(a) (b) (c)

Copy the image onto your homework as shown in (d).
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x
−20 20

y

−600

600

f(x)=2x2−x−465

(d)

21. Load the function f(x) = x4−2x3−168x2 + 288x+ 3456 into Y1 as shown in (a).
Adjust the WINDOW parameters as shown in (b). Push the GRAPH button to obtain the
graph of f in (c).

(a) (b) (c)

Copy the image onto your homework as shown in (d).

x
−15 15

y

−6000

6000

f(x)=x4−2x3−168x2+288x+3456

(d)
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2.3 Exercises

For Exercises 1-6, perform each of the
following tasks.

i. Make a copy of the graph on a sheet
of graph paper and apply the vertical
line test.

ii. Write a complete sentence stating whether
or not the graph represents a func-
tion. Explain the reason for your re-
sponse.

1.

x

y

5

5

2.

x

y

5

5

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

3.

x

y

5

5

4.

x

y

5

5

5.

x

y

5

5
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6.

x

y

5

5

In Exercises 7-12, perform each of the
following tasks.

i. Make an exact copy of the graph of
the function f on a sheet of graph pa-
per. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Use the technique of Examples 3 and
4 in the narrative to evaluate the func-
tion at the given value. Draw and la-
bel the arrows as shown in Figures 4
and 5 in the narrative.

7. Use the graph of f to determine f(2).

x

y

5

5

f

8. Use the graph of f to determine f(3).

x

y

5

5

f

9. Use the graph of f to determine f(−2).

x

y

5

5

f

10. Use the graph of f to determine
f(1).

x

y

5

5

f
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11. Use the graph of f to determine
f(1).

x

y

5

5

f

12. Use the graph of f to determine
f(−2).

x

y

5

5

f

In Exercises 13-18, perform each of the
following tasks.

i. Make an exact copy of the graph of
the function f on a sheet of graph pa-
per. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Use the technique of Example 5 in the
narrative to find the value of x that
maps onto the given value. Draw and
label the arrows as shown in Figure 6
in the narrative.

13. Use the graph of f to solve the
equation f(x) = −2.

x

y

5

5

f

14. Use the graph of f to solve the
equation f(x) = 1.

x

y

5

5

f

15. Use the graph of f to solve the
equation f(x) = 2.

x

y

5

5
f
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16. Use the graph of f to solve the
equation f(x) = −2.

x

y

5

5

f

17. Use the graph of f to solve the
equation f(x) = 2.

x

y

5

5f

18. Use the graph of f to solve the
equation f(x) = −3.

x

y

5

5

f

In the Exercises 19-22, perform each of
the following tasks.

i. Make a copy of the graph of f on a
sheet of graph paper. Label and scale
each axis.

ii. Using a different colored pen or pen-
cil, project each point on the graph
of f onto the x-axis. Shade the re-
sulting domain on the x-axis.

iii. Use both set-builder and interval no-
tation to describe the domain.

19.

x

y
5

5

f

20.

x

y
5

5
f
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21.

x

y
5

5

f

22.

x

y
5

5

f

In Exercises 23-26, perform each of the
following tasks.

i. Make a copy of the graph of f on a
sheet of graph paper. Label and scale
each axis.

ii. Using a different colored pen or pen-
cil, project each point on the graph
of f onto the y-axis. Shade the re-
sulting range on the y-axis.

iii. Use both set-builder and interval no-
tation to describe the range.

23.

x

y
5

5

f

24.

x

y
5

5

f

25.

x

y
5

5

f
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26.

x

y
5

5

f

In Exercises 27-30, perform each of the
following tasks.

i. Use your graphing calculator to draw
the graph of the given function. Make
a reasonably accurate copy of the im-
age in your viewing screen on your
homework paper. Label and scale each
axis with the WINDOW parameters xmin,
xmax, ymin, and ymax. Label the
graph with its equation.

ii. Using a colored pencil, project each
point on the graph onto the x-axis;
i.e., shade the domain on the x-axis.
Use interval and set-builder notation
to describe the domain.

iii. Use a purely algebraic technique, as
demonstrated in Example 8 in the nar-
rative, to find the domain. Compare
this result with that found in part (ii).

iv. Using a different colored pencil, project
each point on the graph onto the y-
axis; i.e., shade the range on the y-
axis. Use interval and set-builder no-
tation to describe the range.

27. f(x) =
√
x+ 5.

28. f(x) =
√

5− x.

29. f(x) = −
√

4− x.

30. f(x) = −
√
x+ 4.
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2.3 Solutions

1. Note that in the figure below a vertical line cuts the graph more than once. There-
fore, the graph does not represent the graph of a function.

x

y

5

5

3. No vertical line cuts the graph more than once (see figure below). Therefore, the
graph represents a function.

x

y

5

5

5. Note that in the figure below a vertical line cuts the graph more than once. There-
fore, the graph does not represent the graph of a function.

x

y

5

5
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7. Locate x = 2 on the x-axis (see figure below), draw a vertical arrow to the graph
of f , then a horizontal arrow to the y-axis. Thus, f(2) = −1.

x

y

5

5

f

2
f(2)

9. Locate x = −2 on the x-axis (see figure below), draw a vertical arrow to the graph
of f , then a horizontal arrow to the y-axis. Thus, f(−2) = 1.

x

y

5

5

f

−2
f(−2)

11. Locate x = 1 on the x-axis (see figure below), draw a vertical arrow to the graph
of f , then a horizontal arrow to the y-axis. Thus, f(1) = 3.

x

y

5

5

f 1

f(1)
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13. Locate y = −2 on the y-axis (see figure below), draw a horizontal arrow to the
graph of f , then a vertical arrow to the y-axis. Thus, the solution of f(x) = −2 is
x = −3.

x

y

5

5

f

−2

−3

15. Locate y = 2 on the y-axis (see figure below), draw a horizontal arrow to the
graph of f , then a vertical arrow to the y-axis. Thus, the solution of f(x) = 2 is
x = −2.

x

y

5

5
f

2

−2

17. Locate y = 2 on the y-axis (see figure below), draw a horizontal arrow to the
graph of f , then a vertical arrow to the y-axis. Thus, the solution of f(x) = 2 is
x = −1.

x

y

5

5f

2

−1
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19. To find the domain of the function, project the graph of f onto the x-axis. Note
that all values of x that lie to the right of−3 lie in shadow and are hence in the domain of
f . Therefore, the domain is best described with the notation {x : x > −3} = (−3,∞).

x

y
5

5

f

21. To find the domain of the function, project the graph of f onto the x-axis. Note
that all values of x that lie to the left of 0 lie in shadow and are hence in the domain
of f . Therefore, the domain is best described with the interval notation {x : x < 0} =
(−∞, 0).

x

y
5

5

f

23. To find the range of the function, project the graph of f onto the y-axis. Note that
all values of y that lie below 1 lie in shadow and are hence in the range of f . Therefore,
the range is best described with the interval notation {y : y < 1} = (−∞, 1).

x

y
5

5

f
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25. To find the range of the function, project the graph of f onto the y-axis. Note that
all values of y that lie above −2 lie in shadow and are hence in the range of f . Therefore,
the range is best described with the interval notation {y : y > −2} = (−2,∞).

x

y
5

5

f

27. Load the function f(x) =
√
x+ 5 into Y1 as shown in (a). Select 6:ZStandrd

from the ZOOM menu to produce the graph in (b).

(a) (b)

Copy the image in (b) onto your homework paper, then project the domain and range
onto the x- and y-axes, as shown in (c) and (d), respectively.

x
10−10

y
10

−10

f

−5
x

10−10

y
10

−10

f

0

(c) D = [−5,∞) = {x : x ≥ −5} (d) R = [0,∞) = {y : y ≥ 0}

To find the domain algebraically, note that you cannot take the square root of a negative
number, so the expression under the radical in f(x) =

√
x+ 5, namely x+5, must either

be positive or zero (nonnegative). That is,
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x+ 5 ≥ 0,
or equivalently,

x ≥ −5.
Thus, the domain of f is Domain = [−5,∞), or in set-builder notation, Domain = {x :
x ≥ −5}.

29. Load the function f(x) = −
√

4− x. into Y1 as shown in (a). Select 6:ZStandrd
from the ZOOM menu to produce the graph in (b).

(a) (b)

Copy the image in (b) onto your homework paper, then project the domain and range
onto the x- and y-axes, as shown in (c) and (d), respectively.

x
10−10

y
10

−10

f

4
x

10−10

y
10

−10

f

0

(c) D = (−∞, 4] = {x : x ≤ 4} (d) R = (−∞, 0] = {y : y ≤ 0}

To find the domain algebraically, note that you cannot take the square root of a negative
number, so the expression under the radical in f(x) =

√
4− x, namely 4−x, must either

be positive or zero (nonnegative). That is,
4− x ≥ 0,

or equivalently,
−x ≥ −4
x ≤ 4

Thus, the domain of f is Domain = (∞, 4], or in set-builder notation, Domain = {x :
x ≤ 4}.
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2.4 Exercises

In Exercises 1-6, you are given the de-
finition of two functions f and g. Com-
pare the functions, as in Example 1 of
the narrative, at the given values of x.

1. f(x) = x+2, g(x) = 4−x at x = −3,
1, and 2.

2. f(x) = 2x − 3, g(x) = 3 − x at x =
−4, 2, and 5.

3. f(x) = 3−x, g(x) = x+9 at x = −4,
−3, and −2.

4. f(x) = x2, g(x) = 4x+ 5 at x = −2,
1, and 6.

5. f(x) = x2, g(x) = −3x − 2 at x =
−3, −1, and 0.

6. f(x) = |x|, g(x) = 4− x at x = 1, 2,
and 3.

In Exercises 7-12, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Make an accurate copy of the image
on graph paper (label each equation,
label and scale each axis), drop a dashed
vertical line through the point of in-
tersection, then label and shade the
solution of f(x) = g(x) on the x-axis.

ii. Make a second copy of the image on
graph paper, drop a dashed, vertical
line through the point of intersection,
then label and shade the solution of
f(x) > g(x) on the x-axis. Use set-
builder and interval notation to de-
scribe your solution set.

iii. Make a third copy of the image on

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

graph paper, drop a dashed, vertical
line through the point of intersection,
then label and shade the solution of
f(x) < g(x) on the x-axis. Use set-
builder and interval notation to de-
scribe your solution set.

7.

x
5

y
5 f

g

8.

x
5

y
5

f

g
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9.

x
5

y
5

f

g

10.

x
5

y
5

f

g

11.

x
5

y
5

f

g

12.

x
5

y
5

f

g

In Exercises 13-16, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Make an accurate copy of the image
on graph paper, drop dashed, verti-
cal lines through the points of inter-
section, then label and shade the so-
lution of f(x) ≥ g(x) on the x-axis.
Use set-builder and interval notation
to describe your solution set.

ii. Make a second copy of the image on
graph paper, drop dashed, vertical lines
through the points of intersection, then
label and shade the solution of f(x) <
g(x) on the x-axis. Use set-builder
and interval notation to describe your
solution set.
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13.

x
5

y
5

f

g

14.

x
5

y
5 f

g

15.

x
5

y
5 f

g

16.

x
5

y
5

f

g

In Exercises 17-20, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Load each side of the equation into
the Y= menu of your calculator. Ad-
just the WINDOW parameters so that
the point of intersection of the graphs
is visible in the viewing window. Use
the intersect utility in the CALC menu
of your calculator to determine the
x-coordinate of the point of intersec-
tion.

ii. Make an accurate copy of the image
in your viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
and label each graph with its equa-
tion.

iii. Draw a dashed, vertical line through
the point of intersection. Shade and
label the solution of the equation on
the x-axis.

17. 1.23x− 4.56 = 3.46− 2.3x

18. 2.23x− 1.56 = 5.46− 3.3x

19. 5.46− 1.3x = 2.2x− 5.66

20. 2.46− 1.4x = 1.2x− 2.66
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In Exercises 21-26, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Load each side of the inequality into
the Y= menu of your calculator. Ad-
just the WINDOW parameters so that
the point(s) of intersection of the graphs
is visible in the viewing window. Use
the intersect utility in the CALC menu
of your calculator to determine the
coordinates of the point(s) of inter-
section.

ii. Make an accurate copy of the image
in your viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
and label each graph with its equa-
tion.

iii. Draw a dashed, vertical line through
the point(s) of intersection. Shade
and label the solution of the inequal-
ity on the x-axis. Use both set-builder
and interval notation to describe the
solution set.

21. 1.6x+ 1.23 ≥ −2.3x− 4.2

22. 1.24x+ 5.6 < 1.2− 0.52x

23. 0.15x− 0.23 > 8.2− 0.6x

24. −1.23x− 9.76 ≤ 1.44x+ 22.8

25. 0.5x2 − 5 < 1.23− 0.75x

26. 4− 0.5x2 ≤ 0.72x− 1.34

In Exercises 27-30, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Make an accurate copy of the image
on graph paper (label the graph with
the letter f and label and scale each
axis), drop a dashed vertical line through
the x-intercept of the graph of f , then
label and shade the solution of f(x) =
0 on the x-axis. Use set-builder no-
tation to describe your solution.

ii. Make a second copy of the image on
graph paper, drop a dashed, verti-
cal line through the x-intercept of the
graph of f , then label and shade the
solution of f(x) > 0 on the x-axis.
Use set-builder and interval notation
to describe your solution set.

iii. Make a third copy of the image on
graph paper, drop a dashed, verti-
cal line through the x-intercept of the
graph of f , then label and shade the
solution of f(x) < 0 on the x-axis.
Use set-builder and interval notation
to describe your solution set.

27.

x
5

y
5

f
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28.

x
5

y
5

f

29.

x
5

y
5

f

30.

x
5

y
5 f

In Exercises 31-34, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Make an accurate copy of the image
on graph paper, drop dashed, ver-
tical lines through the x-intercepts,
then label and shade the solution of
f(x) ≥ 0 on the x-axis. Use set-
builder and interval notation to de-
scribe your solution set.

ii. Make a second copy of the image on
graph paper, drop dashed, vertical lines
through the x-intercepts, then label
and shade the solution of f(x) < 0 on
the x-axis. Use set-builder and inter-
val notation to describe your solution
set.

31.

x
5

y
5

f
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32.

x
5

y
5 f

33.

x
5

y
5

f

34.

x
5

y
5

f

In Exercises 35-38, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Load the given function f into the
Y= menu of your calculator. Adjust
the WINDOW parameters so that the x-
intercept(s) of the graph of f is vis-
ible in the viewing window. Use the
zero utility in the CALC menu of your
calculator to determine the coordi-
nates of the x-intercept(s) of the graph
of f .

ii. Make an accurate copy of the image
in your viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
and label the graph with its equation.

iii. Draw a dashed, vertical line through
the x-intercept(s). Shade and label
the solution of the inequality f(x) >
0 on the x-axis. Use both set-builder
and interval notation to describe the
solution set.

35. f(x) = −1.25x+ 3.58

36. f(x) = 1.34x− 4.52

37. f(x) = 1.25x2 + 4x− 5.9125

38. f(x) = −1.32x2 − 3.96x+ 5.9532

In Exercises 39-42, perform each of the
following tasks. Remember to use a ruler
to draw all lines.

i. Load the given function f into the
Y= menu of your calculator. Adjust
the WINDOW parameters so that the x-
intercept(s) of the graph of f is vis-
ible in the viewing window. Use the
zero utility in the CALC menu of your
calculator to determine the coordi-
nates of the x-intercept(s) of the graph
of f .

ii. Make an accurate copy of the image
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in your viewing window on your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax,
and label the graph with its equation.

iii. Draw a dashed, vertical line through
the x-intercept(s). Shade and label
the solution of the inequality f(x) ≤
0 on the x-axis. Use both set-builder
and interval notation to describe the
solution set.

39. f(x) = −1.45x− 5.6

40. f(x) = 1.35x+ 8.6

41. f(x) = −1.11x2−5.9940x+ 1.2432

42. f(x) = 1.22x2 − 6.3440x+ 1.3176
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2.4 Solutions

1. We’re given that f(x) = x+ 2 and g(x) = 4− x. At x = −3,

f(−3) = −3 + 2 = −1
g(−3) = 4− (−3) = 7.

Therefore, f(−3) < g(−3). At x = 1,

f(1) = 1 + 2 = 3
g(1) = 4− 1 = 3.

Therefore, f(1) = g(1). At x = 2,

f(2) = 2 + 2 = 4
g(2) = 4− 2 = 2.

Therefore, f(2) > g(2).

3. We’re given that f(x) = 3− x and g(x) = x+ 9. At x = −4,

f(−4) = 3− (−4) = 7
g(−4) = −4 + 9 = 5.

Therefore, f(−4) > g(−4). At x = −3,

f(−3) = 3− (−3) = 6
g(−3) = −3 + 9 = 6.

Therefore, f(−3) = g(−3). At x = −2,

f(−2) = 3− (−2) = 5
g(−2) = −2 + 9 = 7.

Therefore, f(−2) < g(−2).



Section 2.4 Solving Equations and Inequalities by Graphing

Version: Fall 2007

5. We’re given that f(x) = x2 and g(x) = −3x− 2. At x = −3,

f(−3) = (−3)2 = 9
g(−3) = −3(−3)− 2 = 7.

Therefore, f(−3) > g(−3). At x = −1,

f(−1) = (−1)2 = 1
g(−1) = −3(−1)− 2 = 1.

Therefore, f(−1) = g(−1). At x = 0,

f(0) = (0)2 = 0
g(0) = −3(0)− 2 = −2.

Therefore, f(0) > g(0).

7. The graph of f intersects the graph of g at x = 3. The solution of f(x) = g(x) is
x = 3.

x
5

y
5 f

g

3

The graph of f lies above the graph of g to the right of x = 3. The solution of
f(x) > g(x) is (3,∞) = {x : x > 3}.

x
5

y
5 f

g

3
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The graph of f lies below the graph of g to the left of x = 3. The solution of f(x) < g(x)
is (−∞, 3) = {x : x < 3}.

x
5

y
5 f

g

3

9. The graph of f intersects the graph of g at x = −2. The solution of f(x) = g(x)
is x = −2.

x
5

y
5

f

g

−2

The graph of f lies above the graph of g to the left of x = −2. The solution of
f(x) > g(x) is (−∞,−2) = {x : x < −2}.

x
5

y
5

f

g

−2
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The graph of f lies below the graph of g to the right of x = −2. The solution of
f(x) < g(x) is (−2,∞) = {x : x > −2}.

x
5

y
5

f

g

−2

11. The graph of f intersects the graph of g at x = 3. The solution of f(x) = g(x) is
x = 3.

x
5

y
5

f

g
3

The graph of f is above the graph of g to the right of x = 3. The solution of f(x) > g(x)
is (3,∞) = {x : x > 3}.

x
5

y
5

f

g
3
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The graph of f is below the graph of g to the left of x = 3. The solution of f(x) < g(x)
is (−∞, 3) = {x : x < 3}.

x
5

y
5

f

g
3

13. The graph of f intersects the graph of g at x = −3 and x = 3. The graph of
f lies above the graph of g for values of x that lie between −3 and 3. Therefore, the
solution of f(x) ≥ g(x) is [−3, 3] = {x : −3 ≤ x ≤ 3}.

x
5

y
5

f

g

−3 3
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The graph of f is below the graph of g for values of x that lie to the left of −3 or
to the right of 3. Therefore, the solution of f(x) < g(x) is (−∞,−3) ∪ (3,∞) or
{x : x < −3 or x > 3}.

x
5

y
5

f

g

−3 3

15. The graph of f intersects the graph of g at x = −2 and at x = 2. The graph of f
lies above the graph of g for all values of x that lie to the left of −2 or to the right of 2.
Therefore, the solution of f(x) ≥ g(x) is (−∞,−2] ∪ [2,∞) or {x : x ≤ −2 or x ≥ 2}.

x
5

y
5 f

g

−2 2
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The graph of f lies below the graph of g for values of x that lie between −2 and 2.
Therefore, the solution of f(x) < g(x) is (−2, 2) = {x : −2 < x < 2}.

x
5

y
5 f

g

−2 2

17. To solve the equation 1.23x− 4.56 = 3.46− 2.3x graphically, start by loading the
left- and right-hand sides of the equation into Y1 and Y2, respectively, as shown in (a).
Use the intersect utility in the CALC menu to determine the point of intersection, as
shown in (c).

(a) (b) (c)

Therefore, the solution of the equation is x = 2.2719547, which is shaded on the x-axis
in the image that follows. Answers may vary due to roundoff error.

x
10−10

y
10

−10

y=1.23x−4.56

y=3.46−2.3x

2.2719547
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19. To solve the equation 5.46− 1.3x = 2.2x− 5.66 graphically, start by loading the
left- and right-hand sides of the equation into Y1 and Y2, respectively, as shown in (a).
Use the intersect utility in the CALC menu to determine the point of intersection, as
shown in (c).

(a) (b) (c)

Therefore, the solution of the equation is x = 3.1771429, which is shaded on the x-axis
in the image that follows. Answers may vary due to roundoff error.

x
10−10

y
10

−10

y=5.46−1.3x

y=2.2x−5.66

3.1771429

21. To solve the inequality 1.6x+1.23 ≥ −2.3x−4.2 graphically, start by loading the
left- and right-hand sides of the inequality into Y1 and Y2, respectively, as shown in (a).
Use the intersect utility in the CALC menu to determine the point of intersection, as
shown in (c).

(a) (b) (c)
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The two graphs intersect at x = −1.392308. The graph of y = 1.6x+ 1.23 is above the
graph of y = −2.3x−4.2 for all values of x that lie to the right of −1.392308. Therefore,
the solution of 1.6x+ 1.23 ≥ −2.3x− 4.2 is [−1.392308,∞) = {x : x ≥ −1.392308}.

x
10−10

y
10

−10

y=1.6x+1.23

y=−2.3x−4.2

−1.392308

23. To solve the inequality 0.15x − 0.23 > 8.2 − 0.6x graphically, start by loading
the left- and right-hand sides of the inequality into Y1 and Y2, respectively, as shown
in (a). Adjust the viewing window as shown in (b). Use the intersect utility in the
CALC menu to determine the point of intersection, as shown in (c).

(a) (b) (c)

The graph of y = 0.15x− 0.23 is above the graph of y = 8.2 − 0.6x for all values of x
that lie to the right of 11.24. Therefore, the solution of 0.15x − 0.23 > 8.2 − 0.6x is
(11.24,∞) = {x : x > 11.24}

x
−5 15

y

−10

10

y=0.15x−0.23

y=8.2−0.6x11.24
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25. To solve the inequality 0.5x2 − 5 < 1.23− 0.75x graphically, start by loading the
left- and right-hand sides of the inequality into Y1 and Y2, respectively, as shown in (a).
Use the intersect utility in the CALC menu to determine the points of intersection, as
shown in (b) and (c).

(a) (b) (c)

The graph of y = 0.5x2−5 is below the graph of y = 1.23−0.75x for all values of x that
lie between −4.35867 and 2.8586701. Therefore, the solution of 0.5x2−5 < 1.23−0.75x
is (−4.35867, 2.8586701) or {x : −4.35867 < x < 2.8586701}.

x
10−10

y
10

−10

y=0.5x2−5

y=1.23−0.75x

−4.35867 2.8586701

27. The graph of f intercepts the x-axis at x = −1. Therefore, the solution of
f(x) = 0 is x = −1.

x
5

y
5

f

−1
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The graph of f lies above the x-axis for all values of x that lie to the right of −1.
Therefore, the solution of f(x) > 0 is (−1,∞) = {x : x > −1}.

x
5

y
5

f

−1

The graph of f lies below the x-axis for all values of x that lie to the left of −1.
Therefore, the solution of f(x) < 0 is (−∞,−1) = {x : x < −1}

x
5

y
5

f

−1

29. The graph of f intercepts the x-axis at x = 2. Therefore, the solution of f(x) = 0
is x = 2.

x
5

y
5

f

2
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The graph of f lies above the x-axis for all values of x that lie to the left of x = 2.
Therefore, the solution of f(x) > 0 is (−∞, 2) = {x : x < 2}.

x
5

y
5

f

2

The graph of f lies below the x-axis for all values of x that lie to the right of x = 2.
Therefore, the solution of f(x) < 0 is (2,∞) = {x : x > 2}

x
5

y
5

f

2
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31. The graph of f intercepts the x-axis at x = −3 and x = 2. The graph of f lies
above the x-axis for all values of x that lie between x = −3 and x = 2. Therefore, the
solution of f(x) ≥ 0 is [−3, 2] = {x : −3 ≤ x ≤ 2}.

x
5

y
5

f

−3 2

The graph of f lies below the x-axis for all values of x that lie to the left of x = −3 or
to the right of x = 2. Therefore, the solution of f(x) < 0 is (−∞,−3) ∪ (2,∞) = {x :
x < −3 or x > 2}.

x
5

y
5

f

−3 2
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33. The graph of f intercepts the x-axis at x = −2 and x = 1. The graph of f lies
above the x-axis for all values of x that lie to the left x = −2 or to the right of x = 1.
Therefore, the solution of f(x) ≥ 0 is (−∞,−2] ∪ [1,∞) = {x : x ≤ −2 or x ≥ 1}.

x
5

y
5

f

−2 1

The graph of f lies below the x-axis for all values of x that lie between x = −2 and
x = 1. Therefore, the solution of f(x) < 0 is (−2, 1) = {x : −2 < x < 1}.

x
5

y
5

f

−2 1

35. To solve the inequality f(x) > 0 graphically, start by loading f(x) = −1.25x+3.58
into Y1. Use the zero utility in the CALC menu to determine the zero of f , as shown in
(c).

(a) (b) (c)
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The graph of f lies above the x-axis for all values of x that lie to the left of x = 2.864.
Therefore, the solution of f(x) > 0 is (−∞, 2.864) = {x : x < 2.864}. Answers may
vary due to roundoff error.

x
10−10

y
10

−10 f(x)=−1.25x+3.58

2.864

37. To solve the inequality f(x) > 0 graphically, start by loading f(x) = 1.25x2 +
4x − 5.9125 into Y1. Use the zero utility in the CALC menu to determine the zeros of
f , as shown in (b) and (c).

(a) (b) (c)

The graph of f lies above the x-axis for all values of x that lie to the left of x = −4.3
or to the right of x = 1.1. Therefore, the solution of f(x) > 0 is (−∞,−4.3)∪ (1.1,∞)
or {x : x < −4.3 or x > 1.1}. Answers may vary due to roundoff error.

x
10−10

y
10

−10

f(x)=1.25x2+4x−5.9125

−4.3 1.1
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39. To solve the inequality f(x) ≤ 0 graphically, start by loading f(x) = −1.45x−5.6
into Y1. Use the zero utility in the CALC menu to determine the zero of f , as shown in
(c).

(a) (b) (c)

The graph of f intercepts the x-axis at x = −3.862069. The graph of f lies below
the x-axis for all values of x that lie to the right of x = −3.862069. Therefore, the
solution of f(x) ≤ 0 is [−3.862069,∞) = {x : x ≥ −3.862069}. Answers may vary due
to roundoff error.

x
10−10

y
10

−10

f(x)=−1.45x−5.6

−3.862069

41. To solve the inequality f(x) ≤ 0 graphically, start by loading f(x) = −1.11x2 −
5.9940x+ 1.2432 into Y1. Use the zero utility in the CALC menu to determine the zeros
of f , as shown in (b) and (c).

(a) (b) (c)
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The graph of f intercepts the x-axis at x = −5.6 and x = 0.2. The graph of f
lies below the x-axis for all values of x that lie to the left of x = −5.6 or to the
right of x = 0.2. Therefore, the solution of f(x) ≤ 0 is (−∞,−5.6] ∪ [0.2,∞) or
{x : x ≤ −5.6 or x ≥ 0.2}. Answers may vary due to roundoff error.

x
10−10

y
10

−10

f(x)=−1.11x2−5.9940x+1.2432

−5.6 0.2
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2.5 Exercises

Pictured below is the graph of a function
f .

x
10

y
10

f

The table that follows evaluates the
function f in the plot at key values of x.
Notice the horizontal format, where the
first point in the table is the ordered pair
(−4, 0).

x −4 −3 0 2 5 6
f(x) 0 4 4 −4 −4 0

Use the graph and the table to complete
each of following tasks for Exercises 1-
10.

i. Set up a coordinate system on graph
paper. Label and scale each axis, then
copy and label the original graph of
f onto your coordinate system. Re-
member to draw all lines with a ruler.

ii. Use the original table to help com-
plete the table for the given function
in the exercise.

iii. Using a different colored pencil, plot
the data from your completed table
on the same coordinate system as the
original graph of f . Use these points

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

to help complete the graph of the given
function in the exercise, then label
this graph with its equation given in
the exercise.

1. y = 2f(x).

x −4 −3 0 2 5 6
y

2. y = (1/2)f(x).

x −4 −3 0 2 5 6
y

3. y = −f(x).

x −4 −3 0 2 5 6
y

4. y = f(x)− 2.

x −4 −3 0 2 5 6
y

5. y = f(x) + 4.

x −4 −3 0 2 5 6
y

6. y = −2f(x).

x −4 −3 0 2 5 6
y
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7. y = (−1/2)f(x).

x −4 −3 0 2 5 6
y

8. y = −f(x) + 3.

x −4 −3 0 2 5 6
y

9. y = −f(x)− 2.

x −4 −3 0 2 5 6
y

10. y = (−1/2)f(x) + 3.

x −4 −3 0 2 5 6
y

11. Use your graphing calculator to draw
the graph of y = √x. Then, draw the
graph of y = −√x. In your own words,
explain what you learned from this exer-
cise.

12. Use your graphing calculator to draw
the graph of y = |x|. Then, draw the
graph of y = −|x|. In your own words,
explain what you learned from this exer-
cise.

13. Use your graphing calculator to draw
the graph of y = x2. Then, in succession,
draw the graphs of y = x2−2, y = x2−4,
and y = x2 − 6. In your own words, ex-
plain what you learned from this exer-
cise.

14. Use your graphing calculator to draw
the graph of y = x2. Then, in succession,

draw the graphs of y = x2+2, y = x2+4,
and y = x2 + 6. In your own words, ex-
plain what you learned from this exer-
cise.

15. Use your graphing calculator to draw
the graph of y = |x|. Then, in succession,
draw the graphs of y = 2|x|, y = 3|x|,
and y = 4|x|. In your own words, explain
what you learned from this exercise.

16. Use your graphing calculator to draw
the graph of y = |x|. Then, in succession,
draw the graphs of y = (1/2)|x|, y =
(1/3)|x|, and y = (1/4)|x|. In your own
words, explain what you learned from
this exercise.

Pictured below is the graph of a function
f . In Exercises 17-22, use this graph
to perform each of the following tasks.

x
10

y
10

f

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-
member to draw all lines with a ruler.

ii. In the narrative, a shadow box at the
end of the section summarizes the con-
cepts and technique of vertical scal-
ing, vertical reflection, and vertical
translation. Use the shortcut ideas
presented in this summary shadow box
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to draw the graphs of the functions
that follow without using tables.

iii. Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

17. y = (1/2)f(x).

18. y = 2f(x).

19. y = −f(x).

20. y = f(x)− 1.

21. y = f(x) + 3.

22. y = f(x)− 4.

Pictured below is the graph of a function
f . In Exercises 23-28, use this graph
to perform each of the following tasks.

x
10

y
10

f

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-
member to draw all lines with a ruler.

ii. In the narrative, a shadow box at the

end of the section summarizes the con-
cepts and technique of vertical scal-
ing, vertical reflection, and vertical
translation. Use the shortcut ideas
presented in this summary shadow box
to draw the graphs of the functions
that follow without using tables.

iii. Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

23. y = 2f(x).

24. y = (1/2)f(x).

25. y = −f(x).

26. y = f(x) + 3.

27. y = f(x)− 2.

28. y = f(x)− 1.

Pictured below is the graph of a function
f . In Exercises 29-34, use this graph
to perform each of the following tasks.

x
10

y
10

f

i. Set up a coordinate system on a sheet
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of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-
member to draw all lines with a ruler.

ii. In the narrative, a shadow box at the
end of the section summarizes the con-
cepts and technique of vertical scal-
ing, vertical reflection, and vertical
translation. Use the shortcut ideas
presented in this summary shadow box
to draw the graphs of the functions
that follow without using tables.

iii. Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

29. y = (−1/2)f(x).

30. y = −2f(x).

31. y = −f(x) + 2.

32. y = −f(x)− 3.

33. y = 2f(x)− 3.

34. y = (−1/2)f(x) + 1.
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2.5 Solutions

1. The original function table.

x −4 −3 0 2 5 6
f(x) 0 4 4 −4 −4 0

Evaluate the function y = 2f(x) at x = −4, −3, 0, 2, 5, and 6.
y = 2f(−4) = 2(0) = 0
y = 2f(−3) = 2(4) = 8
y = 2f(0) = 2(4) = 8
y = 2f(2) = 2(−4) = −8
y = 2f(5) = 2(−4) = −8
y = 2f(6) = 2(0) = 0

Points satisfying y = 2f(x).

x −4 −3 0 2 5 6
y 0 8 8 −8 −8 0

Plot the points in the table to get the graph of y = 2f(x).

x
10

y
10

f

y=2f(x)

Note that multiplying by 2, as in y = 2f(x), stretches the graph of y = f(x) vertically
by a factor of 2.

3. The original function table.

x −4 −3 0 2 5 6
f(x) 0 4 4 −4 −4 0
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Evaluate the function y = −f(x) at x = −4, −3, 0, 2, 5, and 6.

y = −f(−4) = −(0) = 0
y = −f(−3) = −(4) = −4
y = −f(0) = −(4) = −4
y = −f(2) = −(−4) = 4
y = −f(5) = −(−4) = 4
y = −f(6) = −(0) = 0

Points satisfying y = −f(x).

x −4 −3 0 2 5 6
y 0 −4 −4 4 4 0

Plot the points in the table to get the graph of y = −f(x).

x
10

y
10

f

y=−f(x)

Note that negating the function, as in y = −f(x), reflects the graph of y = f(x) across
the x-axis.

5. The original function table.

x −4 −3 0 2 5 6
f(x) 0 4 4 −4 −4 0

Evaluate the function y = f(x) + 4 at x = −4, −3, 0, 2, 5, and 6.

y = f(−4) + 4 = (0) + 4 = 4
y = f(−3) + 4 = (4) + 4 = 8
y = f(0) + 4 = (4) + 4 = 8
y = f(2) + 4 = (−4) + 4 = 0
y = f(5) + 4 = (−4) + 4 = 0
y = f(6) + 4 = (0) + 4 = 4
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Points satisfying y = f(x) + 4.

x −4 −3 0 2 5 6
y 4 8 8 0 0 4

Plot the points in the table to get the graph of y = f(x) + 4.

x
10

y
10

f

y=f(x)+4

Note that adding 4, as in y = f(x) + 4, translates the graph of y = f(x) upwards 4
units.

7. The original function table.

x −4 −3 0 2 5 6
f(x) 0 4 4 −4 −4 0

Evaluate the function y = (−1/2)f(x) at x = −4, −3, 0, 2, 5, and 6.

y = (−1/2)f(−4) = (−1/2)(0) = 0
y = (−1/2)f(−3) = (−1/2)(4) = −2
y = (−1/2)f(0) = (−1/2)(4) = −2
y = (−1/2)f(2) = (−1/2)(−4) = 2
y = (−1/2)f(5) = (−1/2)(−4) = 2
y = (−1/2)f(6) = (−1/2)(0) = 0

Points satisfying y = (−1/2)f(x).

x −4 −3 0 2 5 6
y 0 −2 −2 2 2 0

Plot the points in the table to get the graph of y = (−1/2)f(x).
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x
10

y
10

f

y=(−1/2)f(x)

Note that multiplying by −1/2, as in y = (−1/2)f(x), compresses the graph of y = f(x)
vertically by a factor of 2, then reflects the result across the x-axis.

9. The original function table.

x −4 −3 0 2 5 6
f(x) 0 4 4 −4 −4 0

Evaluate the function y = −f(x)− 2 at x = −4, −3, 0, 2, 5, and 6.

y = −f(−4)− 2 = −(0)− 2 = −2
y = −f(−3)− 2 = −(4)− 2 = −6
y = −f(0)− 2 = −(4)− 2 = −6
y = −f(2)− 2 = −(−4)− 2 = 2
y = −f(5)− 2 = −(−4)− 2 = 2
y = −f(6)− 2 = −(0)− 2 = −2

Points satisfying y = −f(x)− 2.

x −4 −3 0 2 5 6
y −2 −6 −6 2 2 −2

Plot the points in the table to get the graph of y = −f(x)− 2.
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x
10

y
10

f

y=−f(x)−2

Note that negating then subtracting 2, as in y = −f(x)− 2, first reflects the graph of
y = f(x) across the x-axis, then translates the resulting reflection 2 units downward.

11. First, draw the graph of y = √x.

(a) (b)

The graph of y = −√x is a reflection of the graph of y = √x across the x-axis.

(c) (d)

Negating a function appears to reflect the graph of the function across the x-axis.

13. First, draw the graph of y = x2.

(a) (b)
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Subtracting 2 (as in y = x2 − 2) translates the graph of y = x2 two units downward in
the y-direction.

(c) (d)

Similarly, subtracting 4 and 6 translates the graph of y = x2 four units and 6 units
downward, respectively.

(e) (f)

In general, if c is positive, then the graph of y = f(x) − c is obtained by translating
the graph of y = f(x) downward c units.

15. First, draw the graph of y = |x|.

(a) (b)

Multiplying by 2, as in y = 2|x|, stretches the graph of y = |x| vertically by a factor of
2.

(c) (d)
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Similarly, multiplying by 3 and 4, as in y = 3|x| and y = 4|x|, stretches the graph of
y = |x| vertically by factors of 3 and 4, respectively.

(e) (f)

In general, if a > 1, then the graph of y = af(x) is obtained by stretching the graph of
y = f(x) vertically by a factor of a.

17. To obtain the plot of y = (1/2)f(x), simply multiply the y-value of each point on
the graph of y = f(x) by 1/2, keeping the x-value the same.

x
10

y
10

f

y=(1/2)f(x)

Note that multiplying by 1/2, as in y = (1/2)f(x), compresses the graph of y = f(x)
vertically by a factor of 2.

19. To obtain the plot of y = −f(x), simply negate the y-value of each point on the
graph of y = f(x).

x
10

y
10

f

y=−f(x)



Chapter 2 Functions

Version: Fall 2007

Note that negating, as in y = −f(x), reflects the graph of y = f(x) across the x-axis.

21. To obtain the plot of y = f(x) + 3, simply add 3 to the y-value of each point on
the graph of y = f(x).

x
10

y
10

f

y=f(x)+3

Note that adding 3, as in y = f(x) + 3, translates the graph of y = f(x) upwards 3
units.

23. To obtain the plot of y = 2f(x), simply multiply the y-value of each point of
y = f(x) by 2.

x
10

y
10

f

y=2f(x)

Note that multiplying by 2, as in y = 2f(x), stretches the graph of y = f(x) vertically
by a factor of 2.

25. To obtain the plot of y = −f(x), simply negate the y-value of each point on the
graph of y = f(x).
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x
10

y
10

f

y=−f(x)

Note that negating a function, as in y = −f(x), reflects the graph of y = f(x) across
the x-axis.

27. To obtain the plot of y = f(x) − 2, simply subtract 2 from the y-value of each
point on the graph of y = f(x).

x
10

y
10

f

y=f(x)−2

Note that subtracting 2, as in y = f(x)−2, translates the graph of y = f(x) downwards
2 units.

29. We proceed in two steps:

1. First, multiply the y-value of each point on the graph of y = f(x) by 1/2 to produce
the graph of y = (1/2)f(x) in (b). This compresses the graph of y = f(x) by a
factor of 2.

2. Secondly, multiply the y-value of each point on the graph of y = (1/2)f(x) by −1 to
produce the graph of y = (−1/2)f(x) in (c). This reflects the graph of y = (1/2)f(x)
across the x-axis.
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x
10

y
10

f

x
10

y
10

(1/2)f(x)

x
10

y
10

y=(−1/2)f(x)

(a) y = f(x) (b) y = (1/2)f(x) (c) y = (−1/2)f(x)

31. We proceed in two steps:

1. First, multiply the y-value of each point on the graph of y = f(x) by −1 to produce
the graph of y = −f(x) in (b). This reflects the graph of y = f(x) across the x-axis.

2. Secondly, add 2 to the y-value of each point on the graph of y = −f(x) to produce
the graph of y = −f(x) + 2 in (c). This shifts the graph of y = −f(x) upward 2
units.

x
10

y
10

f

x
10

y
10

y=−f(x)

x
10

y
10

y=−f(x)+2

(a) y = f(x) (b) y = −f(x) (c) y = −f(x) + 2

33. We proceed in two steps:

1. First, multiply the y-value of each point on the graph of y = f(x) by 2 to produce
the graph of y = 2f(x) in (b). This stretches the graph of y = f(x) vertically by a
factor of 2.

2. Secondly, subtract 3 from the y-value of each point on the graph of y = 2f(x) to
produce the graph of y = 2f(x) − 3 in (c). This shifts the graph of y = 2f(x)
downward 3 units.
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x
10

y
10

f

x
10

y
10 y=2f(x)

x
10

y
10

y=2f(x)−3

(a) y = f(x) (b) y = 2f(x) (c) y = 2f(x) − 3





Section 2.6 Horizontal Geometric Transformations 209

Version: Fall 2007

2.6 Exercises

Pictured below is the graph of a function
f .

x
10

y
10

f

The table that follows evaluates the
function f in the plot at key values of x.
Notice the horizontal format, where the
first point in the table is the ordered pair
(−6, 0).

x −6 −4 −2 0 2 4
f(x) 0 4 4 0 −2 0

Use the graph and the table to complete
each of following tasks for Exercises 1-
10.

i. Set up a coordinate system on graph
paper. Label and scale each axis, then
copy and label the original graph of
f onto your coordinate system. Re-
member to draw all lines with a ruler.

ii. Use the original table to help com-
plete the table for the given function
in the exercise.

iii. Using a different colored pencil, plot
the data from your completed table
on the same coordinate system as the
original graph of f . Use these points

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

to help complete the graph of the given
function in the exercise, then label
this graph with its equation given in
the exercise.

1. y = f(2x).

x −3 −2 −1 0 1 2
y

2. y = f((1/2)x).

x −12 −8 −4 0 4 8
y

3. y = f(−x).

x −4 −2 0 2 4 6
y

4. y = f(x+ 3).

x −9 −7 −5 −3 −1 1
y

5. y = f(x− 1).

x −5 −3 −1 1 3 5
y

6. y = f(−2x).

x −2 −1 0 1 2 3
y
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7. y = f((−1/2)x).

x −8 −4 0 4 8 12
y

8. y = f(−x− 2).

x −6 −4 −2 0 2 4
y

9. y = f(−x+ 1).

x −3 −1 1 3 5 7
y

10. y = f(−x/4).

x −16 −8 0 8 16 24
y

11. Use your graphing calculator to draw
the graph of y = √x. Then, draw the
graph of y =

√
−x. In your own words,

explain what you learned from this exer-
cise.

12. Use your graphing calculator to draw
the graph of y = |x|. Then, draw the
graph of y = | − x|. In your own words,
explain what you learned from this exer-
cise.

13. Use your graphing calculator to draw
the graph of y = x2. Then, in succession,
draw the graphs of y = (x − 2)2, y =
(x− 4)2, and y = (x− 6)2. In your own
words, explain what you learned from
this exercise.

14. Use your graphing calculator to draw
the graph of y = x2. Then, in succession,

draw the graphs of y = (x + 2)2, y =
(x+ 4)2, and y = (x+ 6)2. In your own
words, explain what you learned from
this exercise.

15. Use your graphing calculator to draw
the graph of y = |x|. Then, in succession,
draw the graphs of y = |2x|, y = |3x|,
and y = |4x|. In your own words, explain
what you learned from this exercise.

16. Use your graphing calculator to draw
the graph of y = |x|. Then, in succession,
draw the graphs of y = |(1/2)x|, y =
|(1/3)x|, and y = |(1/4)x|. In your own
words, explain what you learned from
this exercise.

Pictured below is the graph of a function
f . In Exercises 17-22, use this graph
to perform each of the following tasks.

x
10

y
10

f

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-
member to draw all lines with a ruler.

ii. In the narrative, a shadow box at the
end of the section summarizes the con-
cepts and technique of horizontal scal-
ing, horizontal reflection, and hori-
zontal translation. Use the shortcut
ideas presented in this summary shadow
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box to draw the graphs of the func-
tions that follow without using ta-
bles.

iii. Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

17. y = f(2x).

18. y = f((1/2)x).

19. y = f(−x).

20. y = f(x− 1).

21. y = f(x+ 3).

22. y = f(x− 2).

Pictured below is the graph of a function
f . In Exercises 23-28, use this graph
to perform each of the following tasks.

x
10

y
10

f

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Make an exact copy of the graph
of f on your coordinate system. Re-

member to draw all lines with a ruler.
ii. In the narrative, a shadow box at the

end of the section summarizes the con-
cepts and technique of horizontal scal-
ing, horizontal reflection, and hori-
zontal translation. Use the shortcut
ideas presented in this summary shadow
box to draw the graphs of the func-
tions that follow without using ta-
bles.

iii. Use a different colored pencil to draw
the graph of the function given in the
exercise. Label this graph with its
equation. Be sure that key points are
accurately plotted. In each exercise,
please plot exactly two plots per co-
ordinate system, the graph of original
function f and the graph of the func-
tion in the exercise.

23. y = f(2x).

24. y = f((1/2)x).

25. y = f(−x).

26. y = f(x+ 3).

27. y = f(x− 2).

28. y = f(x+ 1).
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2.6 Solutions

1. The original function table.

x −6 −4 −2 0 2 4
f(x) 0 4 4 0 −2 0

Evaluate the function y = f(2x) at x = −3, −2, −1, 0, 1, and 2.
y = f(2(−3)) = f(−6) = 0
y = f(2(−2)) = f(−4) = 4
y = f(2(−1)) = f(−2) = 4
y = f(2(0)) = f(0) = 0
y = f(2(1)) = f(2) = −2
y = f(2(2)) = f(4) = 0

Points satisfying y = f(2x).

x −3 −2 −1 0 1 2
y 0 4 4 0 −2 0

Plot the points in the table to get the graph of y = f(2x).

x
10

y
10

f

y=f(2x)

Note that replacing x with 2x, as in y = f(2x), compresses the graph of y = f(x)
horizontally by a factor of 2.

3. The original function table.

x −6 −4 −2 0 2 4
f(x) 0 4 4 0 −2 0
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Evaluate the function y = f(−x) at x = −4, −2, 0, 2, 4, and 6.

y = f(−(−4)) = f(4) = 0
y = f(−(−2)) = f(2) = −2
y = f(−(0)) = f(0) = 0
y = f(−(2)) = f(−2) = 4
y = f(−(4)) = f(−4) = 4
y = f(−(6)) = f(−6) = 0

Points satisfying y = f(−x).

x −4 −2 0 2 4 6
y 0 −2 0 4 4 0

Plot the points in the table to get the graph of y = f(−x).

x
10

y
10

f

y=f(−x)

Note that replacing x with −x, as in y = f(−x), reflects the graph of y = f(x) across
the y-axis.

5. The original function table.

x −6 −4 −2 0 2 4
f(x) 0 4 4 0 −2 0

Evaluate the function y = f(x− 1) at x = −5, −3, −1, 1, 3, and 5.

y = f((−5)− 1) = f(−6) = 0
y = f((−3)− 1) = f(−4) = 4
y = f((−1)− 1) = f(−2) = 4
y = f((1)− 1) = f(0) = 0
y = f((3)− 1) = f(2) = −2
y = f((5)− 1) = f(4) = 0
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Points satisfying y = f(x− 1).

x −5 −3 −1 1 3 5
y 0 4 4 0 −2 0

Plot the points in the table to get the graph of y = f(x− 1).

x
10

y
10

f

y=f(x−1)

Note that replacing x with x− 1, as in y = f(x− 1), translates the graph of y = f(x)
horizontally 1 unit to the right.

7. The original function table.

x −6 −4 −2 0 2 4
f(x) 0 4 4 0 −2 0

Evaluate the function y = f((−1/2)x) at x = −8, −4, 0, 4, 8, and 12.

y = f((−1/2)(−8)) = f(4) = 0
y = f((−1/2)(−4)) = f(2) = −2
y = f((−1/2)(0)) = f(0) = 0
y = f((−1/2)(4)) = f(−2) = 4
y = f((−1/2)(8)) = f(−4) = 4
y = f((−1/2)(12)) = f(−6) = 0

Points satisfying y = f((−1/2)x).

x −8 −4 0 4 8 12
y 0 −2 0 4 4 0

Plot the points in the table to get the graph of y = f((−1/2)x).
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x
10

y
10

f

y=f((−1/2)x)

Note that replacing x with (−1/2)x, as in y = f((−1/2)x), stretches the graph by a
factor of 2, then reflects the result across the y-axis.

9. The original function table.

x −6 −4 −2 0 2 4
f(x) 0 4 4 0 −2 0

Evaluate the function y = f(−x+ 1) at x = −3, −1, 1, 3, 5, and 7.

y = f(−(−3) + 1) = f(4) = 0
y = f(−(−1) + 1) = f(2) = −2
y = f(−(1) + 1) = f(0) = 0
y = f(−(3) + 1) = f(−2) = 4
y = f(−(5) + 1) = f(−4) = 4
y = f(−(7) + 1) = f(−6) = 0

Points satisfying y = f(−x+ 1).

x −3 −1 1 3 5 7
y 0 −2 0 4 4 0

Plot the points in the table to get the graph of y = f(−x+ 1).
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x
10

y
10

f

y=f(−x+1)

Note that y = f(−x + 1) is the same as y = f(−(x − 1)). If we replace x with −x to
get y = f(−x), then x in this last result with x − 1 to get y = f(−(x − 1)), this has
the effect of first reflecting the graph of y = f(x) across the y-axis, then shifting the
result to the right 1 unit.

11. First, draw the graph of y = √x.

(a) (b)

The graph of y =
√
−x is a reflection of the graph of y = √x across the y-axis.

(c) (d)

Replacing x with −x, as in y = f(−x), reflects the graph of y = f(x) across the y-axis.

13. First, draw the graph of y = x2.
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(a) (b)

Replacing x with x − 2 translates the graph of y = x2 two units to the right in the
horizontal direction.

(c) (d)

Similarly, replacing x with x − 4 and x − 6 translates the graph of y = x2 four units
and 6 units to the right, respectively.

(e) (f)

In general, if c is positive, then the graph of y = f(x − c) is obtained by translating
the graph of y = f(x) to the right c units.

15. First, draw the graph of y = |x|.

(a) (b)

Replacing x with 2x compresses the graph of y = |x| by a factor of 2 in the horizontal
direction.
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(c) (d)

Similarly, replacing x with 3x and 4x by a factor of 3 and 4 in the horizontal direction,
respectively.

(e) (f)

In general, if a > 1, then the graph of y = f(ax) is obtained by compressing the graph
of y = f(x) by a factor of a in the horizontal direction.

17. To obtain a plot for y = f(2x), take each point on the graph of y = f(x) and
divide its x-value by 2, keeping the y-value the same.

x
10

y
10

f

y=f(2x)

Note that replacing x with 2x, as in y = f(2x), compresses the graph of y = f(x) in
the horizontal direction by a factor of 2.

19. To obtain a plot of y = f(−x), take each point on the graph of y = f(x) and
negate its x-value, keeping the y-value the same.
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x
10

y
10

fy=f(−x)

Note that replacing x with −x, as in y = f(−x), reflects the graph of f across the
y-axis.

21. To obtain a plot of y = f(x + 3), take each point on the graph of y = f(x) and
subtract 3 from its x-value, keeping the y-value the same.

x
10

y
10

f

y=f(x+3)

Note that replacing x with x+ 3, as in y = f(x+ 3), translates the graph of y = f(x)
to the left 3 units.

23. To obtain a plot of y = f(2x), take each point on the graph of y = f(x) and
divide its x-value by 2, keeping the y-value the same.
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x
10

y
10

fy=f(2x)

Replacing x with 2x, as in y = f(2x), compresses the graph of y = f(x) horizontally
by a factor of 2.

25. To obtain a plot of y = f(−x), take each point on the graph of y = f(x) and
negate its x-value, keeping the same y-value.

x
10

y
10

f

y=f(−x)

Replacing x with −x, as in y = f(−x), reflects the graph of y = f(x) across the y-axis.

27. To obtain a plot of y = f(x − 2), take each point on the graph of y = f(x) and
add 2 to its x-value, keeping its y-value the same.

x
10

y
10

f

y=f(x−2)
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Replacing x with x− 2, as in y = f(x− 2), shifts the graph of y = f(x) to the right 2
units.
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3.1 Exercises

1.

Jodiah is saving his money to buy a Playsta-
tion 3 gaming system. He estimates that
he will need $950 to buy the unit itself,
accessories, and a few games. He has
$600 saved right now, and he can rea-
sonably put $60 into his savings at the
end of each month.
Since the amount of money saved de-
pends on how many months have passed,
choose time, in months, as your indepen-
dent variable and place it on the hori-
zontal axis. Let t represent the number
of months passed, and make a mark for
every month.
Choose money saved, in dollars, as your
dependent variable and place it on the
vertical axis. LetA represent the amount
saved in dollars. Since Jodiah saves $60
each month, it will be convenient to let
each box represent $60.
Copy the following coordinate system onto
a sheet of graph paper.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

Time t (months)

Amount saved A (dollars)

0 2 4 6
60

180

300

420

540

660

780

900

1020

a) At month 0, Jodiah has $600 saved.
This corresponds to the point (0, 600).
Plot this point on your coordinate sys-
tem.

b) For the next month, he saved $60
more. Beginning at point (0, 600),
move 1 month to the right and $60
up and plot a new data point. What
are the coordinates of this point?

c) Each time you go right 1 month, you
must go up by $60 and plot a new
data point. Repeat this process until
you reach the edge of the coordinate
system.

d) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

e) Use your graph to estimate how much
money Jodiah will have saved after 7
months.

f) Using your graph, estimate how many
months it will take him to have saved



234 Chapter 3 Linear Functions

Version: Fall 2007

up enough money to buy his gaming
system, accessories, and games.

2.

The sign above shows the prices for a taxi
ride from Liberty Cab Company. Since
the cost depends on the distance trav-
eled, make the distance be the indepen-
dent variable and place it on the hori-
zontal axis. Let d represent the distance
traveled, in miles. Because the cab com-
pany charges per 1/6 mile, it is conve-
nient to mark every 1/6 mile.
Make price, in $, your dependent vari-
able and place it on the vertical axis. Let
C represent the cost, in $. Because the
cost occurs in increments of 40c, mark
every 40c along the vertical axis.
Copy the following coordinate system onto
a sheet of graph paper.

distance d (miles)

Cost C ($)

0 1 2 3
0.20
0.60
1.00
1.40
1.80
2.20
2.60
3.00
3.40
3.80
4.20
4.60
5.00
5.40
5.80
6.20
6.60

a) For the first 1/6 mile of travel, the
cost is $2.30. This corresponds to the
point (1/6,$2.30). Plot this point on
your coordinate system.

b) For the next 1/6 of a mile, the cost
goes up by 40c. Beginning at point
(1/6,$2.30), move 1/6 of a mile to the
right and 40c up and plot a new data
point. What are the coordinates of
this point?

c) Each time you go right 1/6 of a mile,
you must go up by 40c and plot a new
data point. Repeat this process until
you reach the edge of your coordinate
system.

d) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

e) Melissa steps into a cab in the city
of Niagara Falls, about 2 miles from
Niagara Falls State Park. Use your
graph to estimate the fare to the park.

f) Elsewhere in the area, Georgina takes
a cab. She has only $5 for the fare.
Use the graph to estimate how far she
can travel, in miles, with only $5 for
the fare.

3. A boat is 200 ft from a buoy at sea.
It approaches the buoy at an average speed
of 15 ft/s.

a) Choosing time, in seconds, as your
independent variable and distance from
the buoy, in feet, as your dependent
variable, make a graph of a coordi-
nate system on a sheet of graph pa-
per showing the axes and units. Use
tick marks to identify your scales.

b) At time t=0, the boat is 200 ft from
the buoy. To what point does this



Section 3.1 Linear Models 235

Version: Fall 2007

correspond? Plot this point on your
coordinate system.

c) After 1 second, the boat has drawn
15 ft closer to the buoy. Beginning
at the previous point, move 1 second
to the right and 15 ft down (since the
distance is decreasing) and plot a new
data point. What are the coordinates
of this point?

d) Each time you go right 1 second, you
must go down by 15 ft and plot a new
data point. Repeat this process until
you reach 12 seconds.

e) Draw a line through your data points.

f) When the boat is within 50 feet of
the buoy, the driver wants to begin
to slow down. Use your graph to esti-
mate how soon the boat will be within
50 feet of the buoy.

4. Joe owes $24,000 in student loans.
He has finished college and is now work-
ing. He can afford to pay $1500 per month
toward his loans.

a) Choose time in months as your inde-
pendent variable and amount owed,
in $, as the dependent variable. On a
sheet of graph paper, make a sketch
of the coordinate system, using tick
marks and labeling the axes appro-
priately.

b) At time t = 0, Joe has not yet paid
anything toward his loans. To what
point does this correspond? Plot this
point on your coordinate system.

c) After one month, he pays $1500. Be-
ginning at the previous point, move 1
month to the right and $1500 down
(down because the debt is decreas-
ing). Plot this point. What are its
coordinates?

d) Each time you go 1 month to the
right, you must move $1500 down.
Continue doing this until his loans
have been paid off.

e) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

f) Use the graph to determine how many
months it will take him to pay off the
full amount of his loans.

5.

Earl the squirrel has only ten more days
until hibernation. He needs to save 50
more acorns. He is tired of collecting
acorns and so he is only able to gather 8
acorns every 2 days.

a) Let t represent time in days and make
it your independent variable. Let N
represent the number of acorns col-
lected and make it your dependent
variable. Set up an appropriately scaled
coordinate system on a sheet of graph
paper.

b) At time t = 0, Earl has collected zero
of the acorns he needs. To what point
does this correspond? Plot this point
on your coordinate system.

c) After two days (t = 2), Earl has col-
lected 8 acorns. Beginning at the pre-
vious point, move 2 days to the right
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and 8 acorns up. Plot this point.
What are its coordinates?

d) Each time you go 2 days to the right,
you must move 8 acorns up and plot a
point. Continue doing this until you
reach 14 days.

e) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

f) Use the graph to determine how many
acorns he will have collected after 10
days. Will Earl have collected enough
acorns for his winter hibernation?

g) Notice that the number of acorns col-
lected is increasing at a rate of 8 acorns
every 2 days. Reduce this to a rate
that tells the average number of acorns
that is collected each day.

h) The table below lists the number of
acorns Earl will have collected at var-
ious times. Some of the entries have
been completed for you. For exam-
ple, at t = 0, Earl has no acorns, so
N = 0. After one day, the amount
increases by 4, so N = 0 + 4(1). Af-
ter two days, two increases have oc-
curred, so N = 0 + 4(2). The pattern
continues. Fill in the missing entries.

t N

0 0
1 0 + 4(1)
2 0 + 4(2)
3 0 + 4(3)
4
6
8
10
12
14

i) Express the number of acorns collected,
N , as a function of the time t, in days.

j) Use your function to predict the num-
ber of acorns that Earl will have after
10 days. Does this answer agree with
your estimate from part (f)?

6. On network television, a typical hour
of programming contains 15 minutes of
commercials and advertisements and 45
minutes of the program itself.

a) Choose amount of television watched
as your independent variable and place
it on the horizontal axis. Let T repre-
sent the amount of television watched,
in hours. Choose total amount of com-
mercials/ads watched as your depen-
dent variable and place it on the ver-
tical axis. Let C represent the total
amount of commercials/ads watched,
in minutes. Using a sheet of graph
paper, make a sketch of a coordinate
system and label appropriately.

b) For 0 hours of programming watched,
0 minutes of commercials have been
watched. To what point does this
correspond? Plot it on your coordi-
nate system.

c) After watching 1 hour of program-
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ming, 15 minutes of commercials/ads
have been watched. Beginning at the
previous point, move 1 hour to the
right and 15 minutes up. Plot this
point. What are its coordinates?

d) Each time you go 1 hour to the right,
you must move 15 minutes up and
plot a point. Continue doing this un-
til you reach 5 hours of programming.

e) Draw a line through your data points.

f) Billy watches TV for five hours on
Monday. Use the graph to determine
how many minutes of commercials he
has watched during this time.

g) Suppose a person has watched one
hour of commercials/ads. Use the graph
to estimate how many hours of tele-
vision he watched.

h) The following table shows numbers
of hours of programming watched as
it relates to number of minutes of com-
mercials/ads watched. For 0 hours
of TV, 0 minutes of commercials/ads
are watched. For each hour of TV
watched, we must count 15 minutes
of commercials/ads. So, for 1 hour,
0 + 15(1) minutes of commercials are
watched. For 2 hours, 0 + 15(2) min-
utes; and so on. Fill in the missing
entries.

T (hrs) C (mins)
0 0
1 0 + 15(1)
2 0 + 15(2)
3
4
5

i) Express the amount of commercials/ads
watched, C, as a function of the amount

of television watched T. Use your equa-
tion to predict the amount of com-
mercials/ads watched for 5 hours of
television programming. Does this
answer agree with your estimate from
part (f)?

7. According to NATO (the National
Association of Theatre Owners), the av-
erage price of a movie ticket was 5.65 dol-
lars in the year 2001. Since then, the av-
erage price has been rising each year by
about 20c.

a) Choose year, beginning with 2000, as
the independent variable and make
marks every year on the axis. Choose
average ticket price, in dollars, as your
dependent variable and begin at 5.65
dollars, with marks every 10c above.
Make a sketch of a coordinate system
and label appropriately.

b) In 2001, the average ticket price was
5.65 dollars, corresponding to the point
(2001, 5.65). Plot it on your coordi-
nate system.

c) In 2002, one year later, the average
price rose by about 20c. Beginning
at the previous point, move right by
1 year and up by 20c and plot the
point. What are its coordinates?

d) Each time you go 1 year to the right,
you must move up by 20c and plot a
point. Continue doing this until the
year 2010.

e) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

f) Use the graph to estimate what year
the average price of a ticket will pass
7.00 dollars.
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8. When Jessica drives her car to a work-
related conference, her employer reim-
burses her approximately 45 cents per
mile to cover the cost of gas and the
wear-and-tear on the vehicle.

a) Using distance traveled d, in miles,
as the independent variable and amount
reimbursed A, in dollars, as the de-
pendent variable, make a sketch of a
coordinate system and label appro-
priately. Mark distance every 5 miles
and amount reimbursed every $0.45.

b) For traveling 0 miles, the reimburse-
ment is 0. This corresponds to the
point (0, 0). Plot it on your coordi-
nate system.

c) For a trip that requires her to drive
a total of 5 miles, she is reimbursed
5(0.45) = $2.25. This corresponds to
the point (5, $2.25). Plot it.

d) For each 5 miles you go to the right,
you must go up $2.25 and plot the
point. Do this until you reach 20
miles.

e) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

f) In March, Jessica attends a confer-
ence that is only 5 miles away. Count-
ing roundtrip, she travels 10 total miles.
Use the graph to determine how much
she is reimbursed.

g) In December, she attends a confer-
ence 10 miles away. How long is her
trip in total? Use the graph to de-
termine how much she will be reim-
bursed.

h) For longer trips, such as 200 total
miles, you will probably need to make

a much larger graph. And what if she
travels 400 miles? Or further? It is
limitations such as these that make
it useful to find an equation that de-
scribes what the graph shows. To
find the equation, we start with a ta-
ble that helps us to understand the
relationship between the dependent
and independent variables. Complete
the table below.

d
(miles) A ($)

0 0
1 0 + 0.45(1)
2 0 + 0.45(2)
3
4
5
10
20
50
100

i) Use the table from part (h) to come
up with an equation that relates d
and A.

j) Now, use the equation to determine
the reimbursement amounts for trips
of 200 miles and 400 miles.

9. Temperature is typically measured
in degrees Fahrenheit in the United States;
but it is measured in degrees Celsius in
many other countries. The relationship
between Fahrenheit and Celsius is lin-
ear. Let’s choose the measurement of
degrees in Celsius to be our independent
variable and the measurement of degrees
in Fahrenheit to be our dependent vari-
able. Water freezes at 0 degrees Celsius,
which corresponds to 32 degrees Fahren-
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heit; and water boils at 100 degrees Cel-
sius, which corresponds to 212 degrees
Fahrenheit. We can plot this information
as the two points (0,32) and (100,212).
The relationship is linear, so have the fol-
lowing graph:

C (deg)

F (deg)

0 16 32 48 64 80 96
16
32
48
64
80
96

112
128
144
160
176
192
208

(0,32)(0,32)

(100,212)(100,212)

a) Use the graph to approximate the
equivalent Fahrenheit temperature for
48 degree Celsius.

b) To determine the rate of change of
Fahrenheit with respect to Celsius,
we draw a right triangle with sides
parallel to the axes that connects the
two points we know...

C (deg)

F (deg)

0 16 32 48 64 80 96
16
32
48
64
80
96

112
128
144
160
176
192
208

Q(100,212)Q(100,212)

PP
RR

180 deg

100 deg

Side PR is 100 degrees long, repre-
senting an increase in 100 degrees Cel-
sius. Side RQ is 180 degrees, rep-

resenting an increase in 180 degrees
Fahrenheit. Find the rate of increase
of Fahrenheit per Celsius.

c) The following table shows some val-
ues of temperatures in Celsius and
their corresponding Fahrenheit read-
ings. Zero degrees Celsius corresponds
to 32 degrees Fahrenheit. Our rate
is 9 degrees Fahrenheit for every 5
degrees Celsius, or 9/5 of a degree
Fahrenheit for every 1 degree Celsius.
So, for 1 degree Celsius, we increase
the Fahrenheit reading by 9/5 degree,
getting 32 + 9/5(1). For 2 degrees
Celsius, we increase by two occurrences
of 9/5 degree to get 32 + 9/5(2). Fill
in the missing entries, following the
pattern.

C (deg) F (deg)
0 32
1 32 + 9

5(1)
2 32 + 9

5(2)
3 32 + 9

5(3)
4
5
10
20
48
100

d) Use the table to form an equation
that gives degrees Fahrenheit in terms
of degrees Celsius.

10. On June 16, 2006, the conversion
rate from Euro to U.S. dollars was ap-
proximately 0.8 to 1, meaning that every
0.8 Euros were worth 1 U.S. dollar.

a) Choosing dollars to be the indepen-
dent variable and Euros to be the de-
pendent variable, make a graph of co-
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ordinate system. Mark every dollar
on the dollar axis and every 0.8 Eu-
ros on the Euro axis. Label appropri-
ately.

b) Zero dollars are worth 0 Euros. This
corresponds to the point (0, 0). Plot
it on your coordinate system.

c) One dollar is worth 0.8 Euros. Plot
this as a point on your coordinate
system.

d) For every dollar you move to the right,
you must go up 0.8 Euros and plot a
point. Do this until you reach $10.

e) Draw a line through your data points.

f) Use the graph to estimate how many
Euros $8 are worth.

g) Use the graph to estimate how many
dollars 5 Euros are worth.

h) The following table shows some val-
ues of dollars and their corresponding
value in Euros. Fill in the missing en-
tries.

Dollars Euros

0 0
1 0 + 0.8(1)
2 0 + 0.8(2)
3
4
5
10

i) Use the table to make an equation
that can be used to convert dollars
to Euros.

j) Use the equation from (i) to convert
$8 to Euros. Does your answer agree
with the answer from (f) that you ob-
tained using the graph?

11. The Tower of Pisa in Italy has its
famous lean to the south because the clay
and sand ground on which it is built is
softer on the south side than the north.
The tilt is often found by measuring the
distance that the upper part of the tower
overhangs the base, indicated by h in the
figure below. In 1980, the tower had a
tilt of h = 4.49m, and this tilt was in-
creasing by about 1 mm/year.

Figure 1. h measures the tilt of the
Tower of Pisa.

We will investigate how the tilt of the
tower changed from 1980 to 1995.

a) First, note that our units do not match:
The tilt in 1980 was given as 4.49 m,
but the annual increase in the tilt is
given as 1 mm/year. Our first goal is
to make the units the same. We will
use millimeters (mm). Convert 4.49
m to mm.

b) Get a sheet of graph paper. Since
the tilt of the tower depends on the
year, make the year the independent
variable and place it on the horizontal
axis. Let t represent the year.
Make the tilt the dependent variable
and place it on the vertical axis. Let
h represent the tilt, measured in mil-
limeters (mm).
Choose 1980 as the first year on the
horizontal axis and mark every year



Section 3.1 Linear Models 241

Version: Fall 2007

thereafter, until 1995. Let the ver-
tical axis begin at 4.49 m, converted
to mm from part (a), since that was
our first measurement; and then we
mark every 1 mm thereafter up to
4510 mm.

c) Think of 1980 as the starting year.
Together with the tilt measurement
from that year, it forms a point. What
are the coordinates of this point? Plot
the point on your coordinate system.

d) Beginning at the first point, from part
(c), move one year to the right (to
1981) and 1 mm up (because the tilt
increases) and plot a new data point.

e) Each time you move one year to the
right, you must move 1 mm up and
plot a new point. Repeat this process
until you reach the year 1995.

f) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points. We can use this model to
make predictions.

g) According to computer simulation mod-
els, which use sophisticated mathe-
matics, the tower would be in danger
of collapsing when h reaches about
4495 mm. Use your graph to esti-
mate what year this would happen.

h) In reality, the tilt of the tower passed
4495 mm and the tower did not col-
lapse. In fact, the tilt increased to
4500 mm before the tower was closed
on January 7, 1990, to undergo ren-
ovations to decrease the tilt. (The
tower was reopened in 2001, after en-
gineers used weights and removed dirt
from under the base to decrease the
tilt by 450 mm.) What might be some
reasons why the prediction of the com-
puter model was wrong?

i) The following table lists the tilt of the
tower, h, the year, and the number
of years since 1980. In 1980, the tilt
was 4490 mm and no occurrences of
the 1 mm increase had happened yet,
so we fill in 4490 + 0(1) = 4490. In
1981, one occurrence of the 1 mm in-
crease had occurred because one year
had passed since 1980. Therefore, the
tilt was 4490 + 1(1). In 1982, two oc-
currences of the 1 mm increase had
occurred, because 2 years had passed
since 1980. Thus, the tilt was 4490 +
2(1). And the pattern continues in
this manner. Fill in the remaining
entries.

Year yrs x after ’80 tilt h
1980 0 4490 + 0(1)
1981 1 4490 + 1(1)
1982 2 4490 + 1(2)
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995

j) Let x represent the number of years
since 1980 and h represent the tilt.
Using the table above, write an equa-
tion that relates h and x.

k) Use your equation to predict the tilt
in 1990. Does it agree with the actual
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value from 1990? Does it agree with
the value that is shown on the graph
you made?

l) In part (g), you used the graph to
predict the year in which the tilt would
be 4495mm. Use your equation to
make the same prediction. Do the
answers agree?

12. According to the Statistical Abstract
of the United States (www.census.gov),
there were approximately 31, 000 crimes
reported in the United States in 1998,
and this was dropping by a rate of about
2900 per year.

a) On a sheet of graph paper, make a
coordinate system and plot the 1998
data as a point. Note that you will
only need to graph the first quadrant
of a coordinate system, since there
are no data for years before 1998 and
there cannot be a negative number of
crimes reported. Use the given rate
to find points for 1999 through 2006,
and then draw a line through your
data. We are constructing a continu-
ous model for our discrete situation.

b) The following table lists the number
of crimes reported, C, the year, and
the number of years since 1998. In
1998, the number was 31, 000 and no
occurrences of the 2900 decrease had
happened yet, so we fill in 31000 −
2900(0). In 1999, one occurrence of
the 2900 decrease had happened be-
cause one year had passed since 1998.
Therefore, the number of crimes re-
ported was 31000−2900(1). And the
pattern continues in this manner. Fill
in the remaining entries.

Year yrs x after 1998 No. of crimes C
1998 0 31000− 2900(0)
1999 1 31000− 2900(1)
2000
2001
2002

c) Observing the pattern in the table,
we come up with the equation C =
31000 − 2900x to relate the number
of crimes C to the number of years
x after 1998. Here, C is a function
of x, and so we can use the notation
C(x) = 31000 − 2900x to emphasize
this.

i. Compute C(5).
ii. In a complete sentence, explain

what C(5) represents.
iii. Compute C(8).
iv. In a complete sentence, explain

what C(8) represents.

13. According to the Statistical Abstract
of the United States (www.census.gov),
there were approximately 606, 000 inmates
in United States prisons in 1999, and this
was increasing by a rate of about 14, 000
per year.

a) On a sheet of graph paper, make a
coordinate system and plot the 1999
data as a point. Note that you will
only need to graph the first quadrant
of a coordinate system, since there
are no data for years before 1999 and
there cannot be a negative number of
crimes reported. Use the given rate
to find points for 2000 through 2006,
and then draw a line through your
data. We are constructing a continu-
ous model for our discrete situation.
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b) The following table lists the num-
ber of inmates, N , the year, and the
number of years since 1999. In 1999,
the number was 606, 000 and no oc-
currences of the 14, 000 increase had
happened yet, so we fill in 606000 +
14000(0). In 2000, one occurrence of
the 14, 000 increase had happened be-
cause one year had passed since 1999.
Therefore, the number of crimes re-
ported was 606000 + 14000(1). And
the pattern continues in this manner.
Fill in the remaining entries.

Year yrs x after ’99 No. of
inmates N

1999 0 606000+14000(0)
2000 1 606000+14000(1)
2001
2002

c) Observing the pattern in the table,
we come up with the equation N =
606000+14000x to relate the number
of crimes C to the number of years
x after 1999. Here, N is a function
of x, and so we can use the notation
N(x) = 606000+14000x to emphasis
this.

i. Compute N(5).
ii. In a complete sentence, explain

what N(5) represents.
iii. Compute N(7).
iv. In a complete sentence, explain

what N(7) represents.
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3.1 Answers

1.

b) (1, $660)

d)

time t (months)

Amount saved A (dollars)

0 2 4 6
60

180

300

420

540

660

780

900

1020

(0,600)(0,600)
(1,660)(1,660)

e) $1020

f) 6 months

3.

b) (0, 200)

c) (1, 185)

e)

time t (sec)

distance d (ft)

0 2 4 6 8 10 120
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200 (0,200)(0,200)

(1,185)(1,185)

f) 10 seconds

5.

b) (0, 0)

c) (2, 8)

e)

time t (days)

number N (acorns)

0 2 4 6 8 10 12 140
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60

(2,8)(2,8)

f) 40 acorns
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g) 4 acorns/day

h)

t N

0 0
1 0 + 4(1)
2 0 + 4(2)
3 0 + 4(3)
4 0 + 4(4)
6 0 + 4(6)
8 0 + 4(8)
10 0 + 4(10)
12 0 + 4(12)
14 0 + 4(14)

i) N = 0 + 4t or N = 4t

j) N = 40; yes.

7.

c) (2002, 5.85)

e)

Y ear

P (dollars)

2000 2002 2004 2006 2008 20105.65
5.85
6.05
6.25
6.45
6.65
6.85
7.05
7.25
7.45
7.65

(2002,$5.85)(2002,$5.85)

f) 2008

9.

a) The estimate should be approximately
120 degrees Fahrenheit.

b) 9
5

c)

C (deg) F (deg)
0 32
1 32 + 9

5(1)
2 32 + 9

5(2)
3 32 + 9

5(3)
4 32 + 9

5(4)
5 32 + 9

5(5)
10 32 + 9

5(10)
20 32 + 9

5(20)
48 32 + 9

5(48)
100 32 + 9

5(100)

d) F = 9
5C + 32

11.

a) 4490mm

c) (1980, 4490)

f)

Year

tilt h (mm)

′80 ′82 ′84 ′86 ′88 ′90 ′92 ′94
4490
4492
4494
4496
4498
4500
4502
4504
4506
4508
4510



246 Chapter 3 Linear Functions

Version: Fall 2007

g) 1985

h) The computer model must not have
taken into consideration certain un-
expected factors.

i)

Year yrs after 1980 tilt h
1980 0 4490
1981 1 4490 + 1(1)
1982 2 4490 + 1(2)
1983 3 4490 + 1(3)
1984 4 4490 + 1(4)
1985 5 4490 + 1(5)
1986 6 4490 + 1(6)
1987 7 4490 + 1(7)
1988 8 4490 + 1(8)
1989 9 4490 + 1(9)
1990 10 4490 + 1(10)
1991 11 4490 + 1(11)
1992 12 4490 + 1(12)
1993 13 4490 + 1(13)
1994 14 4490 + 1(14)
1995 15 4490 + 1(15)

j) h = 4490 + 1x

k) 4500mm. Yes, it agrees with the ac-
tual value in 1990.

l) 1985. Yes, it agrees with our answer
from (g).

13.

a)

Year

N (thousands)

2000 2002 2004 2006606
620
634
648
662
676
690
704

b)

Year yrs x after ’99 No. of
inmates N

1999 0 606000+14000(0)
2000 1 606000+14000(1)
2001 2 606000+14000(2)
2002 3 606000+14000(3)

c)

i. 676, 000.
ii. It means that, according to our

model, 5 years after 1999 (that is,
in 2004), the number of inmates
will be 676, 000.

iii. 704, 000.
iv. It means that, according to our

model, in 2006, the number of in-
mates will be 704, 000
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3.2 Exercises

1. Suppose you are riding a bicycle up
a hill as shown below.

Figure 1. Riding
a bicycle up a hill.

a) If the hill is straight as shown, con-
sider the slant, or steepness, of its in-
cline. As you ride up the hill, what
can you say about the slant? Does it
change? If so, how?

b) The slant is what mathematicians call
the slope. To confirm your answer to
part (a), you will place the hill on
a coordinate system and compute its
slope along various segments of the
hill. See the figure below.

run x (ft)

rise y (ft)

0 5 10 15 200

5

10

15

20

P (3,1)P (3,1) Q(9,3)Q(9,3)
R(12,4)R(12,4)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

Three points–P , Q and R–have been
labeled along the hill. We call the
vertical distance (height) the rise and
the horizontal distance the run. As
you ride up the hill from point P to
point Q, what is the rise? What is
the run? Use these values to compute
the slope from P to Q.

c) Now consider as you ride from P to
R. What is the rise? What is the
run? Use these values to compute the
slope from P to R.

d) Finally, consider as you ride from Q
to R. What is the rise? What is the
run? Use these values to compute the
slope from Q to R.

e) How do the values for slope from parts
(b)-(d) compare? Do these results
confirm your answer to part (a)?

f) Notice that the slope is positive in
this example. In this context of rid-
ing a bicycle over a hill, what would
negative slope mean?

2. Set up a coordinate system on a sheet
of graph paper, plotting the points P (3, 4)
andQ(−2,−7) and drawing the line through
them.

a) What can you say about the slope of
the line? Is it positive, zero, negative
or undefined? Is the slope the same
everywhere along the line, or does it
change in places? If it does change,
where are the slopes different?
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b) Use your graph to determine the change
in y (rise) and the change in x (run).
Use these results to compute the slope
of the line.

c) Use the slope formula to compute the
slope of the line.

d) Does your numerical solution from
part (c) agree with your graphical so-
lution from part (b)? If not, check
your work for errors.

3. Set up a coordinate system on a sheet
of graph paper, plotting the points P (−1, 3)
andQ(5,−3) and drawing the line through
them.

a) What can you say about the slope of
the line? Is it positive, zero, negative
or undefined? Is the slope the same
everywhere along the line, or does it
change in places? If it does change,
where are the slopes different?

b) Use your graph to determine the change
in y (rise) and the change in x (run).
Use these results to compute the slope
of the line.

c) Use the slope formula to compute the
slope of the line.

d) Does your numerical solution from
part (c) agree with your graphical so-
lution from part (b)? If not, check
your work for errors.

In Exercises 4-10, perform each of the
following tasks.

i. Make a sketch of a coordinate system;
plot the given points, and draw the
line through the points.

ii. Use the slope formula to compute the
slope of the line through the given
points. Reduce the slope where pos-
sible.

4. (0, 0) and (3, 4)

5. (−5, 2) and (0, 3)

6. (−3,−3) and (6,−5)

7. (2, 0) and (2, 2)

8. (−9,−3) and (6,−3)

9. (−8, 4) and (3,−8)

10. (−2, 6) and (5,−2)

11. For the following line, two conve-
nient points P and Q have been chosen.
We chose two points that were at the cor-
ners of boxes on our grid so their coordi-
nates are easy to read.

x

y

−10 −5 5 1010

−10

−5

5

10

PP

QQ

a) Label their coordinates.

b) Thinking of P as the starting point
and Q as the ending point, draw a
right triangle joining the points.
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c) Clearly state the change in y (rise)
and the change in x (run) from P to
Q.

d) Compute the slope.

12. For the following line, two conve-
nient points A and B have been chosen.
We chose two points that were at the cor-
ners of boxes on our grid so their coordi-
nates are easy to read.

x

y

−10 −5 5 1010

−10

−5

5

10

A(0,5)A(0,5)

B(5,−5)B(5,−5)

a) Label their coordinates.

b) Thinking of A as the starting point
and B as the ending point, draw a
right triangle joining the points.

c) Clearly state the change in y (rise)
and the change in x (run) from A to
B.

d) Compute the slope.

13. Copy the coordinate system below
onto a sheet of graph paper. Then do
the following:

a) Select any two convenient points P
and Q on the graph of the line. Label
each point with its coordinates.

b) Clearly state the change in y (rise)
and the change in x (run). Compute

the slope of the line.

x

y

−10 −5 5 1010

−10

−5

5

10

14. Copy the coordinate system below
onto a sheet of graph paper. Then do
the following:

a) Select any two convenient points P
and Q on the graph of the line. Label
each point with its coordinates.

b) Clearly state the change in y (rise)
and the change in x (run). Compute
the slope of the line.

x

y

−10 −5 5 1010

−10

−5

5

10

15. Copy the coordinate system below
onto a sheet of graph paper. Then do
the following:

a) Select any two convenient points P
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and Q on the graph of the line. Label
each point with its coordinates.

b) Clearly state the change in y (rise)
and the change in x (run). Compute
the slope of the line.

x

y

−10 −5 5 1010

−10

−5

5

10

16. Copy the coordinate system below
onto a sheet of graph paper. Then do
the following:

a) Select any two convenient points P
and Q on the graph of the line. Label
each point with its coordinates.

b) Clearly state the change in y (rise)
and the change in x (run). Compute
the slope of the line.

x

y

−10 −5 5 1010

−10

−5

5

10

17. The following coordinate system shows
the graphs of three lines, each with dif-
ferent slope. Match each slope with (a),
(b), or (c) appropriately.
slope = 1
slope = 2/3
slope = −2

x

y

−10 −5 5 1010

−10

−5

5

10 (b)(a)

(c)

18. The following coordinate system shows
the graphs of three lines, each with dif-
ferent slope. Match each slope with (a),
(b), or (c) appropriately.
slope = 2
slope = −1/3
slope = 1/2

x

y

−10 −5 5 1010

−10

−5

5

10 (b)

(a)

(c)
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19. Draw a coordinate system on a sheet
of graph paper for which the x- and y-
axes both range from −10 to 10.

a) Draw a line that contains the point
(0, 1) and has slope 2. Label the line
as (a).

b) On the same coordinate system, draw
a line that contains the point (0, 1)
and has slope −1/2. Label it as (b).

c) Use the slopes of these two lines to
show that they are perpendicular.

20. Draw a coordinate system on a sheet
of graph paper for which the x- and y-
axes both range from −10 to 10.

a) Draw a line that contains the point
(1,−2) and has slope 1/3. Label the
line as (a).

b) On the same coordinate system, draw
a line that contains the point (0, 1)
and has slope −3. Label it as (b).

c) Use the slopes of these two lines to
show that they are perpendicular.

21. Draw a line through the point P (1, 3)
that is parallel to the line through the
origin with slope −1/4.

22. Draw a line through the point P(1,3)
that is parallel to the line through the
origin with slope 3/5.

23. Draw a coordinate system on a sheet
of graph paper for which the x- and y-
axes both range from −10 to 10.

a) Draw a line that contains the point
(−1,−2) and has slope 3/4. Label
the line as (a).

b) On the same coordinate system, draw
a line that contains the point (0, 1)

and has slope 4/3. Label it as (b).

c) Are these lines parallel, perpendicu-
lar or neither? Show using their slopes.

24. Graph a coordinate system on a
sheet of graph paper for which the x- and
y-axes both range from −10 to 10.

a) Draw a line that contains the point
(−4, 0) and has slope 1. Label the
line as (a).

b) On the same coordinate system, draw
a line that contains the point (0, 2)
and has slope −1. Label it as (b).

c) Are these lines parallel, perpendicu-
lar or neither? Show using their slopes.

25.

Figure 2. A grade is a way of ex-
pressing slope.

On the road from Fort Bragg to Willits
or from Fort Bragg to Santa Rosa, one of-
ten passes signs like that shown above. A
grade is just slope expressed as a percent
instead of a fraction or decimal. In other
words, the grade measures the steepness
of the road just as slope does.

a) An 80/0 grade means that, for every
horizontal distance of 100 ft, the road
rises or drops 8 ft (depending on whether
you are going uphill or downhill). Write
80/0 grade as slope in reduced frac-
tional form.
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b) Suppose a hill drops 16 ft for every
180 ft horizontally. Find the grade
of the hill to the nearest tenth of a
percent.

c) Explain in a complete sentence or sen-
tences what a grade of 00/0 would rep-
resent.
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3.2 Answers

1.

a) No.

b) 1/3

c) 1/3

d) 1/3

e) All are the same because the steep-
ness of the hill is the same everywhere.

f) Negative slope would mean that you
are riding downhill.

3.

a) The slope is negative because the line
slants downhill. The slope is the same
everywhere along the line because the
slant of the line does not change.

b)

x

y

5−5−10

5

10

−5

−100

P (−1,3)P (−1,3)

Q(5,−3)Q(5,−3)

∆x=6

∆y=−6

slope = −1

c) ∆y = −6; ∆x = 6; slope = −1

d) Yes.

5. 1
5

7. undefined

9. −12
11

11.

a) (0, 0) and (6, 3)

b)

x

y

−10 −5 5 1010

−10

−5

5

10

P (0,0)P (0,0)

Q(6,3)Q(6,3)

c) ∆y = 3− 0 = 3; ∆x = 6− 0 = 6

d) slope = ∆y
∆x = 3

6 = 1
2
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13.

a) You can pick any two points on the
line; for example, (0, 0) and (5, 4) as
shown below.

x

y

−10 −5 5 1010

−10

−5

5

10

P (0,0)P (0,0)

Q(5,4)Q(5,4)

b) Changes in y and x will vary depend-
ing on points chosen, but slope = 4

5 .

15.

a) You can pick any two points on the
line; for example, (1, 1) and (3, 7) as
shown below.

x

y

−10 −5 5 1010

−10

−5

5

10

P (1,1)

Q(3,7)Q(3,7)

b) Changes in y and x will vary depend-
ing on points chosen, but slope = 3.

17. slope = 1: (b)
slope = 2/3: (c)
slope = −2: (a)

19.

b)

x

y

−10 −5 5 1010

−10

−5

5

10 (a)

(b)

(0,1)

(1,3)(1,3)

(2,0)

c) Yes.

21.

x

y

−10 −5 5 1010

−10

−5

5

10

P (1,3)P (1,3)
Q(5,2)Q(5,2)

(4,−1)(4,−1)
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23.

b)

x

y

−10 −5 5 1010

−10

−5

5

10 (b)

(a)

(−1,−2)

(0,1)(0,1)

c) The lines are neither parallel nor per-
pendicular.

25.

a) 2
25

b) 8.90/0

c) 00/0 grade represents no grade or slope;
that is, a flat road.
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3.3 Exercises

In Exercises 1-6, perform each of the
following tasks for the given linear func-
tion.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Remember to draw all lines with
a ruler.

ii. Identify the slope and y-intercept of
the graph of the given linear function.

iii. Use the slope and y-intercept to draw
the graph of the given linear function
on your coordinate system. Label the
y-intercept with its coordinate and
the graph with its equation.

1. f(x) = 2x+ 1

2. f(x) = −2x+ 3

3. f(x) = 3− x

4. f(x) = 2− 3x

5. f(x) = −3
4x+ 3

6. f(x) = 2
3x− 2

In Exercises 7-12, perform each of the
following tasks.

i. Make a copy of the given graph on a
sheet of graph paper.

ii. Label the y-intercept with its coor-
dinates, then draw a right triangle
and label the sides to help identify
the slope.

iii. Label the line with its equation.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

7.

x

y

5

5

8.

x

y

5

5

9.

x

y

5

5
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10.

x

y

5

5

11.

x

y

5

5

12.

x

y

5

5

13. Kate makes $39, 000 per year and
gets a raise of $1000 each year. Since
her salary depends on the year, let time
t represent the year, with t = 0 being the
present year, and place it along the hor-
izontal axis. Let salary S, in thousands

of dollars, be the dependent variable and
place it along the vertical axis.
We will assume that the rate of increase
of $1000 per year is constant, so we can
model this situation with a linear func-
tion.

a) On a sheet of graph paper, make a
graph to model this situation, going
as far as t = 10 years.

b) What is the S-intercept?

c) What is the slope?

d) Suppose we want to predict Kate’s
salary in 20 years or 30 years. We
cannot use the graphical model be-
cause it only shows up to t = 10 years.
We could draw a larger graph, but
what if we then wanted to predict
50 years into the future? The point
is that a graphical model is limited
to what it shows. A model algebraic
function, however, can be used to pre-
dict for any year!
Find the slope-intercept form of the
linear function that models Kate’s salary.

e) Write the function using function no-
tation, which emphasizes that S is a
function of t.

f) Now use the algebraic model from (e)
to predict Kate’s salary 10 years, 20
years, 30 years, and 50 years into the
future.

g) Compute S(40).

h) In a complete sentence, explain what
the value of S(40) from part (g) means
in the context of the problem.

14. For each DVD that Blue Charles
Co. sells, they make 5c profit. Profit
depends on the number of DVD’s sold,
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so let number sold n be the independent
variable and profit P , in $, be the depen-
dent variable.

a) On a sheet of graph paper, make a
graph to model this situation, going
as far as n = 15.

b) Use the graph to predict the profit if
n = 10 DVD’s are sold.

c) The graphical model is limited to pre-
dicting for values of n on your graph.
Any larger value of n necessitates a
larger graph, or a different kind of
model. To begin finding an algebraic
model, identify the P -intercept of the
graph.

d) What is the slope of the line in you
graphical model?

e) Find a slope-intercept form of a lin-
ear function that models Blue Charles
Co.’s sales.

f) Write the function using function no-
tation.

g) Explain why this model does not have
the same limitation as the graphical
model.

h) Find P (100), P (1000), and P (10000).

i) In complete sentences, explain what
the values of P (100), P (1000), and
P (10000) mean in the context of the
problem.

15. Enrique had $1, 000 saved when he
began to put away an additional $25 each
month.

a) Let t represent time, in months, and
S represent Enrique’s savings, in $.
Identify which should be the indepen-
dent and dependent variables.

b) To begin finding a linear function to
model this situation, identify the S-
intercept and slope.

c) Find a slope-intercept form of a lin-
ear function to model Enrique’s sav-
ings over time.

d) Write the linear function in function
notation.

e) Use the function model to predict
how much will be in his savings in
one year.

f) Use the function model to predict when
will he have $2000 saved.

g) Graph the function on a coordinate
system.

h) At the same time, Anne-Marie also
begins to save $25 per month, but she
begins with $1200 already in her sav-
ings. Make a graphical model of her
situation and place it on the same co-
ordinate system as the graphical model
for Enrique’s savings. Label it appro-
priately.

i) How do the lines compare to each
other? Say something about their slopes.

j) Find a slope-intercept form of a lin-
ear function that models Anne-Marie’s
savings. Use the same variables as
you did for Enrique’s model.

k) Write the function using function no-
tation.

l) Prove that the graphs of the two func-
tions are parallel lines.

m) For Anne-Marie, looking at the graphs,
do you think it will take her more
time or less time than Enrique to save
up $2000?.
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n) Use the linear function model for Anne-
Marie to predict how long it will take
her to save $2000. Does this agree
with your expectation from (m)?

16. Jose is initially 400 meters away
from the bus stop. He starts running to-
ward the stop at a rate of 5 meters per
second.

a) Express Jose’s distance d from the
bus stop as a function of time t.

b) Use your model to determine Jose’s
distance from the bus stop after one
minute.

c) Use your model to determine the time
it will take Jose to reach the bus stop.

17. A ball is dropped from rest above
the surface of the earth. As it falls, its
speed increases at a constant rate of 32
feet per second per second.

a) Express the speed v of the ball as a
function of time t.

b) Use your model to determine the speed
of the ball after 5 seconds.

c) Use your model to determine the time
it will take for the ball to achieve a
speed of 256 feet per second.

18. A ball is thrown into the air with
an initial speed of 200 meters per second.
It immediately begins to lose speed at a
rate of 9.5 meters per second per second.

a) Express the speed v of the ball as a
function of time t.

b) Use your model to determine the speed
of the ball after 5 seconds.

c) Use your model to determine the time
it will take for the ball to achieve its
maximum height.

In Exercises 19-24, a linear function is
given in standard form Ax + By = C.
In each case, solve the given equation for
y, placing the equation in slope-intercept
form. Use the slope and intercept to
draw the graph of the equation on a sheet
of graph paper.

19. 3x− 2y = 6

20. 3x+ 5y = 15

21. 3x+ 2y = 6

22. 4x− y = 4

23. x− 3y = −3

24. x+ 4y = −4

In Exercises 25-30, you are given a lin-
ear function in slope-intercept form. Place
the linear function in standard formAx+
By = C, where A, B, and C are integers
and A > 0.

25. y = 2
3x− 5

26. y = 5
6 x+ 1

27. y = −4
5 x+ 3

28. y = −3
7 x+ 2

29. y = −2
5 x− 3

30. y = −1
4 x+ 2
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31. What is the x-intercept of the line?

x

y

5

5

32. What is the y-intercept of the line?

x

y

5

5

33. What is the y-intercept of the line?

x

y

5

5

34. What is the x-intercept of the line?

x

y

5

5

In Exercises 35-40, find the x- and y-
intercepts of the linear function that is
given in standard form. Use the inter-
cepts to plot the graph of the line on a
sheet of graph paper.

35. 3x− 2y = 6

36. 4x+ 5y = 20

37. x− 2y = −2

38. 6x+ 5y = 30

39. 2x− y = 4

40. 8x− 3y = 24

41. Sketch the graph of the horizon-
tal line that passes through the point
(3,−3). Label the line with its equation.

42. Sketch the graph of the horizon-
tal line that passes through the point
(−9, 9). Label the line with its equation.

43. Sketch the graph of the vertical line
that passes through the point (2,−1).
Label the line with its equation.
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44. Sketch the graph of the vertical line
that passes through the point (15,−16).
Label the line with its equation.

In Exercises 45-48, find the domain and
range of the given linear function.

45. f(x) = −37x− 86

46. f(x) = 98

47. f(x) = −12

48. f(x) = −2x+ 8
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3.3 Answers

1. Slope = 2, y-intercept = (0, 1)

x

y

5

5

∆x=1

∆y=2

Q(1,2)Q(1,2)

P (0,1)P (0,1)

f(x)=2x+1

3. Slope = −1, y-intercept = (0, 3)

x

y

5

5

∆x=1
∆y=−1

Q(1,2)Q(1,2)
P (0,3)P (0,3)

f(x)=3−x

5. Slope = −3/4, y-intercept = (0, 3)

x

y

5

5

∆x=4

∆y=−3

Q(4,0)Q(4,0)

P (0,3)P (0,3)

f(x)=(−3/4)x+3

7.

x

y

5

5

∆x=2
∆y=1(0,−3)(0,−3)

y=(1/2)x−3

9.

x

y

5

5

∆x=3

∆y=2

(0,−2)(0,−2)

y=(2/3)x−2

11.

x

y

5

5

(0,1)(0,1)

∆y=3

∆x=2

y=(3/2)x+1
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13.

a)

time t (years)

salary S (thousands of dollars)

0 2 4 6 8 10

10

20

30

40

50

(0,39)(0,39)

b) (0, 39)

c) 1

d) S = t+ 39

e) S(t) = t+ 39

f) $49000, $59000, $69000, and $89000

g) 79

h) If the current rate of increase contin-
ues, in 40 years Kate’s salary will be
$79, 000.

15.

a) t should be the independent variable
and S should be the dependent vari-
able.

b) S-intercept = (0, 1000); slope = 25

c) S = 25t+ 1000

d) S(t) = 25t+ 1000

e) 1300

f) It will take 40 months for him to reach
$2000.

h)

time t (months)

savings S (dollars)

0 2 4 6 8 10 12 141000

1100

1200

1300

1400

1500

1600

Enrique

Anne−Marie

i) The lines have the same slope; they
are parallel.

j) S = 25t+ 1200

k) S(t) = 25t+ 1200

l) They are lines because they are in the
y = mx + b form. They are parallel
because their slopes are equal (both
are 25).

m) It should take her less time.

n) It will take 32 months for her to reach
$2000. This agrees with our expecta-
tion from (m).

17.

a) v = 32t

b) v = 160 feet per second

c) t = 8 seconds
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19. y = (3/2)x− 3

x

y

5

5

∆x=2

∆y=3

P (0,−3)P (0,−3)

Q(2,0)Q(2,0)

21. y = (−3/2)x+ 3

x

y

5

5

∆x=2

∆y=−3

P (0,3)P (0,3)

Q(2,0)Q(2,0)

23. y = (1/3)x+ 1

x

y

5

5

∆x=3
∆y=1

P (0,1)P (0,1)
Q(3,2)Q(3,2)

25. 2x− 3y = 15

27. 4x+ 5y = 15

29. 2x+ 5y = −15

31. (−4, 0)

33. (0, 4)

35.

x

y

5

5

(0,−3)(0,−3)

(2,0)(2,0)

37.

x

y

5

5

(0,1)(0,1)
(−2,0)(−2,0)

39.

x

y

5

5

(2,0)(2,0)

(0,−4)(0,−4)
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41.

x

y

5

5

(3,−3)(3,−3)
y=−3

43.

x

y

5

5 x=2

(2,−1)(2,−1)

45. Domain=(−∞,∞) and Range=(−∞,∞)

47. Domain=(−∞,∞) and Range={−12}
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3.4 Exercises

In Exercises 1-4, perform each of the
following tasks.

i. Draw the line on a sheet of graph
paper with the given slope m that
passes through the given point (x0, y0).

ii. Estimate the y-intercept of the line.
iii. Use the point-slope form to determine

the equation of the line. Place your
answer in slope-intercept form by solv-
ing for y. Compare the exact value of
the y-intercept with the approxima-
tion found in part (ii).

1. m = 2/3 and (x0, y0) = (−1,−1)

2. m = −2/3 and (x0, y0) = (1,−1)

3. m = −3/4 and (x0, y0) = (−2, 3)

4. m = 2/5 and (x0, y0) = (−3,−2)

5. Find the equation of the line in slope-
intercept form that passes through the
point (1, 3) and has a slope of 1.

6. Find the equation of the line in slope-
intercept form that passes through the
point (0, 2) and has a slope of 1/4.

7. Find the equation of the line in slope-
intercept form that passes through the
point (1, 9) and has a slope of −2/3.

8. Find the equation of the line in slope-
intercept form that passes through the
point (1, 9) and has a slope of −3/4.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

In Exercises 9-12, perform each of the
following tasks.

i. Set up a coordinate system on a sheet
of graph paper and draw the line through
the two given points.

ii. Use the point-slope form to determine
the equation of the line.

iii. Place the equation of the line in stan-
dard form Ax+By = C, where A, B,
and C are integers and A > 0. Label
the line in your plot with this result.

9. (−2,−1) and (3, 2)

10. (−1, 4) and (2,−3)

11. (−2, 3) and (4,−3)

12. (−4, 4) and (2,−4)

13. Find the equation of the line in slope-
intercept form that passes through the
points (−5, 5) and (6, 8).

14. Find the equation of the line in slope-
intercept form that passes through the
points (6,−6) and (9,−7).

15. Find the equation of the line in slope-
intercept form that passes through the
points (−4, 6) and (2,−4).

16. Find the equation of the line in slope-
intercept form that passes through the
points (−1, 5) and (4, 4).
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In Exercises 17-20, perform each of the
following tasks.

i. Draw the graph of the given linear
equation on graph paper and label it
with its equation.

ii. Determine the slope of the given equa-
tion, then use this slope to draw a
second line through the given point
P that is parallel to the first line.

iii. Estimate the y-intercept of the sec-
ond line from your graph.

iv. Use the point-slope form to determine
the equation of the second line. Place
this result in slope-intercept form y =
mx + b, then state the exact value
of the y-intercept. Label the second
line with the slope-intercept form of
its equation.

17. 2x+ 3y = 6, P = (−2,−3)

18. 3x− 4y = 12, P = (−3, 4)

19. x+ 2y = −4, P = (3, 3)

20. 5x+ 2y = 10, P = (−3,−5)

In Exercises 21-24, perform each of the
following tasks.

i. Draw the graph of the given linear
equation on graph paper and label it
with its equation.

ii. Determine the slope of the given equa-
tion, then use this slope to draw a
second line through the given point
P that is prependicular to the first
line.

iii. Use the point-slope form to determine
the equation of the second line. Place
this result in standard formAx+By =
C, where A, B, C are integers and
A > 0. Label the second line with
this standard form of its equation.

21. x− 2y = −2, P = (3,−4)

22. 3x+ y = 3, P = (−3,−4)

23. x− 2y = 4, P = (−3, 3)

24. x− 4y = 4, P = (−3, 4)

25. Find the equation of the line in slope-
intercept form that passes through the
point (7, 8) and is parallel to the line
x− 5y = 4.

26. Find the equation of the line in slope-
intercept form that passes through the
point (3,−7) and is perpendicular to the
line 7x− 2y = −8.

27. Find the equation of the line in slope-
intercept form that passes through the
point (1,−2) and is perpendicular to the
line −7x+ 5y = 4.

28. Find the equation of the line in slope-
intercept form that passes through the
point (4,−9) and is parallel to the line
9x+ 3y = 5.

29. Find the equation of the line in slope-
intercept form that passes through the
point (2,−9) and is perpendicular to the
line −8x+ 3y = 1.

30. Find the equation of the line in slope-
intercept form that passes through the
point (−7,−7) and is parallel to the line
8x+ y = 2.

31. A ball is thrown vertically upward
on a distant planet. After 1 second, its
velocity is 100 meters per second. After
5 seconds, the velocity is 50 meters per
second. Assume that the velocity v of
the ball is a linear function of the time t.

a) On graph paper, sketch the graph of
the velocity v versus the time t. As-
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sume that the velocity is the depen-
dent variable and place it on the ver-
tical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the velocity v of the ball as a function
of time t.

d) Determine the time it takes the ball
to reach its maximum height.

32. A ball is thrown vertically upward
on a distant planet. After 2 seconds, its
velocity is 320 feet per second. After 8
seconds, the velocity is 200 feet per sec-
ond. Assume that the velocity v of the
ball is a linear function of the time t.

a) On graph paper, sketch the graph of
the velocity v versus the time t. As-
sume that the velocity is the depen-
dent variable and place it on the ver-
tical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the velocity v of the ball as a function
of time t.

d) Determine the time it takes the ball
to reach its maximum height.

33. An automobile is traveling down the
autobahn and the driver applies its brakes.
After 2 seconds, the car’s speed is 60
km/h. After 4 seconds, the car’s speed
is 50 km/h.

a) On graph paper, sketch the graph of

the velocity v versus the time t. As-
sume that the velocity is the depen-
dent variable and place it on the ver-
tical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the velocity v of the automobile as a
function of time t.

d) Determine the time it takes the au-
tomobile to stop.

34. An automobile is traveling down the
autobahn and its driver steps on the ac-
celerator. After 2 seconds, the car’s ve-
locity is 30 km/h. After 4 seconds, the
car’s velocity is 40 km/h.

a) On graph paper, sketch the graph of
the velocity v versus the time t. As-
sume that the velocity is the depen-
dent variable and place it on the ver-
tical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the velocity v of the automobile as a
function of time t.

d) Determine the speed of the vehicle
after 8 seconds.

35. Suppose that the demand d for a
particular brand of teakettle is a linear
function of its unit price p. When the
unit price is fixed at $30, the demand for
teakettles is 100. This means the public
buys 100 teakettles. If the unit price is
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fixed at $50, then the demand for teaket-
tles is 60.

a) On graph paper, sketch the graph of
the demand d versus the unit price p.
Assume that the demand is the de-
pendent variable and place it on the
vertical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the demand d for teakettles as a func-
tion of unit price p.

d) Compute the demand if the unit price
is set at $40.

36. It’s perfect kite-flying weather on
the coast of Oregon. Annie grabs her
kite, climbs up on the roof of her two
story home, and begins playing out kite
string. In 10 seconds, Annie’s kite is 120
feet above the ground. After 20 seconds,
it is 220 feet above the ground. Assume
that the height h of the kite above the
ground is a linear function of the amount
of time t that has passed since Annie be-
gan playing out kite string.

a) On graph paper, sketch the graph of
the height h of the kite above ground
versus the time t . Assume that the
height is the dependent variable and
place it on the vertical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the height h of the kite as a function
of time t.

d) Determine the height of the kite af-
ter 20 seconds.

e) Determine the height of Annie’s sec-
ond story roof above ground.
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3.4 Answers

1. Approximate y-intercept is (0,−0.3).
Exact is (0,−1/3).

x

y

5

5

∆x=3

∆y=2

(−1,−1)(−1,−1)

y=(2/3)x−1/3

3. Approximate y-intercept is (0, 1.5).
Exact is (0, 3/2).

x

y

5

5

∆x=4

∆y=−3

(−2,3)(−2,3)

y=(−3/4)x+3/2

5. y = x+ 2

7. y = (−2/3)x+ 29/3

9.

x

y

5

5

(−2,−1)

(3,2)(3,2)

3x−5y=−1

11.

x

y

5

5

(−2,3)(−2,3)

(4,−3)(4,−3)

x+y=1

13. y = 3
11x+ 70

11

15. y = −5
3x−

2
3

17. Approximate y-intercept: (0,−4.3).
Exact y-intercept: (0,−13/3).

x

y

5

5
2x+3y=6

y=(−2/3)x−13/3

(0,2)(0,2)

(3,0)(3,0)

(−2,−3)(−2,−3)
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19. Approximate y-intercept: (0, 4.5).
Exact y-intercept: (0, 9/2).

x

y

5

5

x+2y=−4

y=(−1/2)x+9/2
(−4,0)(−4,0)

(0,−2)(0,−2)

(3,3)(3,3)

21.

x

y

5

5
x−2y=−2

2x+y=2

(−2,0)(−2,0)
(0,1)(0,1)

(3,−4)(3,−4)

23.

x

y

5

5

x−2y=4 2x+y=−3

(4,0)(4,0)

(0,−2)(0,−2)

(−3,3)(−3,3)

25. y = 1
5x+ 33

5

27. y = −5
7x−

9
7

29. y = −3
8x−

33
4

31.

a)

t (s)10

v (m/s)
120

(1,100)(1,100)

(5,50)(5,50)

b) −12.5 (m/s)/s

c) v = −12.5t+ 112.5

d) 9 seconds

33.

a)

t (s)6

v (km/h)
80

(2,60)(2,60)
(4,50)(4,50)

b) −5 (km/h)/s

c) v = −5t+ 70

d) t = 14 seconds
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35.

a)

p(dollars)

d(teakettles)

(30,100)(30,100)

(50,60)(50,60)

b) −2 teakettles/dollar

c) d = −2p+ 160

d) 80 teakettles
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3.5 Exercises

1. The following set of data about re-
volving consumer credit (debt) in the United
States is from Google.com. This is pri-
marily made up of credit card debt, but
also includes other consumer non-mortgage
credit, like those offered by commercial
banks, credit unions, Sallie Mae, and the
federal government.

Year yrs x after 2001
all revolving
credit C in
billions of $

2001 0 721.0
2002 1 741.2
2003 2 759.3
2004 3 786.1
2005 4 805.4

a) Set up a coordinate system on graph
paper, placing the credit C on the
vertical axis, and the years x after
2001 on the horizontal axis. Label
and scale each axis appropriately. Draw
what you feel is the line of best fit.
Remember to draw all lines with a
ruler.

b) Select two points on your line of best
fit that are not from the data table
above. Use these two points to de-
termine the slope of the line. Include
units with your answer. Write a sen-
tence or two explaining the real world
significance of the slope of the line of
best fit.

c) Use one of the two points on the line
and the slope to determine the equa-
tion of the line of best fit in point-
slope form. Use C and x for the de-
pendent and independent variables,

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

respectively. Solve the resulting equa-
tion for C and write your result using
function notation.

d) Use the equation developed in part
(c) to predict the revolving credit debt
in the year 2008.

e) If the linear trend predicted by the
line of best fit continues, in what year
will the revolving credit debt reach
1.0 trillion dollars?

2. The following set of data about non-
revolving credit (debt) in the United States
is from Google.com. The largest compo-
nent of non-revolving credit is automo-
bile loans, but it is also includes student
loans and other defined-term consumer
loans.

Year yrs x after 2001
Non-

revolving
debt D in

billions of $
2001 0 1121.3
2002 1 1184.1
2003 2 1247.3
2004 3 1305.0
2005 4 1342.3

a) Set up a coordinate system on graph
paper, placing the non-revolving credit
debt D on the vertical axis, and the
years x after 2001 on the horizontal
axis. Label and scale each axis appro-
priately. Draw what you feel is the
line of best fit. Remember to draw
all lines with a ruler.

b) Select two points on your line of best
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fit that are not from the data table
above. Use these two points to de-
termine the slope of the line. Include
units with your answer. Write a sen-
tence or two explaining the real world
significance of the slope of the line of
best fit.

c) Use one of the two points on the line
and the slope to determine the equa-
tion of the line of best fit in point-
slope form. Use D and x for the de-
pendent and independent variables,
respectively. Solve the resulting equa-
tion for D and write your result using
function notation.

d) Use the equation developed in part
(c) to predict the non-revolving credit
debt in the year 2008.

e) If the linear trend predicted by the
line of best fit continues, in what year
will the non-revolving credit debt reach
2.0 trillion dollars?

3. According to the U.S. Bureau of Trans-
portation (www.bts.gov), retail sales of
new cars declined every year from 2000-
2004, as shown in the following table.

Year yrs x after 2000 Sales S in
thousands

2000 0 8847
2001 1 8423
2002 2 8103
2003 3 7610
2004 4 7506

a) Set up a coordinate system on graph
paper, placing the sales S on the ver-
tical axis, and the years x after 2000
on the horizontal axis. Label and scale
each axis appropriately. Draw what
you feel is the line of best fit. Remem-
ber to draw all lines with a ruler.

b) Select two points on your line of best
fit that are not from the data table
above. Use these two points to de-
termine the slope of the line. Include
units with your answer. Write a sen-
tence or two explaining the real world
significance of the slope of the line of
best fit.

c) Use one of the two points on the line
and the slope to determine the equa-
tion of the line of best fit in point-
slope form. Use S and x for the de-
pendent and independent variables,
respectively. Solve the resulting equa-
tion for S and write your result using
function notation.

d) Use the equation developed in part
(c) to predict sales in the year 2006.

e) If the linear trend predicted by the
line of best fit continues, when will
sales drop to 7 million cars per year?

4. The following table shows total midyear
population of the world according to the
U.S. Census Bureau, (www.census.gov)
for recent years.

Year yrs x after 2000 Population
P in billions

2000 0 6.08
2001 1 6.16
2002 2 6.23
2003 3 6.30
2004 4 6.38
2005 5 6.45
2006 6 6.53

a) Set up a coordinate system on graph
paper, placing the population P on
the vertical axis, and the years x af-
ter 2000 on the horizontal axis. La-
bel and scale each axis appropriately.
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Draw what you feel is the line of best
fit. Remember to draw all lines with
a ruler.

b) Select two points on your line of best
fit that are not from the data table
above. Use these two points to de-
termine the slope of the line. Include
units with your answer. Write a sen-
tence or two explaining the real world
significance of the slope of the line of
best fit.

c) Use one of the two points on the line
and the slope to determine the equa-
tion of the line of best fit in point-
slope form. Use P and x for the de-
pendent and independent variables,
respectively. Solve the resulting equa-
tion for P and write your result using
function notation.

d) Use the equation developed in part
(c) to predict the population in 2010.

e) If the linear trend predicted by the
line of best fit continues, when will
world population reach 7 billion?

5. The following table shows an excerpt
from the U.S. Census Bureau’s 2005 data
(www.census.gov) on annual sales of new
homes in the United States.

Price Range
(thousands

of $)
Number sold
(thousands)

150 − 199 246
200 − 249 200
250 − 299 152

We cannot use price ranges as coordi-
nate values (we must have single values),
so we replace each price range in the ta-
ble with a single price in the middle of
the range–the average value of a home
in that range. This gives us the follow-

ing modified table:

Avg Price P
(thousands

of $)

Number
sold N

(thousands)
175 246
225 200
275 152

We can now plot the data on a coordi-
nate system.

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Use your calculator to determine a
line of best fit. This is called a lin-
ear demand function, because it al-
lows you to predict the demand for
houses with a certain price. Write it
using function notation and round to
the nearest thousandth. Graph it on
your calculator and copy it onto your
coordinate system.

c) Use the linear demand function to
predict annual sales of homes priced
at $200, 000. Try to use the TABLE
feature on your calculator to make
this prediction.

6. The following table shows data from
the National Association of Homebuilders
(www.nahb.org), indicating the median
price of new homes in the United States.
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Year
Median
Price

(thousands
of $)

2000 169
2001 175
2002 188
2003 195
2004 221
2005 238

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Use your calculator to determine a
line of best fit that can be used to pre-
dict the median price of new homes in
future years. Write it using function
notation. Graph it on your calcula-
tor and copy it onto your coordinate
system.

c) Use the linear demand function to
predict the median price of a new home
in 2010. Try to use the TABLE fea-
ture on your calculator to make this
prediction.

d) Looking at the graph, do you think
the linear demand function models the
actual data points well? If not, why
not? What does this mean about the
prediction you made in part (c)?

7. Jim is hanging blocks of various mass
on a spring in the physics lab. He no-
tices that the spring will stretch further
if he adds more mass to the end of the
spring. He is soon convinced that the
distance the spring will stretch depends
on the amount of mass attached to it. He
decides to take some measurements. He
records the amount of mass attached to

the end of the spring and then measures
the distance that the spring stretched.
Here is Jim’s data.

Mass
(grams)

Distance
Stretched

(cm)
50 1.2
100 1.9
150 3.1
200 4.0
250 4.8
300 6.2

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Use your calculator to determine a
line of best fit that can be used to pre-
dict the distance the spring stretches.
Write it using function notation. Graph
it on your calculator and copy it onto
your coordinate system.

c) Use the function from part (c) to pre-
dict the distance the spring will stretch
if 175 grams is attached to the spring.
Try to use the TABLE feature on your
calculator to make this prediction.

8. Dave and Melody are lab partners in
Tony Sartori’s afternoon chemistry lab.
Professor Sartori has prepared an exper-
iment to help them discover the relation-
ship between the Celsius and Fahrenheit
temperature scales. The experiment con-
sists of a beaker full of ice and two ther-
mometers, one calibrated in the Fahren-
heit scale, the other in the Celsius scale.
Dave and Melody use a Bunsen burner to
heat the beaker, eventually bringing the
water in the beaker to the boiling point.
Every few minutees they make two tem-
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perature readings, one in Fahrenheit, one
in Celsius. The data that they record
during the laboratory session follows.

Celsius Fahrenheit
4.0 39
18 65
30 85
51 122
70 159
85 186
100 210

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Use your calculator to determine a
line of best fit that can be used to
predict the Fahrenheit temperature
as a function of the Celsius temper-
ature. Write it using function nota-
tion. Graph it on your calculator and
copy it onto your coordinate system.

c) Use the function from part (c) to pre-
dict the Fahrenheit temperature if the
Celsius temperature is 40. Try to use
the TABLE feature on your calcula-
tor to make this prediction.

d) Use the function from part (c) to
predict the Celsius temperature if the
Fahrenheit temperature is 100.

9. The following table shows data on
home sales at the Mendocino Coast in
2005.

Price Range
(thousands

of $)
Number sold
(thousands)

200 − 299 14
300 − 399 55
400 − 499 62

We cannot use price ranges as coordi-
nate values (we must have single values),
so we replace each price range in the ta-
ble with a single price in the middle of
the range–the average value of a home
in that range. This gives us the follow-
ing modified table:

Avg Price P
(thousands

of $)

Number
sold N

(thousands)
250 14
350 55
450 62

We can now plot the data on a coordi-
nate system.

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Use your calculator to determine a
line of best fit. Write it using func-
tion notation and round to the near-
est thousandth. Graph it on your cal-
culator and copy it onto your coordi-
nate system.

c) Use the linear function to predict the
sales for houses in the price range $500, 000−
$599, 000. Use the average price of
$550, 000 for this estimate.

d) The actual number of houses sold in
the price range $500, 000 − $599, 000
was 41. Plot this as a point on your
coordinate system and compare it to
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your linear function model’s predic-
tion. Notice that this actual value is
pretty different from the prediction.

e) What this means is that a linear model
is not very good for the data for home
sales! Draw a simple curve that goes
through each of the data points. No-
tice that it does not very closely re-
semble the shape of a line! More so-
phisticated functions are required to
model this example–such as quadratic
functions, which we study in a later
chapter. The moral of the story here
is that not every data set can be mod-
eled linearly!

10. The following from the July 14, 2006
edition of the Beĳing Today newspaper
shows how high-heels affect the ball of
the foot. The table shows the increase
in percent of pressure on the ball of the
foot for given heights of heels.

Heel height
h (inches)

%increase
in pressure

1 22
2 57

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Notice that, because we have exactly
two data points, the line of best fit is
the line that goes through both points.
To begin finding the equation, use the
slope formula to compute the slope.

c) Use the point-slope form to find an
equation for the line. Write it in slope-
intercept form.

d) Use the linear function to predict the
percent of stress increase for a 3-inch
heel.

e) The actual percent of pressure in-
crease for a 3-inch heel is 76 %. Plot
this as a point on your coordinate
system and compare it to your linear
function model’s prediction. Notice
that this actual value is pretty differ-
ent from the prediction.

f) What this means is that a linear model
is not very good for the data! Draw a
simple curve that goes through each
of the data points. Notice that it does
not very closely resemble the shape of
a line! More sophisticated functions
are required to model this example.
Not every data set should be mod-
eled linearly!
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3.5 Answers

1.

x (years)0 1 2 3 4

C (billion dollars)

720

740

760

780

800

820

a)

b)

x (years)0 1 2 3 4

C (billion dollars)

720

740

760

780

800

820

P (1.4,750)

Q(2.8,780)

c) C(x) = 21.42x+ 720.012

d) Approximately 869 billion dollars.

e) 2014

3.

a)

x (years)0 1 2 3 4

C (thousands dollars)

7000

7500

8000

8500

9000

b)

x (years)0 1 2 3 4

C (thousands dollars)

7000

7500

8000

8500

9000

P (1.4,8300)

Q(4.0,7400)

m = −346.15 thousand cars per year

c) S(x) = −346.15x+ 8784.61

d) S(6) ≈ 6707 thousand cars.

e) In the year 2005-2006.
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5.

a)

b)

N(P ) = −0.94P + 410.833

c)

Approximately 222, 830 homes.

7.

a)

b)

d(m) = 0.01977m+ 0.07333

c)

Approximately 3.53 centimeters.

9.

a)

b)

N(P ) = 0.24P − 40.33.

c)

Approximately 91, 667 homes.

d)
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e)
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3.1 Exercises

1.

Jodiah is saving his money to buy a Playsta-
tion 3 gaming system. He estimates that
he will need $950 to buy the unit itself,
accessories, and a few games. He has
$600 saved right now, and he can rea-
sonably put $60 into his savings at the
end of each month.
Since the amount of money saved de-
pends on how many months have passed,
choose time, in months, as your indepen-
dent variable and place it on the hori-
zontal axis. Let t represent the number
of months passed, and make a mark for
every month.
Choose money saved, in dollars, as your
dependent variable and place it on the
vertical axis. LetA represent the amount
saved in dollars. Since Jodiah saves $60
each month, it will be convenient to let
each box represent $60.
Copy the following coordinate system onto
a sheet of graph paper.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

Time t (months)

Amount saved A (dollars)

0 2 4 6
60

180

300

420

540

660

780

900

1020

a) At month 0, Jodiah has $600 saved.
This corresponds to the point (0, 600).
Plot this point on your coordinate sys-
tem.

b) For the next month, he saved $60
more. Beginning at point (0, 600),
move 1 month to the right and $60
up and plot a new data point. What
are the coordinates of this point?

c) Each time you go right 1 month, you
must go up by $60 and plot a new
data point. Repeat this process until
you reach the edge of the coordinate
system.

d) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

e) Use your graph to estimate how much
money Jodiah will have saved after 7
months.

f) Using your graph, estimate how many
months it will take him to have saved
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up enough money to buy his gaming
system, accessories, and games.

2.

The sign above shows the prices for a taxi
ride from Liberty Cab Company. Since
the cost depends on the distance trav-
eled, make the distance be the indepen-
dent variable and place it on the hori-
zontal axis. Let d represent the distance
traveled, in miles. Because the cab com-
pany charges per 1/6 mile, it is conve-
nient to mark every 1/6 mile.
Make price, in $, your dependent vari-
able and place it on the vertical axis. Let
C represent the cost, in $. Because the
cost occurs in increments of 40c, mark
every 40c along the vertical axis.
Copy the following coordinate system onto
a sheet of graph paper.

distance d (miles)

Cost C ($)

0 1 2 3
0.20
0.60
1.00
1.40
1.80
2.20
2.60
3.00
3.40
3.80
4.20
4.60
5.00
5.40
5.80
6.20
6.60

a) For the first 1/6 mile of travel, the
cost is $2.30. This corresponds to the
point (1/6,$2.30). Plot this point on
your coordinate system.

b) For the next 1/6 of a mile, the cost
goes up by 40c. Beginning at point
(1/6,$2.30), move 1/6 of a mile to the
right and 40c up and plot a new data
point. What are the coordinates of
this point?

c) Each time you go right 1/6 of a mile,
you must go up by 40c and plot a new
data point. Repeat this process until
you reach the edge of your coordinate
system.

d) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

e) Melissa steps into a cab in the city
of Niagara Falls, about 2 miles from
Niagara Falls State Park. Use your
graph to estimate the fare to the park.

f) Elsewhere in the area, Georgina takes
a cab. She has only $5 for the fare.
Use the graph to estimate how far she
can travel, in miles, with only $5 for
the fare.

3. A boat is 200 ft from a buoy at sea.
It approaches the buoy at an average speed
of 15 ft/s.

a) Choosing time, in seconds, as your
independent variable and distance from
the buoy, in feet, as your dependent
variable, make a graph of a coordi-
nate system on a sheet of graph pa-
per showing the axes and units. Use
tick marks to identify your scales.

b) At time t=0, the boat is 200 ft from
the buoy. To what point does this
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correspond? Plot this point on your
coordinate system.

c) After 1 second, the boat has drawn
15 ft closer to the buoy. Beginning
at the previous point, move 1 second
to the right and 15 ft down (since the
distance is decreasing) and plot a new
data point. What are the coordinates
of this point?

d) Each time you go right 1 second, you
must go down by 15 ft and plot a new
data point. Repeat this process until
you reach 12 seconds.

e) Draw a line through your data points.

f) When the boat is within 50 feet of
the buoy, the driver wants to begin
to slow down. Use your graph to esti-
mate how soon the boat will be within
50 feet of the buoy.

4. Joe owes $24,000 in student loans.
He has finished college and is now work-
ing. He can afford to pay $1500 per month
toward his loans.

a) Choose time in months as your inde-
pendent variable and amount owed,
in $, as the dependent variable. On a
sheet of graph paper, make a sketch
of the coordinate system, using tick
marks and labeling the axes appro-
priately.

b) At time t = 0, Joe has not yet paid
anything toward his loans. To what
point does this correspond? Plot this
point on your coordinate system.

c) After one month, he pays $1500. Be-
ginning at the previous point, move 1
month to the right and $1500 down
(down because the debt is decreas-
ing). Plot this point. What are its
coordinates?

d) Each time you go 1 month to the
right, you must move $1500 down.
Continue doing this until his loans
have been paid off.

e) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

f) Use the graph to determine how many
months it will take him to pay off the
full amount of his loans.

5.

Earl the squirrel has only ten more days
until hibernation. He needs to save 50
more acorns. He is tired of collecting
acorns and so he is only able to gather 8
acorns every 2 days.

a) Let t represent time in days and make
it your independent variable. Let N
represent the number of acorns col-
lected and make it your dependent
variable. Set up an appropriately scaled
coordinate system on a sheet of graph
paper.

b) At time t = 0, Earl has collected zero
of the acorns he needs. To what point
does this correspond? Plot this point
on your coordinate system.

c) After two days (t = 2), Earl has col-
lected 8 acorns. Beginning at the pre-
vious point, move 2 days to the right
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and 8 acorns up. Plot this point.
What are its coordinates?

d) Each time you go 2 days to the right,
you must move 8 acorns up and plot a
point. Continue doing this until you
reach 14 days.

e) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

f) Use the graph to determine how many
acorns he will have collected after 10
days. Will Earl have collected enough
acorns for his winter hibernation?

g) Notice that the number of acorns col-
lected is increasing at a rate of 8 acorns
every 2 days. Reduce this to a rate
that tells the average number of acorns
that is collected each day.

h) The table below lists the number of
acorns Earl will have collected at var-
ious times. Some of the entries have
been completed for you. For exam-
ple, at t = 0, Earl has no acorns, so
N = 0. After one day, the amount
increases by 4, so N = 0 + 4(1). Af-
ter two days, two increases have oc-
curred, so N = 0 + 4(2). The pattern
continues. Fill in the missing entries.

t N

0 0
1 0 + 4(1)
2 0 + 4(2)
3 0 + 4(3)
4
6
8
10
12
14

i) Express the number of acorns collected,
N , as a function of the time t, in days.

j) Use your function to predict the num-
ber of acorns that Earl will have after
10 days. Does this answer agree with
your estimate from part (f)?

6. On network television, a typical hour
of programming contains 15 minutes of
commercials and advertisements and 45
minutes of the program itself.

a) Choose amount of television watched
as your independent variable and place
it on the horizontal axis. Let T repre-
sent the amount of television watched,
in hours. Choose total amount of com-
mercials/ads watched as your depen-
dent variable and place it on the ver-
tical axis. Let C represent the total
amount of commercials/ads watched,
in minutes. Using a sheet of graph
paper, make a sketch of a coordinate
system and label appropriately.

b) For 0 hours of programming watched,
0 minutes of commercials have been
watched. To what point does this
correspond? Plot it on your coordi-
nate system.

c) After watching 1 hour of program-
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ming, 15 minutes of commercials/ads
have been watched. Beginning at the
previous point, move 1 hour to the
right and 15 minutes up. Plot this
point. What are its coordinates?

d) Each time you go 1 hour to the right,
you must move 15 minutes up and
plot a point. Continue doing this un-
til you reach 5 hours of programming.

e) Draw a line through your data points.

f) Billy watches TV for five hours on
Monday. Use the graph to determine
how many minutes of commercials he
has watched during this time.

g) Suppose a person has watched one
hour of commercials/ads. Use the graph
to estimate how many hours of tele-
vision he watched.

h) The following table shows numbers
of hours of programming watched as
it relates to number of minutes of com-
mercials/ads watched. For 0 hours
of TV, 0 minutes of commercials/ads
are watched. For each hour of TV
watched, we must count 15 minutes
of commercials/ads. So, for 1 hour,
0 + 15(1) minutes of commercials are
watched. For 2 hours, 0 + 15(2) min-
utes; and so on. Fill in the missing
entries.

T (hrs) C (mins)
0 0
1 0 + 15(1)
2 0 + 15(2)
3
4
5

i) Express the amount of commercials/ads
watched, C, as a function of the amount

of television watched T. Use your equa-
tion to predict the amount of com-
mercials/ads watched for 5 hours of
television programming. Does this
answer agree with your estimate from
part (f)?

7. According to NATO (the National
Association of Theatre Owners), the av-
erage price of a movie ticket was 5.65 dol-
lars in the year 2001. Since then, the av-
erage price has been rising each year by
about 20c.

a) Choose year, beginning with 2000, as
the independent variable and make
marks every year on the axis. Choose
average ticket price, in dollars, as your
dependent variable and begin at 5.65
dollars, with marks every 10c above.
Make a sketch of a coordinate system
and label appropriately.

b) In 2001, the average ticket price was
5.65 dollars, corresponding to the point
(2001, 5.65). Plot it on your coordi-
nate system.

c) In 2002, one year later, the average
price rose by about 20c. Beginning
at the previous point, move right by
1 year and up by 20c and plot the
point. What are its coordinates?

d) Each time you go 1 year to the right,
you must move up by 20c and plot a
point. Continue doing this until the
year 2010.

e) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

f) Use the graph to estimate what year
the average price of a ticket will pass
7.00 dollars.
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8. When Jessica drives her car to a work-
related conference, her employer reim-
burses her approximately 45 cents per
mile to cover the cost of gas and the
wear-and-tear on the vehicle.

a) Using distance traveled d, in miles,
as the independent variable and amount
reimbursed A, in dollars, as the de-
pendent variable, make a sketch of a
coordinate system and label appro-
priately. Mark distance every 5 miles
and amount reimbursed every $0.45.

b) For traveling 0 miles, the reimburse-
ment is 0. This corresponds to the
point (0, 0). Plot it on your coordi-
nate system.

c) For a trip that requires her to drive
a total of 5 miles, she is reimbursed
5(0.45) = $2.25. This corresponds to
the point (5, $2.25). Plot it.

d) For each 5 miles you go to the right,
you must go up $2.25 and plot the
point. Do this until you reach 20
miles.

e) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points.

f) In March, Jessica attends a confer-
ence that is only 5 miles away. Count-
ing roundtrip, she travels 10 total miles.
Use the graph to determine how much
she is reimbursed.

g) In December, she attends a confer-
ence 10 miles away. How long is her
trip in total? Use the graph to de-
termine how much she will be reim-
bursed.

h) For longer trips, such as 200 total
miles, you will probably need to make

a much larger graph. And what if she
travels 400 miles? Or further? It is
limitations such as these that make
it useful to find an equation that de-
scribes what the graph shows. To
find the equation, we start with a ta-
ble that helps us to understand the
relationship between the dependent
and independent variables. Complete
the table below.

d
(miles) A ($)

0 0
1 0 + 0.45(1)
2 0 + 0.45(2)
3
4
5
10
20
50
100

i) Use the table from part (h) to come
up with an equation that relates d
and A.

j) Now, use the equation to determine
the reimbursement amounts for trips
of 200 miles and 400 miles.

9. Temperature is typically measured
in degrees Fahrenheit in the United States;
but it is measured in degrees Celsius in
many other countries. The relationship
between Fahrenheit and Celsius is lin-
ear. Let’s choose the measurement of
degrees in Celsius to be our independent
variable and the measurement of degrees
in Fahrenheit to be our dependent vari-
able. Water freezes at 0 degrees Celsius,
which corresponds to 32 degrees Fahren-
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heit; and water boils at 100 degrees Cel-
sius, which corresponds to 212 degrees
Fahrenheit. We can plot this information
as the two points (0,32) and (100,212).
The relationship is linear, so have the fol-
lowing graph:

C (deg)

F (deg)

0 16 32 48 64 80 96
16
32
48
64
80
96

112
128
144
160
176
192
208

(0,32)(0,32)

(100,212)(100,212)

a) Use the graph to approximate the
equivalent Fahrenheit temperature for
48 degree Celsius.

b) To determine the rate of change of
Fahrenheit with respect to Celsius,
we draw a right triangle with sides
parallel to the axes that connects the
two points we know...

C (deg)

F (deg)

0 16 32 48 64 80 96
16
32
48
64
80
96

112
128
144
160
176
192
208

Q(100,212)Q(100,212)

PP
RR

180 deg

100 deg

Side PR is 100 degrees long, repre-
senting an increase in 100 degrees Cel-
sius. Side RQ is 180 degrees, rep-

resenting an increase in 180 degrees
Fahrenheit. Find the rate of increase
of Fahrenheit per Celsius.

c) The following table shows some val-
ues of temperatures in Celsius and
their corresponding Fahrenheit read-
ings. Zero degrees Celsius corresponds
to 32 degrees Fahrenheit. Our rate
is 9 degrees Fahrenheit for every 5
degrees Celsius, or 9/5 of a degree
Fahrenheit for every 1 degree Celsius.
So, for 1 degree Celsius, we increase
the Fahrenheit reading by 9/5 degree,
getting 32 + 9/5(1). For 2 degrees
Celsius, we increase by two occurrences
of 9/5 degree to get 32 + 9/5(2). Fill
in the missing entries, following the
pattern.

C (deg) F (deg)
0 32
1 32 + 9

5(1)
2 32 + 9

5(2)
3 32 + 9

5(3)
4
5
10
20
48
100

d) Use the table to form an equation
that gives degrees Fahrenheit in terms
of degrees Celsius.

10. On June 16, 2006, the conversion
rate from Euro to U.S. dollars was ap-
proximately 0.8 to 1, meaning that every
0.8 Euros were worth 1 U.S. dollar.

a) Choosing dollars to be the indepen-
dent variable and Euros to be the de-
pendent variable, make a graph of co-
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ordinate system. Mark every dollar
on the dollar axis and every 0.8 Eu-
ros on the Euro axis. Label appropri-
ately.

b) Zero dollars are worth 0 Euros. This
corresponds to the point (0, 0). Plot
it on your coordinate system.

c) One dollar is worth 0.8 Euros. Plot
this as a point on your coordinate
system.

d) For every dollar you move to the right,
you must go up 0.8 Euros and plot a
point. Do this until you reach $10.

e) Draw a line through your data points.

f) Use the graph to estimate how many
Euros $8 are worth.

g) Use the graph to estimate how many
dollars 5 Euros are worth.

h) The following table shows some val-
ues of dollars and their corresponding
value in Euros. Fill in the missing en-
tries.

Dollars Euros

0 0
1 0 + 0.8(1)
2 0 + 0.8(2)
3
4
5
10

i) Use the table to make an equation
that can be used to convert dollars
to Euros.

j) Use the equation from (i) to convert
$8 to Euros. Does your answer agree
with the answer from (f) that you ob-
tained using the graph?

11. The Tower of Pisa in Italy has its
famous lean to the south because the clay
and sand ground on which it is built is
softer on the south side than the north.
The tilt is often found by measuring the
distance that the upper part of the tower
overhangs the base, indicated by h in the
figure below. In 1980, the tower had a
tilt of h = 4.49m, and this tilt was in-
creasing by about 1 mm/year.

Figure 1. h measures the tilt of the
Tower of Pisa.

We will investigate how the tilt of the
tower changed from 1980 to 1995.

a) First, note that our units do not match:
The tilt in 1980 was given as 4.49 m,
but the annual increase in the tilt is
given as 1 mm/year. Our first goal is
to make the units the same. We will
use millimeters (mm). Convert 4.49
m to mm.

b) Get a sheet of graph paper. Since
the tilt of the tower depends on the
year, make the year the independent
variable and place it on the horizontal
axis. Let t represent the year.
Make the tilt the dependent variable
and place it on the vertical axis. Let
h represent the tilt, measured in mil-
limeters (mm).
Choose 1980 as the first year on the
horizontal axis and mark every year
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thereafter, until 1995. Let the ver-
tical axis begin at 4.49 m, converted
to mm from part (a), since that was
our first measurement; and then we
mark every 1 mm thereafter up to
4510 mm.

c) Think of 1980 as the starting year.
Together with the tilt measurement
from that year, it forms a point. What
are the coordinates of this point? Plot
the point on your coordinate system.

d) Beginning at the first point, from part
(c), move one year to the right (to
1981) and 1 mm up (because the tilt
increases) and plot a new data point.

e) Each time you move one year to the
right, you must move 1 mm up and
plot a new point. Repeat this process
until you reach the year 1995.

f) Keeping in mind that we are mod-
eling this discrete situation continu-
ously, draw a line through your data
points. We can use this model to
make predictions.

g) According to computer simulation mod-
els, which use sophisticated mathe-
matics, the tower would be in danger
of collapsing when h reaches about
4495 mm. Use your graph to esti-
mate what year this would happen.

h) In reality, the tilt of the tower passed
4495 mm and the tower did not col-
lapse. In fact, the tilt increased to
4500 mm before the tower was closed
on January 7, 1990, to undergo ren-
ovations to decrease the tilt. (The
tower was reopened in 2001, after en-
gineers used weights and removed dirt
from under the base to decrease the
tilt by 450 mm.) What might be some
reasons why the prediction of the com-
puter model was wrong?

i) The following table lists the tilt of the
tower, h, the year, and the number
of years since 1980. In 1980, the tilt
was 4490 mm and no occurrences of
the 1 mm increase had happened yet,
so we fill in 4490 + 0(1) = 4490. In
1981, one occurrence of the 1 mm in-
crease had occurred because one year
had passed since 1980. Therefore, the
tilt was 4490 + 1(1). In 1982, two oc-
currences of the 1 mm increase had
occurred, because 2 years had passed
since 1980. Thus, the tilt was 4490 +
2(1). And the pattern continues in
this manner. Fill in the remaining
entries.

Year yrs x after ’80 tilt h
1980 0 4490 + 0(1)
1981 1 4490 + 1(1)
1982 2 4490 + 1(2)
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995

j) Let x represent the number of years
since 1980 and h represent the tilt.
Using the table above, write an equa-
tion that relates h and x.

k) Use your equation to predict the tilt
in 1990. Does it agree with the actual
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value from 1990? Does it agree with
the value that is shown on the graph
you made?

l) In part (g), you used the graph to
predict the year in which the tilt would
be 4495mm. Use your equation to
make the same prediction. Do the
answers agree?

12. According to the Statistical Abstract
of the United States (www.census.gov),
there were approximately 31, 000 crimes
reported in the United States in 1998,
and this was dropping by a rate of about
2900 per year.

a) On a sheet of graph paper, make a
coordinate system and plot the 1998
data as a point. Note that you will
only need to graph the first quadrant
of a coordinate system, since there
are no data for years before 1998 and
there cannot be a negative number of
crimes reported. Use the given rate
to find points for 1999 through 2006,
and then draw a line through your
data. We are constructing a continu-
ous model for our discrete situation.

b) The following table lists the number
of crimes reported, C, the year, and
the number of years since 1998. In
1998, the number was 31, 000 and no
occurrences of the 2900 decrease had
happened yet, so we fill in 31000 −
2900(0). In 1999, one occurrence of
the 2900 decrease had happened be-
cause one year had passed since 1998.
Therefore, the number of crimes re-
ported was 31000−2900(1). And the
pattern continues in this manner. Fill
in the remaining entries.

Year yrs x after 1998 No. of crimes C
1998 0 31000− 2900(0)
1999 1 31000− 2900(1)
2000
2001
2002

c) Observing the pattern in the table,
we come up with the equation C =
31000 − 2900x to relate the number
of crimes C to the number of years
x after 1998. Here, C is a function
of x, and so we can use the notation
C(x) = 31000 − 2900x to emphasize
this.

i. Compute C(5).
ii. In a complete sentence, explain

what C(5) represents.
iii. Compute C(8).
iv. In a complete sentence, explain

what C(8) represents.

13. According to the Statistical Abstract
of the United States (www.census.gov),
there were approximately 606, 000 inmates
in United States prisons in 1999, and this
was increasing by a rate of about 14, 000
per year.

a) On a sheet of graph paper, make a
coordinate system and plot the 1999
data as a point. Note that you will
only need to graph the first quadrant
of a coordinate system, since there
are no data for years before 1999 and
there cannot be a negative number of
crimes reported. Use the given rate
to find points for 2000 through 2006,
and then draw a line through your
data. We are constructing a continu-
ous model for our discrete situation.
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b) The following table lists the num-
ber of inmates, N , the year, and the
number of years since 1999. In 1999,
the number was 606, 000 and no oc-
currences of the 14, 000 increase had
happened yet, so we fill in 606000 +
14000(0). In 2000, one occurrence of
the 14, 000 increase had happened be-
cause one year had passed since 1999.
Therefore, the number of crimes re-
ported was 606000 + 14000(1). And
the pattern continues in this manner.
Fill in the remaining entries.

Year yrs x after ’99 No. of
inmates N

1999 0 606000+14000(0)
2000 1 606000+14000(1)
2001
2002

c) Observing the pattern in the table,
we come up with the equation N =
606000+14000x to relate the number
of crimes C to the number of years
x after 1999. Here, N is a function
of x, and so we can use the notation
N(x) = 606000+14000x to emphasis
this.

i. Compute N(5).
ii. In a complete sentence, explain

what N(5) represents.
iii. Compute N(7).
iv. In a complete sentence, explain

what N(7) represents.
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3.1 Solutions

1.

d)

time t (months)

Amount saved A (dollars)

0 2 4 6
60

180

300

420

540

660

780

900

1020

(0,600)(0,600)
(1,660)(1,660)

e)

time t (months)

Amount saved A (dollars)

0 2 4 6
60

180

300

420

540

660

780

900

1020

(0,600)(0,600)

(7,1020)(7,1020)

From the graph, when t = 7 months, he will have saved $1020.
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f)

time t (months)

Amount saved A (dollars)

0 2 4 6
60

180

300

420

540

660

780

900

1020

(0,600)(0,600)

(7,1020)(7,1020)
(6,960)(6,960)

Note that we’ve modeled a discrete problem continuously: He saves $60 at the end
of each month, and he will have $900 by the end of month five; and then $960 by
the end of month six. There will be no time at which he has exactly $950, so the
answer is 6 months, at which point he’ll have $960.

3.

e)

time t (sec)

distance d (ft)

0 2 4 6 8 10 120
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

(1,185)(1,185)
(0,200)(0,200)
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f) We draw a line at 50 ft and see that it occurs at 10 seconds:

time t (sec)

distance d (ft)

0 2 4 6 8 10 120
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200 (1,185)(1,185)

5.

e)

time t (days)

number N (acorns)

2 4 6 8 10 12 14
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60

(0,0)(0,0)

(2,8)(2,8)
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f) If you draw a line at 10 days, then you can see that he will have collected 40 acorns.

time t (days)

number N (acorns)

2 4 6 8 10 12 14
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60

(0,0)(0,0)

(2,8)(2,8)

g) 8
2 acorns/day = 4 acorns/day

h) Following the pattern, we get:

t N

0 0
1 0 + 4(1)
2 0 + 4(2)
3 0 + 4(3)
4 0 + 4(4)
6 0 + 4(6)
8 0 + 4(8)
10 0 + 4(10)
12 0 + 4(12)
14 0 + 4(14)

i) N = 0 + 4t or N = 4t

j) At t = 10, N = 0 + 4(10) = 40 acorns.
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7.

e)

Y ear

P (dollars)

2000 2002 2004 2006 2008 20105.65
5.85
6.05
6.25
6.45
6.65
6.85
7.05
7.25
7.45
7.65

(2002,$5.85)(2002,$5.85)

f) Draw a line for $7.00 and look for the year.

Y ear

P (dollars)

2000 2002 2004 2006 2008 20105.65
5.85
6.05
6.25
6.45
6.65
6.85
7.05
7.25
7.45
7.65

(2002,$5.85)(2002,$5.85)

Notice that year is between 2007 and 2008. But this is a discrete problem, since we
are only dealing with whole years. Thus, the answer is 2008.
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9.

a) We make a line at 48 degrees Celsius and read off the Fahrenheit estimate.

C (deg)

F (deg)

0 16 32 48 64 80 96
16
32
48
64
80
96

112
128
144
160
176
192
208

(0,32)(0,32)

(100,212)(100,212)

The estimate should be approximately 120 degrees Fahrenheit.

b) changeinF
changeinC = 180

100 = 9
5

c)

C (deg) F (deg)
0 32
1 32 + 9

5(1)
2 32 + 9

5(2)
3 32 + 9

5(3)
4 32 + 9

5(4)
5 32 + 9

5(5)
10 32 + 9

5(10)
20 32 + 9

5(20)
48 32 + 9

5(48)
100 32 + 9

5(100)

d) F = 9
5C + 32
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11.

a) There are 1000mm in 1m, so 4.49 = 4.49(1000) = 4490 mm.

f)

Year

tilt h (mm)

80 82 84 86 88 90 92 944490
4492
4494
4496
4498
4500
4502
4504
4506
4508
4510

(1981,4491)(1981,4491)

g) We draw a line for h = 4495 and see that it corresponds to 1985.

Year

tilt h (mm)

80 82 84 86 88 90 92 944490
4492
4494
4496
4498
4500
4502
4504
4506
4508
4510

h) No model is perfect. The computer model must not have taken into consideration
certain unexpected factors.
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i)

Year yrs x after ’80 tilt h
1980 0 4490
1981 1 4490 + 1(1)
1982 2 4490 + 1(2)
1983 3 4490 + 1(3)
1984 4 4490 + 1(4)
1985 5 4490 + 1(5)
1986 6 4490 + 1(6)
1987 7 4490 + 1(7)
1988 8 4490 + 1(8)
1989 9 4490 + 1(9)
1990 10 4490 + 1(10)
1991 11 4490 + 1(11)
1992 12 4490 + 1(12)
1993 13 4490 + 1(13)
1994 14 4490 + 1(14)
1995 15 4490 + 1(15)

j) h = 4490 + 1x

k) In 1990, x = 10, and so h = 4490+1(10) = 4500mm. Yes, it agrees with the actual
value in 1990.

l) To find when the tilt will be 4495, set h = 4495 and solve for x. 4495 = 4490 + 1x
leads to 5 = x, and so our answer is 1985. This agrees with the answer from (g).

13.

a)

Year

N (thousands)

2000 2002 2004 2006606
620
634
648
662
676
690
704
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b)

Year yrs x after ’99 No. of
inmates N

1999 0 606000+14000(0)
2000 1 606000+14000(1)
2001 2 606000+14000(2)
2002 3 606000+14000(3)

c)

i. N(5) = 606000 + 14000(5) = 676000.
ii. It means that, according to our model, 5 years after 1999 (that is, in 2004), the

number of inmates will be 676, 000.
iii. N(7) = 606000 + 14000(7) = 704000.
iv. It means that, according to our model, in 2006, the number of inmates will be

704, 000
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3.2 Exercises

1. Suppose you are riding a bicycle up
a hill as shown below.

Figure 1. Riding
a bicycle up a hill.

a) If the hill is straight as shown, con-
sider the slant, or steepness, of its in-
cline. As you ride up the hill, what
can you say about the slant? Does it
change? If so, how?

b) The slant is what mathematicians call
the slope. To confirm your answer to
part (a), you will place the hill on
a coordinate system and compute its
slope along various segments of the
hill. See the figure below.

run x (ft)

rise y (ft)

0 5 10 15 200

5

10

15

20

P (3,1)P (3,1) Q(9,3)Q(9,3)
R(12,4)R(12,4)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

Three points–P , Q and R–have been
labeled along the hill. We call the
vertical distance (height) the rise and
the horizontal distance the run. As
you ride up the hill from point P to
point Q, what is the rise? What is
the run? Use these values to compute
the slope from P to Q.

c) Now consider as you ride from P to
R. What is the rise? What is the
run? Use these values to compute the
slope from P to R.

d) Finally, consider as you ride from Q
to R. What is the rise? What is the
run? Use these values to compute the
slope from Q to R.

e) How do the values for slope from parts
(b)-(d) compare? Do these results
confirm your answer to part (a)?

f) Notice that the slope is positive in
this example. In this context of rid-
ing a bicycle over a hill, what would
negative slope mean?

2. Set up a coordinate system on a sheet
of graph paper, plotting the points P (3, 4)
andQ(−2,−7) and drawing the line through
them.

a) What can you say about the slope of
the line? Is it positive, zero, negative
or undefined? Is the slope the same
everywhere along the line, or does it
change in places? If it does change,
where are the slopes different?
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b) Use your graph to determine the change
in y (rise) and the change in x (run).
Use these results to compute the slope
of the line.

c) Use the slope formula to compute the
slope of the line.

d) Does your numerical solution from
part (c) agree with your graphical so-
lution from part (b)? If not, check
your work for errors.

3. Set up a coordinate system on a sheet
of graph paper, plotting the points P (−1, 3)
andQ(5,−3) and drawing the line through
them.

a) What can you say about the slope of
the line? Is it positive, zero, negative
or undefined? Is the slope the same
everywhere along the line, or does it
change in places? If it does change,
where are the slopes different?

b) Use your graph to determine the change
in y (rise) and the change in x (run).
Use these results to compute the slope
of the line.

c) Use the slope formula to compute the
slope of the line.

d) Does your numerical solution from
part (c) agree with your graphical so-
lution from part (b)? If not, check
your work for errors.

In Exercises 4-10, perform each of the
following tasks.

i. Make a sketch of a coordinate system;
plot the given points, and draw the
line through the points.

ii. Use the slope formula to compute the
slope of the line through the given
points. Reduce the slope where pos-
sible.

4. (0, 0) and (3, 4)

5. (−5, 2) and (0, 3)

6. (−3,−3) and (6,−5)

7. (2, 0) and (2, 2)

8. (−9,−3) and (6,−3)

9. (−8, 4) and (3,−8)

10. (−2, 6) and (5,−2)

11. For the following line, two conve-
nient points P and Q have been chosen.
We chose two points that were at the cor-
ners of boxes on our grid so their coordi-
nates are easy to read.

x

y

−10 −5 5 1010

−10

−5

5

10

PP

QQ

a) Label their coordinates.

b) Thinking of P as the starting point
and Q as the ending point, draw a
right triangle joining the points.
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c) Clearly state the change in y (rise)
and the change in x (run) from P to
Q.

d) Compute the slope.

12. For the following line, two conve-
nient points A and B have been chosen.
We chose two points that were at the cor-
ners of boxes on our grid so their coordi-
nates are easy to read.

x

y

−10 −5 5 1010

−10

−5

5

10

A(0,5)A(0,5)

B(5,−5)B(5,−5)

a) Label their coordinates.

b) Thinking of A as the starting point
and B as the ending point, draw a
right triangle joining the points.

c) Clearly state the change in y (rise)
and the change in x (run) from A to
B.

d) Compute the slope.

13. Copy the coordinate system below
onto a sheet of graph paper. Then do
the following:

a) Select any two convenient points P
and Q on the graph of the line. Label
each point with its coordinates.

b) Clearly state the change in y (rise)
and the change in x (run). Compute

the slope of the line.

x

y

−10 −5 5 1010

−10

−5

5

10

14. Copy the coordinate system below
onto a sheet of graph paper. Then do
the following:

a) Select any two convenient points P
and Q on the graph of the line. Label
each point with its coordinates.

b) Clearly state the change in y (rise)
and the change in x (run). Compute
the slope of the line.

x

y

−10 −5 5 1010

−10

−5

5

10

15. Copy the coordinate system below
onto a sheet of graph paper. Then do
the following:

a) Select any two convenient points P
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and Q on the graph of the line. Label
each point with its coordinates.

b) Clearly state the change in y (rise)
and the change in x (run). Compute
the slope of the line.

x

y

−10 −5 5 1010

−10

−5

5

10

16. Copy the coordinate system below
onto a sheet of graph paper. Then do
the following:

a) Select any two convenient points P
and Q on the graph of the line. Label
each point with its coordinates.

b) Clearly state the change in y (rise)
and the change in x (run). Compute
the slope of the line.

x

y

−10 −5 5 1010

−10

−5

5

10

17. The following coordinate system shows
the graphs of three lines, each with dif-
ferent slope. Match each slope with (a),
(b), or (c) appropriately.
slope = 1
slope = 2/3
slope = −2

x

y

−10 −5 5 1010

−10

−5

5

10 (b)(a)

(c)

18. The following coordinate system shows
the graphs of three lines, each with dif-
ferent slope. Match each slope with (a),
(b), or (c) appropriately.
slope = 2
slope = −1/3
slope = 1/2

x

y

−10 −5 5 1010

−10

−5

5

10 (b)

(a)

(c)
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19. Draw a coordinate system on a sheet
of graph paper for which the x- and y-
axes both range from −10 to 10.

a) Draw a line that contains the point
(0, 1) and has slope 2. Label the line
as (a).

b) On the same coordinate system, draw
a line that contains the point (0, 1)
and has slope −1/2. Label it as (b).

c) Use the slopes of these two lines to
show that they are perpendicular.

20. Draw a coordinate system on a sheet
of graph paper for which the x- and y-
axes both range from −10 to 10.

a) Draw a line that contains the point
(1,−2) and has slope 1/3. Label the
line as (a).

b) On the same coordinate system, draw
a line that contains the point (0, 1)
and has slope −3. Label it as (b).

c) Use the slopes of these two lines to
show that they are perpendicular.

21. Draw a line through the point P (1, 3)
that is parallel to the line through the
origin with slope −1/4.

22. Draw a line through the point P(1,3)
that is parallel to the line through the
origin with slope 3/5.

23. Draw a coordinate system on a sheet
of graph paper for which the x- and y-
axes both range from −10 to 10.

a) Draw a line that contains the point
(−1,−2) and has slope 3/4. Label
the line as (a).

b) On the same coordinate system, draw
a line that contains the point (0, 1)

and has slope 4/3. Label it as (b).

c) Are these lines parallel, perpendicu-
lar or neither? Show using their slopes.

24. Graph a coordinate system on a
sheet of graph paper for which the x- and
y-axes both range from −10 to 10.

a) Draw a line that contains the point
(−4, 0) and has slope 1. Label the
line as (a).

b) On the same coordinate system, draw
a line that contains the point (0, 2)
and has slope −1. Label it as (b).

c) Are these lines parallel, perpendicu-
lar or neither? Show using their slopes.

25.

Figure 2. A grade is a way of ex-
pressing slope.

On the road from Fort Bragg to Willits
or from Fort Bragg to Santa Rosa, one of-
ten passes signs like that shown above. A
grade is just slope expressed as a percent
instead of a fraction or decimal. In other
words, the grade measures the steepness
of the road just as slope does.

a) An 80/0 grade means that, for every
horizontal distance of 100 ft, the road
rises or drops 8 ft (depending on whether
you are going uphill or downhill). Write
80/0 grade as slope in reduced frac-
tional form.
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b) Suppose a hill drops 16 ft for every
180 ft horizontally. Find the grade
of the hill to the nearest tenth of a
percent.

c) Explain in a complete sentence or sen-
tences what a grade of 00/0 would rep-
resent.
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3.2 Solutions

1.

a) No, it does not change. The slant is the same everywhere along the straight hill.

b) mPQ = 3−1
9−3 = 2

6 = 1
3

c) mPR = 4−1
12−3 = 3

9 = 1
3

d) mQR = 4−3
12−9 = 1

3

e) They are all the same. This makes sense because the slant or steepness of the hill
is the same throughout.

f) Positive slope means that you are riding uphill; negative slope would mean that you
are riding downhill.

3.

a) The slope is negative because the line slants downhill. The slope is the same
everywhere along the line because the slant of the line does not change.

b)

x

y

5−5−10

5

10

−5

−100

P (−1,3)P (−1,3)

Q(5,−3)Q(5,−3)

∆x=6

∆y=−6

slope = −6/6 = −1

c) ∆y = −3− (3) = −6; ∆x = 5− (−1) = 6; slope = ∆y
∆x = −6

6 = −1

d) Yes.
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5.

x

y

−10 −5 5 1010

−10

−5

5

10

(−5,2)(−5,2)
(0,3)(0,3)

slope = 3−2
0−(−5) = 1

5

7.

x

y

−10 −5 5 1010

−10

−5

5

10

(2,0)(2,0)
(2,2)(2,2)

slope = 2−0
2−2 = 2

0 = undefined
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9.

x

y

−10 −5 5 1010

−10

−5

5

10

(−8,4)(−8,4)

(3,−8)(3,−8)

slope = −8−4
3−(−8) = −12

11

11.

a) The points are (0, 0) and (6, 3).

b)

x

y

−10 −5 5 1010

−10

−5

5

10

P (0,0)P (0,0)

Q(6,3)Q(6,3)

c) ∆y = 3− 0 = 3; ∆x = 6− 0 = 6

d) slope = ∆y
∆x = 3

6 = 1
2
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13. NOTE: Solutions may vary depending on which two convenient points were cho-
sen.

a) You can pick any two points on the line; for example, (0, 0) and (5, 4) as shown
below.

x

y

−10 −5 5 1010

−10

−5

5

10

P (0,0)P (0,0)

Q(5,4)Q(5,4)

b) ∆y = 4− 0 = 4; ∆x = 5− 0 = 5; slope = ∆y
∆x = 4

5

15. NOTE: Solutions may vary depending on which two convenient points were cho-
sen.

a) You can pick any two points on the line; for example, (1, 1) and (3, 7) as shown
below.

x

y

−10 −5 5 1010

−10

−5

5

10

P (1,1)

Q(3,7)Q(3,7)

b) ∆y = 7 − 1 = 6; ∆x = 3− 1 = 2; slope = ∆y
∆x = 6

2 = 3
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17. slope = 1: (b)
slope = 2/3: (c)
slope = −2: (a)

19.

b)

x

y

−10 −5 5 1010

−10

−5

5

10 (a)

(b)

(0,1)

(1,3)(1,3)

(2,0)

c) m1m2 = 2(−1/2) = −1, so the lines are perpendicular.

21.

x

y

−10 −5 5 1010

−10

−5

5

10

P (1,3)P (1,3)
Q(5,2)Q(5,2)

(4,−1)(4,−1)



Chapter 3 Linear Functions

Version: Fall 2007

23.

b)

x

y

−10 −5 5 1010

−10

−5

5

10 (b)

(a)

(−1,−2)

(0,1)(0,1)

c) m1m2 = (4/3)(3/4) = 1 "= −1, so the lines are not perpendicular; the slopes are
not equal, so the lines are not parallel, either. Thus, the lines may be classified as
neither parallel nor perpendicular.

25.

a) grade = 8
100 = 2

25

b) grade = 16
180 = 4

45 = 8.90/0

c) 00/0 grade represents no grade or slope; that is, a flat road.
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3.3 Exercises

In Exercises 1-6, perform each of the
following tasks for the given linear func-
tion.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Remember to draw all lines with
a ruler.

ii. Identify the slope and y-intercept of
the graph of the given linear function.

iii. Use the slope and y-intercept to draw
the graph of the given linear function
on your coordinate system. Label the
y-intercept with its coordinate and
the graph with its equation.

1. f(x) = 2x+ 1

2. f(x) = −2x+ 3

3. f(x) = 3− x

4. f(x) = 2− 3x

5. f(x) = −3
4x+ 3

6. f(x) = 2
3x− 2

In Exercises 7-12, perform each of the
following tasks.

i. Make a copy of the given graph on a
sheet of graph paper.

ii. Label the y-intercept with its coor-
dinates, then draw a right triangle
and label the sides to help identify
the slope.

iii. Label the line with its equation.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

7.

x

y

5

5

8.

x

y

5

5

9.

x

y

5

5
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10.

x

y

5

5

11.

x

y

5

5

12.

x

y

5

5

13. Kate makes $39, 000 per year and
gets a raise of $1000 each year. Since
her salary depends on the year, let time
t represent the year, with t = 0 being the
present year, and place it along the hor-
izontal axis. Let salary S, in thousands

of dollars, be the dependent variable and
place it along the vertical axis.
We will assume that the rate of increase
of $1000 per year is constant, so we can
model this situation with a linear func-
tion.

a) On a sheet of graph paper, make a
graph to model this situation, going
as far as t = 10 years.

b) What is the S-intercept?

c) What is the slope?

d) Suppose we want to predict Kate’s
salary in 20 years or 30 years. We
cannot use the graphical model be-
cause it only shows up to t = 10 years.
We could draw a larger graph, but
what if we then wanted to predict
50 years into the future? The point
is that a graphical model is limited
to what it shows. A model algebraic
function, however, can be used to pre-
dict for any year!
Find the slope-intercept form of the
linear function that models Kate’s salary.

e) Write the function using function no-
tation, which emphasizes that S is a
function of t.

f) Now use the algebraic model from (e)
to predict Kate’s salary 10 years, 20
years, 30 years, and 50 years into the
future.

g) Compute S(40).

h) In a complete sentence, explain what
the value of S(40) from part (g) means
in the context of the problem.

14. For each DVD that Blue Charles
Co. sells, they make 5c profit. Profit
depends on the number of DVD’s sold,
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so let number sold n be the independent
variable and profit P , in $, be the depen-
dent variable.

a) On a sheet of graph paper, make a
graph to model this situation, going
as far as n = 15.

b) Use the graph to predict the profit if
n = 10 DVD’s are sold.

c) The graphical model is limited to pre-
dicting for values of n on your graph.
Any larger value of n necessitates a
larger graph, or a different kind of
model. To begin finding an algebraic
model, identify the P -intercept of the
graph.

d) What is the slope of the line in you
graphical model?

e) Find a slope-intercept form of a lin-
ear function that models Blue Charles
Co.’s sales.

f) Write the function using function no-
tation.

g) Explain why this model does not have
the same limitation as the graphical
model.

h) Find P (100), P (1000), and P (10000).

i) In complete sentences, explain what
the values of P (100), P (1000), and
P (10000) mean in the context of the
problem.

15. Enrique had $1, 000 saved when he
began to put away an additional $25 each
month.

a) Let t represent time, in months, and
S represent Enrique’s savings, in $.
Identify which should be the indepen-
dent and dependent variables.

b) To begin finding a linear function to
model this situation, identify the S-
intercept and slope.

c) Find a slope-intercept form of a lin-
ear function to model Enrique’s sav-
ings over time.

d) Write the linear function in function
notation.

e) Use the function model to predict
how much will be in his savings in
one year.

f) Use the function model to predict when
will he have $2000 saved.

g) Graph the function on a coordinate
system.

h) At the same time, Anne-Marie also
begins to save $25 per month, but she
begins with $1200 already in her sav-
ings. Make a graphical model of her
situation and place it on the same co-
ordinate system as the graphical model
for Enrique’s savings. Label it appro-
priately.

i) How do the lines compare to each
other? Say something about their slopes.

j) Find a slope-intercept form of a lin-
ear function that models Anne-Marie’s
savings. Use the same variables as
you did for Enrique’s model.

k) Write the function using function no-
tation.

l) Prove that the graphs of the two func-
tions are parallel lines.

m) For Anne-Marie, looking at the graphs,
do you think it will take her more
time or less time than Enrique to save
up $2000?.
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n) Use the linear function model for Anne-
Marie to predict how long it will take
her to save $2000. Does this agree
with your expectation from (m)?

16. Jose is initially 400 meters away
from the bus stop. He starts running to-
ward the stop at a rate of 5 meters per
second.

a) Express Jose’s distance d from the
bus stop as a function of time t.

b) Use your model to determine Jose’s
distance from the bus stop after one
minute.

c) Use your model to determine the time
it will take Jose to reach the bus stop.

17. A ball is dropped from rest above
the surface of the earth. As it falls, its
speed increases at a constant rate of 32
feet per second per second.

a) Express the speed v of the ball as a
function of time t.

b) Use your model to determine the speed
of the ball after 5 seconds.

c) Use your model to determine the time
it will take for the ball to achieve a
speed of 256 feet per second.

18. A ball is thrown into the air with
an initial speed of 200 meters per second.
It immediately begins to lose speed at a
rate of 9.5 meters per second per second.

a) Express the speed v of the ball as a
function of time t.

b) Use your model to determine the speed
of the ball after 5 seconds.

c) Use your model to determine the time
it will take for the ball to achieve its
maximum height.

In Exercises 19-24, a linear function is
given in standard form Ax + By = C.
In each case, solve the given equation for
y, placing the equation in slope-intercept
form. Use the slope and intercept to
draw the graph of the equation on a sheet
of graph paper.

19. 3x− 2y = 6

20. 3x+ 5y = 15

21. 3x+ 2y = 6

22. 4x− y = 4

23. x− 3y = −3

24. x+ 4y = −4

In Exercises 25-30, you are given a lin-
ear function in slope-intercept form. Place
the linear function in standard formAx+
By = C, where A, B, and C are integers
and A > 0.

25. y = 2
3x− 5

26. y = 5
6 x+ 1

27. y = −4
5 x+ 3

28. y = −3
7 x+ 2

29. y = −2
5 x− 3

30. y = −1
4 x+ 2



Section 3.3 Equations of Lines 287

Version: Fall 2007

31. What is the x-intercept of the line?

x

y

5

5

32. What is the y-intercept of the line?

x

y

5

5

33. What is the y-intercept of the line?

x

y

5

5

34. What is the x-intercept of the line?

x

y

5

5

In Exercises 35-40, find the x- and y-
intercepts of the linear function that is
given in standard form. Use the inter-
cepts to plot the graph of the line on a
sheet of graph paper.

35. 3x− 2y = 6

36. 4x+ 5y = 20

37. x− 2y = −2

38. 6x+ 5y = 30

39. 2x− y = 4

40. 8x− 3y = 24

41. Sketch the graph of the horizon-
tal line that passes through the point
(3,−3). Label the line with its equation.

42. Sketch the graph of the horizon-
tal line that passes through the point
(−9, 9). Label the line with its equation.

43. Sketch the graph of the vertical line
that passes through the point (2,−1).
Label the line with its equation.
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44. Sketch the graph of the vertical line
that passes through the point (15,−16).
Label the line with its equation.

In Exercises 45-48, find the domain and
range of the given linear function.

45. f(x) = −37x− 86

46. f(x) = 98

47. f(x) = −12

48. f(x) = −2x+ 8
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3.3 Solutions

1. Compare f(x) = 2x+ 1 with f(x) = mx+ b. Note that the slope is m = 2 and the
y-coordinate of the y-intercept is b = 1. Therefore, the y-intercept will be the point
(0, 1). Plot the point P (0, 1). To obtain a line of slope m = 2/1, start at the point
P (0, 1), then move 1 unit to the right and 2 units upward, arriving at the point Q(1, 3),
as shown in the figure below. The line through the points P and Q is the required line.

x

y

5

5

∆x=1

∆y=2

Q(1,2)Q(1,2)

P (0,1)P (0,1)

f(x)=2x+1

3. Compare f(x) = 3− x, or equivalently f(x) = −x+ 3, with f(x) = mx+ b. Note
that the slope is m = −1 and the y-coordinate of the y-intercept is b = 3. Therefore,
the y-intercept will be the point (0, 3). Plot the point P (0, 3). To obtain a line of slope
m = −1, start at the point P (0, 3), then move 1 unit to the right and 1 units downward,
arriving at the point Q(1, 2), as shown in the figure below. The line through the points
P and Q is the required line.

x

y

5

5

∆x=1
∆y=−1

Q(1,2)Q(1,2)
P (0,3)P (0,3)

f(x)=3−x
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5. Compare f(x) = (−3/4)x+3 with f(x) = mx+b. Note that the slope ism = −3/4
and the y-coordinate of the y-intercept is b = 3. Therefore, the y-intercept will be the
point (0, 3). Plot the point P (0, 3). To obtain a line of slope m = −3/4, start at the
point P (0, 3), then move 4 units to the right and 3 units downward, arriving at the
point Q(4, 0), as shown in the figure below. The line through the points P and Q is
the required line.

x

y

5

5

∆x=4

∆y=−3

Q(4,0)Q(4,0)

P (0,3)P (0,3)

f(x)=(−3/4)x+3

7. The slope is found by dividing the rise by the run (see figure). Hence, the slope is
1/2. The y-intercept is found by noting where the graph of the line crosses the y-axis
(see figure), in this case, at (0,−3). Hence, m = 1/2 and b = −3, so the equation of
the line in slope intercept form is

y = mx+ b or y = 1
2x− 3.

x

y

5

5

∆x=2
∆y=1(0,−3)(0,−3)

y=(1/2)x−3
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9. The slope is found by dividing the rise by the run (see figure). Hence, the slope is
2/3. The y-intercept is found by noting where the graph of the line crosses the y-axis
(see figure), in this case, at (0,−2). Hence, m = 2/3 and b = −2, so the equation of
the line in slope intercept form is

y = mx+ b or y = 2
3x− 2.

x

y

5

5

∆x=3

∆y=2

(0,−2)(0,−2)

y=(2/3)x−2

11. The slope is found by dividing the rise by the run (see figure). Hence, the slope is
3/2. The y-intercept is found by noting where the graph of the line crosses the y-axis
(see figure), in this case, at (0, 1). Hence, m = 3/2 and b = 1, so the equation of the
line in slope intercept form is

y = mx+ b or y = 3
2x+ 1.

x

y

5

5

(0,1)(0,1)

∆y=3

∆x=2

y=(3/2)x+1
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13.

a)

time t (years)

salary S (thousands of dollars)

0 2 4 6 8 10

10

20

30

40

50

(0,39)(0,39)

b) At t = 0 (present year), her salary is $39, 000. Since S is in thousands of dollars,
S = 39 when t = 0. So the S-intercept is (0, 39).

c) The increase in Kate’s salary is $1, 000 per year, but S is in thousands of dollars,
so the rate of increase in S is 1. That is, the slope is 1.

d) Using the slope-intercept form, we get S = t+ 39.

e) S(t) = t+ 39.

f)

• To find Kate’s salary in 10 years, compute S(10) = 10 + 39 = 49, which means
that she will be earning $49, 000 per year.

• To find Kate’s salary in 20 years, compute S(20) = 20 + 39 = 59, which means
that she will be earning $59, 000 per year.

• To find Kate’s salary in 30 years, compute S(30) = 30 + 39 = 69, which means
that she will be earning $69, 000 per year.

• To find Kate’s salary in 50 years, compute S(50) = 50 + 39 = 89, which means
that she will be earning $89, 000 per year.

g) S(40) = 40 + 39 = 79.

h) If the current rate of increase continues, in 40 years Kate’s salary will be $79, 000.

15.

a) t should be the independent variable and S should be the dependent variable.

b) S-intercept = (0, 1000); slope = 25
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c) S = 25t+ 1000

d) S(t) = 25t+ 1000

e) S(12) = 25(12) + 1000 = 1300

f) Set S=2000 and solve for t. 2000 = 25t+ 1000 1000 = 25t 40 = t So it will take 40
months for him to reach $2000.

h)

time t (months)

savings S (dollars)

0 2 4 6 8 10 12 141000

1100

1200

1300

1400

1500

1600

Enrique

Anne−Marie

i) The lines have the same slope; they are parallel.

j) S = 25t+ 1200

k) S(t) = 25t+ 1200

l) They are lines because they are in the y = mx+ b form. They are parallel because
their slopes are equal (both are 25).

m) It should take her less time because her graph is above Enrique’s graph. This
makes sense intuitively since she began with more money than he did.

n) Set S=2000 and solve for t. 2000 = 25t+ 1200 800 = 25t 32 = t So it will take 32
months for her to reach $2000. This agrees with our expectation from (m): It takes
her less time than Enrique.

17.

a) We will do a “rough” plot of speed v versus time t. Speed depends upon time,
so we place the speed on the vertical axis and the time on the horizontal axis in
the figure that follows. The intial speed is 0 ft/s, which give us the v-intercept at
P (0, 0). The rate at which the speed is increasing (acceleration) is constant and
will be the slope of the line; i.e., the slope of the line is m = 32 ft/s2 (32 feet per
second per second).
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t(s)

v(ft/s) m=32 ft/s2

P (0,0)P (0,0)

Because we know the slope and intercept of the line, we can use the slope intercept
form y = mx+ b and substitute m = 32 and b = 0 to obtain

y = mx+ b
y = 32x+ 0
y = 32x.

However, we are using v and t in place of y and x, so we replace these in the last
formula to obtain

v = 32t,

or using function notation,

v(t) = 32t.

b) To find the speed of the ball after 5 seconds, substitute t = 5 into the equation
developed in the previous part.

v(t) = 32t
v(5) = 32(5)
v(5) = 160.

Hence, the speed of the ball after 5 seconds is 160 feet per second.

c) To find the time it takes the ball to reach 256 feet per second, we must find t so
that v(t) = 256.

v(t) = 256
32t = 256
t = 8.

Thus, it takes 8 seconds for the ball to attain a speed of 256 feet per second.

19. Place 3x − 2y = 6 in slope-intercept form. First subtract 3x from both sides of
the equation, then divide both sides of the resulting equation by −2.
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3x− 2y = 6
−2y = −3x+ 6

y = 3
2 x− 3

Compare y = (3/2)x − 3 with y = mx + b to see that the slope is m = 3/2 and the
y-coordinate of the y-intercept is b = −3. Therefore, the y-intercept will be the point
(0,−3). Plot the point P (0,−3). To obtain a line of slope m = 3/2, start at the point
P (0,−3), then move 3 units up and 2 units to the right, arriving at the point Q(2, 0),
as shown in the figure below. The line through the points P and Q is the required line.

x

y

5

5

∆x=2

∆y=3

P (0,−3)P (0,−3)

Q(2,0)Q(2,0)

21. Place 3x + 2y = 6 in slope-intercept form. First subtract 3x from both sides of
the equation, then divide both sides of the resulting equation by 2.

3x+ 2y = 6
2y = −3x+ 6

y = −3
2 x+ 3

Compare y = (−3/2)x+ 3 with y = mx+ b to see that the slope is m = −3/2 and the
y-coordinate of the y-intercept is b = 3. Therefore, the y-intercept will be the point
(0, 3). Plot the point P (0, 3). To obtain a line of slope m = −3/2, start at the point
P (0, 3), then move 3 units downward and 2 units to the right, arriving at the point
Q(2, 0), as shown in the figure below. The line through the points P and Q is the
required line.

x

y

5

5

∆x=2

∆y=−3

P (0,3)P (0,3)

Q(2,0)Q(2,0)
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23. Place x − 3y = −3 in slope-intercept form. First subtract x from both sides of
the equation, then divide both sides of the resulting equation by −3.

x− 3y = −3
−3y = −x− 3

y = 1
3 x+ 1

Compare y = (1/3)x + 1 with y = mx + b to see that the slope is m = 1/3 and the
y-coordinate of the y-intercept is b = 1. Therefore, the y-intercept will be the point
(0, 1). Plot the point P (0, 1). To obtain a line of slope m = 1/3, start at the point
P (0, 1), then move 1 unit upward and 3 units to the right, arriving at the point Q(3, 2),
as shown in the figure below. The line through the points P and Q is the required line.

x

y

5

5

∆x=3
∆y=1

P (0,1)P (0,1)
Q(3,2)Q(3,2)

25. Start with

y = 2
3 x− 5

and multiply both sides by 3 to clear the fractions.

3y = 2x− 15

Finally, subtract 3y from both sides of the equation, then add 15 to both sides of the
equation to obtain

15 = 2x− 3y,

or equivalently,

2x− 3y = 15.

27. Start with

y = −4
5 x+ 3

and multiply both sides by 5 to clear the fractions.

5y = −4x+ 15



Section 3.3 Equations of Lines

Version: Fall 2007

Finally, add 4x to both sides of the equation.

4x+ 5y = 15

29. Start with

y = −2
5 x− 3

and multiply both sides by 5 to clear the fractions.

5y = −2x− 15

Finally, add 2x to both sides of the equation.

2x+ 5y = −15

31. The x-intercept is the location where the line crosses the x-axis.

x

y

5

5

P (−4,0)P (−4,0)

Therefore, the x-intercept is (−4, 0).

33. The y-intercept is the location where the line crosses the y-axis.

x

y

5

5

P (0,4)P (0,4)

Therefore, the y-intercept is (0, 4).

35. Set x = 0 in 3x − 2y = 6 to get −2y = 6 or y = −3. The y-intercept is (0,−3).
Set y = 0 in 3x − 2y = 6 to get 3x = 6 or x = 2. The x-intercept is (2, 0). Plot the
intercepts. The line through the intercepts is the required line.
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x

y

5

5

(0,−3)(0,−3)

(2,0)(2,0)

37. Set x = 0 in x−2y = −2 to get −2y = −2 or y = 1. The y-intercept is (0, 1). Set
y = 0 in x − 2y = −2 to get x = −2. The x-intercept is (−2, 0). Plot the intercepts.
The line through the intercepts is the required line.

x

y

5

5

(0,1)(0,1)
(−2,0)(−2,0)

39. Set x = 0 in 2x− y = 4 to get −y = 4 or y = −4. The y-intercept is (0,−4). Set
y = 0 in 2x − y = 4 to get 2x = 4. The x-intercept is (2, 0). Plot the intercepts. The
line through the intercepts is the required line.

x

y

5

5

(2,0)(2,0)

(0,−4)(0,−4)
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41. Every horizontal line has an equation of the form y = d. Since this line must pass
through the point (3,−3), it follows that the equation is y = −3.

x

y

5

5

y=−3
(3,−3)(3,−3)

43. Every vertical line has an equation of the form x = c. Since this line must pass
through the point (2,−1), it follows that the equation is x = 2.

x

y

5

5 x=2

(2,−1)(2,−1)

45. The domain of every linear function is (−∞,∞). Since the slope of the graph of
f is −37 #= 0, the range is also (−∞,∞).

47. The domain of every linear function is (−∞,∞). Since f(x) = −12 for every x,
the range is {−12}.
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3.4 Exercises

In Exercises 1-4, perform each of the
following tasks.

i. Draw the line on a sheet of graph
paper with the given slope m that
passes through the given point (x0, y0).

ii. Estimate the y-intercept of the line.
iii. Use the point-slope form to determine

the equation of the line. Place your
answer in slope-intercept form by solv-
ing for y. Compare the exact value of
the y-intercept with the approxima-
tion found in part (ii).

1. m = 2/3 and (x0, y0) = (−1,−1)

2. m = −2/3 and (x0, y0) = (1,−1)

3. m = −3/4 and (x0, y0) = (−2, 3)

4. m = 2/5 and (x0, y0) = (−3,−2)

5. Find the equation of the line in slope-
intercept form that passes through the
point (1, 3) and has a slope of 1.

6. Find the equation of the line in slope-
intercept form that passes through the
point (0, 2) and has a slope of 1/4.

7. Find the equation of the line in slope-
intercept form that passes through the
point (1, 9) and has a slope of −2/3.

8. Find the equation of the line in slope-
intercept form that passes through the
point (1, 9) and has a slope of −3/4.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

In Exercises 9-12, perform each of the
following tasks.

i. Set up a coordinate system on a sheet
of graph paper and draw the line through
the two given points.

ii. Use the point-slope form to determine
the equation of the line.

iii. Place the equation of the line in stan-
dard form Ax+By = C, where A, B,
and C are integers and A > 0. Label
the line in your plot with this result.

9. (−2,−1) and (3, 2)

10. (−1, 4) and (2,−3)

11. (−2, 3) and (4,−3)

12. (−4, 4) and (2,−4)

13. Find the equation of the line in slope-
intercept form that passes through the
points (−5, 5) and (6, 8).

14. Find the equation of the line in slope-
intercept form that passes through the
points (6,−6) and (9,−7).

15. Find the equation of the line in slope-
intercept form that passes through the
points (−4, 6) and (2,−4).

16. Find the equation of the line in slope-
intercept form that passes through the
points (−1, 5) and (4, 4).
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In Exercises 17-20, perform each of the
following tasks.

i. Draw the graph of the given linear
equation on graph paper and label it
with its equation.

ii. Determine the slope of the given equa-
tion, then use this slope to draw a
second line through the given point
P that is parallel to the first line.

iii. Estimate the y-intercept of the sec-
ond line from your graph.

iv. Use the point-slope form to determine
the equation of the second line. Place
this result in slope-intercept form y =
mx + b, then state the exact value
of the y-intercept. Label the second
line with the slope-intercept form of
its equation.

17. 2x+ 3y = 6, P = (−2,−3)

18. 3x− 4y = 12, P = (−3, 4)

19. x+ 2y = −4, P = (3, 3)

20. 5x+ 2y = 10, P = (−3,−5)

In Exercises 21-24, perform each of the
following tasks.

i. Draw the graph of the given linear
equation on graph paper and label it
with its equation.

ii. Determine the slope of the given equa-
tion, then use this slope to draw a
second line through the given point
P that is prependicular to the first
line.

iii. Use the point-slope form to determine
the equation of the second line. Place
this result in standard formAx+By =
C, where A, B, C are integers and
A > 0. Label the second line with
this standard form of its equation.

21. x− 2y = −2, P = (3,−4)

22. 3x+ y = 3, P = (−3,−4)

23. x− 2y = 4, P = (−3, 3)

24. x− 4y = 4, P = (−3, 4)

25. Find the equation of the line in slope-
intercept form that passes through the
point (7, 8) and is parallel to the line
x− 5y = 4.

26. Find the equation of the line in slope-
intercept form that passes through the
point (3,−7) and is perpendicular to the
line 7x− 2y = −8.

27. Find the equation of the line in slope-
intercept form that passes through the
point (1,−2) and is perpendicular to the
line −7x+ 5y = 4.

28. Find the equation of the line in slope-
intercept form that passes through the
point (4,−9) and is parallel to the line
9x+ 3y = 5.

29. Find the equation of the line in slope-
intercept form that passes through the
point (2,−9) and is perpendicular to the
line −8x+ 3y = 1.

30. Find the equation of the line in slope-
intercept form that passes through the
point (−7,−7) and is parallel to the line
8x+ y = 2.

31. A ball is thrown vertically upward
on a distant planet. After 1 second, its
velocity is 100 meters per second. After
5 seconds, the velocity is 50 meters per
second. Assume that the velocity v of
the ball is a linear function of the time t.

a) On graph paper, sketch the graph of
the velocity v versus the time t. As-
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sume that the velocity is the depen-
dent variable and place it on the ver-
tical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the velocity v of the ball as a function
of time t.

d) Determine the time it takes the ball
to reach its maximum height.

32. A ball is thrown vertically upward
on a distant planet. After 2 seconds, its
velocity is 320 feet per second. After 8
seconds, the velocity is 200 feet per sec-
ond. Assume that the velocity v of the
ball is a linear function of the time t.

a) On graph paper, sketch the graph of
the velocity v versus the time t. As-
sume that the velocity is the depen-
dent variable and place it on the ver-
tical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the velocity v of the ball as a function
of time t.

d) Determine the time it takes the ball
to reach its maximum height.

33. An automobile is traveling down the
autobahn and the driver applies its brakes.
After 2 seconds, the car’s speed is 60
km/h. After 4 seconds, the car’s speed
is 50 km/h.

a) On graph paper, sketch the graph of

the velocity v versus the time t. As-
sume that the velocity is the depen-
dent variable and place it on the ver-
tical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the velocity v of the automobile as a
function of time t.

d) Determine the time it takes the au-
tomobile to stop.

34. An automobile is traveling down the
autobahn and its driver steps on the ac-
celerator. After 2 seconds, the car’s ve-
locity is 30 km/h. After 4 seconds, the
car’s velocity is 40 km/h.

a) On graph paper, sketch the graph of
the velocity v versus the time t. As-
sume that the velocity is the depen-
dent variable and place it on the ver-
tical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the velocity v of the automobile as a
function of time t.

d) Determine the speed of the vehicle
after 8 seconds.

35. Suppose that the demand d for a
particular brand of teakettle is a linear
function of its unit price p. When the
unit price is fixed at $30, the demand for
teakettles is 100. This means the public
buys 100 teakettles. If the unit price is
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fixed at $50, then the demand for teaket-
tles is 60.

a) On graph paper, sketch the graph of
the demand d versus the unit price p.
Assume that the demand is the de-
pendent variable and place it on the
vertical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the demand d for teakettles as a func-
tion of unit price p.

d) Compute the demand if the unit price
is set at $40.

36. It’s perfect kite-flying weather on
the coast of Oregon. Annie grabs her
kite, climbs up on the roof of her two
story home, and begins playing out kite
string. In 10 seconds, Annie’s kite is 120
feet above the ground. After 20 seconds,
it is 220 feet above the ground. Assume
that the height h of the kite above the
ground is a linear function of the amount
of time t that has passed since Annie be-
gan playing out kite string.

a) On graph paper, sketch the graph of
the height h of the kite above ground
versus the time t . Assume that the
height is the dependent variable and
place it on the vertical axis.

b) Determine the slope of the line, in-
cluding its units, then give a real world
explanation of the meaning of this
slope.

c) Determine an equation that models
the height h of the kite as a function
of time t.

d) Determine the height of the kite af-
ter 20 seconds.

e) Determine the height of Annie’s sec-
ond story roof above ground.
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3.4 Solutions

1. Plot the point P (−1,−1). To draw a line through P with slope m = 2/3, start
at the point P , then move up 2 units and right 3 units to the point Q(2, 1). The line
through the points P and Q is the required line.

x

y

5

5

∆x=3

∆y=2

P (−1,−1)P (−1,−1)

Q(2,1)Q(2,1)

From the graph above, we would estimate the y-intercept as (0,−0.3). To find the
equation of the line, substitute m = 2/3 and (x0, y0) = (−1,−1) into the point-slope
form of the line.

y − y0 = m(x− x0)

y − (−1) = 2
3(x− (−1))

y + 1 = 2
3(x+ 1)

To place this in slope-intercept form y = mx+ b, solve for y.

y = 2
3 x+ 2

3 − 1

y = 2
3 x+ 2

3 −
3
3

y = 2
3 x−

1
3

Comparing this result with y = mx + b, we see that the exact y-coordinate of the y-
intercept is b = −1/3, which is in close agreement with the approximation −0.3 found
above.

3. Plot the point P (−2, 3). To draw a line through P with slope m = −3/4, start at
the point P , then move down 3 units and right 4 units to the point Q(2, 0). The line
through the points P and Q is the required line.
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x

y

5

5

∆x=4

∆y=−3

(−2,3)(−2,3)

Q(2,0)Q(2,0)

From the graph above, we would estimate the y-intercept as (0, 1.5). To find the
equation of the line, substitute m = −3/4 and (x0, y0) = (−2, 3) into the point-slope
form of the line.

y − y0 = m(x− x0)

y − 3 = −3
4(x− (−2))

y − 3 = −3
4(x+ 2)

To place this in slope-intercept form y = mx+ b, solve for y.

y = −3
4 x−

3
2 + 3

y = −3
4 x−

3
2 + 6

2
y = −3

4 x+ 3
2

Comparing this result with y = mx + b, we see that the exact y-coordinate of the
y-intercept is b = 3/2, which is in close agreement with the approximation 1.5 found
above.

5. Substitute 1 for m, 1 for x1, and 3 for y1 into the point-slope form

y − y1 = m(x− x1)

to obtain

y − 3 = 1(x− 1).

To place this in slope-intercept form y = mx+ b, solve for y.

y = x− 1 + 3
y = x+ 2

7. Substitute −2/3 for m, 1 for x1, and 9 for y1 into the point-slope form

y − y1 = m(x− x1)
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to obtain

y − 9 = −2
3(x− 1).

To place this in slope-intercept form y = mx+ b, solve for y.

y = −2
3x+ 2

3 + 9

y = −2
3x+ 2

3 + 27
3

y = −2
3x+ 29

3

9. Plot the points P (−2,−1) and Q(3, 2) and draw a line through them.

x

y

5

5

P (−2,−1)

Q(3,2)Q(3,2)

Calculate the slope of the line through the points P and Q.

m = ∆y
∆x = 2− (−1)

3− (−2) = 3
5

Substitute m = 3/5 and (x0, y0) = (−2,−1) into the point-slope form of the line.

y − y0 = m(x− x0)

y − (−1) = 3
5(x− (−2))

y + 1 = 3
5(x+ 2)

Place this result in Standard form. First clear the fractions by multiplying by 5.

y + 1 = 3
5 x+ 6

5
5y + 5 = 3x+ 6

3x− 5y = −1

Hence, the standard form of the line is 3x− 5y = −1.
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11. Plot the points P (−2, 3) and Q(4,−3) and draw a line through them.

x

y

5

5

P (−2,3)P (−2,3)

Q(4,−3)Q(4,−3)

Calculate the slope of the line through the points P and Q.

m = ∆y
∆x = −3− 3

4− (−2) = −6
6 = −1

Substitute m = −1 and (x0, y0) = (−2, 3) into the point-slope form of the line.
y − y0 = m(x− x0)
y − 3 = −1(x− (−2))
y − 3 = −1(x+ 2)

Place this result in Standard form.
y − 3 = −x− 2
x+ y = 1

Hence, the standard form of the line is x+ y = 1.

13. Substitute 5 for y1, 8 for y2, −5 for x1, and 6 for x2 into the slope formula to find
the slope m:

m = y1 − y2
x1 − x2

= 5− 8
−5− 6 = 3

11

Now substitute 3
11 for m, −5 for x1, and 5 for y1 into the point-slope form

y − y1 = m(x− x1),

and then solve for y to obtain the equation

y = 3
11x+ 70

11

15. Substitute 6 for y1, −4 for y2, −4 for x1, and 2 for x2 into the slope formula to
find the slope m:

m = y1 − y2
x1 − x2

= 6− (−4)
−4− 2 = −5

3
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Now substitute −5
3 for m, −4 for x1, and 6 for y1 into the point-slope form

y − y1 = m(x− x1),

and then solve for y to obtain the equation

y = −5
3x−

2
3

17. Plot the points Q(0, 2) and R(3, 0) and draw a line through them as shown in (a)
below. You can calculate the slope of this line from the graph, or you can use the slope
formula as follows.

m = ∆y
∆x = 0− 2

3− 0 = −2
3 (1)

The second line must be parallel to the first, so it must have the same slope; namely,
m = −2/3. The second line must pass through the point P (−2,−3), so plot the point
P . To get the right slope, start at the point P , then move 3 units to the right and
2 units down, as shown in (b). It would appear that this line crosses the y-axis near
(0,−4.3).

x

y

5

5
2x+3y=6

Q(0,2)Q(0,2)

R(3,0)R(3,0)
x

y

5

5
2x+3y=6

∆x=3

∆y=−2P (−2,−3)P (−2,−3)

(a) (b)

To find the equation of the second line, use the point slope form of the line and m =
−2/3 and (x0, y0) = (−2,−3), as follows.

y − y0 = m(x− x0)

y − (−3) = −2
3(x− (−2))

y + 3 = −2
3(x+ 2)

To place this in slope-intercept form y = mx+ b, we must solve for y.
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y + 3 = −2
3x−

4
3

y = −2
3x−

4
3 − 3

y = −2
3x−

4
3 −

9
3

y = −2
3x−

13
3

Hence, the equation in slope-intercept form is y = (−2/3)x− 13/3, making the exact
y-coordinate of the y-intercept b = −13/3, which is in pretty close agreement (check
on your calculator) with our estimate of −4.3.

19. Plot the points Q(−4, 0) and R(0,−2) and draw a line through them as shown in
(a) below. You can calculate the slope of this line from the graph, or you can use the
slope formula as follows.

m = ∆y
∆x = −2− 0

0− (−4) = −2
4 = −1

2 (2)

The second line must be parallel to the first, so it must have the same slope; namely,
m = −1/2. The second line must pass through the point P (3, 3), so plot the point P .
To get the right slope, start at the point P , then move 1 unit downward and 2 units
to the right, as shown in (b). It would appear that this line crosses the y-axis near
(0, 4.5).

x

y

5

5

x+2y=−4

Q(−4,0)Q(−4,0)

R(0,−2)R(0,−2)

x

y

5

5

x+2y=−4

∆y=−1
∆x=2

P (3,3)P (3,3)

(a) (b)

To find the equation of the second line, use the point slope form of the line and m =
−1/2 and (x0, y0) = (3, 3), as follows.

y − y0 = m(x− x0)

y − 3 = −1
2(x− 3)

To place this in slope-intercept form y = mx+ b, we must solve for y.
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y − 3 = −1
2x+ 3

2
y = −1

2x+ 3
2 + 3

y = −1
2x+ 3

2 + 6
2

y = −1
2x+ 9

2
Hence, the equation in slope-intercept form is y = (−1/2)x + 9/2, making the exact
y-coordinate of the y-intercept b = 9/2, which is in pretty close agreement (check on
your calculator) with our estimate of 4.5.

21. Let x = 0 in x − 2y = −2. Then −2y = −2 and y = 1. This calculation gives
us the y-intercept R(0, 1). Let y = 0 in x − 2y = −2 and x = −2. This gives us the
x-intercept Q(−2, 0). Plot the points Q(−2, 0) and R(0, 1) and draw a line through
them as in (a) below.

x

y

5

5
x−2y=−2

Q(−2,0)Q(−2,0) R(0,1)R(0,1) x

y

5

5
x−2y=−2

∆y=2

∆x=−1

P (3,−4)P (3,−4)

(a) (b)

You can caculate the slope of the first line from the graph or you can obtain it with
the slope formula as follows.

m1 = ∆y
∆x = 1− 0

0− (−2) = 1
2

The second line is perpendicular to this first line, so the slope of the second line must
be the negative reciprocal of the slope of the first line; i.e., the slope of the second
line should be m = −1/m2 = −1/(1/2), or m = −2. To draw a line through the point
P (3,−4) that is perpendicular to the line in (a), first plot the point P (3,−4), then move
upward 2 units and to the left 1 unit as shown in (b). This gives us a line through
P (3,−4) with slope m = −2, so this line will be perpendicular to the first line. To find
the equation of the perpendicular line, substitute m = −2 and (x0, y0) = (3,−4) into
the point-slope formula, then place the resulting equation in standard form.
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y − y0 = m(x− x0)
y − (−4) = −2(x− 3)
y + 4 = −2x+ 6

2x+ y = 2

Thus, the equation of the line that passes through P (3,−4) and is perpendicular to the
line x− 2y = −2 is 2x+ y = 2.

23. Set x = 0 in x− 2y = 4 to obtain −2y = 4. Hence, y = −2 and the y-intercept is
Q(0,−2). Set y = 0 in x − 2y = 4 to obtain x = 4. Hence, the x-intercept is R(4, 0).
Plot Q(0,−2) and R(4, 0) and draw a line through them as in (a) below.

x

y

5

5

x−2y=4

R(4,0)R(4,0)

(Q0,−2)(Q0,−2)

x

y

5

5

x−2y=4

∆y=−2

∆x=1

(−3,3)(−3,3)

(a) (b)

You can caculate the slope of the first line from the graph or you can obtain it with
the slope formula as follows.

m1 = ∆y
∆x = 0− (−2)

4− 0 = 1
2

The second line is perpendicular to this first line, so the slope of the second line must
be the negative reciprocal of the slope of the first line; i.e., the slope of the second
line should be m = −1/m2 = −1/(1/2), or m = −2. To draw a line through the point
P (−3, 3) that is perpendicular to the line in (a), first plot the point P (−3, 3), then move
downward 2 units and to the right 1 unit as shown in (b). This gives us a line through
P (−3, 3) with slope m = −2, so this line will be perpendicular to the first line. To find
the equation of the perpendicular line, substitute m = −2 and (x0, y0) = (−3, 3) into
the point-slope formula, then place the resulting equation in standard form.

y − y0 = m(x− x0)
y − 3 = −2(x− (−3))
y − 3 = −2(x+ 3)
y − 3 = −2x− 6

2x+ y = −3

Thus, the equation of the line that passes through P (−3, 3) and is perpendicular to the
line x− 2y = 4 is 2x+ y = −3.
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25. First solve x− 5y = 4 for y to get

y = 1
5x−

4
5

The slope of this line is 1
5 . Therefore, every parallel line also has slope 1

5 .

Now to find the equation of the parallel line that passes through the point (7, 8),
substitute 1

5 for m, 7 for x1, and 8 for y1 into the point-slope form

y − y1 = m(x− x1)

to obtain

y − 8 = 1
5(x− 7).

Then solve for y:

y = 1
5x−

7
5 + 8

y = 1
5x−

7
5 + 40

5
y = 1

5x+ 33
5

27. First solve −7x+ 5y = 4 for y to get

y = 7
5x+ 4

5

The slope of this line is 7
5 . Therefore, every perpendicular line has slope −5

7 (the
negative reciprocal of 7

5).

Now to find the equation of the perpendicular line that passes through the point (1,−2),
substitute −5

7 for m, 1 for x1, and −2 for y1 into the point-slope form

y − y1 = m(x− x1)

to obtain

y − (−2) = −5
7(x− 1).

Then solve for y:

y = −5
7x+ 5

7 − 2

y = −5
7x+ 5

7 −
14
7

y = −5
7x−

9
7
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29. First solve −8x+ 3y = 1 for y to get

y = 8
3x+ 1

3

The slope of this line is 8
3 . Therefore, every perpendicular line has slope −3

8 (the
negative reciprocal of 8

3).

Now to find the equation of the perpendicular line that passes through the point (2,−9),
substitute −3

8 for m, 2 for x1, and −9 for y1 into the point-slope form

y − y1 = m(x− x1)

to obtain

y − (−9) = −3
8(x− 2).

Then solve for y:

y = −3
8x+ 3

4 − 9

y = −3
8x+ 3

4 −
36
4

y = −3
8x−

33
4

31.

a) At 1 second, the speed is 100 meters per second. This is the point (1, 100) in the
plot below. At 5 seconds, the speed is 50 meters per second. This is the point
(5, 50) in the plot below.

t (s)10

v (m/s)
120

(1,100)(1,100)

(5,50)(5,50)

b) We’ll keep the units in our slope calculation to provide real-world meaning for the
rate.

m = ∆v
∆t = 50 m/s− 100 m/s

5 s− 1 s = −12.5 (m/s)/s.
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That is, the slope is −12.5 m/s2. This is acceleration, the rate at which the speed
is changing with respect to time. Every second, the speed decreases by 12.5 meters
per second.

c) We use the point-slope form of the line, namely

y − y0 = m(x− x0),

However, v and t are taking the place of y and x, respectively, so the equation
becomes

v − v0 = m(t− t0),

Now, substitute the slope m = −12.5 and the point (t0, v0) = (1, 100) to obtain

v − 100 = −12.5(t− 1).

Solve this for v, obtaining

v − 100 = −12.5t+ 12.5
v = −12.5t+ 112.5.

Equivalently, we could use function notation and write v(t) = −12.5t+ 112.5.

d) When the ball reaches its maximum height, its speed will equal zero. Consequently,
to find the time of this event, we must solve

v(t) = 0.

Replace v(t) with −12.5t+ 112.5 and solve for t.

−12.5t+ 112.5 = 0
−12.5t = −112.5

t = 9.

Hence, it takes 9 seconds for the ball to reach its maximum height.

33.

a) After 2 seconds, the speed of the car is 60 km/h. This is the point (2, 60). After 4
seconds, the car’s speed is 50 km/h. This is the point (4, 50). Plot these two points
and draw a line through them, as shown in the plot below.
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t (s)6

v (km/h)
80

(2,60)(2,60)

(4,50)(4,50)

b) We’ll keep the units in our slope calculation to provide real-world meaning for the
rate.

m = ∆v
∆t = 50 km/h− 60 km/h

4 s− 2 s = −5 (km/h)/s.

That is, the slope is −5 (km/h)/s. This is acceleration, the rate at which the speed
is changing with respect to time. Every second, the speed decreases by 5 kilometers
per hour.

c) We use the point-slope form of the line, namely

y − y0 = m(x− x0),

However, v and t are taking the place of y and x, respectively, so the equation
becomes

v − v0 = m(t− t0),

Now, substitute the slope m = −5 and the point (t0, v0) = (2, 60) to obtain

v − 60 = −5(t− 2).

Solve this for v, obtaining
v − 60 = −5t+ 10
v = −5t+ 70.

Equivalently, we could use function notation and write v(t) = −5t+ 70.

d) To find the time it takes the car to stop, we must determine the time t so that

v(t) = 0.

Replace v(t) with −5t+ 70 and solve for t.
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−5t+ 70 = 0
−5t = −70
t = 14.

Hence, it takes 14 seconds for the to brake to a stop.

35.

a) When the unit price is $30, the demand is 100 teakettles. This is the point (30, 100).
When the unit price is $50, the demand is 60 teakettles. This is the point (50, 60).
Plot the points (30, 100) and (50, 60) and draw a line through them, as shown in
the plot below.

p(dollars)
60

d(teakettles)
180

(30,100)(30,100)

(50,60)(50,60)

b) We’ll keep the units in our slope calculation to provide real-world meaning for the
rate.

m = ∆d
∆p = 60 teakettles− 100 teakettles

50 dollars− 30 dollars = −2 teakettles/dollar.

That is, the slope is −2 teakettles/dollar. This is the rate at which the demand is
changing with respect to the unit price. For every increase in the unit price of one
dollar, the demand is lowered by 2 teakettles (2 fewer teakettles are bought).

c) We use the point-slope form of the line, namely

y − y0 = m(x− x0),

However, d and p are taking the place of y and x, respectively, so the equation
becomes

d− d0 = m(p− p0),

Now, substitute the slope m = −2 and the point (p0, d0) = (30, 100) to obtain

d− 100 = −2(p− 30).

Solve this for d, obtaining
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d− 100 = −2p+ 60
d = −2p+ 160.

Equivalently, we could use function notation and write d(p) = −2p+ 160.

d) To determine the demand if the unit price is $40, compute

d(40) = −2(40) + 160 = 80.

Hence, the demand is for 80 teakettles if the price per kettle is set at $40.
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3.5 Exercises

1. The following set of data about re-
volving consumer credit (debt) in the United
States is from Google.com. This is pri-
marily made up of credit card debt, but
also includes other consumer non-mortgage
credit, like those offered by commercial
banks, credit unions, Sallie Mae, and the
federal government.

Year yrs x after 2001
all revolving
credit C in
billions of $

2001 0 721.0
2002 1 741.2
2003 2 759.3
2004 3 786.1
2005 4 805.4

a) Set up a coordinate system on graph
paper, placing the credit C on the
vertical axis, and the years x after
2001 on the horizontal axis. Label
and scale each axis appropriately. Draw
what you feel is the line of best fit.
Remember to draw all lines with a
ruler.

b) Select two points on your line of best
fit that are not from the data table
above. Use these two points to de-
termine the slope of the line. Include
units with your answer. Write a sen-
tence or two explaining the real world
significance of the slope of the line of
best fit.

c) Use one of the two points on the line
and the slope to determine the equa-
tion of the line of best fit in point-
slope form. Use C and x for the de-
pendent and independent variables,

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

respectively. Solve the resulting equa-
tion for C and write your result using
function notation.

d) Use the equation developed in part
(c) to predict the revolving credit debt
in the year 2008.

e) If the linear trend predicted by the
line of best fit continues, in what year
will the revolving credit debt reach
1.0 trillion dollars?

2. The following set of data about non-
revolving credit (debt) in the United States
is from Google.com. The largest compo-
nent of non-revolving credit is automo-
bile loans, but it is also includes student
loans and other defined-term consumer
loans.

Year yrs x after 2001
Non-

revolving
debt D in

billions of $
2001 0 1121.3
2002 1 1184.1
2003 2 1247.3
2004 3 1305.0
2005 4 1342.3

a) Set up a coordinate system on graph
paper, placing the non-revolving credit
debt D on the vertical axis, and the
years x after 2001 on the horizontal
axis. Label and scale each axis appro-
priately. Draw what you feel is the
line of best fit. Remember to draw
all lines with a ruler.

b) Select two points on your line of best
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fit that are not from the data table
above. Use these two points to de-
termine the slope of the line. Include
units with your answer. Write a sen-
tence or two explaining the real world
significance of the slope of the line of
best fit.

c) Use one of the two points on the line
and the slope to determine the equa-
tion of the line of best fit in point-
slope form. Use D and x for the de-
pendent and independent variables,
respectively. Solve the resulting equa-
tion for D and write your result using
function notation.

d) Use the equation developed in part
(c) to predict the non-revolving credit
debt in the year 2008.

e) If the linear trend predicted by the
line of best fit continues, in what year
will the non-revolving credit debt reach
2.0 trillion dollars?

3. According to the U.S. Bureau of Trans-
portation (www.bts.gov), retail sales of
new cars declined every year from 2000-
2004, as shown in the following table.

Year yrs x after 2000 Sales S in
thousands

2000 0 8847
2001 1 8423
2002 2 8103
2003 3 7610
2004 4 7506

a) Set up a coordinate system on graph
paper, placing the sales S on the ver-
tical axis, and the years x after 2000
on the horizontal axis. Label and scale
each axis appropriately. Draw what
you feel is the line of best fit. Remem-
ber to draw all lines with a ruler.

b) Select two points on your line of best
fit that are not from the data table
above. Use these two points to de-
termine the slope of the line. Include
units with your answer. Write a sen-
tence or two explaining the real world
significance of the slope of the line of
best fit.

c) Use one of the two points on the line
and the slope to determine the equa-
tion of the line of best fit in point-
slope form. Use S and x for the de-
pendent and independent variables,
respectively. Solve the resulting equa-
tion for S and write your result using
function notation.

d) Use the equation developed in part
(c) to predict sales in the year 2006.

e) If the linear trend predicted by the
line of best fit continues, when will
sales drop to 7 million cars per year?

4. The following table shows total midyear
population of the world according to the
U.S. Census Bureau, (www.census.gov)
for recent years.

Year yrs x after 2000 Population
P in billions

2000 0 6.08
2001 1 6.16
2002 2 6.23
2003 3 6.30
2004 4 6.38
2005 5 6.45
2006 6 6.53

a) Set up a coordinate system on graph
paper, placing the population P on
the vertical axis, and the years x af-
ter 2000 on the horizontal axis. La-
bel and scale each axis appropriately.
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Draw what you feel is the line of best
fit. Remember to draw all lines with
a ruler.

b) Select two points on your line of best
fit that are not from the data table
above. Use these two points to de-
termine the slope of the line. Include
units with your answer. Write a sen-
tence or two explaining the real world
significance of the slope of the line of
best fit.

c) Use one of the two points on the line
and the slope to determine the equa-
tion of the line of best fit in point-
slope form. Use P and x for the de-
pendent and independent variables,
respectively. Solve the resulting equa-
tion for P and write your result using
function notation.

d) Use the equation developed in part
(c) to predict the population in 2010.

e) If the linear trend predicted by the
line of best fit continues, when will
world population reach 7 billion?

5. The following table shows an excerpt
from the U.S. Census Bureau’s 2005 data
(www.census.gov) on annual sales of new
homes in the United States.

Price Range
(thousands

of $)
Number sold
(thousands)

150 − 199 246
200 − 249 200
250 − 299 152

We cannot use price ranges as coordi-
nate values (we must have single values),
so we replace each price range in the ta-
ble with a single price in the middle of
the range–the average value of a home
in that range. This gives us the follow-

ing modified table:

Avg Price P
(thousands

of $)

Number
sold N

(thousands)
175 246
225 200
275 152

We can now plot the data on a coordi-
nate system.

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Use your calculator to determine a
line of best fit. This is called a lin-
ear demand function, because it al-
lows you to predict the demand for
houses with a certain price. Write it
using function notation and round to
the nearest thousandth. Graph it on
your calculator and copy it onto your
coordinate system.

c) Use the linear demand function to
predict annual sales of homes priced
at $200, 000. Try to use the TABLE
feature on your calculator to make
this prediction.

6. The following table shows data from
the National Association of Homebuilders
(www.nahb.org), indicating the median
price of new homes in the United States.
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Year
Median
Price

(thousands
of $)

2000 169
2001 175
2002 188
2003 195
2004 221
2005 238

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Use your calculator to determine a
line of best fit that can be used to pre-
dict the median price of new homes in
future years. Write it using function
notation. Graph it on your calcula-
tor and copy it onto your coordinate
system.

c) Use the linear demand function to
predict the median price of a new home
in 2010. Try to use the TABLE fea-
ture on your calculator to make this
prediction.

d) Looking at the graph, do you think
the linear demand function models the
actual data points well? If not, why
not? What does this mean about the
prediction you made in part (c)?

7. Jim is hanging blocks of various mass
on a spring in the physics lab. He no-
tices that the spring will stretch further
if he adds more mass to the end of the
spring. He is soon convinced that the
distance the spring will stretch depends
on the amount of mass attached to it. He
decides to take some measurements. He
records the amount of mass attached to

the end of the spring and then measures
the distance that the spring stretched.
Here is Jim’s data.

Mass
(grams)

Distance
Stretched

(cm)
50 1.2
100 1.9
150 3.1
200 4.0
250 4.8
300 6.2

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Use your calculator to determine a
line of best fit that can be used to pre-
dict the distance the spring stretches.
Write it using function notation. Graph
it on your calculator and copy it onto
your coordinate system.

c) Use the function from part (c) to pre-
dict the distance the spring will stretch
if 175 grams is attached to the spring.
Try to use the TABLE feature on your
calculator to make this prediction.

8. Dave and Melody are lab partners in
Tony Sartori’s afternoon chemistry lab.
Professor Sartori has prepared an exper-
iment to help them discover the relation-
ship between the Celsius and Fahrenheit
temperature scales. The experiment con-
sists of a beaker full of ice and two ther-
mometers, one calibrated in the Fahren-
heit scale, the other in the Celsius scale.
Dave and Melody use a Bunsen burner to
heat the beaker, eventually bringing the
water in the beaker to the boiling point.
Every few minutees they make two tem-
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perature readings, one in Fahrenheit, one
in Celsius. The data that they record
during the laboratory session follows.

Celsius Fahrenheit
4.0 39
18 65
30 85
51 122
70 159
85 186
100 210

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Use your calculator to determine a
line of best fit that can be used to
predict the Fahrenheit temperature
as a function of the Celsius temper-
ature. Write it using function nota-
tion. Graph it on your calculator and
copy it onto your coordinate system.

c) Use the function from part (c) to pre-
dict the Fahrenheit temperature if the
Celsius temperature is 40. Try to use
the TABLE feature on your calcula-
tor to make this prediction.

d) Use the function from part (c) to
predict the Celsius temperature if the
Fahrenheit temperature is 100.

9. The following table shows data on
home sales at the Mendocino Coast in
2005.

Price Range
(thousands

of $)
Number sold
(thousands)

200 − 299 14
300 − 399 55
400 − 499 62

We cannot use price ranges as coordi-
nate values (we must have single values),
so we replace each price range in the ta-
ble with a single price in the middle of
the range–the average value of a home
in that range. This gives us the follow-
ing modified table:

Avg Price P
(thousands

of $)

Number
sold N

(thousands)
250 14
350 55
450 62

We can now plot the data on a coordi-
nate system.

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Use your calculator to determine a
line of best fit. Write it using func-
tion notation and round to the near-
est thousandth. Graph it on your cal-
culator and copy it onto your coordi-
nate system.

c) Use the linear function to predict the
sales for houses in the price range $500, 000−
$599, 000. Use the average price of
$550, 000 for this estimate.

d) The actual number of houses sold in
the price range $500, 000 − $599, 000
was 41. Plot this as a point on your
coordinate system and compare it to
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your linear function model’s predic-
tion. Notice that this actual value is
pretty different from the prediction.

e) What this means is that a linear model
is not very good for the data for home
sales! Draw a simple curve that goes
through each of the data points. No-
tice that it does not very closely re-
semble the shape of a line! More so-
phisticated functions are required to
model this example–such as quadratic
functions, which we study in a later
chapter. The moral of the story here
is that not every data set can be mod-
eled linearly!

10. The following from the July 14, 2006
edition of the Beĳing Today newspaper
shows how high-heels affect the ball of
the foot. The table shows the increase
in percent of pressure on the ball of the
foot for given heights of heels.

Heel height
h (inches)

%increase
in pressure

1 22
2 57

a) Enter the data into your calculator
and make a scatter plot. Copy it down
onto your paper, labeling appropri-
ately.

b) Notice that, because we have exactly
two data points, the line of best fit is
the line that goes through both points.
To begin finding the equation, use the
slope formula to compute the slope.

c) Use the point-slope form to find an
equation for the line. Write it in slope-
intercept form.

d) Use the linear function to predict the
percent of stress increase for a 3-inch
heel.

e) The actual percent of pressure in-
crease for a 3-inch heel is 76 %. Plot
this as a point on your coordinate
system and compare it to your linear
function model’s prediction. Notice
that this actual value is pretty differ-
ent from the prediction.

f) What this means is that a linear model
is not very good for the data! Draw a
simple curve that goes through each
of the data points. Notice that it does
not very closely resemble the shape of
a line! More sophisticated functions
are required to model this example.
Not every data set should be mod-
eled linearly!
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3.5 Solutions

1.

a) Scale and label the axes, plot the points, then draw the line of best fit.

x (years)0 1 2 3 4

C (billion dollars)

720

740

760

780

800

820

b) Select two points, P (1.4, 750) and Q(2.8, 780) that are points on the line but not
points in the original data table.

x (years)0 1 2 3 4

C (billion dollars)

720

740

760

780

800

820

P (1.4,750)

Q(2.8,780)

Use these two points to calculate the slope of the line of best fit.

m = ∆C
∆x = 780− 750

2.8− 1.4 billion dollars/year



Chapter 3 Linear Functions

Version: Fall 2007

Using a calculator, the slope is approximately 21.42 billion dollars per year. What
this means is that the credit debt is increaing at a rate of 21.42 billion dollars per
year.

c) To find the equation of the line, use the point P (1.4, 750) and the slope m = 21.42
in the point-slope form of the line.

y − y0 = m(x− x0)
y − 750 = 21.42(x− 1.4)

Replace y and x with C and x, respectively, then solve for C in terms of x.

C − 750 = 21.42(x− 1.4)
C − 750 = 21.42x− 29.988

C = 21.42x+ 720.012

In function notation, C(x) = 21.42x+ 720.012. Note: Answers will vary somewhat
due to the subjective nature of drawing the line of best fit and picking points on
the line.

d) The year 2008 gives x = 2008−2001 = 7 years since 2001. Hence, to find the credit
debt in 2008, we use C(x) = 21.42x+ 720.012 and evaluate

C(7) = 21.42(7) + 720.012 = 869.952.

Hence, the credit debt in 2008 will be approximately 869 billion dollars.

e) A trillion dollars is 1000 billion dollars. Hence, to find when the credit debt is 1000
billion dollars, we must solve C(x) = 1000 for x.

C(x) = 1000
21.42x+ 720.012 = 1000

21.42x = 279.988
x ≈ 13.07

Hence, the credit debt will reach a trillion dollars approximately 13 years after the
year 2001, or a little bit into the year 2014.

3.

a) Scale and label the axes, plot the points, then draw the line of best fit.
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x (years)0 1 2 3 4

C (thousands dollars)

7000

7500

8000

8500

9000

b) Select two points, P (1.4, 8300) and Q(4.0, 7400) that are points on the line but not
points in the original data table.

x (years)0 1 2 3 4

C (thousands dollars)

7000

7500

8000

8500

9000

P (1.4,8300)

Q(4.0,7400)

Use these two points to calculate the slope of the line of best fit.

m = ∆C
∆x = 8300− 7400

4.0− 1.4 thousand cars/year

Using a calculator, the slope is approximately −346.15 thousand cars per year.
What this means is that sales of new cars is decreaing at an approximate rate of
346 thousand cars per year.

c) To find the equation of the line, use the point P (1.4, 8300) and the slope m =
−346.15 in the point-slope form of the line.
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y − y0 = m(x− x0)
y − 8300 = −346.15(x− 1.4)

Replace y and x with S and x, respectively, then solve for S in terms of x.
S − 8300 = −346.15(x− 1.4)
S − 8300 = −346.15x+ 484.61

S = −346.15x+ 8784.61

In function notation, S(x) = −346.15x + 8784.61. Note: Answers will vary some-
what due to the subjective nature of drawing the line of best fit and picking points
on the line.

d) To determine the sales in 2006, evaluate S(x) = −346.15x+ 8784.61 at x = 2006−
2000 = 6.

S(6) = −346.15(6) + 8784.61 = 6707.71.

Thus, the sales will be aproximately 6,707,710 new cars.

e) To determine when sales of new cars will drop to 7 million, we must solve S(x) =
7000.

−346.15x+ 8784.61 = 7000
−346.15x = −1784.61

x ≈ 5.16

Hence, sales will reach 7 million cars somewhere in the year 2005-2006.

5.

a) Select STAT, then 1:Edit and enter the data as shown in (a). Select 2nd STAT
PLOT, then turn turn on Plot1 as shown in (b). Select scatterplot, choose the lists
you used for the data, then a marker, as shown in (b). Finally, select 9:ZoomStat
from the ZOOM menu to produce the plot in (c).

(a) (b) (c)

b) Push the STAT button, right-arrow to the CALC menu, then select 4:LinReg(ax+b),
followed by L1, a comma, L2, a comma, and Y1 from the VARS menu (select Y-VARS
then 1:Function submenus). The result is shown in (a). Press ENTER to produce
the calculation shown in (b). This is the line of best fit. This procedure also stores
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the line of best fit in Y1, so pushing the GRAPH button produces the line of best fit
shown in (c).

(d) (e) (f)

In (b) above, we see that the number sold N , as a function of average price P is
given by the linear function N(P ) = −0.94P + 410.833.

c) If all went well in part (b), then we can press 2nd TBL SET and set up the table
parameters as shown in (g). Make sure the independent variable is set to ASK.
Select 2nd TABLE, then enter 200 (which represents an average price p = $200, 000)
as shown in (h).

(g) (h)

Thus, N(200) = 222.83, so approximately 222.83 thousand or 222, 830 homes are
sold at the average price of $200,000.

7.

a) Select STAT, then 1:Edit and enter the data as shown in (a). Select 2nd STAT
PLOT, then turn turn on Plot1 as shown in (b). Select scatterplot, choose the lists
you used for the data, then a marker, as shown in (b). Finally, select 9:ZoomStat
from the ZOOM menu to produce the plot in (c).

(a) (b) (c)
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b) Push the STAT button, right-arrow to the CALC menu, then select 4:LinReg(ax+b),
followed by L1, a comma, L2, a comma, and Y1 from the VARS menu (select Y-VARS
then 1:Function submenus). The result is shown in (a). Press ENTER to produce
the calculation shown in (b). This is the line of best fit. This procedure also stores
the line of best fit in Y1, so pushing the GRAPH button produces the line of best fit
shown in (c).

(d) (e) (f)

In (b) above, we see that the distance stretched d, as a function of masss m is given
by the linear function d(m) = 0.01977m+ 0.07333.

c) If all went well in part (b), then we can press 2nd TBL SET and set up the table
parameters as shown in (g). Make sure the independent variable is set to ASK. Select
2nd TABLE, then enter 175 (which represents a mass of 175 grams) as shown in (h).

(g) (h)

Thus, d(175) = 3.5333, so the spring stretches approximately 3.53 centimeters when
a mass of 175 grams is attached.

9.
a) Select STAT, then 1:Edit and enter the data as shown in (a). Select 2nd STAT

PLOT, then turn turn on Plot1 as shown in (b). Select scatterplot, choose the lists
you used for the data, then a marker, as shown in (b). Finally, select 9:ZoomStat
from the ZOOM menu to produce the plot in (c).

(a) (b) (c)
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b) Push the STAT button, right-arrow to the CALC menu, then select 4:LinReg(ax+b),
followed by L1, a comma, L2, a comma, and Y1 from the VARS menu (select Y-VARS
then 1:Function submenus). The result is shown in (a). Press ENTER to produce
the calculation shown in (b). This is the line of best fit. This procedure also stores
the line of best fit in Y1, so pushing the GRAPH button produces the line of best fit
shown in (c).

(d) (e) (f)

In (b) above, we see that the number sold N , as a function of average price P is
given by the linear function N(P ) = 0.24P − 40.33.

c) If all went well in part (b), then we can press 2nd TBL SET and set up the table
parameters as shown in (g). Make sure the independent variable is set to ASK.
Select 2nd TABLE, then enter 550 (which represents an average price P = $550, 000)
as shown in (h).

(g) (h)

Thus, N(550) = 91.667, so approximately 91.667 thousand or 91, 667 homes are
sold at the average price of $550,000.

d) Press the STAT button, select 1:Edit and add the point (550, 41) to the table,
as shown in (i). Select 9:ZoomStat from the ZOOM menu to produce the image in
(j). Note that the data no longer depicts a linear trend, but something more of a
nonlinear (curvy) nature.

(i) (j)
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e) In (k) we’ve drawn a smooth curve of best fit.

(k)
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4.1 Exercises

1. Given the function defined by the
rule f(x) = 3, evaluate f(−3), f(0) and
f(4), then sketch the graph of f .

2. Given the function defined by the
rule g(x) = 2, evaluate g(−2), g(0) and
g(4), then draw the draw the graph of g.

3. Given the function defined by the
rule h(x) = −4, evaluate h(−2), h(a),
and h(2x+ 3), then draw the graph of h.

4. Given the function defined by the
rule f(x) = −2, evaluate f(0), f(b), and
f(5− 4x), then draw the graph of f .

5. The speed of an automobile travel-
ing on the highway is a function of time
and is described by the constant func-
tion v(t) = 30, where t is measured in
hours and v is measured in miles per
hour. Draw the graph of v versus t. Be
sure to label each axis with the appro-
priate units. Shade the area under the
graph of v over the time interval [0, 5]
hours. What is the area under the graph
of v over this time interval and what does
it represent?

6. The speed of a skateboarder as she
travels down a slope is a function of time
and is described by the constant function
v(t) = 8, where t is measured in seconds
and v is measured in feet per second.
Draw the graph of v versus t. Be sure
to label each axis with the appropriate
units. Shade the area under the graph of
v over the time interval [0, 60] seconds.
What is the area under the graph of v
over this time interval and what does it
represent?

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

7. An unlicensed plumber charges 15
dollars for each hour of labor. Let’s de-
fine this rate as a function of time by
r(t) = 15, where t is measured in hours
and r is measured in dollars per hour.
Draw the graph of r versus t. Be sure to
label each axis with appropriate units.
Shade the area under the graph of r over
the time interval [0, 4] hours. What is
area under the graph of r over this time
interval and what does it represent?

8. A carpenter charges a fixed rate for
each hour of labor. Let’s describe this
rate as a function of time by r(t) = 25,
where t is measured in hours and r is
measured in dollars per hour. Draw the
graph of r versus t. Be sure to label each
axis with appropriate units. Shade the
area under the graph of r over the time
interval [0, 5] hours. What is the area un-
der the graph of r over this time interval
and what does it represent?

9. Given the function defined by the
rule

f(x) =
{

0, if x < 0
2, if x ≥ 0,

evaluate f(−2), f(0), and f(3), then draw
the graph of f on a sheet of graph paper.
State the domain and range of f .

10. Given the function defined by the
rule

f(x) =
{

2, if x < 0
0, if x ≥ 0,

evaluate f(−2), f(0), and f(3), then draw
the graph of f on sheet of graph paper.
State the domain and range of f .
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11. Given the function defined by the
rule

g(x) =
{−3, if x < −2,

1, if −2 ≤ x < 2,
3, if x ≥ 2,

evaluate g(−3), g(−2), and g(5), then
draw the graph of g on a sheet of graph
paper. State the domain and range of g.

12. Given the function defined by the
rule

g(x) =
{ 4, if x ≤ −1,

2, if −1 < x ≤ 2,
−3, if x > 2,

evaluate g(−1), g(2), and g(3), then draw
the graph of g on a sheet of graph paper.
State the domain and range of g.

In Exercises 13-16, determine a piece-
wise definition of the function described
by the graphs, then state the domain and
range of the function.

13.

x
5

y
5

f

14.

x
5

y
5

f

15.

x
5

y
5

g

16.

x
5

y
5

g
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17. Given the piecewise definition

f(x) =
{
−x− 3, if x < −3,
x+ 3, if x ≥ −3,

evaluate f(−4) and f(0), then draw the
graph of f on a sheet of graph paper.
State the domain and range of the func-
tion.

18. Given the piecewise definition

f(x) =
{
−x+ 1, if x < 1,
x− 1, if x ≥ 1,

evaluate f(−2) and f(3), then draw the
graph of f on a sheet of graph paper.
State the domain and range of the func-
tion.

19. Given the piecewise definition

g(x) =
{
−2x+ 3, if x < 3/2,
2x− 3, if x ≥ 3/2,

evaluate g(0) and g(3), then draw the
graph of g on a sheet of graph paper.
State the domain and range of the func-
tion.

20. Given the piecewise definition

g(x) =
{
−3x− 4, if x < −4/3,
3x+ 4, if x ≥ −4/3,

evaluate g(−2) and g(3), then draw the
graph of g on a sheet of graph paper.
State the domain and range of the func-
tion.

21. A battery supplies voltage to an
electric circuit in the following manner.
Before time t = 0 seconds, a switch is
open, so the voltage supplied by the bat-
tery is zero volts. At time t = 0 seconds,
the switch is closed and the battery be-
gins to supply a constant 3 volts to the
circuit. At time t = 2 seconds, the switch
is opened again, and the voltage supplied

by the battery drops immediately to zero
volts. Sketch a graph of the voltage v
versus time t, label each axis with the
appropriate units, then provide a piece-
wise definition of the voltage v supplied
by the battery as a function of time t.

22. Prior to time t = 0 minutes, a drum
is empty. At time t = 0 minutes a hose
is turned on and the water level in the
drum begins to rise at a constant rate
of 2 inches every minute. Let h repre-
sent water level (in inches) at time t (in
minutes). Sketch the graph of h versus
t, label the axes with appropriate units,
then provide a piecewise definition of h
as a function of t.
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4.1 Answers

1. f(−3) = 3, f(0) = 3, and f(4) = 3.

x
5

y
5

f(x)=3

3. h(−2) = −4, h(a) = −4, and h(2x+
3) = −4.

x
5

y
5

h(x)=−4

5. The area under the curve is 150 miles.
This is the distance traveled by the car.

t (h)

v (mi/h)

v(t)=30

0 50

30

7. The area under the curve is 150 miles.
This is the distance traveled by the car.

t (h)

r (dollars/h)

r(t)=15

0 40

15

9. f(−2) = 0, f(0) = 2, and f(3) = 2.

x
5

y
5

f

The domain of f is the set of all real
numbers. The range of f is {0, 2}.

11. g(−3) = −3, g(−2) = 1, and g(5) =
3.

x
5

y
5

g
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The domain of g is all real numbers. The
range of g is {−3, 1, 3}.

13.

f(x) =
{

3, if x < 0,
−2, if x ≥ 0.

Domain of f is the set of all real numbers.
The range of f is {−2, 3}.

15.

g(x) =
{ 2, if x < 0,
−2, if 0 ≤ x < 2,
2, if x ≥ 2.

The domain of f is the set of all real
numbers. The range of f is {−2, 2}.

17. f(−4) = 1 and f(0) = 3.

x
5

y
5 f

(−4,1)(−4,1)

(−3,0)(−3,0)

(0,3)(0,3)

The domain of f is the set of all real
numbers. The range of f is {y : y ≥ 0}.

19. g(−2) = 7 and g(2) = 1.

x
5

y
5 g

(0,3)(0,3)

(3/2,0)(3/2,0)

(3,3)(3,3)

The domain of g is the set of all real num-
bers. The range of g is {y : y ≥ 0}.

21. The graph follows.

t (s)5

V (volts)
5

The piecewise definition is

v(t) =
{ 0, if t < 0,

3, if 0 ≤ t < 2,
0, if t ≥ 2.
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4.2 Exercises

For each of the functions in Exercises 1-
8, as in Examples 7 and 8 in the narra-
tive, mark the “critical value” on a num-
ber line, then mark the sign of the ex-
pression inside of the absolute value bars
below the number line. Above the num-
ber line, remove the absolute value bars
according to the sign of the expression
you marked below the number line. Once
your number line summary is finished,
create a piecewise definition for the given
absolute value function.

1. f(x) = |x+ 1|

2. f(x) = |x− 4|

3. g(x) = |4− 5x|

4. g(x) = |3− 2x|

5. h(x) = |− x− 5|

6. h(x) = |− x− 3|

7. f(x) = x+ |x|

8. f(x) = |x|
x

For each of the functions in Exercises 9-
16, perform each of the following tasks.

i. Create a piecewise definition for the
given function, using the technique in
Exercises 1-8 and Examples 7 and
8 in the narrative.

ii. Following the lead in Example 9 in
the narrative, use your piecewise defi-
nition to sketch the graph of the given
function on a sheet of graph paper.
Please place each exercise on its own

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

coordinate system.

9. f(x) = |x− 1|

10. f(x) = |x+ 2|

11. g(x) = |2x− 1|

12. g(x) = |5− 2x|

13. h(x) = |1− 3x|

14. h(x) = |2x+ 1|

15. f(x) = x− |x|

16. f(x) = x+ |x− 1|

17. Use a graphing calculator to draw
the graphs of y = |x|, y = 2|x|, y = 3|x|,
and y = 4|x| on the same viewing win-
dow. In your own words, explain what
you learned in this exercise.

18. Use a graphing calculator to draw
the graphs of y = |x|, y = (1/2)|x|, y =
(1/3)|x|, and y = (1/4)|x| on the same
viewing window. In your own words, ex-
plain what you learned in this exercise.

19. Use a graphing calculator to draw
the graphs of y = |x|, y = |x − 2|, y =
|x−4|, and y = |x−6| on the same view-
ing window. In your own words, explain
what you learned in this exercise.

20. Use a graphing calculator to draw
the graphs of y = |x|, y = |x + 2|, y =
|x+4|, and y = |x+6| on the same view-
ing window. In your own words, explain
what you learned in this exercise.
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In Exercises 21-36, perform each of the
following tasks. Feel free to check your
work with your graphing calculator, but
you should be able to do all of the work
by hand.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Create an accurate plot of the
function y = |x| on your coordinate
system and label this graph with its
equation.

ii. Use the technique of Examples 12, 13,
and 14 in the narrative to help se-
lect the appropriate geometric trans-
formations to transform the equation
y = |x| into the form of the func-
tion given in the exercise. On the
same coordinate system, use a differ-
ent colored pencil or pen to draw the
graph of the function resulting from
your applied transformation. Label
the resulting graph with its equation.

iii. Use interval notation to describe the
domain and range of the given func-
tion.

21. f(x) = |− x|

22. f(x) = −|x|

23. f(x) = (1/2)|x|

24. f(x) = −2|x|

25. f(x) = |x+ 4|

26. f(x) = |x− 2|

27. f(x) = |x|+ 2

28. f(x) = |x|− 3

29. f(x) = |x+ 3|+ 2

30. f(x) = |x− 3|− 4

31. f(x) = −|x− 2|

32. f(x) = −|x|− 2

33. f(x) = −|x|+ 4

34. f(x) = −|x+ 4|

35. f(x) = −|x− 1|+ 5

36. f(x) = −|x+ 5|+ 2
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4.2 Answers

1.

|x+1| −(x+1) x+1
x+1 − −1 +

f(x) =
{
−x− 1, if x < −1,
x+ 1, if x ≥ −1.

3.

|4−5x| 4−5x −(4−5x)

4−5x + 4/5 −

g(x) =
{

4− 5x, if x < 4/5,
−4 + 5x, if x ≥ 4/5.

5.

|−x−5| −x−5 −(−x−5)

−x−5 + −5 −

h(x) =
{
−x− 5, if x < −5,
x+ 5, if x ≥ −5.

7.

x+|x| x+(−x) x+x
x − 0 +

f(x) =
{

0, if x < 0,
2x, if x ≥ 0.

9.

f(x) =
{
−x+ 1, if x < 1,
x− 1, if x ≥ 1.

x
5

y
5

f

(−1,2)(−1,2)

(1,0)(1,0)

(3,2)(3,2)

11.

g(x) =
{
−2x+ 1, if x < 1/2,
2x− 1, if x ≥ 1/2.

x
5

y
5 g

(0,1)(0,1)

(1/2,0)(1/2,0)

(2,3)(2,3)

13.

h(x) =
{

1− 3x, if x < 1/3,
−1 + 3x, if x ≥ 1/3.

x
5

y
5 h

(−1,4)(−1,4)

(1/3,0)(1/3,0)

(1,2)(1,2)
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15.

f(x) =
{

2x, if x < 0,
0, if x ≥ 0.

x
5

y
5

f

(−1,−2)(−1,−2)

17. Multiplying by a factor of a > 1, as
in y = a|x|, stretches the graph of y = |x|
vertically by a factor of a. The higher
the value of a, the more it stretches ver-
tically.

19. Subtracting a positive value of a,
as in y = |x−a|, shifts the graph a units
to the right.

21. The graphs of y = |x| and y = |−x|
coincide. The domain is (−∞,∞) and
the range is [0,∞).

x
5

y
5 y=|x|y=|−x|

23. The domain is (−∞,∞) and the
range is [0,∞).

x
5

y
5 y=|x|

y=(1/2)|x|

25. The domain is (−∞,∞) and the
range is [0,∞).

x
10

y
10 y=|x|

y=|x+4|

27. The domain is (−∞,∞) and the
range is [2,∞).

x
10

y
10

y=|x|y=|x|+2
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29. The domain is (−∞,∞) and the
range is [2,∞).

x
10

y
10

y=|x|
y=|x+3|+2

31. The domain is (−∞,∞) and the
range is (−∞, 0].

x
10

y
10

y=|x|

y=−|x−2|

33. The domain is (−∞,∞) and the
range is (−∞, 4].

x
10

y
10

y=|x|

y=−|x|+4

35. The domain is (−∞,∞) and the
range is (−∞, 5].

x
10

y
10

y=|x|

y=−|x−1|+5
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4.3 Exercises

For each of the equations in Exercises 1-
4, perform each of the following tasks.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

ii. Sketch the graph of each side of the
equation without the aid of a calcula-
tor. Label each graph with its equa-
tion.

iii. Shade the solution of the equation
on the x-axis (if any) as shown in
Figure 5 (read "Expectations") in the
narrative. That is, drop dashed lines
from the points of intersection to the
axis, then shade and label the solu-
tion set on the x-axis.

1. |x| = −2

2. |x| = 0

3. |x| = 3

4. |x| = 2

For each of the equations in Exercises 5-
8, perform each of the following tasks.

i. Load each side of the equation into
the Y= menu of your calculator. Ad-
just the viewing window so that all
points of intersection of the two graphs
are visible in the viewing window.

ii. Copy the image in your viewing screen
onto your homework paper. Label
each axis and scale each axis with
xmin, xmax, ymin, and ymax. La-
bel each graph with its equation.

iii. Use the intersect utility in the CALC
menu to determine the points of in-

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

tersection. Shade and label each so-
lution as shown in Figure 5 (read "Ex-
pectations") in the narrative. That
is, drop dashed lines from the points
of intersection to the axis, then shade
and label the solution set on the x-
axis.

5. |3− 2x| = 5

6. |2x+ 7| = 4

7. |4x+ 5| = 7

8. |5x− 7| = 8

For each of the equations in Exercises 9-
14, provide a purely algebraic solution
without the use of a calculator. Arrange
your work as shown in Examples 6, 7,
and 8 in the narrative, but do not use a
calculator.

9. |4x+ 3| = 0

10. |3x− 11| = −5

11. |2x+ 7| = 14

12. |7 − 4x| = 8

13. |3− 2x| = −1

14. |4x+ 9| = 0

For each of the equations in Exercises 15-
20, perform each of the following tasks.

i. Arrange each of the following parts
on your homework paper in the same
location. Do not do place the alge-
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braic work on one page and the graph-
ical work on another.

ii. Follow each of the directions given for
Exercises 5-8 to find and record a
solution with your graphing calcula-
tor.

iii. Provide a purely algebraic solution,
showing all the steps of your work.
Do these solutions compare favorably
with those found using your graphing
calculator in part (ii)? If not, look for
a mistake in your work.

15. |x− 8| = 7

16. |2x− 15| = 5

17. |2x+ 11| = 6

18. |5x− 21| = 7

19. |x− 12| = 6

20. |x+ 11| = 5

Use a strictly algebraic technique to solve
each of the equations in Exercises 21-
28. Do not use a calculator.

21. |x+ 2|− 3 = 4

22. 3|x+ 5| = 6

23. −2|3− 2x| = −6

24. |4− x|+ 5 = 12

25. 3|x+ 2|− 5 = |x+ 2|+ 7

26. 4− 3|4− x| = 2|4− x|− 1

27.
∣∣∣∣
x

3 −
1
4

∣∣∣∣ =
1
12

28.
∣∣∣∣
x

4 −
1
2

∣∣∣∣ =
2
3

Use the technique of distance on the num-
ber line demonstrated in Examples 16
and 17 to solve each of the equations in
Exercises 29-32. Provide number line
sketches on your homework paper as shown
in Examples 16 and 17 in the narrative.

29. |x− 5| = 8

30. |x− 2| = 4

31. |x+ 4| = 3

32. |x+ 2| = 11

Use the instructions provided in Exercises 5-
8 to solve the equations in Exercises 33-
34.

33. |x+ 2| = 1
3x+ 5

34. |x− 3| = 5− 1
2x

In Exercises 35-36, perform each of the
following tasks.

i. Set up a coordinate system on graph
paper. Label and scale each axis.

ii. Without the use of a calculator, sketch
the graphs of the left- and right-hand
sides of the given equation. Label
each graph with its equation.

iii. Drop dashed vertical lines from each
point of intersection to the x-axis. Shade
and label each solution on the x-axis
(you will have to approximate).

35. |x− 2| = 1
3x+ 2

36. |x+ 4| = 1
3x+ 4

37. Given that a < 0 and b > 0, prove
that |ab| = |a||b|.
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38. Given that a > 0 and b < 0, prove
that |ab| = |a||b|.

39. In the narrative, we proved that if
a > 0 and b < 0, then |a/b| = |a|/|b|.
Prove the remaining three cases.
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4.3 Answers

1. No solutions.

x
5

y
5 y=|x|

y=−2

3. Solution: x = −3 or x = 3.

x
5

y
5 y=|x|

y=3

−3−3 33

5. Solutions: x = −1 or x = 4

x

y

−10 10

−10

10 y=|3−2x|

y=5

−1−1 44

7. Solutions: x = −3 or x = 0.5

x

y

−10 10

−10

10 y=|4x+5|
y=7

−3−3 0.50.5

9. x = −3/4

11. x = −21/2 or x = 7/2

13. No solutions.

15.

x

y

−5 20

−10

10 y=|x−8|

y=7

11 1515

x = 1 or x = 15
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17.

x

y

−15 5

−10

10y=|2x+11|

y=6

−8.5−8.5 −2.5−2.5

x = −8.5 or x = −2.5

19.

x

y

−5 25

−10

10 y=|x−12|

y=6

66 1818

x = 6 or x = 18

21. x = −9 or x = 5

23. x = 0 or x = 3

25. x = −8 or x = 4

27. x = 1/2 or x = 1

29.

5−3−3 1313

8 8

x = −3 or x = 13

31.

−4−7−7 −1−1

3 3

x = −7 or x = −1

33.

x

y

−10 10

−10

10
y=|x+2|

y=x/3+5

−5.25−5.25 4.54.5

35.

x

y

−10 10

−10

10
y=|x−2|

y=x/3+2

00 66

37. If a is a negative real number and
b is a positive real number, then ab is
negative, so |ab| = −ab. On the other
hand, a negative also means that |a| =
−a, and b positive means that |b| = b, so
that |a||b| = −a(b) = −ab. Comparing
these results, we see that |ab| and |a||b|
equal the same thing, and so they must
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be equal to one another.

39. Case I. (a, b > 0) If a and b are
both positive real numbers, then a/b is
positive and so |a/b| = a/b. On the
other hand, a positive also means that
|a| = a, and b positive means that |b| = b,
so that |a|/|b| = a/b. Comparing these
two results, we see that |a/b| and |a|/|b|
equal the same thing, and so they must
be equal to one another.
Case II. (a, b < 0) If a and b are both neg-
ative real numbers, then a/b is positive
and so |a/b| = a/b. On the other hand, a
negative also means that |a| = −a, and
b negative means that |b| = −b, so that
|a|/|b| = −a/(−b) = a/b. Comparing
these two results, we see that |a/b| and
|a|/|b| equal the same thing, and so they
must be equal to one another.
Case III. (a < 0, b > 0) If a is a negative
real number and b is a positive real num-
ber, then a/b is negative and so |a/b| =
−(a/b). On the other hand, a negative
also means that |a| = −a, and b posi-
tive means that |b| = b, so that |a|/|b| =
−a/b = −(a/b). Comparing these two
results, we see that |a/b| and |a|/|b| equal
the same thing, and so they must be equal
to one another.
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4.4 Exercises

For each of the inequalities in Exercises 1-
10, perform each of the following tasks.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

ii. Sketch the graph of each side of the
inequality without the aid of a cal-
culator. Label each graph with its
equation.

iii. Shade the solution of the inequality
on the x-axis (if any) in the manner
shown in Figures 4 and 8 in the narra-
tive. That is, drop dashed lines from
the points of intersection to the axis,
then shade and label the solution set
on the x-axis. Use set-builder and
interval notation (when possible) to
describe your solution set.

1. |x| > −2

2. |x| > 0

3. |x| < 3

4. |x| > 2

5. |x| > 1

6. |x| < 4

7. |x| ≤ 0

8. |x| ≤ −2

9. |x| ≤ 2

10. |x| ≥ 1

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

For each of the inequalities in Exercises 11-
22, perform each of the following tasks.

i. Load each side of the inequality into
the Y= menu of your calculator. Ad-
just the viewing window so that all
points of intersection of the two graphs
are visible in the viewing window.

ii. Copy the image in your viewing screen
onto your homework paper. Label
each axis and scale each axis with
xmin, xmax, ymin, and ymax. La-
bel each graph with its equation.

iii. Use the intersect utility in the CALC
menu to determine the points of in-
tersection. Shade the solution of the
inequality on the x-axis (if any) in the
manner shown in Figures 4 and 8 in
the narrative. That is, drop dashed
lines from the points of intersection
to the axis, then shade and label the
solution set on the x-axis. Use set-
builder and interval notation (when
appropriate) to describe your solution
set.

11. |3− 2x| > 5

12. |2x+ 7| < 4

13. |4x+ 5| < 7

14. |5x− 7| > 8

15. |4x+ 5| > −2

16. |3x− 5| < −3

17. |2x− 9| ≥ 6

18. |3x+ 25| ≥ 8
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19. |13− 2x| ≤ 7

20. |2x+ 15| ≤ 7

21. |3x− 11| > 0

22. |4x+ 19| ≤ 0

For each of the inequalities in Exercises 23-
32, provide a purely algebraic solution
without the use of a calculator. Show
all of your work that leads to the solu-
tion, shade your solution set on a num-
ber line, then use set-builder and interval
notation (if possible) to describe your so-
lution set.

23. |4x+ 3| < 8

24. |3x− 5| > 11

25. |2x− 3| ≤ 10

26. |3− 5x| ≥ 15

27. |3x− 4| < 7

28. |5− 2x| > 10

29. |3− 7x| ≥ 5

30. |2− 11x| ≤ 6

31. |x+ 2| ≥ −3

32. |x+ 5| < −4

For each of the inequalities in Exercises 33-
38, perform each of the following tasks.

i. Arrange each of the following parts
on your homework paper in the same
location. Do not do place the alge-
braic work on one page and the graph-
ical work on another.

ii. Follow each of the directions given for
Exercises 11-22 to find and record

a solution with your graphing calcu-
lator.

iii. Provide a purely algebraic solution,
showing all the steps of your work.
Sketch your solution on a number line,
then use set-builder and interval no-
tation to describe your solution set.
Do these solutions compare favorably
with those found using your graphing
calculator in part (ii)? If not, look for
a mistake in your work.

33. |x− 8| < 7

34. |2x− 15| > 5

35. |2x+ 11| ≥ 6

36. |5x− 21| ≤ 7

37. |x− 12| > 6

38. |x+ 11| < 5

Use a strictly algebraic technique to solve
each of the equations in Exercises 39-
46. Do not use a calculator. Shade the
solution set on a number line and de-
scribe the solution set using both set-
builder and interval notation.

39. |x+ 2|− 3 > 4

40. 3|x+ 5| < 6

41. −2|3− 2x| ≤ −6

42. |4− x|+ 5 ≥ 12

43. 3|x+ 2|− 5 > |x+ 2|+ 7

44. 4− 3|4− x| > 2|4− x|− 1

45.
∣∣∣∣
x

3 −
1
4

∣∣∣∣ ≤
1
12

46.
∣∣∣∣
x

4 −
1
2

∣∣∣∣ ≥
2
3
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Use the technique of distance on the num-
ber line demonstrated in Examples 21
and 22 to solve each of the inequalities in
Exercises 47-50. Provide number line
sketches as in Example 17 in the narra-
tive. Describe the solution set using both
set-builder and interval notation.

47. |x− 5| < 8

48. |x− 2| > 4

49. |x+ 4| ≥ 3

50. |x+ 2| ≤ 11

Use the instructions provided in Exercises 11-
22 to solve the inequalities in Exercises 51-
52. Describe the solution set using both
set-builder and interval notation.

51. |x+ 2| < 1
3x+ 5

52. |x− 3| > 5− 1
2x

In Exercises 53-54, perform each of the
following tasks.

i. Set up a coordinate system on graph
paper. Label and scale each axis.

ii. Without the use of a calculator, sketch
the graphs of the left- and right-hand
sides of the given inequality. Label
each graph with its equation.

iii. Shade the solution of the inequality
on the x-axis (if any) in the man-
ner shown in Figures 4 and 8 in the
narrative. That is, drop dashed lines
from the points of intersection to the
axis, then shade and label the solu-
tion set on the x-axis (you will have
to approximate). Describe the solu-
tion set using both set-builder and in-
terval notation.

53. |x− 2| > 1
3x+ 2

54. |x+ 4| < 1
3x+ 4
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4.4 Answers

1.

x
5

y
5 y=|x|

y=−2

Solution: R = (−∞,∞)

3.

x
5

y
5 y=|x|

y=3

−3 3

Solution: (−3, 3) = {x : −3 < x < 3}.

5.

x
5

y
5 y=|x|

y=1

−1 1

Solution: (−∞,−1) ∪ (1,∞) = {x : x <
−1 or x > 1}.

7.

x
5

y
5 y=|x|

y=0
0

Solution: {x : x = 0}.

9.

x
5

y
5 y=|x|

y=2

−2 2

Solution: [−2, 2] = {x : −2 ≤ x ≤ 2}.
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11.

x

y

−10 10

−10

10 y=|3−2x|

y=5

−1 4

Solution: (−∞,−1) ∪ (4,∞) = {x : x <
−1 or x > 4}.

13.

x

y

−10 10

−10

10 y=|4x+5|
y=7

−3 0.5

Solution: (−3, 0.5) = {x : −3 < x <
0.5}.

15.

x

y

−10 10

−10

10 y=|4x+5|

y=−2

Solution: R = (−∞,∞).

17.

x

y

−5 15

−10

10 y=|2x−9|

y=6

1.5 7.5

Solution: (−∞, 1.5]∪[7.5,∞) = {x : x ≤
1.5 or x ≥ 7.5}.
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19.

x

y

−5 15

−10

10 y=|13−2x|

y=7

3 10

Solution: [3, 10] = {x : 3 ≤ x ≤ 10}.

21.

x

y

−10 10

−10

10 y=|3x−11|

y=0 11/3

Solution: {x : x &= 11/3}.

23.

−11/4 5/4

(−11/4, 5/4) = {x : −11/4 < x < 5/4}

25.

−7/2 13/2

[−7/2, 13/2] = {x : −7/2 ≤ x ≤ 13/2}

27.

−1 11/3

(−1, 11/3) = {x : −1 < x < 11/3}

29.

−2/7 8/7

(−∞,−2/7]∪[8/7,∞) = {x : x ≤ −2/7 or x ≥
8/7}

31.

R = (−∞,∞)

33.

x

y

−5 20

−10

10 y=|x−8|

y=7

1 15

(1, 15) = {x : 1 < x < 15}
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35.

x

y

−15 5

−10

10y=|2x+11|

y=6

−8.5 −2.5

(−∞,−8.5]∪[−2.5,∞) = {x : x ≤ −8.5 or x ≥
−2.5}

37.

x

y

−5 25

−10

10 y=|x−12|

y=6

6 18

(−∞, 6) ∪ (18,∞) = {x : x < 6 or x >
18}

39.

−9 5

(−∞,−9)∪(5,∞) = {x : x < −9 or x >
5}

41.

0 3

(−∞, 0] ∪ [3,∞) = {x : x ≤ 0 or x ≥ 3}

43.

−8 4

(−∞,−8)∪(4,∞) = {x : x < −8 or x >
4}

45.

1/2 1

[1/2, 1] = {x : 1/2 ≤ x ≤ 1}

47.

5−3 13

8 8

(−3, 13) = {x : −3 < x < 13}

49.

−4−7 −1

3 3

(−∞,−7]∪[−1,∞) = {x : x ≤ −7 or x ≥
−1}

51.

x

y

−10 10

−10

10
y=|x+2|

y=x/3+5

−5.25 4.5

(−5.25, 4.5) = {x : −5.25 < x < 4.5}
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53.

x

y

−10 10

−10

10
y=|x−2|

y=x/3+2

0 6

(−∞, 0) ∪ (6,∞) = {x : x < 0 or x > 6}
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4.1 Exercises

1. Given the function defined by the
rule f(x) = 3, evaluate f(−3), f(0) and
f(4), then sketch the graph of f .

2. Given the function defined by the
rule g(x) = 2, evaluate g(−2), g(0) and
g(4), then draw the draw the graph of g.

3. Given the function defined by the
rule h(x) = −4, evaluate h(−2), h(a),
and h(2x+ 3), then draw the graph of h.

4. Given the function defined by the
rule f(x) = −2, evaluate f(0), f(b), and
f(5− 4x), then draw the graph of f .

5. The speed of an automobile travel-
ing on the highway is a function of time
and is described by the constant func-
tion v(t) = 30, where t is measured in
hours and v is measured in miles per
hour. Draw the graph of v versus t. Be
sure to label each axis with the appro-
priate units. Shade the area under the
graph of v over the time interval [0, 5]
hours. What is the area under the graph
of v over this time interval and what does
it represent?

6. The speed of a skateboarder as she
travels down a slope is a function of time
and is described by the constant function
v(t) = 8, where t is measured in seconds
and v is measured in feet per second.
Draw the graph of v versus t. Be sure
to label each axis with the appropriate
units. Shade the area under the graph of
v over the time interval [0, 60] seconds.
What is the area under the graph of v
over this time interval and what does it
represent?

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

7. An unlicensed plumber charges 15
dollars for each hour of labor. Let’s de-
fine this rate as a function of time by
r(t) = 15, where t is measured in hours
and r is measured in dollars per hour.
Draw the graph of r versus t. Be sure to
label each axis with appropriate units.
Shade the area under the graph of r over
the time interval [0, 4] hours. What is
area under the graph of r over this time
interval and what does it represent?

8. A carpenter charges a fixed rate for
each hour of labor. Let’s describe this
rate as a function of time by r(t) = 25,
where t is measured in hours and r is
measured in dollars per hour. Draw the
graph of r versus t. Be sure to label each
axis with appropriate units. Shade the
area under the graph of r over the time
interval [0, 5] hours. What is the area un-
der the graph of r over this time interval
and what does it represent?

9. Given the function defined by the
rule

f(x) =
{

0, if x < 0
2, if x ≥ 0,

evaluate f(−2), f(0), and f(3), then draw
the graph of f on a sheet of graph paper.
State the domain and range of f .

10. Given the function defined by the
rule

f(x) =
{

2, if x < 0
0, if x ≥ 0,

evaluate f(−2), f(0), and f(3), then draw
the graph of f on sheet of graph paper.
State the domain and range of f .
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11. Given the function defined by the
rule

g(x) =
{−3, if x < −2,

1, if −2 ≤ x < 2,
3, if x ≥ 2,

evaluate g(−3), g(−2), and g(5), then
draw the graph of g on a sheet of graph
paper. State the domain and range of g.

12. Given the function defined by the
rule

g(x) =
{ 4, if x ≤ −1,

2, if −1 < x ≤ 2,
−3, if x > 2,

evaluate g(−1), g(2), and g(3), then draw
the graph of g on a sheet of graph paper.
State the domain and range of g.

In Exercises 13-16, determine a piece-
wise definition of the function described
by the graphs, then state the domain and
range of the function.

13.

x
5

y
5

f

14.

x
5

y
5

f

15.

x
5

y
5

g

16.

x
5

y
5

g



Section 4.1 Piecewise-Defined Functions 349

Version: Fall 2007

17. Given the piecewise definition

f(x) =
{
−x− 3, if x < −3,
x+ 3, if x ≥ −3,

evaluate f(−4) and f(0), then draw the
graph of f on a sheet of graph paper.
State the domain and range of the func-
tion.

18. Given the piecewise definition

f(x) =
{
−x+ 1, if x < 1,
x− 1, if x ≥ 1,

evaluate f(−2) and f(3), then draw the
graph of f on a sheet of graph paper.
State the domain and range of the func-
tion.

19. Given the piecewise definition

g(x) =
{
−2x+ 3, if x < 3/2,
2x− 3, if x ≥ 3/2,

evaluate g(0) and g(3), then draw the
graph of g on a sheet of graph paper.
State the domain and range of the func-
tion.

20. Given the piecewise definition

g(x) =
{
−3x− 4, if x < −4/3,
3x+ 4, if x ≥ −4/3,

evaluate g(−2) and g(3), then draw the
graph of g on a sheet of graph paper.
State the domain and range of the func-
tion.

21. A battery supplies voltage to an
electric circuit in the following manner.
Before time t = 0 seconds, a switch is
open, so the voltage supplied by the bat-
tery is zero volts. At time t = 0 seconds,
the switch is closed and the battery be-
gins to supply a constant 3 volts to the
circuit. At time t = 2 seconds, the switch
is opened again, and the voltage supplied

by the battery drops immediately to zero
volts. Sketch a graph of the voltage v
versus time t, label each axis with the
appropriate units, then provide a piece-
wise definition of the voltage v supplied
by the battery as a function of time t.

22. Prior to time t = 0 minutes, a drum
is empty. At time t = 0 minutes a hose
is turned on and the water level in the
drum begins to rise at a constant rate
of 2 inches every minute. Let h repre-
sent water level (in inches) at time t (in
minutes). Sketch the graph of h versus
t, label the axes with appropriate units,
then provide a piecewise definition of h
as a function of t.
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4.1 Solutions

1. Because f(x) = 3, we know that f maps any number to the number 3. Thus,
f(−3) = 3, f(0) = 3, and f(4) = 3.
The graph of a constant function is always a horizontal line. In this case, f(x) = 3, so
the function values are constantly equal to 3. Hence, the graph is a horizontal line 3
units up in the y-direction.

x
5

y
5

f(x)=3

3. Because h(x) = −4, we know that h maps any number to the number −4. Thus,
h(−2) = −4, h(a) = −4, and h(2x+ 3) = −4.
The graph of a constant function is always a horizontal line. In this case, h(x) = −4,
so the function values are constantly equal to −4. Hence, the graph is a horizontal line
4 units down in the y-direction.

x
5

y
5

h(x)=−4
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5. The graph of the constant function v(t) = 30 is the horizontal line shown in the
following figure.

t (h)

v (mi/h)

v(t)=30

0 50

30

The area under v(t) = 30 is

Area = 30 mi/h× 5 h = 150 mi.

This is the distance traveled by the car over the 5-hour time period.

7. The graph of the constant function r(t) = 15 is the horizontal line shown in the
following figure.

t (h)

r (dollars/h)

r(t)=15

0 40

15

The area under r(t) = 15 is

Area = 15 dollars/h× 4 h = 60 dollars.

This is the bill for labor charged by the plumber for 4 hours of work.

9. Because −2 is less than 0, we use the first piece of the function to determine that
f(−2) = 0. Because 0 is greater than or equal to zero, we use the second piece of the
function to determine that f(0) = 2. Finally, because 3 is greater than or equal to zero,
we use the second piece of the function to determine that f(3) = 2. The graph follows.
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x
5

y
5

f

The domain of f is the set of all real numbers, easily seen by examining the piecewise
definition or by projecting all points on the graph onto the x-axis. The range has only
a finite number of possibilities, so the range is best described by listing each member.

Range = {0, 2}

11. Because −3 is less than −2, we use the first piece of the function to determine
that g(−3) = −3. Because −2 is greater than or equal to −2 and less than 2, we use
the second piece of the function to determine that g(−2) = 1. Finally, because 5 is
greater than or equal to 2, we use the third piece of the function to determine that
g(5) = 3. The graph follows.

x
5

y
5

g

The domain of g is the set of all real numbers, easily seen by examining the piecewise
definition or by projecting all points on the graph onto the x-axis. The range has only
a finite number of possibilities, so the range is best described by listing each member.

Range = {−3, 1, 3}
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13. Here is the graph of f .

x
5

y
5

f

From the graph of f , if x < 0, then f(x) = 3. On the other hand, if x ≥ 0, then
f(x) = −2. Consequently,

f(x) =
{

3, if x < 0,
−2, if x ≥ 0.

The domain of f is the set of all real numbers. The range of f is {−2, 3}.

15. Here is the graph of f .

x
5

y
5

g

From the graph, if x < 0, then g(x) = 2. Secondly, if 0 ≤ x < 2, then g(x) = −2.
Thirdly, if x ≥ 2, then g(x) = 2. Consequently,

g(x) =
{ 2, if x < 0,
−2, if 0 ≤ x < 2,
2, if x ≥ 2.

The domain of f is the set of all real numbers. The range of f is {−2, 2}.

17. We’re given the following piecewise definition.

f(x) =
{
−x− 3, if x < −3,
x+ 3, if x ≥ −3
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Note that −4 < −3, so to evaluate f(−4), we should substitute into the first piece of
this function, namely

f(x) = −x− 3
f(−4) = −(−4)− 3
f(−4) = 1.

(1)

Note that 0 ≥ −3, so to evaluate f(0), we should substitute into the second piece of
this function, namely

f(x) = x+ 3
f(0) = 0 + 3
f(0) = 3.

The first part of the function is f(x) = −x − 3, but only for x < −3. Hence, this
is a ray, starting at the point where x = −3 and moving to the left. At x = −3,
f(−3) = −(−3)− 3 = 0, so the starting point of the ray is at (−3, 0). We have already
found that f(−4) = 1, so this gives us a second point on the ray, namely (−4, 1). Plot
these two points, then draw the ray starting at (−3, 0) and passing through (−4, 1) as
it moves to the left, as shown in (a) below. Note that the point at (−3, 0) is empty,
because f(x) = −x− 3 only if x < −3.
The second part of the function is f(x) = x + 3, but only for x ≥ −3. Hence, this
is a ray, starting at the point where x = −3 and moving to the right. At x = −3,
f(−3) = (−3) + 3 = 0, so the starting point of the ray is at (−3, 0). We have already
found that f(0) = 3, so this gives us a second point on the ray, namely (0, 3). Plot
these two points, then draw the ray starting at (−3, 0) and passing through (0, 3) as
it moves to the right, as shown in (b) below. Note that the point at (−3, 0) is filled,
because f(x) = x+ 3 if x ≥ −3.
Finally, put these two pieces together to form the graph of f shown in (c) below.

x
5

y
5

(−4,1)(−4,1)

(−3,0)
x

5

y
5

(−3,0)

(0,3)(0,3)

x
5

y
5 f

(−4,1)(−4,1)

(−3,0)(−3,0)

(0,3)(0,3)

(a) (b) (c)

The domain of f is the set of all real numbers. The range of f is {y : y ≥ 0}.
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19. We’re given the following piecewise definition.

g(x) =
{
−2x+ 3, if x < 3/2,
2x− 3, if x ≥ 3/2,

Note that 0 < 3/2, so to evaluate g(0), we should substitute into the first piece of this
function, namely

g(x) = −2x+ 3
g(0) = −2(0) + 3
g(0) = 3.

(2)

Note that 3 ≥ 3/2, so to evaluate g(3), we should substitute into the second piece of
this function, namely

g(x) = 2x− 3
g(3) = 2(3)− 3
g(3) = 3.

The first part of the function is g(x) = −2x + 3, but only for x < 3/2. Hence, this
is a ray, starting at the point where x = 3/2 and moving to the left. At x = 3/2,
g(3/2) = −2(3/2) + 3 = 0, so the starting point of the ray is at (3/2, 0). We have
already found that g(0) = 3, so this gives us a second point on the ray, namely (0, 3).
Plot these two points, then draw the ray starting at (3/2, 0) and passing through (3, 0)
as it moves to the left, as shown in (a) below. Note that the point at (3/2, 0) is empty,
because g(x) = −2x+ 3 only if x < 3/2.
The second part of the function is g(x) = 2x − 3, but only for x ≥ 3/2. Hence, this
is a ray, starting at the point where x = 3/2 and moving to the right. At x = 3/2,
g(3/2) = 2(3/2)−3 = 0, so the starting point of the ray is at (3/2, 0). We have already
found that g(3) = 3, so this gives us a second point on the ray, namely (3, 3). Plot
these two points, then draw the ray starting at (−3, 0) and passing through (3, 3) as
it moves to the right, as shown in (b) below. Note that the point at (3/2, 0) is filled,
because g(x) = 2x− 3 for x ≥ 3/2.
Finally, put these two pieces together to form the graph of g shown in (c) below.

x
5

y
5

(0,3)(0,3)

(3/2,0)
x

5

y
5

(3/2,0)

(3,3)(3,3)

x
5

y
5 g

(0,3)(0,3)

(3/2,0)(3/2,0)

(3,3)(3,3)

(a) (b) (c)
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The domain of g is the set of all real numbers. The range of g is {y : y ≥ 0}.

21. Three facts lead to the development of the piecewise function and its graph.

• Before time t = 0, the switch is open and the voltage is zero. That is, V (t) = 0 if
t < 0. The graph of this piece is shown in (a) below.

• At time t = 0 the switch is closed and remains closed until time t = 2 when it is
again opened. During this time, the voltage is a constant 3 volts. That is, V (t) = 3
for 0 ≤ t < 2. The graph of this piece is shown in (b) below.

• Finally, at time t = 2 and thereafter, the switch remains open and the voltage is
zero. That is, V (t) = 0 for t ≥ 2. The graph of this piece is shown in (c).

t (s)5

V (volts)
5

t (s)5

V (volts)
5

t (s)5

V (volts)
5

(a) (b) (c)

Putting the pieces together that are described above gives the following piecewise def-
inition.

V (t) =
{ 0, if t < 0,

3, if 0 ≤ t < 2,
0, if t ≥ 2.

The complete graph of V follows.

t (s)5

V (volts)
5
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4.2 Exercises

For each of the functions in Exercises 1-
8, as in Examples 7 and 8 in the narra-
tive, mark the “critical value” on a num-
ber line, then mark the sign of the ex-
pression inside of the absolute value bars
below the number line. Above the num-
ber line, remove the absolute value bars
according to the sign of the expression
you marked below the number line. Once
your number line summary is finished,
create a piecewise definition for the given
absolute value function.

1. f(x) = |x+ 1|

2. f(x) = |x− 4|

3. g(x) = |4− 5x|

4. g(x) = |3− 2x|

5. h(x) = |− x− 5|

6. h(x) = |− x− 3|

7. f(x) = x+ |x|

8. f(x) = |x|
x

For each of the functions in Exercises 9-
16, perform each of the following tasks.

i. Create a piecewise definition for the
given function, using the technique in
Exercises 1-8 and Examples 7 and
8 in the narrative.

ii. Following the lead in Example 9 in
the narrative, use your piecewise defi-
nition to sketch the graph of the given
function on a sheet of graph paper.
Please place each exercise on its own

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

coordinate system.

9. f(x) = |x− 1|

10. f(x) = |x+ 2|

11. g(x) = |2x− 1|

12. g(x) = |5− 2x|

13. h(x) = |1− 3x|

14. h(x) = |2x+ 1|

15. f(x) = x− |x|

16. f(x) = x+ |x− 1|

17. Use a graphing calculator to draw
the graphs of y = |x|, y = 2|x|, y = 3|x|,
and y = 4|x| on the same viewing win-
dow. In your own words, explain what
you learned in this exercise.

18. Use a graphing calculator to draw
the graphs of y = |x|, y = (1/2)|x|, y =
(1/3)|x|, and y = (1/4)|x| on the same
viewing window. In your own words, ex-
plain what you learned in this exercise.

19. Use a graphing calculator to draw
the graphs of y = |x|, y = |x − 2|, y =
|x−4|, and y = |x−6| on the same view-
ing window. In your own words, explain
what you learned in this exercise.

20. Use a graphing calculator to draw
the graphs of y = |x|, y = |x + 2|, y =
|x+4|, and y = |x+6| on the same view-
ing window. In your own words, explain
what you learned in this exercise.
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In Exercises 21-36, perform each of the
following tasks. Feel free to check your
work with your graphing calculator, but
you should be able to do all of the work
by hand.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Create an accurate plot of the
function y = |x| on your coordinate
system and label this graph with its
equation.

ii. Use the technique of Examples 12, 13,
and 14 in the narrative to help se-
lect the appropriate geometric trans-
formations to transform the equation
y = |x| into the form of the func-
tion given in the exercise. On the
same coordinate system, use a differ-
ent colored pencil or pen to draw the
graph of the function resulting from
your applied transformation. Label
the resulting graph with its equation.

iii. Use interval notation to describe the
domain and range of the given func-
tion.

21. f(x) = |− x|

22. f(x) = −|x|

23. f(x) = (1/2)|x|

24. f(x) = −2|x|

25. f(x) = |x+ 4|

26. f(x) = |x− 2|

27. f(x) = |x|+ 2

28. f(x) = |x|− 3

29. f(x) = |x+ 3|+ 2

30. f(x) = |x− 3|− 4

31. f(x) = −|x− 2|

32. f(x) = −|x|− 2

33. f(x) = −|x|+ 4

34. f(x) = −|x+ 4|

35. f(x) = −|x− 1|+ 5

36. f(x) = −|x+ 5|+ 2
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4.2 Solutions

1. Take the expression inside the absolute value bars in f(x) = |x+ 1|, set it equal to
zero and solve for x.

x+ 1 = 0
x = −1

This is the critical value. Mark it on the number line as shown below. Next, pick a
value of x to the left of the critical value. Note that −2 makes x + 1 = −2 + 1 = −1
negative. This is indicated by the minus sign under the line to the left of the critical
value. Next, pick a value of x to the right of the critical value. Note that 0 makes
x+ 1 = 0 + 1 = 1 positive. This is indicated by the plus sign under the line to the right
of the critical value.

x+1 − −1 +

Above the line, we will evaluate |x+ 1|. To the left of −1, x+ 1 is negative, therefore,
|x+ 1| = −(x+ 1), as indicated above the line that follows. To the right of −1, x+ 1
is positive, so |x+ 1| = x+ 1, also indicated above the line that follows.

|x+1| −(x+1) x+1
x+1 − −1 +

We can now easily form a piecewise definition of f simply by translating our last number
line picture into piecewise format.

f(x) =
{
−x− 1, if x < −1,
x+ 1, if x ≥ −1.

3. Take the expression inside the absolute value bars in g(x) = |4 − 5x|, set it equal
to zero and solve for x.

4− 5x = 0
x = 4/5

This is the critical value. Mark it on the number line as shown below. Next, pick a
value of x to the left of the critical value. Note that 0 makes 4 − 5x = 4 − 5(0) = 4
positive. This is indicated by the plus sign under the line to the left of the critical
value. Next, pick a value of x to the right of the critical value. Note that 1 makes
4− 5x = 4− 5(1) = −1 negative. This is indicated by the minus sign under the line to
the right of the critical value.

4−5x + 4/5 −
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Above the line, we will evaluate |4−5x|. To the left of 4/5, 4−5x is positive, therefore,
|4− 5x| = 4− 5x, as indicated above the line that follows. To the right of 4/5, 4− 5x
is negative, so |4− 5x| = −(4− 5x), also indicated above the line that follows.

|4−5x| 4−5x −(4−5x)

4−5x + 4/5 −

We can now easily form a piecewise definition of g simply by translating our last number
line picture into piecewise format.

g(x) =
{

4− 5x, if x < 4/5,
−4 + 5x, if x ≥ 4/5.

5. Take the expression inside the absolute value bars in h(x) = |− x− 5|, set it equal
to zero and solve for x.

−x− 5 = 0
−x = 5
x = −5

This is the critical value. Mark it on the number line as shown below. Next, pick a
value of x to the left of the critical value. Note that −6 makes −x−5 = −(−6)−5 = 1
positive. This is indicated by the plus sign under the line to the left of the critical
value. Next, pick a value of x to the right of the critical value. Note that −4 makes
−x− 5 = −(−4)− 5 = −1 negative. This is indicated by the minus sign under the line
to the right of the critical value.

−x−5 + −5 −

Above the line, we will evaluate |−x−5|. To the left of −5, −x−5 is positive, therefore,
|−x− 5| = −x− 5, as indicated above the line that follows. To the right of −5, −x− 5
is negative, so |− x− 5| = −(−x− 5), also indicated above the line that follows.

|−x−5| −x−5 −(−x−5)

−x−5 + −5 −

We can now easily form a piecewise definition of h simply by translating our last number
line picture into piecewise format.

h(x) =
{
−x− 5, if x < −5,
x+ 5, if x ≥ −5.
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7. Take the expression inside the absolute value bars in f(x) = x + |x|, set it equal
to zero and solve for x.

x = 0

This is the critical value. Mark it on the number line as shown below. Next, pick a
value of x to the left of the critical value. Note that −1 makes x = −1 negative. This
is indicated by the minus sign under the line to the left of the critical value. Next, pick
a value of x to the right of the critical value. Note that 1 makes x = 1 positive. This
is indicated by the plus sign under the line to the right of the critical value.

x − 0 +

Above the line, we will evaluate x + |x|. To the left of 0, x is negative, therefore,
x + |x| = x + (−x), as indicated above the line that follows. To the right of 0, x is
positive, so x+ |x| = x+ x, also indicated above the line that follows.

x+|x| x+(−x) x+x
x − 0 +

We can now easily form a piecewise definition of f simply by translating our last number
line picture into piecewise format. Note that we’ve simplified a bit: x+ (−x) = 0 and
x+ x = 2x.

f(x) =
{

0, if x < 0,
2x, if x ≥ 0.

9. The critical value for f(x) = |x− 1| is x = 1. To the left of 1, x− 1 is negative, to
the right of 1, x− 1 is positive, which enables us to remove the absolute value bars as
shown in the number line diagram that follows.

|x−1| −(x−1) x−1
x−1 − 1 +

We can summarize what we see on our number line in a piecewise definition.

f(x) =
{
−x+ 1, if x < 1,
x− 1, if x ≥ 1.

To the left of 1, f(x) = −x + 1. This will be a ray starting at (1, f(1)) = (1, 0) and
moving to the left through a second point (−1, f(−1)) = (−1, 2), as shown in (a) below.
Note that (1, 0) is empty, because f(x) = −x+ 1 only if x < 1.
To the right of 1, f(x) = x − 1. This will be a ray starting at (1, f(1)) = (1, 0) and
moving to the right through a second point (3, f(3)) = (3, 2), as shown in (b) below.
Note that (1, 0) is filled, because f(x) = x− 1 when x ≥ 1.
Putting the pieces together reveals the final graph of f(x) = |x− 1| in (c).
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11. The critical value for g(x) = |2x − 1| is x = 1/2. To the left of 1/2, 2x − 1 is
negative, to the right of 1/2, 2x−1 is positive, which enables us to remove the absolute
value bars as shown in the number line diagram that follows.

|2x−1| −(2x−1) 2x−1
2x−1 − 1/2 +

We can summarize what we see on our number line in a piecewise definition.

g(x) =
{
−2x+ 1, if x < 1/2,
2x− 1, if x ≥ 1/2.

To the left of 1/2, g(x) = −2x+1. This will be a ray starting at (1/2, g(1/2)) = (1/2, 0)
and moving to the left through a second point (0, g(0)) = (0, 1), as shown in (a) below.
Note that (1/2, 0) is empty, because g(x) = −2x+ 1 only if x < 1/2.
To the right of 1/2, g(x) = 2x−1. This will be a ray starting at (1/2, g(1/2)) = (1/2, 0)
and moving to the right through a second point (2, g(2)) = (2, 3), as shown in (b) below.
Note that (1/2, 0) is filled, because g(x) = 2x− 1 when x ≥ 1/2.
Putting the pieces together reveals the final graph of g(x) = |2x− 1| in (c).
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13. The critical value for h(x) = |1 − 3x| is x = 1/3. To the left of 1/3, 1 − 3x is
positive, to the right of 1/3, 1−3x is negative, which enables us to remove the absolute
value bars as shown in the number line diagram that follows.

|1−3x| 1−3x −(1−3x)

1−3x + 1/3 −

We can summarize what we see on our number line in a piecewise definition.

h(x) =
{

1− 3x, if x < 1/3,
−1 + 3x, if x ≥ 1/3.

To the left of 1/3, h(x) = 1− 3x. This will be a ray starting at (1/3, h(1/3)) = (1/3, 0)
and moving to the left through a second point (−1, h(−1)) = (−1, 4), as shown in (a)
below. Note that (1/3, 0) is empty, because h(x) = 1− 3x only if x < 1/3.
To the right of 1/3, h(x) = −1 + 3x. This will be a ray starting at (1/3, h(1/3)) =
(1/3, 0) and moving to the right through a second point (1, h(1)) = (1, 2), as shown in
(b) below. Note that (1/3, 0) is filled, because h(x) = −1 + 3x when x ≥ 1/3.
Putting the pieces together reveals the final graph of h(x) = |1− 3x| in (c).

x
5

y
5

(−1,4)(−1,4)

(1/3,0)
x

5

y
5

(1/3,0)

(1,2)(1,2)

x
5

y
5 h

(−1,4)(−1,4)

(1/3,0)

(1,2)(1,2)

(a) (b) (c)

15. The critical value for f(x) = x− |x| is x = 0. To the left of 0, x is negative, to the
right of 0, x is positive, which enables us to remove the absolute value bars as shown
in the number line diagram that follows.

x−|x| x−(−x) x−x
x − 0 +

We can summarize what we see on our number line in a piecewise definition. Note that
we’ve simplified a bit: x− (−x) = 2x and x− x = 0.

f(x) =
{

2x, if x < 0,
0, if x ≥ 0.
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To the left of 0, f(x) = 2x. This will be a ray starting at (0, f(0)) = (0, 0) and moving
to the left through a second point (−1, f(−1)) = (−1,−2), as shown in (a) below. Note
that (0, 0) is empty, because f(x) = 2x only if x < 0.
To the right of 0, f(x) = 0. This will be a horizontal ray starting at (0, f(0)) = (0, 0)
and moving to the right along the x-axis, as shown in (b) below. Note that (0, 0) is
filled, because f(x) = 0 when x ≥ 0.
Putting the pieces together reveals the final graph of f(x) = x− |x| in (c).

x
5

y
5

(−1,−2)(−1,−2)

(0,0)
x

5

y
5

(0,0)
x

5

y
5

f

(−1,−2)(−1,−2)

(0,0)

(a) (b) (c)

Note that the graph doesn’t have the usual “V” shape because it’s not the usual absolute
value function where everything is inside a single set of absolute value bars.

17. Load y = |x| in Y1 as shown in (a), then select 6:ZStandard to produce the graph
in (b). Do the same for y = 2|x| in (c) to produce the graph of y = 2|x| in (d).

(a) (b) (c) (d)

Note the result in (d). Multiplying by 2 produces the equation y = 2|x|. Note that
this stretches the graph of y = |x| vertically by a factor of 2 in (d). In similar fashion,
multiplying by 3 and 4 stretches the graph vertically by a factor of 3 and 4 in (f),
respectively.

(e) (f)
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19. Load y = |x| in Y1 as shown in (a), then select 6:ZStandard to produce the graph
in (b). Do the same for y = |x− 2| in (c) to produce the graph of y = |x− 2| in (d).

(a) (b) (c) (d)

Note the result in (d). Replacing x with x−2 produces the equation y = |x−2|, which
in turn translates the graph of y = |x| to the right 2 units. In similar fashion, replacing
x with x− 4 and x− 6 shifts the graph 4 and 6 units to the right in (f), respectively.

(e) (f)

21. First, sketch the graph of y = f(x) = |x| as shown in (a) below. Note that if
y = f(x) = |x|, then

y = f(−x) = |− x|.

To sketch the graph of y = f(−x) = | − x|, reflect the graph of y = f(x) = |x| across
the y-axis, as shown in (b) below. Because the original graph of y = f(x) = |x| in (a)
was symmetrical with respect to the y-axis, the reflection across the y-axis produces
the same graph.

x
5

y
5

x
5

y
5

(a) y = f(x) = |x|. (b) y = f(−x) = | − x|.

Here are the original and transformed graph on the same coordinate system. The
graphs of y = |x| and y = |− x| coincide.
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x
5

y
5 y=|x|y=|−x|

The domain of f(x) = |− x| is (−∞,∞) and the range is [0,∞).

23. First, sketch the graph of y = f(x) = |x| as shown in (a) below. Note that if
y = f(x) = |x|, then

y = (1/2)f(x) = (1/2)|x|.

To sketch the graph of y = (1/2)f(x) = (1/2)|x|, halve the y-value of each point on the
graph of y = f(x) = |x|. This will compress the graph of y = f(x) = |x| vertically by
a factor of 2, as shown in (b) below.

x
5

y
5

x
5

y
5

(a) y = f(x) = |x|. (b)
y = (1/2)f(x) = (1/2)|x|.

Here are the original and transformed function on the same coordinate system.

x
5

y
5 y=|x|

y=(1/2)|x|
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The domain f(x) = (1/2)|x| is (−∞,∞) and the range is [0,∞).

25. First, sketch the graph of y = f(x) = |x| as shown in (a) below. Note that if
y = f(x) = |x|, then

y = f(x+ 4) = |x+ 4|.

To sketch the graph of y = f(x+ 4) = |x+ 4|, shift the graph of y = f(x) = |x| to the
left 4 units, as shown in (b) below.

x
10

y
10

x
10

y
10

(a) y = f(x) = |x|. (b) y = f(x+ 4) = |x+ 4|.

Here are the original and transformed functions on the same coordinate system.

x
10

y
10 y=|x|

y=|x+4|

The domain of f(x) = |x+ 4| is (−∞,∞) and the range is [0,∞).

27. First, sketch the graph of y = f(x) = |x| as shown in (a) below. Note that if
y = f(x) = |x|, then

y = f(x) + 2 = |x|+ 2.

To sketch the graph of y = f(x) + 2 = |x|+ 2, shift the graph of y = f(x) = |x| upward
2 units to produce the graph in (b).
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x
10

y
10

x
10

y
10

(a) y = f(x) = |x|. (b) y = f(x) + 2 = |x|+ 2.

Here are the original and transformed functions on the same coordinate system.

x
10

y
10

y=|x|y=|x|+2

The domain of f(x) = |x|+ 2 is (−∞,∞) and the range is [2,∞).

29. First, sketch the graph of y = f(x) = |x| as shown in (a) below. Note that if
y = f(x) = |x|, then

y = f(x+ 3) + 2 = |x+ 3|+ 2.
To sketch the graph of y = f(x+ 3) + 2 = |x+ 3|+ 2, shift the graph of y = f(x) = |x|
to the left 3 units, then up 2 units to produce the graph in (b).

x
10

y
10

x
10

y
10

(a) y = f(x) = |x|. (b)
y = f(x+3)+2 = |x+3|+2.
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Here are the original and transformed functions on the same coordinate system.

x
10

y
10

y=|x|
y=|x+3|+2

The domain of f(x) = |x+ 3|+ 2 is (−∞,∞) and the range is [2,∞).

31. First, sketch the graph of y = f(x) = |x| as shown in (a) below. Note that if
y = f(x) = |x|, then

y = −f(x) = −|x|.

To sketch the graph of y = −f(x) = −|x|, reflect the graph of y = f(x) = |x| across
the x-axis to produce the graph in (b).
Next,

y = −f(x− 2) = −|x− 2|.

To sketch the graph of y = −f(x−2) = −|x−2|, we will shift the graph of y = −f(x) =
−|x| two units to the right to produce the graph in (c).

x
10

y
10

x
10

y
10

x
10

y
10

(a) y = f(x) = |x|. (b) y = −f(x) = −|x|. (c)
y = −f(x− 2) = −|x− 2|.

Here are the original and transformed functions on the same coordinate system.
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x
10

y
10

y=|x|

y=−|x−2|

The domain of f(x) = −|x− 2| is (−∞,∞) and the range is (−∞, 0].

33. First, sketch the graph of y = f(x) = |x| as shown in (a) below. Note that if
y = f(x) = |x|, then

y = −f(x) = −|x|.

To sketch the graph of y = −f(x) = −|x|, reflect the graph of y = f(x) = |x| across
the x-axis to produce the graph in (b).
Next,

y = −f(x) + 4 = −|x|+ 4.

To sketch the graph of y = −f(x)+4 = −|x|+4, we will shift the graph of y = −f(x) =
−|x| four units upward to produce the graph in (c).

x
10

y
10

x
10

y
10

x
10

y
10

(a) y = f(x) = |x|. (b) y = −f(x) = −|x|. (c)
y = −f(x) + 4 = −|x|+ 4.

Here are the original and transformed functions on the same coordinate system.
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x
10

y
10

y=|x|

y=−|x|+4

The domain of f(x) = −|x|+ 4 is (−∞,∞) and the range is (−∞, 4].

35. First, sketch the graph of y = f(x) = |x| as shown in (a) below. Note that if
y = f(x) = |x|, then

y = −f(x) = −|x|.

To sketch the graph of y = −f(x) = −|x|, reflect the graph of y = f(x) = |x| across
the x-axis to produce the graph in (b).
Next,

y = −f(x− 1) + 5 = −|x− 1|+ 5.

To sketch the graph of y = −f(x − 1) + 5 = −|x − 1| + 5, we will shift the graph of
y = −f(x) = −|x| one unit to the right and five units upward to produce the graph in
(c).

x
10

y
10

x
10

y
10

x
10

y
10

(a) y = f(x) = |x|. (b) y = −f(x) = −|x|. (c) y = −f(x − 1) + 5 =
−|x − 1| + 5.

Here are the original and transformed functions on the same coordinate system.
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x
10

y
10

y=|x|

y=−|x−1|+5

The domain of f(x) = −|x− 1|+ 5 is (−∞,∞) and the range is (−∞, 5].
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4.3 Exercises

For each of the equations in Exercises 1-
4, perform each of the following tasks.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

ii. Sketch the graph of each side of the
equation without the aid of a calcula-
tor. Label each graph with its equa-
tion.

iii. Shade the solution of the equation
on the x-axis (if any) as shown in
Figure 5 (read "Expectations") in the
narrative. That is, drop dashed lines
from the points of intersection to the
axis, then shade and label the solu-
tion set on the x-axis.

1. |x| = −2

2. |x| = 0

3. |x| = 3

4. |x| = 2

For each of the equations in Exercises 5-
8, perform each of the following tasks.

i. Load each side of the equation into
the Y= menu of your calculator. Ad-
just the viewing window so that all
points of intersection of the two graphs
are visible in the viewing window.

ii. Copy the image in your viewing screen
onto your homework paper. Label
each axis and scale each axis with
xmin, xmax, ymin, and ymax. La-
bel each graph with its equation.

iii. Use the intersect utility in the CALC
menu to determine the points of in-

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

tersection. Shade and label each so-
lution as shown in Figure 5 (read "Ex-
pectations") in the narrative. That
is, drop dashed lines from the points
of intersection to the axis, then shade
and label the solution set on the x-
axis.

5. |3− 2x| = 5

6. |2x+ 7| = 4

7. |4x+ 5| = 7

8. |5x− 7| = 8

For each of the equations in Exercises 9-
14, provide a purely algebraic solution
without the use of a calculator. Arrange
your work as shown in Examples 6, 7,
and 8 in the narrative, but do not use a
calculator.

9. |4x+ 3| = 0

10. |3x− 11| = −5

11. |2x+ 7| = 14

12. |7 − 4x| = 8

13. |3− 2x| = −1

14. |4x+ 9| = 0

For each of the equations in Exercises 15-
20, perform each of the following tasks.

i. Arrange each of the following parts
on your homework paper in the same
location. Do not do place the alge-
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braic work on one page and the graph-
ical work on another.

ii. Follow each of the directions given for
Exercises 5-8 to find and record a
solution with your graphing calcula-
tor.

iii. Provide a purely algebraic solution,
showing all the steps of your work.
Do these solutions compare favorably
with those found using your graphing
calculator in part (ii)? If not, look for
a mistake in your work.

15. |x− 8| = 7

16. |2x− 15| = 5

17. |2x+ 11| = 6

18. |5x− 21| = 7

19. |x− 12| = 6

20. |x+ 11| = 5

Use a strictly algebraic technique to solve
each of the equations in Exercises 21-
28. Do not use a calculator.

21. |x+ 2|− 3 = 4

22. 3|x+ 5| = 6

23. −2|3− 2x| = −6

24. |4− x|+ 5 = 12

25. 3|x+ 2|− 5 = |x+ 2|+ 7

26. 4− 3|4− x| = 2|4− x|− 1

27.
∣∣∣∣
x

3 −
1
4

∣∣∣∣ =
1
12

28.
∣∣∣∣
x

4 −
1
2

∣∣∣∣ =
2
3

Use the technique of distance on the num-
ber line demonstrated in Examples 16
and 17 to solve each of the equations in
Exercises 29-32. Provide number line
sketches on your homework paper as shown
in Examples 16 and 17 in the narrative.

29. |x− 5| = 8

30. |x− 2| = 4

31. |x+ 4| = 3

32. |x+ 2| = 11

Use the instructions provided in Exercises 5-
8 to solve the equations in Exercises 33-
34.

33. |x+ 2| = 1
3x+ 5

34. |x− 3| = 5− 1
2x

In Exercises 35-36, perform each of the
following tasks.

i. Set up a coordinate system on graph
paper. Label and scale each axis.

ii. Without the use of a calculator, sketch
the graphs of the left- and right-hand
sides of the given equation. Label
each graph with its equation.

iii. Drop dashed vertical lines from each
point of intersection to the x-axis. Shade
and label each solution on the x-axis
(you will have to approximate).

35. |x− 2| = 1
3x+ 2

36. |x+ 4| = 1
3x+ 4

37. Given that a < 0 and b > 0, prove
that |ab| = |a||b|.
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38. Given that a > 0 and b < 0, prove
that |ab| = |a||b|.

39. In the narrative, we proved that if
a > 0 and b < 0, then |a/b| = |a|/|b|.
Prove the remaining three cases.
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4.3 Solutions

1. Draw the graph of y = |x|. It is easy to obtain an accurate plot by plotting a point
or two. Draw the graph of y = −2 as shown below.

x
5

y
5 y=|x|

y=−2

Note that the graphs of y = |x| and y = −2 do not intersect. Hence, the equation
|x| = −2 has no solutions.

3. Draw the graph of y = |x|. It is easy to obtain an accurate plot by plotting a point
or two. Draw the graph of y = 3 as shown below. Note that there are two points of
intersection. Drop dashed lines from the points of intersection to the x-axis and label
the solutions as shown below.

x
5

y
5 y=|x|

y=3

−3−3 33

Thus, the solutions of the equation |x| = 3 are x = −3 or x = 3.
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5. Load y = |3 − 2x| into Y1 and y = 5 into Y2 as shown in (a). Use the intersect
utility in the CALC menu to find the points of intersection shown in (b) and (c).

(a) (b) (c)

Copy the results onto your homework paper. Drop dashed lines from the points of
intersection to the x-axis and label the x-values.

x

y

−10 10

−10

10 y=|3−2x|

y=5

−1−1 44

Thus, the solutions of |3− 2x| = 5 are x = −1 or x = 4.

7. Load y = |4x + 5| into Y1 and y = 7 into Y2 as shown in (a). Use the intersect
utility in the CALC menu to find the points of intersection shown in (b) and (c).

(a) (b) (c)

Copy the results onto your homework paper. Drop dashed lines from the points of
intersection to the x-axis and label the x-values.
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x

y

−10 10

−10

10 y=|4x+5|
y=7

−3−3 0.50.5

Thus, the solutions of |4x+ 5| = 7 are x = −3 or x = 0.5.

9. Note that |4x+ 3| = 0 only when 4x+ 3 = 0. Thus,

|4x+ 3| = 0
4x+ 3 = 0

4x = −3

x = −3
4 .

And we see that −3/4 is the solution of |4x+ 3| = 0.

11. To solve |2x+ 7| = 14, set

2x+ 7 = −14 or 2x+ 7 = 14
2x = −21 2x = 7

x = −21
2 x = 7

2 .

Hence, the solutions of |2x+ 7| = 14 are x = −21/2 or x = 7/2.

13. When we try to solve the equation |3−2x| = −1, we note that the absolute value
cannot equal −1. This equation has no solutions.

15. Load the equations y = |x − 8| and y = 7 into Y1 and Y2, as shown in (a). Set
the WINDOW as shown in (b). Use the intersect utility to find the points of intersection,
as shown in (c) and (d).

(a) (b) (c) (d)
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Copy the image onto your homework. Drop dashed lines from the points of intersection
to the x-axis and label the x-values as shown.

x

y

−5 20

−10

10 y=|x−8|

y=7

11 1515

To solve the equation |x− 8| = 7 algebraically, set
x− 8 = −7 or x− 8 = 7
x = 1 x = 15.

Thus, x = 1 or x = 15 are the solutions. Note how these match the graphical solutions
shown above.

17. Load the equations y = |2x+ 11| and y = 6 into Y1 and Y2, as shown in (a). Set
the WINDOW as shown in (b). Use the intersect utility to find the points of intersection,
as shown in (c) and (d).

(a) (b) (c) (d)

Copy the image onto your homework. Drop dashed lines from the points of intersection
to the x-axis and label the x-values as shown.

x

y

−15 5

−10

10y=|2x+11|

y=6

−8.5−8.5 −2.5−2.5
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To solve |2x+ 11| = 6 algebraically, set

2x+ 11 = −6 or 2x+ 11 = 6
2x = −17 2x = −5

x = −17
2 x = −5

2
Thus, x = −17/2 or x = −5/2 are the solutions. Note how these agree with the
graphical solutions found above.

19. Load the equations y = |x − 12| and y = 6 into Y1 and Y2, as shown in (a). Set
the WINDOW as shown in (b). Use the intersect utility to find the points of intersection,
as shown in (c) and (d).

(a) (b) (c) (d)

Copy the image onto your homework. Drop dashed lines from the points of intersection
to the x-axis and label the x-values as shown.

x

y

−5 25

−10

10 y=|x−12|

y=6

66 1818

To solve the equation |x− 12| = 6 algebraically, set:

x− 12 = −6 or x− 12 = 6
x = 6 x = 18.

Thus, x = 6 or x = 18 are the solutions. Note how these agree with the graphical
solutions found above.

21. Add 3 to both sides of the equation.

|x+ 2|− 3 = 4
|x+ 2| = 7
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Now,

x+ 2 = −7 or x+ 2 = 7
x = −9 x = 5.

Hence, the solutions of |x+ 2|− 3 = 4 are x = −9 or x = 5.

23. Divide both sides of the equation by −2.
−2|3− 2x| = −6
|3− 2x| = 3

Now,

3− 2x = −3 or 3− 2x = 3
− 2x = −6 − 2x = 0
x = 3 x = 0.

Hence, the solutions of −2|3− 2x| = −6 are x = 0 or x = 3.

25. Add 5 to both sides of the equation, then subtract |x+ 2| from both sides of the
equation.

3|x+ 2|− 5 = |x+ 2|+ 7
3|x+ 2|− |x+ 2| = 7 + 5

2|x+ 2| = 12

Divide both sides of the last equation by 2.

|x+ 2| = 6

Now,

x+ 2 = −6 or x+ 2 = 6
x = −8 x = 4.

Hence, the solutions of 3|x+ 2|− 5 = |x+ 2|+ 7 are x = −8 or x = 4.

27. Multiply both sides of the equation by 12.

12
∣∣∣∣
x

3 −
1
4

∣∣∣∣ = 12
( 1

12

)

|12|
∣∣∣∣
x

3 −
1
4

∣∣∣∣ = 1
∣∣∣∣12
(
x

3 −
1
4

)∣∣∣∣ = 1

|4x− 3| = 1.
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Now,

4x− 3 = −1 or 4x− 3 = 1
4x = 2 4x = 4
x = 1/2 x = 1.

Hence, the solutions of |x/3− 1/4| = 1/12 are x = 1/2 or x = 1.

29. We read the equation |x − 5| = 8 as “the distance between x and 5 is 8.” Draw
a number line (see below), then mark the number 5 on the number line. Now, step 8
units to the left and right and mark the numbers −3 and 13, respectively. These are
the numbers that are 8 units from 5.

5−3−3 1313

8 8

Therefore, the solutions of |x− 5| = 8 are x = −3 or x = 13.

31. First, rewrite |x+4| = 3 in the equivalent form |x−(−4)| = 3. This is pronounced
“the distance between x and −4 is 3.” Draw a number line and mark the number −4
on it. Now, step 3 units to the left and right and mark the numbers −7 and −1,
respectively. These are the numbers that are 3 units from −4.

−4−7−7 −1−1

3 3

Thus, the solutions of |x+ 4| = 3 are x = −7 or x = −1.

33. Load y = |x + 2| into Y1 and y = (1/3)x + 5 into Y2 as shown in (a) and select
6:ZStandard from the ZOOM menu. Use the intersect utility in the CALC menu to find
the points of intersection shown in (b) and (c).

(a) (b) (c)

Copy the results onto your homework paper. Drop dashed lines from the points of
intersection to the x-axis and label the x-values.
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x

y

−10 10

−10

10
y=|x+2|

y=x/3+5

−5.25−5.25 4.54.5

Hence, the solutions of |x+ 2| = (1/3)x+ 5 are x = −5.25 or x = 4.5.

35. There are a number of ways that you can draw an accurate graph of y = |x− 2|.
One, you can do a number line analysis.

|x−2| −(x−2) x−2
x−2 − 2 +

This leads to the piecewise definition

y =
{
−x+ 2, if x < 2,
x− 2, if x ≥ 2.

This can be used to draw the graph of y = |x−2| in the figure that follows. Alternatively,
we know that y = |x− 2| is a “V” that is shifted 2 units to the right. Plotting a point
on each side of the vertex point should lead to the graph shown below.
The graph of y = (1/3)x+ 2 is a line having slope m = 1/3 and y-intercept (0, 2). Plot
the y-intercept at (0, 2), then move 3 units to the right and 1 unit up to draw the line
shown below.
The graphs intersect in two locations. Drop dashed lines from these points of intersec-
tion to the x-axis and label the x-values as shown in the figure that follows.

x

y

−10 10

−10

10
y=|x−2|

y=x/3+2

00 66
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Hence, the solutions of |x− 2| = (1/3)x+ 2 are x = 0 or x = 6.

37. If a is a negative real number and b is a positive real number, then ab is negative,
so |ab| = −ab. On the other hand, a negative also means that |a| = −a, and b positive
means that |b| = b, so that |a||b| = −a(b) = −ab. Comparing these results, we see that
|ab| and |a||b| equal the same thing, and so they must be equal to one another.

39. Case I. (a, b > 0) If a and b are both positive real numbers, then a/b is positive
and so |a/b| = a/b. On the other hand, a positive also means that |a| = a, and b
positive means that |b| = b, so that |a|/|b| = a/b. Comparing these two results, we see
that |a/b| and |a|/|b| equal the same thing, and so they must be equal to one another.
Case II. (a, b < 0) If a and b are both negative real numbers, then a/b is positive and
so |a/b| = a/b. On the other hand, a negative also means that |a| = −a, and b negative
means that |b| = −b, so that |a|/|b| = −a/(−b) = a/b. Comparing these two results,
we see that |a/b| and |a|/|b| equal the same thing, and so they must be equal to one
another.
Case III. (a < 0, b > 0) If a is a negative real number and b is a positive real number,
then a/b is negative and so |a/b| = −(a/b). On the other hand, a negative also means
that |a| = −a, and b positive means that |b| = b, so that |a|/|b| = −a/b = −(a/b).
Comparing these two results, we see that |a/b| and |a|/|b| equal the same thing, and so
they must be equal to one another.
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4.4 Exercises

For each of the inequalities in Exercises 1-
10, perform each of the following tasks.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

ii. Sketch the graph of each side of the
inequality without the aid of a cal-
culator. Label each graph with its
equation.

iii. Shade the solution of the inequality
on the x-axis (if any) in the manner
shown in Figures 4 and 8 in the narra-
tive. That is, drop dashed lines from
the points of intersection to the axis,
then shade and label the solution set
on the x-axis. Use set-builder and
interval notation (when possible) to
describe your solution set.

1. |x| > −2

2. |x| > 0

3. |x| < 3

4. |x| > 2

5. |x| > 1

6. |x| < 4

7. |x| ≤ 0

8. |x| ≤ −2

9. |x| ≤ 2

10. |x| ≥ 1

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

For each of the inequalities in Exercises 11-
22, perform each of the following tasks.

i. Load each side of the inequality into
the Y= menu of your calculator. Ad-
just the viewing window so that all
points of intersection of the two graphs
are visible in the viewing window.

ii. Copy the image in your viewing screen
onto your homework paper. Label
each axis and scale each axis with
xmin, xmax, ymin, and ymax. La-
bel each graph with its equation.

iii. Use the intersect utility in the CALC
menu to determine the points of in-
tersection. Shade the solution of the
inequality on the x-axis (if any) in the
manner shown in Figures 4 and 8 in
the narrative. That is, drop dashed
lines from the points of intersection
to the axis, then shade and label the
solution set on the x-axis. Use set-
builder and interval notation (when
appropriate) to describe your solution
set.

11. |3− 2x| > 5

12. |2x+ 7| < 4

13. |4x+ 5| < 7

14. |5x− 7| > 8

15. |4x+ 5| > −2

16. |3x− 5| < −3

17. |2x− 9| ≥ 6

18. |3x+ 25| ≥ 8
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19. |13− 2x| ≤ 7

20. |2x+ 15| ≤ 7

21. |3x− 11| > 0

22. |4x+ 19| ≤ 0

For each of the inequalities in Exercises 23-
32, provide a purely algebraic solution
without the use of a calculator. Show
all of your work that leads to the solu-
tion, shade your solution set on a num-
ber line, then use set-builder and interval
notation (if possible) to describe your so-
lution set.

23. |4x+ 3| < 8

24. |3x− 5| > 11

25. |2x− 3| ≤ 10

26. |3− 5x| ≥ 15

27. |3x− 4| < 7

28. |5− 2x| > 10

29. |3− 7x| ≥ 5

30. |2− 11x| ≤ 6

31. |x+ 2| ≥ −3

32. |x+ 5| < −4

For each of the inequalities in Exercises 33-
38, perform each of the following tasks.

i. Arrange each of the following parts
on your homework paper in the same
location. Do not do place the alge-
braic work on one page and the graph-
ical work on another.

ii. Follow each of the directions given for
Exercises 11-22 to find and record

a solution with your graphing calcu-
lator.

iii. Provide a purely algebraic solution,
showing all the steps of your work.
Sketch your solution on a number line,
then use set-builder and interval no-
tation to describe your solution set.
Do these solutions compare favorably
with those found using your graphing
calculator in part (ii)? If not, look for
a mistake in your work.

33. |x− 8| < 7

34. |2x− 15| > 5

35. |2x+ 11| ≥ 6

36. |5x− 21| ≤ 7

37. |x− 12| > 6

38. |x+ 11| < 5

Use a strictly algebraic technique to solve
each of the equations in Exercises 39-
46. Do not use a calculator. Shade the
solution set on a number line and de-
scribe the solution set using both set-
builder and interval notation.

39. |x+ 2|− 3 > 4

40. 3|x+ 5| < 6

41. −2|3− 2x| ≤ −6

42. |4− x|+ 5 ≥ 12

43. 3|x+ 2|− 5 > |x+ 2|+ 7

44. 4− 3|4− x| > 2|4− x|− 1

45.
∣∣∣∣
x

3 −
1
4

∣∣∣∣ ≤
1
12

46.
∣∣∣∣
x

4 −
1
2

∣∣∣∣ ≥
2
3
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Use the technique of distance on the num-
ber line demonstrated in Examples 21
and 22 to solve each of the inequalities in
Exercises 47-50. Provide number line
sketches as in Example 17 in the narra-
tive. Describe the solution set using both
set-builder and interval notation.

47. |x− 5| < 8

48. |x− 2| > 4

49. |x+ 4| ≥ 3

50. |x+ 2| ≤ 11

Use the instructions provided in Exercises 11-
22 to solve the inequalities in Exercises 51-
52. Describe the solution set using both
set-builder and interval notation.

51. |x+ 2| < 1
3x+ 5

52. |x− 3| > 5− 1
2x

In Exercises 53-54, perform each of the
following tasks.

i. Set up a coordinate system on graph
paper. Label and scale each axis.

ii. Without the use of a calculator, sketch
the graphs of the left- and right-hand
sides of the given inequality. Label
each graph with its equation.

iii. Shade the solution of the inequality
on the x-axis (if any) in the man-
ner shown in Figures 4 and 8 in the
narrative. That is, drop dashed lines
from the points of intersection to the
axis, then shade and label the solu-
tion set on the x-axis (you will have
to approximate). Describe the solu-
tion set using both set-builder and in-
terval notation.

53. |x− 2| > 1
3x+ 2

54. |x+ 4| < 1
3x+ 4
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4.4 Solutions

1. Sketch the graph of y = |x| on graph paper. Plotting points such as (−5, 5), (0, 0),
and (5, 5) will help provide accuracy. Sketch the graph of y = −2.

x
5

y
5 y=|x|

y=−2

The question asks us to solve the inequality |x| > −2. Hence, we need to locate where
the graph of y = |x| lies above the graph of y = −2. This is true for all values of x.
Thus, the solution is R = (−∞,∞). Note that this solution is shaded on the x-axis.

3. Sketch the graph of y = |x| on graph paper. Plotting points such as (−5, 5), (0, 0),
and (5, 5) will help provide accuracy. Sketch the graph of y = 3. Drop dashed lines
from the points of intersection to the x-axis and label these points with their x-values.

x
5

y
5 y=|x|

y=3

−3 3

To find the solution of |x| < 3, note where the graph of y = |x| lies below the graph
of y = 3. This occurs for all values of x between −3 and 3. This set is shaded on the
x-axis and described with the following notation: (−3, 3) = {x : −3 < x < 3}.

5. Sketch the graph of y = |x| on graph paper. Plotting points such as (−5, 5), (0, 0),
and (5, 5) will help provide accuracy. Sketch the graph of y = 1. Drop dashed lines
from the points of intersection to the x-axis and label these points with their x-values.
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x
5

y
5 y=|x|

y=1

−1 1

To find the solution of |x| > 1, note where the graph of y = |x| lies above the graph of
y = 1. This occurs for values of x that lie to the left of −1 or to the right of 1. This set
is shaded on the x-axis and described with the following notation: (−∞,−1) ∪ (1,∞)
or {x : x < −1 or x > 1}.

7. Sketch the graph of y = |x| on graph paper. Plotting points such as (−5, 5), (0, 0),
and (5, 5) will help provide accuracy. Sketch the graph of y = 0. This is a somewhat
unusual case as the two graphs intersect at only one point, namely x = 0.

x
5

y
5 y=|x|

y=0
0

To find the solution of |x| ≤ 0, we need to find where the graph of y = |x| lies below
the line y = 0 (this never happens) or where the graph of y = |x| intersects the graph
of y = 0 (this happens at only one place, x = 0). Thus, the solution of |x| ≤ 0 is
x = 0. That is why you only see x = 0 shaded on the x-axis. In set-builder notation,
the solution is {x : x = 0}.

9. Sketch the graph of y = |x| on graph paper. Plotting points such as (−5, 5), (0, 0),
and (5, 5) will help provide accuracy. Sketch the graph of y = 2. Drop dashed lines
from the points of intersection to the x-axis and label these points with their x-values.
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x
5

y
5 y=|x|

y=2

−2 2

To find the solution of |x| ≤ 2, we need to find where the graph of y = |x| lies below
the graph of y = 2 (this happens for all values of x between −2 and 2) or where the
graph of y = |x| intersects the graph of y = 2 (this happens at x = −2 and x = 2).
Hence, we shade on the x-axis all points that lie between −2 and 2, then we shade the
points −2 and 2 as well. This solution set is described with the following notation:
[−2, 2] = {x : −2 ≤ x ≤ 2}.

11. Load y = |3− 2x| into Y1 and y = 5 into Y2, as shown in (a). Use the intersect
utility from the CALC menu to determine the points of intersection shown in (b) and
(c).

(a) (b) (c)

Copy the image onto your homework paper. Drop dashed lines from the points of
intersection to the x-axis and label the x-values.

x

y

−10 10

−10

10 y=|3−2x|

y=5

−1 4
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We’re asked to solve |3− 2x| > 5, so we must find where the graph of y = |3− 2x| lies
above the graph of y = 5. This happens for all values of x that lie to the left of −1 or
to the right of 4, which we’ve shaded on the x-axis. This solution set is described with
the following notation: (−∞,−1) ∪ (4,∞) or {x : x < −1 or x > 4}.

13. Load y = |4x+ 5| into Y1 and y = 7 into Y2, as shown in (a). Use the intersect
utility from the CALC menu to determine the points of intersection shown in (b) and
(c).

(a) (b) (c)

Copy the image onto your homework paper. Drop dashed lines from the points of
intersection to the x-axis and label the x-values.

x

y

−10 10

−10

10 y=|4x+5|
y=7

−3 0.5

We’re asked to solve |4x+ 5| < 7, so we must find where the graph of y = |4x+ 5| lies
below the graph of y = 7. This happens for all values of x that lie between −3 and
0.5, which we’ve shaded on the x-axis. This solution set is described with the following
notation: (−3, 0.5) = {x : −3 < x < 0.5}.
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15. Load y = |4x + 5| into Y1 and y = −2 into Y2, as shown in (a). Note that the
graph of y = |4x+ 5| does not intersect the graph of y = −2, as shown in (b).

(a) (b)

Copy the image onto your homework paper.

x

y

−10 10

−10

10 y=|4x+5|

y=−2

We’re asked to solve |4x + 5| > −2, so we must find where the graph of y = |4x + 5|
lies above the graph of y = −2. This is true for all values of x, which we’ve shaded on
the x-axis. This solution set is best described with R = (−∞,∞).

17. Load y = |2x − 9| into Y1 and y = 6 into Y2, as shown in (a). Adjust the
WINDOW parameters as shown in (b). Use the intersect utility from the CALC menu to
determine the points of intersection shown in (c) and (d).

(a) (b) (c) (d)

Copy the image onto your homework paper. Drop dashed lines from the points of
intersection to the x-axis and label the x-values.
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x

y

−5 15

−10

10 y=|2x−9|

y=6

1.5 7.5

We’re asked to solve |2x− 9| ≥ 6, so we must find where the graph of y = |2x− 9| lies
above the graph of y = 6 (this happens for all values of x that lie to the left of 1.5 or to
the right of 7.5), or where the graph of y = |2x−9| intersects the graph of y = 6 (this
happens at x = 1.5 and x = 7.5). We’ve shaded these on the x-axis. This solution set is
described with the following notation: (−∞, 1.5]∪ [7.5,∞) or {x : x ≤ 1.5 or x ≥ 7.5}.

19. Load y = |13 − 2x| into Y1 and y = 7 into Y2, as shown in (a). Adjust the
WINDOW parameters as shown in (b). Use the intersect utility from the CALC menu to
determine the points of intersection shown in (c) and (d).

(a) (b) (c) (d)

Copy the image onto your homework paper. Drop dashed lines from the points of
intersection to the x-axis and label the x-values.

x

y

−5 15

−10

10 y=|13−2x|

y=7

3 10
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We’re asked to solve |13 − 2x| ≤ 7, so we must find where the graph of y = |13 − 2x|
lies below the graph of y = 7 (this happens for all values of x that lie between 3 and
10), or where the graph of y = |13− 2x| intersects the graph of y = 7 (this happens
at x = 3 and x = 10). We’ve shaded these on the x-axis. This solution set is described
with the following notation: [3, 10] = {x : 3 ≤ x ≤ 10}.

21. Load y = |3x−11| into Y1, then select 6:ZStandard on the ZOOM menu to produce
the image shown in (b).

(a) (b)

Copy the image onto your homework paper.

x

y

−10 10

−10

10 y=|3x−11|

y=0 11/3

We’re asked to solve |3x − 11| > 0, so we must find where the graph of y = |3x − 11|
lies above the x-axis. This is true for all values of x except where the vertex touches
the x-axis. This point is easily found with this calculation.

3x− 11 = 0
3x = 11
x = 11/3

Thus, the graph of y = |3x − 11| lies above the x-axis for all values of x except 11/3.
This solution set is described with the following notation: {x : x &= 11/3}.

23. To solve |4x+ 3| < 8, set

−8 < 4x+ 3 < 8,

subtract 3 from all three members, then divide all three members of the resulting
inequality by 4.
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−11 < 4x < 5
−11

4 < x <
5
4

Sketch the solution on a number line.

−11/4 5/4

The solution set is described with the following notation: (−11/4, 5/4) = {x : −11/4 <
x < 5/4}.

25. To solve |2x− 3| ≤ 10, set

−10 ≤ 2x− 3 ≤ 10,

add 3 to all three members, then divide all three members of the resulting inequality
by 2.

−7 ≤ 2x ≤ 13
−7

2 ≤ x ≤
13
2

Sketch the solution on a number line.

−7/2 13/2

The solution set is described with the following notation: [−7/2, 13/2] = {x : −7/2 ≤
x ≤ 13/2}.

27. To solve |3x− 4| < 7, set

−7 < 3x− 4 < 7,

add 4 to all three members, then divide all three members of the resulting inequality
by 3.

−3 < 3x < 11
−1 < x < 11

3
Sketch the solution on a number line.

−1 11/3

The solution set is described with the following notation: (−1, 11/3) = {x : −1 < x <
11/3}.
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29. To solve |3− 7x| ≥ 5, set

3− 7x ≤ −5 or 3− 7x ≥ 5.

Solve each inequality independently by first subtracting 3 from each side of each in-
equality, then dividing both sides of each inequality by −7, reversing the inequality
symbols as we do so.

− 7x ≤ −8 or − 7x ≥ 2

x ≥ 8
7 x ≤ −2

7
We write the last inequality in the more natural order x ≤ −2/7 or x ≥ 8/7 and sketch
the solution on a number line.

−2/7 8/7

We describe the solution with the following notation: (−∞,−2/7] ∪ [8/7,∞) or {x :
x ≤ −2/7 or x ≥ 8/7}

31. To solve the inequality |x+2| ≥ −3, it is easiest to reason that the absolute value
will be greater than or equal to −3 for all values of x. Sketch the solution on a number
line.

Hence, the following notation is used to describe the solution set: R = (−∞,∞).

33. Load y = |x−8| in Y1 and y = 7 in Y2, as shown in (a). Set the WINDOW parameters
as shown in (b). Use the intersect utility from the CALC menu to find the points of
intersection shown in (c) and (d).

(a) (b) (c) (d)

Copy the image onto your homework paper. Drop dashed lines from the points of
intersection to the x-axis and label the x-values.
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x

y

−5 20

−10

10 y=|x−8|

y=7

1 15

To find the solution of |x − 8| < 7 note that the graph of y = |x − 8| falls below the
graph of y = 7 for all values of x between 1 and 15. We’ve shaded these solutions on
the x-axis.
To solve |x− 8| < 7 algebraically, set

−7 < x− 8 < 7,

then add 8 to all three members of the inequality.

1 < x < 15

Note that this solution matches the graphical solution found above. We describe the
solution using the following notation: (1, 15) = {x : 1 < x < 15}

35. Load y = |2x + 11| in Y1 and y = 6 in Y2, as shown in (a). Set the WINDOW
parameters as shown in (b). Use the intersect utility from the CALC menu to find the
points of intersection shown in (c) and (d).

(a) (b) (c) (d)

Copy the image onto your homework paper. Drop dashed lines from the points of
intersection to the x-axis and label the x-values.
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x

y

−15 5

−10

10y=|2x+11|

y=6

−8.5 −2.5

To find the solution of |2x+ 11| ≥ 6, note where the graph of y = |2x+ 11| falls above
the graph of y = 6 (this happens for values of x that lie to the left of −8.5 or to the
right of −2.5), then note where the graph of y = |2x+ 11| intersects the graph of y = 6
(this happens at x = −8.5 and x = −2.5). We’ve shaded these solutions on the x-axis.
To solve |2x+ 11| ≥ 6 algebraically, set

2x+ 11 ≤ −6 or 2x+ 11 ≥ 6.

Solve each inequality independently by first subtracting 11 from each side of each
inequality, then dividing both sides of each inequality by 2.

2x ≤ −17 or 2x ≥ −5

x ≤ −17
2 x ≥ −5

2
Note that this solution matches the graphical solution found above. We describe the so-
lution using the following notation: (−∞,−17/2]∪[−5/2,∞) or {x : x ≤ −17/2 or x ≥
−5/2}.

37. Load y = |x − 12| in Y1 and y = 6 in Y2, as shown in (a). Set the WINDOW
parameters as shown in (b). Use the intersect utility from the CALC menu to find the
points of intersection shown in (c) and (d).

(a) (b) (c) (d)

Copy the image onto your homework paper. Drop dashed lines from the points of
intersection to the x-axis and label the x-values.
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x

y

−5 25

−10

10 y=|x−12|

y=6

6 18

To find the solution of |x − 12| > 6, note where the graph of y = |x − 12| lies above
the graph of y = 6 (this happens for values of x that lie to the left of 6 or to the right
of 18). We’ve shaded these solutions on the x-axis.
To solve |x− 12| > 6 algebraically, set

x− 12 < −6 or x− 12 > 6.

Solve each inequality independently by adding 12 to each side of each inequality.

x < 6 or x > 18

Note that this solution matches the graphical solution found above. We describe the
solution using the following notation: (−∞, 6) ∪ (18,∞) or {x : x < 6 or x > 18}.

39. To solve |x + 2| − 3 > 4, start by adding 3 to both sides of the inequality to
produce the equivalent inequality

|x+ 2| > 7.

Next, set

x+ 2 < −7 or x+ 2 > 7.

Solve each inequality independently by subtracting 2 from each side of each inequality.

x < −9 or x > 5

Sketch the solution on a number line.

−9 5

We describe the solution set with the following notation: (−∞,−9) ∪ (5,∞) or {x :
x < −9 or x > 5}.

41. To solve the inequality −2|3 − 2x| ≤ −6, start by dividing both sides of the
inequality by −2, reversing the inequality symbol.

|3− 2x| ≥ 3

Set
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3− 2x ≤ −3 or 3− 2x ≥ 3.

Solve each inequality independently by first subtracting 3 from each side of each in-
equality, then dividing both sides of each inequality by −2, reversing the inequality
symbols as we do so.

− 2x ≤ −6 or − 2x ≥ 0
x ≥ 3 x ≤ 0

We write this solution in a more natural order using the following notation: (−∞, 0]∪
[3,∞) or {x : x ≤ 0 or x ≥ 3}.
Sketch this solution on a number line.

0 3

43. To solve the inequality 3|x+ 2|− 5 > |x+ 2|+ 7, first add 5 to both sides of the
inequality, then subtract |x+ 2| from both sides of the inequality.

3|x+ 2|− |x+ 2| > 7 + 5
2|x+ 2| > 12

Divide both sides of the last inequality by 2.

|x+ 2| > 6

Set

x+ 2 < −6 or x+ 2 > 6.

Solve each inequality independently by subtracting 2 from each side of each inequality.

x < −8 or x > 4

Sketch the solution on a number line.

−8 4

We describe the solution set using the following notation: (−∞,−8) ∪ (4,∞) or {x :
x < −8 or x > 4}

45. To solve the inequality |x/3 − 1/4| ≤ 1/12, first multiply both sides of the in-
equality by 12.
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12
∣∣∣∣
x

3 −
1
4

∣∣∣∣ ≤ 12
( 1

12

)

|12|
∣∣∣∣
x

3 −
1
4

∣∣∣∣ ≤ 1
∣∣∣∣12
(
x

3 −
1
4

)∣∣∣∣ ≤ 1

|4x− 3| ≤ 1

Set

−1 ≤ 4x− 3 ≤ 1,

add 3 to all three members, then divide all three members of the resulting inequality
by 4.

2 ≤ 4x ≤ 4
1
2 ≤ x ≤ 1

Sketch the solution on a number line.

1/2 1

We describe this solution set using the notation: [1/2, 1] = {x : 1/2 ≤ x ≤ 1}.

47. The inequality |x − 5| < 8 is pronounced “the distance between x and 5 is less
than 8.” Draw a number line and mark 5 on the line. Next, mark −3 and 13, both of
which are 8 units away from 5.

5−3 13

8 8

We want the numbers that are less than 8 units away from 5. These are the numbers
that lie between −3 and 13, which are shaded on the number line above. This solution
set is described with the following notation: (−3, 13) = {x : −3 < x < 13}

49. First, the inequality |x + 4| ≥ 3 is equivalent to the inequality |x − (−4)| ≥ 3.
This latter inequality is pronounced “the distance between x and −4 is greater than
or equal to 3.” Draw a number line and mark −4 on the line. Next, mark −7 and −1,
both of which are 3 units away from −4.

−4−7 −1

3 3
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We want the numbers that are more than 3 units away from −1. These are the
numbers that lie to the left of −7 or to the right of −1. We also need the numbers
that are exactly 3 units away from −4, namely −7 and −1, which are shaded on
the number line above. This solution set is described with the following notation:
(−∞,−7] ∪ [−1,∞) or {x : x ≤ −7 or x ≥ −1}.

51. Load the equations y = |x + 2| into Y1 and y = (1/3)x + 5 into Y2, as shown in
(a), then select 6:ZStandard from the ZOOM menu. Use the intersect utility from the
CALC menu to determine the points of intersection, as shown in (b) and (c).
Copy the image onto your homework. Drop dashed vertical lines from the points of
intersection to the x-axis and label the x-values.

x

y

−10 10

−10

10
y=|x+2|

y=x/3+5

−5.25 4.5

Note that the graph of y = |x+ 2| lies below the graph of y = (1/3)x+ 5 for all values
of x that lie between −5.25 and 4.5. These solutions are shaded on the x-axis above
and are described with the following notation: (−5.25, 4.5) = {x : −5.25 < x < 4.5}

53. There are a number of ways that you can draw an accurate graph of y = |x− 2|.
One, you can do a number line analysis.

|x−2| −(x−2) x−2
x−2 − 2 +

This leads to the piecewise definition

y =
{
−x+ 2, if x < 2,
x− 2, if x ≥ 2.

This can be used to draw the graph of y = |x−2| in the figure that follows. Alternatively,
we know that y = |x− 2| is a “V” that is shifted 2 units to the right. Plotting a point
on each side of the vertex point should lead to the graph shown below.
The graph of y = (1/3)x+ 2 is a line having slope m = 1/3 and y-intercept (0, 2). Plot
the y-intercept at (0, 2), then move 3 units to the right and 1 unit up to draw the line
shown below.
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The graphs intersect in two locations. Drop dashed lines from these points of intersec-
tion to the x-axis and label the x-values as shown in the figure that follows.

x

y

−10 10

−10

10
y=|x−2|

y=x/3+2

0 6

Finally, we need to state where the graph of y = |x − 2| lies above the graph of
y = (1/3)x + 2 (this happens for values of x that lie to the left of 0 or to the right of
6). These solutions are shaded on the x-axis in the figure above and can be described
using the following notation: (−∞, 0) ∪ (6,∞) or {x : x < 0 or x > 6}.
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5.1 Exercises

In Exercises 1-6, sketch the image of
your calculator screen on your homework
paper. Label and scale each axis with
xmin, xmax, ymin, and ymax. Label
each graph with its equation. Remember
to use a ruler to draw all lines, including
axes.

1. Use your graphing calculator to sketch
the graphs of f(x) = x2, g(x) = 2x2, and
h(x) = 4x2 on one screen. Write a short
sentence explaining what you learned in
this exercise.

2. Use your graphing calculator to sketch
the graphs of f(x) = −x2, g(x) = −2x2,
and h(x) = −4x2 on one screen. Write a
short sentence explaining what you learned
in this exercise.

3. Use your graphing calculator to sketch
the graphs of f(x) = x2, g(x) = (x −
2)2, and h(x) = (x − 4)2 on one screen.
Write a short sentence explaining what
you learned in this exercise.

4. Use your graphing calculator to sketch
the graphs of f(x) = x2, g(x) = (x +
2)2, and h(x) = (x + 4)2 on one screen.
Write a short sentence explaining what
you learned in this exercise.

5. Use your graphing calculator to sketch
the graphs of f(x) = x2, g(x) = x2 +
2, and h(x) = x2 + 4 on one screen.
Write a short sentence explaining what
you learned in this exercise.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

6. Use your graphing calculator to sketch
the graphs of f(x) = x2, g(x) = x2 −
2, and h(x) = x2 − 4 on one screen.
Write a short sentence explaining what
you learned in this exercise.

In Exercises 7-14, write down the given
quadratic function on your homework pa-
per, then state the coordinates of the ver-
tex.

7. f(x) = −5(x− 4)2 − 5

8. f(x) = 5(x+ 3)2 − 7

9. f(x) = 3(x+ 1)2

10. f(x) = 7
5

(
x+ 5

9

)2
− 3

4

11. f(x) = −7(x− 4)2 + 6

12. f(x) = −1
2

(
x− 8

9

)2
+ 2

9

13. f(x) = 1
6

(
x+ 7

3

)2
+ 3

8

14. f(x) = −3
2

(
x+ 1

2

)2
− 8

9

In Exercises 15-22, state the equation
of the axis of symmetry of the graph of
the given quadratic function.

15. f(x) = −7(x− 3)2 + 1

16. f(x) = −6(x+ 8)2 + 1
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17. f(x) = −7
8

(
x+ 1

4

)2
+ 2

3

18. f(x) = −1
2

(
x− 3

8

)2
− 5

7

19. f(x) = −2
9

(
x+ 2

3

)2
− 4

5

20. f(x) = −7(x+ 3)2 + 9

21. f(x) = −8
7

(
x+ 2

9

)2
+ 6

5

22. f(x) = 3(x+ 3)2 + 6

In Exercises 23-36, perform each of the
following tasks for the given quadratic
function.

i. Set up a coordinate system on graph
paper. Label and scale each axis.

ii. Plot the vertex of the parabola and
label it with its coordinates.

iii. Draw the axis of symmetry and label
it with its equation.

iv. Set up a table near your coordinate
system that contains exact coordinates
of two points on either side of the axis
of symmetry. Plot them on your co-
ordinate system and their “mirror im-
ages” across the axis of symmetry.

v. Sketch the parabola and label it with
its equation.

vi. Use interval notation to describe both
the domain and range of the quadratic
function.

23. f(x) = (x+ 2)2 − 3

24. f(x) = (x− 3)2 − 4

25. f(x) = −(x− 2)2 + 5

26. f(x) = −(x+ 4)2 + 4

27. f(x) = (x− 3)2

28. f(x) = −(x+ 2)2

29. f(x) = −x2 + 7

30. f(x) = −x2 + 7

31. f(x) = 2(x− 1)2 − 6

32. f(x) = −2(x+ 1)2 + 5

33. f(x) = −1
2(x+ 1)2 + 5

34. f(x) = 1
2(x− 3)2 − 6

35. f(x) = 2(x− 5/2)2 − 15/2

36. f(x) = −3(x+ 7/2)2 + 15/4

In Exercises 37-44, write the given qua-
dratic function on your homework pa-
per, then use set-builder and interval no-
tation to describe the domain and the
range of the function.

37. f(x) = 7(x+ 6)2 − 6

38. f(x) = 8(x+ 1)2 + 7

39. f(x) = −3(x+ 4)2 − 7

40. f(x) = −6(x− 7)2 + 9

41. f(x) = −7(x+ 5)2 − 7

42. f(x) = 8(x− 4)2 + 3

43. f(x) = −4(x− 1)2 + 2

44. f(x) = 7(x− 2)2 − 3
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In Exercises 45-52, using the given value
of a, find the specific quadratic function
of the form f(x) = a(x − h)2 + k that
has the graph shown. Note: h and k are
integers. Check your solution with your
graphing calculator.

45. a = −2

x

y

5

5

46. a = 0.5

x

y

5

5

47. a = 2

x

y

5

5

48. a = 0.5

x

y

5

5

49. a = 2

x

y

5

5

50. a = −0.5

x

y

5

5
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51. a = 2

x

y

5

5

52. a = 0.5

x

y

5

5

In Exercises 53-54, use the graph to
determine the range of the function f(x) =
ax2+bx+c. The arrows on the graph are
meant to indicate that the graph contin-
ues indefinitely in the continuing pattern
and direction of each arrow. Describe
your solution using interval notation.

53.

x

y

5

5

54.

x

y

5

5

In Exercises 55-56, use the graph to
determine the domain of the function f(x) =
ax2+bx+c. The arrows on the graph are
meant to indicate that the graph contin-
ues indefinitely in the continuing pattern
and direction of each arrow. Use interval
notation to describe your solution.

55.

x

y

5

5

56.

x

y

5

5
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5.1 Answers

1. Multiplying by 2 scales vertically by
a factor of 2. Multiplying by 4 scales
vertically by a factor of 4.

x
10

y
10

fgh

3. The graph of g(x) = (x−2)2 is shifted
2 units to the right of f(x) = x2. The
graph of h(x) = (x−4)2 is shifted 4 units
to the right of f(x) = x2.

x
10

y
10

f g h

5. The graph of g(x) = x2 +2 is shifted
2 units to the upward from the graph of
f(x) = x2. The graph of h(x) = x2 + 4
is shifted 4 units upward from the graph
of f(x) = x2.

x
10

y
10

f

g

h

7. (4,−5)

9. (−1, 0)

11. (4, 6)

13.
(
−7

3 ,
3
8

)

15. x = 3

17. x = −1
4

19. x = −2
3

21. x = −2
9
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23. Domain= (−∞,∞); Range= [−3,∞)

x
10

y
10

x=−2

(−2,−3)

f(x)=(x+2)2−3

25. Domain= (−∞,∞); Range= (−∞, 5]

x
10

y
10

x=2

(2,5)

f(x)=−(x−2)2+5

27. Domain= (−∞,∞); Range= [0,∞)

x
10

y
10

x=3

(3,0)

f(x)=(x−3)2

29. Domain= (−∞,∞); Range= (−∞, 7]

x
10

y
10

x=0

(0,7)

f(x)=−x2+7

31. Domain= (−∞,∞); Range= [−6,∞)

x
10

y
10

x=1

(1,−6)

f(x)=2(x−1)2−6

33. Domain= (−∞,∞); Range= (−∞, 5]

x
10

y
10

x=−1

(−1,5)

f(x)=− 1
2 (x+1)2+5
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35. Domain= (−∞,∞); Range= [−15/2,∞)

x
10

y
10

x=5/2

(5/2,−15/2)

f(x)=2(x−5/2)2−15/2

37. Domain= (−∞,∞); Range= [−6,∞) =
{y : y ≥ −6}

39. Domain= (−∞,∞); Range= (−∞,−7] =
{y : y ≤ −7}

41. Domain= (−∞,∞); Range= (−∞,−7] =
{y : y ≤ −7}

43. Domain= (−∞,∞); Range= (−∞, 2] =
{y : y ≤ 2}

45. f(x) = −2(x− 3)2 + 1

47. f(x) = 2(x+ 1)2 − 1

49. f(x) = 2(x+ 2)2 + 1

51. f(x) = 2(x− 3)2 − 1

53. (−∞,−2]

55. (−∞,∞)
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5.2 Exercises

In Exercises 1-8, expand the binomial.

1.
(
x+ 4

5

)2

2.
(
x− 4

5

)2

3. (x+ 3)2

4. (x+ 5)2

5. (x− 7)2

6.
(
x− 2

5

)2

7. (x− 6)2

8.
(
x− 5

2

)2

In Exercises 9-16, factor the perfect square
trinomial.

9. x2 − 6
5x+ 9

25

10. x2 + 5x+ 25
4

11. x2 − 12x+ 36

12. x2 + 3x+ 9
4

13. x2 + 12x+ 36

14. x2 − 3
2x+ 9

16

15. x2 + 18x+ 81

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

16. x2 + 10x+ 25

In Exercises 17-24, transform the given
quadratic function into vertex form f(x) =
(x− h)2 + k by completing the square.

17. f(x) = x2 − x+ 8

18. f(x) = x2 + x− 7

19. f(x) = x2 − 5x− 4

20. f(x) = x2 + 7x− 1

21. f(x) = x2 + 2x− 6

22. f(x) = x2 + 4x+ 8

23. f(x) = x2 − 9x+ 3

24. f(x) = x2 − 7x+ 8

In Exercises 25-32, transform the given
quadratic function into vertex form f(x) =
a(x− h)2 + k by completing the square.

25. f(x) = −2x2 − 9x− 3

26. f(x) = −4x2 − 6x+ 1

27. f(x) = 5x2 + 5x+ 5

28. f(x) = 3x2 − 4x− 6

29. f(x) = 5x2 + 7x− 3

30. f(x) = 5x2 + 6x+ 4

31. f(x) = −x2 − x+ 4

32. f(x) = −3x2 − 6x+ 4
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In Exercises 33-38, find the vertex of
the graph of the given quadratic func-
tion.

33. f(x) = −2x2 + 5x+ 3

34. f(x) = x2 + 5x+ 8

35. f(x) = −4x2 − 4x+ 1

36. f(x) = 5x2 + 7x+ 8

37. f(x) = 4x2 + 2x+ 8

38. f(x) = x2 + x− 7

In Exercises 39-44, find the axis of sym-
metry of the graph of the given quadratic
function.

39. f(x) = −5x2 − 7x− 8

40. f(x) = x2 + 6x+ 3

41. f(x) = −2x2 − 5x− 8

42. f(x) = −x2 − 6x+ 2

43. f(x) = −5x2 + x+ 6

44. f(x) = x2 − 9x− 6

For each of the quadratic functions in
Exercises 45-66, perform each of the
following tasks.

i. Use the technique of completing the
square to place the given quadratic
function in vertex form.

ii. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

iii. Draw the axis of symmetry and label
it with its equation. Plot the vertex
and label it with its coordinates.

iv. Set up a table near your coordinate
system that calculates the coordinates
of two points on either side of the axis
of symmetry. Plot these points and
their mirror images across the axis of
symmetry. Draw the parabola and
label it with its equation

v. Use the graph of the parabola to de-
termine the domain and range of the
quadratic function. Describe the do-
main and range using interval nota-
tion.

45. f(x) = x2 − 8x+ 12

46. f(x) = x2 + 4x− 1

47. f(x) = x2 + 6x+ 3

48. f(x) = x2 − 4x+ 1

49. f(x) = x2 − 2x− 6

50. f(x) = x2 + 10x+ 23

51. f(x) = −x2 + 6x− 4

52. f(x) = −x2 − 6x− 3

53. f(x) = −x2 − 10x− 21

54. f(x) = −x2 + 12x− 33

55. f(x) = 2x2 − 8x+ 3

56. f(x) = 2x2 + 8x+ 4

57. f(x) = −2x2 − 12x− 13

58. f(x) = −2x2 + 24x− 70

59. f(x) = (1/2)x2 − 4x+ 5

60. f(x) = (1/2)x2 + 4x+ 6

61. f(x) = (−1/2)x2 − 3x+ 1/2

62. f(x) = (−1/2)x2 + 4x− 2
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63. f(x) = 2x2 + 7x− 2

64. f(x) = −2x2 − 5x− 4

65. f(x) = −3x2 + 8x− 3

66. f(x) = 3x2 + 4x− 6

In Exercises 67-72, find the range of
the given quadratic function. Express
your answer in both interval and set no-
tation.

67. f(x) = −2x2 + 4x+ 3

68. f(x) = x2 + 4x+ 8

69. f(x) = 5x2 + 4x+ 4

70. f(x) = 3x2 − 8x+ 3

71. f(x) = −x2 − 2x− 7

72. f(x) = x2 + x+ 9

Drill for Skill. In Exercises 73-76,
evaluate the function at the given value
b.

73. f(x) = 9x2 − 9x+ 4; b = −6

74. f(x) = −12x2 + 5x+ 2; b = −3

75. f(x) = 4x2 − 6x− 4; b = 11

76. f(x) = −2x2 − 11x− 10; b = −12

Drill for Skill. In Exercises 77-80,
evaluate the function at the given expres-
sion.

77. Evaluate f(x+4) if f(x) = −5x2 +
4x+ 2.

78. Evaluate f(−4x−5) if f(x) = 4x2+
x+ 1.

79. Evaluate f(4x− 1) if f(x) = 4x2 +
3x− 3.

80. Evaluate f(−5x−3) if f(x) = −4x2+
x+ 4.
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5.2 Answers

1. x2 + 8
5x+ 16

25

3. x2 + 6x+ 9

5. x2 − 14x+ 49

7. x2 − 12x+ 36

9.
(
x− 3

5

)2

11. (x− 6)2

13. (x+ 6)2

15. (x+ 9)2

17.
(
x− 1

2

)2
+ 31

4

19.
(
x− 5

2

)2
− 41

4

21. (x+ 1)2 − 7

23.
(
x− 9

2

)2
− 69

4

25. −2
(
x+ 9

4

)2
+ 57

8

27. 5
(
x+ 1

2

)2
+ 15

4

29. 5
(
x+ 7

10

)2
− 109

20

31. −1
(
x+ 1

2

)2
+ 17

4

33.
(5

4 ,
49
8

)

35.
(
−1

2 , 2
)

37.
(
−1

4 ,
31
4

)

39. x = − 7
10

41. x = −5
4

43. x = 1
10

45. f(x) = (x− 4)2 − 4

x
10

y
10

x=4

(4,−4)(4,−4)

f(x)=x2−8x+12

Domain = R, Range = [−4,∞)
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47. f(x) = (x+ 3)2 − 6

x
10

y
10

f(x)=x2+6x+3

x=−3

(−3,−6)(−3,−6)

Domain = R, Range = [−6,∞)

49. f(x) = (x− 1)2 − 7

x
10

y
10
f(x)=x2−2x−6

x=1

(1,−7)(1,−7)

Domain = R, Range = [−7,∞)

51. f(x) = −(x− 3)2 + 5

x
10

y
10

f(x)=−x2+6x−4

x=3

(3,5)(3,5)

Domain = R, Range = (−∞, 5]

53. f(x) = −(x+ 5)2 + 4

x
10

y
10

f(x)=−x2−10x−21

x=−5

(−5,4)(−5,4)

Domain = R, Range = (−∞, 4]
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55. f(x) = 2(x− 2)2 − 5

x
10

y
10 f(x)=2x2−8x+3

x=2

(2,−5)(2,−5)

Domain = R, Range = [−5,∞)

57. f(x) = −2(x+ 3)2 + 5

x
10

y
10

f(x)=−2x2−12x−13

x=−3

(−3,5)(−3,5)

Domain = R, Range = (−∞, 5]

59. f(x) = (1/2)(x− 4)2 − 3

x
10

y
10

f(x)=(1/2)x2−4x+5

x=4

(4,−3)(4,−3)

Domain = R, Range = [−3,∞)

61. f(x) = (−1/2)(x+ 3)2 + 5

x
10

y
10

f(x)=(−1/2)x2−3x+1/2
x=−3

(−3,5)(−3,5)

Domain = R, Range = (−∞, 5])
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63. f(x) = 2(x+ 7/4)2 − 65/8

x
10

y
10 f(x)=2x2+7x−2

x=−7/4

(−7/4,−65/8)(−7/4,−65/8)

Domain = R, Range = [−65/8,∞)

65. f(x) = −3(x− 4/3)2 + 7/3

x
10

y
10

f(x)=−3x2+8x−3
x=4/3

(4/3,7/3)(4/3,7/3)

Domain = R, Range = (−∞, 7/3]

67. (−∞, 5] = {x |x ≤ 5}

69.
[16

5 ,∞
)

=
{
x

∣∣∣∣x ≥
16
5

}

71. (−∞,−6] = {x |x ≤ −6}

73. 382

75. 414

77. −5x2 − 36x− 62

79. 64x2 − 20x− 2
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5.3 Exercises

In Exercises 1-8, factor the given qua-
dratic polynomial.

1. x2 + 9x+ 14

2. x2 + 6x+ 5

3. x2 + 10x+ 9

4. x2 + 4x− 21

5. x2 − 4x− 5

6. x2 + 7x− 8

7. x2 − 7x+ 12

8. x2 + 5x− 24

In Exercises 9-16, find the zeros of the
given quadratic function.

9. f(x) = x2 − 2x− 15

10. f(x) = x2 + 4x− 32

11. f(x) = x2 + 10x− 39

12. f(x) = x2 + 4x− 45

13. f(x) = x2 − 14x+ 40

14. f(x) = x2 − 5x− 14

15. f(x) = x2 + 9x− 36

16. f(x) = x2 + 11x− 26

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

In Exercises 17-22, perform each of the
following tasks for the quadratic func-
tions.

i. Load the function into Y1 of the Y= of
your graphing calculator. Adjust the
window parameters so that the vertex
is visible in the viewing window.

ii. Set up a coordinate system on your
homework paper. Label and scale each
axis with xmin, xmax, ymin, and ymax.
Make a reasonable copy of the image
in the viewing window of your calcu-
lator on this coordinate system and
label it with its equation.

iii. Use the zero utility on your graph-
ing calculator to find the zeros of the
function. Use these results to plot
the x-intercepts on your coordinate
system and label them with their co-
ordinates.

iv. Use a strictly algebraic technique (no
calculator) to find the zeros of the
given quadratic function. Show your
work next to your coordinate system.
Be stubborn! Work the problem until
your algebraic and graphically zeros
are a reasonable match.

17. f(x) = x2 + 5x− 14

18. f(x) = x2 + x− 20

19. f(x) = −x2 + 3x+ 18

20. f(x) = −x2 + 3x+ 40

21. f(x) = x2 − 16x− 36

22. f(x) = x2 + 4x− 96
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In Exercises 23-30, perform each of the
following tasks for the given quadratic
function.

i. Set up a coordinate system on graph
paper. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Use the technique of completing the
square to place the quadratic func-
tion in vertex form. Plot the vertex
on your coordinate system and label
it with its coordinates. Draw the axis
of symmetry on your coordinate sys-
tem and label it with its equation.

iii. Use a strictly algebraic technique (no
calculators) to find the x-intercepts
of the graph of the given quadratic
function. Plot them on your coor-
dinate system and label them with
their coordinates.

iv. Find the y-intercept of the graph of
the quadratic function. Plot the y-
intercept on your coordinate system
and its mirror image across the axis
of symmetry, then label these points
with their coordinates.

v. Using all the information plotted, draw
the graph of the quadratic function
and label it with the vertex form of
its equation. Use interval notation to
describe the domain and range of the
quadratic function.

23. f(x) = x2 + 2x− 8

24. f(x) = x2 − 6x+ 8

25. f(x) = x2 + 4x− 12

26. f(x) = x2 + 8x+ 12

27. f(x) = −x2 − 2x+ 8

28. f(x) = −x2 − 2x+ 24

29. f(x) = −x2 − 8x+ 48

30. f(x) = −x2 − 8x+ 20

In Exercises 31-38, factor the given qua-
dratic polynomial.

31. 42x2 + 5x− 2

32. 3x2 + 7x− 20

33. 5x2 − 19x+ 12

34. 54x2 − 3x− 1

35. −4x2 + 9x− 5

36. 3x2 − 5x− 12

37. 2x2 − 3x− 35

38. −6x2 + 25x+ 9

In Exercises 39-46, find the zeros of
the given quadratic functions.

39. f(x) = 2x2 − 3x− 20

40. f(x) = 2x2 − 7x− 30

41. f(x) = −2x2 + x+ 28

42. f(x) = −2x2 + 15x− 22

43. f(x) = 3x2 − 20x+ 12

44. f(x) = 4x2 + 11x− 20

45. f(x) = −4x2 + 4x+ 15

46. f(x) = −6x2 − x+ 12
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In Exercises 47-52, perform each of the
following tasks for the given quadratic
functions.

i. Load the function into Y1 of the Y= of
your graphing calculator. Adjust the
window parameters so that the vertex
is visible in the viewing window.

ii. Set up a coordinate system on your
homework paper. Label and scale each
axis with xmin, xmax, ymin, and ymax.
Make a reasonable copy of the image
in the viewing window of your calcu-
lator on this coordinate system and
label it with its equation.

iii. Use the zero utility on your graph-
ing calculator to find the zeros of the
function. Use these results to plot
the x-intercepts on your coordinate
system and label them with their co-
ordinates.

iv. Use a strictly algebraic technique (no
calculator) to find the zeros of the
given quadratic function. Show your
work next to your coordinate system.
Be stubborn! Work the problem until
your algebraic and graphically zeros
are a reasonable match.

47. f(x) = 2x2 + 3x− 35

48. f(x) = 2x2 − 5x− 42

49. f(x) = −2x2 + 5x+ 33

50. f(x) = −2x2 − 5x+ 52

51. f(x) = 4x2 − 24x− 13

52. f(x) = 4x2 + 24x− 45

In Exercises 53-60, perform each of the
following tasks for the given quadratic
functions.

i. Set up a coordinate system on graph
paper. Label and scale each axis. Re-

member to draw all lines with a ruler.
ii. Use the technique of completing the

square to place the quadratic func-
tion in vertex form. Plot the vertex
on your coordinate system and label
it with its coordinates. Draw the axis
of symmetry on your coordinate sys-
tem and label it with its equation.

iii. Use a strictly algebraic method (no
calculators) to find the x-intercepts
of the graph of the quadratic func-
tion. Plot them on your coordinate
system and label them with their co-
ordinates.

iv. Find the y-intercept of the graph of
the quadratic function. Plot the y-
intercept on your coordinate system
and its mirror image across the axis
of symmetry, then label these points
with their coordinates.

v. Using all the information plotted, draw
the graph of the quadratic function
and label it with the vertex form of
its equation. Use interval notation to
describe the domain and range of the
quadratic function.

53. f(x) = 2x2 − 8x− 24

54. f(x) = 2x2 − 4x− 6

55. f(x) = −2x2 − 4x+ 16

56. f(x) = −2x2 − 16x+ 40

57. f(x) = 3x2 + 18x− 48

58. f(x) = 3x2 + 18x− 216

59. f(x) = 2x2 + 10x− 48

60. f(x) = 2x2 − 10x− 100
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In Exercises 61-66, Use the graph of
f(x) = ax2 + bx+ c shown to find all so-
lutions of the equation f(x) = 0. (Note:
Every solution is an integer.)

61.

x

y

5

5

62.

x

y

5

5

63.

x

y

5

5

64.

x

y

5

5

65.

x

y

5

5

66.

x

y

5

5



Section 5.3 Zeros of the Quadratic 477

Version: Fall 2007

5.3 Answers

1. (x+ 2)(x+ 7)

3. (x+ 9)(x+ 1)

5. (x− 5)(x+ 1)

7. (x− 4)(x− 3)

9. Zeros: x = −3, x = 5

11. Zeros: x = −13, x = 3

13. Zeros: x = 4, x = 10

15. Zeros: x = −12, x = 3

17.

x
−10

10

y

−30

30
f(x)=x2−5x−14

(−7,0)(−7,0) (2,0)(2,0)

19.

x
−10 10

y

−30

30

f(x)=−x2+3x+18

(−3,0)(−3,0) (6,0)(6,0)

21.

x
−10

30

y

−100

100
f(x)=x2−16x−36

(−2,0)(−2,0) (18,0)(18,0)
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23. Domain = (−∞,∞),
Range = [−9,∞)

x
10

y
10 f(x)=(x+1)2−9
x=−1

(−1,−9)(−1,−9)

(−4,0)(−4,0) (2,0)(2,0)

(0,−8)(0,−8)(−2,−8)(−2,−8)

25. Domain = (−∞,∞),
Range = [−16,∞)

x
10

y
20 f(x)=(x+2)2−16

x=−2

(−2,−16)(−2,−16)

(−6,0)(−6,0) (2,0)(2,0)

(0,−12)(0,−12)(−4,−12)(−4,−12)

27. Domain = (−∞,∞),
Range = (−∞, 9]

x
10

y
20

f(x)=−(x+1)2+9

x=−1

(−1,9)(−1,9)

(−4,0)(−4,0) (2,0)(2,0)

(0,8)(0,8)(−2,8)(−2,8)

29. Domain = (−∞,∞),
Range = (−∞, 64]

x
20

y
100

f(x)=−(x+4)2+64

x=−4

(−4,64)(−4,64)

(−12,0)(−12,0) (4,0)(4,0)

(0,48)(0,48)(−8,48)(−8,48)

31. (7x+ 2)(6x− 1)

33. (x− 3)(5x− 4)

35. (4x− 5)(−x+ 1)

37. (2x+ 7)(x− 5)

39. Zeros: x = −5/2, x = 4

41. Zeros: x = −7/2, x = 4

43. Zeros: x = 2/3, x = 6
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45. Zeros: x = −3/2, x = 5/2

47.

x
−10

10

y

−50

50
f(x)=2x2+3x−35

(−5,0)(−5,0) (3.5,0)(3.5,0)

49.

x
−10 10

y

−50

50

f(x)=−2x2+5x+33

(−3,0)(−3,0) (5.5,0)(5.5,0)

51.

x
−10 10

y

−100

100
f(x)=4x2−24x−13

(−0.5,0)(−0.5,0) (6.5,0)(6.5,0)

53. Domain = (−∞,∞),
Range = [−32,∞)

x
10

y
50

f(x)=2(x−2)2−32

x=2

(2,−32)(2,−32)

(−2,0)(−2,0) (6,0)(6,0)

(0,−24)(0,−24) (4,−24)(4,−24)

55. Domain = (−∞,∞),
Range = (−∞, 18]

x
10

y
20

f(x)=−2(x+1)2+18
x=−1

(−1,18)(−1,18)

(−4,0)(−4,0) (2,0)(2,0)

(0,16)(0,16)(−2,16)(−2,16)
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57. Domain = (−∞,∞),
Range = [−75,∞)

x
20

y
100 f(x)=3(x+3)2−75

x=−3

(−3,−75)(−3,−75)

(−8,0)(−8,0) (2,0)(2,0)

(0,−48)(0,−48)(−6,−48)(−6,−48)

59. Domain = (−∞,∞),
Range = [−121/2,∞)

x
20

y
100 f(x)=2(x+5/2)2−121/2

x=−5/2

(−5/2,−121/2)(−5/2,−121/2)

(−8,0)(−8,0) (3,0)(3,0)

(0,−48)(0,−48)(−5,−48)(−5,−48)

61. −2, 3

63. −3, 0

65. −3, 0
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5.4 Exercises

In Exercises 1-8, find all real solutions
of the given equation. Use a calculator to
approximate the answers, correct to the
nearest hundredth (two decimal places).

1. x2 = 36

2. x2 = 81

3. x2 = 17

4. x2 = 13

5. x2 = 0

6. x2 = −18

7. x2 = −12

8. x2 = 3

In Exercises 9-16, find all real solutions
of the given equation. Use a calculator to
approximate your answers to the nearest
hundredth.

9. (x− 1)2 = 25

10. (x+ 3)2 = 9

11. (x+ 2)2 = 0

12. (x− 3)2 = −9

13. (x+ 6)2 = −81

14. (x+ 7)2 = 10

15. (x− 8)2 = 15

16. (x+ 10)2 = 37

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

In Exercises 17-28, perform each of the
following tasks for the given quadratic
function.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Remember to draw all lines with
a ruler.

ii. Place the quadratic function in ver-
tex form. Plot the vertex on your co-
ordinate system and label it with its
coordinates. Draw the axis of sym-
metry on your coordinate system and
label it with its equation.

iii. Use the quadratic formula to find the
x-intercepts of the parabola. Use a
calculator to approximate each inter-
cept, correct to the nearest tenth, and
use these approximations to plot the
x-intercepts on your coordinate sys-
tem. However, label each x-intercept
with its exact coordinates.

iv. Plot the y-intercept on your coordi-
nate system and its mirror image across
the axis of symmetry and label each
with their coordinates.

v. Using all of the information on your
coordinate system, draw the graph of
the parabola, then label it with the
vertex form of the function. Use in-
terval notation to state the domain
and range of the quadratic function.

17. f(x) = x2 − 4x− 8

18. f(x) = x2 + 6x− 1

19. f(x) = x2 + 6x− 3

20. f(x) = x2 − 8x+ 1

21. f(x) = −x2 + 2x+ 10
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22. f(x) = −x2 − 8x− 8

23. f(x) = −x2 − 8x− 9

24. f(x) = −x2 + 10x− 20

25. f(x) = 2x2 − 20x+ 40

26. f(x) = 2x2 − 16x+ 12

27. f(x) = −2x2 + 16x+ 8

28. f(x) = −2x2 − 24x− 52

In Exercises 29-32, perform each of the
following tasks for the given quadratic
equation.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Remember to draw all lines with
a ruler.

ii. Show that the discriminant is nega-
tive.

iii. Use the technique of completing the
square to put the quadratic function
in vertex form. Plot the vertex on
your coordinate system and label it
with its coordinates. Draw the axis of
symmetry on your coordinate system
and label it with its equation.

iv. Plot the y-intercept and its mirror
image across the axis of symmetry
on your coordinate system and label
each with their coordinates.

v. Because the discriminant is negative
(did you remember to show that?),
there are no x-intercepts. Use the
given equation to calculate one addi-
tional point, then plot the point and
its mirror image across the axis of
symmetry and label each with their
coordinates.

vi. Using all of the information on your
coordinate system, draw the graph of
the parabola, then label it with the

vertex form of function. Use interval
notation to describe the domain and
range of the quadratic function.

29. f(x) = x2 + 4x+ 8

30. f(x) = x2 − 4x+ 9

31. f(x) = −x2 + 6x− 11

32. f(x) = −x2 − 8x− 20

In Exercises 33-36, perform each of the
following tasks for the given quadratic
function.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Remember to draw all lines with
a ruler.

ii. Use the discriminant to help deter-
mine the value of k so that the graph
of the given quadratic function has
exactly one x-intercept.

iii. Substitute this value of k back into
the given quadratic function, then use
the technique of completing the square
to put the quadratic function in ver-
tex form. Plot the vertex on your co-
ordinate system and label it with its
coordinates. Draw the axis of sym-
metry on your coordinate system and
label it with its equation.

iv. Plot the y-intercept and its mirror
image across the axis of symmetry
and label each with their coordinates.

v. Use the equation to calculate an addi-
tional point on either side of the axis
of symmetry, then plot this point and
its mirror image across the axis of
symmetry and label each with their
coordinates.

vi. Using all of the information on your
coordinate system, draw the graph
of the parabola, then label it with
the vertex form of the function. Use
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interval notation to describe the do-
main and range of the quadratic func-
tion.

33. f(x) = x2 − 4x+ 4k

34. f(x) = x2 + 6x+ 3k

35. f(x) = kx2 − 16x− 32

36. f(x) = kx2 − 24x+ 48

37. Find all values of k so that the graph
of the quadratic function f(x) = kx2 −
3x+ 5 has exactly two x-intercepts.

38. Find all values of k so that the graph
of the quadratic function f(x) = 2x2 +
7x− 4k has exactly two x-intercepts.

39. Find all values of k so that the graph
of the quadratic function f(x) = 2x2 −
x+ 5k has no x-intercepts.

40. Find all values of k so that the graph
of the quadratic function f(x) = kx2 −
2x− 4 has no x-intercepts.

In Exercises 41-50, find all real solu-
tions, if any, of the equation f(x) = b.

41. f(x) = 63x2 + 74x− 1; b = 8

42. f(x) = 64x2 + 128x+ 64; b = 0

43. f(x) = x2 − x− 5; b = 2

44. f(x) = 5x2 − 5x; b = 3

45. f(x) = 4x2 + 4x− 1; b = −2

46. f(x) = 2x2 − 9x− 3; b = −1

47. f(x) = 2x2 + 4x+ 6; b = 0

48. f(x) = 24x2 − 54x+ 27; b = 0

49. f(x) = −3x2 + 2x− 13; b = −5

50. f(x) = x2 − 5x− 7; b = 0

In Exercises 51-60, find all real solu-
tions, if any, of the quadratic equation.

51. −2x2 + 7 = −3x

52. −x2 = −9x+ 7

53. x2 − 2 = −3x

54. 81x2 = −162x− 81

55. 9x2 + 81 = −54x

56. −30x2 − 28 = −62x

57. −x2 + 6 = 7x

58. −8x2 = 4x+ 2

59. 4x2 + 3 = −x

60. 27x2 = −66x+ 16

In Exercises 61-66, find all of the x-
intercepts, if any, of the given function.

61. f(x) = −4x2 − 4x− 5

62. f(x) = 49x2 − 28x+ 4

63. f(x) = −56x2 + 47x+ 18

64. f(x) = 24x2 + 34x+ 12

65. f(x) = 36x2 + 96x+ 64

66. f(x) = 5x2 + 2x+ 3

In Exercises 67-74, determine the num-
ber of real solutions of the equation.

67. 9x2 + 6x+ 1 = 0
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68. 7x2 − 12x+ 7 = 0

69. −6x2 + 4x− 7 = 0

70. −8x2 + 11x− 4 = 0

71. −5x2 − 10x− 5 = 0

72. 6x2 + 11x+ 2 = 0

73. −7x2 − 4x+ 5 = 0

74. 6x2 + 10x+ 4 = 0
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5.4 Answers

1. x = ±6

3. x = ±
√

17 = ±4.12

5. x = 0

7. No real solutions.

9. x = −4 or x = 6

11. x = −2

13. No real solutions.

15. x = 8±
√

15 ≈ 4.13, 11.87

17. Domain = (−∞,∞),
Range = [−12,∞)

x
10

y
20

f(x)=(x−2)2−12

x=2

(2,−12)(2,−12)

((4−
√

48)/2,0)((4−
√

48)/2,0) ((4+
√

48)/2,0)((4+
√

48)/2,0)

(0,−8)(0,−8) (4,−8)(4,−8)

19. Domain = (−∞,∞),
Range = [−12,∞)

x
10

y
20 f(x)=(x+3)2−12

x=−3

(−3,−12)(−3,−12)

((−6−
√

48)/2,0)((−6−
√

48)/2,0) ((−6+
√

48)/2,0)((−6+
√

48)/2,0)

(0,−3)(0,−3)(−6,−3)(−6,−3)

21. Domain = (−∞,∞),
Range = (−∞, 11]

x
10

y
20

f(x)=−(x−1)2+11

x=1
(1,11)(1,11)

((−2+
√

44)/(−2),0)((−2+
√

44)/(−2),0) ((−2−
√

44)/(−2),0)((−2−
√

44)/(−2),0)

(0,10)(0,10) (2,10)(2,10)
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23. Domain = (−∞,∞),
Range = (−∞, 7]

x
10

y
20

f(x)=−(x+4)2+7

x=−4

(−4,7)(−4,7)

((8+
√

28)/(−2),0)((8+
√

28)/(−2),0) ((8−
√

28)/(−2),0)((8−
√

28)/(−2),0)

(0,−9)(0,−9)(−8,−9)(−8,−9)

25. Domain = (−∞,∞),
Range = [−10,∞)

x
20

y
50

f(x)=2(x−5)2−10

x=5

(5,−10)(5,−10)

((20−
√

80)/4,0)((20−
√

80)/4,0) ((20+
√

80)/4,0)((20+
√

80)/4,0)

(0,40)(0,40) (10,40)(10,40)

27. Domain = (−∞,∞),
Range = (−∞, 40]

x
20

y
50

f(x)=−2(x−4)2+40

x=4

(4,40)(4,40)

((−16+
√

320)/(−4),0)((−16+
√

320)/(−4),0) ((−16−
√

320)/(−4),0)((−16−
√

320)/(−4),0)
(0,8)(0,8) (8,8)(8,8)

29. Domain = (−∞,∞),
Range = [4,∞)

x
10

y
20 f(x)=(x+2)2+4

x=−2

(−2,4)(−2,4)

(0,8)(0,8)(−4,8)(−4,8)
(−3,5)(−3,5) (−1,5)(−1,5)
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31. Domain = (−∞,∞),
Range = (−∞,−2]

x
10

y
20

f(x)=−(x−3)2−2

x=3

(3,−2)(3,−2)

(0,−11)(0,−11) (6,−11)(6,−11)

(2,−3)(2,−3) (4,−3)(4,−3)

33. k = 1, Domain = (−∞,∞),
Range = [0,∞)

x
10

y
20

f(x)=(x−2)2

x=2

(2,0)(2,0)

(0,4)(0,4) (4,4)(4,4)

(−2,16)(−2,16) (6,16)(6,16)

35. k = −2, Domain = (−∞,∞),
Range = (−∞, 0]

x
10

y
50

f(x)=−2(x+4)2

x=−4

(−4,0)(−4,0)

(0,−32)(0,−32)(−8,−32)(−8,−32)

(−6,−8)(−6,−8) (−2,−8)(−2,−8)

37. {k : k < 9/20}

39. {k : k > 1/40}

41. −9
7 , 1

9

43. 1+
√

29
2 , 1−

√
29

2

45. −1
2

47. no real solutions

49. no real solutions

51. 3−
√

65
4 , 3+

√
65

4

53. −3−
√

17
2 , −3+

√
17

2

55. −3

57. −7+
√

73
2 , −7−

√
73

2

59. no real solutions

61. no x-intercepts

63. (9
8 , 0), (−2

7 , 0)

65. (−4
3 , 0)
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67. 1

69. 0

71. 1

73. 2
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5.5 Exercises

In Exercises 1-12, write down the for-
mula d = vt and solve for the unknown
quantity in the problem. Once that is
completed, substitute the known quan-
tities in the result and simplify. Make
sure to check that your units cancel and
provide the appropriate units for your so-
lution.

1. If Martha maintains a constant speed
of 30 miles per hour, how far will she
travel in 5 hours?

2. If Jamal maintains a constant speed
of 25 miles per hour, how far will he
travel in 5 hours?

3. If Arturo maintains a constant speed
of 30 miles per hour, how long will it take
him to travel 120 miles?

4. If Mei maintains a constant speed of
25 miles per hour, how long will it take
her to travel 150 miles?

5. If Allen maintains a constant speed
and travels 250 miles in 5 hours, what is
is his constant speed?

6. If Jane maintains a constant speed
and travels 300 miles in 6 hours, what is
is her constant speed?

7. If Jose maintains a constant speed of
15 feet per second, how far will he travel
in 5 minutes?

8. If Tami maintains a constant speed
of 1.5 feet per second, how far will she
travel in 4 minutes?

9. If Carmen maintains a constant speed

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

of 80 meters per minute, how far will she
travel in 600 seconds?

10. If Alphonso maintains a constant
speed of 15 feet per second, how long will
it take him to travel 1 mile? Note: 1 mile
equals 5280 feet.

11. If Hoshi maintains a constant speed
of 200 centimeters per second, how long
will it take her to travel 20 meters? Note:
100 centimeters equals 1 meter.

12. If Maeko maintains a constant speed
and travels 5 miles in 12 minutes, what
is her speed in miles per hour?

In Exercises 13-18, a plot of speed v
versus time t is presented.
i. Make an accurate duplication of the

plot on graph paper. Label and scale
each axis. Mark the units on each
axis.

ii. Use the graph to determine the dis-
tance traveled over the time period
[0, 5], using the time units given on
the graph.

13.

t (s)

v (ft/s)

v

0 50

30

50



522 Chapter 5 Quadratic Functions

Version: Fall 2007

14.

t (h)

v (mi/h)

v

0 50

40

20

15.

t (s)

v (m/s)

v

0 50

40

20

16.

t (s)

v (ft/s)

v

0 50

40

20

17.

t (h)

v (mi/h)
v

0 50

40

20

18.

t (s)

v (m/s)

v

0 50

40

20

19. You’re told that a car moves with
a constant acceleration of 7.5 ft/s2. In
your own words, explain what this means.

20. You’re told that an object will fall
on a distant planet with constant accel-
eration 6.5 m/s2. In your own words, ex-
plain what this means.

21. You’re told that the acceleration of
a car is −18 ft/s2. In your own words,
explain what this means.
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22. An observer on a distant planet throws
an object into the air and as it moves
upward he reports that the object has
a constant acceleration of −4.5 m/s2. In
your own words, explain what this means.

In Exercises 23-28, perform each of the
following tasks.

i. Solve the equation v = v0 +at for the
unknown quantity.

ii. Substitute the known quantities (with
units) into your result, then simplify.
Make sure the units cancel and pro-
vide appropriate units for your solu-
tion.

23. A rocket accelerates from rest with
constant acceleration 15.8 m/s2. What
will be the speed of the rocket after 3
minutes?

24. A stone is dropped from rest on
a distant planet and it accelerates to-
wards the ground with constant acceler-
ation 3.8 ft/s2. What will be the speed
of the stone after 2 minutes?

25. A stone is thrown downward on a
distant planet with an initial speed of
20 ft/s. If the stone experiences constant
acceleration of 32 ft/s2, what will be the
speed of the stone after 1 minute?

26. A ball is hurled upward with an ini-
tial speed of 80 m/s. If the ball experi-
ences a constant acceleration of−9.8 m/s2,
what will be the speed of the ball at the
end of 5 seconds?

27. An object is shot into the air with
an initial speed of 100 m/s. If the ob-
ject experiences constant deceleration of
9.8 m/s2, how long will it take the ball to
reach its maximum height?

28. An object is released from rest on
a distant planet and after 5 seconds, its
speed is 98 m/s. If the object falls with
constant acceleration, determine the ac-
celeration of the object.

In Exercises 29-42, use the appropri-
ate equation of motion, either v = v0+at
or x = x0 + v0t + (1/2)at2 or both, to
solve the question posed in the exercise.

i. Select the appropriate equation of mo-
tion and solve for the unknown quan-
tity.

ii. Substitute the known quantities (with
their units) into your result and sim-
plify. Check that cancellation of units
provide units appropriate for your so-
lution.

iii. Find a decimal approximation for your
answer.

29. A rocket with initial velocity 30 m/s
moves along a straight line with constant
acceleration 2.5 m/s2. Find the velocity
and the distance traveled by the rocket
at the end of 10 seconds.

30. A car is traveling at 88 ft/s when
it applies the brakes and begins to slow
with constant deceleration of 5 ft/s2. What
is its speed and how far has it traveled
at the end of 5 seconds?

31. A car is traveling at 88 ft/s when it
applies the brakes and slows to 58 ft/s in
10 seconds. Assuming constant deceler-
ation, find the deceleration and the dis-
tance traveled by the car in the 10 second
time interval. Hint: Compute the decel-
eration first.
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32. A stone is hurled downward from
above the surface of a distant planet with
initial speed 45 m/s. At then end of 10
seconds, the velocity of the stone is 145 m/s.
Assuming constant acceleration, find the
acceleration of the stone and the distance
traveled in the 10 second time period.

33. An object is shot into the air from
the surface of the earth with an initial
velocity of 180 ft/s. Find the maximum
height of the object and the time it takes
the object to reach that maximum height.
Hint: The acceleration due to gravity
near the surface of the earth is well known.

34. An object is shot into the air from
the surface of a distant planet with an
initial velocity of 180 m/s. Find the max-
imum height of the object and the time
it takes the object to reach that maxi-
mum height. Assume that the accelera-
tion due to gravity on this distant planet
is 5.8 m/s2. Hint: Calculate the time to
the maximum height first.

35. A car is traveling down the high-
way at 55 mi/h when the driver spots a
slide of rocks covering the road ahead
and hits the brakes, providing a constant
deceleration of 12 ft/s2. How long does it
take the car to come to a halt and how
far does it travel during this time period?

36. A car is traveling down the high-
way in Germany at 81 km/h when the
driver spots that traffic is stopped in the
road ahead and hits the brakes, provid-
ing a constant deceleration of 2.3 m/s2.
How long does it take the car to come
to a halt and how far does it travel dur-
ing this time period? Note: 1 kilometer
equals 1000 meters.

37. An object is released from rest at
some distance over the surface of the earth.
How far (in meters) will the object fall
in 5 seconds and what will be its veloc-
ity at the end of this 5 second time pe-
riod? Hint: You should know the accel-
eration due to gravity near the surface of
the earth.

38. An object is released from rest at
some distance over the surface of a dis-
tant planet. How far (in meters) will the
object fall in 5 seconds and what will be
its velocity at the end of this 5 second
time period? Assume the acceleration
due to gravity on the distant planet is
13.5 m/s2.

39. An object is released from rest at
a distance of 352 feet over the surface
of the earth. How long will it take the
object to impact the ground?

40. An object is released from rest at
a distance of 400 meters over the surface
of a distant planet. How long will it take
the object to impact the ground? As-
sume that the acceleration due to gravity
on the distant planet equals 5.3 m/s2.

41. On earth, a ball is thrown upward
from an initial height of 5 meters with an
initial velocity of 100 m/s. How long will
it take the ball to return to the ground?

42. On earth, a ball is thrown upward
from an initial height of 5 feet with an
initial velocity of 100 ft/s. How long will
it take the ball to return to the ground?
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A ball is thrown into the air near the sur-
face of the earth. In Exercises 43-46,
the initial height of the ball and the ini-
tial velocity of the ball are given. Com-
plete the following tasks.

i. Use y = y0 + v0t + (1/2)at2 to set
up a formula for the height y of the
ball as a function of time t. Use the
appropriate constant for the acceler-
ation due to gravity near the surface
of the earth.

ii. Load the equation from the previous
part into Y1 in your graphing calcu-
lator. Adjust your viewing window
so that both the vertex and the time
when the ball returns to the ground
are visible. Copy the image onto your
homework paper. Label and scale each
axis with xmin, xmax, ymin, and ymax.

iii. Use the zero utility in the CALC menu
of your graphing calculator to deter-
mine the time when the ball returns
to the ground. Record this answer
in the appropriate location on your
graph.

iv. Use the quadratic formula to deter-
mine the time the ball returns to the
ground. Use your calculator to find a
decimal approximation of your solu-
tion. It should agree with that found
using the zero utility on your graph-
ing calculator. Be stubborn! Check
your work until the answers agree.

43. y0 = 50 ft, v0 = 120 ft/s.

44. y0 = 30 m, v0 = 100 m/s.

45. y0 = 20 m, v0 = 110 m/s.

46. y0 = 100 ft, v0 = 200 ft/s.

47. A rock is thrown upward at an ini-
tial speed of 64 ft/s. How many sec-
onds will it take the rock to rise 61 feet?
Round your answer to the nearest hun-
dredth of a second.

48. A penny is thrown downward from
the top of a tree at an initial speed of
28 ft/s. How many seconds will it take
the penny to fall 289 feet? Round your
answer to the nearest hundredth of a sec-
ond.

49. A water balloon is thrown down-
ward from the roof of a building at an
initial speed of 24 ft/s. The building is
169 feet tall. How many seconds will it
take the water balloon to hit the ground?
Round your answer to the nearest hun-
dredth of a second.

50. A rock is thrown upward at an ini-
tial speed of 60 ft/s. How many sec-
onds will it take the rock to rise 51 feet?
Round your answer to the nearest hun-
dredth of a second.

51. A ball is thrown upward from a
height of 42 feet at an initial speed of
63 ft/s. How many seconds will it take
the ball to hit the ground? Round your
answer to the nearest hundredth of a sec-
ond.

52. A rock is thrown upward from a
height of 32 feet at an initial speed of
25 ft/s. How many seconds will it take
the rock to hit the ground? Round your
answer to the nearest hundredth of a sec-
ond.
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53. A penny is thrown downward from
the top of a tree at an initial speed of
16 ft/s. The tree is 68 feet tall. How
many seconds will it take the penny to
hit the ground? Round your answer to
the nearest hundredth of a second.

54. A penny is thrown downward off of
the edge of a cliff at an initial speed of
32 ft/s. How many seconds will it take
the penny to fall 210 feet? Round your
answer to the nearest hundredth of a sec-
ond.
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5.5 Answers

1. 150 miles

3. 4 hours

5. 50 miles per hour

7. 4500 feet

9. 800 meters

11. 10 seconds

13. The distance traveled is 150 feet.

150 ft

t (s)

v (ft/s)

v

0 50

30

50

15. The distance traveled is 100 me-
ters.

100 m

t (s)

v (m/s)

v

0 50

40

20

17. The distance traveled is 175 miles.

175 mi

t (h)

v (mi/h)
v

0 50

40

20

19. It means that the velocity of the
car increases at a rate of 7.5 feet per sec-
ond every second.

21. It means that the velocity of the
car is decreasing at a rate of 18 feet per
second every second.

23. 2, 844 m/s

25. 1, 940 ft/s

27. Approximately 10.2 seconds.

29. Velocity = 55 m/s,
Distance traveled = 425 m.

31. Acceleration = −3 ft/s2,
Distance traveled = 730 ft.

33. Time to max height = 5.625 s,
Max height = 506.25 ft.

35. Time to stop ≈ 6.72 s,
Distance traveled ≈ 271 ft.
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37. Distance = 122.5 m,
Velocity = −49 m/s.

39. Time ≈ 4.69 s

41. Time ≈ 20.5 s

43.

t (s)0 10

y (ft)

−100

400

y=50+120t−16t2

(7.895781,0)(7.895781,0)

45.

t (s)0 30

y (m)

−200

1000

y=20+110t−4.9t2

(22.629349,0)(22.629349,0)

47. 1.57 seconds

49. 2.59 seconds

51. 4.52 seconds

53. 1.62 seconds
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5.6 Exercises

1. Find the exact maximum value of
the function f(x) = −x2 − 3x.

2. Find the exact maximum value of
the function f(x) = −x2 − 5x− 2.

3. Find the vertex of the graph of the
function f(x) = −3x2 − x− 6.

4. Find the range of the function f(x) =
−2x2 − 9x+ 2.

5. Find the exact maximum value of
the function f(x) = −3x2 − 9x− 4.

6. Find the equation of the axis of sym-
metry of the graph of the function f(x) =
−x2 − 5x− 9.

7. Find the vertex of the graph of the
function f(x) = 3x2 + 3x+ 9.

8. Find the exact minimum value of the
function f(x) = x2 + x+ 1.

9. Find the exact minimum value of the
function f(x) = x2 + 9x.

10. Find the range of the function f(x) =
5x2 − 3x− 4.

11. Find the range of the function f(x) =
−3x2 + 8x− 2.

12. Find the exact minimum value of
the function f(x) = 2x2 + 5x− 6.

13. Find the range of the function f(x) =
4x2 + 9x− 8.

14. Find the exact maximum value of
the function f(x) = −3x2 − 8x− 1.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

15. Find the equation of the axis of
symmetry of the graph of the function
f(x) = −4x2 − 2x+ 9.

16. Find the exact minimum value of
the function f(x) = 5x2 + 2x− 3.

17. A ball is thrown upward at a speed
of 8 ft/s from the top of a 182 foot high
building. How many seconds does it take
for the ball to reach its maximum height?
Round your answer to the nearest hun-
dredth of a second.

18. A ball is thrown upward at a speed
of 9 ft/s from the top of a 143 foot high
building. How many seconds does it take
for the ball to reach its maximum height?
Round your answer to the nearest hun-
dredth of a second.

19. A ball is thrown upward at a speed
of 52 ft/s from the top of a 293 foot high
building. What is the maximum height
of the ball? Round your answer to the
nearest hundredth of a foot.

20. A ball is thrown upward at a speed
of 23 ft/s from the top of a 71 foot high
building. What is the maximum height
of the ball? Round your answer to the
nearest hundredth of a foot.

21. Find two numbers whose sum is 20
and whose product is a maximum.

22. Find two numbers whose sum is 36
and whose product is a maximum.

23. Find two numbers whose difference
is 12 and whose product is a minimum.
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24. Find two numbers whose difference
is 24 and whose product is a minimum.

25. One number is 3 larger than twice a
second number. Find two such numbers
so that their product is a minimum.

26. One number is 2 larger than 5 times
a second number. Find two such num-
bers so that their product is a minimum.

27. Among all pairs of numbers whose
sum is −10, find the pair such that the
sum of their squares is the smallest pos-
sible.

28. Among all pairs of numbers whose
sum is −24, find the pair such that the
sum of their squares is the smallest pos-
sible.

29. Among all pairs of numbers whose
sum is 14, find the pair such that the sum
of their squares is the smallest possible.

30. Among all pairs of numbers whose
sum is 12, find the pair such that the sum
of their squares is the smallest possible.

31. Among all rectangles having perime-
ter 40 feet, find the dimensions (length
and width) of the one with the greatest
area.

32. Among all rectangles having perime-
ter 100 feet, find the dimensions (length
and width) of the one with the greatest
area.

33. A farmer with 1700 meters of fenc-
ing wants to enclose a rectangular plot
that borders on a river. If no fence is re-
quired along the river, what is the largest
area that can be enclosed?

34. A rancher with 1500 meters of fenc-
ing wants to enclose a rectangular plot

that borders on a river. If no fence is re-
quired along the river, and the side par-
allel to the river is x meters long, find
the value of x which will give the largest
area of the rectangle.

35. A park ranger with 400 meters of
fencing wants to enclose a rectangular
plot that borders on a river. If no fence
is required along the river, and the side
parallel to the river is x meters long, find
the value of x which will give the largest
area of the rectangle.

36. A rancher with 1000 meters of fenc-
ing wants to enclose a rectangular plot
that borders on a river. If no fence is re-
quired along the river, what is the largest
area that can be enclosed?

37. Let x represent the demand (the
number the public will buy) for an object
and let p represent the object’s unit price
(in dollars). Suppose that the unit price
and the demand are linearly related by
the equation p = (−1/3)x+ 40.

a) Express the revenue R (the amount
earned by selling the objects) as a
function of the demand x.

b) Find the demand that will maximize
the revenue.

c) Find the unit price that will maxi-
mize the revenue.

d) What is the maximum revenue?

38. Let x represent the demand (the
number the public will buy) for an object
and let p represent the object’s unit price
(in dollars). Suppose that the unit price
and the demand are linearly related by
the equation p = (−1/5)x+ 200.

a) Express the revenue R (the amount
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earned by selling the objects) as a
function of the demand x.

b) Find the demand that will maximize
the revenue.

c) Find the unit price that will maxi-
mize the revenue.

d) What is the maximum revenue?

39. A point from the first quadrant is
selected on the line y = mx + b. Lines
are drawn from this point parallel to the
axes to form a rectangle under the line in
the first quadrant. Among all such rec-
tangles, find the dimensions of the rec-
tangle with maximum area. What is the
maximum area? Assume m < 0.

x

y

y=mx+b

(x,y)(x,y)

40. A rancher wishes to fence a rectan-
gular area. The east-west sides of the
rectangle will require stronger support
due to prevailing east-west storm winds.
Consequently, the cost of fencing for the
east-west sides of the rectangular area is
$18 per foot. The cost for fencing the
north-south sides of the rectangular area
is $12 per foot. Find the dimension of
the largest possible rectangular area that
can be fenced for $7200.
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5.6 Answers

1. 9
4

3.
(
−1

6 ,−
71
12

)

5. 11
4

7.
(
−1

2 ,
33
4

)

9. −81
4

11.
(
−∞, 10

3

]
=
{
x

∣∣∣∣x ≤
10
3

}

13.
[
−209

16 ,∞
)

=
{
x

∣∣∣∣x ≥ −
209
16

}

15. x = −1
4

17. 0.25

19. 335.25

21. 10 and 10

23. 6 and −6

25. 3/2 and −3/4

27. −5, −5

29. 7, 7

31. 10 feet by 10 feet

33. 361250 square meters

35. 200

37.

a) R = (−1/3)x2 + 40x

b) x = 60 objects

c) p = 20 dollars

d) R = $1200

39. x = −b/(2m), y = b/2, A = −b2/(4m)
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5.1 Exercises

In Exercises 1-6, sketch the image of
your calculator screen on your homework
paper. Label and scale each axis with
xmin, xmax, ymin, and ymax. Label
each graph with its equation. Remember
to use a ruler to draw all lines, including
axes.

1. Use your graphing calculator to sketch
the graphs of f(x) = x2, g(x) = 2x2, and
h(x) = 4x2 on one screen. Write a short
sentence explaining what you learned in
this exercise.

2. Use your graphing calculator to sketch
the graphs of f(x) = −x2, g(x) = −2x2,
and h(x) = −4x2 on one screen. Write a
short sentence explaining what you learned
in this exercise.

3. Use your graphing calculator to sketch
the graphs of f(x) = x2, g(x) = (x −
2)2, and h(x) = (x − 4)2 on one screen.
Write a short sentence explaining what
you learned in this exercise.

4. Use your graphing calculator to sketch
the graphs of f(x) = x2, g(x) = (x +
2)2, and h(x) = (x + 4)2 on one screen.
Write a short sentence explaining what
you learned in this exercise.

5. Use your graphing calculator to sketch
the graphs of f(x) = x2, g(x) = x2 +
2, and h(x) = x2 + 4 on one screen.
Write a short sentence explaining what
you learned in this exercise.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

6. Use your graphing calculator to sketch
the graphs of f(x) = x2, g(x) = x2 −
2, and h(x) = x2 − 4 on one screen.
Write a short sentence explaining what
you learned in this exercise.

In Exercises 7-14, write down the given
quadratic function on your homework pa-
per, then state the coordinates of the ver-
tex.

7. f(x) = −5(x− 4)2 − 5

8. f(x) = 5(x+ 3)2 − 7

9. f(x) = 3(x+ 1)2

10. f(x) = 7
5

(
x+ 5

9

)2
− 3

4

11. f(x) = −7(x− 4)2 + 6

12. f(x) = −1
2

(
x− 8

9

)2
+ 2

9

13. f(x) = 1
6

(
x+ 7

3

)2
+ 3

8

14. f(x) = −3
2

(
x+ 1

2

)2
− 8

9

In Exercises 15-22, state the equation
of the axis of symmetry of the graph of
the given quadratic function.

15. f(x) = −7(x− 3)2 + 1

16. f(x) = −6(x+ 8)2 + 1
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17. f(x) = −7
8

(
x+ 1

4

)2
+ 2

3

18. f(x) = −1
2

(
x− 3

8

)2
− 5

7

19. f(x) = −2
9

(
x+ 2

3

)2
− 4

5

20. f(x) = −7(x+ 3)2 + 9

21. f(x) = −8
7

(
x+ 2

9

)2
+ 6

5

22. f(x) = 3(x+ 3)2 + 6

In Exercises 23-36, perform each of the
following tasks for the given quadratic
function.

i. Set up a coordinate system on graph
paper. Label and scale each axis.

ii. Plot the vertex of the parabola and
label it with its coordinates.

iii. Draw the axis of symmetry and label
it with its equation.

iv. Set up a table near your coordinate
system that contains exact coordinates
of two points on either side of the axis
of symmetry. Plot them on your co-
ordinate system and their “mirror im-
ages” across the axis of symmetry.

v. Sketch the parabola and label it with
its equation.

vi. Use interval notation to describe both
the domain and range of the quadratic
function.

23. f(x) = (x+ 2)2 − 3

24. f(x) = (x− 3)2 − 4

25. f(x) = −(x− 2)2 + 5

26. f(x) = −(x+ 4)2 + 4

27. f(x) = (x− 3)2

28. f(x) = −(x+ 2)2

29. f(x) = −x2 + 7

30. f(x) = −x2 + 7

31. f(x) = 2(x− 1)2 − 6

32. f(x) = −2(x+ 1)2 + 5

33. f(x) = −1
2(x+ 1)2 + 5

34. f(x) = 1
2(x− 3)2 − 6

35. f(x) = 2(x− 5/2)2 − 15/2

36. f(x) = −3(x+ 7/2)2 + 15/4

In Exercises 37-44, write the given qua-
dratic function on your homework pa-
per, then use set-builder and interval no-
tation to describe the domain and the
range of the function.

37. f(x) = 7(x+ 6)2 − 6

38. f(x) = 8(x+ 1)2 + 7

39. f(x) = −3(x+ 4)2 − 7

40. f(x) = −6(x− 7)2 + 9

41. f(x) = −7(x+ 5)2 − 7

42. f(x) = 8(x− 4)2 + 3

43. f(x) = −4(x− 1)2 + 2

44. f(x) = 7(x− 2)2 − 3
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In Exercises 45-52, using the given value
of a, find the specific quadratic function
of the form f(x) = a(x − h)2 + k that
has the graph shown. Note: h and k are
integers. Check your solution with your
graphing calculator.

45. a = −2

x

y

5

5

46. a = 0.5

x

y

5

5

47. a = 2

x

y

5

5

48. a = 0.5

x

y

5

5

49. a = 2

x

y

5

5

50. a = −0.5

x

y

5

5
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51. a = 2

x

y

5

5

52. a = 0.5

x

y

5

5

In Exercises 53-54, use the graph to
determine the range of the function f(x) =
ax2+bx+c. The arrows on the graph are
meant to indicate that the graph contin-
ues indefinitely in the continuing pattern
and direction of each arrow. Describe
your solution using interval notation.

53.

x

y

5

5

54.

x

y

5

5

In Exercises 55-56, use the graph to
determine the domain of the function f(x) =
ax2+bx+c. The arrows on the graph are
meant to indicate that the graph contin-
ues indefinitely in the continuing pattern
and direction of each arrow. Use interval
notation to describe your solution.

55.

x

y

5

5

56.

x

y

5

5
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5.1 Solutions

1. First, enter the functions into the Y= menu. Then press GRAPH to view a comparison
of the three graphs.

Note how the graph of y = 2x2 is narrower and taller than the graph of y = x2, and
the graph of y = 4x2 is narrower and taller still. We see therefore that multiplying x2

by a positive number such as 2 or 4 stretches or scales the graph vertically, making it
taller (and narrower).

3. First, enter the functions into the Y= menu. Then press GRAPH to view a com-
parison of the three graphs.

Note how the graph of g(x) = (x−2)2 has the same shape as the graph of f(x) = x2

but it is shifted 2 units to the right; and the graph of h(x) = (x−4)2 also has the same
shape, but is shifted 4 units to the right. It thus appears that y = (x− c)2, for positive
c, has the same shape as f(x) = x2 but is shifted c units to the right.
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5. First, enter the functions into the Y= menu. Then press GRAPH to view a com-
parison of the three graphs.

Note how the graph of g(x) = x2 + 2 has the same shape as the graph of f(x) = x2

but it is shifted 2 units up; and the graph of h(x) = x2 + 4 also has the same shape,
but is shifted 4 units up.
It thus appears that y = x2 + k, for a positive k, has the same shape as f(x) = x2 but
is shifted k units up.

7. The function f(x) = −5(x− 4)2 − 5 is given in vertex form f(x) = a(x− h)2 + k,
where a = −5, h = 4, and k = −5. The vertex is (h, k) = (4,−5).

9. The function f(x) = 3(x+ 1)2 is given in vertex form f(x) = a(x− h)2 + k, where
a = 3, h = −1, and k = 0. The vertex is (h, k) = (−1, 0).

11. The function f(x) = −7(x− 4)2 + 6 is given in vertex form f(x) = a(x− h)2 + k,
where a = −7, h = 4, and k = 6. The vertex is (h, k) = (4, 6).

13. The function f(x) = 1
6
(
x+ 7

3
)2 + 3

8 is given in vertex form f(x) = a(x− h)2 + k,
where a = 1/6, h = −7/3, and k = 3/8. The vertex is (h, k) =

(
−7

3 ,
3
8
)
.

15. The function f(x) = −7(x− 3)2 + 1 is given in vertex form f(x) = a(x− h)2 + k,
where a = −7, h = 3, and k = 1. The axis of symmetry is the vertical line through the
vertex. h = 3, so the axis of symmetry is x = 3.

17. The function f(x) = −7
8
(
x+ 1

4
)2 + 2

3 is given in vertex form f(x) = a(x−h)2 +k,
where a = −7/8, h = −1/4, and k = 2/3. The axis of symmetry is the vertical line
through the vertex. h = −1

4 , so the axis of symmetry is x = −1
4 .

19. The function f(x) = −2
9
(
x+ 2

3
)2− 4

5 is given in vertex form f(x) = a(x−h)2 +k,
where a = −2/9, h = −2/3, and k = −4/5. The axis of symmetry is the vertical line
through the vertex. h = −2

3 , so the axis of symmetry is x = −2
3 .

21. The function f(x) = −8
7
(
x+ 2

9
)2 + 6

5 is given in vertex form f(x) = a(x−h)2 +k,
where a = −8/7, h = −2/9, and k = 6/5. The axis of symmetry is the vertical line
through the vertex. h = −2

9 , so the axis of symmetry is x = −2
9 .
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23. First, sketch your coordinate system. Compare the quadratic function f(x) =
(x+ 2)2 − 3 with f(x) = a(x− h)2 + k and note that h = −2 and k = −3. Hence, the
vertex is located at (h, k) = (−2,−3). The axis of symmetry is a vertical line through
the vertex with equation x = −2. Make a table to find two points on either side of the
axis of symmetry. Plot them and mirror them across the axis of symmetry. Use all of
this information to complete the graph of f(x) = (x+ 2)2 − 3.

x y = (x+ 2)2 − 3
−1 −2
0 1

x
10

y
10

x=−2

(−2,−3)

f(x)=(x+2)2−3

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−3,∞).

x
10

y
10

x
10

y
10
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25. First, sketch your coordinate system. Compare the quadratic function f(x) =
−(x − 2)2 + 5 with f(x) = a(x − h)2 + k and note that h = 2 and k = 5. Hence, the
vertex is located at (h, k) = (2, 5). The axis of symmetry is a vertical line through the
vertex with equation x = 2. Make a table to find two points on either side of the axis
of symmetry. Plot them and mirror them across the axis of symmetry. Use all of this
information to complete the graph of f(x) = −(x− 2)2 + 5.

x y = −(x− 2)2 + 5
0 1
1 4

x
10

y
10

x=2

(2,5)

f(x)=−(x−2)2+5

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= (−∞, 5].

x
10

y
10

x
10

y
10
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27. First, sketch your coordinate system. Compare the quadratic function f(x) =
(x− 3)2 with f(x) = a(x− h)2 + k and note that h = 3 and k = 0. Hence, the vertex
is located at (h, k) = (3, 0). The axis of symmetry is a vertical line through the vertex
with equation x = 3. Make a table to find two points on either side of the axis of
symmetry. Plot them and mirror them across the axis of symmetry. Use all of this
information to complete the graph of f(x) = (x− 3)2.

x y = (x − 3)2

1 4
2 1

x
10

y
10

x=3

(3,0)

f(x)=(x−3)2

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [0,∞).

x
10

y
10

x
10

y
10
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29. First, sketch your coordinate system. Compare the quadratic function f(x) =
−x2 + 7 with f(x) = a(x− h)2 + k and note that h = 0 and k = 7. Hence, the vertex
is located at (h, k) = (0, 7). The axis of symmetry is a vertical line through the vertex
with equation x = 0. Make a table to find two points on either side of the axis of
symmetry. Plot them and mirror them across the axis of symmetry. Use all of this
information to complete the graph of f(x) = −x2 + 7.

x y = −x2 + 7
1 6
2 3

x
10

y
10

x=0

(0,7)

f(x)=−x2+7

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= (−∞, 7].

x
10

y
10

x
10

y
10
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31. First, sketch your coordinate system. Compare the quadratic function f(x) =
2(x− 1)2 − 6 with f(x) = a(x− h)2 + k and note that h = 1 and k = −6. Hence, the
vertex is located at (h, k) = (1,−6). The axis of symmetry is a vertical line through
the vertex with equation x = 1. Make a table to find two points on either side of the
axis of symmetry. Plot them and mirror them across the axis of symmetry. Use all of
this information to complete the graph of f(x) = 2(x− 1)2 − 6.

x y = 2(x− 1)2 − 6
2 −4
3 2

x
10

y
10

x=1

(1,−6)

f(x)=2(x−1)2−6

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−6,∞).

x
10

y
10

x
10

y
10
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33. First, sketch your coordinate system. Compare the quadratic function f(x) =
−1

2(x+ 1)2 + 5 with f(x) = a(x− h)2 + k and note that h = −1 and k = 5. Hence, the
vertex is located at (h, k) = (−1, 5). The axis of symmetry is a vertical line through
the vertex with equation x = −1. Make a table to find two points on either side of the
axis of symmetry. Plot them and mirror them across the axis of symmetry. Use all of
this information to complete the graph of f(x) = −1

2(x+ 1)2 + 5.

x y = −1
2(x+1)2+5

0 9/2
1 3

x
10

y
10

x=−1

(−1,5)

f(x)=− 1
2 (x+1)2+5

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= (−∞, 5].

x
10

y
10

x
10

y
10
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35. First, sketch your coordinate system. Compare the quadratic function f(x) =
2(x− 5/2)2 − 15/2 with f(x) = a(x− h)2 + k and note that h = 5/2 and k = −15/2.
Hence, the vertex is located at (h, k) = (5/2,−15/2). The axis of symmetry is a vertical
line through the vertex with equation x = 5/2. Make a table to find two points on either
side of the axis of symmetry. Plot them and mirror them across the axis of symmetry.
Use all of this information to complete the graph of f(x) = 2(x− 5/2)2 − 15/2.

x
y =

2(x−5/2)2−15/2
1 −3
2 −7

x
10

y
10

x=5/2

(5/2,−15/2)

f(x)=2(x−5/2)2−15/2

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−15/2,∞).

x
10

y
10

x
10

y
10
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37. The graph opens upward since a = 7 > 0, and the vertex is at (h, k) = (−6,−6).
Thus the domain is [−∞,∞) and the range is {y : y ≥ −6} = [−6,∞).

39. The graph opens downward since a = −3 < 0, and the vertex is at (h, k) =
(−4,−7). Thus the domain is [−∞,∞) and the range is {y : y ≤ −7} = [−7,∞).

41. The graph opens downward since a = −7 < 0, and the vertex is at (h, k) =
(−5,−7). Thus the domain is [−∞,∞) and the range is {y : y ≤ −7} = [−7,∞).

43. The graph opens downward since a = −4 < 0, and the vertex is at (h, k) = (1, 2).
Thus the domain is [−∞,∞) and the range is {y : y ≤ 2} = [2,∞).

45. Note that the parabola opens downward (see figure below). Hence, let’s start
with the form f(x) = −2x2, which is a parabola that opens downward, with vertex at
the origin. Next, the parabola in the image has been shifted 3 units to the right, so we
must replace x with x− 3 in f(x) = −2x2, arriving at f(x) = −2(x− 3)2. Finally, we
see that the graph has been shifted 1 unit up, so we add 1 to our last form to arrive at
the final answer, f(x) = −2(x− 3)2 + 1.

x

y

5

5

(3, 1)(3, 1)

47. Note that the parabola opens upward (see figure below). Hence, let’s start with
the form f(x) = 2x2, which is a parabola that opens upward, with vertex at the origin.
Next, the parabola in the image has been shifted 1 unit to the left, so we must replace
x with x + 1 in f(x) = 2x2, arriving at f(x) = 2(x + 1)2. Finally, we see that the
graph has been shifted 1 unit down, so we add −1 to our last form to arrive at the final
answer, f(x) = 2(x+ 1)2 − 1.

x

y

5

5

(−1,−1)(−1,−1)
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49. Note that the parabola opens upward (see figure below). Hence, let’s start with
the form f(x) = 2x2, which is a parabola that opens upward, with vertex at the origin.
Next, the parabola in the image has been shifted 2 units to the left, so we must replace
x with x+ 2 in f(x) = 2x2, arriving at f(x) = 2(x+ 2)2. Finally, we see that the graph
has been shifted 1 unit up, so we add 1 to our last form to arrive at the final answer,
f(x) = 2(x+ 2)2 + 1.

x

y

5

5

(−2, 1)(−2, 1)

51. Note that the parabola opens upward (see figure below). Hence, let’s start with
the form f(x) = 2x2, which is a parabola that opens upward, with vertex at the origin.
Next, the parabola in the image has been shifted 3 units to the right, so we must
replace x with x− 3 in f(x) = 2x2, arriving at f(x) = 2(x− 3)2. Finally, we see that
the graph has been shifted 1 unit down, so we add −1 to our last form to arrive at the
final answer, f(x) = 2(x− 3)2 − 1.

x

y

5

5

(3,−1)(3,−1)
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53. To find the range of f(x) = ax2 + bx+ c, examine the graph and mentally project
each point of the graph onto the y-axis (see figure below). Note that the arrows on the
ends of the blue graph imply that the blue graph opens downward and to the left and
right indefinitely. Thus, the range is all real numbers less than or equal to −2, or in
interval notation, (−∞,−2].

x

y

5

5

55. To find the domain of f(x) = ax2 + bx + c, examine the graph and mentally
project each point of the graph onto the x-axis (see figure below). Note that the arrows
on the ends of the blue graph imply that the blue graph opens downward and to the
left and right indefinitely. Thus, the domain is all real numbers, or in interval notation,
(−∞,∞).

x

y

5

5
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5.2 Exercises

In Exercises 1-8, expand the binomial.

1.
(
x+ 4

5

)2

2.
(
x− 4

5

)2

3. (x+ 3)2

4. (x+ 5)2

5. (x− 7)2

6.
(
x− 2

5

)2

7. (x− 6)2

8.
(
x− 5

2

)2

In Exercises 9-16, factor the perfect square
trinomial.

9. x2 − 6
5x+ 9

25

10. x2 + 5x+ 25
4

11. x2 − 12x+ 36

12. x2 + 3x+ 9
4

13. x2 + 12x+ 36

14. x2 − 3
2x+ 9

16

15. x2 + 18x+ 81

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

16. x2 + 10x+ 25

In Exercises 17-24, transform the given
quadratic function into vertex form f(x) =
(x− h)2 + k by completing the square.

17. f(x) = x2 − x+ 8

18. f(x) = x2 + x− 7

19. f(x) = x2 − 5x− 4

20. f(x) = x2 + 7x− 1

21. f(x) = x2 + 2x− 6

22. f(x) = x2 + 4x+ 8

23. f(x) = x2 − 9x+ 3

24. f(x) = x2 − 7x+ 8

In Exercises 25-32, transform the given
quadratic function into vertex form f(x) =
a(x− h)2 + k by completing the square.

25. f(x) = −2x2 − 9x− 3

26. f(x) = −4x2 − 6x+ 1

27. f(x) = 5x2 + 5x+ 5

28. f(x) = 3x2 − 4x− 6

29. f(x) = 5x2 + 7x− 3

30. f(x) = 5x2 + 6x+ 4

31. f(x) = −x2 − x+ 4

32. f(x) = −3x2 − 6x+ 4
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In Exercises 33-38, find the vertex of
the graph of the given quadratic func-
tion.

33. f(x) = −2x2 + 5x+ 3

34. f(x) = x2 + 5x+ 8

35. f(x) = −4x2 − 4x+ 1

36. f(x) = 5x2 + 7x+ 8

37. f(x) = 4x2 + 2x+ 8

38. f(x) = x2 + x− 7

In Exercises 39-44, find the axis of sym-
metry of the graph of the given quadratic
function.

39. f(x) = −5x2 − 7x− 8

40. f(x) = x2 + 6x+ 3

41. f(x) = −2x2 − 5x− 8

42. f(x) = −x2 − 6x+ 2

43. f(x) = −5x2 + x+ 6

44. f(x) = x2 − 9x− 6

For each of the quadratic functions in
Exercises 45-66, perform each of the
following tasks.

i. Use the technique of completing the
square to place the given quadratic
function in vertex form.

ii. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

iii. Draw the axis of symmetry and label
it with its equation. Plot the vertex
and label it with its coordinates.

iv. Set up a table near your coordinate
system that calculates the coordinates
of two points on either side of the axis
of symmetry. Plot these points and
their mirror images across the axis of
symmetry. Draw the parabola and
label it with its equation

v. Use the graph of the parabola to de-
termine the domain and range of the
quadratic function. Describe the do-
main and range using interval nota-
tion.

45. f(x) = x2 − 8x+ 12

46. f(x) = x2 + 4x− 1

47. f(x) = x2 + 6x+ 3

48. f(x) = x2 − 4x+ 1

49. f(x) = x2 − 2x− 6

50. f(x) = x2 + 10x+ 23

51. f(x) = −x2 + 6x− 4

52. f(x) = −x2 − 6x− 3

53. f(x) = −x2 − 10x− 21

54. f(x) = −x2 + 12x− 33

55. f(x) = 2x2 − 8x+ 3

56. f(x) = 2x2 + 8x+ 4

57. f(x) = −2x2 − 12x− 13

58. f(x) = −2x2 + 24x− 70

59. f(x) = (1/2)x2 − 4x+ 5

60. f(x) = (1/2)x2 + 4x+ 6

61. f(x) = (−1/2)x2 − 3x+ 1/2

62. f(x) = (−1/2)x2 + 4x− 2
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63. f(x) = 2x2 + 7x− 2

64. f(x) = −2x2 − 5x− 4

65. f(x) = −3x2 + 8x− 3

66. f(x) = 3x2 + 4x− 6

In Exercises 67-72, find the range of
the given quadratic function. Express
your answer in both interval and set no-
tation.

67. f(x) = −2x2 + 4x+ 3

68. f(x) = x2 + 4x+ 8

69. f(x) = 5x2 + 4x+ 4

70. f(x) = 3x2 − 8x+ 3

71. f(x) = −x2 − 2x− 7

72. f(x) = x2 + x+ 9

Drill for Skill. In Exercises 73-76,
evaluate the function at the given value
b.

73. f(x) = 9x2 − 9x+ 4; b = −6

74. f(x) = −12x2 + 5x+ 2; b = −3

75. f(x) = 4x2 − 6x− 4; b = 11

76. f(x) = −2x2 − 11x− 10; b = −12

Drill for Skill. In Exercises 77-80,
evaluate the function at the given expres-
sion.

77. Evaluate f(x+4) if f(x) = −5x2 +
4x+ 2.

78. Evaluate f(−4x−5) if f(x) = 4x2+
x+ 1.

79. Evaluate f(4x− 1) if f(x) = 4x2 +
3x− 3.

80. Evaluate f(−5x−3) if f(x) = −4x2+
x+ 4.
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5.2 Solutions

1.
(
x+ 4

5
)2 = x2 + 2(x)

(4
5
)

+
(4

5
)2 = x2 + 8

5x+ 16
25

3. (x+ 3)2 = x2 + 2(x)(3) + 32 = x2 + 6x+ 9

5. (x− 7)2 = x2 + 2(x)(−7) + (−7)2 = x2 − 14x+ 49

7. (x− 6)2 = x2 + 2(x)(−6) + (−6)2 = x2 − 12x+ 36

9. x2 − 6
5x+ 9

25 =
(
x− 3

5
)2

11. x2 − 12x+ 36 = (x− 6)2

13. x2 + 12x+ 36 = (x+ 6)2

15. x2 + 18x+ 81 = (x+ 9)2

17.

f(x) = x2 − x+ 8

= x2 − x+ 1
4 −

1
4 + 8

=
(
x2 − x+ 1

4

)
− 1

4 + 8

=
(
x− 1

2

)2
+ 31

4

19.

f(x) = x2 − 5x− 4

= x2 − 5x+ 25
4 −

25
4 − 4

=
(
x2 − 5x+ 25

4

)
− 25

4 − 4

=
(
x− 5

2

)2
− 41

4
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21.

f(x) = x2 + 2x− 6
= x2 + 2x+ 1− 1− 6
=
(
x2 + 2x+ 1

)
− 1− 6

= (x+ 1)2 − 7

23.

f(x) = x2 − 9x+ 3

= x2 − 9x+ 81
4 −

81
4 + 3

=
(
x2 − 9x+ 81

4

)
− 81

4 + 3

=
(
x− 9

2

)2
− 69

4

25.

f(x) = −2x2 − 9x− 3

= −2
(
x2 + 9

2x+ 3
2

)

= −2
(
x2 + 9

2x+ 81
16 −

81
16 + 3

2

)

= −2
((
x2 + 9

2x+ 81
16

)
− 81

16 + 3
2

)

= −2
((
x+ 9

4

)2
− 57

16

)

= −2
(
x+ 9

4

)2
+ 57

8
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27.

f(x) = 5x2 + 5x+ 5
= 5
(
x2 + x+ 1

)

= 5
(
x2 + x+ 1

4 −
1
4 + 1

)

= 5
((
x2 + x+ 1

4

)
− 1

4 + 1
)

= 5
((
x+ 1

2

)2
+ 3

4

)

= 5
(
x+ 1

2

)2
+ 15

4

29.

f(x) = 5x2 + 7x− 3

= 5
(
x2 + 7

5x−
3
5

)

= 5
(
x2 + 7

5x+ 49
100 −

49
100 −

3
5

)

= 5
((
x2 + 7

5x+ 49
100

)
− 49

100 −
3
5

)

= 5
((
x+ 7

10

)2
− 109

100

)

= 5
(
x+ 7

10

)2
− 109

20
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31.

f(x) = −x2 − x+ 4
= −1

(
x2 + x− 4

)

= −1
(
x2 + x+ 1

4 −
1
4 − 4

)

= −1
((
x2 + x+ 1

4

)
− 1

4 − 4
)

= −1
((
x+ 1

2

)2
− 17

4

)

= −1
(
x+ 1

2

)2
+ 17

4

33. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = −2x2 + 5x+ 3

= −2
(
x2 − 5

2x−
3
2

)

= −2
(
x2 − 5

2x+ 25
16 −

25
16 −

3
2

)

= −2
((
x2 − 5

2x+ 25
16

)
− 25

16 −
3
2

)

= −2
((
x− 5

4

)2
− 49

16

)

= −2
(
x− 5

4

)2
+ 49

8

Thus, h = 5
4 and k = 49

8 , so the vertex is
(5

4 ,
49
8
)
.
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35. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = −4x2 − 4x+ 1

= −4
(
x2 + x− 1

4

)

= −4
(
x2 + x+ 1

4 −
1
4 −

1
4

)

= −4
((
x2 + x+ 1

4

)
− 1

4 −
1
4

)

= −4
((
x+ 1

2

)2
− 1

2

)

= −4
(
x+ 1

2

)2
+ 2

Thus, h = −1
2 and k = 2, so the vertex is

(
−1

2 , 2
)
.

37. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = 4x2 + 2x+ 8

= 4
(
x2 + 1

2x+ 2
)

= 4
(
x2 + 1

2x+ 1
16 −

1
16 + 2

)

= 4
((
x2 + 1

2x+ 1
16

)
− 1

16 + 2
)

= 4
((
x+ 1

4

)2
+ 31

16

)

= 4
(
x+ 1

4

)2
+ 31

4

Thus, h = −1
4 and k = 31

4 , so the vertex is
(
−1

4 ,
31
4
)
.
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39. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = −5x2 − 7x− 8

= −5
(
x2 + 7

5x+ 8
5

)

= −5
(
x2 + 7

5x+ 49
100 −

49
100 + 8

5

)

= −5
((
x2 + 7

5x+ 49
100

)
− 49

100 + 8
5

)

= −5
((
x+ 7

10

)2
+ 111

100

)

= −5
(
x+ 7

10

)2
− 111

20

Thus, h = − 7
10 , so the axis of symmetry is x = − 7

10 .

41. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = −2x2 − 5x− 8

= −2
(
x2 + 5

2x+ 4
)

= −2
(
x2 + 5

2x+ 25
16 −

25
16 + 4

)

= −2
((
x2 + 5

2x+ 25
16

)
− 25

16 + 4
)

= −2
((
x+ 5

4

)2
+ 39

16

)

= −2
(
x+ 5

4

)2
− 39

8

Thus, h = −5
4 , so the axis of symmetry is x = −5

4 .
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43. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = −5x2 + x+ 6

= −5
(
x2 − 1

5x−
6
5

)

= −5
(
x2 − 1

5x+ 1
100 −

1
100 −

6
5

)

= −5
((
x2 − 1

5x+ 1
100

)
− 1

100 −
6
5

)

= −5
((
x− 1

10

)2
− 121

100

)

= −5
(
x− 1

10

)2
+ 121

20

Thus, h = 1
10 , so the axis of symmetry is x = 1

10 .
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45. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = x2 − 8x+ 12
= x2 − 8x+ 16− 16 + 12
= (x2 − 8x+ 16)− 16 + 12
= (x− 4)2 − 16 + 12
= (x− 4)2 − 4

Compare the quadratic function f(x) = (x − 4)2 − 4 with f(x) = a(x − h)2 + k and
note that h = 4 and k = −4. Hence, the vertex is located at (h, k) = (4,−4). The
axis of symmetry is a vertical line through the vertex with equation x = 4. Make a
table to find two points on either side of the axis of symmetry. Plot them and mirror
them across the axis of symmetry. Use all of this information to complete the graph of
f(x) = (x− 4)2 − 4.

x y = (x− 4)2 − 4
2 0
3 −3

x
10

y
10

x=4

(4,−4)

f(x)=(x−4)2−4

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−4,∞).

x
10

y
10

x
10

y
10

(4,−4)
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47. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = x2 + 6x+ 3
= x2 + 6x+ 9− 9 + 3
= (x2 + 6x+ 9)− 9 + 3
= (x+ 3)2 − 9 + 3
= (x+ 3)2 − 6

Compare the quadratic function f(x) = (x + 3)2 − 6 with f(x) = a(x − h)2 + k and
note that h = −3 and k = −6. Hence, the vertex is located at (h, k) = (−3,−6). The
axis of symmetry is a vertical line through the vertex with equation x = −3. Make a
table to find two points on either side of the axis of symmetry. Plot them and mirror
them across the axis of symmetry. Use all of this information to complete the graph of
f(x) = (x+ 3)2 − 6.

x y = (x+ 3)2 − 6
−2 −5
−1 −2

x
10

y
10

x=−3

(−3,−6)

f(x)=(x+3)2−6

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−6,∞).

x
10

y
10

x
10

y
10

(−3,−6)
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49. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = x2 − 2x− 6
= x2 − 2x+ 1− 1− 6
= (x2 − 2x+ 1)− 1− 6
= (x− 1)2 − 1− 6
= (x− 1)2 − 7

Compare the quadratic function f(x) = (x − 1)2 − 7 with f(x) = a(x − h)2 + k and
note that h = 1 and k = −7. Hence, the vertex is located at (h, k) = (1,−7). The
axis of symmetry is a vertical line through the vertex with equation x = 1. Make a
table to find two points on either side of the axis of symmetry. Plot them and mirror
them across the axis of symmetry. Use all of this information to complete the graph of
f(x) = (x− 1)2 − 7.

x y = (x− 1)2 − 7
2 −6
3 −3

x
10

y
10

x=1

(1,−7)

f(x)=(x−1)2−7

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−7,∞).

x
10

y
10

x
10

y
10

(1,−7)
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51. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = −x2 + 6x− 4
= −(x2 − 6x+ 4)
= −[x2 − 6x+ 9− 9 + 4]
= −[(x2 − 6x+ 9)− 9 + 4]
= −[(x− 3)2 − 9 + 4]
= −[(x− 3)2 − 5]
= −(x− 3)2 + 5

Compare the quadratic function f(x) = −(x − 3)2 + 5 with f(x) = a(x − h)2 + k
and note that h = 3 and k = 5. Hence, the vertex is located at (h, k) = (3, 5). The
axis of symmetry is a vertical line through the vertex with equation x = 3. Make a
table to find two points on either side of the axis of symmetry. Plot them and mirror
them across the axis of symmetry. Use all of this information to complete the graph of
f(x) = −(x− 3)2 + 5.

x y = −(x− 3)2 + 5
2 4
1 1

x
10

y
10

x=3

(3,5)

f(x)=−(x−3)2+5

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= (−∞, 5].
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x
10

y
10

x
10

y
10

(3,5)

53. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = −x2 − 10x− 21
= −(x2 + 10x+ 21)
= −[x2 + 10x+ 25− 25 + 21]
= −[(x2 + 10x+ 25)− 25 + 21]
= −[(x+ 5)2 − 25 + 21]
= −[(x+ 5)2 − 4]
= −(x+ 5)2 + 4

Compare the quadratic function f(x) = −(x+ 5)2 + 4 with f(x) = a(x− h)2 + k and
note that h = −5 and k = 4. Hence, the vertex is located at (h, k) = (−5, 4). The
axis of symmetry is a vertical line through the vertex with equation x = −5. Make a
table to find two points on either side of the axis of symmetry. Plot them and mirror
them across the axis of symmetry. Use all of this information to complete the graph of
f(x) = −(x+ 5)2 + 4.

x y = −(x+ 5)2 + 4
−4 3
−3 0

x
10

y
10

f(x)=−(x+5)2+4

x=−5

(−5,4)(−5,4)
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To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= (−∞, 4].

x
10

y
10

x
10

y
10

(−5,4)(−5,4)

55. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = 2x2 − 8x+ 3

= 2
(
x2 − 4x+ 3

2

)

= 2
(
x2 − 4x+ 4− 4 + 3

2

)

= 2
((
x2 − 4x+ 4

)
− 4 + 3

2

)

= 2
(

(x− 2)2 − 8
2 + 3

2

)

= 2
(

(x− 2)2 − 5
2

)

= 2 (x− 2)2 − 5

Compare the quadratic function f(x) = 2(x − 2)2 − 5 with f(x) = a(x − h)2 + k and
note that h = 2 and k = −5. Hence, the vertex is located at (h, k) = (2,−5). The
axis of symmetry is a vertical line through the vertex with equation x = 2. Make a
table to find two points on either side of the axis of symmetry. Plot them and mirror
them across the axis of symmetry. Use all of this information to complete the graph of
f(x) = 2(x− 2)2 − 5.
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x y = 2(x− 2)2 − 5
1 −3
0 3

x
10

y
10 f(x)=2(x−2)2−5

x=2

(2,−5)(2,−5)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−5,∞).

x
10

y
10

x
10

y
10

(2,−5)(2,−5)

57. First complete the square to transform the function into vertex form a(x−h)2 +k:
f(x) = −2x2 − 12x− 13

= −2
(
x2 + 6x+ 13

2

)

= −2
(
x2 + 6x+ 9− 9 + 13

2

)

= −2
((
x2 + 6x+ 9

)
− 9 + 13

2

)

= −2
(

(x+ 3)2 − 18
2 + 13

2

)

= −2
(

(x+ 3)2 − 5
2

)

= −2 (x+ 3)2 + 5
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Compare the quadratic function f(x) = −2(x+ 3)2 + 5 with f(x) = a(x− h)2 + k and
note that h = −3 and k = 5. Hence, the vertex is located at (h, k) = (−3, 5). The
axis of symmetry is a vertical line through the vertex with equation x = −3. Make a
table to find two points on either side of the axis of symmetry. Plot them and mirror
them across the axis of symmetry. Use all of this information to complete the graph of
f(x) = −2(x+ 3)2 + 5.

x y = −2(x+3)2+5
−2 3
−1 −3

x
10

y
10

f(x)=−2(x+3)2+5

x=−3

(−3,5)(−3,5)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= (−∞, 5].

x
10

y
10

x
10

y
10

(−3,5)(−3,5)
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59. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = (1/2)x2 − 4x+ 5

= 1
2
(
x2 − 8x+ 10

)

= 1
2
(
x2 − 8x+ 16− 16 + 10

)

= 1
2
((
x2 − 8x+ 16

)
− 16 + 10

)

= 1
2
(

(x− 4)2 − 6
)

= 1
2 (x− 4)2 − 3

Compare the quadratic function f(x) = 1
2 (x− 4)2 − 3 with f(x) = a(x− h)2 + k and

note that h = 4 and k = −3. Hence, the vertex is located at (h, k) = (4,−3). The
axis of symmetry is a vertical line through the vertex with equation x = 4. Make a
table to find two points on either side of the axis of symmetry. Plot them and mirror
them across the axis of symmetry. Use all of this information to complete the graph of
f(x) = 1

2 (x− 4)2 − 3.

x y = 1
2(x− 4)2 − 3

3 −2.5
2 −1

x
10

y
10

f(x)= 1
2 (x−4)2−3

x=4

(4,−3)(4,−3)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−3,∞).
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x
10

y
10

x
10

y
10

(4,−3)(4,−3)

61. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = (−1/2)x2 − 3x+ 1/2

= −1
2
(
x2 + 6x− 1

)

= −1
2
(
x2 + 6x+ 9− 9− 1

)

= −1
2
((
x2 + 6x+ 9

)
− 9− 1

)

= −1
2
(

(x+ 3)2 − 10
)

= −1
2 (x+ 3)2 + 5

Compare the quadratic function f(x) = −1
2 (x+ 3)2 + 5 with f(x) = a(x−h)2 + k and

note that h = −3 and k = 5. Hence, the vertex is located at (h, k) = (−3, 5). The
axis of symmetry is a vertical line through the vertex with equation x = −3. Make a
table to find two points on either side of the axis of symmetry. Plot them and mirror
them across the axis of symmetry. Use all of this information to complete the graph of
f(x) = −1

2 (x+ 3)2 + 5.

x y = −1
2(x+3)2+5

−2 4.5
−1 3

x
10

y
10

f(x)=(−1/2)x2−3x+1/2
x=−3

(−3,5)(−3,5)
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To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= (−∞, 5].

x
10

y
10

x
10

y
10

(−3,5)(−3,5)

63. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = 2x2 + 7x− 2

= 2
(
x2 + 7

2x− 1
)

= 2
(
x2 + 7

2x+ 49
16 −

49
16 − 1

)

= 2
((
x2 + 7

2x+ 49
16

)
− 49

16 − 1
)

= 2
((
x+ 7

4

)2
− 49

16 −
16
16

)

= 2
((
x+ 7

4

)2
− 65

16

)

= 2
(
x+ 7

4

)2
− 65

8

Compare the quadratic function f(x) = 2
(
x+ 7

4
)2 − 65

8 with f(x) = a(x − h)2 + k
and note that h = −7/4 and k = −65/8. Hence, the vertex is located at (h, k) =
(−7/4,−65/8). The axis of symmetry is a vertical line through the vertex with equation
x = −7/4. Make a table to find two points on either side of the axis of symmetry. Plot
them and mirror them across the axis of symmetry. Use all of this information to
complete the graph of f(x) = 2

(
x+ 7

4
)2 − 65

8 .
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x y = 2(x+ 7
4)2− 65

8
−1/2 −5
1/2 2

x
10

y
10 f(x)=2x2+7x−2

x=−7/4

(−7/4,−65/8)(−7/4,−65/8)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−65

8 ,∞).

x
10

y
10

x
10

y
10

(−7/4,−65/8)(−7/4,−65/8)
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65. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = −3x2 + 8x− 3

= −3
(
x2 − 8

3x+ 1
)

= −3
(
x2 − 8

3x+ 16
9 −

16
9 + 1

)

= −3
((
x2 − 8

3x+ 16
9

)
− 16

9 + 1
)

= −3
((
x− 4

3

)2
− 16

9 + 9
9

)

= −3
((
x− 4

3

)2
− 7

9

)

= −3
(
x− 4

3

)2
+ 7

3

Compare the quadratic function f(x) = −3
(
x− 4

3
)2 + 7

3 with f(x) = a(x−h)2 +k and
note that h = 4/3 and k = 7/3. Hence, the vertex is located at (h, k) = (4/3, 7/3). The
axis of symmetry is a vertical line through the vertex with equation x = 4/3. Make a
table to find two points on either side of the axis of symmetry. Plot them and mirror
them across the axis of symmetry. Use all of this information to complete the graph of
f(x) = −3

(
x− 4

3
)2 + 7

3 .

x
y =

−3(x−4/3)2+7/3
1 2
0 −3

x
10

y
10

f(x)=−3x2+8x−3
x=4/3

(4/3,7/3)(4/3,7/3)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= (−∞, 7/3].
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x
10

y
10

x
10

y
10

(4/3,7/3)(4/3,7/3)

67. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = −2x2 + 4x+ 3

= −2
(
x2 − 2x− 3

2

)

= −2
(
x2 − 2x+ 1− 1− 3

2

)

= −2
((
x2 − 2x+ 1

)
− 1− 3

2

)

= −2
(

(x− 1)2 − 5
2

)

= −2 (x− 1)2 + 5

The graph opens downward since a = −2 < 0, and the vertex is at (h, k), where h = 1
and k = 5. Thus, the range is (−∞, k] = (−∞, 5].

69. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = 5x2 + 4x+ 4

= 5
(
x2 + 4

5x+ 4
5

)

= 5
(
x2 + 4

5x+ 4
25 −

4
25 + 4

5

)

= 5
((
x2 + 4

5x+ 4
25

)
− 4

25 + 4
5

)

= 5
((
x+ 2

5

)2
+ 16

25

)

= 5
(
x+ 2

5

)2
+ 16

5
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The graph opens upward since a = 5 > 0, and the vertex is at (h, k), where h = −2
5

and k = 16
5 . Thus, the range is [k,∞) =

[16
5 ,∞
)
.

71. First complete the square to transform the function into vertex form a(x−h)2 +k:

f(x) = −x2 − 2x− 7
= −1

(
x2 + 2x+ 7

)

= −1
(
x2 + 2x+ 1− 1 + 7

)

= −1
((
x2 + 2x+ 1

)
− 1 + 7

)

= −1
(

(x+ 1)2 + 6
)

= −1 (x+ 1)2 − 6

The graph opens downward since a = −1 < 0, and the vertex is at (h, k), where h = −1
and k = −6. Thus, the range is (−∞, k] = (−∞,−6].

73. Substitute −6 for x in 9x2 − 9x+ 4 and simplify to get 382:

f(−6) = 9(−6)2 − 9(−6) + 4 = 382

75. Substitute 11 for x in 4x2 − 6x− 4 and simplify to get 414:

f(11) = 4(11)2 − 6(11)− 4 = 414

77. Substitute x+ 4 for x in −5x2 + 4x+ 2 and simplify:

f(x+ 4) = −5(x+ 4)2 + 4(x+ 4) + 2
= −5(x2 + 8x+ 16) + 4x+ 16 + 2
= −5x2 − 36x− 62

79. Substitute 4x− 1 for x in 4x2 + 3x− 3 and simplify:

f(4x− 1) = 4(4x− 1)2 + 3(4x− 1)− 3
= 4(16x2 − 8x+ 1) + 12x− 3− 3
= 64x2 − 20x− 2
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5.3 Exercises

In Exercises 1-8, factor the given qua-
dratic polynomial.

1. x2 + 9x+ 14

2. x2 + 6x+ 5

3. x2 + 10x+ 9

4. x2 + 4x− 21

5. x2 − 4x− 5

6. x2 + 7x− 8

7. x2 − 7x+ 12

8. x2 + 5x− 24

In Exercises 9-16, find the zeros of the
given quadratic function.

9. f(x) = x2 − 2x− 15

10. f(x) = x2 + 4x− 32

11. f(x) = x2 + 10x− 39

12. f(x) = x2 + 4x− 45

13. f(x) = x2 − 14x+ 40

14. f(x) = x2 − 5x− 14

15. f(x) = x2 + 9x− 36

16. f(x) = x2 + 11x− 26

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

In Exercises 17-22, perform each of the
following tasks for the quadratic func-
tions.

i. Load the function into Y1 of the Y= of
your graphing calculator. Adjust the
window parameters so that the vertex
is visible in the viewing window.

ii. Set up a coordinate system on your
homework paper. Label and scale each
axis with xmin, xmax, ymin, and ymax.
Make a reasonable copy of the image
in the viewing window of your calcu-
lator on this coordinate system and
label it with its equation.

iii. Use the zero utility on your graph-
ing calculator to find the zeros of the
function. Use these results to plot
the x-intercepts on your coordinate
system and label them with their co-
ordinates.

iv. Use a strictly algebraic technique (no
calculator) to find the zeros of the
given quadratic function. Show your
work next to your coordinate system.
Be stubborn! Work the problem until
your algebraic and graphically zeros
are a reasonable match.

17. f(x) = x2 + 5x− 14

18. f(x) = x2 + x− 20

19. f(x) = −x2 + 3x+ 18

20. f(x) = −x2 + 3x+ 40

21. f(x) = x2 − 16x− 36

22. f(x) = x2 + 4x− 96
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In Exercises 23-30, perform each of the
following tasks for the given quadratic
function.

i. Set up a coordinate system on graph
paper. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Use the technique of completing the
square to place the quadratic func-
tion in vertex form. Plot the vertex
on your coordinate system and label
it with its coordinates. Draw the axis
of symmetry on your coordinate sys-
tem and label it with its equation.

iii. Use a strictly algebraic technique (no
calculators) to find the x-intercepts
of the graph of the given quadratic
function. Plot them on your coor-
dinate system and label them with
their coordinates.

iv. Find the y-intercept of the graph of
the quadratic function. Plot the y-
intercept on your coordinate system
and its mirror image across the axis
of symmetry, then label these points
with their coordinates.

v. Using all the information plotted, draw
the graph of the quadratic function
and label it with the vertex form of
its equation. Use interval notation to
describe the domain and range of the
quadratic function.

23. f(x) = x2 + 2x− 8

24. f(x) = x2 − 6x+ 8

25. f(x) = x2 + 4x− 12

26. f(x) = x2 + 8x+ 12

27. f(x) = −x2 − 2x+ 8

28. f(x) = −x2 − 2x+ 24

29. f(x) = −x2 − 8x+ 48

30. f(x) = −x2 − 8x+ 20

In Exercises 31-38, factor the given qua-
dratic polynomial.

31. 42x2 + 5x− 2

32. 3x2 + 7x− 20

33. 5x2 − 19x+ 12

34. 54x2 − 3x− 1

35. −4x2 + 9x− 5

36. 3x2 − 5x− 12

37. 2x2 − 3x− 35

38. −6x2 + 25x+ 9

In Exercises 39-46, find the zeros of
the given quadratic functions.

39. f(x) = 2x2 − 3x− 20

40. f(x) = 2x2 − 7x− 30

41. f(x) = −2x2 + x+ 28

42. f(x) = −2x2 + 15x− 22

43. f(x) = 3x2 − 20x+ 12

44. f(x) = 4x2 + 11x− 20

45. f(x) = −4x2 + 4x+ 15

46. f(x) = −6x2 − x+ 12
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In Exercises 47-52, perform each of the
following tasks for the given quadratic
functions.

i. Load the function into Y1 of the Y= of
your graphing calculator. Adjust the
window parameters so that the vertex
is visible in the viewing window.

ii. Set up a coordinate system on your
homework paper. Label and scale each
axis with xmin, xmax, ymin, and ymax.
Make a reasonable copy of the image
in the viewing window of your calcu-
lator on this coordinate system and
label it with its equation.

iii. Use the zero utility on your graph-
ing calculator to find the zeros of the
function. Use these results to plot
the x-intercepts on your coordinate
system and label them with their co-
ordinates.

iv. Use a strictly algebraic technique (no
calculator) to find the zeros of the
given quadratic function. Show your
work next to your coordinate system.
Be stubborn! Work the problem until
your algebraic and graphically zeros
are a reasonable match.

47. f(x) = 2x2 + 3x− 35

48. f(x) = 2x2 − 5x− 42

49. f(x) = −2x2 + 5x+ 33

50. f(x) = −2x2 − 5x+ 52

51. f(x) = 4x2 − 24x− 13

52. f(x) = 4x2 + 24x− 45

In Exercises 53-60, perform each of the
following tasks for the given quadratic
functions.

i. Set up a coordinate system on graph
paper. Label and scale each axis. Re-

member to draw all lines with a ruler.
ii. Use the technique of completing the

square to place the quadratic func-
tion in vertex form. Plot the vertex
on your coordinate system and label
it with its coordinates. Draw the axis
of symmetry on your coordinate sys-
tem and label it with its equation.

iii. Use a strictly algebraic method (no
calculators) to find the x-intercepts
of the graph of the quadratic func-
tion. Plot them on your coordinate
system and label them with their co-
ordinates.

iv. Find the y-intercept of the graph of
the quadratic function. Plot the y-
intercept on your coordinate system
and its mirror image across the axis
of symmetry, then label these points
with their coordinates.

v. Using all the information plotted, draw
the graph of the quadratic function
and label it with the vertex form of
its equation. Use interval notation to
describe the domain and range of the
quadratic function.

53. f(x) = 2x2 − 8x− 24

54. f(x) = 2x2 − 4x− 6

55. f(x) = −2x2 − 4x+ 16

56. f(x) = −2x2 − 16x+ 40

57. f(x) = 3x2 + 18x− 48

58. f(x) = 3x2 + 18x− 216

59. f(x) = 2x2 + 10x− 48

60. f(x) = 2x2 − 10x− 100



476 Chapter 5 Quadratic Functions

Version: Fall 2007

In Exercises 61-66, Use the graph of
f(x) = ax2 + bx+ c shown to find all so-
lutions of the equation f(x) = 0. (Note:
Every solution is an integer.)

61.

x

y

5

5

62.

x

y

5

5

63.

x

y

5

5

64.

x

y

5

5

65.

x

y

5

5

66.

x

y

5

5
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5.3 Solutions

1. Look for p and q such that (x+p)(x+q) = x2+9x+14. It follows that p+q = 9 and
pq = 14, so p = 2 and q = 7. Now verify the factorization by multiplying (x+ 2)(x+ 7)
to obtain x2 + 9x+ 14.

3. Look for p and q such that (x+p)(x+q) = x2+10x+9. It follows that p+q = 10 and
pq = 9, so p = 9 and q = 1. Now verify the factorization by multiplying (x+ 9)(x+ 1)
to obtain x2 + 10x+ 9.

5. Look for p and q such that (x+ p)(x+ q) = x2− 4x− 5. It follows that p+ q = −4
and pq = −5, so p = −5 and q = 1. Now verify the factorization by multiplying
(x− 5)(x+ 1) to obtain x2 − 4x− 5.

7. Look for p and q such that (x+p)(x+q) = x2−7x+12. It follows that p+q = −7
and pq = 12, so p = −4 and q = −3. Now verify the factorization by multiplying
(x− 4)(x− 3) to obtain x2 − 7x+ 12.

9. To find the zeroes, set f(x) = 0 and factor.

0 = x2 − 2x− 15
0 = (x− 5)(x+ 3)

By the zero product property, either

x− 5 = 0 or x+ 3 = 0.

Solve these linear equations independently.

x = 5 or x = −3

11. To find the zeroes, set f(x) = 0 and factor.

0 = x2 + 10x− 39
0 = (x+ 13)(x− 3)

By the zero product property, either

x+ 13 = 0 or x− 3 = 0.

Solve these linear equations independently.

x = −13 or x = 3
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13. To find the zeroes, set f(x) = 0 and factor.

0 = x2 − 14x+ 40
0 = (x− 4)(x− 10)

By the zero product property, either

x− 4 = 0 or x− 10 = 0.

Solve these linear equations independently.

x = 4 or x = 10

15. To find the zeroes, set f(x) = 0 and factor.

0 = x2 + 9x− 36
0 = (x− 3)(x+ 12)

By the zero product property, either

x− 3 = 0 or x+ 12 = 0.

Solve these linear equations independently.

x = 3 or x = −12

17. To find the zeroes with your calculator, press 2nd TRACE to access the CALC
menu and choose 2:zero.

Use the left arrow
to move the cursor

along the curve until
it is to the left of the
first zero. Hit ENTER.

Use the right arrow to
move the cursor until it

is to the right of the
same zero. Hit ENTER.

Finally hit ENTER
near that same zero
for the guess, and
you get the zero.

Repeat this process for the second zero. We get (−7, 0) and (2, 0).
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x
−10

10

y

−30

30
f(x)=x2−5x−14

(−7,0)(−7,0) (2,0)(2,0)

To find the zeroes algebraically, set f(x) = 0 and factor.

0 = x2 + 5x− 14
0 = (x+ 7)(x− 2)

By the zero product property, either

x+ 7 = 0 or x− 2 = 0.

Solve these linear equations independently.

x = −7 or x = 2

So the zeroes are (−7, 0) and (2, 0).

19. To find the zeroes with your calculator, press 2nd TRACE to access the CALC
menu and choose 2:zero.

Use the left arrow
to move the cursor

along the curve until
it is to the left of the
first zero. Hit ENTER.

Use the right arrow to
move the cursor until it

is to the right of the
same zero. Hit ENTER.

Finally hit ENTER
near that same zero
for the guess, and
you get the zero.

Repeat this process for the second zero. We get (6, 0) and (−3, 0).
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x
−10 10

y

−30

30

f(x)=−x2+3x+18

(−3,0)(−3,0) (6,0)(6,0)

To find the zeroes algebraically, set f(x) = 0 and factor.

0 = −x2 + 3x+ 18
0 = −(x2 − 3x− 18)
0 = −(x− 6)(x+ 3)

By the zero product property, either

x− 6 = 0 or x+ 3 = 0.

Solve these linear equations independently.

x = 6 or x = −3

21. To find the zeroes with your calculator, press 2nd TRACE to access the CALC
menu and choose 2:zero.

Use the left arrow
to move the cursor

along the curve until
it is to the left of the
first zero. Hit ENTER.

Use the right arrow to
move the cursor until it

is to the right of the
same zero. Hit ENTER.

Finally hit ENTER
near that same zero
for the guess, and
you get the zero.

Repeat this process for the second zero. We get (−2, 0) and (18, 0).
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x
−10

30

y

−100

100
f(x)=x2−16x−36

(−2,0)(−2,0) (18,0)(18,0)

To find the zeroes algebraically, set f(x) = 0 and factor.

0 = x2 − 16x− 36
0 = (x+ 2)(x− 18)

By the zero product property, either

x+ 2 = 0 or x− 18 = 0.

Solve these linear equations independently.

x = −2 or x = 18

23. First, complete the square:

f(x) = x2 + 2x− 8
= x2 + 2x+ 1− 1− 8
=
(
x2 + 2x+ 1

)
− 1− 8

= (x+ 1)2 − 9

Read off the vertex as (h, k) = (−1,−9). The axis of symmetry is a vertical line through
the vertex with equation x = −1.
To find the x-intercepts algebraically, set y = 0 and factor.

0 = x2 + 2x− 8
0 = (x+ 4)(x− 2)

By the zero product property, either

x+ 4 = 0 or x− 2 = 0.

Solve these linear equations independently.

x = −4 or x = 2
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So the x-intercepts are (−4, 0) and (2, 0).
Lastly, to find the y-intercept, set x = 0 in the equation and solve for y:

y = x2 + 2x− 8
y = 02 + 2(0)− 8
y = −8

So the y-intercept is (0,−8). Finally, put this all together to make the graph.

x
10

y
10 f(x)=(x+1)2−9
x=−1

(−1,−9)(−1,−9)

(−4,0)(−4,0) (2,0)(2,0)

(0,−8)(0,−8)(−2,−8)(−2,−8)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−9,∞).

x
10

y
10 f(x)=(x+1)2−9

x
10

y
10 f(x)=(x+1)2−9

(−1,−9)

25. First, complete the square:

f(x) = x2 + 4x− 12
= x2 + 4x+ 4− 4− 12
=
(
x2 + 4x+ 4

)
− 4− 12

= (x+ 2)2 − 16
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Read off the vertex as (h, k) = (−2,−16). The axis of symmetry is a vertical line
through the vertex with equation x = −2.
To find the x-intercepts algebraically, set y = 0 and factor.

0 = x2 + 4x− 12
0 = (x+ 6)(x− 2)

By the zero product property, either

x+ 6 = 0 or x− 2 = 0.

Solve these linear equations independently.

x = −6 or x = 2

So the x-intercepts are (−6, 0) and (2, 0).
Lastly, to find the y-intercept, set x = 0 in the equation and solve for y:

y = x2 + 4x− 12
y = 02 + 4(0)− 12
y = −12

So the y-intercept is (0,−12).
Finally, put this all together to make the graph.

x
10

y
20 f(x)=(x+2)2−16

x=−2

(−2,−16)(−2,−16)

(−6,0)(−6,0) (2,0)(2,0)

(0,−12)(0,−12)(−4,−12)(−4,−12)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−16,∞).
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x
10

y
20 f(x)=(x+2)2−16

x
10

y
20 f(x)=(x+2)2−16

(−2,−16)(−2,−16)

27. First, complete the square:

f(x) = −x2 − 2x+ 8
= −(x2 + 2x− 8)
= −(x2 + 2x+ 1− 1− 8)
= −
((
x2 + 2x+ 1

)
− 1− 8

)

= −
(

(x+ 1)2 − 9
)

= − (x+ 1)2 + 9

Read off the vertex as (h, k) = (−1, 9). The axis of symmetry is a vertical line through
the vertex with equation x = −1.
To find the x-intercepts algebraically, set y = 0 and factor.

0 = −x2 − 2x+ 8
0 = −(x2 + 2x− 8)
0 = −(x+ 4)(x− 2)

By the zero product property, either

x+ 4 = 0 or x− 2 = 0.

Solve these linear equations independently.

x = −4 or x = 2

So the x-intercepts are (−4, 0) and (2, 0).
Lastly, to find the y-intercept, set x = 0 in the equation and solve for y:

y = −x2 − 2x+ 8
y = −02 − 2(0) + 8
y = 8
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So the y-intercept is (0, 8).
Finally, put this all together to make the graph.

x
10

y
20

f(x)=−(x+1)2+9

x=−1

(−1,9)(−1,9)

(−4,0)(−4,0) (2,0)(2,0)

(0,8)(0,8)(−2,8)(−2,8)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= (−∞, 9].

x
10

y
20

f(x)=−(x+1)2+9

x
10

y
20

f(x)=−(x+1)2+9

(−1,9)(−1,9)

29. First, complete the square:

f(x) = −x2 − 8x+ 48
= −(x2 + 8x− 48)
= −(x2 + 8x+ 16− 16− 48)
= −
((
x2 + 8x+ 16

)
− 16− 48

)

= −
(

(x+ 4)2 − 64
)

= − (x+ 4)2 + 64



Chapter 5 Quadratic Functions

Version: Fall 2007

Read off the vertex as (h, k) = (−4, 64). The axis of symmetry is a vertical line through
the vertex with equation x = −4.
To find the x-intercepts algebraically, set y = 0 and factor.

0 = −x2 − 8x+ 48
0 = −(x2 + 8x− 48)
0 = −(x+ 12)(x− 4)

By the zero product property, either

x+ 12 = 0 or x− 4 = 0.

Solve these linear equations independently.

x = −12 or x = 4

So the x-intercepts are (−12, 0) and (4, 0).
Lastly, to find the y-intercept, set x = 0 in the equation and solve for y:

y = −x2 − 8x+ 48
y = −02 − 8(0) + 48
y = 48

So the y-intercept is (0, 48).
Finally, put this all together to make the graph.

x
20

y
100

f(x)=−(x+4)2+64

x=−4

(−4,64)(−4,64)

(−12,0)(−12,0) (4,0)(4,0)

(0,48)(0,48)(−8,48)(−8,48)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= (−∞, 64].
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x
20

y
100

f(x)=−(x+4)2+64

x
20

y
100

f(x)=−(x+4)2+64

(−4,64)(−4,64)

31. Using the ac-test, first look for two numbers whose product is ac = (42)(−2) =
−84 and whose sum is b = 5. The solutions are −7 and 12. Then

42x2 + 5x− 2 = 42x2 − 7x+ 12x− 2
= 7x(6x− 1) + 2(6x− 1)
= (7x+ 2)(6x− 1)

Now verify the factorization by multiplying (7x+ 2)(6x− 1) to obtain 42x2 + 5x− 2.

33. Using the ac-test, first look for two numbers whose product is ac = (5)(12) = 60
and whose sum is b = −19. The solutions are −4 and −15. Then

5x2 − 19x+ 12 = 5x2 − 4x− 15x+ 12
= x(5x− 4)− 3(5x− 4)
= (x− 3)(5x− 4)

Now verify the factorization by multiplying (x− 3)(5x− 4) to obtain 5x2 − 19x+ 12.

35. Using the ac-test, first look for two numbers whose product is ac = (−4)(−5) = 20
and whose sum is b = 9. The solutions are 4 and 5. Then

− 4x2 + 9x− 5 = −4x2 + 4x+ 5x− 5
= 4x(−x+ 1)− 5(−x+ 1)
= (4x− 5)(−x+ 1)

Now verify the factorization by multiplying (4x− 5)(−x+ 1) to obtain −4x2 + 9x− 5.
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37. Using the ac-test, first look for two numbers whose product is ac = (2)(−35) =
−70 and whose sum is b = −3. The solutions are −10 and 7. Then

2x2 − 3x− 35 = 2x2 − 10x+ 7x− 35
= 2x(x− 5) + 7(x− 5)
= (2x+ 7)(x− 5)

Now verify the factorization by multiplying (2x+ 7)(x− 5) to obtain 2x2 − 3x− 35.

39. To find the zeroes, set f(x) = 0 and factor.

0 = 2x2 − 3x− 20
0 = (2x+ 5)(x− 4)

By the zero product property, either

2x+ 5 = 0 or x− 4 = 0.

Solve these linear equations independently.

x = −5/2 or x = 4

41. To find the zeroes, set f(x) = 0 and factor.

0 = −2x2 + x+ 28
0 = −(2x2 − x− 28)
0 = −(2x+ 7)(x− 4)

By the zero product property, either

2x+ 7 = 0 or x− 4 = 0.

Solve these linear equations independently.

x = −7/2 or x = 4

43. To find the zeroes, set f(x) = 0 and factor.

0 = 3x2 − 20x+ 12
0 = (3x− 2)(x− 6)

By the zero product property, either

3x− 2 = 0 or x− 6 = 0.

Solve these linear equations independently.

x = 2/3 or x = 6
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45. To find the zeroes, set f(x) = 0 and factor.

0 = −4x2 + 4x+ 15
0 = −(4x2 − 4x− 15)
0 = −(2x+ 3)(2x− 5)

By the zero product property, either

2x+ 3 = 0 or 2x− 5 = 0.

Solve these linear equations independently.

x = −3/2 or x = 5/2

47. To find the zeroes with your calculator, press 2nd TRACE to access the CALC
menu and choose 2:zero.

Use the left arrow
to move the cursor

along the curve until
it is to the left of the
first zero. Hit ENTER.

Use the right arrow to
move the cursor until it

is to the right of the
same zero. Hit ENTER.

Finally hit ENTER
near that same zero
for the guess, and
you get the zero.

Repeat this process for the second zero. We get (3.5, 0) and (−5, 0).

x
−10

10

y

−50

50
f(x)=2x2+3x−35

(−5,0)(−5,0) (3.5,0)(3.5,0)

To find the zeroes algebraically, set y = 0 and solve for x:
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0 = 2x2 + 3x− 35
0 = (2x− 7)(x+ 5)

By the zero product property, either

2x− 7 = 0 or x+ 5 = 0.

Solve these linear equations independently.

x = 7/2 or x = −5

49. To find the zeroes with your calculator, press 2nd TRACE to access the CALC
menu and choose 2:zero.

Use the left arrow
to move the cursor

along the curve until
it is to the left of the
first zero. Hit ENTER.

Use the right arrow to
move the cursor until it

is to the right of the
same zero. Hit ENTER.

Finally hit ENTER
near that same zero
for the guess, and
you get the zero.

Repeat this process for the second zero. We get (5.5, 0) and (−3, 0).

x
−10 10

y

−50

50

f(x)=−2x2+5x+33

(−3,0)(−3,0) (5.5,0)(5.5,0)

To find the zeroes algebraically, set y = 0 and solve for x:

0 = −2x2 + 5x+ 33
0 = −(2x2 − 5x− 33)
0 = −(2x− 11)(x+ 3)
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By the zero product property, either

2x− 11 = 0 or x+ 3 = 0.

Solve these linear equations independently.

x = 11/2 or x = −3

51. To find the zeroes with your calculator, press 2nd TRACE to access the CALC
menu and choose 2:zero.

Use the left arrow
to move the cursor

along the curve until
it is to the left of the
first zero. Hit ENTER.

Use the right arrow to
move the cursor until it

is to the right of the
same zero. Hit ENTER.

Finally hit ENTER
near that same zero
for the guess, and
you get the zero.

Repeat this process for the second zero. We get (−.5, 0) and (6.5, 0).

x
−10 10

y

−100

100
f(x)=4x2−24x−13

(−0.5,0)(−0.5,0) (6.5,0)(6.5,0)

To find the zeroes, set y = 0 and solve for x:

0 = 4x2 − 24x− 13
0 = (2x+ 1)(2x− 13)

By the zero product property, either

2x+ 1 = 0 or 2x− 13 = 0.
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Solve these linear equations independently.

x = −1/2 or x = 13/2

53. First, complete the square:

f(x) = 2x2 − 8x− 24
= 2(x2 − 4x− 12)
= 2
(
x2 − 4x+ 4− 4− 12

)

= 2
((
x2 − 4x+ 4

)
− 4− 12

)

= 2
(

(x− 2)2 − 16
)

= 2 (x− 2)2 − 32

Read off the vertex as (h, k) = (2,−32). The axis of symmetry is a vertical line through
the vertex with equation x = 2.
To find the x-intercepts algebraically, set y = 0 and factor.

0 = 2x2 − 8x− 24
0 = 2(x2 − 4x− 12)
0 = 2(x− 6)(x+ 2)

By the zero product property, either

x− 6 = 0 or x+ 2 = 0.

Solve these linear equations independently.

x = 6 or x = −2

So the x-intercepts are (6, 0) and (−2, 0).
Lastly, to find the y-intercept, set x = 0 in the equation and solve for y:

y = 2x2 − 8x− 24
y = 2(0)2 − 8(0)− 24
y = −24

So the y-intercept is (0,−24).
Finally, put this all together to make the graph.
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x
10

y
50

f(x)=2(x−2)2−32

x=2

(2,−32)(2,−32)

(−2,0)(−2,0) (6,0)(6,0)

(0,−24)(0,−24) (4,−24)(4,−24)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−32,∞).

x
10

y
50

f(x)=2(x−2)2−32

x
10

y
50

f(x)=2(x−2)2−32

(2,−32)(2,−32)

55. First, complete the square:

f(x) = −2x2 − 4x+ 16
= −2(x2 + 2x− 8)
= −2

(
x2 + 2x+ 1− 1− 8

)

= −2
((
x2 + 2x+ 1

)
− 1− 8

)

= −2
(

(x+ 1)2 − 9
)

= −2 (x+ 1)2 + 18

Read off the vertex as (h, k) = (−1, 18). The axis of symmetry is a vertical line through
the vertex with equation x = −1.
To find the x-intercepts algebraically, set y = 0 and factor.
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0 = −2x2 − 4x+ 16
0 = −2(x2 + 2x− 8)
0 = −2(x+ 4)(x− 2)

By the zero product property, either

x+ 4 = 0 or x− 2 = 0.

Solve these linear equations independently.

x = −4 or x = 2

So the x-intercepts are (−4, 0) and (2, 0).
Lastly, to find the y-intercept, set x = 0 in the equation and solve for y:

y = −2x2 − 4x+ 16
y = −2(0)2 − 4(0) + 16
y = 16

So the y-intercept is (0, 16).
Finally, put this all together to make the graph.

x
10

y
20

f(x)=−2(x+1)2+18
x=−1

(−1,18)(−1,18)

(−4,0)(−4,0) (2,0)(2,0)

(0,16)(0,16)(−2,16)(−2,16)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= (−∞, 18].
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x
10

y
20

f(x)=−2(x+1)2+18

x
10

y
20

f(x)=−2(x+1)2+18

(−1,18)(−1,18)

57. First, complete the square:

f(x) = 3x2 + 18x− 48
= 3(x2 + 6x− 16)
= 3
(
x2 + 6x+ 9− 9− 16

)

= 3
((
x2 + 6x+ 9

)
− 9− 16

)

= 3
(

(x+ 3)2 − 25
)

= 3 (x+ 3)2 − 75

Read off the vertex as (h, k) = (−3,−75). The axis of symmetry is a vertical line
through the vertex with equation x = −3.
To find the x-intercepts algebraically, set y = 0 and factor.

0 = 3x2 + 18x− 48
0 = 3(x2 + 6x− 16)
0 = 3(x+ 8)(x− 2)

By the zero product property, either

x+ 8 = 0 or x− 2 = 0.

Solve these linear equations independently.

x = −8 or x = 2

So the x-intercepts are (−8, 0) and (2, 0).
Lastly, to find the y-intercept, set x = 0 in the equation and solve for y:

y = 3x2 + 18x− 48
y = 3(0)2 + 18(0)− 48
y = −48
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So the y-intercept is (0,−48).
Finally, put this all together to make the graph.

x
20

y
100 f(x)=3(x+3)2−75

x=−3

(−3,−75)(−3,−75)

(−8,0)(−8,0) (2,0)(2,0)

(0,−48)(0,−48)(−6,−48)(−6,−48)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−75,∞).

x
20

y
100 f(x)=3(x+3)2−75

x
20

y
100 f(x)=3(x+3)2−75

(−3,−75)(−3,−75)
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59. First, complete the square:

f(x) = 2x2 + 10x− 48
= 2(x2 + 5x− 24)

= 2
(
x2 + 5x+ 25

4 −
25
4 − 24

)

= 2
((
x2 + 5x+ 25

4

)
− 25

4 − 24
)

= 2
((
x+ 5

2

)2
− 25

4 −
96
4

)

= 2
((
x+ 5

2

)2
− 121

4

)

= 2
(
x+ 5

2

)2
− 121

2

Read off the vertex as (h, k) = (−5/2,−121/2). The axis of symmetry is a vertical line
through the vertex with equation x = −5/2.
To find the x-intercepts algebraically, set y = 0 and factor.

0 = 2x2 + 10x− 48
0 = 2(x2 + 5x− 24)
0 = 2(x+ 8)(x− 3)

By the zero product property, either

x+ 8 = 0 or x− 3 = 0.

Solve these linear equations independently.

x = −8 or x = 3

So the x-intercepts are (−8, 0) and (3, 0).
Lastly, to find the y-intercept, set x = 0 in the equation and solve for y:

y = 2x2 + 10x− 48
y = 2(0)2 + 10(0)− 48
y = −48

So the y-intercept is (0,−48).
Finally, put this all together to make the graph.
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x
20

y
100 f(x)=2(x+5/2)2−121/2

x=−5/2

(−5/2,−121/2)(−5/2,−121/2)

(−8,0)(−8,0) (3,0)(3,0)

(0,−48)(0,−48)(−5,−48)(−5,−48)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−121/2,∞).

x
20

y
100 f(x)=2(x+5/2)2−121/2

x
20

y
100 f(x)=2(x+5/2)2−121/2

(−5/2,−121/2)(−5/2,−121/2)

61. To find the solutions of ax2+bx+c = 0, note where the graph of f(x) = ax2+bx+c
crosses the x-axis (see figure below). Thus, the solutions are −2 and 3.

x

y

5

5
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63. To find the solutions of ax2+bx+c = 0, note where the graph of f(x) = ax2+bx+c
crosses the x-axis (see figure below). Thus, the solutions are −3 and 0.

x

y

5

5

65. To find the solutions of ax2+bx+c = 0, note where the graph of f(x) = ax2+bx+c
crosses the x-axis (see figure below). Thus, the solutions are −3 and 0.

x

y

5

5
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5.4 Exercises

In Exercises 1-8, find all real solutions
of the given equation. Use a calculator to
approximate the answers, correct to the
nearest hundredth (two decimal places).

1. x2 = 36

2. x2 = 81

3. x2 = 17

4. x2 = 13

5. x2 = 0

6. x2 = −18

7. x2 = −12

8. x2 = 3

In Exercises 9-16, find all real solutions
of the given equation. Use a calculator to
approximate your answers to the nearest
hundredth.

9. (x− 1)2 = 25

10. (x+ 3)2 = 9

11. (x+ 2)2 = 0

12. (x− 3)2 = −9

13. (x+ 6)2 = −81

14. (x+ 7)2 = 10

15. (x− 8)2 = 15

16. (x+ 10)2 = 37

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

In Exercises 17-28, perform each of the
following tasks for the given quadratic
function.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Remember to draw all lines with
a ruler.

ii. Place the quadratic function in ver-
tex form. Plot the vertex on your co-
ordinate system and label it with its
coordinates. Draw the axis of sym-
metry on your coordinate system and
label it with its equation.

iii. Use the quadratic formula to find the
x-intercepts of the parabola. Use a
calculator to approximate each inter-
cept, correct to the nearest tenth, and
use these approximations to plot the
x-intercepts on your coordinate sys-
tem. However, label each x-intercept
with its exact coordinates.

iv. Plot the y-intercept on your coordi-
nate system and its mirror image across
the axis of symmetry and label each
with their coordinates.

v. Using all of the information on your
coordinate system, draw the graph of
the parabola, then label it with the
vertex form of the function. Use in-
terval notation to state the domain
and range of the quadratic function.

17. f(x) = x2 − 4x− 8

18. f(x) = x2 + 6x− 1

19. f(x) = x2 + 6x− 3

20. f(x) = x2 − 8x+ 1

21. f(x) = −x2 + 2x+ 10
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22. f(x) = −x2 − 8x− 8

23. f(x) = −x2 − 8x− 9

24. f(x) = −x2 + 10x− 20

25. f(x) = 2x2 − 20x+ 40

26. f(x) = 2x2 − 16x+ 12

27. f(x) = −2x2 + 16x+ 8

28. f(x) = −2x2 − 24x− 52

In Exercises 29-32, perform each of the
following tasks for the given quadratic
equation.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Remember to draw all lines with
a ruler.

ii. Show that the discriminant is nega-
tive.

iii. Use the technique of completing the
square to put the quadratic function
in vertex form. Plot the vertex on
your coordinate system and label it
with its coordinates. Draw the axis of
symmetry on your coordinate system
and label it with its equation.

iv. Plot the y-intercept and its mirror
image across the axis of symmetry
on your coordinate system and label
each with their coordinates.

v. Because the discriminant is negative
(did you remember to show that?),
there are no x-intercepts. Use the
given equation to calculate one addi-
tional point, then plot the point and
its mirror image across the axis of
symmetry and label each with their
coordinates.

vi. Using all of the information on your
coordinate system, draw the graph of
the parabola, then label it with the

vertex form of function. Use interval
notation to describe the domain and
range of the quadratic function.

29. f(x) = x2 + 4x+ 8

30. f(x) = x2 − 4x+ 9

31. f(x) = −x2 + 6x− 11

32. f(x) = −x2 − 8x− 20

In Exercises 33-36, perform each of the
following tasks for the given quadratic
function.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Remember to draw all lines with
a ruler.

ii. Use the discriminant to help deter-
mine the value of k so that the graph
of the given quadratic function has
exactly one x-intercept.

iii. Substitute this value of k back into
the given quadratic function, then use
the technique of completing the square
to put the quadratic function in ver-
tex form. Plot the vertex on your co-
ordinate system and label it with its
coordinates. Draw the axis of sym-
metry on your coordinate system and
label it with its equation.

iv. Plot the y-intercept and its mirror
image across the axis of symmetry
and label each with their coordinates.

v. Use the equation to calculate an addi-
tional point on either side of the axis
of symmetry, then plot this point and
its mirror image across the axis of
symmetry and label each with their
coordinates.

vi. Using all of the information on your
coordinate system, draw the graph
of the parabola, then label it with
the vertex form of the function. Use
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interval notation to describe the do-
main and range of the quadratic func-
tion.

33. f(x) = x2 − 4x+ 4k

34. f(x) = x2 + 6x+ 3k

35. f(x) = kx2 − 16x− 32

36. f(x) = kx2 − 24x+ 48

37. Find all values of k so that the graph
of the quadratic function f(x) = kx2 −
3x+ 5 has exactly two x-intercepts.

38. Find all values of k so that the graph
of the quadratic function f(x) = 2x2 +
7x− 4k has exactly two x-intercepts.

39. Find all values of k so that the graph
of the quadratic function f(x) = 2x2 −
x+ 5k has no x-intercepts.

40. Find all values of k so that the graph
of the quadratic function f(x) = kx2 −
2x− 4 has no x-intercepts.

In Exercises 41-50, find all real solu-
tions, if any, of the equation f(x) = b.

41. f(x) = 63x2 + 74x− 1; b = 8

42. f(x) = 64x2 + 128x+ 64; b = 0

43. f(x) = x2 − x− 5; b = 2

44. f(x) = 5x2 − 5x; b = 3

45. f(x) = 4x2 + 4x− 1; b = −2

46. f(x) = 2x2 − 9x− 3; b = −1

47. f(x) = 2x2 + 4x+ 6; b = 0

48. f(x) = 24x2 − 54x+ 27; b = 0

49. f(x) = −3x2 + 2x− 13; b = −5

50. f(x) = x2 − 5x− 7; b = 0

In Exercises 51-60, find all real solu-
tions, if any, of the quadratic equation.

51. −2x2 + 7 = −3x

52. −x2 = −9x+ 7

53. x2 − 2 = −3x

54. 81x2 = −162x− 81

55. 9x2 + 81 = −54x

56. −30x2 − 28 = −62x

57. −x2 + 6 = 7x

58. −8x2 = 4x+ 2

59. 4x2 + 3 = −x

60. 27x2 = −66x+ 16

In Exercises 61-66, find all of the x-
intercepts, if any, of the given function.

61. f(x) = −4x2 − 4x− 5

62. f(x) = 49x2 − 28x+ 4

63. f(x) = −56x2 + 47x+ 18

64. f(x) = 24x2 + 34x+ 12

65. f(x) = 36x2 + 96x+ 64

66. f(x) = 5x2 + 2x+ 3

In Exercises 67-74, determine the num-
ber of real solutions of the equation.

67. 9x2 + 6x+ 1 = 0
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68. 7x2 − 12x+ 7 = 0

69. −6x2 + 4x− 7 = 0

70. −8x2 + 11x− 4 = 0

71. −5x2 − 10x− 5 = 0

72. 6x2 + 11x+ 2 = 0

73. −7x2 − 4x+ 5 = 0

74. 6x2 + 10x+ 4 = 0
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5.4 Solutions

1. Because 62 = 36 and (−6)2 = 36, the equation x2 = 36 has two solutions, x = ±6.
Take these square roots on your calculator as shown in (a) and (b).

(a) (b)

3. The equation x2 = 17 has two solutions, x = ±
√

17, since (
√

17)2 = 17 and
(−
√

17)2 = 17. Approximate these square roots on your calculator as shown in (a) and
(b).

(a) (b)

5. The solutions of the equation x2 = 0 are x = ±
√

0, but
√

0 = 0, so we have x = ±0.
However, 0 is the same as −0, so really there is only one solution, x = 0. This single
solution is also supported by the calculator screens (a) and (b).

(a) (b)
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7. The equation x2 = −12 no real solutions. It is not possible to square a real number
and get −12. The fact that

√
−12 is not a real number is supported by the following

calculator results (provided you have REAL selected in the MODE menu).

(a) (b)

In similar fashion, −
√
−12 is not a real number.

(c) (d)

9. If (x− 1)2 = 25, then there are two possibilities for x− 1, namely

x− 1 = ±
√

25.

To solve for x, add 1 to both sides of this last equation.

x = 1±
√

25
x = 1± 5.

So the solutions are 1 + 5 = 6 and 1 − 5 = −4. These can also be computed on your
calculator.

(a) (b)
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11. If (x+ 2)2 = 0, then there is only one possibility for x+ 2, namely

x+ 2 = 0.

To solve for x, subtract 2 from both sides of this last equation.

x = −2.

So the solution is x=-2.

13. If x is a real number, then so is x+ 6. It’s not possible to square the real number
x+ 6 and get a negative number like -81. Hence, the equation (x+ 6)2 = −81 has no
real solutions.

15. If (x− 8)2 = 15, then there are two possibilities for x− 8, namely

x− 8 = ±
√

15.

To solve for x, add 8 to both sides of this last equation.

x = 8±
√

15.

Our TI83 gives the following approximations.

(a) (b)

17. First, complete the square:

f(x) = x2 − 4x− 8
= x2 − 4x+ 4− 4− 8
=
(
x2 − 4x+ 4

)
− 4− 8

= (x− 2)2 − 12

Read off the vertex as (h, k) = (2,−12). The axis of symmetry is a vertical line through
the vertex with equation x = 2.
To find the x-intercepts algebraically, set x2−4x−8 = 0 and use the quadratic formula
with a = 1, b = −4 and c = −8:
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x = −b±
√
b2 − 4ac

2a

= 4±
√

(−4)2 − 4(1)(−8)
2(1)

= 4±
√

16 + 32
2

= 4±
√

48
2

So the x-intercepts are ((4−
√

48)/2, 0) and ((4 +
√

48)/2, 0). These are approximated
on your calculator in (a) and (b).

(a) (b)

Lastly, to find the y-intercept, set x = 0 in the equation and solve for y:
f(x) = x2 − 4x− 8
f(0) = 02 − 4(0)− 8
f(0) = −8

So the y-intercept is (0,−8). Finally, put this all together to make the graph.

x
10

y
20

f(x)=(x−2)2−12

x=2

(2,−12)(2,−12)

((4−
√

48)/2,0)((4−
√

48)/2,0) ((4+
√

48)/2,0)((4+
√

48)/2,0)

(0,−8)(0,−8) (4,−8)(4,−8)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−12,∞).
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x
10

y
20

f(x)=(x−2)2−12

x
10

y
20

f(x)=(x−2)2−12

(2,−12)(2,−12)

19. First, complete the square:

f(x) = x2 + 6x− 3
= x2 + 6x+ 9− 9− 3
=
(
x2 + 6x+ 9

)
− 9− 3

= (x+ 3)2 − 12

Read off the vertex as (h, k) = (−3,−12). The axis of symmetry is a vertical line
through the vertex with equation x = −3.
To find the x-intercepts algebraically, set x2 +6x−3 = 0 and use the quadratic formula
with a = 1, b = 6 and c = −3:

x = −b±
√
b2 − 4ac

2a

= −6±
√

(6)2 − 4(1)(−3)
2(1)

= −6±
√

36 + 12
2

= −6±
√

48
2

So the x-intercepts are ((−6 −
√

48)/2, 0) and ((−6 +
√

48)/2, 0). These are approxi-
mated on your calculator in (a) and (b).

(a) (b)
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Lastly, to find the y-intercept, set x = 0 in the equation and solve for y:

f(x) = x2 + 6x− 3
f(0) = 02 + 6(0)− 3
f(0) = −3

So the y-intercept is (0,−3). Finally, put this all together to make the graph.

x
10

y
20 f(x)=(x+3)2−12

x=−3

(−3,−12)(−3,−12)

((−6−
√

48)/2,0)((−6−
√

48)/2,0) ((−6+
√

48)/2,0)((−6+
√

48)/2,0)

(0,−3)(0,−3)(−6,−3)(−6,−3)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−12,∞).

x
10

y
20 f(x)=(x+3)2−12

x
10

y
20 f(x)=(x+3)2−12

(−3,−12)(−3,−12)

21. First, complete the square:
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f(x) = −x2 + 2x+ 10
= −(x2 − 2x− 10)
= −
(
x2 − 2x+ 1− 1− 10

)

= −
((
x2 − 2x+ 1

)
− 1− 10

)

= −
(

(x− 1)2 − 11
)

= − (x− 1)2 + 11

Read off the vertex as (h, k) = (1, 11). The axis of symmetry is a vertical line through
the vertex with equation x = 1.
To find the x-intercepts algebraically, set −x2 + 2x + 10 = 0 and use the quadratic
formula with a = −1, b = 2 and c = 10:

x = −b±
√
b2 − 4ac

2a

= −2±
√

(2)2 − 4(−1)(10)
2(−1)

= −2±
√

4 + 40
−2

= −2±
√

44
−2

So the x-intercepts are ((−2 +
√

44)/(−2), 0) and ((−2 −
√

44)/(−2), 0). These are
approximated on your calculator in (a) and (b).

(a) (b)

Lastly, to find the y-intercept, set x = 0 in the equation and solve for y:

f(x) = −x2 + 2x+ 10
f(0) = −(0)2 + 2(0) + 10
f(0) = 10

So the y-intercept is (0, 10). Finally, put this all together to make the graph.
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x
10

y
20

f(x)=−(x−1)2+11

x=1
(1,11)(1,11)

((−2+
√

44)/(−2),0)((−2+
√

44)/(−2),0) ((−2−
√

44)/(−2),0)((−2−
√

44)/(−2),0)

(0,10)(0,10) (2,10)(2,10)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= (−∞, 11].

x
10

y
20

f(x)=−(x−1)2+11

x
10

y
20

f(x)=−(x−1)2+11

(1,11)(1,11)

23. First, complete the square:

f(x) = −x2 − 8x− 9
= −(x2 + 8x+ 9)
= −
(
x2 + 8x+ 16− 16 + 9

)

= −
((
x2 + 8x+ 16

)
− 16 + 9

)

= −
(

(x+ 4)2 − 7
)

= − (x+ 4)2 + 7

Read off the vertex as (h, k) = (−4, 7). The axis of symmetry is a vertical line through
the vertex with equation x = −4.
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To find the x-intercepts algebraically, set −x2 − 8x − 9 = 0 and use the quadratic
formula with a = −1, b = −8 and c = −9:

x = −b±
√
b2 − 4ac

2a

= 8±
√

(−8)2 − 4(−1)(−9)
2(−1)

= 8±
√

64− 36
−2

= 8±
√

28
−2

So the x-intercepts are ((8−
√

28)/(−2), 0) and ((8+
√

28)/(−2), 0). These are approx-
imated on your calculator in (a) and (b).

(a) (b)

Lastly, to find the y-intercept, set x = 0 in the equation and solve for y:

f(x) = −x2 − 8x− 9
f(0) = −(0)2 − 8(0)− 9
f(0) = −9

So the y-intercept is (0,−9).
Finally, put this all together to make the graph.

x
10

y
20

f(x)=−(x+4)2+7

x=−4

(−4,7)(−4,7)

((8+
√

28)/(−2),0)((8+
√

28)/(−2),0) ((8−
√

28)/(−2),0)((8−
√

28)/(−2),0)

(0,−9)(0,−9)(−8,−9)(−8,−9)
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To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= (−∞, 7].

x
10

y
20

f(x)=−(x+4)2+7

x
10

y
20

f(x)=−(x+4)2+7

(−4,7)(−4,7)

25. First, complete the square:

f(x) = 2x2 − 20x+ 40
= 2(x2 − 10x+ 20)
= 2
(
x2 − 10x+ 25− 25 + 20

)

= 2
((
x2 − 10x+ 25

)
− 25 + 20

)

= 2
(

(x− 5)2 − 5
)

= 2 (x− 5)2 − 10

Read off the vertex as (h, k) = (5,−10). The axis of symmetry is a vertical line through
the vertex with equation x = 5.
To find the x-intercepts algebraically, set 2x2 − 20x + 40 = 0 and use the quadratic
formula with a = 2, b = −20 and c = 40:

x = −b±
√
b2 − 4ac

2a

= 20±
√

(−20)2 − 4(2)(40)
2(2)

= 20±
√

400− 320
4

= 20±
√

80
4
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So the x-intercepts are ((20−
√

80)/4, 0) and ((20+
√

80)/4, 0). These are approximated
on your calculator in (a) and (b).

(a) (b)

Lastly, to find the y-intercept, set x = 0 in the equation and solve for y:

f(x) = 2x2 − 20x+ 40
f(0) = 2(0)2 − 20(0) + 40
f(0) = 40

So the y-intercept is (0, 40).
Finally, put this all together to make the graph.

x
20

y
50

f(x)=2(x−5)2−10

x=5

(5,−10)(5,−10)

((20−
√

80)/4,0)((20−
√

80)/4,0) ((20+
√

80)/4,0)((20+
√

80)/4,0)

(0,40)(0,40) (10,40)(10,40)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [−10,∞).
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x
20

y
50

f(x)=2(x−5)2−10

x
20

y
50

f(x)=2(x−5)2−10

(5,−10)(5,−10)

27. First, complete the square:

f(x) = −2x2 + 16x+ 8
= −2(x2 − 8x− 4)
= −2

(
x2 − 8x+ 16− 16− 4

)

= −2
((
x2 − 8x+ 16

)
− 16− 4

)

= −2
(

(x− 4)2 − 20
)

= −2 (x− 4)2 + 40

Read off the vertex as (h, k) = (4, 40). The axis of symmetry is a vertical line through
the vertex with equation x = 4.
To find the x-intercepts algebraically, set −2x2 + 16x + 8 = 0 and use the quadratic
formula with a = −2, b = 16 and c = 8:

x = −b±
√
b2 − 4ac

2a

= −16±
√

(16)2 − 4(−2)(8)
2(−2)

= −16±
√

256 + 64
−4

= −16±
√

320
−4

So the x-intercepts are ((−16−
√

320)/(−4), 0) and ((−16 +
√

320)/(−4), 0). These are
approximated on your calculator in (a) and (b).
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(a) (b)

Lastly, to find the y-intercept, set x = 0 in the equation and solve for y:

f(x) = −2x2 + 16x+ 8
f(0) = −2(0)2 + 16(0) + 8
f(0) = 8

So the y-intercept is (0, 8).
Finally, put this all together to make the graph.

x
20

y
50

f(x)=−2(x−4)2+40

x=4

(4,40)(4,40)

((−16+
√

320)/(−4),0)((−16+
√

320)/(−4),0) ((−16−
√

320)/(−4),0)((−16−
√

320)/(−4),0)
(0,8)(0,8) (8,8)(8,8)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= (−∞, 40].
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x
20

y
50

f(x)=−2(x−4)2+40

x
20

y
50

f(x)=−2(x−4)2+40

(4,40)(4,40)

29. For the quadratic function f(x) = x2 + 4x + 8, a = 1, b = 4 and c = 8, so the
discriminant is D = b2 − 4ac = (4)2 − 4(1)(8) = 16 − 32 = −16 < 0. A negative
discriminant tells us that this function has no x-intercepts (zeroes).
Complete the square to find the vertex.

f(x) = x2 + 4x+ 8
= x2 + 4x+ 4− 4 + 8
= (x2 + 4x+ 4)− 4 + 8
= (x+ 2)2 − 4 + 8
= (x+ 2)2 + 4

Read off the vertex as (h, k) = (−2, 4). The axis of symmetry is a vertical line through
the vertex with equation x = −2.
To find the y-intercept, set x = 0 in the equation and solve for y:

f(x) = x2 + 4x+ 8
f(0) = 02 + 4(0) + 8
f(0) = 8

So the y-intercept is (0, 8).
Now calculate an additional point and mirror it over, and then complete the graph.
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x y = (x+ 2)2 + 4
−1 5

x
10

y
20 f(x)=(x+2)2+4

x=−2

(−2,4)(−2,4)

(0,8)(0,8)(−4,8)(−4,8)
(−3,5)(−3,5) (−1,5)(−1,5)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [4,∞).

x
10

y
20 f(x)=(x+2)2+4

x
10

y
20 f(x)=(x+2)2+4

(−2,4)(−2,4)

31. For the quadratic function f(x) = −x2 + 6x− 11, a = −1, b = 6 and c = −11, so
the discriminant is D = b2− 4ac = (6)2− 4(−1)(−11) = 36− 44 = −8 < 0. A negative
discriminant tells us that this function has no x-intercepts (zeroes).
Complete the square to find the vertex.

f(x) = −x2 + 6x− 11
= −(x2 − 6x+ 11)
= −
(
x2 − 6x+ 9− 9 + 11

)

= −
((
x2 − 6x+ 9

)
− 9 + 11

)

= −
(

(x− 3)2 + 2
)

= − (x− 3)2 − 2
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Read off the vertex as (h, k) = (3,−2). The axis of symmetry is a vertical line through
the vertex with equation x = 3.
To find the y-intercept, set x = 0 in the equation and solve for y:

f(x) = −x2 + 6x− 11
f(0) = −(0)2 + 6(0)− 11
f(0) = −11

So the y-intercept is (0,−11).
Now calculate an additional point and mirror it over, and then complete the graph.

x y = −(x− 3)2− 2
4 −3

x
10

y
20

f(x)=−(x−3)2−2

x=3

(3,−2)(3,−2)

(0,−11)(0,−11) (6,−11)(6,−11)

(2,−3)(2,−3) (4,−3)(4,−3)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= (−∞,−2].

x
10

y
20

f(x)=−(x−3)2−2

x
10

y
20

f(x)=−(x−3)2−2

(3,−2)(3,−2)

33. The graph of a quadratic function has exactly one x-intercept when the discrim-
inant is zero. For this function f(x) = x2 − 4x+ 4k, a = 1, b = −4 and c = 4k, so the
discriminant is D = b2 − 4ac = (−4)2 − 4(1)(4k) = 16 − 16k. In order for there to be
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only one x-intercept, this must be zero. So, set it equal to zero and solve for the value
of k.

0 = D
0 = 16− 16k

Subtracting 16 from each side,

−16 = −16k

Now divide both sides by -16:

1 = k

So, if k = 1, then f(x) will have one x-intercept. So, replacing k with 1, we get that
f(x) = x2 − 4x+ 4.
Complete the square to find the vertex. f(x) already has the constant term we need,
so just factor to complete the square.

f(x) = x2 − 4x+ 4
= (x− 2)2

Read off the vertex as (h, k) = (2, 0). The axis of symmetry is a vertical line through
the vertex with equation x = 2.
To find the y-intercept, set x = 0 in the equation and solve for y:

f(x) = x2 − 4x+ 4
f(0) = (0)2 − 4(0) + 4
f(0) = 4

So the y-intercept is (0, 4).
Now calculate an additional point and mirror it over, and then complete the graph.

x y = (x − 2)2

6 16 x
10

y
20

f(x)=(x−2)2

x=2

(2,0)(2,0)

(0,4)(0,4) (4,4)(4,4)

(−2,16)(−2,16) (6,16)(6,16)
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To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= [0,∞).

x
10

y
20

f(x)=(x−2)2

x
10

y
20

f(x)=(x−2)2

(2,0)(2,0)

35. The graph of a quadratic function has exactly one x-intercept when the discrim-
inant is zero. For this function f(x) = kx2 − 16x − 32, a = k, b = −16 and c = −32,
so the discriminant is D = b2 − 4ac = (−16)2 − 4(k)(−32) = 256 + 128k. In order for
there to be only one x-intercept, this must be zero. So, set it equal to zero and solve
for the value of k.

0 = D
0 = 256 + 128k

Subtracting 256 from each side,

−256 = 128k

Now divide both sides by 128:

−2 = k

So, if k = −2, then f(x) will have one x-intercept. So, replacing k with −2, we get
that f(x) = −2x2 − 16x− 32.
Complete the square to find the vertex.

f(x) = −2x2 − 16x− 32
= −2(x2 + 8x+ 16)
= −2(x+ 4)2

Read off the vertex as (h, k) = (−4, 0). The axis of symmetry is a vertical line through
the vertex with equation x = −4.
To find the y-intercept, set x = 0 in the equation and solve for y:
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f(x) = −2x2 − 16x− 32
f(0) = −2(0)2 − 16(0)− 32
f(0) = −32

So the y-intercept is (0,−32).
Now calculate an additional point and mirror it over, and then complete the graph.

x y = −2(x + 4)2

−2 −8
x

10

y
50

f(x)=−2(x+4)2

x=−4

(−4,0)(−4,0)

(0,−32)(0,−32)(−8,−32)(−8,−32)

(−6,−8)(−6,−8) (−2,−8)(−2,−8)

To find the domain of f , mentally project every point of the graph onto the x-axis, as
shown on the left below. This covers the entire x-axis, so the domain= (−∞,∞). To
find the range, mentally project every point of the graph onto the y-axis, as shown on
the right below. The shaded interval on the y-axis is range= (−∞, 0].

x
10

y
50

f(x)=−2(x+4)2

x
10

y
50

f(x)=−2(x+4)2

(−4,0)(−4,0)

37. The graph of a quadratic function has exactly two x-intercepts when the discrim-
inant is positive. For this function f(x) = kx2 − 3x + 5, a = k, b = −3 and c = 5, so
the discriminant is D = b2 − 4ac = (−3)2 − 4(k)(5) = 9− 20k. In order for there to be
two x-intercepts, this must be positive. So, set it greater than zero and solve for the
value of k.
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0 < D
0 < 9− 20k

Subtracting 9 from each side,

−9 < 20k

Now divide both sides by -20 (reverse the direction of the inequality because we’re
dividing by a negative number):

9/20 > k

So, any k less than 9/20 will work. Our solution set is therefore {k : k < 9/20}

39. The graph of a quadratic function has no x-intercepts when the discriminant is
negative. For this function f(x) = 2x2 − x + 5k, a = 2, b = −1 and c = 5k, so the
discriminant is D = b2− 4ac = (−1)2− 4(2)(5k) = 1− 40k. In order for there to be no
x-intercepts, this must be negative. So, set it less than zero and solve for the value of
k.

0 > D
0 > 1− 40k

Subtracting 1 from each side,

−1 > −40k

Now divide both sides by -40 (reverse the direction of the inequality because we’re
dividing by a negative number):

1/40 < k

So, any k greater than 1/40 will work. Our solution set is therefore {k : k > 1/40}

41. Use factoring and the principle of zero products:

63x2 + 74x− 1 = 8
=⇒ 63x2 + 74x− 9 = 0
=⇒ (7x+ 9)(9x− 1) = 0

=⇒ x = −9
7 ,

1
9

Alternatively, use the quadratic formula x = −b±
√
b2 − 4ac

2a .

43. x2 − x − 5 = 2 =⇒ x2 − x − 7 = 0. The polynomial on the left side does not
factor, so use the quadratic formula:
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x = −b±
√
b2 − 4ac

2a

= 1±
√

(−1)2 − 4(1)(−7)
2(1)

= 1±
√

29
2

= 1 +
√

29
2 ,

1−
√

29
2

45. Use factoring and the principle of zero products:

4x2 + 4x− 1 = −2
=⇒ 4x2 + 4x+ 1 = 0
=⇒ (2x+ 1)2 = 0

=⇒ x = −1
2

Alternatively, use the quadratic formula x = −b±
√
b2 − 4ac

2a .

47. The polynomial 2x2 + 4x+ 6 does not factor, so use the quadratic formula:

x = −b±
√
b2 − 4ac

2a

= −4±
√

42 − 4(2)(6)
2(2)

= −4±
√
−32

4

Since
√
−32 is not a real number, there are no real solutions.

49. −3x2 + 2x − 13 = −5 =⇒ −3x2 + 2x − 8 = 0. The polynomial on the left side
does not factor, so use the quadratic formula:

x = −b±
√
b2 − 4ac

2a

= −2±
√

22 − 4(−3)(−8)
2(−3)

= −2±
√
−92

−6

Since
√
−92 is not a real number, there are no real solutions.
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51. −2x2 + 7 = −3x =⇒ −2x2 + 3x + 7 = 0. The polynomial on the left side does
not factor, so use the quadratic formula:

x = −b±
√
b2 − 4ac

2a

= −3±
√

32 − 4(−2)(7)
2(−2)

= −3±
√

65
−4

= 3−
√

65
4 ,

3 +
√

65
4

53. x2 − 2 = −3x =⇒ x2 + 3x − 2 = 0. The polynomial on the left side does not
factor, so use the quadratic formula:

x = −b±
√
b2 − 4ac

2a

= −3±
√

32 − 4(1)(−2)
2(1)

= −3±
√

17
2

= −3−
√

17
2 ,−3 +

√
17

2

55. Make one side zero, then note that each term is divisible by 9.

9x2 + 81 = −54x
=⇒ 9x2 + 54x+ 81 = 0
=⇒ x2 + 6x+ 9 = 0

Factor.

(x+ 3)2 = 0

Hence, x = −3 is the only solution. Alternatively, use the quadratic formula x =
−b±

√
b2 − 4ac

2a .
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57. −x2 + 6 = 7x =⇒ −x2 − 7x+ 6 = 0. The polynomial on the left side does not
factor, so use the quadratic formula:

x = −b±
√
b2 − 4ac

2a

= 7 ±
√

(−7)2 − 4(−1)(6)
2(−1)

= 7 ±
√

73
−2

= −7 +
√

73
2 ,−7 −

√
73

2

59. 4x2 + 3 = −x =⇒ 4x2 + x + 3 = 0. The polynomial on the left side does not
factor, so use the quadratic formula:

x = −b±
√
b2 − 4ac

2a

= −1±
√

12 − 4(4)(3)
2(4)

= −1±
√
−47

8

Since
√
−47 is not a real number, there are no real solutions.

61. To find the x-intercepts, solve the equation f(x) = 0. In other words, solve the
equation

−4x2 − 4x− 5 = 0

The polynomial on the left side does not factor, so use the quadratic formula:

x = −b±
√
b2 − 4ac

2a

= 4±
√

(−4)2 − 4(−4)(−5)
2(−4)

= 4±
√
−64
−8

Since
√
−64 is not a real number, there are no real solutions, and therefore no x-

intercepts.
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63. To find the x-intercepts, solve the equation f(x) = 0:

− 56x2 + 47x+ 18 = 0
=⇒ (−8x+ 9)(7x+ 2) = 0

=⇒ x = 9
8 ,−

2
7

Alternatively, use the quadratic formula x = −b±
√
b2 − 4ac

2a .

65. To find the x-intercepts, solve the equation f(x) = 0. Note that each term is
divisible by 4, then factor the resulting perfect square trinomial.

36x2 + 96x+ 64 = 0
=⇒ 9x2 + 24x+ 16 = 0
=⇒ (3x+ 4)2 = 0

=⇒ x = −4
3

Alternatively, use the quadratic formula x = −b±
√
b2 − 4ac

2a .

67. Compute the discriminant b2 − 4ac to determine the number of real solutions.
If b2 − 4ac > 0, then the equation has two real solutions.
If b2 − 4ac = 0, then the equation has one real solution.
If b2 − 4ac < 0, then the equation has no real solutions.
In this case, b2 − 4ac = 62 − 4(9)(1) = 0, so the equation has one real solution.

69. Compute the discriminant b2 − 4ac to determine the number of real solutions.
If b2 − 4ac > 0, then the equation has two real solutions.
If b2 − 4ac = 0, then the equation has one real solution.
If b2 − 4ac < 0, then the equation has no real solutions.
In this case, b2 − 4ac = 42 − 4(−6)(−7) = −152 < 0, so the equation has no real
solutions.

71. Compute the discriminant b2 − 4ac to determine the number of real solutions.
If b2 − 4ac > 0, then the equation has two real solutions.
If b2 − 4ac = 0, then the equation has one real solution.
If b2 − 4ac < 0, then the equation has no real solutions.
In this case, b2− 4ac = (−10)2− 4(−5)(−5) = 0, so the equation has one real solution.



Section 5.4 The Quadratic Formula

Version: Fall 2007

73. Compute the discriminant b2 − 4ac to determine the number of real solutions.
If b2 − 4ac > 0, then the equation has two real solutions.
If b2 − 4ac = 0, then the equation has one real solution.
If b2 − 4ac < 0, then the equation has no real solutions.
In this case, b2 − 4ac = (−4)2 − 4(−7)(5) = 156 > 0, so the equation has two real
solutions.
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5.5 Exercises

In Exercises 1-12, write down the for-
mula d = vt and solve for the unknown
quantity in the problem. Once that is
completed, substitute the known quan-
tities in the result and simplify. Make
sure to check that your units cancel and
provide the appropriate units for your so-
lution.

1. If Martha maintains a constant speed
of 30 miles per hour, how far will she
travel in 5 hours?

2. If Jamal maintains a constant speed
of 25 miles per hour, how far will he
travel in 5 hours?

3. If Arturo maintains a constant speed
of 30 miles per hour, how long will it take
him to travel 120 miles?

4. If Mei maintains a constant speed of
25 miles per hour, how long will it take
her to travel 150 miles?

5. If Allen maintains a constant speed
and travels 250 miles in 5 hours, what is
is his constant speed?

6. If Jane maintains a constant speed
and travels 300 miles in 6 hours, what is
is her constant speed?

7. If Jose maintains a constant speed of
15 feet per second, how far will he travel
in 5 minutes?

8. If Tami maintains a constant speed
of 1.5 feet per second, how far will she
travel in 4 minutes?

9. If Carmen maintains a constant speed

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

of 80 meters per minute, how far will she
travel in 600 seconds?

10. If Alphonso maintains a constant
speed of 15 feet per second, how long will
it take him to travel 1 mile? Note: 1 mile
equals 5280 feet.

11. If Hoshi maintains a constant speed
of 200 centimeters per second, how long
will it take her to travel 20 meters? Note:
100 centimeters equals 1 meter.

12. If Maeko maintains a constant speed
and travels 5 miles in 12 minutes, what
is her speed in miles per hour?

In Exercises 13-18, a plot of speed v
versus time t is presented.
i. Make an accurate duplication of the

plot on graph paper. Label and scale
each axis. Mark the units on each
axis.

ii. Use the graph to determine the dis-
tance traveled over the time period
[0, 5], using the time units given on
the graph.

13.

t (s)

v (ft/s)

v

0 50

30

50
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14.

t (h)

v (mi/h)

v

0 50

40

20

15.

t (s)

v (m/s)

v

0 50

40

20

16.

t (s)

v (ft/s)

v

0 50

40

20

17.

t (h)

v (mi/h)
v

0 50

40

20

18.

t (s)

v (m/s)

v

0 50

40

20

19. You’re told that a car moves with
a constant acceleration of 7.5 ft/s2. In
your own words, explain what this means.

20. You’re told that an object will fall
on a distant planet with constant accel-
eration 6.5 m/s2. In your own words, ex-
plain what this means.

21. You’re told that the acceleration of
a car is −18 ft/s2. In your own words,
explain what this means.
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22. An observer on a distant planet throws
an object into the air and as it moves
upward he reports that the object has
a constant acceleration of −4.5 m/s2. In
your own words, explain what this means.

In Exercises 23-28, perform each of the
following tasks.

i. Solve the equation v = v0 +at for the
unknown quantity.

ii. Substitute the known quantities (with
units) into your result, then simplify.
Make sure the units cancel and pro-
vide appropriate units for your solu-
tion.

23. A rocket accelerates from rest with
constant acceleration 15.8 m/s2. What
will be the speed of the rocket after 3
minutes?

24. A stone is dropped from rest on
a distant planet and it accelerates to-
wards the ground with constant acceler-
ation 3.8 ft/s2. What will be the speed
of the stone after 2 minutes?

25. A stone is thrown downward on a
distant planet with an initial speed of
20 ft/s. If the stone experiences constant
acceleration of 32 ft/s2, what will be the
speed of the stone after 1 minute?

26. A ball is hurled upward with an ini-
tial speed of 80 m/s. If the ball experi-
ences a constant acceleration of−9.8 m/s2,
what will be the speed of the ball at the
end of 5 seconds?

27. An object is shot into the air with
an initial speed of 100 m/s. If the ob-
ject experiences constant deceleration of
9.8 m/s2, how long will it take the ball to
reach its maximum height?

28. An object is released from rest on
a distant planet and after 5 seconds, its
speed is 98 m/s. If the object falls with
constant acceleration, determine the ac-
celeration of the object.

In Exercises 29-42, use the appropri-
ate equation of motion, either v = v0+at
or x = x0 + v0t + (1/2)at2 or both, to
solve the question posed in the exercise.

i. Select the appropriate equation of mo-
tion and solve for the unknown quan-
tity.

ii. Substitute the known quantities (with
their units) into your result and sim-
plify. Check that cancellation of units
provide units appropriate for your so-
lution.

iii. Find a decimal approximation for your
answer.

29. A rocket with initial velocity 30 m/s
moves along a straight line with constant
acceleration 2.5 m/s2. Find the velocity
and the distance traveled by the rocket
at the end of 10 seconds.

30. A car is traveling at 88 ft/s when
it applies the brakes and begins to slow
with constant deceleration of 5 ft/s2. What
is its speed and how far has it traveled
at the end of 5 seconds?

31. A car is traveling at 88 ft/s when it
applies the brakes and slows to 58 ft/s in
10 seconds. Assuming constant deceler-
ation, find the deceleration and the dis-
tance traveled by the car in the 10 second
time interval. Hint: Compute the decel-
eration first.
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32. A stone is hurled downward from
above the surface of a distant planet with
initial speed 45 m/s. At then end of 10
seconds, the velocity of the stone is 145 m/s.
Assuming constant acceleration, find the
acceleration of the stone and the distance
traveled in the 10 second time period.

33. An object is shot into the air from
the surface of the earth with an initial
velocity of 180 ft/s. Find the maximum
height of the object and the time it takes
the object to reach that maximum height.
Hint: The acceleration due to gravity
near the surface of the earth is well known.

34. An object is shot into the air from
the surface of a distant planet with an
initial velocity of 180 m/s. Find the max-
imum height of the object and the time
it takes the object to reach that maxi-
mum height. Assume that the accelera-
tion due to gravity on this distant planet
is 5.8 m/s2. Hint: Calculate the time to
the maximum height first.

35. A car is traveling down the high-
way at 55 mi/h when the driver spots a
slide of rocks covering the road ahead
and hits the brakes, providing a constant
deceleration of 12 ft/s2. How long does it
take the car to come to a halt and how
far does it travel during this time period?

36. A car is traveling down the high-
way in Germany at 81 km/h when the
driver spots that traffic is stopped in the
road ahead and hits the brakes, provid-
ing a constant deceleration of 2.3 m/s2.
How long does it take the car to come
to a halt and how far does it travel dur-
ing this time period? Note: 1 kilometer
equals 1000 meters.

37. An object is released from rest at
some distance over the surface of the earth.
How far (in meters) will the object fall
in 5 seconds and what will be its veloc-
ity at the end of this 5 second time pe-
riod? Hint: You should know the accel-
eration due to gravity near the surface of
the earth.

38. An object is released from rest at
some distance over the surface of a dis-
tant planet. How far (in meters) will the
object fall in 5 seconds and what will be
its velocity at the end of this 5 second
time period? Assume the acceleration
due to gravity on the distant planet is
13.5 m/s2.

39. An object is released from rest at
a distance of 352 feet over the surface
of the earth. How long will it take the
object to impact the ground?

40. An object is released from rest at
a distance of 400 meters over the surface
of a distant planet. How long will it take
the object to impact the ground? As-
sume that the acceleration due to gravity
on the distant planet equals 5.3 m/s2.

41. On earth, a ball is thrown upward
from an initial height of 5 meters with an
initial velocity of 100 m/s. How long will
it take the ball to return to the ground?

42. On earth, a ball is thrown upward
from an initial height of 5 feet with an
initial velocity of 100 ft/s. How long will
it take the ball to return to the ground?
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A ball is thrown into the air near the sur-
face of the earth. In Exercises 43-46,
the initial height of the ball and the ini-
tial velocity of the ball are given. Com-
plete the following tasks.

i. Use y = y0 + v0t + (1/2)at2 to set
up a formula for the height y of the
ball as a function of time t. Use the
appropriate constant for the acceler-
ation due to gravity near the surface
of the earth.

ii. Load the equation from the previous
part into Y1 in your graphing calcu-
lator. Adjust your viewing window
so that both the vertex and the time
when the ball returns to the ground
are visible. Copy the image onto your
homework paper. Label and scale each
axis with xmin, xmax, ymin, and ymax.

iii. Use the zero utility in the CALC menu
of your graphing calculator to deter-
mine the time when the ball returns
to the ground. Record this answer
in the appropriate location on your
graph.

iv. Use the quadratic formula to deter-
mine the time the ball returns to the
ground. Use your calculator to find a
decimal approximation of your solu-
tion. It should agree with that found
using the zero utility on your graph-
ing calculator. Be stubborn! Check
your work until the answers agree.

43. y0 = 50 ft, v0 = 120 ft/s.

44. y0 = 30 m, v0 = 100 m/s.

45. y0 = 20 m, v0 = 110 m/s.

46. y0 = 100 ft, v0 = 200 ft/s.

47. A rock is thrown upward at an ini-
tial speed of 64 ft/s. How many sec-
onds will it take the rock to rise 61 feet?
Round your answer to the nearest hun-
dredth of a second.

48. A penny is thrown downward from
the top of a tree at an initial speed of
28 ft/s. How many seconds will it take
the penny to fall 289 feet? Round your
answer to the nearest hundredth of a sec-
ond.

49. A water balloon is thrown down-
ward from the roof of a building at an
initial speed of 24 ft/s. The building is
169 feet tall. How many seconds will it
take the water balloon to hit the ground?
Round your answer to the nearest hun-
dredth of a second.

50. A rock is thrown upward at an ini-
tial speed of 60 ft/s. How many sec-
onds will it take the rock to rise 51 feet?
Round your answer to the nearest hun-
dredth of a second.

51. A ball is thrown upward from a
height of 42 feet at an initial speed of
63 ft/s. How many seconds will it take
the ball to hit the ground? Round your
answer to the nearest hundredth of a sec-
ond.

52. A rock is thrown upward from a
height of 32 feet at an initial speed of
25 ft/s. How many seconds will it take
the rock to hit the ground? Round your
answer to the nearest hundredth of a sec-
ond.
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53. A penny is thrown downward from
the top of a tree at an initial speed of
16 ft/s. The tree is 68 feet tall. How
many seconds will it take the penny to
hit the ground? Round your answer to
the nearest hundredth of a second.

54. A penny is thrown downward off of
the edge of a cliff at an initial speed of
32 ft/s. How many seconds will it take
the penny to fall 210 feet? Round your
answer to the nearest hundredth of a sec-
ond.
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5.5 Solutions

1. We are trying to solve for d, so d = vt is the formula we want to use.

d = vt

= 30 mi
h × 5 h

= 150 mi

3. We are trying to solve for t, so divide d = vt by v on each side first.

t = d
v

= 120 mi
30 mi/hr

= 120 mi× 1 hr
30 mi

= 4 hrs

5. We are trying to solve for v, so divide d = vt by t on each side first.

v = d
t

= 250 mi
5 hrs

= 50 miles per hour

7. We are trying to solve for d, so d = vt is the formula we want to use. But notice
that the rate v is given in ft/s, while time t is given as 5 minutes. We must first make
the units match, so convert

t = 5 min

= 5min× 60 s
1 min

= 300 s

Now plug into the formula.

d = vt

= 15 ft
s × 300 s

= 4500 ft
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9. We are trying to solve for d, so d = vt is the formula we want to use. But notice
that the rate v is given in m/min, while time t is given as 600 seconds. We must first
make the units match, so convert

t = 600 s

= 600 s× 1 min
60 s

= 10 min

Now plug into the formula.

d = vt

= 80 m
min × 10 min

= 800 m

11. We are trying to solve for t, so divide d = vt by v on each side first to get t = d/v.
But notice that v is given in cm/s, while distance d is given in meters. We must first
make the units match.

d = 20 m

= 20 m× 100 cm
1 m

= 2000 cm

Now plug in to the formula

t = d
v

= 2000 cm
200 cm/s

= 2000 cm× 1 s
200 cm

= 10 s
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13.

150 ft

t (s)

v (ft/s)

v

0 50

30

50

The distance traveled is the area under the curve, which is a rectangle, so the area is
length times width, or d = 30 fts × 5 s = 150 ft.

15.

100 m

t (s)

v (m/s)

v

0 50

40

20

The distance traveled is the area under the curve, which is a triangle. The formula for
area of a triangle is 1

2 × base× height, so

d = 1
2 × base× height

= 1
2 × 5 s× 40m

s
= 100 m
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17.

100 mi

75 mi

t (h)

v (mi/h)
v

0 50

40

20

The distance traveled is the area under the curve. This can be divided into two simple
geometric shapes–a triangle and a rectangle. The area is

d = area of triangle + area of rectangle

=
(1

2 × base× height
)

+ (length× width)

=
(1

2 × 5 h× 30mi
h

)
+
(

5 h× 20mi
h

)

= (75 mi) + (100 mi)
= 175 mi

19. It means that the velocity of the car increases at a rate of 7.5 feet per second
every second.

21. It means that the velocity of the car is decreasing at a rate of 18 feet per second
every second.

23. We are trying to solve for v, so v = v0 + at is the formula we want to use. But
notice that the acceleration a is given in m/s2, while time t is given as 3 min. We must
first make the units match, so convert

t = 3 min

= 3 min× 60 s
1 min

= 180 s

Now plug into the formula. Note that the rocket “accelerates from rest,” which means
that the initial velocity is v0 = 0 m/s.
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v = v0 + at

= 0m
s

+
(

15.8m/s
s × 180 s

)

= 0m
s

+ 2844m
s

= 2844 m/s

25. We are trying to solve for v, so v = v0 + at is the formula we want to use. But
notice that the acceleration a and initial speed v0 are given in units involving seconds,
while time t is given as 1 minute. We must first make the units match, so convert
t = 1 min = 60s.
The initial speed is v0 = 20 ft/s and the acceleration is a = 32 ft/s2. Now plug into
the formula.

v = v0 + at

= 20 ft
s +
(

32 ft/s
s × 60 s

)

= 20 ft
s +
(

1920ft
s

)

= 1940 ft/s

27. We are given v0 = 100 m/s, a = −9.8 m/s2 and are asked to find t when the ball
has reached maximum height. The ball will reach its maximum when v = 0 m/s. So,
we are really given v, v0, and a and asked to find t. First, solve the formula for t.

v = v0 + at
v − v0 = at
at = v − v0
t = v − v0

a

And now plug in what we know.

t = v − v0
a

= 0 m/s− 100 m/s
−9.8 (m/s)/s

≈ 10.2 m/s× s
m/s

= 10.2 s
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29. We’re given v0 = 30 m/s, a = 2.5 m/s2, and t = 10 s, and asked to find v and x.
We will thus need to use both formulas. For the velocity,

v = v0 + at

= 30m
s

+
(

2.5m/ss × 10 s
)

= 30m
s

+ 25m
s

= 55 m/s

For the distance traveled, x0 = 0 m since the rocket hasn’t traveled any distance at
time t = 0 s.

x = x0 + v0t+
1
2at

2

= 0 m + (30m
s × 10 s) + (1

2 × 2.5m
s2
× (10 s)2)

= 0 m + (30m
s × 10 s) + (1

2 × 2.5m
s2
× 100 s2)

= 0 m + (30m
s × 10 s) + (1

2 × 2.5ms2 × 100 s2)

= 0 m + 300 m + 125 m
= 425 m

31. We’re given v0 = 88 ft/s, v = 58 ft/s, and t = 10 s, and asked to find a and x.
We will thus need to use both formulas. First, since we know v, v0, and t, compute a.
Solve the velocity formula for a:

v = v0 + at
v − v0 = at
at = v − v0
a = v − v0

t

And plug in the known values:

a = v − v0
t

= 58 ft/s− 88 ft/s
10 s

= −30 ft/s
10 s

= −30 ft
s ×

1
10 s

= −3 ft/s2
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For the distance traveled, x0 = 0 ft since the car hasn’t traveled any distance at time
t = 0 s.

x = x0 + v0t+
1
2at

2

= 0 ft + (88 ft
s × 10 s) + (1

2 ×−3ft
s2
× (10 s)2)

= 0 ft + (88 ft
s × 10 s) + (1

2 ×−3ft
s2
× 100 s2)

= 0 ft + (88 ft
s × 10 s) + (1

2 ×−3fts2 × 100 s2)

= 0 ft + 880 ft− 150 ft
= 730 ft

33. We are given the initial velocity v0 = 180 ft/s and the initial position–the object
is shot from the surface of earth, so its initial distance is x0 = 0 ft. It is well known
that the acceleration due to gravity is a = −32 ft/s2 when we measure in feet (and it is
negative because it is pulling down on the object). The maximum height of the object
occurs when the velocity is v = 0 ft/s. So our task is to find x. First, find t by using,

v = v0 + at
v − v0 = at
at = v − v0
t = v − v0

a

and plugging in the known values:

t = v − v0
a

= 0 ft/s− 180 ft/s
−32(ft/s)/s

= −180ft/s× 1s
−32ft/s

= 5.625 s

And now use the distance formula to find x.

x = x0 + v0t+
1
2at

2

= 0 ft + (180 ft
s × 5.625 s) + (1

2 ×−32ft
s2
× (5.625 s)2)

= 0 ft + (180 ft
s × 5.625 s) + (1

2 ×−32ft
s2
× 31.640625 s2)

= 0 ft + (180 ft
s × 5.625 s) + (1

2 ×−32fts2 × 31.640625 s2)
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= 0 ft + 1012.5 ft− 506.25 ft
= 506.25 ft

So, at time t = 5.625 s, the object reaches its maximum height of x = 506.25 ft.

35. We are given that the car’s initial speed is v0 = 55 mi/h and its acceleration
(deceleration actually, so negative in sign) is a = −12 ft/s2. We must find the time t
and the distance traveled x when the car has come to a stop; that is, when v = 0 ft/s.
First, note that the velocity is given in units involving miles and hours, while the
acceleration is given in units involving feet and seconds. We must first make the units
match. Convert the initial velocity to ft/s as follows:

v0 = 55mi
h

= 55mi
h ×

1h
3600s ×

5280 ft
1 mi

≈ 80.667 ft/s

Now find t by using,
v = v0 + at

v − v0 = at
at = v − v0
t = v − v0

a

and plugging in the known values:

t = v − v0
a

= 0 ft/s− 80.667 ft/s
−12(ft/s)/s

= −80.667ft/s× 1s
−12ft/s

≈ 6.72 s

Finally, use the distance formula to find x. The initial distance is x0 = 0 ft since the
car has not traveled any distance when t = 0.

x = x0 + v0t+
1
2at

2

= 0 ft + (80.667 ft
s × 6.72 s) + (1

2 ×−12ft
s2
× (6.72 s)2)

= 0 ft + (80.667 ft
s × 6.72 s) + (1

2 ×−12ft
s2
× 45.158 s2)

= 0 ft + (80.667 ft
s × 6.72 s) + (1

2 ×−12fts2 × 45.158 s2)
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= 0 ft + 542.08 ft− 270.948 ft
≈ 271.1 ft

So, it takes the car approximately 6.72 s to come to a stop, and it travels about 271 ft
during this time period.

37. The object is released from rest, so v0 = 0 m/s. t = 5 s and we are asked to
find how far the object will fall and what its velocity v will be after those 5 s. The
well-known value for the acceleration due to gravity is a = −9.8 m/s2 when using the
metric system (and it is negative because it pulls the object downward).
First, let’s find v.

v = v0 + at

= 0m
s

+
(
−9.8m/ss × 5 s

)

= 0m
s
− 49m

s

= −49 m/s

Next we find the distance x that the object falls. We assume the object is high enough
above the earth’s surface that it will not hit the ground within 5 s and cut the fall
short. And we know that x0 = 0 m, as the object hasn’t fallen any distance when t = 0
s.

x = x0 + v0t+
1
2at

2

= 0 m + (0m
s × 5 s) + (1

2 ×−9.8m
s2
× (5 s)2)

= 0 m + (0m
s × 5 s) + (1

2 ×−9.8m
s2
× 25 s2)

= 0 m + (0m
s × 5 s) + (1

2 ×−9.8ms2 × 25 s2)

= 0 m + 0 m− 122.5 m
= −122.5 m

The negative value indicates that the height of the object decreased (it fell).
So, the object drops with a velocity of −49 m/s, falling 122.5 m.

39. The object is released from rest, so v0 = 0 ft/s; its initial height is x0 = 352 ft.
Its only acceleration is due to gravity, which is well known to be a = −32 ft/s2 when
using ft (negative because it is pulling down, decreasing the height of the object). To
find how long it will take to hit the ground, we must find the time t when x = 0 (the
height is zero, or the object is on the ground).
We want to find t, so solve the formula for t.
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x = x0 + v0t+
1
2at

2

0 = x0 − x+ v0t+
1
2at

2

0 = x0 − x+ v0t+
1
2at

2

This is a quadratic equation in t and we want to solve for t, so use the quadratic formula
with a = 1

2a, b = v0 and c = x0 − x.

t = −b±
√
b2 − 4ac

2a

t =
−v0 ±

√
v20 − 4(1

2a)(x0 − x)

2(1
2a)

t = −v0 ±
√
v20 − 2a(x0 − x)
a

Now subtitute in the known values.

t = −v0 ±
√
v20 − 2a(x0 − x)
a

t = −0 ft/s±
√

(0ft/s)2 − 2(−32 ft/s2)(352 ft− 0 ft)
−32 ft/s2

t = ±
√

64 ft/s2(352 ft)
−32 ft/s2

t = ±
√

22528 ft2/s2

−32 ft/s2

t ≈ ±150.09 ft/s
−32 ft/s2

t = ±150.09 ft
s ×

1 s× s
−32 ft

t = ±4.69 s ≈ t

We throw out the negative result because time must be positive. Thus, the object will
hit the surface of the earth in t = 4.69 s.

41. The initial height of the ball is x0 = 5 m and its initial velocity is v = 100
m/s. Because we are using the metric system, we need to use the well-known value of
a = −9.8 m/s2 for the acceleration due to gravity. We must find the time t at which
the height is x = 0 m.
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x = x0 + v0t+
1
2at

2

0 = 5 m + (100 m/s)t+ (1
2)(−9.8m

s2
)t2

0 = 5 m + (100 m/s)t+ (−4.9m
s2

)t2

0 = (−4.9 m/s2)t2 + (100 m/s)t+ (5) m

This is a quadratic equation with a = −4.9 m/s2, b = 100 m/s and c = 5 m, so use the
quadratic formula to solve.

t = −b±
√
b2 − 4ac

2a

t = −100 m/s±
√

(100 m/s)2 − 4(−4.9 m/s2)(5 m)
2(−4.9 m/s2)

t = −100 m/s±
√

10000 m2/s2 + 98 m2/s2

−9.8 m/s2

t = −100 m/s±
√

10098 m2/s2

−9.8 m/s2

t ≈ −100 m/s± 100.49 m/s
−9.8 m/s2

t ≈ (−100± 100.49)m/s
(−9.8)m/s2

t ≈ −100± 100.49
−9.8 × m/s

m/s2

t ≈ −100± 100.49
−9.8 × m

s ×
s2

m

t ≈ −100± 100.49
−9.8 × m

s ×
s× s

m
t ≈ 20.46 s,−0.50 s

We throw out the negative value for time. Thus the ball will hit the ground in approx-
imately t = 20.46 s.

43. We are given that y0 = 50 ft and v0 = 120 ft/s, and the well-known acceleration
due to gravity is a = −32 ft/s2 when using ft. Plug these into the height formula:

y = y0 + v0t+
1
2at

2

y = 50 + 120t− 16t2

y = −16t2 + 120t+ 50
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This is a quadratic function and we can graph it. We enter it into our calculator using
x’s instead of t’s. A good window to use is Xmin = 0, Xmax = 10, Y min = −100
and Y max = 400. We only need to look at time greater than or equal to zero.
To find when the ball hits the ground (the zero of the function) with your calculator,
press 2nd TRACE to access the CALC menu and choose 2:zero.

Use the left arrow
to move the cursor

along the curve until
it is to the left of the
first zero. Hit ENTER.

Use the right arrow to
move the cursor until it

is to the right of the
same zero. Hit ENTER.

Finally hit ENTER
near that same zero
for the guess, and
you get the zero.

We get (7.895781, 0).
Now sketch the graph on your paper.

t (s)0 10

y (ft)

−100

400

y=50+120t−16t2

(7.895781,0)(7.895781,0)

Finally, we verify the time it takes the ball to hit the ground with the quadratic formula.
The ball is on the ground when its height is y = 0 ft. So, set y = 0 and solve the
equation.

y = −16t2 + 120t+ 50
0 = −16t2 + 120t+ 50

This is a quadratic equation with a = −16, b = 120 and c = 50. So, the solutions are,
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t = −b±
√
b2 − 4ac

2a

t = −120±
√

(120)2 − 4(−16)(50)
2(−16)

t = −120±
√

14400 + 3200
−32

t = −120±
√

17600
−32

t ≈ −0.396, 7.896

As usual, we throw out the negative time, so t ≈ 7.896 s. This agrees with the zero
that we found using the calculator.

45. We are given that y0 = 20 m and v0 = 110 m/s, and the well-known acceleration
due to gravity is a = −9.8 m/s2 when using the metric system. Plug these into the
height formula:

y = y0 + v0t+
1
2at

2

y = 20 + 110t− 4.9t2

y = −4.9t2 + 110t+ 20

This is a quadratic function and we can graph it. We enter it into our calculator using
x’s instead of t’s. A good window to use is Xmin = 0, Xmax = 30, Y min = −200
and Y max = 1000. We only need to look at time greater than or equal to zero.
To find when the ball hits the ground (the zero of the function) with your calculator,
press 2nd TRACE to access the CALC menu and choose 2:zero.

Use the left arrow
to move the cursor

along the curve until
it is to the left of the
first zero. Hit ENTER.

Use the right arrow to
move the cursor until it

is to the right of the
same zero. Hit ENTER.

Finally hit ENTER
near that same zero
for the guess, and
you get the zero.

We get (22.629349, 0).
Now sketch the graph on your paper.
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t (s)0 30

y (m)

−200

1000

y=20+110t−4.9t2

(22.629349,0)(22.629349,0)

Finally, we verify the time it takes the ball to hit the ground with the quadratic formula.
The ball is on the ground when its height is y = 0 ft. So, set y = 0 and solve the
equation.

y = −4.9t2 + 110t+ 20
0 = −4.9t2 + 110t+ 20

This is a quadratic equation with a = −4.9, b = 110 and c = 20. So, the solutions are,

t = −b±
√
b2 − 4ac

2a

t = −110±
√

(110)2 − 4(−4.9)(20)
2(−4.9)

t = −110±
√

12100 + 392
−9.8

t = −110±
√

12492
−9.8

t ≈ −0.180, 22.629

As usual, we throw out the negative time, so t ≈ 22.629 s. This agrees with the zero
that we found using the calculator.

47. If the y-axis is oriented with the positive direction upward, and the 0 mark is set
at the initial position of the rock, then the height (in feet) of the rock at t seconds is
given by the function

s(t) = −16t2 + 64t

Then

height = 61 =⇒ s(t) = 61
=⇒ −16t2 + 64t = 61
=⇒ −16t2 + 64t− 61 = 0
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Now use either the quadratic formula or the ZERO routine on your calculator to find
the approximate solutions of this equation:

x = −b±
√
b2 − 4ac

2a

= −64±
√

642 − 4(−16)(−61)
2(−16)

= −64±
√

192
−32

≈ 1.567, 2.433

Thus, it takes approximately 1.567 seconds for the rock to rise to a height of 61 feet.
It also attains that height a second time on the way back down at approximately 2.433
seconds. Rounded to the nearest hundredth of a second, the answer is 1.57.

49. If the y-axis is oriented with the positive direction upward, and the 0 mark is set
at ground level, then the height (in feet) of the water balloon after t seconds is given
by the function

h(t) = −16t2 − 24t+ 169

Note that

height = 0 =⇒ h(t) = 0 =⇒ −16t2 − 24t+ 169 = 0

Now use either the quadratic formula or the ZERO routine on your calculator to find
the approximate solutions of this equation:

x = −b±
√
b2 − 4ac

2a

= 24±
√

(−24)2 − 4(−16)(169)
2(−16)

= 24±
√

11392
−32

≈ −4.085, 2.585

Since −4.085 is meaningless in the context of the question, the approximate answer is
2.585. Rounded to the nearest hundredth of a second, the answer is 2.59.

51. If the y-axis is oriented with the positive direction upward, and the 0 mark is
set at ground level, then the height (in feet) of the ball after t seconds is given by the
function

h(t) = −16t2 + 63t+ 42

Note that
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height = 0 =⇒ h(t) = 0 =⇒ −16t2 + 63t+ 42 = 0

Now use either the quadratic formula or the ZERO routine on your calculator to find
the approximate solutions of this equation:

x = −b±
√
b2 − 4ac

2a

= −63±
√

632 − 4(−16)(42)
2(−16)

= −63±
√

6657
−32

≈ −0.581, 4.518

Since −0.581 is meaningless in the context of the question, the approximate answer is
4.518. Rounded to the nearest hundredth of a second, the answer is 4.52.

53. If the y-axis is oriented with the positive direction upward, and the 0 mark is set
at ground level, then the height (in feet) of the penny after t seconds is given by the
function

h(t) = −16t2 − 16t+ 68

Note that

height = 0 =⇒ h(t) = 0 =⇒ −16t2 − 16t+ 68 = 0

Now use either the quadratic formula or the ZERO routine on your calculator to find
the approximate solutions of this equation:

x = −b±
√
b2 − 4ac

2a

= 16±
√

(−16)2 − 4(−16)(68)
2(−16)

= 16±
√

4608
−32

≈ −2.621, 1.621

Since −2.621 is meaningless in the context of the question, the approximate answer is
1.621. Rounded to the nearest hundredth of a second, the answer is 1.62.



Section 5.6 Optimization 541

Version: Fall 2007

5.6 Exercises

1. Find the exact maximum value of
the function f(x) = −x2 − 3x.

2. Find the exact maximum value of
the function f(x) = −x2 − 5x− 2.

3. Find the vertex of the graph of the
function f(x) = −3x2 − x− 6.

4. Find the range of the function f(x) =
−2x2 − 9x+ 2.

5. Find the exact maximum value of
the function f(x) = −3x2 − 9x− 4.

6. Find the equation of the axis of sym-
metry of the graph of the function f(x) =
−x2 − 5x− 9.

7. Find the vertex of the graph of the
function f(x) = 3x2 + 3x+ 9.

8. Find the exact minimum value of the
function f(x) = x2 + x+ 1.

9. Find the exact minimum value of the
function f(x) = x2 + 9x.

10. Find the range of the function f(x) =
5x2 − 3x− 4.

11. Find the range of the function f(x) =
−3x2 + 8x− 2.

12. Find the exact minimum value of
the function f(x) = 2x2 + 5x− 6.

13. Find the range of the function f(x) =
4x2 + 9x− 8.

14. Find the exact maximum value of
the function f(x) = −3x2 − 8x− 1.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

15. Find the equation of the axis of
symmetry of the graph of the function
f(x) = −4x2 − 2x+ 9.

16. Find the exact minimum value of
the function f(x) = 5x2 + 2x− 3.

17. A ball is thrown upward at a speed
of 8 ft/s from the top of a 182 foot high
building. How many seconds does it take
for the ball to reach its maximum height?
Round your answer to the nearest hun-
dredth of a second.

18. A ball is thrown upward at a speed
of 9 ft/s from the top of a 143 foot high
building. How many seconds does it take
for the ball to reach its maximum height?
Round your answer to the nearest hun-
dredth of a second.

19. A ball is thrown upward at a speed
of 52 ft/s from the top of a 293 foot high
building. What is the maximum height
of the ball? Round your answer to the
nearest hundredth of a foot.

20. A ball is thrown upward at a speed
of 23 ft/s from the top of a 71 foot high
building. What is the maximum height
of the ball? Round your answer to the
nearest hundredth of a foot.

21. Find two numbers whose sum is 20
and whose product is a maximum.

22. Find two numbers whose sum is 36
and whose product is a maximum.

23. Find two numbers whose difference
is 12 and whose product is a minimum.
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24. Find two numbers whose difference
is 24 and whose product is a minimum.

25. One number is 3 larger than twice a
second number. Find two such numbers
so that their product is a minimum.

26. One number is 2 larger than 5 times
a second number. Find two such num-
bers so that their product is a minimum.

27. Among all pairs of numbers whose
sum is −10, find the pair such that the
sum of their squares is the smallest pos-
sible.

28. Among all pairs of numbers whose
sum is −24, find the pair such that the
sum of their squares is the smallest pos-
sible.

29. Among all pairs of numbers whose
sum is 14, find the pair such that the sum
of their squares is the smallest possible.

30. Among all pairs of numbers whose
sum is 12, find the pair such that the sum
of their squares is the smallest possible.

31. Among all rectangles having perime-
ter 40 feet, find the dimensions (length
and width) of the one with the greatest
area.

32. Among all rectangles having perime-
ter 100 feet, find the dimensions (length
and width) of the one with the greatest
area.

33. A farmer with 1700 meters of fenc-
ing wants to enclose a rectangular plot
that borders on a river. If no fence is re-
quired along the river, what is the largest
area that can be enclosed?

34. A rancher with 1500 meters of fenc-
ing wants to enclose a rectangular plot

that borders on a river. If no fence is re-
quired along the river, and the side par-
allel to the river is x meters long, find
the value of x which will give the largest
area of the rectangle.

35. A park ranger with 400 meters of
fencing wants to enclose a rectangular
plot that borders on a river. If no fence
is required along the river, and the side
parallel to the river is x meters long, find
the value of x which will give the largest
area of the rectangle.

36. A rancher with 1000 meters of fenc-
ing wants to enclose a rectangular plot
that borders on a river. If no fence is re-
quired along the river, what is the largest
area that can be enclosed?

37. Let x represent the demand (the
number the public will buy) for an object
and let p represent the object’s unit price
(in dollars). Suppose that the unit price
and the demand are linearly related by
the equation p = (−1/3)x+ 40.

a) Express the revenue R (the amount
earned by selling the objects) as a
function of the demand x.

b) Find the demand that will maximize
the revenue.

c) Find the unit price that will maxi-
mize the revenue.

d) What is the maximum revenue?

38. Let x represent the demand (the
number the public will buy) for an object
and let p represent the object’s unit price
(in dollars). Suppose that the unit price
and the demand are linearly related by
the equation p = (−1/5)x+ 200.

a) Express the revenue R (the amount
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earned by selling the objects) as a
function of the demand x.

b) Find the demand that will maximize
the revenue.

c) Find the unit price that will maxi-
mize the revenue.

d) What is the maximum revenue?

39. A point from the first quadrant is
selected on the line y = mx + b. Lines
are drawn from this point parallel to the
axes to form a rectangle under the line in
the first quadrant. Among all such rec-
tangles, find the dimensions of the rec-
tangle with maximum area. What is the
maximum area? Assume m < 0.

x

y

y=mx+b

(x,y)(x,y)

40. A rancher wishes to fence a rectan-
gular area. The east-west sides of the
rectangle will require stronger support
due to prevailing east-west storm winds.
Consequently, the cost of fencing for the
east-west sides of the rectangular area is
$18 per foot. The cost for fencing the
north-south sides of the rectangular area
is $12 per foot. Find the dimension of
the largest possible rectangular area that
can be fenced for $7200.
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5.6 Solutions

1. The graph opens downward since a = −1 > 0, and the vertex is at (h, k), where
h = − b2a = −3

2 and k = f(h) = f
(
−3

2

)
= 9

4 . Thus, the maximum value of the

function is 9
4 .

3. The vertex is (h, k), where h = − b2a = −1
6 and k = f(h) = f

(
−1

6

)
= −71

12 .

5. The graph opens downward since a = −3 > 0, and the vertex is at (h, k), where
h = − b2a = −3

2 and k = f(h) = f
(
−3

2

)
= 11

4 . Thus, the maximum value of the

function is 11
4 .

7. The vertex is (h, k), where h = − b2a = −1
2 and k = f(h) = f

(
−1

2

)
= 33

4 .

9. The graph opens upward since a = 1 > 0, and the vertex is at (h, k), where
h = − b2a = −9

2 and k = f(h) = f
(
−9

2

)
= −81

4 . Thus, the minumum value of the

function is −81
4 .

11. The graph opens downward since a = −3 < 0, and the vertex is at (h, k), where
h = − b2a = 4

3 and k = f(h) = f
(4

3

)
= 10

3 . Thus, the range is (−∞, k] =
(
−∞, 10

3

]
.

13. The graph opens upward since a = 4 > 0, and the vertex is at (h, k), where
h = − b2a = −9

8 and k = f(h) = f
(
−9

8

)
= −209

16 . Thus, the range is [k,∞) =
[
−209

16 ,∞
)

.

15. The axis of symmetry is x = h, where h = − b2a = −1
4 .

17. If the y-axis is oriented with the positive direction upward, and the 0 mark is
set at ground level, then the height (in feet) of the ball after t seconds is given by the
function

h(t) = −16t2 + 8t+ 182
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Use either the vertex formula or the MAXIMUM routine on your calculator to find the
approximate vertex of the graph:

t = − b2a = 1
4 ≈ 0.25 and h(t) ≈ 183

Thus, the maximum height is reached in ≈ 0.25 seconds (rounded to the nearest hun-
dredth).

19. If the y-axis is oriented with the positive direction upward, and the 0 mark is
set at ground level, then the height (in feet) of the ball after t seconds is given by the
function

h(t) = −16t2 + 52t+ 293

Use either the vertex formula or the MAXIMUM routine on your calculator to find the
approximate vertex of the graph:

t = − b2a = 13
8 ≈ 1.625 and h(t) ≈ 335.25

Thus, the maximum height is ≈ 335.25 feet (rounded to the nearest hundredth).

21. Let x and y be the two numbers, so x + y = 20. The goal is to maximize the
product P = xy, but we cannot maximize a function of more than one variable. We
must substitute one of the variables out. Solve x+ y = 20 for y to get y = 20− x, and
substitute into P to get...

P (x) = x(20− x)

Simplifying yields

P (x) = −x2 + 20x

It is a downward parabola, so the maximum occurs at

x = − b2a = − 20
2(−1) = 10,

It follows that y = 20− x = 20− 10 = 10. So, the two numbers are 10 and 10.

23. Let x and y be the two numbers, so x − y = 12. The goal is to minimize the
product P = xy, but we cannot minimize a function of more than one variable. We
must substitute one of the variables out. Since x = 12 + y, P can be rewritten as a
function of y:

P (y) = (12 + y)y

Simplifying yields

P (y) = y2 + 12y

This is an upward parabola, so the minimum occurs at
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y = − b2a = − 12
2(1) = −6,

and x = 12 + y = 12 + (−6) = 6. So the two numbers are 6 and −6.

25. Let x and y be the two numbers, so y = 2x + 3. The goal is to minimize the
product P = xy, but we cannot minimize a function of more than one variable. We
must substitute one of the variables out. Substitute y = 2x+ 3 into P to get...

P (x) = x(2x+ 3)

Simplifying yields

P (x) = 2x2 + 3x

It is an upward parabola, so the minimum occurs at

x = − b2a = − 3
2(2) = −3

4 .

It follows that y = 2x+ 3 = 2(−3/4) + 3 = −3/2 + 3 = 3/2. So, the two numbers are
−3/4 and 3/2.

27. Let x and y be the two numbers, so x + y = −10. The goal is to minimize the
sum of squares S = x2 + y2. Since y = −10− x, S can be rewritten as a function of x:

S(x) = x2 + (−10− x)2

Simplifying yields

S(x) = 2x2 + 20x+ 100

The minimum occurs at

x = − b2a = −5,

and y = −10−−5 = −5.

29. Let x and y be the two numbers, so x+ y = 14. The goal is to minimize the sum
of squares S = x2 + y2. Since y = 14− x, S can be rewritten as a function of x:

S(x) = x2 + (14− x)2

Simplifying yields

S(x) = 2x2 − 28x+ 196

The minimum occurs at

x = − b2a = 7,
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and y = 14− 7 = 7.

31. Let the sides of the rectangle be x and y. Then the perimeter is 2x + 2y = 40
(two lengths plus two widths make up the perimeter). The goal is to maximize the
area, which is A = xy, but we cannot maximize a function of more than one variable.
We must substitute one of the variables out.
Solve 2x+ 2y = 40 for y to get y = (40− 2x)/2 = 20− x. Substitute into A = xy:

A(x) = x(20− x)

Simplifying yields

A(x) = −x2 + 20x

This is a downward parabola, so the maximum occurs at

x = − b2a = − 20
2(−1) = 10,

and y = 20− x = 20− 10 = 10. So the dimensions are 10 by 10.

33. Let x be the length of the portion of the fence parallel to the river. Then the
other two sides each have length (1700− x)/2, and the total area is

A(x) = x
(1700− x

2

)
= −1

2x
2 + 850x

The maximum occurs at the vertex of the graph, where x = −b/(2a) = 850 meters,
and A(850) = 361250, so the maximum area is 361250 square meters.

35. As indicated in the question, let x be the length of the portion of the fence parallel
to the river. Then the other two sides each have length (400− x)/2, and the total area
is

A(x) = x
(400− x

2

)
= −1

2x
2 + 200x

The maximum occurs at the vertex of the graph, where x = −b/(2a) = 200 meters.

37.

a) Since p represents the unit price and x represents the number of objects, the revenue
from sales is the unit price times the number of units, or px. Thus R(x) = px =
((−1/3)x+ 40)x = (−1/3)x2 + 40x.

b) In the part (a), you found the revenue R is given by the quadratic function R(x) =
(−1/3)x2 + 40x. Because a = −1/3, this is a downward parabola, and so its
maximum occurs at the vertex. The x-coordinate of the vertex is x = −b/(2a) =
−40/(2(−1/3)) = −40/(−2/3) = −40(−3/2) = 60. The maximum revenue occurs
when the demand is x = 60 objects.
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c) We know that the demand is x = 60 when the revenue is maximum. Our task is to
find what p is. Use p = (−1/3)x+40 and plug in 60 for x to get p = (−1/3)60+40 =
−20 + 40 = 20. The unit price should be $20 dollars to yield maximum revenue.

d) The maximum revenue itself is the R-coordinate of the vertex. We already have
x = 60. Plug this into the equation for R to get R(60) = (−1/3)602 + 40(60) =
$1200.

39. The dimensions of the rectangle are x by y, so its area is A = xy. We do not
know how to find maximums of equations with more than one variable, so we need to
get this down to an equation for A in terms of a single variable. Luckily, we are given
that y = mx + b, so replace y with mx + b to get A = x(mx + b). Multiply this out
to get A = mx2 + bx, which is a quadratic equation. We are given that m < 0, so the
graph of the area function A is a downward parabola, meaning its maximum occurs at
the vertex. Use x = −b/(2a) = −b/(2m) to get one dimension. Now plug in to get

y = mx+ b = m
(
−b
2m

)
+ b = − b2 + b = − b2 + 2b

2 = b2 ,

and

A = xy =
(
−b
2m

)(
b

2

)
= − b

2

4m.

So, the maximum area of −b2/(4m) occurs when the dimensions are −b/(2m) by b/2.
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6.1 Exercises

In Exercises 1-8, arrange each polyno-
mial in descending powers of x, state the
degree of the polynomial, identify the lead-
ing term, then make a statement about
the coefficients of the given polynomial.

1. p(x) = 3x− x2 + 4− x3

2. p(x) = 4 + 3x2 − 5x+ x3

3. p(x) = 3x2 + x4 − x− 4

4. p(x) = −3 + x2 − x3 + 5x4

5. p(x) = 5x− 3
2x

3 + 4− 2
3x

5

6. p(x) = −3
2x+ 5− 7

3x
5 + 4

3x
3

7. p(x) = −x+ 2
3x

3 −
√

2x2 + πx6

8. p(x) = 3+
√

2x4 +
√

3x−2x2 +
√

5x6

In Exercises 9-14, you are presented with
the graph of y = axn. In each case, state
whether the degree is even or odd, then
state whether a is a positive or negative
number.

9.

x5

y
5

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

10.

x5

y
5

11.

x5

y
5

12.

x5

y
5
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13.

x5

y
5

14.

x5

y
5

In Exercises 15-20, you are presented
with the graph of the polynomial p(x) =
anxn+ · · ·+a1x+a0. In each case, state
whether the degree of the polynomial is
even or odd, then state whether the lead-
ing coefficient an is positive or negative.

15.

x

y

16.

x

y

17.

x

y

18.

x

y
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19.

x

y

20.

x

y

For each polynomial in Exercises 21-
30, perform each of the following tasks.

i. Predict the end-behavior of the poly-
nomial by drawing a very rough sketch
of the polynomial. Do this without
the assistance of a calculator. The
only concern here is that your graph
show the correct end-behavior.

ii. Draw the graph on your calculator,
adjust the viewing window so that
all “turning points” of the polyno-
mial are visible in the viewing win-
dow, and copy the result onto your
homework paper. As usual, label and
scale each axis with xmin, xmax, ymin,
and ymax. Does the actual end-behavior
agree with your predicted end-behavior?

21. p(x) = −3x3 + 2x2 + 8x− 4

22. p(x) = 2x3 − 3x2 + 4x− 8

23. p(x) = x3 + x2 − 17x+ 15

24. p(x) = −x4 + 2x2 + 29x− 30

25. p(x) = x4 − 3x2 + 4

26. p(x) = −x4 + 8x2 − 12

27. p(x) = −x5 + 3x4 − x3 + 2x

28. p(x) = 2x4 − 3x3 + x− 10

29. p(x) = −x6 − 4x5 + 27x4 + 78x3 +
4x2 + 376x− 480

30. p(x) = x5−27x3+30x2−124x+120
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6.1 Answers

1. p(x) = −x3−x2+3x+4, degree = 3,
leading term = −x3, “p is a polynomial
with integer coefficients,” “p is a polyno-
mial with rational coefficients,” or “p is
a polynomial with real coefficients.”

3. p(x) = x4 + 3x2− x− 4, degree = 4,
leading term = x4, “p is a polynomial
with integer coefficients,” “p is a polyno-
mial with rational coefficients,” or “p is
a polynomial with real coefficients.”

5. p(x) = −2
3x

5− 3
2x

3+5x+4, degree =
5, leading term = −2

3x
5, “p is a polyno-

mial with rational coefficients,” or “p is
a polynomial with real coefficients.”

7. p(x) = πx6+2
3x

3−
√

2x2−x, degree =
6, leading term = πx6, “p is a polyno-
mial with real coefficients.”

9. y = axn, n odd, a < 0.

11. y = axn, n even, a > 0.

13. y = axn, n odd, a < 0.

15. odd, positive

17. even, negative

19. odd, positive

21. Note that the leading term −3x3

(dashed) has the same end-behavior as
the polynomial p.

x
10−10

y
10

−10 p(x)=−3x3+2x2+8x−4

23. Note that the leading term x3 (dashed)
has the same end-behavior as the poly-
nomial p.

x
−10 10

y
−70

−70

p(x)=x3+x2−17x+15
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25. Note that the leading term x4 (dashed)
has the same end-behavior as the poly-
nomial p.

x
10−10

y
10

−10

p(x)=x4−3x2+4

27. Note that the leading term−x5 (dashed)
has the same end-behavior as the poly-
nomial p.

x
−10 10

y

−10

15

p(x)=−x5+3x4−x3+2x

29. Note that the leading term−x6 (dashed)
has the same end-behavior as the poly-
nomial p.

x
−10 10

y

−5000

5000

p
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6.2 Exercises

In Exercises 1-6, use direct substitu-
tion to show that the given value is a
zero of the given polynomial.

1. p(x) = x3 − 3x2 − 13x+ 15, x = −3

2. p(x) = x3 − 2x2 − 13x− 10, x = −2

3. p(x) = x4 − x3 − 12x2, x = 4

4. p(x) = x4 − 2x3 − 3x2, x = −1

5. p(x) = x4 + x2 − 20, x = −2

6. p(x) = x4 + x3 − 19x2 + 11x + 30,
x = −1

In Exercises 7-28, identify all of the
zeros of the given polynomial without
the aid of a calculator. Use an alge-
braic technique and show all work (fac-
tor when necessary) needed to obtain the
zeros.

7. p(x) = (x− 2)(x+ 4)(x− 5)

8. p(x) = (x− 1)(x− 3)(x+ 8)

9. p(x) = −2(x− 3)(x+ 4)(x− 2)

10. p(x) = −3(x+ 1)(x− 1)(x− 8)

11. p(x) = x(x− 3)(2x+ 1)

12. p(x) = −3x(x+ 5)(3x− 2)

13. p(x) = −2(x+ 3)(3x− 5)(2x+ 1)

14. p(x) = 3(x− 2)(2x+ 5)(3x− 4)

15. p(x) = 3x3 + 5x2 − 12x− 20

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

16. p(x) = 3x3 + x2 − 12x− 4

17. p(x) = 2x3 + 5x2 − 2x− 5

18. p(x) = 2x3 − 5x2 − 18x+ 45

19. p(x) = x4 + 4x3 − 9x2 − 36x

20. p(x) = −x4 + 4x3 + x2 − 4x

21. p(x) = −2x4 − 10x3 + 8x2 + 40x

22. p(x) = 3x4 + 6x3 − 75x2 − 150x

23. p(x) = 2x3 − 7x2 − 15x

24. p(x) = 2x3 − x2 − 10x

25. p(x) = −6x3 + 4x2 + 16x

26. p(x) = 9x3 + 3x2 − 30x

27. p(x) = −2x7 − 10x6 + 8x5 + 40x4

28. p(x) = 6x5 − 21x4 − 45x3
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In Exercises 29-34, the graph of a poly-
nomial is given. Perform each of the fol-
lowing tasks.

i. Copy the image onto your homework
paper. Label and scale your axes,
then label each x-intercept with its
coordinates.

ii. Identify the zeros of the polynomial.

29.

x10

y
10

30.

x10

y
10

31.

x10

y
10

32.

x10

y
10

33.

x10

y
10

34.

x10

y
10
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For each of the polynomials in Exercises 35-
46, perform each of the following tasks.

i. Factor the polynomial to obtain the
zeros. Show your work.

ii. Set up a coordinate system on graph
paper. Label and scale the horizontal
axis. Use the zeros and end-behavior
to help sketch the graph of the poly-
nomial without the use of a calcula-
tor.

iii. Verify your result with a graphing cal-
culator.

35. p(x) = 5x3 + x2 − 45x− 9

36. p(x) = 4x3 + 3x2 − 64x− 48

37. p(x) = 4x3 − 12x2 − 9x+ 27

38. p(x) = x3 + x2 − 16x− 16

39. p(x) = x4 + 2x3 − 25x2 − 50x

40. p(x) = −x4 − 5x3 + 4x2 + 20x

41. p(x) = −3x4 − 9x3 + 3x2 + 9x

42. p(x) = 4x4 − 29x2 + 25

43. p(x) = −x3 − x2 + 20x

44. p(x) = 2x3 − 7x2 − 30x

45. p(x) = 2x3 + 3x2 − 35x

46. p(x) = −2x3 − 11x2 + 21x
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6.2 Answers

1. p(−3) = (−3)3− 3(−3)2− 13(−3) +
15 = 0

3. p(4) = 44 − 43 − 12(4)2 = 0

5. p(−2) = (−2)4 + (−2)2 − 20 = 0

7. −4, 2, and 5

9. −4, 2 and 3

11. −1/2, 0, and 3

13. −3, −1/2, and 5/3,

15. −2, −5/3, and 2

17. −5/2, −1, and 1

19. 0, −3, 3, and −4

21. 0, −2, 2, and −5

23. −3/2, 0, and 5

25. −4/3, 0, and 2

27. 0, −2, 2, and −5

29. Zeros: −4, 1, and 2

31. Zeros: −4, 0, and 5

33. Zeros: 0, 6, −3, 2

35.

x

y

(−3,0) (−1/5,0)
(3,0)

37.

x

y

(−3/2,0) (3/2,0)
(3,0)
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39.

x

y

(−5,0)
(−2,0) (0,0)

(5,0)

41.

x

y

(−3,0)
(−1,0) (0,0)

(1,0)
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43.

x

y

(−5,0)
(0,0) (4,0)

45.

x

y

(−5,0)
(0,0) (7/2,0)
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6.3 Exercises

In Exercises 1-8, perform each of the
following tasks for the given polynomial.

i. Without the aid of a calculator, use
an algebraic technique to identify the
zeros of the given polynomial. Factor
if necessary.

ii. On graph paper, set up a coordinate
system. Label each axis, but scale
only the x-axis. Use the zeros and
the end-behavior to draw a “rough
graph” of the given polynomial with-
out the aid of a calculator.

iii. Classify each local extrema as a rela-
tive minimum or relative maximum.
Note: It is not necessary to find the
coordinates of the relative extrema.
Indeed, this would be difficult with-
out a calculator. All that is required
is that you label each extrema as a
relative maximum or minimum.

1. p(x) = (x+ 6)(x− 1)(x− 5)

2. p(x) = (x+ 2)(x− 4)(x− 7)

3. p(x) = x3 − 6x2 − 4x+ 24

4. p(x) = x3 + x2 − 36x− 36

5. p(x) = 2x3 + 5x2 − 42x

6. p(x) = 2x3 − 3x2 − 44x

7. p(x) = −2x3 + 4x2 + 70x

8. p(x) = −6x3 − 21x2 + 90x

In Exercises 9-16, perform each of the
following tasks for the given polynomial.

i. Use a graphing calculator to draw the

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

graph of the polynomial. Adjust the
viewing window so that the extrema
or “turning points” of the polynomial
are visible in the viewing window. Copy
the resulting image onto your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax.

ii. Use the maximum and/or minimum util-
ity in your calculator’s CALC menu to
find the coordinates of the extrema.
Label each extremum on your home-
work copy with its coordinates and
state whether the extremum is a rel-
ative or absolute maximum or mini-
mum.

9. p(x) = x3 − 8x2 − 5x+ 84

10. p(x) = x3 + 3x2 − 33x− 35

11. p(x) = −x3 + 21x− 20

12. p(x) = −x3 + 5x2 + 12x− 36

13. p(x) = x4 − 50x2 + 49

14. p(x) = x4 − 29x2 + 100

15. p(x) = x4− 2x3− 39x2 + 72x+ 108

16. p(x) = x4 − 3x3 − 31x2 + 63x+ 90

17. A square piece of cardboard mea-
sures 12 inches per side. Cherie cuts four
smaller squares from each corner of the
cardboard square, tossing the material
aside. She then bends up the sides of
the remaining cardboard to form an open
box with no top. Find the dimensions
of the squares cut from each corner of
the original piece of cardboard so that
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Cherie maximizes the volume of the re-
sulting box. Perform each of the follow-
ing steps in your analysis.

a) Set up an equation that determines
the volume of the box as a function
of x, the length of the edge of each
square cut from the four corners of
the cardboard. Include any pictures
used to determine this volume func-
tion.

b) State the empirical domain of the
function created in part (a). Use your
calculator to sketch the graph of the
function over this empirical domain.
Adjust the viewing window so that
all extrema are visible in the viewing
window.

c) Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Use the max-
imum utility to find the coordinates
of the absolute maximum on the func-
tion’s empirical domain.

d) What are the measures of the four
squares cut from each corner of the
original cardboard? What is the max-
imum volume of the box?

18. A rectangular piece of cardboard
measures 8 inches by 12 inches. Schuyler
cuts four smaller squares from each cor-
ner of the cardboard square, tossing the
material aside. He then bends up the
sides of the remaining cardboard to form
an open box with no top. Find the di-
mensions of the squares cut from each
corner of the original piece of cardboard
so that Schuyler maximizes the volume
of the resulting box. Perform each of the
following steps in your analysis.

a) Set up an equation that determines

the volume of the box as a function
of x, the length of the edge of each
square cut from the four corners of
the cardboard. Include any pictures
used to determine this volume func-
tion.

b) State the empirical domain of the
function created in part (a). Use your
calculator to sketch the graph of the
function over this empirical domain.
Adjust the viewing window so that
all extrema are visible in the viewing
window.

c) Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Use the max-
imum utility to find the coordinates
of the absolute maximum on the func-
tion’s empirical domain.

d) What are the measures of the four
squares cut from each corner of the
original cardboard? What is the max-
imum volume of the box?

19. Restrict the graph of the parabola
y = 4− x2/4 to the first quadrant, then
inscribe a rectangle inside the parabola,
as shown in the figure that follows.

x

y

(x, y)

a) Express the area of the inscribed rec-
tangle as a function of x.

b) State the empirical domain of the
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function defined in part (a). Use your
calculator to graph the area function
over its empirical domain. Adjust the
window parameters so that all extrema
are visible in the viewing window.

c) Copy the image in your viewing win-
dow to your homework paper. Label
and scale each axis with xmin, xmax,
ymin, and ymax. Use the maximum
utility to find the coordinates of the
absolute maximum on the function’s
empirical domain. Label your graph
with this result.

d) What are the dimensions of the rec-
tangle of maximum area?

20. Restrict the graph of the parabola
y = 4− x2/4 to the first quadrant, then
inscribe a triangle inside the parabola, as
shown in the figure that follows.

x

y

(x, y)

a) Express the area of the inscribed tri-
angle as a function of x.

b) State the empirical domain of the
function defined in part (a). Use your
calculator to graph the area function
over its empirical domain. Adjust the
window parameters so that all extrema
are visible in the viewing window.

c) Copy the image in your viewing win-
dow to your homework paper. Label
and scale each axis with xmin, xmax,
ymin, and ymax. Use the maximum

utility to find the coordinates of the
absolute maximum on the function’s
empirical domain. Label your graph
with this result.

d) What are the length of the base and
height of the triangle of maximum
area?
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6.3 Answers

1.

x

y

(−6,0)
(1,0) (5,0)

Local Maximum

Local Minimum

3.

x

y

(−2,0)
(2,0) (6,0)

Local Maximum

Local Minimum

5.

x

y

(−6,0)
(0,0) (7/2,0)

Local Maximum

Local Minimum

7.

x

y

(−5,0) (0,0)
(7,0)

Local Minimum

Local Maximum

9. Relative max: (−0.2960664, 84.753138)
Relative min: (5.6293978,−19.27166)
Answers may differ slightly due to round-
off error.

x
−10 10

y

−100

100

p(x)=x3−8x2−5x+84

(−0.2960664,84.753138)(−0.2960664,84.753138)

(5.6293978,−19.27166)(5.6293978,−19.27166)
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11. Relative min: (−2.645751,−57.04052)

Relative max: (2.6457518, 17.040518)
Answers may differ slightly due to round-
off error.

x
−10 10

y

−100

100

p(x)=−x3+21x−20

(−2.645751,−57.04052)(−2.645751,−57.04052)

(2.6457518,17.040518)(2.6457518,17.040518)

13. Absolute min: (−5,−576)
Relative max: (0, 49)
Absolute min: (5,−576)
Answers may differ slightly due to round-
off error.

x
−10 10

y

−600

600
p(x)=x4−50x2+49

(−5,−576)(−5,−576)

(0,49)(0,49)

(5,−576)(5,−576)

15. Absolute min: (−4.189858,−423.0327)

Relative max: (0.89817915, 140.40823)
Relative min: (4.7876796,−135.313)
Answers may differ slightly due to round-
off error.

x
−10 10

y

−500

500
p(x)=x4−2x3−39x2+72x+108

(−4.189858,−423.0327)(−4.189858,−423.0327)

(0.89817915,140.40823)(0.89817915,140.40823)

(4.7876796,−135.313)(4.7876796,−135.313)

17.

a) V = x(12− 2x)2

b) [0, 6]

c) Absolute max: (2, 128)

x
0 6

V

0

200

V (x)=x(12−2x)2

(2,128)(2,128)

d) Cut square 2 inches on a side to pro-
duce a box having value 128 in3.
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19.

a) A = x(4− x2/4)

b) [0, 4]

c) Absolute max: (2.3094011, 6.1584029)

x
0 4

A

0

10

V (x)=x(4−x2/4)

(2.3094011,6.1584029)(2.3094011,6.1584029)

d) x = 2.3094011, y = 2.6666666
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6.1 Exercises

In Exercises 1-8, arrange each polyno-
mial in descending powers of x, state the
degree of the polynomial, identify the lead-
ing term, then make a statement about
the coefficients of the given polynomial.

1. p(x) = 3x− x2 + 4− x3

2. p(x) = 4 + 3x2 − 5x+ x3

3. p(x) = 3x2 + x4 − x− 4

4. p(x) = −3 + x2 − x3 + 5x4

5. p(x) = 5x− 3
2x

3 + 4− 2
3x

5

6. p(x) = −3
2x+ 5− 7

3x
5 + 4

3x
3

7. p(x) = −x+ 2
3x

3 −
√

2x2 + πx6

8. p(x) = 3+
√

2x4 +
√

3x−2x2 +
√

5x6

In Exercises 9-14, you are presented with
the graph of y = axn. In each case, state
whether the degree is even or odd, then
state whether a is a positive or negative
number.

9.

x5

y
5

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

10.

x5

y
5

11.

x5

y
5

12.

x5

y
5
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13.

x5

y
5

14.

x5

y
5

In Exercises 15-20, you are presented
with the graph of the polynomial p(x) =
anxn+ · · ·+a1x+a0. In each case, state
whether the degree of the polynomial is
even or odd, then state whether the lead-
ing coefficient an is positive or negative.

15.

x

y

16.

x

y

17.

x

y

18.

x

y
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19.

x

y

20.

x

y

For each polynomial in Exercises 21-
30, perform each of the following tasks.

i. Predict the end-behavior of the poly-
nomial by drawing a very rough sketch
of the polynomial. Do this without
the assistance of a calculator. The
only concern here is that your graph
show the correct end-behavior.

ii. Draw the graph on your calculator,
adjust the viewing window so that
all “turning points” of the polyno-
mial are visible in the viewing win-
dow, and copy the result onto your
homework paper. As usual, label and
scale each axis with xmin, xmax, ymin,
and ymax. Does the actual end-behavior
agree with your predicted end-behavior?

21. p(x) = −3x3 + 2x2 + 8x− 4

22. p(x) = 2x3 − 3x2 + 4x− 8

23. p(x) = x3 + x2 − 17x+ 15

24. p(x) = −x4 + 2x2 + 29x− 30

25. p(x) = x4 − 3x2 + 4

26. p(x) = −x4 + 8x2 − 12

27. p(x) = −x5 + 3x4 − x3 + 2x

28. p(x) = 2x4 − 3x3 + x− 10

29. p(x) = −x6 − 4x5 + 27x4 + 78x3 +
4x2 + 376x− 480

30. p(x) = x5−27x3+30x2−124x+120
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6.1 Solutions

1. p(x) = −x3−x2 +3x+4, degree = 3, leading term = −x3, “p is a polynomial with
integer coefficients,” “p is a polynomial with rational coefficients,” or “p is a polynomial
with real coefficients.”

3. p(x) = x4 + 3x2 − x − 4, degree = 4, leading term = x4, “p is a polynomial with
integer coefficients,” “p is a polynomial with rational coefficients,” or “p is a polynomial
with real coefficients.”

5. p(x) = −2
3x

5 − 3
2x

3 + 5x+ 4, degree = 5, leading term = −2
3x

5, “p is a polynomial
with rational coefficients,” or “p is a polynomial with real coefficients.”

7. p(x) = πx6 + 2
3x

3 −
√

2x2 − x, degree = 6, leading term = πx6, “p is a polynomial
with real coefficients.”

9. Note that the graph of the given function, f(x) = axn, has different end-behavior
at its left- and right-ends.

x5

y
5

Therefore, n must be odd. The graph of y = xn, where n is odd, follows.

x5

y
5

In order to transform this second graph into the first, we must scale it by a factor of
a, where a is negative. This will scale the second graph and reflect across the x-axis to
produce the first graph of y = axn above.
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11. Note that the graph of the given function, f(x) = axn, has the same end-behavior
at its right- and left-ends.

x5

y
5

Therefore, n must be even. The graph of y = xn, where n is even, follows.

x5

y
5

In order to transform this second graph into the first, we must scale it by a factor of a,
where a is positive. If a were negative, the graph of f would reflect across the x-axis,
which is not the case here.

13. Note that the graph of the given function, f(x) = axn, has different end-behavior
at its left- and right-ends.

x5

y
5

Therefore, n must be odd. The graph of y = xn, where n is odd, follows.



Chapter 6 Polynomial Functions

Version: Fall 2007

x5

y
5

In order to transform this second graph into the first, we must scale it by a factor of
a, where a is negative. This will scale the second graph and reflect across the x-axis to
produce the first graph of y = axn above.

15. The graph of p(x) = anxn + · · ·+ a1x+ a0 has different end-behavior at its left-
and right-ends.

x

y

Note that the graph of p(x) has the same end-behavior as the graph of y = anxn, n
odd, an positive, which follows.

x5

y
5

Since the polynomial p(x) has the same end-behavior as its leading term, in this case
anxn, we can state that an is positive and n is odd.
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17. The graph of p(x) = anxn + · · ·+ a1x+ a0 has the same end-behavior at its left-
and right-ends.

x

y

Note that the graph of p(x) has the same end-behavior as the graph of y = anxn, n
even, an negative, which follows.

x5

y
5

Since the polynomial p(x) has the same end-behavior as its leading term, in this case
anxn, we can state that an is negative and n is even.

19. The graph of p(x) = anxn + · · ·+ a1x+ a0 has different end-behavior at its left-
and right-ends.

x

y
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Note that the graph of p(x) has the same end-behavior as the graph of y = anxn, n
odd, an positive, which follows.

x5

y
5

Since the polynomial p(x) has the same end-behavior as its leading term, in this case
anxn, we can state that an is positive and n is odd.

21. Because the leading term of p(x) = −3x3 + 2x2 + 8x− 4 is −3x3, the polynomial
p should have the same end-behavior as the graph of y = −3x3, which follows.

x
10−10

y
10

−10

Indeed, note that p has the same end-behavior in (c).

(a) (b) (c)



Section 6.1 Polynomial Functions

Version: Fall 2007

23. Because the leading term of p(x) = x3 + x2 − 17x + 15 is x3, the polynomial p
should have the same end-behavior as the graph of y = x3, which follows.

x
−10 10

y
−70

−70

Indeed, note that p has the same end-behavior in (c).

(a) (b) (c)

25. Because the leading term of p(x) = x4 − 3x2 + 4 is x4, the polynomial p should
have the same end-behavior as the graph of y = x4, which follows.

x
10−10

y
10

−10
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Indeed, note that p has the same end-behavior in (c).

(a) (b) (c)

27. Because the leading term of p(x) = −x5 + 3x4 − x3 + 2x is −x5, the polynomial
p should have the same end-behavior as the graph of y = −x5, which follows.

x
−10 10

y

−10

15

Indeed, note that p has the same end-behavior in (c).

(a) (b) (c)
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29. Because the leading term of p(x) = −x6 − 4x5 + 27x4 + 78x3 + 4x2 + 376x− 480
is −x6, the polynomial p should have the same end-behavior as the graph of y = −x6,
which follows.

x
−10 10

y

−5000

5000

Indeed, note that p has the same end-behavior in (c).

(a) (b) (c)
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6.2 Exercises

In Exercises 1-6, use direct substitu-
tion to show that the given value is a
zero of the given polynomial.

1. p(x) = x3 − 3x2 − 13x+ 15, x = −3

2. p(x) = x3 − 2x2 − 13x− 10, x = −2

3. p(x) = x4 − x3 − 12x2, x = 4

4. p(x) = x4 − 2x3 − 3x2, x = −1

5. p(x) = x4 + x2 − 20, x = −2

6. p(x) = x4 + x3 − 19x2 + 11x + 30,
x = −1

In Exercises 7-28, identify all of the
zeros of the given polynomial without
the aid of a calculator. Use an alge-
braic technique and show all work (fac-
tor when necessary) needed to obtain the
zeros.

7. p(x) = (x− 2)(x+ 4)(x− 5)

8. p(x) = (x− 1)(x− 3)(x+ 8)

9. p(x) = −2(x− 3)(x+ 4)(x− 2)

10. p(x) = −3(x+ 1)(x− 1)(x− 8)

11. p(x) = x(x− 3)(2x+ 1)

12. p(x) = −3x(x+ 5)(3x− 2)

13. p(x) = −2(x+ 3)(3x− 5)(2x+ 1)

14. p(x) = 3(x− 2)(2x+ 5)(3x− 4)

15. p(x) = 3x3 + 5x2 − 12x− 20

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

16. p(x) = 3x3 + x2 − 12x− 4

17. p(x) = 2x3 + 5x2 − 2x− 5

18. p(x) = 2x3 − 5x2 − 18x+ 45

19. p(x) = x4 + 4x3 − 9x2 − 36x

20. p(x) = −x4 + 4x3 + x2 − 4x

21. p(x) = −2x4 − 10x3 + 8x2 + 40x

22. p(x) = 3x4 + 6x3 − 75x2 − 150x

23. p(x) = 2x3 − 7x2 − 15x

24. p(x) = 2x3 − x2 − 10x

25. p(x) = −6x3 + 4x2 + 16x

26. p(x) = 9x3 + 3x2 − 30x

27. p(x) = −2x7 − 10x6 + 8x5 + 40x4

28. p(x) = 6x5 − 21x4 − 45x3
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In Exercises 29-34, the graph of a poly-
nomial is given. Perform each of the fol-
lowing tasks.

i. Copy the image onto your homework
paper. Label and scale your axes,
then label each x-intercept with its
coordinates.

ii. Identify the zeros of the polynomial.

29.

x10

y
10

30.

x10

y
10

31.

x10

y
10

32.

x10

y
10

33.

x10

y
10

34.

x10

y
10



Section 6.2 Zeros of Polynomials 579

Version: Fall 2007

For each of the polynomials in Exercises 35-
46, perform each of the following tasks.

i. Factor the polynomial to obtain the
zeros. Show your work.

ii. Set up a coordinate system on graph
paper. Label and scale the horizontal
axis. Use the zeros and end-behavior
to help sketch the graph of the poly-
nomial without the use of a calcula-
tor.

iii. Verify your result with a graphing cal-
culator.

35. p(x) = 5x3 + x2 − 45x− 9

36. p(x) = 4x3 + 3x2 − 64x− 48

37. p(x) = 4x3 − 12x2 − 9x+ 27

38. p(x) = x3 + x2 − 16x− 16

39. p(x) = x4 + 2x3 − 25x2 − 50x

40. p(x) = −x4 − 5x3 + 4x2 + 20x

41. p(x) = −3x4 − 9x3 + 3x2 + 9x

42. p(x) = 4x4 − 29x2 + 25

43. p(x) = −x3 − x2 + 20x

44. p(x) = 2x3 − 7x2 − 30x

45. p(x) = 2x3 + 3x2 − 35x

46. p(x) = −2x3 − 11x2 + 21x
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6.2 Solutions

1. p(−3) = (−3)3 − 3(−3)2 − 13(−3) + 15 = −27 − 27 + 39 + 15 = 0

3. p(4) = 44 − 43 − 12(4)2 = 256− 64− 192 = 0

5. p(−2) = (−2)4 + (−2)2 − 20 = 16 + 4− 20 = 0

7. Set p(x) = 0 in p(x) = (x− 2)(x+ 4)(x− 5),

0 = (x− 2)(x+ 4)(x− 5),

then use the zero product property to write

x− 2 = 0 or x+ 4 = 0 or x− 5 = 0.

Solving, the zeros are x = 2, −4, and 5.

9. Set p(x) = 0 in p(x) = −2(x− 3)(x+ 4)(x− 2),

0 = −2(x− 3)(x+ 4)(x− 2),

then use the zero product property to write

x− 3 = 0 or x+ 4 = 0 or x− 2 = 0.

Solving, the zeros are x = 3, −4, and 2.

11. Set p(x) = 0 in p(x) = x(x− 3)(2x+ 1),

0 = x(x− 3)(2x+ 1),

then use the zero product property to write

x = 0 or x− 3 = 0 or 2x+ 1 = 0.

Solving, the zeros are x = 0, 3, and −1/2.

13. Set p(x) = 0 in p(x) = −2(x+ 3)(3x− 5)(2x+ 1),

0 = −2(x+ 3)(3x− 5)(2x+ 1),

then use the zero product property to write

x+ 3 = 0 or 3x− 5 = 0 or 2x+ 1 = 0.

Solving, the zeros are x = −3, 5/3, and −1/2.
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15. Factor p(x) = 3x3 + 5x2 − 12x − 20 by grouping, then finish the factoring using
the difference of squares pattern.

p(x) = 3x3 + 5x2 − 12x− 20
p(x) = x2(3x+ 5)− 4(3x+ 5)
p(x) = (x2 − 4)(3x+ 5)
p(x) = (x+ 2)(x− 2)(3x+ 5)

To find the zeros, set p(x) = 0,

0 = (x+ 2)(x− 2)(3x+ 5),

then use the zero product property to write

x+ 2 = 0 or x− 2 = 0 or 3x+ 5 = 0.

Solving, the zeros are x = −2, 2, or −5/3.

17. Factor p(x) = 2x3 + 5x2− 2x− 5 by grouping, then finish the factoring using the
difference of squares pattern.

p(x) = 2x3 + 5x2 − 2x− 5
p(x) = x2(2x+ 5)− 1(2x+ 5)
p(x) = (x2 − 1)(2x+ 5)
p(x) = (x+ 1)(x− 1)(2x+ 5)

To find the zeros, set p(x) = 0,

0 = (x+ 1)(x− 1)(2x+ 5),

then use the zero product property to write

x+ 1 = 0 or x− 1 = 0 or 2x+ 5 = 0.

Solving, the zeros are x = −1, 1, or −5/2.

19. Start with p(x) = x4 + 4x3 − 9x2 − 36x. Factor out the gcf (x in this case), then
factor by grouping. In the last step, use the difference of squares pattern to complete
the factorization.

p(x) = x[x3 + 4x2 − 9x− 36]
p(x) = x[x2(x+ 4)− 9(x+ 4)]
p(x) = x(x2 − 9)(x+ 4)
p(x) = x(x+ 3)(x− 3)(x+ 4)

Set

0 = x(x+ 3)(x− 3)(x+ 4)



Chapter 6 Polynomial Functions

Version: Fall 2007

and use the zero product property to write

x = 0 or x+ 3 = 0 or x− 3 = 0 or x+ 4 = 0.

Solving, the zeros are x = 0, −3, 3, and −4.

21. Start with p(x) = −2x4 − 10x3 + 8x2 + 40x. Factor out the gcf (−2x in this
case), then factor by grouping. In the last step, use the difference of squares pattern
to complete the factorization.

p(x) = −2x[x3 + 5x2 − 4x− 20]
p(x) = −2x[x2(x+ 5)− 4(x+ 5)]
p(x) = −2x(x2 − 4)(x+ 5)
p(x) = −2x(x+ 2)(x− 2)(x+ 5)

Set

0 = −2x(x+ 2)(x− 2)(x+ 5)

and use the zero product property to write

−2x = 0 or x+ 2 = 0 or x− 2 = 0 or x+ 5 = 0.

Solving, the zeros are x = 0, −2, 2, and −5.

23. Start with p(x) = 2x3 − 7x2 − 15x. Factor out the gcf (x in this case), then use
the ac-method to complete the factorization.

p(x) = x[2x2 − 7x− 15]
p(x) = x[2x2 − 10x+ 3x− 15]
p(x) = x[2x(x− 5) + 3(x− 5)]
p(x) = x(2x+ 3)(x− 5)

Set

0 = x(2x+ 3)(x− 5)

and use the zero product property to write

x = 0 or 2x+ 3 = 0 or x− 5 = 0.

Solving, the zeros are x = 0, −3/2, and 5.

25. Start with p(x) = −6x3 + 4x2 + 16x. Factor out the gcf (−2x in this case), then
use the ac-method to complete the factorization.

p(x) = −2x[3x2 − 2x− 8]
p(x) = −2x[3x2 − 6x+ 4x− 8]
p(x) = −2x[3x(x− 2) + 4(x− 2)]
p(x) = −2x(3x+ 4)(x− 2)
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Set

0 = −2x(3x+ 4)(x− 2)

and use the zero product property to write

−2x = 0 or 3x+ 4 = 0 or x− 2 = 0.

Solving, the zeros are x = 0, −4/3, and 2.

27. Start with p(x) = −2x7 − 10x6 + 8x5 + 40x4. Factor out the gcf (−2x4 in this
case), then use grouping and difference of squares to complete the factorization.

p(x) = −2x4[x3 + 5x2 − 4x− 20]
p(x) = −2x4[x2(x+ 5)− 4(x+ 5)]
p(x) = −2x4(x2 − 4)(x+ 5)
p(x) = −2x4(x+ 2)(x− 2)(x+ 5)

Set

0 = −2x4(x+ 2)(x− 2)(x+ 5)

and use the zero product property to write

−2x4 = 0 or x+ 2 = 0 or x− 2 = 0 or x+ 5 = 0.

Solving, the zeros are x = 0, −2, 2, and −5.

29. The graph of the polynomial

x10

y
10

intercepts the x-axis at (−4, 0), (1, 0), and (2, 0). Hence, the zeros of the polynomial
are −4, 1, and 2.
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31. The graph of the polynomial

x10

y
10

intercepts the x-axis at (−4, 0), (0, 0), and (5, 0). Hence, the zeros of the polynomial
are −4, 0, and 5.

33. The graph of the polynomial

x10

y
10

intercepts the x-axis at (−3, 0), (0, 0), (2, 0), and (6, 0). Hence, the zeros of the poly-
nomial are −3, 0, 2, and 6.

35. Factor p(x) = 5x3 + x2 − 45x − 9 by grouping, then complete the factorization
with the difference of squares pattern.

p(x) = x2(5x+ 1)− 9(5x+ 1)
p(x) = (x2 − 9)(5x+ 1)
p(x) = (x+ 3)(x− 3)(5x+ 1)

Using the zero product property, the zeros are −3, 3, and −1/5. Hence, the graph
of the polynomial must intercept the x-axis at (−3, 0), (3, 0), and (−1/5, 0). Further,
the leading term of the polynomial is 5x3, so the polynomial must have the same end-
behavior as y = 5x3, namely, it must rise from negative infinity, wiggle through its
x-intercepts, then rise to positive infinity. The sketch with the appropriate zeros and
end behavior follows.
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x

y

(−3,0) (−1/5,0)
(3,0)

Checking on the calculator.

37. Factor p(x) = 4x3 − 12x2 − 9x+ 27 by grouping, then complete the factorization
with the difference of squares pattern.

p(x) = 4x2(x− 3)− 9(x− 3)
p(x) = (4x2 − 9)(x− 3)
p(x) = (2x+ 3)(2x− 3)(x− 3)

Using the zero product property, the zeros are −3/2, 3/2, and 3. Hence, the graph
of the polynomial must intercept the x-axis at (−3/2, 0), (3/2, 0), and (3, 0). Further,
the leading term of the polynomial is 4x3, so the polynomial must have the same end-
behavior as y = 4x3, namely, it must rise from negative infinity, wiggle through its
x-intercepts, then rise to positive infinity. The sketch with the appropriate zeros and
end behavior follows.

x

y

(−3/2,0) (3/2,0)
(3,0)
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Checking on the calculator.

39. Start with p(x) = x4 + 2x3 − 25x2 − 50x, then factor out the gcf (x in this case).
Then, factor by grouping and complete the factorization with the difference of squares
pattern.

p(x) = x[x3 + 2x2 − 25x− 50]
p(x) = x[x2(x+ 2)− 25(x+ 2)]
p(x) = x(x2 − 25)(x+ 2)
p(x) = x(x+ 5)(x− 5)(x+ 2)

Using the zero product property, the zeros are 0, −5, 5, and −2. Hence, the graph of
the polynomial must intercept the x-axis at (0, 0), (−5, 0), (5, 0), and (−2, 0). Further,
the leading term of the polynomial is x4, so the polynomial must have the same end-
behavior as y = x4, namely, it must fall from positive infinity, wiggle through its
x-intercepts, then rise to positive infinity. The sketch with the appropriate zeros and
end behavior follows.

x

y

(−5,0)
(−2,0) (0,0)

(5,0)

Checking on the calculator.
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41. Start with p(x) = −3x4 − 9x3 + 3x2 + 9x, then factor out the gcf (−3x in this
case). Then, factor by grouping and complete the factorization with the difference of
squares pattern.

p(x) = −3x[x3 + 3x2 − x− 3]
p(x) = −3x[x2(x+ 3)− 1(x+ 3)]
p(x) = −3x(x2 − 1)(x+ 3)
p(x) = −3x(x+ 1)(x− 1)(x+ 3)

Using the zero product property, the zeros are 0, −1, 1, and −3. Hence, the graph of
the polynomial must intercept the x-axis at (0, 0), (−1, 0), (1, 0), and (−3, 0). Further,
the leading term of the polynomial is −3x4, so the polynomial must have the same
end-behavior as y = −3x4, namely, it must rise from negative infinity, wiggle through
its x-intercepts, then fall back to negative infinity. The sketch with the appropriate
zeros and end behavior follows.

x

y

(−3,0)
(−1,0) (0,0)

(1,0)

Checking on the calculator.

43. Start with p(x) = −x3−x2 +20x, then factor out the gcf (−x in this case). Then,
complete the factorization with the ac-method.

p(x) = −x[x2 + x− 20]
p(x) = −x(x+ 5)(x− 4)

Using the zero product property, the zeros are 0, −5, and 4. Hence, the graph of the
polynomial must intercept the x-axis at (0, 0), (−5, 0), and (4, 0). Further, the leading
term of the polynomial is −x3, so the polynomial must have the same end-behavior as
y = −x3, namely, it must fall from positive infinity, wiggle through its x-intercepts,
then fall to negative infinity. The sketch with the appropriate zeros and end behavior
follows.
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x

y

(−5,0)
(0,0) (4,0)

Checking on the calculator.

45. Start with p(x) = 2x3 + 3x2− 35x, then factor out the gcf (x in this case). Then,
complete the factorization with the ac-method.

p(x) = x[2x2 + 3x− 35]
p(x) = x[2x2 − 7x+ 10x− 35]
p(x) = x[x(2x− 7) + 5(2x− 7)]
p(x) = x(x+ 5)(2x− 7)

Using the zero product property, the zeros are 0, −5, and 7/2. Hence, the graph of
the polynomial must intercept the x-axis at (0, 0), (−5, 0), and (7/2, 0). Further, the
leading term of the polynomial is 2x3, so the polynomial must have the same end-
behavior as y = 2x3, namely, it must rise from negative infinity, wiggle through its
x-intercepts, then rise to positive infinity. The sketch with the appropriate zeros and
end behavior follows.

x

y

(−5,0)
(0,0) (7/2,0)
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Checking on the calculator.
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6.3 Exercises

In Exercises 1-8, perform each of the
following tasks for the given polynomial.

i. Without the aid of a calculator, use
an algebraic technique to identify the
zeros of the given polynomial. Factor
if necessary.

ii. On graph paper, set up a coordinate
system. Label each axis, but scale
only the x-axis. Use the zeros and
the end-behavior to draw a “rough
graph” of the given polynomial with-
out the aid of a calculator.

iii. Classify each local extrema as a rela-
tive minimum or relative maximum.
Note: It is not necessary to find the
coordinates of the relative extrema.
Indeed, this would be difficult with-
out a calculator. All that is required
is that you label each extrema as a
relative maximum or minimum.

1. p(x) = (x+ 6)(x− 1)(x− 5)

2. p(x) = (x+ 2)(x− 4)(x− 7)

3. p(x) = x3 − 6x2 − 4x+ 24

4. p(x) = x3 + x2 − 36x− 36

5. p(x) = 2x3 + 5x2 − 42x

6. p(x) = 2x3 − 3x2 − 44x

7. p(x) = −2x3 + 4x2 + 70x

8. p(x) = −6x3 − 21x2 + 90x

In Exercises 9-16, perform each of the
following tasks for the given polynomial.

i. Use a graphing calculator to draw the

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

graph of the polynomial. Adjust the
viewing window so that the extrema
or “turning points” of the polynomial
are visible in the viewing window. Copy
the resulting image onto your home-
work paper. Label and scale each
axis with xmin, xmax, ymin, and ymax.

ii. Use the maximum and/or minimum util-
ity in your calculator’s CALC menu to
find the coordinates of the extrema.
Label each extremum on your home-
work copy with its coordinates and
state whether the extremum is a rel-
ative or absolute maximum or mini-
mum.

9. p(x) = x3 − 8x2 − 5x+ 84

10. p(x) = x3 + 3x2 − 33x− 35

11. p(x) = −x3 + 21x− 20

12. p(x) = −x3 + 5x2 + 12x− 36

13. p(x) = x4 − 50x2 + 49

14. p(x) = x4 − 29x2 + 100

15. p(x) = x4− 2x3− 39x2 + 72x+ 108

16. p(x) = x4 − 3x3 − 31x2 + 63x+ 90

17. A square piece of cardboard mea-
sures 12 inches per side. Cherie cuts four
smaller squares from each corner of the
cardboard square, tossing the material
aside. She then bends up the sides of
the remaining cardboard to form an open
box with no top. Find the dimensions
of the squares cut from each corner of
the original piece of cardboard so that
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Cherie maximizes the volume of the re-
sulting box. Perform each of the follow-
ing steps in your analysis.

a) Set up an equation that determines
the volume of the box as a function
of x, the length of the edge of each
square cut from the four corners of
the cardboard. Include any pictures
used to determine this volume func-
tion.

b) State the empirical domain of the
function created in part (a). Use your
calculator to sketch the graph of the
function over this empirical domain.
Adjust the viewing window so that
all extrema are visible in the viewing
window.

c) Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Use the max-
imum utility to find the coordinates
of the absolute maximum on the func-
tion’s empirical domain.

d) What are the measures of the four
squares cut from each corner of the
original cardboard? What is the max-
imum volume of the box?

18. A rectangular piece of cardboard
measures 8 inches by 12 inches. Schuyler
cuts four smaller squares from each cor-
ner of the cardboard square, tossing the
material aside. He then bends up the
sides of the remaining cardboard to form
an open box with no top. Find the di-
mensions of the squares cut from each
corner of the original piece of cardboard
so that Schuyler maximizes the volume
of the resulting box. Perform each of the
following steps in your analysis.

a) Set up an equation that determines

the volume of the box as a function
of x, the length of the edge of each
square cut from the four corners of
the cardboard. Include any pictures
used to determine this volume func-
tion.

b) State the empirical domain of the
function created in part (a). Use your
calculator to sketch the graph of the
function over this empirical domain.
Adjust the viewing window so that
all extrema are visible in the viewing
window.

c) Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Use the max-
imum utility to find the coordinates
of the absolute maximum on the func-
tion’s empirical domain.

d) What are the measures of the four
squares cut from each corner of the
original cardboard? What is the max-
imum volume of the box?

19. Restrict the graph of the parabola
y = 4− x2/4 to the first quadrant, then
inscribe a rectangle inside the parabola,
as shown in the figure that follows.

x

y

(x, y)

a) Express the area of the inscribed rec-
tangle as a function of x.

b) State the empirical domain of the
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function defined in part (a). Use your
calculator to graph the area function
over its empirical domain. Adjust the
window parameters so that all extrema
are visible in the viewing window.

c) Copy the image in your viewing win-
dow to your homework paper. Label
and scale each axis with xmin, xmax,
ymin, and ymax. Use the maximum
utility to find the coordinates of the
absolute maximum on the function’s
empirical domain. Label your graph
with this result.

d) What are the dimensions of the rec-
tangle of maximum area?

20. Restrict the graph of the parabola
y = 4− x2/4 to the first quadrant, then
inscribe a triangle inside the parabola, as
shown in the figure that follows.

x

y

(x, y)

a) Express the area of the inscribed tri-
angle as a function of x.

b) State the empirical domain of the
function defined in part (a). Use your
calculator to graph the area function
over its empirical domain. Adjust the
window parameters so that all extrema
are visible in the viewing window.

c) Copy the image in your viewing win-
dow to your homework paper. Label
and scale each axis with xmin, xmax,
ymin, and ymax. Use the maximum

utility to find the coordinates of the
absolute maximum on the function’s
empirical domain. Label your graph
with this result.

d) What are the length of the base and
height of the triangle of maximum
area?
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6.3 Solutions

1. Set p(x) = (x + 6)(x − 1)(x − 5) equal to zero and use the zero product property
to identify zeros at x = −6, 1, and 5. Hence, the graph of p will have x-intercepts at
(−6, 0), (1, 0), and (5, 0). In addition, if you were to expand p(x) = (x+6)(x−1)(x−5),
the leading term would be x3, so the graph of p will have to rise from negative infinity,
wiggle through the x-intercepts, then rise to positive infinity. Consequently, the graph
will have to look somewhat like what follows.

x

y

(−6,0)
(1,0) (5,0)

Local Maximum

Local Minimum

The relative extrema are classified on the graph above.

3. First, factor p(x) = x3−6x2−4x+24 by grouping, then complete the factorization
by using the difference of squares pattern.

p(x) = x2(x− 6)− 4(x− 6)
p(x) = (x2 − 4)(x− 6)
p(x) = (x+ 2)(x− 2)(x− 6)

Set p(x) = (x + 2)(x − 2)(x − 6) equal to zero and use the zero product property to
identify zeros at x = −2, 2, and 6. Hence, the graph of p will have x-intercepts at
(−2, 0), (2, 0), and (6, 0). In addition, the leading term of p(x) is x3, so the graph of
p will have to rise from negative infinity, wiggle through the x-intercepts, then rise to
positive infinity. Consequently, the graph will have to look somewhat like what follows.

x

y

(−2,0)
(2,0) (6,0)

Local Maximum

Local Minimum

The relative extrema are classified on the graph above.
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5. First, factor out the gcf (x in this case) from p(x) = 2x3 +5x2−42x, then complete
the factorization using the ac-method.

p(x) = x[2x2 + 5x− 42]
p(x) = x[2x2 − 7x+ 12x− 42]
p(x) = x[x(2x− 7) + 6(2x− 7)]
p(x) = x(x+ 6)(2x− 7)

Set p(x) = x(x+ 6)(2x− 7) equal to zero and use the zero product property to identify
zeros at x = 0, −6, and 7/2. Hence, the graph of p will have x-intercepts at (0, 0),
(−6, 0), and (7/2, 0). In addition, the leading term of p(x) is 2x3, so the graph of p will
have to rise from negative infinity, wiggle through the x-intercepts, then rise to positive
infinity. Consequently, the graph will have to look somewhat like what follows.

x

y

(−6,0)
(0,0) (7/2,0)

Local Maximum

Local Minimum

The relative extrema are classified on the graph above.

7. First, factor out the gcf (−2x in this case) from p(x) = −2x3 + 4x2 + 70x, then
complete the factorization using the ac-method.

p(x) = −2x[x2 − 2x− 35]
p(x) = −2x[x2 − 7x+ 5x− 35]
p(x) = −2x[x(x− 7) + 5(x− 7)]
p(x) = −2x(x+ 5)(x− 7)

Set p(x) = −2x(x+5)(x−7) equal to zero and use the zero product property to identify
zeros at x = 0, −5, and 7. Hence, the graph of p will have x-intercepts at (0, 0), (−5, 0),
and (7, 0). In addition, the leading term of p(x) is −2x3, so the graph of p will have to
fall from positive infinity, wiggle through the x-intercepts, then fall to negative infinity.
Consequently, the graph will have to look somewhat like what follows.
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x

y

(−5,0) (0,0)
(7,0)

Local Minimum

Local Maximum

The relative extrema are classified on the graph above.

9. The maximum and minimum utilities in the CALC menu were used to find the local
maximum and minimum values of p(x) = x3 − 8x2 − 5x+ 84 shown in (c) and (d).

(a) (b) (c) (d)

There is a local maximum at(−0.2960665, 84.753138) and a local minimum at (5.6293979,−19.27166)
Answers may differ slightly due to roundoff error.

11. The maximum and minimum utilities in the CALC menu were used to find the local
maximum and minimum values of p(x) = −x3 + 21x− 20 shown in (c) and (d).

(a) (b) (c) (d)

There is a local maximum at (2.6457505, 17.040518) and a local minimum at (−2.645751,−57.04052)
Answers may differ slightly due to roundoff error.

13. The maximum and minimum utilities in the CALC menu were used to find the local
maximum and minimum values of p(x) = x4 − 50x2 + 49 shown in (c), (d), and (e).

(a) (b)
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(c) (d) (e)

There are absolute minima at at (−5,−576) abd (5,−576) and a local maximum at
(0, 49). Answers may differ slightly due to roundoff error.

15. The maximum and minimum utilities in the CALC menu were used to find the local
maximum and minimum values of p(x) = x4 − 2x3 − 39x2 + 72x + 108 shown in (c),
(d), and (e).

(a) (b)

(c) (d) (e)

There is an absolute minimum at (−4.189859,−423.0327), a local maximum at
(0.89817779, 140.40823), and a local minimum at (4.7876778,−135.313). Answers may
differ slightly due to roundoff error.

17.

a) Let x represent the length (in inches) of each side of four corners cut from the
cardboard square, as shown in (a). Because two square are cut from each side, that
leaves 12−2x inches on a side. When we cut out the squares and throw them away,
then bend up the sides, we get the box with dimensions shown in (b).
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x

x

x

x

x

x

x

x

12− 2x

12− 2x

12
−

2x 12
−

2x
12− 2x

12− 2x
x

(a) (b)
The volume of a box is given by multiplying the length and width of the base times
the height of the box. Hence, the volume V as a function of x, is given by

V = x(12− 2x)(12− 2x),

or equivalently,

V = x(12− 2x)2.

b) There are 12 inches on a side. We have two cut two squares with sides of length x
from each side. Thus, the smallest value of x is zero and the largest possible value
of x is 6. Consequently,the empirical domain is [0, 6]. We use our calculator to plot
v = x(12−2x)2 over this domain [0, 6] and then use the maximum utility on the CALC
menu to find the maximum value of V on the empirical domain [o, 6].

(c) (d) (e)
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c) We record the results on our homework as follows.

x
0 6

V

0

200

V (x)=x(12−2x)2

(2,128)(2,128)

d) Cut squares 2 inches on a side to produce a box having volume 128 in3.

19.

a) Pictured below is the graph of y = 4 − x2/4 in the first quadrant. A point (x, y)
lies on the graph and a rectangle is formed. Note that the width of the rectangle is
x. The height of the rectangle is y.

x

y

(x, y)

Therefore, the area of the triangle is given as a function of x and y by

A = xy.

However, this is a function of two variables. We need to eliminate one of the
variables. This is easy to do because the point (x, y) is on the graph of y = 4−x2/4.
Replace the y in A = xy with y = 4 − x2/4 to obtain the area as a function of x
alone.

A = x(4− x2/4)

b) Note that the x-intercept of the parabola y = 4−x2/4 pictured above is (4, 0). You
can also determine the x-intercept by setting 0 = 4 − x2/4 and solving for x (we
leave that for you). Because the point (x, y) is constrained to lie on the parabola in
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the first quadrant (as shown above), this forces x to between zero and four. Hence,
the empirical (practical) domain is [0, 4]. We use our graphing calculator to draw
the graph of A = x(4 − x2/4) on the empirical domain [0, 4], as shown in (a), (b),
and (c). We used the maximum utility in the CALC menu to determine the maximum
shown in (c). Answers may vary due to roundoff error.

(a) (b) (c)

c) Copy the image onto your homework.

x
0 4

A

0

10

V (x)=x(4−x2/4)

(2.3094031,6.1584029)(2.3094031,6.1584029)

Note that we have an absolute maximum at (2.3094031, 6.1584029).

d) The area will be a maximum when the width of the rectangle is x = 2.3094031.
To find the height of the rectangle, substitute x = 2.3094031 into y = 4 − x2/4 to
obtain

y = 4− (2.3094031)2/4 ≈ 2.6666643.
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7.1 Exercises

In Exercises 1-14, perform each of the
following tasks for the given rational func-
tion.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

ii. Use geometric transformations as in
Examples 10, 12, and 13 to draw the
graphs of each of the following ra-
tional functions. Draw the vertical
and horizontal asymptotes as dashed
lines and label each with its equa-
tion. You may use your calculator to
check your solution, but you should
be able to draw the rational function
without the use of a calculator.

iii. Use set-builder notation to describe
the domain and range of the given
rational function.

1. f(x) = −2/x

2. f(x) = 3/x

3. f(x) = 1/(x− 4)

4. f(x) = 1/(x+ 3)

5. f(x) = 2/(x− 5)

6. f(x) = −3/(x+ 6)

7. f(x) = 1/x− 2

8. f(x) = −1/x+ 4

9. f(x) = −2/x− 5

10. f(x) = 3/x− 5

11. f(x) = 1/(x− 2)− 3

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

12. f(x) = −1/(x+ 1) + 5

13. f(x) = −2/(x− 3)− 4

14. f(x) = 3/(x+ 5)− 2

In Exercises 15-22, find all vertical as-
ymptotes, if any, of the graph of the given
function.

15. f(x) = − 5
x+ 1 − 3

16. f(x) = 6
x+ 8 + 2

17. f(x) = − 9
x+ 2 − 6

18. f(x) = − 8
x− 4 − 5

19. f(x) = 2
x+ 5 + 1

20. f(x) = − 3
x+ 9 + 2

21. f(x) = 7
x+ 8 − 9

22. f(x) = 6
x− 5 − 8

In Exercises 23-30, find all horizontal
asymptotes, if any, of the graph of the
given function.

23. f(x) = 5
x+ 7 + 9

24. f(x) = − 8
x+ 7 − 4
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25. f(x) = 8
x+ 5 − 1

26. f(x) = − 2
x+ 3 + 8

27. f(x) = 7
x+ 1 − 9

28. f(x) = − 2
x− 1 + 5

29. f(x) = 5
x+ 2 − 4

30. f(x) = − 6
x− 1 − 2

In Exercises 31-38, state the domain
of the given rational function using set-
builder notation.

31. f(x) = 4
x+ 5 + 5

32. f(x) = − 7
x− 6 + 1

33. f(x) = 6
x− 5 + 1

34. f(x) = − 5
x− 3 − 9

35. f(x) = 1
x+ 7 + 2

36. f(x) = − 2
x− 5 + 4

37. f(x) = − 4
x+ 2 + 2

38. f(x) = 2
x+ 6 + 9

In Exercises 39-46, find the range of
the given function, and express your an-
swer in set notation.

39. f(x) = 2
x− 3 + 8

40. f(x) = 4
x− 3 + 5

41. f(x) = − 5
x− 8 − 5

42. f(x) = − 2
x+ 1 + 6

43. f(x) = 7
x+ 7 + 5

44. f(x) = − 8
x+ 3 + 9

45. f(x) = 4
x+ 3 − 2

46. f(x) = − 5
x− 4 + 9
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7.1 Answers

1. D = {x : x "= 0}, R = {y : y "= 0}

x10

y
10

y=0

x=0

3. D = {x : x "= 4}, R = {y : y "= 0}

x10

y
10

y=0

x=4

5. D = {x : x "= 5}, R = {y : y "= 0}

x10

y
10

y=0

x=5

7. D = {x : x "= 0}, R = {y : y "= −2}

x10

y
10

y=−2

x=0

9. D = {x : x "= 0}, R = {y : y "= −5}

x10

y
10

y=−5

x=0

11. D = {x : x "= 2}, R = {y : y "=
−3}

x10

y
10

y=−3

x=2
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13. D = {x : x "= 3}, R = {y : y "=
−4}

x10

y
10

y=−4

x=3

15. Vertical asymptote: x = −1

17. Vertical asymptote: x = −2

19. Vertical asymptote: x = −5

21. Vertical asymptote: x = −8

23. Horizontal asymptote: y = 9

25. Horizontal asymptote: y = −1

27. Horizontal asymptote: y = −9

29. Horizontal asymptote: y = −4

31. Domain = {x : x "= −5}

33. Domain = {x : x "= 5}

35. Domain = {x : x "= −7}

37. Domain = {x : x "= −2}

39. Range = {y : y "= 8}

41. Range = {y : y "= −5}

43. Range = {y : y "= 5}

45. Range = {y : y "= −2}
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7.2 Exercises

In Exercises 1-12, reduce each rational
number to lowest terms by applying the
following steps:

i. Prime factor both numerator and de-
nominator.

ii. Cancel common prime factors.
iii. Simplify the numerator and denomi-

nator of the result.

1. 147
98

2. 3087
245

3. 1715
196

4. 225
50

5. 1715
441

6. 56
24

7. 108
189

8. 75
500

9. 100
28

10. 98
147

11. 1125
175

12. 3087
8575

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

In Exercises 13-18, reduce the given ex-
pression to lowest terms. State all re-
strictions.

13. x
2 − 10x+ 9

5x− 5

14. x
2 − 9x+ 20
x2 − x− 20

15. x
2 − 2x− 35
x2 − 7x

16. x
2 − 15x+ 54
x2 + 7x− 8

17. x2 + 2x− 63
x2 + 13x+ 42

18. x
2 + 13x+ 42

9x+ 63

In Exercises 19-24, negate any two parts
of the fraction, then factor (if necessary)
and cancel common factors to reduce the
rational expression to lowest terms. State
all restrictions.

19. x+ 2
−x− 2

20. 4− x
x− 4

21. 2x− 6
3− x

22. 3x+ 12
−x− 4

23. 3x2 + 6x
−x− 2
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24. 8x− 2x2

x− 4

In Exercises 25-38, reduce each of the
given rational expressions to lowest terms.
State all restrictions.

25. x
2 − x− 20
25− x2

26. x− x2

x2 − 3x+ 2

27. x
2 + 3x− 28
x2 + 5x− 36

28. x2 + 10x+ 9
x2 + 15x+ 54

29. x
2 − x− 56
8x− x2

30. x
2 − 7x+ 10
5x− x2

31. x
2 + 13x+ 42
x2 − 2x− 63

32. x2 − 16
x2 − x− 12

33. x
2 − 9x+ 14

49− x2

34. x
2 + 7x+ 12

9− x2

35. x
2 − 3x− 18
x2 − 6x+ 5

36. x
2 + 5x− 6
x2 − 1

37. x
2 − 3x− 10
−9x− 18

38. x
2 − 6x+ 8
16− x2

In Exercises 39-42, reduce each ratio-
nal function to lowest terms, and then
perform each of the following tasks.

i. Load the original rational expression
into Y1 and the reduced rational ex-
pression (your answer) into Y2 of your
graphing calculator.

ii. In TABLE SETUP, set TblStart equal
to zero, ∆Tbl equal to 1, then make
sure both independent and dependent
variables are set to Auto. Select TA-
BLE and scroll with the up- and down-
arrows on your calculator until the
smallest restriction is in view. Copy
both columns of the table onto your
homework paper, showing the agree-
ment between Y1 and Y2 and what
happens at all restrictions.

39. x2 − 8x+ 7
x2 − 11x+ 28

40. x
2 − 5x
x2 − 9x

41. 8x− x2

x2 − x− 56

42. x
2 + 13x+ 40
−2x− 16

Given f(x) = 2x + 5, simplify each of
the expressions in Exercises 43-46. Be
sure to reduce your answer to lowest terms
and state any restrictions.

43. f(x)− f(3)
x− 3

44. f(x)− f(6)
x− 6

45. f(x)− f(a)
x− a

46. f(a+ h)− f(a)
h
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Given f(x) = x2 + 2x, simplify each of
the expressions in Exercises 47-50. Be
sure to reduce your answer to lowest terms
and state any restrictions.

47. f(x)− f(1)
x− 1

48. f(x)− f(a)
x− a

49. f(a+ h)− f(a)
h

50. f(x+ h)− f(x)
h

Drill for Skill. In Exercises 51-54,
evaluate the given function at the given
expression and simplify your answer.

51. Suppose that f is the function

f(x) = − x− 6
8x+ 7 .

Evaluate f(−3x + 2) and simplify your
answer.

52. Suppose that f is the function

f(x) = −5x+ 3
7x+ 6 .

Evaluate f(−5x + 1) and simplify your
answer.

53. Suppose that f is the function

f(x) = −3x− 6
4x+ 6 .

Evaluate f(−x−3) and simplify your an-
swer.

54. Suppose that f is the function

f(x) = 4x− 1
2x− 4 .

Evaluate f(5x) and simplify your answer.
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7.2 Answers

1. 3
2

3. 35
4

5. 35
9

7. 4
7

9. 25
7

11. 45
7

13. x− 9
5 , provided x "= 1

15. x+ 5
x

, provided x "= 0, 7

17. (x− 7)(x+ 9)
(x+ 7)(x+ 6) , provided x "= −7,

−6

19. −1, provided x "= −2

21. −2, provided x "= 3

23. −3x, provided x "= −2

25. −x+ 4
x+ 5 , provided x "= −5, 5

27. x+ 7
x+ 9 , provided x "= 4, −9

29. −x+ 7
x

, provided x "= 0, 8

31. x+ 6
x− 9 , provided x "= −7, 9

33. −x− 2
x+ 7 , provided x "= 7, −7

35. (x− 6)(x+ 3)
(x− 1)(x− 5) , provided x "= 1, 5

37. −x− 5
9 , provided x "= −2

39. x− 1
x− 4 , provided x "= 7, 4

X Y1 Y2
3 -2 -2
4 Err: Err:
5 4 4
6 2.5 2.5
7 Err: 2
8 1.75 1.75
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41. − x

x+ 7 , provided x "= −7, 8

X Y1 Y2
-8 -8 -8
-7 Err: Err:
-6 6 6
-5 2.5 2.5
-4 1.33333 1.33333
-3 0.75 0.75
-2 0.4 0.4
-1 0.166667 0.166667
0 -0 -0
1 -0.125 -0.125
2 -0.222222 -0.222222
3 -0.3 -0.3
4 -0.363636 -0.363636
5 -0.416667 -0.416667
6 -0.461538 -0.461538
7 -0.5 -0.5
8 Err: -0.533333
9 -0.5625 -0.5625

43. 2, provided x "= 3

45. 2, provided x "= a

47. x+ 3, provided x "= 1

49. 2a+ h+ 2, provided h "= 0

51. − 3x+ 4
24x− 23

53. −3x+ 15
4x+ 6
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7.3 Exercises

For rational functions Exercises 1-20,
follow the Procedure for Graphing Ratio-
nal Functions in the narrative, perform-
ing each of the following tasks.
For rational functions Exercises 1-20,
perform each of the following tasks.

i. Set up a coordinate system on graph
paper. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Perform each of the nine steps listed
in the Procedure for Graphing Ratio-
nal Functions in the narrative.

1. f(x) = (x− 3)/(x+ 2)

2. f(x) = (x+ 2)/(x− 4)

3. f(x) = (5− x)/(x+ 1)

4. f(x) = (x+ 2)/(4− x)

5. f(x) = (2x− 5)/(x+ 1)

6. f(x) = (2x+ 5/(3− x)

7. f(x) = (x+ 2)/(x2 − 2x− 3)

8. f(x) = (x− 3)/(x2 − 3x− 4)

9. f(x) = (x+ 1)/(x2 + x− 2)

10. f(x) = (x− 1)/(x2 − x− 2)

11. f(x) = (x2 − 2x)/(x2 + x− 2)

12. f(x) = (x2 − 2x)/(x2 − 2x− 8)

13. f(x) = (2x2−2x−4)/(x2−x−12)

14. f(x) = (8x− 2x2)/(x2 − x− 6)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

15. f(x) = (x− 3)/(x2 − 5x+ 6)

16. f(x) = (2x− 4)/(x2 − x− 2)

17. f(x) = (2x2 − x− 6)/(x2 − 2x)

18. f(x) = (2x2 − x− 6)/(x2 − 2x)

19. f(x) = (4+2x−2x2)/(x2 +4x+3)

20. f(x) = (3x2 − 6x− 9)/(1− x2)

In Exercises 21-28, find the coordinates
of the x-intercept(s) of the graph of the
given rational function.

21. f(x) = 81− x2

x2 + 10x+ 9

22. f(x) = x− x2

x2 + 5x− 6

23. f(x) = x
2 − x− 12
x2 + 2x− 3

24. f(x) = x2 − 81
x2 − 4x− 45

25. f(x) = 6x− 18
x2 − 7x+ 12

26. f(x) = 4x+ 36
x2 + 15x+ 54

27. f(x) = x
2 − 9x+ 14
x2 − 2x

28. f(x) = x
2 − 5x− 36
x2 − 9x+ 20
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In Exercises 29-36, find the equations
of all vertical asymptotes.

29. f(x) = x
2 − 7x
x2 − 2x

30. f(x) = x
2 + 4x− 45
3x+ 27

31. f(x) = x
2 − 6x+ 8
x2 − 16

32. f(x) = x
2 − 11x+ 18

2x− x2

33. f(x) = x
2 + x− 12
−4x+ 12

34. f(x) = x
2 − 3x− 54
9x− x2

35. f(x) = 16− x2

x2 + 7x+ 12

36. f(x) = x
2 − 11x+ 30
−8x+ 48

In Exercises 37-42, use a graphing cal-
culator to determine the behavior of the
given rational function as x approaches
both positive and negative infinity by per-
forming the following tasks:

i. Load the rational function into the Y=
menu of your calculator.

ii. Use the TABLE feature of your calcula-
tor to determine the value of f(x) for
x = 10, 100, 1000, and 10000. Record
these results on your homework in ta-
ble form.

iii. Use the TABLE feature of your calcula-
tor to determine the value of f(x) for
x = −10, −100, −1000, and −10000.
Record these results on your home-
work in table form.

iv. Use the results of your tabular explo-
ration to determine the equation of

the horizontal asymptote.

37. f(x) = (2x+ 3)/(x− 8)

38. f(x) = (4− 3x)/(x+ 2)

39. f(x) = (4− x2)/(x2 + 4x+ 3)

40. f(x) = (10− 2x2)/(x2 − 4)

41. f(x) = (x2−2x−3)/(2x2−3x−2)

42. f(x) = (2x2 − 3x− 5)/(x2 − x− 6)

In Exercises 43-48, use a purely ana-
lytical method to determine the domain
of the given rational function. Describe
the domain using set-builder notation.

43. f(x) = x
2 − 5x− 6
−9x− 9

44. f(x) = x
2 + 4x+ 3
x2 − 5x− 6

45. f(x) = x
2 + 5x− 24
x2 − 3x

46. f(x) = x
2 − 3x− 4
x2 − 5x− 6

47. f(x) = x
2 − 4x+ 3
x− x2

48. f(x) = x2 − 4
x2 − 9x+ 14
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7.3 Answers

1.

x10

y
10

x=−2

y=1

(3,0)

3.

x10

y
10

x=−1

y=−1

(5,0)

5.

x
10

y
10

x=−1

y=2

(5/2,0)(5/2,0)

7.

x10

y
10

(−2,0)

x=3x=−1

y=0

9.

x
5

y
5

x=−2 x=1

y=0 (−1,0)(−1,0)

11.

x
10

y
10

x=−2 x=1

y=1 (0,0)(0,0)
(2,0)(2,0)
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13.

x
10

y
10

x=−3 x=4

y=2 (−1,0)(−1,0) (2,0)(2,0)

15.

x
5

y
5

x=2

y=0
(3,1)

17.

x
10

y
10

x=0

y=2

(−3/2,0)(−3/2,0)

(2,7/2)

19.

x
10

y
10

x=−3

y=−2

(2,0)(2,0)

(−1,3)

21. (9, 0)

23. (4, 0)

25. no x-intercepts

27. (7, 0)

29. x = 2

31. x = −4

33. no vertical asymptotes

35. x = −3

37. Horizontal asymptote at y = 2.

X Y1 X Y1
10 11.5 -10 0.944444
100 2.20652 -100 1.82407
1000 2.01915 -1000 1.98115
10000 2.0019 -10000 1.998

39. Horizontal asymptote at y = −1.

X Y1 X Y1
10 -0.671329 -10 -1.52381
100 -0.960877 -100 -1.04092
1000 -0.996009 -1000 -1.00401
10000 -0.9996 -10000 -1
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41. Horizontal asymptote at y = 1/2.

X Y1 X Y1
10 0.458333 -10 0.513158
100 0.49736 -100 0.502365
1000 0.499749 -1000 0.500249
10000 0.49997 -10000 0.50002

43. Domain = {x : x "= −1}

45. Domain = {x : x "= 3, 0}

47. Domain = {x : x "= 0, 1}
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7.4 Exercises

In Exercises 1-10, reduce the product
to a single fraction in lowest terms.

1. 108
14 ·

6
100

2. 75
63 ·

18
45

3. 189
56 ·

12
27

4. 45
72 ·

63
64

5. 15
36 ·

28
100

6. 189
49 ·

32
25

7. 21
100 ·

125
16

8. 21
35 ·

49
45

9. 56
20 ·

98
32

10. 27
125 ·

4
12

In Exercises 11-34, multiply and sim-
plify. State all restrictions.

11.
x+ 6

x2 + 16x+ 63 ·
x2 + 7x
x+ 4

12.
x2 + 9x
x2 − 25 ·

x2 − x− 20
−18− 11x− x2

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

13.
x2 + 7x+ 10
x2 − 1 · −9 + 10x− x2

x2 + 9x+ 20

14.
x2 + 5x
x− 4 ·

x− 2
x2 + 6x+ 5

15.
x2 − 5x
x2 + 2x− 48 ·

x2 + 11x+ 24
x2 − x

16.
x2 − 6x− 27
x2 + 10x+ 24 ·

x2 + 13x+ 42
x2 − 11x+ 18

17.
−x− x2

x2 − 9x+ 8 ·
x2 − 4x+ 3
x2 + 4x+ 3

18.
x2 − 12x+ 35
x2 + 2x− 15 ·

45 + 4x− x2

x2 + x− 30

19.
x+ 2
7 − x ·

x2 + x− 56
x2 + 7x+ 6

20.
x2 − 2x− 15
x2 + x · x2 + 7x

x2 + 12x+ 27

21.
x2 − 9

x2 − 4x− 45 ·
x− 6
−3− x
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22.
x2 − 12x+ 27
x− 4 · x− 5

x2 − 18x+ 81

23.
x+ 5

x2 + 12x+ 32 ·
x2 − 2x− 24
x+ 7

24.
x2 − 36

x2 + 11x+ 24 ·
−8− x
x+ 4

25.
x− 5

x2 − 8x+ 12 ·
x2 − 12x+ 36
x− 8

26.
x2 − 5x− 36
x− 1 · x− 5

x2 − 81

27.
x2 + 2x− 15
x2 − 10x+ 16 ·

x2 − 7x+ 10
3x2 + 13x− 10

28.
5x2 + 14x− 3
x+ 9 · x− 7

x2 + 10x+ 21

29.
x2 − 4

x2 + 2x− 63 ·
x2 + 6x− 27
x2 − 6x− 16

30.
x2 + 5x+ 6
x2 − 3x · x2 − 5x

x2 + 9x+ 18

31.
x− 1

x2 + 2x− 63 ·
x2 − 81
x+ 4

32.
x2 + 9x
x2 + 7x+ 12 ·

27 + 6x− x2

x2 − 5x

33.
5− x
x+ 3 ·

x2 + 3x− 18
2x2 − 7x− 15

34.
4x2 + 21x+ 5
18− 7x− x2 ·

x2 + 11x+ 18
x2 − 25

In Exercises 35-58, divide and simplify.
State all restrictions.

35.
x2 − 14x+ 48
x2 + 10x+ 16
−24 + 11x− x2

x2 − x− 72

36.
x− 1

x2 − 14x+ 48 ÷
x+ 5

x2 − 3x− 18

37.
x2 − 1

x2 − 7x+ 12 ÷
x2 + 6x+ 5
−24 + 10x− x2

38.
x2 − 13x+ 42
x2 − 2x− 63 ÷

x2 − x− 42
x2 + 8x+ 7

39.
x2 − 25
x+ 1 ÷

5x2 + 23x− 10
x− 3
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40.
x2 − 3x
x2 − 7x+ 6
x2 − 4x

3x2 − 11x− 42

41.
x2 + 10x+ 21
x− 4
x2 + 3x
x+ 8

42.
x2 + 8x+ 15
x2 − 14x+ 45 ÷

x2 + 11x+ 30
−30 + 11x− x2

43.
x2 − 6x− 16
x2 + x− 42
x2 − 64

x2 + 12x+ 35

44.
x2 + 3x+ 2
x2 − 9x+ 18
x2 + 7x+ 6
x2 − 6x

45.
x2 + 12x+ 35
x+ 4

x2 + 10x+ 25
x+ 9

46.
x2 − 8x+ 7
x2 + 3x− 18 ÷

x2 − 7x
x2 + 6x− 27

47.
x2 + x− 30
x2 + 5x− 36 ÷

−6− x
x+ 8

48.
2x− x2

x2 − 15x+ 54
x2 + x

x2 − 11x+ 30

49.
x2 − 9x+ 8
x2 − 9
x2 − 8x

−15− 8x− x2

50.
x+ 5

x2 + 2x+ 1 ÷
x− 2

x2 + 10x+ 9

51.
x2 − 4
x+ 8

x2 − 10x+ 16
x+ 3

52.
27 − 6x− x2

x2 + 9x+ 20 ÷
x2 − 12x+ 27
x2 + 5x

53.
x2 + 5x+ 6
x2 − 36
x− 7
−6− x

54.
2− x
x− 5 ÷

x2 + 3x− 10
x2 − 14x+ 48
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55.
x+ 3

x2 + 4x− 12
x− 4
x2 − 36

56.
x+ 3
x2 − x− 2 ÷

x

x2 − 3x− 4

57.
x2 − 11x+ 28
x2 + 5x+ 6 ÷

7x2 − 30x+ 8
x2 − x− 6

58.
x− 7
3− x

2x2 + 3x− 5
x2 − 12x+ 27

59. Let

f(x) = x
2 − 7x+ 10
x2 + 4x− 21

and

g(x) = 5x− x2

x2 + 15x+ 56
Compute f(x)/g(x) and simplify your an-
swer.

60. Let

f(x) = x
2 + 15x+ 56
x2 − x− 20

and

g(x) = −7 − x
x+ 1

Compute f(x)/g(x) and simplify your an-
swer.

61. Let

f(x) = x
2 + 12x+ 35
x2 + 4x− 32

and

g(x) = x
2 − 2x− 35
x2 + 8x

Compute f(x)/g(x) and simplify your an-
swer.

62. Let

f(x) = x
2 + 4x+ 3
x− 1

and

g(x) = x
2 − 4x− 21
x+ 5

Compute f(x)/g(x) and simplify your an-
swer.

63. Let

f(x) = x
2 + x− 20
x

and

g(x) = x− 1
x2 − 2x− 35

Compute f(x)g(x) and simplify your an-
swer.

64. Let

f(x) = x
2 + 10x+ 24
x2 − 13x+ 42

and

g(x) = x
2 − 6x− 7
x2 + 8x+ 12

Compute f(x)g(x) and simplify your an-
swer.
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65. Let

f(x) = x+ 5
−6− x

and

g(x) = x
2 + 8x+ 12
x2 − 49

Compute f(x)g(x) and simplify your an-
swer.

66. Let

f(x) = 8− 7x− x2

x2 − 8x− 9
and

g(x) = x
2 − 6x− 7
x2 − 6x+ 5

Compute f(x)g(x) and simplify your an-
swer.
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7.4 Answers

1. 81
175

3. 3
2

5. 7
60

7. 105
64

9. 343
40

11. Provided x "= −9,−7,−4,
x(x+ 6)

(x+ 9)(x+ 4)

13. Provided x "= 1,−1,−4,−5,

−(x+ 2)(x− 9)
(x+ 1)(x+ 4)

15. Provided x "= −8, 6, 1, 0,
(x− 5)(x+ 3)
(x− 6)(x− 1)

17. Provided x "= 1, 8,−3,−1,

− x(x− 3)
(x− 8)(x+ 3)

19. Provided x "= 7,−1,−6,

−(x+ 2)(x+ 8)
(x+ 1)(x+ 6)

21. Provided x "= −3,−5, 9,

−(x− 3)(x− 6)
(x+ 5)(x− 9)

23. Provided x "= −8,−4,−7,
(x+ 5)(x− 6)
(x+ 8)(x+ 7)

25. Provided x "= 2, 6, 8,
(x− 5)(x− 6)
(x− 2)(x− 8)

27. Provided x "= 2, 8, 2/3,−5,
(x− 3)(x− 5)
(3x− 2)(x− 8)

29. Provided x "= −9, 7, 8,−2,
(x− 2)(x− 3)
(x− 7)(x− 8)

31. Provided x "= 7,−9,−4,
(x− 1)(x− 9)
(x− 7)(x+ 4)

33. Provided x "= −3,−3/2, 5,

− (x+ 6)(x− 3)
(2x+ 3)(x+ 3)

35. Provided x "= −8,−2, 9, 3, 8,

−(x− 6)(x− 9)
(x+ 2)(x− 3)

37. Provided x "= 4, 3, 6,−5,−1,

−(x− 1)(x− 6)
(x− 3)(x+ 5)

39. Provided x "= −1, 2/5,−5, 3,
(x− 5)(x− 3)
(5x− 2)(x+ 1)
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41. Provided x "= 4, 0,−3,−8,
(x+ 7)(x+ 8)
x(x− 4)

43. Provided x "= −7, 6,−5,−8, 8,
(x+ 2)(x+ 5)
(x− 6)(x+ 8)

45. Provided x "= −4,−5,−9,
(x+ 7)(x+ 9)
(x+ 4)(x+ 5)

47. Provided x "= 4,−9,−8,−6,

−(x− 5)(x+ 8)
(x− 4)(x+ 9)

49. Provided x "= −3, 3,−5, 0, 8,

−(x− 1)(x+ 5)
x(x− 3)

51. Provided x "= −8, 8, 2,−3,
(x+ 2)(x+ 3)
(x+ 8)(x− 8)

53. Provided x "= 6,−6, 7,

−(x+ 2)(x+ 3)
(x− 6)(x− 7)

55. Provided x "= 2,−6, 4, 6,
(x+ 3)(x− 6)
(x− 2)(x− 4)

57. Provided x "= −2,−3, 3, 2/7, 4,
(x− 7)(x− 3)
(7x− 2)(x+ 3)

59. Provided x "= −7, 3,−8, 0, 5,

−(x− 2)(x+ 8)
x(x− 3)

61. Provided x "= −8, 4, 0, 7,−5,
x(x+ 7)

(x− 4)(x− 7)

63. Provided x "= 0, 7,−5,
(x− 4)(x− 1)
x(x− 7)

65. Provided x "= −6,−7, 7,

−(x+ 5)(x+ 2)
(x+ 7)(x− 7)
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7.5 Exercises

In Exercises 1-16, add or subtract the
rational expressions, as indicated, and
simplify your answer. State all restric-
tions.

1. 7x2 − 49x
x− 6 + 42

x− 6

2. 2x2 − 110
x− 7 − 12

7 − x

3. 27x− 9x2

x+ 3 + 162
x+ 3

4. 2x2 − 28
x+ 2 − 10x

x+ 2

5. 4x2 − 8
x− 4 + 56

4− x

6. 4x2

x− 2 −
36x− 56
x− 2

7. 9x2

x− 1 + 72x− 63
1− x

8. 5x2 + 30
x− 6 − 35x

x− 6

9. 4x2 − 60x
x− 7 + 224

x− 7

10. 3x2

x− 7 −
63− 30x

7 − x

11. 3x2

x− 2 −
48− 30x

2− x

12. 4x2 − 164
x− 6 − 20

6− x

13. 9x2

x− 2 −
81x− 126
x− 2

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

14. 9x2

x− 8 + 144x− 576
8− x

15. 3x2 − 12
x− 3 + 15

3− x

16. 7x2

x− 9 −
112x− 441
x− 9

In Exercises 17-34, add or subtract the
rational expressions, as indicated, and
simplify your answer. State all restric-
tions.

17. 3x
x2 − 6x+ 5 + 15

x2 − 14x+ 45

18. 7x
x2 − 4x + 28

x2 − 12x+ 32

19. 9x
x2 + 4x− 12 −

54
x2 + 20x+ 84

20. 9x
x2 − 25 −

45
x2 + 20x+ 75

21. 5x
x2 − 21x+ 98 −

35
7x− x2

22. 7x
7x− x2 + 147

x2 + 7x− 98

23. −7x
x2 − 8x+ 15 −

35
x2 − 12x+ 35

24. −6x
x2 + 2x + 12

x2 + 6x+ 8

25. −9x
x2 − 12x+ 32 −

36
x2 − 4x

26. 5x
x2 − 12x+ 32 −

20
4x− x2
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27. 6x
x2 − 21x+ 98 −

42
7x− x2

28. −2x
x2 − 3x− 10 + 4

x2 + 11x+ 18

29. −9x
x2 − 6x+ 8 −

18
x2 − 2x

30. 6x
5x− x2 + 90

x2 + 5x− 50

31. 8x
5x− x2 + 120

x2 + 5x− 50

32. −5x
x2 + 5x + 25

x2 + 15x+ 50

33. −5x
x2 + x− 30 + 30

x2 + 23x+ 102

34. 9x
x2 + 12x+ 32 −

36
x2 + 4x

35. Let

f(x) = 8x
x2 + 6x+ 8

and

g(x) = 16
x2 + 2x

Compute f(x) − g(x) and simplify your
answer.

36. Let

f(x) = −7x
x2 + 8x+ 12

and

g(x) = 42
x2 + 16x+ 60

Compute f(x) + g(x) and simplify your
answer.

37. Let

f(x) = 11x
x2 + 12x+ 32

and

g(x) = 44
−4x− x2

Compute f(x) + g(x) and simplify your
answer.

38. Let

f(x) = 8x
x2 − 6x

and

g(x) = 48
x2 − 18x+ 72

Compute f(x) + g(x) and simplify your
answer.

39. Let

f(x) = 4x
−x− x2

and

g(x) = 4
x2 + 3x+ 2

Compute f(x) + g(x) and simplify your
answer.

40. Let

f(x) = 5x
x2 − x− 12

and

g(x) = 15
x2 + 13x+ 30

Compute f(x) − g(x) and simplify your
answer.



Section 7.5 Sums and Differences of Rational Functions 693

Version: Fall 2007

7.5 Answers

1. 7(x− 1), provided x "= 6.

3. −9(x− 6), provided x "= −3.

5. 4(x+ 4), provided x "= 4.

7. 9(x− 7), provided x "= 1.

9. 4(x− 8), provided x "= 7.

11. 3(x− 8), provided x "= 2.

13. 9(x− 7), provided x "= 2.

15. 3(x+ 3), provided x "= 3.

17. Provided x "= 5, 1, 9,
3(x+ 1)

(x− 1)(x− 9)

19. Provided x "= −6, 2,−14,
9(x+ 2)

(x− 2)(x+ 14)

21. Provided x "= 7, 14, 0,
5(x+ 14)
x(x− 14)

23. Provided x "= 5, 3, 7,
−7(x+ 3)

(x− 3)(x− 7)

25. Provided x "= 4, 8, 0,
−9(x+ 8)
x(x− 8)

27. Provided x "= 7, 14, 0,
6(x+ 14)
x(x− 14)

29. Provided x "= 2, 4, 0,
−9(x+ 4)
x(x− 4)

31. Provided x "= 5, 0,−10,
−8
x+ 10

33. Provided x "= −6, 5,−17,
−5(x+ 5)

(x− 5)(x+ 17)

35. Provided x "= −2,−4, 0,
8(x− 4)
x(x+ 4)

37. Provided x "= −4,−8, 0,
11(x− 8)
x(x+ 8)

39. Provided x "= −1, 0,−2,
−4
x+ 2
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7.6 Exercises

In Exercises 1-6, evaluate the function
at the given rational number. Then use
the first or second technique for simpli-
fying complex fractions explained in the
narrative to simplify your answer.

1. Given

f(x) = x+ 1
2− x,

evaluate and simplify f(1/2).

2. Given

f(x) = 2− x
x+ 5 ,

evaluate and simplify f(3/2).

3. Given

f(x) = 2x+ 3
4− x ,

evaluate and simplify f(1/3).

4. Given

f(x) = 3− 2x
x+ 5 ,

evaluate and simplify f(2/5).

5. Given

f(x) = 5− 2x
x+ 4 ,

evaluate and simplify f(3/5).

6. Given

f(x) = 2x− 9
11− x,

evaluate and simplify f(4/3).

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

In Exercises 7-46, simplify the given
complex rational expression. State all re-
strictions.

7.

5 + 6
x

25
x
− 36
x3

8.

7 + 9
x

49
x
− 81
x3

9.
7
x− 2 −

5
x− 7

8
x− 7 + 3

x+ 8

10.
9
x+ 4 −

7
x− 9

9
x− 9 + 5

x− 4

11.

3 + 7
x

9
x2 −

49
x4
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12.

2− 5
x

4
x2 −

25
x4

13.
9
x+ 4 + 7

x+ 9
9
x+ 9 + 2

x− 8

14.
4
x− 6 + 9

x− 9
9
x− 6 + 8

x− 9

15.
5
x− 7 −

4
x− 4

10
x− 4 −

5
x+ 2

16.
3
x+ 6 + 7

x+ 9
9
x+ 6 −

4
x+ 9

17.
6
x− 3 + 5

x− 8
9
x− 3 + 7

x− 8

18.
7
x− 7 −

4
x− 2

7
x− 7 −

6
x− 2

19.
4
x− 2 + 7

x− 7
5
x− 2 + 2

x− 7

20.
9
x+ 2 −

7
x+ 5

4
x+ 2 + 3

x+ 5

21.

5 + 4
x

25
x
− 16
x3

22.
6
x+ 5 + 5

x+ 4
8
x+ 5 −

3
x+ 4

23.
9
x− 5 + 8

x+ 4
5
x− 5 −

4
x+ 4

24.
4
x− 6 + 4

x− 9
6
x− 6 + 6

x− 9

25.
6
x+ 8 + 5

x− 2
5
x− 2 −

2
x+ 2
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26.
7
x+ 9 + 9

x− 2
4
x− 2 + 7

x+ 1

27.
7
x+ 7 −

5
x+ 4

8
x+ 7 −

3
x+ 4

28.

25− 16
x2

5 + 4
x

29.
64
x
− 25
x3

8− 5
x

30.
4
x+ 2 + 5

x− 6
7
x− 6 −

5
x+ 7

31.
2
x− 6 −

4
x+ 9

3
x− 6 −

6
x+ 9

32.
3
x+ 6 −

4
x+ 4

6
x+ 6 −

8
x+ 4

33.
9
x2 −

64
x4

3− 8
x

34.
9
x2 −

25
x4

3− 5
x

35.
4
x− 4 −

8
x− 7

4
x− 7 + 2

x+ 2

36.

2− 7
x

4− 49
x2

37.
3

x2 + 8x− 9 + 3
x2 − 81

9
x2 − 81 + 9

x2 − 8x− 9

38.
7

x2 − 5x− 14 + 2
x2 − 7x− 18

5
x2 − 7x− 18 + 8

x2 − 6x− 27

39.
2

x2 + 8x+ 7 + 5
x2 + 13x+ 42

7
x2 + 13x+ 42 + 6

x2 + 3x− 18
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40.
3

x2 + 5x− 14 + 3
x2 − 7x− 98

3
x2 − 7x− 98 + 3

x2 − 15x+ 14

41.
6

x2 + 11x+ 24 −
6

x2 + 13x+ 40
9

x2 + 13x+ 40 −
9

x2 − 3x− 40

42.
7

x2 + 13x+ 30 + 7
x2 + 19x+ 90

9
x2 + 19x+ 90 + 9

x2 + 7x− 18

43.
7

x2 − 6x+ 5 + 7
x2 + 2x− 35

8
x2 + 2x− 35 + 8

x2 + 8x+ 7

44.
2

x2 − 4x− 12 −
2

x2 − x− 30
2

x2 − x− 30 −
2

x2 − 4x− 45

45.
4

x2 + 6x− 7 −
4

x2 + 2x− 3
4

x2 + 2x− 3 −
4

x2 + 5x+ 6

46.
9

x2 + 3x− 4 + 8
x2 − 7x+ 6

4
x2 − 7x+ 6 + 9

x2 − 10x+ 24

47. Given f(x) = 2/x, simplify
f(x)− f(3)
x− 3 .

State all restrictions.

48. Given f(x) = 5/x, simplify
f(x)− f(2)
x− 2 .

State all restrictions.

49. Given f(x) = 3/x2, simplify
f(x)− f(1)
x− 1 .

State all restrictions.

50. Given f(x) = 5/x2, simplify
f(x)− f(2)
x− 2 .

State all restrictions.

51. Given f(x) = 7/x, simplify
f(x+ h)− f(x)

h
.

State all restrictions.

52. Given f(x) = 4/x, simplify
f(x+ h)− f(x)

h
.

State all restrictions.

53. Given

f(x) = x+ 1
3− x,

find and simplify f(1/x). State all re-
strictions.
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54. Given

f(x) = 2− x
3x+ 4 ,

find and simplify f(2/x). State all re-
strictions.

55. Given

f(x) = x+ 1
2− 5x,

find and simplify f(5/x). State all re-
strictions.

56. Given

f(x) = 2x− 3
4 + x ,

find and simplify f(1/x). State all re-
strictions.

57. Given

f(x) = x

x+ 2 ,

find and simplify f(f(x)). State all re-
strictions.

58. Given

f(x) = 2x
x+ 5 ,

find and simplify f(f(x)). State all re-
strictions.
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7.6 Answers

1. 1

3. 1

5. 19/23

7. Provided x "= 0, −6/5, or 6/5,
x2

5x− 6 .

9. Provided x "= 2, 7, −8, of −43/11,
(2x− 39)(x+ 8)
(11x+ 43)(x− 2) .

11. Provided x "= 0, −7/3, or 7/3,
x3

3x− 7 .

13. Provided x "= −4, −9, 8, or 54/11,
(16x+ 109)(x− 8)
(11x− 54)(x+ 4) .

15. Provided x "= 7, 4, −2, or −8,
x+ 2

5(x− 7) .

17. Provided x "= 3, 8, or 93/16,
11x− 63
16x− 93 .

19. Provided x "= 2, 7, or 39/7,
11x− 42
7x− 39 .

21. Provided x "= 0, −4/5, or 4/5,
x2

5x− 4 .

23. Provided x "= 5, −4, or −40,
17x− 4
x+ 40 .

25. Provided x "= −8, 2, −2, or −14/3,
(11x+ 28)(x+ 2)
(3x+ 14)(x+ 8) .

27. Provided x "= −7, −4, or −11/5,
2x− 7
5x+ 11 .

29. Provided x "= 0 or 5/8,
8x+ 5
x2 .

31. Provided x "= 6, −9, or 21,
2
3 .

33. Provided x "= 0 or 8/3,
3x+ 8
x3 .

35. Provided x "= 4, 7, −2, or 1,
−2(x+ 2)
3(x− 4) .

37. Provided x "= 1,−9, 9,−1,−5,
(x− 5)(x+ 1)
3(x+ 5)(x− 1)

39. Provided x "= −1,−7,−6, 3,−21/13,
(7x+ 17)(x− 3)
(13x+ 21)(x+ 1)
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41. Provided x "= −3,−8,−5, 8,
−1(x− 8)
12(x+ 3)

43. Provided x "= 1, 5,−7,−1, 2,
7(x+ 3)(x+ 1)
8(x− 2)(x− 1)

45. Provided x "= −7, 1,−3,−2,
−4(x+ 2)
3(x+ 7)

47. Provided x "= 0, 3,

− 2
3x

49. Provided x "= 0, 1,

−3(x+ 1)
x2

51. Provided x "= 0,−h, and h "= 0,

− 7
h(x+ h)

53. Provided x "= 0, 1/3,
x+ 1
3x− 1

55. Provided x "= 0, 25/2,
x+ 5

2x− 25

57. Provided x "= −2, −4/3,
x

3x+ 4
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7.7 Exercises

For each of the rational functions given
in Exercises 1-6, perform each of the
following tasks.

i. Set up a coordinate system on graph
paper. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Plot the zero of the rational function
on your coordinate system and label
it with its coordinates. Plot the verti-
cal and horizontal asymptotes on your
coordinate system and label them with
their equations. Use this informa-
tion (and your graphing calculator)
to draw the graph of f .

iii. Plot the horizontal line y = k on your
coordinate system and label this line
with its equation.

iv. Use your calculator’s intersect util-
ity to help determine the solution of
f(x) = k. Label this point on your
graph with its coordinates.

v. Solve the equation f(x) = k alge-
braically, placing the work for this
solution on your graph paper next to
your coordinate system containing the
graphical solution. Do the answers
agree?

1. f(x) = x− 1
x+ 2 ; k = 3

2. f(x) = x+ 1
x− 2 ; k = −3

3. f(x) = x+ 1
3− x ; k = 2

4. f(x) = x+ 3
2− x ; k = 2

5. f(x) = 2x+ 3
x− 1 ; k = −3

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

6. f(x) = 5− 2x
x− 1 ; k = 3

In Exercises 7-14, use a strictly alge-
braic technique to solve the equation f(x) =
k for the given function and value of k.
You are encouraged to check your result
with your calculator.

7. f(x) = 16x− 9
2x− 1 ; k = 8

8. f(x) = 10x− 3
7x+ 7 ; k = 1

9. f(x) = 5x+ 8
4x+ 1 ; k = −11

10. f(x) = −6x− 11
7x− 2 ; k = −6

11. f(x) = − 35x
7x+ 12 ; k = −5

12. f(x) = −66x− 5
6x− 10 ; k = −11

13. f(x) = 8x+ 2
x− 11 ; k = 11

14. f(x) = 36x− 7
3x− 4 ; k = 12

In Exercises 15-20, use a strictly alge-
braic technique to solve the given equa-
tion. You are encouraged to check your
result with your calculator.

15. x7 + 8
9 = −8

7

16. x3 + 9
2 = −3

8
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17. −57
x

= 27 − 40
x2

18. −117
x

= 54 + 54
x2

19. 7
x

= 4− 3
x2

20. 3
x2 = 5− 3

x

For each of the rational functions given
in Exercises 21-26, perform each of the
following tasks.

i. Set up a coordinate system on graph
paper. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Plot the zero of the rational function
on your coordinate system and label
it with its coordinates. You may use
your calculator’s zero utility to find
this, if you wish.

iii. Plot the vertical and horizontal as-
ymptotes on your coordinate system
and label them with their equations.
Use the asymptote and zero informa-
tion (and your graphing calculator)
to draw the graph of f .

iv. Plot the horizontal line y = k on your
coordinate system and label this line
with its equation.

v. Use your calculator’s intersect util-
ity to help determine the solution of
f(x) = k. Label this point on your
graph with its coordinates.

vi. Solve the equation f(x) = k alge-
braically, placing the work for this
soluton on your graph paper next to
your coordinate system containing the
graphical solution. Do the answers
agree?

21. f(x) = 1
x

+ 1
x+ 5 , k = 9/14

22. f(x) = 1
x

+ 1
x− 2 , k = 8/15

23. f(x) = 1
x− 1 −

1
x+ 1 , k = 1/4

24. f(x) = 1
x− 1 −

1
x+ 2 , k = 1/6

25. f(x) = 1
x− 2 + 1

x+ 2 , k = 4

26. f(x) = 1
x− 3 + 1

x+ 2 , k = 5

In Exercises 27-34, use a strictly alge-
braic technique to solve the given equa-
tion. You are encouraged to check your
result with your calculator.

27. 2
x+ 1 + 4

x+ 2 = −3

28. 2
x− 5 −

7
x− 7 = 9

29. 3
x+ 9 −

2
x+ 7 = −3

30. 3
x+ 9 −

6
x+ 7 = 9

31. 2
x+ 9 + 2

x+ 6 = −1

32. 5
x− 6 −

8
x− 7 = −1

33. 3
x+ 3 + 6

x+ 2 = −2

34. 2
x− 4 −

2
x− 1 = 1
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For each of the equations in Exercises 35-
40, perform each of the following tasks.

i. Follow the lead of Example 10 in the
text. Make one side of the equation
equal to zero. Load the nonzero side
into your calculator and draw its graph.

ii. Determine the vertical asymptotes of
by analyzing the equation and the re-
sulting graph on your calculator. Use
the TABLE feature of your calculator
to determine any horizontal asymp-
tote behavior.

iii. Use the zero finding utility in the
CALC menu to determine the zero of
the nonzero side of the resulting equa-
tion.

iv. Set up a coordinate system on graph
paper. Label and scale each axis. Re-
member to draw all lines with a ruler.
Draw the graph of the nonzero side
of the equation. Draw the vertical
and horizontal asymptotes and label
them with their equations. Plot the
x-intercept and label it with its coor-
dinates.

v. Use an algebraic technique to deter-
mine the solution of the equation and
compare it with the solution found by
the graphical analysis above.

35. x

x+ 1 + 8
x2 − 2x− 3 = 2

x− 3

36. x

x+ 4 −
2
x+ 1 = 12

x2 + 5x+ 4

37. x

x+ 1 −
4

2x+ 1 = 2x− 1
2x2 + 3x+ 2

38. 2x
x− 4 −

1
x+ 1 = 4x+ 24

x2 − 3x− 4

39. x

x− 2 + 3
x+ 2 = 8

4− x2

40. x

x− 1 −
4
x+ 1 = x− 6

1− x2

In Exercises 41-68, use a strictly alge-
braic technique to solve the given equa-
tion. You are encouraged to check your
result with your calculator.

41. x

3x− 9 −
9
x

= 1
x− 3

42. 5x
x+ 2 + 5

x− 5 = x+ 6
x2 − 3x− 10

43. 3x
x+ 2 −

7
x

= − 1
2x+ 4

44. 4x
x+ 6 −

4
x+ 4 = x− 4

x2 + 10x+ 24

45. x

x− 5 + 9
4− x = x+ 5

x2 − 9x+ 20

46. 6x
x− 5 −

2
x− 3 = x− 8

x2 − 8x+ 15

47. 2x
x− 4 + 5

2− x = x+ 8
x2 − 6x+ 8

48. x

x− 7 −
8

5− x = x+ 7
x2 − 12x+ 35

49. − x

2x+ 2 −
6
x

= − 2
x+ 1

50. 7x
x+ 3 −

4
2− x = x+ 8

x2 + x− 6

51. 2x
x+ 5 −

2
6− x = x− 2

x2 − x− 30

52. 4x
x+ 1 + 6

x+ 3 = x− 9
x2 + 4x+ 3

53. x

x+ 7 −
2
x+ 5 = x+ 1

x2 + 12x+ 35

54. 5x
6x+ 4 + 6

x
= 1

3x+ 2

55. 2x
3x+ 9 −

4
x

= − 2
x+ 3



726 Chapter 7 Rational Functions

Version: Fall 2007

56. 7x
x+ 1 −

4
x+ 2 = x+ 6

x2 + 3x+ 2

57. x

2x− 8 + 8
x

= 2
x− 4

58. 3x
x− 6 + 6

x− 6 = x+ 2
x2 − 12x+ 36

59. x

x+ 2 + 2
x

= − 5
2x+ 4

60. 4x
x− 2 + 2

2− x = x+ 4
x2 − 4x+ 4

61. − 2x
3x− 9 −

3
x

= − 2
x− 3

62. 2x
x+ 1 −

2
x

= 1
2x+ 2

63. x

x+ 1 + 5
x

= 1
4x+ 4

64. 2x
x− 4 −

8
x− 7 = x+ 2

x2 − 11x+ 28

65. − 9x
8x− 2 + 2

x
= − 2

4x− 1

66. 2x
x− 3 −

4
4− x = x− 9

x2 − 7x+ 12

67. 4x
x+ 6 −

5
7 − x = x− 5

x2 − x− 42

68. x

x− 1 −
4
x

= 1
5x− 5
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7.7 Answers

1. x = −7/2

x
10

y
10

x=−2

y=1
(1,0)(1,0)

y=3(−3.5,3)(−3.5,3)

−3.5−3.5

3. x = 5/3

x
10

y
10

x=3

y=−1

(−1,0)(−1,0)
y=2 (1.6667,2)(1.6667,2)

1.6667

5. x = 0

x
10

y
10

x=1

y=2
(−3/2,0)(−3/2,0)

y=−3 (0,−3)(0,−3)

0

7. none

9. −19
49

11. none

13. 41

15. −128
9

17. −8
3 , 5

9

19. 7 +
√

97
8 , 7 −

√
97

8
21. x = −35/9 or x = 2

x
10

y
10

x=0x=−5

y=0
(−2.5,0)(−2.5,0)

y=9/14(−3.8889,9/14)(−3.8889,9/14) (2,9/14)(2,9/14)

23. x = −3 or x = 3

x
10

y
10

x=−1 x=1

y=0 y=1/4(−3,1/4)(−3,1/4) (3,1/4)(3,1/4)
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25. x = 1 +
√

65
4 ,

1−
√

65
4

x
10

y
10

x=−2 x=2

y=0
(0,0)(0,0)

y=4((1−
√

65)/4,4)((1−
√

65)/4,4) ((1+
√

65)/4,4)((1+
√

65)/4,4)

27. −15 +
√

57
6 , −15−

√
57

6

29. −49 +
√

97
6 , −49−

√
97

6

31. −7, −12

33. −19 +
√

73
4 , −19−

√
73

4

35. x = 2

x
10

y
10

x=−1

y=1
(2,0)(2,0)

37. x = 3

x
10

y
10

x=−1

y=1
(3,0)(3,0)

39. x = −5 +
√

17
2 ,

−5−
√

17
2

x
10

y
10

x=−2 x=2

y=1
((−5−

√
17)/2,0)((−5−
√

17)/2,0) ((−5+
√

17)/2,0)((−5+
√

17)/2,0)

41. 27

43. 7
2 , −4

3

45. 10

47. 3

49. −6, −2

51. 4, 3
2

53. 3

55. 6

57. −16
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59. −9 +
√

17
4 , −9−

√
17

4

61. −9
2

63. −19 +
√

41
8 , −19−

√
41

8

65. 2
9 , 2

67. 7
2 , 5

2





Section 7.8 Applications of Rational Functions 743

Version: Fall 2007

7.8 Exercises

1. The sum of the reciprocals of two
consecutive odd integers is −16

63 . Find
the two numbers.

2. The sum of the reciprocals of two
consecutive odd integers is 28

195 . Find the
two numbers.

3. The sum of the reciprocals of two
consecutive integers is−19

90 . Find the two
numbers.

4. The sum of a number and its recip-
rocal is 41

20 . Find the number(s).

5. The sum of the reciprocals of two
consecutive even integers is 5

12 . Find the
two numbers.

6. The sum of the reciprocals of two
consecutive integers is 19

90 . Find the two
numbers.

7. The sum of a number and twice its
reciprocal is 9

2 . Find the number(s).

8. The sum of a number and its recip-
rocal is 5

2 . Find the number(s).

9. The sum of the reciprocals of two
consecutive even integers is 11

60 . Find the
two numbers.

10. The sum of a number and twice its
reciprocal is 17

6 . Find the number(s).

11. The sum of the reciprocals of two
numbers is 15/8, and the second number
is 2 larger than the first. Find the two
numbers.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

12. The sum of the reciprocals of two
numbers is 16/15, and the second num-
ber is 1 larger than the first. Find the
two numbers.

13. Moira can paddle her kayak at a
speed of 2 mph in still water. She pad-
dles 3 miles upstream against the cur-
rent and then returns to the starting lo-
cation. The total time of the trip is 9
hours. What is the speed (in mph) of
the current? Round your answer to the
nearest hundredth.

14. Boris is kayaking in a river with a 6
mph current. Suppose that he can kayak
4 miles upstream in the same amount of
time as it takes him to kayak 9 miles
downstream. Find the speed (mph) of
Boris’s kayak in still water.

15. Jacob can paddle his kayak at a
speed of 6 mph in still water. He pad-
dles 5 miles upstream against the cur-
rent and then returns to the starting lo-
cation. The total time of the trip is 5
hours. What is the speed (in mph) of
the current? Round your answer to the
nearest hundredth.

16. Boris can paddle his kayak at a speed
of 6 mph in still water. If he can paddle
5 miles upstream in the same amount of
time as it takes his to paddle 9 miles
downstream, what is the speed of the
current?
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17. Jacob is canoeing in a river with a
5 mph current. Suppose that he can ca-
noe 4 miles upstream in the same amount
of time as it takes him to canoe 8 miles
downstream. Find the speed (mph) of
Jacob’s canoe in still water.

18. The speed of a freight train is 16
mph slower than the speed of a passenger
train. The passenger train travels 518
miles in the same time that the freight
train travels 406 miles. Find the speed
of the freight train.

19. The speed of a freight train is 20
mph slower than the speed of a passenger
train. The passenger train travels 440
miles in the same time that the freight
train travels 280 miles. Find the speed
of the freight train.

20. Emily can paddle her canoe at a
speed of 2 mph in still water. She pad-
dles 5 miles upstream against the cur-
rent and then returns to the starting lo-
cation. The total time of the trip is 6
hours. What is the speed (in mph) of
the current? Round your answer to the
nearest hundredth.

21. Jacob is canoeing in a river with a
2 mph current. Suppose that he can ca-
noe 2 miles upstream in the same amount
of time as it takes him to canoe 5 miles
downstream. Find the speed (mph) of
Jacob’s canoe in still water.

22. Moira can paddle her kayak at a
speed of 2 mph in still water. If she
can paddle 4 miles upstream in the same
amount of time as it takes her to paddle
8 miles downstream, what is the speed of
the current?

23. Boris can paddle his kayak at a speed
of 6 mph in still water. If he can paddle
5 miles upstream in the same amount of
time as it takes his to paddle 10 miles
downstream, what is the speed of the
current?

24. The speed of a freight train is 19
mph slower than the speed of a passenger
train. The passenger train travels 544
miles in the same time that the freight
train travels 392 miles. Find the speed
of the freight train.

25. It takes Jean 15 hours longer to
complete an inventory report than it takes
Sanjay. If they work together, it takes
them 10 hours. How many hours would
it take Sanjay if he worked alone?

26. Jean can paint a room in 5 hours.
It takes Amelie 10 hours to paint the
same room. How many hours will it take
if they work together?

27. It takes Amelie 18 hours longer to
complete an inventory report than it takes
Jean. If they work together, it takes
them 12 hours. How many hours would
it take Jean if she worked alone?

28. Sanjay can paint a room in 5 hours.
It takes Amelie 9 hours to paint the same
room. How many hours will it take if
they work together?

29. It takes Ricardo 12 hours longer
to complete an inventory report than it
takes Sanjay. If they work together, it
takes them 8 hours. How many hours
would it take Sanjay if he worked alone?
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30. It takes Ricardo 8 hours longer to
complete an inventory report than it takes
Amelie. If they work together, it takes
them 3 hours. How many hours would it
take Amelie if she worked alone?

31. Jean can paint a room in 4 hours.
It takes Sanjay 7 hours to paint the same
room. How many hours will it take if
they work together?

32. Amelie can paint a room in 5 hours.
It takes Sanjay 9 hours to paint the same
room. How many hours will it take if
they work together?
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7.8 Answers

1. −9, −7

3. −10, −9

5. 4, 6

7. 1
2 , 4

9. 10, 12

11. {2/3, 8/3} and {−8/5, 2/5}

13. 1.63 mph

15. 4.90 mph

17. 15 mph

19. 35 mph

21. 14
3 mph

23. 2 mph

25. 15 hours

27. 18 hours

29. 12 hours

31. 28
11 hours
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7.1 Exercises

In Exercises 1-14, perform each of the
following tasks for the given rational func-
tion.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

ii. Use geometric transformations as in
Examples 10, 12, and 13 to draw the
graphs of each of the following ra-
tional functions. Draw the vertical
and horizontal asymptotes as dashed
lines and label each with its equa-
tion. You may use your calculator to
check your solution, but you should
be able to draw the rational function
without the use of a calculator.

iii. Use set-builder notation to describe
the domain and range of the given
rational function.

1. f(x) = −2/x

2. f(x) = 3/x

3. f(x) = 1/(x− 4)

4. f(x) = 1/(x+ 3)

5. f(x) = 2/(x− 5)

6. f(x) = −3/(x+ 6)

7. f(x) = 1/x− 2

8. f(x) = −1/x+ 4

9. f(x) = −2/x− 5

10. f(x) = 3/x− 5

11. f(x) = 1/(x− 2)− 3

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

12. f(x) = −1/(x+ 1) + 5

13. f(x) = −2/(x− 3)− 4

14. f(x) = 3/(x+ 5)− 2

In Exercises 15-22, find all vertical as-
ymptotes, if any, of the graph of the given
function.

15. f(x) = − 5
x+ 1 − 3

16. f(x) = 6
x+ 8 + 2

17. f(x) = − 9
x+ 2 − 6

18. f(x) = − 8
x− 4 − 5

19. f(x) = 2
x+ 5 + 1

20. f(x) = − 3
x+ 9 + 2

21. f(x) = 7
x+ 8 − 9

22. f(x) = 6
x− 5 − 8

In Exercises 23-30, find all horizontal
asymptotes, if any, of the graph of the
given function.

23. f(x) = 5
x+ 7 + 9

24. f(x) = − 8
x+ 7 − 4
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25. f(x) = 8
x+ 5 − 1

26. f(x) = − 2
x+ 3 + 8

27. f(x) = 7
x+ 1 − 9

28. f(x) = − 2
x− 1 + 5

29. f(x) = 5
x+ 2 − 4

30. f(x) = − 6
x− 1 − 2

In Exercises 31-38, state the domain
of the given rational function using set-
builder notation.

31. f(x) = 4
x+ 5 + 5

32. f(x) = − 7
x− 6 + 1

33. f(x) = 6
x− 5 + 1

34. f(x) = − 5
x− 3 − 9

35. f(x) = 1
x+ 7 + 2

36. f(x) = − 2
x− 5 + 4

37. f(x) = − 4
x+ 2 + 2

38. f(x) = 2
x+ 6 + 9

In Exercises 39-46, find the range of
the given function, and express your an-
swer in set notation.

39. f(x) = 2
x− 3 + 8

40. f(x) = 4
x− 3 + 5

41. f(x) = − 5
x− 8 − 5

42. f(x) = − 2
x+ 1 + 6

43. f(x) = 7
x+ 7 + 5

44. f(x) = − 8
x+ 3 + 9

45. f(x) = 4
x+ 3 − 2

46. f(x) = − 5
x− 4 + 9
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7.1 Solutions

1. Start with the graph of y = 1/x in (a). Multiplying by 2 produces the equation
y = 2/x and stretches the graph vertically by a factor of 2 as shown in (b). Multiplying
by −1 produces the equation y = −2/x and reflects the graph of y = 2/x in (b) over
the x-axis to produce the graph of y = −2/x in (c).
Projecting all the points of the graph in (c) onto the x-axis provides the domain:
D = {x : x "= 0}. Projecting all the points on the graph in (c) onto the y-axis produces
the range: R = {y : y "= 0}.

x10

y
10

y=0

x=0

x10

y
10

y=0

x=0

x10

y
10

y=0

x=0
(a) y = 1/x. (b) y = 2/x. (c) y = −2/x.

3. Start with the graph of y = 1/x in (a). Replacing x with x − 4 produces the
equation y = 1/(x − 4) and slides the graph of y = 1/x four units to the right to
produce the graph of y = 1/(x− 4) in (b)
Projecting all the points of the graph in (b) onto the x-axis provides the domain:
D = {x : x "= 4}. Projecting all the points on the graph in (b) onto the y-axis
produces the range: R = {y : y "= 0}.

x10

y
10

y=0

x=0

x10

y
10

y=0

x=4
(a) y = 1/x. (b) y = 1/(x − 4).
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5. Start with the graph of y = 1/x in (a). Multiply by 2 to produce the equation
y = 2/x, which stretches the graph of y = 1/x vertically by a factor of 2. The graph
of y = 2/x is shown in (b). Finally, replacing x with x − 5 produces the equation
y = 2/(x − 5) and slides the graph of y = 2/x five units to the right to produce the
graph of y = 2/(x− 5) in (c).
Projecting all the points of the graph in (c) onto the x-axis provides the domain:
D = {x : x "= 5}. Projecting all the points on the graph in (c) onto the y-axis produces
the range: R = {y : y "= 0}.

x10

y
10

y=0

x=0

x10

y
10

y=0

x=0

x10

y
10

y=0

x=5
(a) y = 1/x. (b) y = 2/x. (c) y = 2/(x − 5).

7. Start with the graph of y = 1/x in (a). Subtract 2 to produce the equation
y = 1/x− 2. This shifts the graph downward 2 units as shown in (b).
Projecting all the points of the graph in (b) onto the x-axis provides the domain:
D = {x : x "= 0}. Projecting all the points on the graph in (b) onto the y-axis
produces the range: R = {y : y "= −2}.

x10

y
10

y=0

x=0

x10

y
10

y=−2

x=0
(a) y = 1/x. (b) y = 1/x − 2.
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9. Start with the graph of y = 1/x in (a). Multiply by −2 to produce the equation
y = −2/x. This stretches the graph of y = 1/x vertically by a factor of 2, then reflects
the graph across the x-axis as shown in (b). Subtract 5 to produce the equqtion
y = −2/x− 5. This shifts the graph of y = −2/x downward 5 units as shown in (c).
Projecting all the points of the graph in (c) onto the x-axis provides the domain:
D = {x : x "= 0}. Projecting all the points on the graph in (c) onto the y-axis produces
the range: R = {y : y "= −5}.

x10

y
10

y=0

x=0

x10

y
10

y=0

x=0

x10

y
10

y=−5

x=0
(a) y = 1/x. (b) y = −2/x. (c) y = −2/x − 5.

11. Start with the graph of y = 1/x in (a). Replace x with x− 2, then subtract 3 to
produce the equation y = 1/(x− 2)− 3. This will shift the graph 2 units to the right
and 3 units downward, as shown in (b).
Projecting all the points of the graph in (b) onto the x-axis provides the domain:
D = {x : x "= 2}. Projecting all the points on the graph in (b) onto the y-axis
produces the range: R = {y : y "= −3}.

x10

y
10

y=0

x=0

x10

y
10

y=−3

x=2
(a) y = 1/x. (b) y = 1/(x − 2) − 3.
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13. Start with the graph of y = 1/x in (a). Multiply by −2 to produce the equation
y = −2/x. This stretches the graph vertically by a factor of 2 then reflects the graph
across the x-axis, as shown in (b). Replace x with x − 3, then subtract 4 to produce
the equation y = −2/(x− 3)− 4. This will shift the graph of y = −2/x three units to
the right and 4 units downward, as shown in (c).
Projecting all the points of the graph in (c) onto the x-axis provides the domain:
D = {x : x "= 3}. Projecting all the points on the graph in (c) onto the y-axis produces
the range: R = {y : y "= −4}.

x10

y
10

y=0

x=0

x10

y
10

y=0

x=0

x10

y
10

y=−4

x=3
(a) y = 1/x. (b) y = −2/x. (c) y = −2/(x − 3) − 4.

15. The graph of f(x) = 5
x+1 − 3 can be obtained from the graph of g(x) = 1

x by (1)
a shift left of 1 unit, (2) a vertical stretch by a factor of 5, (3) a reflection about the
x-axis, and (4) a shift down of 3 units. Thus, the vertical asymptote x = 0 of the graph
of g(x) will also shift left 1 unit to form the vertical asymptote x = −1 of the graph of
f(x).

17. The graph of f(x) = 9
x+2 − 6 can be obtained from the graph of g(x) = 1

x by (1)
a shift left of 2 units, (2) a vertical stretch by a factor of 9, (3) a reflection about the
x-axis, and (4) a shift down of 6 units. Thus, the vertical asymptote x = 0 of the graph
of g(x) will also shift left 2 units to form the vertical asymptote x = −2 of the graph
of f(x).

19. The graph of f(x) = 2
x+5 + 1 can be obtained from the graph of g(x) = 1

x by (1)
a shift left of 5 units, (2) a vertical stretch by a factor of 2, and (3) a shift up of 1 unit.
Thus, the vertical asymptote x = 0 of the graph of g(x) will also shift left 5 units to
form the vertical asymptote x = −5 of the graph of f(x).

21. The graph of f(x) = 7
x+8 − 9 can be obtained from the graph of g(x) = 1

x by (1)
a shift left of 8 units, (2) a vertical stretch by a factor of 7, and (3) a shift down of
9 units. Thus, the vertical asymptote x = 0 of the graph of g(x) will also shift left 8
units to form the vertical asymptote x = −8 of the graph of f(x).
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23. The graph of f(x) = 5
x+7 +9 can be obtained from the graph of g(x) = 1

x by (1) a
shift left of 7 units, (2) a vertical stretch by a factor of 5, and (3) a shift up of 9 units.
Thus, the horizontal asymptote y = 0 of the graph of g(x) will also shift up 9 units to
form the horizontal asymptote y = 9 of the graph of f(x).

25. The graph of f(x) = 8
x+5 − 1 can be obtained from the graph of g(x) = 1

x by (1)
a shift left of 5 units, (2) a vertical stretch by a factor of 8, and (3) a shift down of 1
unit. Thus, the horizontal asymptote y = 0 of the graph of g(x) will also shift down 1
unit to form the horizontal asymptote y = −1 of the graph of f(x).

27. The graph of f(x) = 7
x+1 − 9 can be obtained from the graph of g(x) = 1

x by (1)
a shift left of 1 unit, (2) a vertical stretch by a factor of 7, and (3) a shift down of 9
units. Thus, the horizontal asymptote y = 0 of the graph of g(x) will also shift down
9 units to form the horizontal asymptote y = −9 of the graph of f(x).

29. The graph of f(x) = 5
x+2 − 4 can be obtained from the graph of g(x) = 1

x by (1)
a shift left of 2 units, (2) a vertical stretch by a factor of 5, and (3) a shift down of 4
units. Thus, the horizontal asymptote y = 0 of the graph of g(x) will also shift down
4 units to form the horizontal asymptote y = −4 of the graph of f(x).

31. An input of x = −5 would cause division by zero. Therefore, −5 is not in the
domain. All other possible inputs are valid.

33. An input of x = 5 would cause division by zero. Therefore, 5 is not in the domain.
All other possible inputs are valid.

35. An input of x = −7 would cause division by zero. Therefore, −7 is not in the
domain. All other possible inputs are valid.

37. An input of x = −2 would cause division by zero. Therefore, −2 is not in the
domain. All other possible inputs are valid.

39. The graph of f(x) = 2
x−3 + 8 can be obtained from the graph of g(x) = 1

x by
(1) a shift right of 3 units, (2) a vertical stretch by a factor of 2, and (3) a shift up
of 8 units. Thus, the horizontal asymptote y = 0 of the graph of g(x) will also shift
up 8 units to form the horizontal asymptote y = 8 of the graph of f(x). Similarly,
Range(g) = {y : y "= 0} will shift vertically to form Range(f) = {y : y "= 8}. The
values of the function will become close to 8 as x→ ±∞, but never equal to 8.

41. The graph of f(x) = 5
x−8 − 5 can be obtained from the graph of g(x) = 1

x by (1)
a shift right of 8 units, (2) a vertical stretch by a factor of 5, (3) a reflection about the
x-axis, and (4) a shift down of 5 units. Thus, the horizontal asymptote y = 0 of the
graph of g(x) will also shift down 5 units to form the horizontal asymptote y = −5
of the graph of f(x). Similarly, Range(g) = {y : y "= 0} will shift vertically to form
Range(f) = {y : y "= −5}. The values of the function will become close to −5 as
x→ ±∞, but never equal to −5.
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43. The graph of f(x) = 7
x+7 + 5 can be obtained from the graph of g(x) = 1

x by
(1) a shift left of 7 units, (2) a vertical stretch by a factor of 7, and (3) a shift up
of 5 units. Thus, the horizontal asymptote y = 0 of the graph of g(x) will also shift
up 5 units to form the horizontal asymptote y = 5 of the graph of f(x). Similarly,
Range(g) = {y : y "= 0} will shift vertically to form Range(f) = {y : y "= 5}. The
values of the function will become close to 5 as x→ ±∞, but never equal to 5.

45. The graph of f(x) = 4
x+3 − 2 can be obtained from the graph of g(x) = 1

x by
(1) a shift left of 3 units, (2) a vertical stretch by a factor of 4, and (3) a shift down
of 2 units. Thus, the horizontal asymptote y = 0 of the graph of g(x) will also shift
down 2 units to form the horizontal asymptote y = −2 of the graph of f(x). Similarly,
Range(g) = {y : y "= 0} will shift vertically to form Range(f) = {y : y "= −2}. The
values of the function will become close to −2 as x→ ±∞, but never equal to −2.
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7.2 Exercises

In Exercises 1-12, reduce each rational
number to lowest terms by applying the
following steps:

i. Prime factor both numerator and de-
nominator.

ii. Cancel common prime factors.
iii. Simplify the numerator and denomi-

nator of the result.

1. 147
98

2. 3087
245

3. 1715
196

4. 225
50

5. 1715
441

6. 56
24

7. 108
189

8. 75
500

9. 100
28

10. 98
147

11. 1125
175

12. 3087
8575

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

In Exercises 13-18, reduce the given ex-
pression to lowest terms. State all re-
strictions.

13. x
2 − 10x+ 9

5x− 5

14. x
2 − 9x+ 20
x2 − x− 20

15. x
2 − 2x− 35
x2 − 7x

16. x
2 − 15x+ 54
x2 + 7x− 8

17. x2 + 2x− 63
x2 + 13x+ 42

18. x
2 + 13x+ 42

9x+ 63

In Exercises 19-24, negate any two parts
of the fraction, then factor (if necessary)
and cancel common factors to reduce the
rational expression to lowest terms. State
all restrictions.

19. x+ 2
−x− 2

20. 4− x
x− 4

21. 2x− 6
3− x

22. 3x+ 12
−x− 4

23. 3x2 + 6x
−x− 2
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24. 8x− 2x2

x− 4

In Exercises 25-38, reduce each of the
given rational expressions to lowest terms.
State all restrictions.

25. x
2 − x− 20
25− x2

26. x− x2

x2 − 3x+ 2

27. x
2 + 3x− 28
x2 + 5x− 36

28. x2 + 10x+ 9
x2 + 15x+ 54

29. x
2 − x− 56
8x− x2

30. x
2 − 7x+ 10
5x− x2

31. x
2 + 13x+ 42
x2 − 2x− 63

32. x2 − 16
x2 − x− 12

33. x
2 − 9x+ 14

49− x2

34. x
2 + 7x+ 12

9− x2

35. x
2 − 3x− 18
x2 − 6x+ 5

36. x
2 + 5x− 6
x2 − 1

37. x
2 − 3x− 10
−9x− 18

38. x
2 − 6x+ 8
16− x2

In Exercises 39-42, reduce each ratio-
nal function to lowest terms, and then
perform each of the following tasks.

i. Load the original rational expression
into Y1 and the reduced rational ex-
pression (your answer) into Y2 of your
graphing calculator.

ii. In TABLE SETUP, set TblStart equal
to zero, ∆Tbl equal to 1, then make
sure both independent and dependent
variables are set to Auto. Select TA-
BLE and scroll with the up- and down-
arrows on your calculator until the
smallest restriction is in view. Copy
both columns of the table onto your
homework paper, showing the agree-
ment between Y1 and Y2 and what
happens at all restrictions.

39. x2 − 8x+ 7
x2 − 11x+ 28

40. x
2 − 5x
x2 − 9x

41. 8x− x2

x2 − x− 56

42. x
2 + 13x+ 40
−2x− 16

Given f(x) = 2x + 5, simplify each of
the expressions in Exercises 43-46. Be
sure to reduce your answer to lowest terms
and state any restrictions.

43. f(x)− f(3)
x− 3

44. f(x)− f(6)
x− 6

45. f(x)− f(a)
x− a

46. f(a+ h)− f(a)
h
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Given f(x) = x2 + 2x, simplify each of
the expressions in Exercises 47-50. Be
sure to reduce your answer to lowest terms
and state any restrictions.

47. f(x)− f(1)
x− 1

48. f(x)− f(a)
x− a

49. f(a+ h)− f(a)
h

50. f(x+ h)− f(x)
h

Drill for Skill. In Exercises 51-54,
evaluate the given function at the given
expression and simplify your answer.

51. Suppose that f is the function

f(x) = − x− 6
8x+ 7 .

Evaluate f(−3x + 2) and simplify your
answer.

52. Suppose that f is the function

f(x) = −5x+ 3
7x+ 6 .

Evaluate f(−5x + 1) and simplify your
answer.

53. Suppose that f is the function

f(x) = −3x− 6
4x+ 6 .

Evaluate f(−x−3) and simplify your an-
swer.

54. Suppose that f is the function

f(x) = 4x− 1
2x− 4 .

Evaluate f(5x) and simplify your answer.
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7.2 Solutions

1.
147
98 = 3 · 7 · 7

2 · 7 · 7 = 3
2 = 3

2

3.
1715
196 = 5 · 7 · 7 · 7

2 · 2 · 7 · 7 = 5 · 7
2 · 2 = 35

4

5.
1715
441 = 5 · 7 · 7 · 7

3 · 3 · 7 · 7 = 5 · 7
3 · 3 = 35

9

7.
108
189 = 2 · 2 · 3 · 3 · 3

3 · 3 · 3 · 7 = 2 · 2
7 = 4

7

9.
100
28 = 2 · 2 · 5 · 5

2 · 2 · 7 = 5 · 5
7 = 25

7

11.
1125
175 = 3 · 3 · 5 · 5 · 5

5 · 5 · 7 = 3 · 3 · 5
7 = 45

7

13.
x2 − 10x+ 9

5x− 5 = (x− 1)(x− 9)
5(x− 1) = x− 9

5 ,

provided x "= 1

15.
x2 − 2x− 35
x2 − 7x = (x− 7)(x+ 5)

x(x− 7) = x+ 5
x
,

provided x "= 0, 7
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17.
x2 + 2x− 63
x2 + 13x+ 42 = (x− 7)(x+ 9)

(x+ 7)(x+ 6) ,

provided x "= −7, −6, and this expression does not simplify any further.

19. Negate the denominator and the fraction bar.
x+ 2
−x− 2 = −x+ 2

x+ 2 = −1

This result is valid provided x "= −2.

21. Negate the denominator and the fraction bar.
2x− 6
3− x = −2x− 6

x− 3
Factor, then cancel.

−2x− 6
x− 3 = −2(x− 3)

x− 3 = −2(x− 3)
x− 3 = −2

This result is valid provided x "= 3.

23. Negate the denominator and the fraction bar.
3x2 + 6x
−x− 2 = −3x2 + 6x

x+ 2
Factor, then cancel.

−3x2 + 6x
x+ 2 = −3x(x+ 2)

x+ 2 = −3x(x+ 2)
x+ 2 = −3x (1)

This result is valid provided x "= −2.

25.
x2 − x− 20

25− x2 = −x
2 − x− 20
x2 − 25 = −(x− 5)(x+ 4)

(x− 5)(x+ 5) = −x+ 4
x+ 5 ,

provided x "= −5, 5

27.
x2 + 3x− 28
x2 + 5x− 36 = (x− 4)(x+ 7)

(x− 4)(x+ 9) = x+ 7
x+ 9 ,

provided x "= 4, −9
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29.
x2 − x− 56

8x− x2 = −x
2 − x− 56
x2 − 8x = −(x− 8)(x+ 7)

x(x− 8) = −x+ 7
x
,

provided x "= 0, 8

31.
x2 + 13x+ 42
x2 − 2x− 63 = (x+ 7)(x+ 6)

(x+ 7)(x− 9) = x+ 6
x− 9 ,

provided x "= −7, 9

33.
x2 − 9x+ 14

49− x2 = −x
2 − 9x+ 14
x2 − 49 = −(x− 7)(x− 2)

(x− 7)(x+ 7) = −x− 2
x+ 7 ,

provided x "= 7, −7

35.
x2 − 3x− 18
x2 − 6x+ 5 = (x− 6)(x+ 3)

(x− 1)(x− 5) ,

provided x "= 1, 5, and this expression does not simplify any further.

37.
x2 − 3x− 10
−9x− 18 = (x+ 2)(x− 5)

−9(x+ 2) = −x− 5
9

provided x "= −2

39.
x2 − 8x+ 7
x2 − 11x+ 28 = (x− 7)(x− 1)

(x− 7)(x− 4) = x− 1
x− 4 ,

provided x "= 7, 4

X Y1 Y2
3 -2 -2
4 Err: Err:
5 4 4
6 2.5 2.5
7 Err: 2
8 1.75 1.75
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41.
8x− x2

x2 − x− 56 = − x2 − 8x
x2 − x− 56 = − x(x− 8)

(x− 8)(x+ 7) = − x

x+ 7 ,

provided x "= −7, 8

X Y1 Y2
-8 -8 -8
-7 Err: Err:
-6 6 6
-5 2.5 2.5
-4 1.33333 1.33333
-3 0.75 0.75
-2 0.4 0.4
-1 0.166667 0.166667
0 -0 -0
1 -0.125 -0.125
2 -0.222222 -0.222222
3 -0.3 -0.3
4 -0.363636 -0.363636
5 -0.416667 -0.416667
6 -0.461538 -0.461538
7 -0.5 -0.5
8 Err: -0.533333
9 -0.5625 -0.5625

43.
f(x)− f(3)
x− 3 = (2x+ 5)− (2(3) + 5)

x− 3
= 2x− 6
x− 3

= 2(x− 3)
x− 3

= 2,

provided x "= 3.
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45.
f(x)− f(a)
x− a = (2x+ 5)− (2(a) + 5)

x− 3
= 2x− 2a
x− a

= 2(x− a)
x− a

= 2,

provided x "= a.

47.
f(x)− f(1)
x− 1 = (x2 + 2x)− ((1)2 + 2(1))

x− 1

= x
2 + 2x− 3
x− 1

= (x+ 3)(x− 1)
x− 1

= x+ 3,

provided x "= 1.

49.
f(a+ h)− f(a)

h
= [(a+ h)2 + 2(a+ h)]− [a2 + 2a]

h

= a
2 + 2ah+ h2 + 2a+ 2h− a2 − 2a

h

= 2ah+ h2 + 2h
h

= h(2a+ h+ 2)
h

= 2a+ h+ 2,

provided h "= 0.

51. Substitute −3x+ 2 for x in − x−6
8x+7 and simplify to get − 3x+4

24x−23 .

53. Substitute −x− 3 for x in −3x−6
4x+6 and simplify to get −3x+15

4x+6 .
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7.3 Exercises

For rational functions Exercises 1-20,
follow the Procedure for Graphing Ratio-
nal Functions in the narrative, perform-
ing each of the following tasks.
For rational functions Exercises 1-20,
perform each of the following tasks.

i. Set up a coordinate system on graph
paper. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Perform each of the nine steps listed
in the Procedure for Graphing Ratio-
nal Functions in the narrative.

1. f(x) = (x− 3)/(x+ 2)

2. f(x) = (x+ 2)/(x− 4)

3. f(x) = (5− x)/(x+ 1)

4. f(x) = (x+ 2)/(4− x)

5. f(x) = (2x− 5)/(x+ 1)

6. f(x) = (2x+ 5/(3− x)

7. f(x) = (x+ 2)/(x2 − 2x− 3)

8. f(x) = (x− 3)/(x2 − 3x− 4)

9. f(x) = (x+ 1)/(x2 + x− 2)

10. f(x) = (x− 1)/(x2 − x− 2)

11. f(x) = (x2 − 2x)/(x2 + x− 2)

12. f(x) = (x2 − 2x)/(x2 − 2x− 8)

13. f(x) = (2x2−2x−4)/(x2−x−12)

14. f(x) = (8x− 2x2)/(x2 − x− 6)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

15. f(x) = (x− 3)/(x2 − 5x+ 6)

16. f(x) = (2x− 4)/(x2 − x− 2)

17. f(x) = (2x2 − x− 6)/(x2 − 2x)

18. f(x) = (2x2 − x− 6)/(x2 − 2x)

19. f(x) = (4+2x−2x2)/(x2 +4x+3)

20. f(x) = (3x2 − 6x− 9)/(1− x2)

In Exercises 21-28, find the coordinates
of the x-intercept(s) of the graph of the
given rational function.

21. f(x) = 81− x2

x2 + 10x+ 9

22. f(x) = x− x2

x2 + 5x− 6

23. f(x) = x
2 − x− 12
x2 + 2x− 3

24. f(x) = x2 − 81
x2 − 4x− 45

25. f(x) = 6x− 18
x2 − 7x+ 12

26. f(x) = 4x+ 36
x2 + 15x+ 54

27. f(x) = x
2 − 9x+ 14
x2 − 2x

28. f(x) = x
2 − 5x− 36
x2 − 9x+ 20
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In Exercises 29-36, find the equations
of all vertical asymptotes.

29. f(x) = x
2 − 7x
x2 − 2x

30. f(x) = x
2 + 4x− 45
3x+ 27

31. f(x) = x
2 − 6x+ 8
x2 − 16

32. f(x) = x
2 − 11x+ 18

2x− x2

33. f(x) = x
2 + x− 12
−4x+ 12

34. f(x) = x
2 − 3x− 54
9x− x2

35. f(x) = 16− x2

x2 + 7x+ 12

36. f(x) = x
2 − 11x+ 30
−8x+ 48

In Exercises 37-42, use a graphing cal-
culator to determine the behavior of the
given rational function as x approaches
both positive and negative infinity by per-
forming the following tasks:

i. Load the rational function into the Y=
menu of your calculator.

ii. Use the TABLE feature of your calcula-
tor to determine the value of f(x) for
x = 10, 100, 1000, and 10000. Record
these results on your homework in ta-
ble form.

iii. Use the TABLE feature of your calcula-
tor to determine the value of f(x) for
x = −10, −100, −1000, and −10000.
Record these results on your home-
work in table form.

iv. Use the results of your tabular explo-
ration to determine the equation of

the horizontal asymptote.

37. f(x) = (2x+ 3)/(x− 8)

38. f(x) = (4− 3x)/(x+ 2)

39. f(x) = (4− x2)/(x2 + 4x+ 3)

40. f(x) = (10− 2x2)/(x2 − 4)

41. f(x) = (x2−2x−3)/(2x2−3x−2)

42. f(x) = (2x2 − 3x− 5)/(x2 − x− 6)

In Exercises 43-48, use a purely ana-
lytical method to determine the domain
of the given rational function. Describe
the domain using set-builder notation.

43. f(x) = x
2 − 5x− 6
−9x− 9

44. f(x) = x
2 + 4x+ 3
x2 − 5x− 6

45. f(x) = x
2 + 5x− 24
x2 − 3x

46. f(x) = x
2 − 3x− 4
x2 − 5x− 6

47. f(x) = x
2 − 4x+ 3
x− x2

48. f(x) = x2 − 4
x2 − 9x+ 14
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7.3 Solutions

1. Step 1: The numerator and denominator of

f(x) = x− 3
x+ 2

are already factored.
Step 2: Note that x = −2 makes the denominator zero and is a restriction.
Step 3: The number x = 3 will make the numerator of the rational function f(x) =
(x− 3)/(x+ 2) equal to zero without making the denominator equal to zero (it is not a
restriction). Hence, x = 3 is a zero and (3, 0) will be an x-intercept of the graph of f .
Step 4: Since f is already reduced to lowest terms, we note that the restriction x = −2
will place a vertical asymptote in the graph of f with equation x = −2.
Step 5: We will calculate and plot two points, one on each side of the vertical asymp-
tote: (−1,−4) and (−3, 6).
Step 6: To find the horizontal asymptote, we use our calculator (see images (a), (b),
and (c) below) to determine the end-behavior of f .

(a) (b) (c)

Thus, the line y = 1 is a horizontal asymptote.
Step 7: Putting all of this information together allows us to draw the following graph.

x10

y
10

x=−2

y=1

(3,0)

Step 8: The restrictions of the reduced form are the same as the restrictions of the
original form. Hence, there are no “holes” in the graph.
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Step 9: We can use our graphing calculator to check our graph, as shown in the
following sequence of images.

(a) (b) (c)

3. Step 1: The numerator and denominator of

f(x) = 5− x
x+ 1

are already factored.
Step 2: Note that x = −1 makes the denominator zero and is a restriction.
Step 3: Note that the number x = 5 will make the numerator of the rational function
f(x) = (5 − x)/(x + 1) equal to zero without making the denominator equal to zero
(it is not a restriction). Hence, x = 5 is a zero and (5, 0) will be an x-intercept of the
graph of f .
Step 4: Since f is already reduced to lowest terms, we note that the restriction x = −1
will place a vertical asymptote in the graph of f with equation x = −1.
Step 5: We will calculate and plot two points, one on each side of the vertical asymp-
tote: (−2,−7) and (0, 5).
Step 6: To find the horizontal asymptote, we use our calculator (see images (a), (b),
and (c) below) to determine the end-behavior of f .

(a) (b) (c)

Thus, the line y = −1 is a horizontal asymptote.
Step 7: Putting all of this information together allows us to draw the following graph.
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x10

y
10

x=−1

y=−1

(5,0)

Step 8: The restrictions of the reduced form are the same as the restrictions of the
original form. Hence, there are no “holes” in the graph.
Step 9: We can use our graphing calculator to check our graph, as shown in the
following sequence of images.

(a) (b) (c)

5. Step 1: The numerator and denominator of

f(x) = 2x− 5
x+ 1

are already factored.
Step 2: Note that x = −1 makes the denominator zero and is a restriction.
Step 3: Note that the number x = 5/2 will make the numerator of the rational function
f(x) = (2x − 5)/(x + 1) equal to zero without making the denominator equal to zero
(it is not a restriction). Hence, x = 5/2 is a zero and (5/2, 0) will be an x-intercept of
the graph of f .
Step 4: Since f is already reduced to lowest terms, we note that the restriction x = −1
will place a vertical asymptote in the graph of f with equation x = −1.
Step 5: We will calculate and plot two points, one on each side of the vertical asymp-
tote: (−2, 9) and (0,−5).
Step 6: To find the horizontal asymptote, we use our calculator (see images (a), (b),
and (c) below) to determine the end-behavior of f .
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(a) (b) (c)

Thus, the line y = 2 is a horizontal asymptote.
Step 7: Putting all of this information together allows us to draw the following graph.

x
10

y
10

x=−1

y=2

(5/2,0)(5/2,0)

Step 8: The restrictions of the reduced form are the same as the restrictions of the
original form. Hence, there are no “holes” in the graph.
Step 9: We can use our graphing calculator to check our graph, as shown in the
following sequence of images.

(a) (b) (c)

7. Step 1: Factor numerator and denominator to obtain

f(x) = x+ 2
(x+ 1)(x− 3) .

Step 2: Note the restrictions are x = −1 and x = 3.
Step 3: The number x = −2 will make the numerator of the rational function f(x) =
(x + 2)/((x + 1)(x − 3)) equal to zero without making the denominator equal to zero
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(it is not a restriction). Hence, x = −2 is a zero and (−2, 0) will be an x-intercept of
the graph of f .
Step 4: Since f is already reduced to lowest terms, we note that the restrictions x = −1
and x = 3 will place vertical asymptotes in the graph of f with equations x = −1 and
x = 3.
Step 5: We will calculate and plot points, one on each side of the vertical asymptote:
(−1.5, 0.2222), (0,−0.6667), and (4, 1.2). These points are approximations, not exact.
Step 6: To find the horizontal asymptote, we use our calculator (see images (a), (b),
and (c) below) to determine the end-behavior of f .

(a) (b) (c)

Thus, the line y = 0 is a horizontal asymptote.
Step 7: Putting all of this information together allows us to draw the following graph.

x10

y
10

(−2,0)

x=3x=−1

y=0

Step 8: The restrictions of the reduced form are the same as the restrictions of the
original form. Hence, there are no “holes” in the graph.
Step 9: We can use our graphing calculator to check our graph, as shown in the
following sequence of images. Note that the image in (c) is not very good, but it is
enough to convince us that our work above is reasonable.

(a) (b) (c)
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9. Step 1: Factor numerator and denominator to obtain

f(x) = x+ 1
(x+ 2)(x− 1) .

Step 2: The restrictions are x = −2 and x = 1.
Step 3: The number x = −1 will make the numerator of the rational function f(x) =
(x + 1)/((x + 2)(x − 1)) equal to zero without making the denominator equal to zero
(it is not a restriction). Hence, x = −1 is a zero and (−1, 0) will be an x-intercept of
the graph of f .
Step 4: Since f is already reduced to lowest terms, we note that the restrictions x = −2
and x = 1 will place vertical asymptotes in the graph of f with equations x = −2 and
x = 1.
Step 5: We will calculate and plot points, one on each side of the vertical asymptote:
(−3,−0.5), (0,−0.5), and (2, 0.75). These points are approximations, not exact.
Step 6: To find the horizontal asymptote, we use our calculator (see images (a), (b),
and (c) below) to determine the end-behavior of f .

(a) (b) (c)

Thus, a horizontal asymptote is the line y = 0.
Step 7: Putting all of this information together allows us to draw the following graph.

x
5

y
5

x=−2 x=1

y=0 (−1,0)(−1,0)

Step 8: The restrictions of the reduced form are the same as the restrictions of the
original form. Hence, there are no “holes” in the graph.



Section 7.3 Graphing Rational Functions

Version: Fall 2007

Step 9: We can use our graphing calculator to check our graph, as shown in the
following sequence of images. Note that the image in (c) is not very good, but it is
enough to convince us that our work above is reasonable.

(a) (b) (c)

11. Step 1: Factor numerator and denominator to obtain

f(x) = x(x− 2)
(x+ 2)(x− 1) .

Step 2: The restrictions are x = −2 and x = 1.
Step 3: The numbers x = 0 and x = 2 will make the numerator of the rational function
f(x) = x(x− 2)/((x+ 2)(x− 1)) equal to zero without making the denominator equal
to zero (they are not restrictions). Hence, x = 0 and x = 2 are zeros and (0, 0) and
(2, 0) will be x-intercepts of the graph of f .
Step 4: Since f is already reduced to lowest terms, we note that the restrictions x = −2
and x = 1 will place vertical asymptotes in the graph of f with equations x = −2 and
x = 1.
Step 5: We will calculate and plot points, one on each side of the vertical asymptote:
(−3, 3.75), (−1,−1.5), (0.5, 0.6), and (1.5,−0.4286). These points are approximations,
not exact.
Step 6: To find the horizontal asymptote, we use our calculator (see images (a), (b),
and (c) below) to determine the end-behavior of f .

(a) (b) (c)

Thus, the line y = 1 is a horizontal asymptote.
Step 7: Putting all of this information together allows us to draw the following graph.
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x
10

y
10

x=−2 x=1

y=1 (0,0)(0,0)
(2,0)(2,0)

Step 8: The restrictions of the reduced form are the same as the restrictions of the
original form. Hence, there are no “holes” in the graph.
Step 9: We can use our graphing calculator to check our graph, as shown in the
following sequence of images. Note that the image in (c) is not very good, but it is
enough to convince us that our work above is reasonable.

(a) (b) (c)

13. Step 1: Factor.

f(x) = 2x2 − 2x− 4
x2 − x− 12 = 2(x2 − x− 2)

x2 − x− 12 = 2(x− 2)(x+ 1)
(x− 4)(x+ 3)

Step 2: The restrictions are x = 4 and x = −3.
Step 3: The numbers x = 2 and x = −1 will make the numerator of the rational
function f equal to zero without making the denominator equal to zero (they are not
restrictions). Hence, x = 2 and x = −1 are zeros and (2, 0) and (−1, 0) will be x-
intercepts of the graph of f .
Step 4: Since f is already reduced to lowest terms, we note that the restrictions x = 4
and x = −3 will place vertical asymptotes in the graph of f with equations x = 4 and
x = −3.
Step 5: We will calculate and plot points, one on each side of the vertical asymptote:
(−4, 4.5), (−2,−1.3333), (3,−1.3333), and (5, 4.5). These points are approximations,
not exact.
Step 6: To find the horizontal asymptote, we use our calculator (see images (a), (b),
and (c) below) to determine the end-behavior of f .
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(a) (b) (c)

Thus, the line y = 2 is a horizontal asymptote.
Step 7: Putting all of this information together allows us to draw the following graph.

x
10

y
10

x=−3 x=4

y=2 (−1,0)(−1,0) (2,0)(2,0)

Step 8: The restrictions of the reduced form are the same as the restrictions of the
original form. Hence, there are no “holes” in the graph.
Step 9: We can use our graphing calculator to check our graph, as shown in the
following sequence of images.

(a) (b) (c)

15. Step 1: Factor.

f(x) = x− 3
x2 − 5x+ 6 = x− 3

(x− 3)(x− 2)

Step 2: The restrictions are x = 3 and x = 2.
Step 3: There is no number that will make the numerator zero without making the
denominator zero. Hence, the function has no zeros and the graph has no x-intercept.
Step 4: Reduce, obtaining the new function



Chapter 7 Rational Functions

Version: Fall 2007

g(x) = 1
x− 2 .

Note that x = 2 is still a restriction of the reduced form, so the graph of f must have
vertical asymptote with equation x = 2. Note that x = 3 is no longer a restriction of
the reduced form and will cause a “hole” in the graph, which we will deal with shortly.
Step 5: We will calculate and plot points, one on each side of the vertical asymptote:
(1,−1) and (4, 0.5).
Step 6: To find the horizontal asymptote, we use our calculator (see images (a), (b),
and (c) below) to determine the end-behavior of f .

(a) (b) (c)

Thus, the line y = 0 is a horizontal asymptote.
Step 7: Putting all of this information together allows us to draw the following graph.

x
5

y
5

x=2

y=0
(3,1)

Step 8: Recall that we determined that the graph of f will have a “hole” at the
restriction x = 3. Use the reduced form g(x) = 1/(x−2) to compute the y-value of the
“hole.”

g(3) = 1
3− 2 = 1

Hence, there will be a “hole” in the graph of f at (3, 1).
Step 9: We can use our graphing calculator to check our graph, as shown in the
following sequence of images. Note that the image in (c) is not very good, but it is
enough to convince us that our work above is reasonable.
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(a) (b) (c)

17. Step 1: Factor,

f(x) = 2x2 − x− 6
x2 − 2x = (2x+ 3)(x− 2)

x(x− 2)

Step 2: The restrictions are x = 0 and x = 2.
Step 3: The number x = −3/2 makes the numerator zero without making the denom-
inator zero (it is not a restriction). Hence, x = −3/2 is a zero of f and (−3/2, 0) is an
x-intercept of the graph of f .
Step 4: Reduce to obtain the new function

g(x) = 2x+ 3
x

Note that x = 0 is still a restriction of the reduced form, so the graph of f must have
vertical asymptote with equation x = 0. Note that x = 2 is no longer a restriction of
the reduced form. Hence the graph of f will have a “hole” at this restriction. We will
deal with this point in a moment.
Step 5: We will calculate and plot points, one on each side of the vertical asymptote:
(−1,−1) and (1, 5).
Step 6: To find the horizontal asymptote, we use our calculator (see images (a), (b),
and (c) below) to determine the end-behavior of f .

(a) (b) (c)

Thus, the line y = 2 is a horizontal asymptote.
Step 7: Putting all of this information together allows us to draw the following graph.
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x
10

y
10

x=0

y=2

(−3/2,0)(−3/2,0)

(2,7/2)

Step 8: Recall that we determined that the graph of f will have a “hole” at the
restriction x = 2. Use the reduced form g(x) = (2x+ 3)/x to determine the y-value of
the “hole.”

g(2) = 2(2) + 3
2 = 7

2
Hence, there will be a “hole” in the graph of f at (2, 7/2).
Step 9: We can use our graphing calculator to check our graph, as shown in the
following sequence of images.

(a) (b) (c)

19. Step 1: Factor.

f(x) = 4 + 2x− 2x2

x2 + 4x+ 3 = −2(x2 − x− 2)
x2 + 4x+ 3 = −2(x− 2)(x+ 1)

(x+ 3)(x+ 1)
Step 2: The restrictions are x = −3 and x = −1.
Step 3: The number x = 2 makes the numerator zero without making the denominator
zero. Hence, x = 2 is a zero of f and (2, 0) is an x-intercept of the graph of f .
Step 4: Reduce, obtaining the new function

g(x) = −2(x− 2)
x+ 3 .

Note that x = −3 is still a restriction of the reduced form, so the graph of f must have
vertical asymptote with equation x = −3. Note that x = −1 is no longer a restriction
of the reduced form, so the graph of f will have a “hole” at this restriction. We will
deal with the coordinates of this point in a moment.
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Step 5: We will calculate and plot points, one on each side of the vertical asymptote:
(−4,−12) and (−2, 8).
Step 6: To find the horizontal asymptote, we use our calculator (see images (a), (b),
and (c) below) to determine the end-behavior of f .

(a) (b) (c)

Thus, the line y = −2 is a horizontal asymptote.
Step 7: Putting all of this information together allows us to draw the following graph.

x
10

y
10

x=−3

y=−2

(2,0)(2,0)

(−1,3)

Step 8: Recall that the graph of f will have a “hole” at the restriction x = −1. Use
the reduced form g(x) = (−2(x− 2))/(x+ 3) to compute the y-value of the hole.

g(−1) = −2(−1− 2)
−1 + 3 = 3

Hence, there will be a “hole” in the graph of f at (−1, 3).
Step 9: We can use our graphing calculator to check our graph, as shown in the
following sequence of images.

(a) (b) (c)
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21. x-intercepts occur at values where the numerator of the function is zero, but the
denominator is not zero.

81− x2

x2 + 10x+ 9 = − x2 − 81
x2 + 10x+ 9 = −(x+ 9)(x− 9)

(x+ 9)(x+ 1)

The numerator is zero at x = −9 and x = 9, and the denominator is zero at x = −9
and x = −1. Therefore, the only x-intercept occurs at x = 9.

23. x-intercepts occur at values where the numerator of the function is zero, but the
denominator is not zero.

x2 − x− 12
x2 + 2x− 3 = (x+ 3)(x− 4)

(x+ 3)(x− 1)

The numerator is zero at x = −3 and x = 4, and the denominator is zero at x = −3
and x = 1. Therefore, the only x-intercept occurs at x = 4.

25. x-intercepts occur at values where the numerator of the function is zero, but the
denominator is not zero.

6x− 18
x2 − 7x+ 12 = 6(x− 3)

(x− 3)(x− 4)

The numerator is zero at x = 3, and the denominator is zero at x = 3 and x = 4.
Therefore, there are no x-intercepts.

27. x-intercepts occur at values where the numerator of the function is zero, but the
denominator is not zero.

x2 − 9x+ 14
x2 − 2x = (x− 2)(x− 7)

x(x− 2)

The numerator is zero at x = 2 and x = 7, and the denominator is zero at x = 2 and
x = 0. Therefore, the only x-intercept occurs at x = 7.

29. Vertical asymptotes occur where the simplified function is not defined.
x2 − 7x
x2 − 2x = x(x− 7)

x(x− 2) = x− 7
x− 2

so the line x = 2 is the only vertical asymptote.

31. Vertical asymptotes occur where the simplified function is not defined.
x2 − 6x+ 8
x2 − 16 = (x− 4)(x− 2)

(x− 4)(x+ 4) = x− 2
x+ 4

so the line x = −4 is the only vertical asymptote.
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33. Vertical asymptotes occur where the simplified function is not defined.
x2 + x− 12
−4x+ 12 = (x− 3)(x+ 4)

−4(x− 3) = −x+ 4
4

so there are no vertical asymptotes.

35. Vertical asymptotes occur where the simplified function is not defined.
16− x2

x2 + 7x+ 12 = − x2 − 16
x2 + 7x+ 12 = −(x+ 4)(x− 4)

(x+ 4)(x+ 3) = −x− 4
x+ 3

so the line x = −3 is the only vertical asymptote.

37. Load the equation in (a), then determine the end-behavior in (b) and (c).

(a) (b) (c)

Hence, the equation of the horizontal asymptote is y = 2.

39. Load the equation in (a), then determine the end-behavior in (b) and (c).

(a) (b) (c)

Hence, the equation of the horizontal asymptote is y = −1.

41. Load the equation in (a), then determine the end-behavior in (b) and (c).

(a) (b) (c)
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Hence, the equation of the horizontal asymptote is y = 1/2.

43. The denominator factors as −9(x+1), so an input of x = −1 would cause division
by zero. Therefore, −1 is not in the domain. All other possible inputs are valid.

45. The denominator factors as x(x− 3), so an input of x = 3 or x = 0 would cause
division by zero. Therefore, 3 and 0 are not in the domain. All other possible inputs
are valid.

47. The denominator factors as x(1 − x), so inputs of x = 0 or x = 1 would cause
division by zero. Therefore, 0 and 1 are not in the domain. All other possible inputs
are valid.
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7.4 Exercises

In Exercises 1-10, reduce the product
to a single fraction in lowest terms.

1. 108
14 ·

6
100

2. 75
63 ·

18
45

3. 189
56 ·

12
27

4. 45
72 ·

63
64

5. 15
36 ·

28
100

6. 189
49 ·

32
25

7. 21
100 ·

125
16

8. 21
35 ·

49
45

9. 56
20 ·

98
32

10. 27
125 ·

4
12

In Exercises 11-34, multiply and sim-
plify. State all restrictions.

11.
x+ 6

x2 + 16x+ 63 ·
x2 + 7x
x+ 4

12.
x2 + 9x
x2 − 25 ·

x2 − x− 20
−18− 11x− x2

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

13.
x2 + 7x+ 10
x2 − 1 · −9 + 10x− x2

x2 + 9x+ 20

14.
x2 + 5x
x− 4 ·

x− 2
x2 + 6x+ 5

15.
x2 − 5x
x2 + 2x− 48 ·

x2 + 11x+ 24
x2 − x

16.
x2 − 6x− 27
x2 + 10x+ 24 ·

x2 + 13x+ 42
x2 − 11x+ 18

17.
−x− x2

x2 − 9x+ 8 ·
x2 − 4x+ 3
x2 + 4x+ 3

18.
x2 − 12x+ 35
x2 + 2x− 15 ·

45 + 4x− x2

x2 + x− 30

19.
x+ 2
7 − x ·

x2 + x− 56
x2 + 7x+ 6

20.
x2 − 2x− 15
x2 + x · x2 + 7x

x2 + 12x+ 27

21.
x2 − 9

x2 − 4x− 45 ·
x− 6
−3− x
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22.
x2 − 12x+ 27
x− 4 · x− 5

x2 − 18x+ 81

23.
x+ 5

x2 + 12x+ 32 ·
x2 − 2x− 24
x+ 7

24.
x2 − 36

x2 + 11x+ 24 ·
−8− x
x+ 4

25.
x− 5

x2 − 8x+ 12 ·
x2 − 12x+ 36
x− 8

26.
x2 − 5x− 36
x− 1 · x− 5

x2 − 81

27.
x2 + 2x− 15
x2 − 10x+ 16 ·

x2 − 7x+ 10
3x2 + 13x− 10

28.
5x2 + 14x− 3
x+ 9 · x− 7

x2 + 10x+ 21

29.
x2 − 4

x2 + 2x− 63 ·
x2 + 6x− 27
x2 − 6x− 16

30.
x2 + 5x+ 6
x2 − 3x · x2 − 5x

x2 + 9x+ 18

31.
x− 1

x2 + 2x− 63 ·
x2 − 81
x+ 4

32.
x2 + 9x
x2 + 7x+ 12 ·

27 + 6x− x2

x2 − 5x

33.
5− x
x+ 3 ·

x2 + 3x− 18
2x2 − 7x− 15

34.
4x2 + 21x+ 5
18− 7x− x2 ·

x2 + 11x+ 18
x2 − 25

In Exercises 35-58, divide and simplify.
State all restrictions.

35.
x2 − 14x+ 48
x2 + 10x+ 16
−24 + 11x− x2

x2 − x− 72

36.
x− 1

x2 − 14x+ 48 ÷
x+ 5

x2 − 3x− 18

37.
x2 − 1

x2 − 7x+ 12 ÷
x2 + 6x+ 5
−24 + 10x− x2

38.
x2 − 13x+ 42
x2 − 2x− 63 ÷

x2 − x− 42
x2 + 8x+ 7

39.
x2 − 25
x+ 1 ÷

5x2 + 23x− 10
x− 3
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40.
x2 − 3x
x2 − 7x+ 6
x2 − 4x

3x2 − 11x− 42

41.
x2 + 10x+ 21
x− 4
x2 + 3x
x+ 8

42.
x2 + 8x+ 15
x2 − 14x+ 45 ÷

x2 + 11x+ 30
−30 + 11x− x2

43.
x2 − 6x− 16
x2 + x− 42
x2 − 64

x2 + 12x+ 35

44.
x2 + 3x+ 2
x2 − 9x+ 18
x2 + 7x+ 6
x2 − 6x

45.
x2 + 12x+ 35
x+ 4

x2 + 10x+ 25
x+ 9

46.
x2 − 8x+ 7
x2 + 3x− 18 ÷

x2 − 7x
x2 + 6x− 27

47.
x2 + x− 30
x2 + 5x− 36 ÷

−6− x
x+ 8

48.
2x− x2

x2 − 15x+ 54
x2 + x

x2 − 11x+ 30

49.
x2 − 9x+ 8
x2 − 9
x2 − 8x

−15− 8x− x2

50.
x+ 5

x2 + 2x+ 1 ÷
x− 2

x2 + 10x+ 9

51.
x2 − 4
x+ 8

x2 − 10x+ 16
x+ 3

52.
27 − 6x− x2

x2 + 9x+ 20 ÷
x2 − 12x+ 27
x2 + 5x

53.
x2 + 5x+ 6
x2 − 36
x− 7
−6− x

54.
2− x
x− 5 ÷

x2 + 3x− 10
x2 − 14x+ 48
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55.
x+ 3

x2 + 4x− 12
x− 4
x2 − 36

56.
x+ 3
x2 − x− 2 ÷

x

x2 − 3x− 4

57.
x2 − 11x+ 28
x2 + 5x+ 6 ÷

7x2 − 30x+ 8
x2 − x− 6

58.
x− 7
3− x

2x2 + 3x− 5
x2 − 12x+ 27

59. Let

f(x) = x
2 − 7x+ 10
x2 + 4x− 21

and

g(x) = 5x− x2

x2 + 15x+ 56
Compute f(x)/g(x) and simplify your an-
swer.

60. Let

f(x) = x
2 + 15x+ 56
x2 − x− 20

and

g(x) = −7 − x
x+ 1

Compute f(x)/g(x) and simplify your an-
swer.

61. Let

f(x) = x
2 + 12x+ 35
x2 + 4x− 32

and

g(x) = x
2 − 2x− 35
x2 + 8x

Compute f(x)/g(x) and simplify your an-
swer.

62. Let

f(x) = x
2 + 4x+ 3
x− 1

and

g(x) = x
2 − 4x− 21
x+ 5

Compute f(x)/g(x) and simplify your an-
swer.

63. Let

f(x) = x
2 + x− 20
x

and

g(x) = x− 1
x2 − 2x− 35

Compute f(x)g(x) and simplify your an-
swer.

64. Let

f(x) = x
2 + 10x+ 24
x2 − 13x+ 42

and

g(x) = x
2 − 6x− 7
x2 + 8x+ 12

Compute f(x)g(x) and simplify your an-
swer.
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65. Let

f(x) = x+ 5
−6− x

and

g(x) = x
2 + 8x+ 12
x2 − 49

Compute f(x)g(x) and simplify your an-
swer.

66. Let

f(x) = 8− 7x− x2

x2 − 8x− 9
and

g(x) = x
2 − 6x− 7
x2 − 6x+ 5

Compute f(x)g(x) and simplify your an-
swer.
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7.4 Solutions

1.
108
14 ·

6
100 = 2 · 2 · 3 · 3 · 3

2 · 7 · 2 · 3
2 · 2 · 5 · 5 = 3 · 3 · 3 · 3

7 · 5 · 5 = 81
175

3.
189
56 ·

12
27 = 3 · 3 · 3 · 7

2 · 2 · 2 · 7 ·
2 · 2 · 3
3 · 3 · 3 = 3

2

5.
15
36 ·

28
100 = 3 · 5

2 · 2 · 3 · 3 ·
2 · 2 · 7

2 · 2 · 5 · 5 = 7
3 · 2 · 2 · 5 = 7

60

7.
21
100 ·

125
16 = 3 · 7

2 · 2 · 5 · 5 ·
5 · 5 · 5

2 · 2 · 2 · 2 = 3 · 7 · 5
2 · 2 · 2 · 2 · 2 · 2 = 105

64

9.
56
20 ·

98
32 = 2 · 2 · 2 · 7

2 · 2 · 5 ·
2 · 7 · 7

2 · 2 · 2 · 2 · 2 = 7 · 7 · 7
5 · 2 · 2 · 2 = 343

40

11. First factor the numerators and the denominators:
x+ 6

(x+ 9)(x+ 7) ·
x(x+ 7)
x+ 4

Then cancel all common factors and multiply the two remaining fractions:
x(x+ 6)

(x+ 9)(x+ 4)

Restricted values are −9, −7, and −4.

13. First multiply −9 + 10x− x2 by −1 and also negate the fraction:

−x
2 + 7x+ 10
x2 − 1 · x

2 − 10x+ 9
x2 + 9x+ 20

Then factor the numerators and the denominators:

−(x+ 2)(x+ 5)
(x− 1)(x+ 1) ·

(x− 1)(x− 9)
(x+ 4)(x+ 5)
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Finally, cancel all common factors and multiply the two remaining fractions:

−(x+ 2)(x− 9)
(x+ 1)(x+ 4)

Restricted values are 1, −1, −4, and −5.

15. First factor the numerators and the denominators:
x(x− 5)

(x+ 8)(x− 6) ·
(x+ 8)(x+ 3)
x(x− 1)

Then cancel all common factors and multiply the two remaining fractions:
(x− 5)(x+ 3)
(x− 6)(x− 1)

Restricted values are −8, 6, 1, and 0.

17. First multiply −x− x2 by −1 and also negate the fraction:

− x2 + x
x2 − 9x+ 8 ·

x2 − 4x+ 3
x2 + 4x+ 3

Then factor the numerators and the denominators:

− x(x+ 1)
(x− 1)(x− 8) ·

(x− 1)(x− 3)
(x+ 3)(x+ 1)

Finally, cancel all common factors and multiply the two remaining fractions:

− x(x− 3)
(x− 8)(x+ 3)

Restricted values are 1, 8, −3, and −1.

19. First multiply 7 − x by −1 and also negate the fraction:

−x+ 2
x− 7 ·

x2 + x− 56
x2 + 7x+ 6

Then factor the numerators and the denominators:

−x+ 2
x− 7 ·

(x− 7)(x+ 8)
(x+ 1)(x+ 6)

Finally, cancel all common factors and multiply the two remaining fractions:

−(x+ 2)(x+ 8)
(x+ 1)(x+ 6)

Restricted values are 7, −1, and −6.
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21. First multiply −3− x by −1 and also negate the fraction:

− x2 − 9
x2 − 4x− 45 ·

x− 6
x+ 3

Then factor the numerators and the denominators:

−(x+ 3)(x− 3)
(x+ 5)(x− 9) ·

x− 6
x+ 3

Finally, cancel all common factors and multiply the two remaining fractions:

−(x− 3)(x− 6)
(x+ 5)(x− 9)

Restricted values are −3, −5, and 9.

23. First factor the numerators and the denominators:
x+ 5

(x+ 8)(x+ 4) ·
(x− 6)(x+ 4)
x+ 7

Then cancel all common factors and multiply the two remaining fractions:
(x+ 5)(x− 6)
(x+ 8)(x+ 7)

Restricted values are −8, −4, and −7.

25. First factor the numerators and the denominators:
x− 5

(x− 2)(x− 6) ·
(x− 6)2

x− 8

Then cancel all common factors and multiply the two remaining fractions:
(x− 5)(x− 6)
(x− 2)(x− 8)

Restricted values are 2, 6, and 8.

27. First factor the numerators and the denominators:
(x− 3)(x+ 5)
(x− 2)(x− 8) ·

(x− 2)(x− 5)
(3x− 2)(x+ 5)

Then cancel all common factors and multiply the two remaining fractions:
(x− 3)(x− 5)
(3x− 2)(x− 8)

Restricted values are 2, 8, 2/3, and −5.
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29. First factor the numerators and the denominators:
(x− 2)(x+ 2)
(x+ 9)(x− 7) ·

(x+ 9)(x− 3)
(x− 8)(x+ 2)

Then cancel all common factors and multiply the two remaining fractions:
(x− 2)(x− 3)
(x− 7)(x− 8)

Restricted values are −9, 7, 8, and −2.

31. First factor the numerators and the denominators:
x− 1

(x− 7)(x+ 9) ·
(x− 9)(x+ 9)
x+ 4

Then cancel all common factors and multiply the two remaining fractions:
(x− 1)(x− 9)
(x− 7)(x+ 4)

Restricted values are 7, −9, and −4.

33. First multiply 5− x by −1 and also negate the fraction:

−x− 5
x+ 3 ·

x2 + 3x− 18
2x2 − 7x− 15

Then factor the numerators and the denominators:

−x− 5
x+ 3 ·

(x+ 6)(x− 3)
(2x+ 3)(x− 5)

Finally, cancel all common factors and multiply the two remaining fractions:

− (x+ 6)(x− 3)
(2x+ 3)(x+ 3)

Restricted values are −3, −3/2, and 5.

35. First rewrite as a multiplication problem:
x2 − 14x+ 48
x2 + 10x+ 16 ·

x2 − x− 72
−24 + 11x− x2

Then multiply −24 + 11x− x2 by −1 and also negate the fraction:

−x
2 − 14x+ 48
x2 + 10x+ 16 ·

x2 − x− 72
x2 − 11x+ 24

Then factor the numerators and the denominators:

−(x− 6)(x− 8)
(x+ 8)(x+ 2) ·

(x+ 8)(x− 9)
(x− 3)(x− 8)
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Finally, cancel all common factors and multiply the two remaining fractions:

−(x− 6)(x− 9)
(x+ 2)(x− 3)

Restricted values are −8, −2, 9, 3, and 8.

37. First rewrite as a multiplication problem:
x2 − 1

x2 − 7x+ 12 ·
−24 + 10x− x2

x2 + 6x+ 5

Then multiply −24 + 10x− x2 by −1 and also negate the fraction:

− x2 − 1
x2 − 7x+ 12 ·

x2 − 10x+ 24
x2 + 6x+ 5

Then factor the numerators and the denominators:

−(x− 1)(x+ 1)
(x− 4)(x− 3) ·

(x− 4)(x− 6)
(x+ 5)(x+ 1)

Finally, cancel all common factors and multiply the two remaining fractions:

−(x− 1)(x− 6)
(x− 3)(x+ 5)

Restricted values are 4, 3, 6, −5, and −1.

39. First factor the numerators and the denominators, and rewrite as a multiplication
problem:

(x− 5)(x+ 5)
x+ 1 · x− 3

(5x− 2)(x+ 5)

Then cancel all common factors and multiply the two remaining fractions:
(x− 5)(x− 3)
(5x− 2)(x+ 1)

Restricted values are −1, 2/5, −5, and 3.

41. First factor the numerators and the denominators, and rewrite as a multiplication
problem:

(x+ 7)(x+ 3)
x− 4 · x+ 8

x(x+ 3)

Then cancel all common factors and multiply the two remaining fractions:
(x+ 7)(x+ 8)
x(x− 4)

Restricted values are 4, 0, −3, and −8.
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43. First factor the numerators and the denominators, and rewrite as a multiplication
problem:

(x+ 2)(x− 8)
(x+ 7)(x− 6) ·

(x+ 7)(x+ 5)
(x+ 8)(x− 8)

Then cancel all common factors and multiply the two remaining fractions:
(x+ 2)(x+ 5)
(x− 6)(x+ 8)

Restricted values are −7, 6, −5, −8, and 8.

45. First factor the numerators and the denominators, and rewrite as a multiplication
problem:

(x+ 7)(x+ 5)
x+ 4 · x+ 9

(x+ 5)2

Then cancel all common factors and multiply the two remaining fractions:
(x+ 7)(x+ 9)
(x+ 4)(x+ 5)

Restricted values are −4, −5, and −9.

47. First rewrite as a multiplication problem:
x2 + x− 30
x2 + 5x− 36 ·

x+ 8
−6− x

Then multiply −6− x by −1 and also negate the fraction:

− x
2 + x− 30
x2 + 5x− 36 ·

x+ 8
x+ 6

Then factor the numerators and the denominators:

−(x+ 6)(x− 5)
(x− 4)(x+ 9) ·

x+ 8
x+ 6

Finally, cancel all common factors and multiply the two remaining fractions:

−(x− 5)(x+ 8)
(x− 4)(x+ 9)

Restricted values are 4, −9, −8, and −6.
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49. First rewrite as a multiplication problem:
x2 − 9x+ 8
x2 − 9 · −15− 8x− x2

x2 − 8x
Then multiply −15− 8x− x2 by −1 and also negate the fraction:

−x
2 − 9x+ 8
x2 − 9 · x

2 + 8x+ 15
x2 − 8x

Then factor the numerators and the denominators:

−(x− 1)(x− 8)
(x+ 3)(x− 3) ·

(x+ 3)(x+ 5)
x(x− 8)

Finally, cancel all common factors and multiply the two remaining fractions:

−(x− 1)(x+ 5)
x(x− 3)

Restricted values are −3, 3, −5, 0, and 8.

51. First factor the numerators and the denominators, and rewrite as a multiplication
problem:

(x+ 2)(x− 2)
x+ 8 · x+ 3

(x− 8)(x− 2)
Then cancel all common factors and multiply the two remaining fractions:

(x+ 2)(x+ 3)
(x+ 8)(x− 8)

Restricted values are −8, 8, 2, and −3.

53. First rewrite as a multiplication problem:
x2 + 5x+ 6
x2 − 36 · −6− x

x− 7
Then multiply −6− x by −1 and also negate the fraction:

−x
2 + 5x+ 6
x2 − 36 · x+ 6

x− 7
Then factor the numerators and the denominators:

−(x+ 2)(x+ 3)
(x− 6)(x+ 6) ·

x+ 6
x− 7

Finally, cancel all common factors and multiply the two remaining fractions:

−(x+ 2)(x+ 3)
(x− 6)(x− 7)

Restricted values are 6, −6, and 7.
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55. First factor the numerators and the denominators, and rewrite as a multiplication
problem:

x+ 3
(x− 2)(x+ 6) ·

(x− 6)(x+ 6)
x− 4

Then cancel all common factors and multiply the two remaining fractions:
(x+ 3)(x− 6)
(x− 2)(x− 4)

Restricted values are 2, −6, 4, and 6.

57. First factor the numerators and the denominators, and rewrite as a multiplication
problem:

(x− 7)(x− 4)
(x+ 2)(x+ 3) ·

(x+ 2)(x− 3)
(7x− 2)(x− 4)

Then cancel all common factors and multiply the two remaining fractions:
(x− 7)(x− 3)
(7x− 2)(x+ 3)

Restricted values are −2, −3, 3, 2/7, and 4.

59.
f(x)
g(x) = x

2 − 7x+ 10
x2 + 4x− 21 ·

x2 + 15x+ 56
5x− x2

First multiply 5x− x2 by −1 and also negate the fraction:

−x
2 − 7x+ 10
x2 + 4x− 21 ·

x2 + 15x+ 56
x2 − 5x

Then factor the numerators and the denominators:

−(x− 2)(x− 5)
(x+ 7)(x− 3) ·

(x+ 7)(x+ 8)
x(x− 5)

Finally, cancel all common factors and multiply the two remaining fractions:

−(x− 2)(x+ 8)
x(x− 3)

Restricted values are −7, 3, −8, 0, and 5.
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61.
f(x)
g(x) = x

2 + 12x+ 35
x2 + 4x− 32 ·

x2 + 8x
x2 − 2x− 35

Factor the numerators and the denominators:
(x+ 7)(x+ 5)
(x+ 8)(x− 4) ·

x(x+ 8)
(x− 7)(x+ 5)

Then cancel all common factors and multiply the two remaining fractions:
x(x+ 7)

(x− 4)(x− 7)

Restricted values are −8, 4, 0, 7, and −5.

63.

f(x)g(x) = x
2 + x− 20
x

· x− 1
x2 − 2x− 35

First factor the numerators and the denominators:
(x− 4)(x+ 5)

x
· x− 1

(x− 7)(x+ 5)

Then cancel all common factors and multiply the two remaining fractions:
(x− 4)(x− 1)
x(x− 7)

Restricted values are 0, 7, and −5.

65.

f(x)g(x) = x+ 5
−6− x ·

x2 + 8x+ 12
x2 − 49

First multiply −6− x by −1 and also negate the fraction:

−x+ 5
x+ 6 ·

x2 + 8x+ 12
x2 − 49

Then factor the numerators and the denominators:

−x+ 5
x+ 6 ·

(x+ 6)(x+ 2)
(x+ 7)(x− 7)

Finally, cancel all common factors and multiply the two remaining fractions:

−(x+ 5)(x+ 2)
(x+ 7)(x− 7)

Restricted values are −6, −7, and 7.
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7.5 Exercises

In Exercises 1-16, add or subtract the
rational expressions, as indicated, and
simplify your answer. State all restric-
tions.

1. 7x2 − 49x
x− 6 + 42

x− 6

2. 2x2 − 110
x− 7 − 12

7 − x

3. 27x− 9x2

x+ 3 + 162
x+ 3

4. 2x2 − 28
x+ 2 − 10x

x+ 2

5. 4x2 − 8
x− 4 + 56

4− x

6. 4x2

x− 2 −
36x− 56
x− 2

7. 9x2

x− 1 + 72x− 63
1− x

8. 5x2 + 30
x− 6 − 35x

x− 6

9. 4x2 − 60x
x− 7 + 224

x− 7

10. 3x2

x− 7 −
63− 30x

7 − x

11. 3x2

x− 2 −
48− 30x

2− x

12. 4x2 − 164
x− 6 − 20

6− x

13. 9x2

x− 2 −
81x− 126
x− 2

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

14. 9x2

x− 8 + 144x− 576
8− x

15. 3x2 − 12
x− 3 + 15

3− x

16. 7x2

x− 9 −
112x− 441
x− 9

In Exercises 17-34, add or subtract the
rational expressions, as indicated, and
simplify your answer. State all restric-
tions.

17. 3x
x2 − 6x+ 5 + 15

x2 − 14x+ 45

18. 7x
x2 − 4x + 28

x2 − 12x+ 32

19. 9x
x2 + 4x− 12 −

54
x2 + 20x+ 84

20. 9x
x2 − 25 −

45
x2 + 20x+ 75

21. 5x
x2 − 21x+ 98 −

35
7x− x2

22. 7x
7x− x2 + 147

x2 + 7x− 98

23. −7x
x2 − 8x+ 15 −

35
x2 − 12x+ 35

24. −6x
x2 + 2x + 12

x2 + 6x+ 8

25. −9x
x2 − 12x+ 32 −

36
x2 − 4x

26. 5x
x2 − 12x+ 32 −

20
4x− x2
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27. 6x
x2 − 21x+ 98 −

42
7x− x2

28. −2x
x2 − 3x− 10 + 4

x2 + 11x+ 18

29. −9x
x2 − 6x+ 8 −

18
x2 − 2x

30. 6x
5x− x2 + 90

x2 + 5x− 50

31. 8x
5x− x2 + 120

x2 + 5x− 50

32. −5x
x2 + 5x + 25

x2 + 15x+ 50

33. −5x
x2 + x− 30 + 30

x2 + 23x+ 102

34. 9x
x2 + 12x+ 32 −

36
x2 + 4x

35. Let

f(x) = 8x
x2 + 6x+ 8

and

g(x) = 16
x2 + 2x

Compute f(x) − g(x) and simplify your
answer.

36. Let

f(x) = −7x
x2 + 8x+ 12

and

g(x) = 42
x2 + 16x+ 60

Compute f(x) + g(x) and simplify your
answer.

37. Let

f(x) = 11x
x2 + 12x+ 32

and

g(x) = 44
−4x− x2

Compute f(x) + g(x) and simplify your
answer.

38. Let

f(x) = 8x
x2 − 6x

and

g(x) = 48
x2 − 18x+ 72

Compute f(x) + g(x) and simplify your
answer.

39. Let

f(x) = 4x
−x− x2

and

g(x) = 4
x2 + 3x+ 2

Compute f(x) + g(x) and simplify your
answer.

40. Let

f(x) = 5x
x2 − x− 12

and

g(x) = 15
x2 + 13x+ 30

Compute f(x) − g(x) and simplify your
answer.
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7.5 Solutions

1. Provided x "= 6,
7x2 − 49x
x− 6 + 42

x− 6 = 7x2 − 49x+ 42
x− 6

= 7(x2 − 7x+ 6)
x− 6

= 7(x− 6)(x− 1)
x− 6

= 7(x− 1)

3. Provided x "= −3,
27x− 9x2

x+ 3 + 162
x+ 3 = −9x2 + 27x+ 162

x+ 3

= −9(x2 − 3x− 18)
x+ 3

= −9(x+ 3)(x− 6)
x+ 3

= −9(x− 6)

5. Provided x "= 4,
4x2 − 8
x− 4 + 56

4− x = 4x2 − 8
x− 4 −

56
x− 4

= 4x2 − 8− 56
x− 4

= 4x2 − 64
x− 4

= 4(x2 − 16)
x− 4

= 4(x− 4)(x+ 4)
x− 4

= 4(x+ 4)
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7. Provided x "= 1,
9x2

x− 1 + 72x− 63
1− x = 9x2

x− 1 −
72x− 63
x− 1

= 9x2 − 72x+ 63
x− 1

= 9(x2 − 8x+ 7)
x− 1

= 9(x− 1)(x− 7)
x− 1

= 9(x− 7)

9. Provided x "= 7,
4x2 − 60x
x− 7 + 224

x− 7 = 4x2 − 60x+ 224
x− 7

= 4(x2 − 15x+ 56)
x− 7

= 4(x− 7)(x− 8)
x− 7

= 4(x− 8)

11. Provided x "= 2,
3x2

x− 2 −
48− 30x

2− x = 3x2

x− 2 + 48− 30x
x− 2

= 3x2 − 30x+ 48
x− 2

= 3(x2 − 10x+ 16)
x− 2

= 3(x− 2)(x− 8)
x− 2

= 3(x− 8)

13. Provided x "= 2,
9x2

x− 2 −
81x− 126
x− 2 = 9x2 − 81x+ 126

x− 2

= 9(x2 − 9x+ 14)
x− 2

= 9(x− 2)(x− 7)
x− 2

= 9(x− 7)
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15. Provided x "= 3,
3x2 − 12
x− 3 + 15

3− x = 3x2 − 12
x− 3 − 15

x− 3

= 3x2 − 12− 15
x− 3

= 3x2 − 27
x− 3

= 3(x2 − 9)
x− 3

= 3(x− 3)(x+ 3)
x− 3

= 3(x+ 3)

17.
3x

x2 − 6x+ 5 + 15
x2 − 14x+ 45

= 3x
(x− 5)(x− 1) + 15

(x− 5)(x− 9)

= 3x(x− 9)
(x− 5)(x− 1)(x− 9) + 15(x− 1)

(x− 5)(x− 1)(x− 9)

= 3x(x− 9) + 15(x− 1)
(x− 5)(x− 1)(x− 9)

= 3x2 − 12x− 15
(x− 5)(x− 1)(x− 9)

= 3(x− 5)(x+ 1)
(x− 5)(x− 1)(x− 9)

= 3(x+ 1)
(x− 1)(x− 9)

Restricted values are 5, 1, and 9.
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19.
9x

x2 + 4x− 12 −
54

x2 + 20x+ 84

= 9x
(x+ 6)(x− 2) −

54
(x+ 6)(x+ 14)

= 9x(x+ 14)
(x+ 6)(x− 2)(x+ 14) −

54(x− 2)
(x+ 6)(x− 2)(x+ 14)

= 9x(x+ 14)− 54(x− 2)
(x+ 6)(x− 2)(x+ 14)

= 9x2 + 72x+ 108
(x+ 6)(x− 2)(x+ 14)

= 9(x+ 6)(x+ 2)
(x+ 6)(x− 2)(x+ 14)

= 9(x+ 2)
(x− 2)(x+ 14)

Restricted values are −6, 2, and −14.

21.
5x

x2 − 21x+ 98 −
35

7x− x2

= 5x
x2 − 21x+ 98 + 35

x2 − 7x

= 5x
(x− 7)(x− 14) + 35

x(x− 7)

= 5x2

x(x− 7)(x− 14) + 35(x− 14)
x(x− 7)(x− 14)

= 5x2 + 35(x− 14)
x(x− 7)(x− 14)

= 5x2 + 35x− 490
x(x− 7)(x− 14)

= 5(x− 7)(x+ 14)
x(x− 7)(x− 14)

= 5(x+ 14)
x(x− 14)

Restricted values are 7, 14, and 0.
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23.
−7x

x2 − 8x+ 15 −
35

x2 − 12x+ 35

= −7x
(x− 5)(x− 3) −

35
(x− 5)(x− 7)

= −7x(x− 7)
(x− 5)(x− 3)(x− 7) −

35(x− 3)
(x− 5)(x− 3)(x− 7)

= −7x(x− 7)− 35(x− 3)
(x− 5)(x− 3)(x− 7)

= −7x2 + 14x+ 105
(x− 5)(x− 3)(x− 7)

= −7(x− 5)(x+ 3)
(x− 5)(x− 3)(x− 7)

= −7(x+ 3)
(x− 3)(x− 7)

Restricted values are 5, 3, and 7.

25.
−9x

x2 − 12x+ 32 −
36

x2 − 4x

= −9x
(x− 4)(x− 8) −

36
x(x− 4)

= −9x2

x(x− 4)(x− 8) −
36(x− 8)

x(x− 4)(x− 8)

= −9x2 − 36(x− 8)
x(x− 4)(x− 8)

= −9x2 − 36x+ 288
x(x− 4)(x− 8)

= −9(x− 4)(x+ 8)
x(x− 4)(x− 8)

= −9(x+ 8)
x(x− 8)

Restricted values are 4, 8, and 0.
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27.
6x

x2 − 21x+ 98 −
42

7x− x2

= 6x
x2 − 21x+ 98 + 42

x2 − 7x

= 6x
(x− 7)(x− 14) + 42

x(x− 7)

= 6x2

x(x− 7)(x− 14) + 42(x− 14)
x(x− 7)(x− 14)

= 6x2 + 42(x− 14)
x(x− 7)(x− 14)

= 6x2 + 42x− 588
x(x− 7)(x− 14)

= 6(x− 7)(x+ 14)
x(x− 7)(x− 14)

= 6(x+ 14)
x(x− 14)

Restricted values are 7, 14, and 0.

29.
−9x

x2 − 6x+ 8 −
18

x2 − 2x

= −9x
(x− 2)(x− 4) −

18
x(x− 2)

= −9x2

x(x− 2)(x− 4) −
18(x− 4)

x(x− 2)(x− 4)

= −9x2 − 18(x− 4)
x(x− 2)(x− 4)

= −9x2 − 18x+ 72
x(x− 2)(x− 4)

= −9(x− 2)(x+ 4)
x(x− 2)(x− 4)

= −9(x+ 4)
x(x− 4)

Restricted values are 2, 4, and 0.
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31.
8x

5x− x2 + 120
x2 + 5x− 50

= −8x
x2 − 5x + 120

x2 + 5x− 50

= −8x
x(x− 5) + 120

(x− 5)(x+ 10)

= −8x(x+ 10)
x(x− 5)(x+ 10) + 120x

x(x− 5)(x+ 10)

= −8x(x+ 10) + 120x
x(x− 5)(x+ 10)

= −8x2 + 40x
x(x− 5)(x+ 10)

= −8x(x− 5)
x(x− 5)(x+ 10)

= −8
x+ 10

Restricted values are 5, 0, and −10.

33.
−5x

x2 + x− 30 + 30
x2 + 23x+ 102

= −5x
(x+ 6)(x− 5) + 30

(x+ 6)(x+ 17)

= −5x(x+ 17)
(x+ 6)(x− 5)(x+ 17) + 30(x− 5)

(x+ 6)(x− 5)(x+ 17)

= −5x(x+ 17) + 30(x− 5)
(x+ 6)(x− 5)(x+ 17)

= −5x2 − 55x− 150
(x+ 6)(x− 5)(x+ 17)

= −5(x+ 6)(x+ 5)
(x+ 6)(x− 5)(x+ 17)

= −5(x+ 5)
(x− 5)(x+ 17)

Restricted values are −6, 5, and −17.
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35.

f(x)− g(x) = 8x
x2 + 6x+ 8 −

16
x2 + 2x

= 8x
(x+ 2)(x+ 4) −

16
x(x+ 2)

= 8x2

x(x+ 2)(x+ 4) −
16(x+ 4)

x(x+ 2)(x+ 4)

= 8x2 − 16(x+ 4)
x(x+ 2)(x+ 4)

= 8x2 − 16x− 64
x(x+ 2)(x+ 4)

= 8(x+ 2)(x− 4)
x(x+ 2)(x+ 4)

= 8(x− 4)
x(x+ 4)

Restricted values are −2, −4, and 0.

37.

f(x) + g(x) = 11x
x2 + 12x+ 32 + 44

−4x− x2

= 11x
x2 + 12x+ 32 −

44
x2 + 4x

= 11x
(x+ 4)(x+ 8) −

44
x(x+ 4)

= 11x2

x(x+ 4)(x+ 8) −
44(x+ 8)

x(x+ 4)(x+ 8)

= 11x2 − 44(x+ 8)
x(x+ 4)(x+ 8)

= 11x2 − 44x− 352
x(x+ 4)(x+ 8)

= 11(x+ 4)(x− 8)
x(x+ 4)(x+ 8)

= 11(x− 8)
x(x+ 8)

Restricted values are −4, −8, and 0.
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39.

f(x) + g(x) = 4x
−x− x2 + 4

x2 + 3x+ 2

= −4x
x2 + x + 4

x2 + 3x+ 2

= −4x
x(x+ 1) + 4

(x+ 1)(x+ 2)

= −4x(x+ 2)
x(x+ 1)(x+ 2) + 4x

x(x+ 1)(x+ 2)

= −4x(x+ 2) + 4x
x(x+ 1)(x+ 2)

= −4x2 − 4x
x(x+ 1)(x+ 2)

= −4x(x+ 1)
x(x+ 1)(x+ 2)

= −4x
x(x+ 2)

= −4
x+ 2

Restricted values are −1, 0, and −2.
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7.6 Exercises

In Exercises 1-6, evaluate the function
at the given rational number. Then use
the first or second technique for simpli-
fying complex fractions explained in the
narrative to simplify your answer.

1. Given

f(x) = x+ 1
2− x,

evaluate and simplify f(1/2).

2. Given

f(x) = 2− x
x+ 5 ,

evaluate and simplify f(3/2).

3. Given

f(x) = 2x+ 3
4− x ,

evaluate and simplify f(1/3).

4. Given

f(x) = 3− 2x
x+ 5 ,

evaluate and simplify f(2/5).

5. Given

f(x) = 5− 2x
x+ 4 ,

evaluate and simplify f(3/5).

6. Given

f(x) = 2x− 9
11− x,

evaluate and simplify f(4/3).

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

In Exercises 7-46, simplify the given
complex rational expression. State all re-
strictions.

7.

5 + 6
x

25
x
− 36
x3

8.

7 + 9
x

49
x
− 81
x3

9.
7
x− 2 −

5
x− 7

8
x− 7 + 3

x+ 8

10.
9
x+ 4 −

7
x− 9

9
x− 9 + 5

x− 4

11.

3 + 7
x

9
x2 −

49
x4
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12.

2− 5
x

4
x2 −

25
x4

13.
9
x+ 4 + 7

x+ 9
9
x+ 9 + 2

x− 8

14.
4
x− 6 + 9

x− 9
9
x− 6 + 8

x− 9

15.
5
x− 7 −

4
x− 4

10
x− 4 −

5
x+ 2

16.
3
x+ 6 + 7

x+ 9
9
x+ 6 −

4
x+ 9

17.
6
x− 3 + 5

x− 8
9
x− 3 + 7

x− 8

18.
7
x− 7 −

4
x− 2

7
x− 7 −

6
x− 2

19.
4
x− 2 + 7

x− 7
5
x− 2 + 2

x− 7

20.
9
x+ 2 −

7
x+ 5

4
x+ 2 + 3

x+ 5

21.

5 + 4
x

25
x
− 16
x3

22.
6
x+ 5 + 5

x+ 4
8
x+ 5 −

3
x+ 4

23.
9
x− 5 + 8

x+ 4
5
x− 5 −

4
x+ 4

24.
4
x− 6 + 4

x− 9
6
x− 6 + 6

x− 9

25.
6
x+ 8 + 5

x− 2
5
x− 2 −

2
x+ 2
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26.
7
x+ 9 + 9

x− 2
4
x− 2 + 7

x+ 1

27.
7
x+ 7 −

5
x+ 4

8
x+ 7 −

3
x+ 4

28.

25− 16
x2

5 + 4
x

29.
64
x
− 25
x3

8− 5
x

30.
4
x+ 2 + 5

x− 6
7
x− 6 −

5
x+ 7

31.
2
x− 6 −

4
x+ 9

3
x− 6 −

6
x+ 9

32.
3
x+ 6 −

4
x+ 4

6
x+ 6 −

8
x+ 4

33.
9
x2 −

64
x4

3− 8
x

34.
9
x2 −

25
x4

3− 5
x

35.
4
x− 4 −

8
x− 7

4
x− 7 + 2

x+ 2

36.

2− 7
x

4− 49
x2

37.
3

x2 + 8x− 9 + 3
x2 − 81

9
x2 − 81 + 9

x2 − 8x− 9

38.
7

x2 − 5x− 14 + 2
x2 − 7x− 18

5
x2 − 7x− 18 + 8

x2 − 6x− 27

39.
2

x2 + 8x+ 7 + 5
x2 + 13x+ 42

7
x2 + 13x+ 42 + 6

x2 + 3x− 18
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40.
3

x2 + 5x− 14 + 3
x2 − 7x− 98

3
x2 − 7x− 98 + 3

x2 − 15x+ 14

41.
6

x2 + 11x+ 24 −
6

x2 + 13x+ 40
9

x2 + 13x+ 40 −
9

x2 − 3x− 40

42.
7

x2 + 13x+ 30 + 7
x2 + 19x+ 90

9
x2 + 19x+ 90 + 9

x2 + 7x− 18

43.
7

x2 − 6x+ 5 + 7
x2 + 2x− 35

8
x2 + 2x− 35 + 8

x2 + 8x+ 7

44.
2

x2 − 4x− 12 −
2

x2 − x− 30
2

x2 − x− 30 −
2

x2 − 4x− 45

45.
4

x2 + 6x− 7 −
4

x2 + 2x− 3
4

x2 + 2x− 3 −
4

x2 + 5x+ 6

46.
9

x2 + 3x− 4 + 8
x2 − 7x+ 6

4
x2 − 7x+ 6 + 9

x2 − 10x+ 24

47. Given f(x) = 2/x, simplify
f(x)− f(3)
x− 3 .

State all restrictions.

48. Given f(x) = 5/x, simplify
f(x)− f(2)
x− 2 .

State all restrictions.

49. Given f(x) = 3/x2, simplify
f(x)− f(1)
x− 1 .

State all restrictions.

50. Given f(x) = 5/x2, simplify
f(x)− f(2)
x− 2 .

State all restrictions.

51. Given f(x) = 7/x, simplify
f(x+ h)− f(x)

h
.

State all restrictions.

52. Given f(x) = 4/x, simplify
f(x+ h)− f(x)

h
.

State all restrictions.

53. Given

f(x) = x+ 1
3− x,

find and simplify f(1/x). State all re-
strictions.
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54. Given

f(x) = 2− x
3x+ 4 ,

find and simplify f(2/x). State all re-
strictions.

55. Given

f(x) = x+ 1
2− 5x,

find and simplify f(5/x). State all re-
strictions.

56. Given

f(x) = 2x− 3
4 + x ,

find and simplify f(1/x). State all re-
strictions.

57. Given

f(x) = x

x+ 2 ,

find and simplify f(f(x)). State all re-
strictions.

58. Given

f(x) = 2x
x+ 5 ,

find and simplify f(f(x)). State all re-
strictions.
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7.6 Solutions

1.

f(1/2) =
1
2 + 1
2− 1

2
=

1
2 + 1
2− 1

2
· 22 = 1 + 2

4− 1 = 3
3 = 1

3.

f(1/3) =
2
(1

3
)

+ 3
4− 1

3
=

2
(1

3
)

+ 3
4− 1

3
· 33 = 2 + 9

12− 1 = 11
11 = 1

5.

f(3/5) =
5− 2

(3
5
)

3
5 + 4

=
5− 2

(3
5
)

3
5 + 4

· 55 = 25− 6
3 + 20 = 19

23

7. First multiply the main numerator and denominator by the least common denom-
inator (LCD) of the two small fractions, which is x3:

(
5 + 6
x

)
· x

3

1
(25
x
− 36
x3

)
· x

3

1

= 5x3 + 6x2

25x2 − 36

Then factor the numerator and denominator:
x2(5x+ 6)

(5x+ 6)(5x− 6)
Finally, cancel all common factors in the numerator and denominator:

x2

5x− 6
Restricted values are 0, −6/5, and 6/5.

9. First multiply the main numerator and denominator by the least common denom-
inator (LCD) of the two small fractions, which is (x− 2)(x− 7)(x+ 8):

( 7
x− 2 −

5
x− 7

)
· (x− 2)(x− 7)(x+ 8)

1
( 8
x− 7 + 3

x+ 8

)
· (x− 2)(x− 7)(x+ 8)

1

= 7(x− 7)(x+ 8)− 5(x− 2)(x+ 8)
8(x− 2)(x+ 8) + 3(x− 2)(x− 7)
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Then simplify the numerator and denominator:
7(x− 7)(x+ 8)− 5(x− 2)(x+ 8)
8(x− 2)(x+ 8) + 3(x− 2)(x− 7) = (7(x− 7)− 5(x− 2))(x+ 8)

(8(x+ 8) + 3(x− 7))(x− 2)

= (2x− 39)(x+ 8)
(11x+ 43)(x− 2)

Finally, cancel all common factors, if any, in the numerator and denominator. In this
case, there are no common factors.
Restricted values are 2, 7, −8, and −43/11.

11. First multiply the main numerator and denominator by the least common de-
nominator (LCD) of the two small fractions, which is x4:

(
3 + 7
x

)
· x

4

1
( 9
x2 −

49
x4

)
· x

4

1

= 3x4 + 7x3

9x2 − 49

Then factor the numerator and denominator:
x3(3x+ 7)

(3x+ 7)(3x− 7)

Finally, cancel all common factors in the numerator and denominator:
x3

3x− 7
Restricted values are 0, −7/3, and 7/3.

13. First multiply the main numerator and denominator by the least common de-
nominator (LCD) of the two small fractions, which is (x+ 4)(x+ 9)(x− 8):

( 9
x+ 4 + 7

x+ 9

)
· (x+ 4)(x+ 9)(x− 8)

1
( 9
x+ 9 + 2

x− 8

)
· (x+ 4)(x+ 9)(x− 8)

1

= 9(x+ 9)(x− 8) + 7(x+ 4)(x− 8)
9(x+ 4)(x− 8) + 2(x+ 4)(x+ 9)

Then simplify the numerator and denominator:
9(x+ 9)(x− 8) + 7(x+ 4)(x− 8)
9(x+ 4)(x− 8) + 2(x+ 4)(x+ 9) = (9(x+ 9) + 7(x+ 4))(x− 8)

(9(x− 8) + 2(x+ 9))(x+ 4)

= (16x+ 109)(x− 8)
(11x− 54)(x+ 4)
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Finally, cancel all common factors, if any, in the numerator and denominator. In this
case, there are no common factors.
Restricted values are −4, −9, 8, and 54/11.

15. First multiply the main numerator and denominator by the least common de-
nominator (LCD) of the two small fractions, which is (x− 7)(x− 4)(x+ 2):

( 5
x− 7 −

4
x− 4

)
· (x− 7)(x− 4)(x+ 2)

1
( 10
x− 4 −

5
x+ 2

)
· (x− 7)(x− 4)(x+ 2)

1

= 5(x− 4)(x+ 2)− 4(x− 7)(x+ 2)
10(x− 7)(x+ 2)− 5(x− 7)(x− 4)

Then simplify the numerator and denominator:
5(x− 4)(x+ 2)− 4(x− 7)(x+ 2)
10(x− 7)(x+ 2)− 5(x− 7)(x− 4) = (5(x− 4)− 4(x− 7))(x+ 2)

(10(x+ 2)− 5(x− 4))(x− 7)

= (x+ 8)(x+ 2)
(5x+ 40)(x− 7)

Finally, cancel all common factors, if any, in the numerator and denominator:
(x+ 8)(x+ 2)

(5x+ 40)(x− 7) = x+ 2
5(x− 7)

Restricted values are 7, 4, −2, and −8.

17. First multiply the main numerator and denominator by the least common de-
nominator (LCD) of the two small fractions, which is (x− 3)(x− 8):

( 6
x− 3 + 5

x− 8

)
· (x− 3)(x− 8)

1
( 9
x− 3 + 7

x− 8

)
· (x− 3)(x− 8)

1

= 6(x− 8) + 5(x− 3)
9(x− 8) + 7(x− 3)

Then simplify the numerator and denominator:
6(x− 8) + 5(x− 3)
9(x− 8) + 7(x− 3) = 11x− 63

16x− 93

Finally, cancel all common factors, if any, in the numerator and denominator. In this
case, there are no common factors.
Restricted values are 3, 8, and 93/16.
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19. First multiply the main numerator and denominator by the least common de-
nominator (LCD) of the two small fractions, which is (x− 2)(x− 7):

( 4
x− 2 + 7

x− 7

)
· (x− 2)(x− 7)

1
( 5
x− 2 + 2

x− 7

)
· (x− 2)(x− 7)

1

= 4(x− 7) + 7(x− 2)
5(x− 7) + 2(x− 2)

Then simplify the numerator and denominator:
4(x− 7) + 7(x− 2)
5(x− 7) + 2(x− 2) = 11x− 42

7x− 39

Finally, cancel all common factors, if any, in the numerator and denominator. In this
case, there are no common factors.
Restricted values are 2, 7, and 39/7.

21. First multiply the main numerator and denominator by the least common de-
nominator (LCD) of the two small fractions, which is x3:

(
5 + 4
x

)
· x

3

1
(25
x
− 16
x3

)
· x

3

1

= 5x3 + 4x2

25x2 − 16

Then factor the numerator and denominator:
x2(5x+ 4)

(5x+ 4)(5x− 4)

Finally, cancel all common factors in the numerator and denominator:
x2

5x− 4
Restricted values are 0, −4/5, and 4/5.

23. First multiply the main numerator and denominator by the least common de-
nominator (LCD) of the two small fractions, which is (x− 5)(x+ 4):

( 9
x− 5 + 8

x+ 4

)
· (x− 5)(x+ 4)

1
( 5
x− 5 −

4
x+ 4

)
· (x− 5)(x+ 4)

1

= 9(x+ 4) + 8(x− 5)
5(x+ 4)− 4(x− 5)

Then simplify the numerator and denominator:
9(x+ 4) + 8(x− 5)
5(x+ 4)− 4(x− 5) = 17x− 4

x+ 40
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Finally, cancel all common factors, if any, in the numerator and denominator. In this
case, there are no common factors.
Restricted values are 5, −4, and −40.

25. First multiply the main numerator and denominator by the least common de-
nominator (LCD) of the two small fractions, which is (x+ 8)(x− 2)(x+ 2):

( 6
x+ 8 + 5

x− 2

)
· (x+ 8)(x− 2)(x+ 2)

1
( 5
x− 2 −

2
x+ 2

)
· (x+ 8)(x− 2)(x+ 2)

1

= 6(x− 2)(x+ 2) + 5(x+ 8)(x+ 2)
5(x+ 8)(x+ 2)− 2(x+ 8)(x− 2)

Then simplify the numerator and denominator:
6(x− 2)(x+ 2) + 5(x+ 8)(x+ 2)
5(x+ 8)(x+ 2)− 2(x+ 8)(x− 2) = (6(x− 2) + 5(x+ 8))(x+ 2)

(5(x+ 2)− 2(x− 2))(x+ 8)

= (11x+ 28)(x+ 2)
(3x+ 14)(x+ 8)

Finally, cancel all common factors, if any, in the numerator and denominator. In this
case, there are no common factors.
Restricted values are −8, 2, −2, and −14/3.

27. First multiply the main numerator and denominator by the least common de-
nominator (LCD) of the two small fractions, which is (x+ 7)(x+ 4):

( 7
x+ 7 −

5
x+ 4

)
· (x+ 7)(x+ 4)

1
( 8
x+ 7 −

3
x+ 4

)
· (x+ 7)(x+ 4)

1

= 7(x+ 4)− 5(x+ 7)
8(x+ 4)− 3(x+ 7)

Then simplify the numerator and denominator:
7(x+ 4)− 5(x+ 7)
8(x+ 4)− 3(x+ 7) = 2x− 7

5x+ 11

Finally, cancel all common factors, if any, in the numerator and denominator. In this
case, there are no common factors.
Restricted values are −7, −4, and −11/5.
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29. First multiply the main numerator and denominator by the least common de-
nominator (LCD) of the two small fractions, which is x3:

(64
x
− 25
x3

)
· x

3

1
(

8− 5
x

)
· x

3

1

= 64x2 − 25
8x3 − 5x2

Then factor the numerator and denominator:
(8x− 5)(8x+ 5)
x2(8x− 5)

Finally, cancel all common factors in the numerator and denominator:
8x+ 5
x2

Restricted values are 0 and 5/8.

31. First multiply the main numerator and denominator by the least common de-
nominator (LCD) of the two small fractions, which is (x− 6)(x+ 9):

( 2
x− 6 −

4
x+ 9

)
· (x− 6)(x+ 9)

1
( 3
x− 6 −

6
x+ 9

)
· (x− 6)(x+ 9)

1

= 2(x+ 9)− 4(x− 6)
3(x+ 9)− 6(x− 6)

Then simplify the numerator and denominator:
2(x+ 9)− 4(x− 6)
3(x+ 9)− 6(x− 6) = −2x+ 42

−3x+ 63

Finally, cancel all common factors, if any, in the numerator and denominator:
−2x+ 42
−3x+ 63 = 2

3
Restricted values are 6, −9, and 21.
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33. First multiply the main numerator and denominator by the least common de-
nominator (LCD) of the two small fractions, which is x4:

( 9
x2 −

64
x4

)
· x

4

1
(

3− 8
x

)
· x

4

1

= 9x2 − 64
3x4 − 8x3

Then factor the numerator and denominator:
(3x− 8)(3x+ 8)
x3(3x− 8)

Finally, cancel all common factors in the numerator and denominator:
3x+ 8
x3

Restricted values are 0 and 8/3.

35. First multiply the main numerator and denominator by the least common de-
nominator (LCD) of the two small fractions, which is (x− 4)(x− 7)(x+ 2):

( 4
x− 4 −

8
x− 7

)
· (x− 4)(x− 7)(x+ 2)

1
( 4
x− 7 + 2

x+ 2

)
· (x− 4)(x− 7)(x+ 2)

1

= 4(x− 7)(x+ 2)− 8(x− 4)(x+ 2)
4(x− 4)(x+ 2) + 2(x− 4)(x− 7)

Then simplify the numerator and denominator:
4(x− 7)(x+ 2)− 8(x− 4)(x+ 2)
4(x− 4)(x+ 2) + 2(x− 4)(x− 7) = (4(x− 7)− 8(x− 4))(x+ 2)

(4(x+ 2) + 2(x− 7))(x− 4)

= (−4x+ 4)(x+ 2)
(6x− 6)(x− 4)

Finally, cancel all common factors, if any, in the numerator and denominator:
(−4x+ 4)(x+ 2)
(6x− 6)(x− 4) = −2(x+ 2)

3(x− 4)

Restricted values are 4, 7, −2, and 1.
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37. First factor all of the denominators:
3

(x− 1)(x+ 9) + 3
(x+ 9)(x− 9)

9
(x+ 9)(x− 9) + 9

(x− 9)(x+ 1)

Then simplify the main numerator and denominator:
3(x− 9)

(x− 1)(x+ 9)(x− 9) + 3(x− 1)
(x− 1)(x+ 9)(x− 9)

9(x+ 1)
(x+ 9)(x− 9)(x+ 1) + 9(x+ 9)

(x+ 9)(x− 9)(x+ 1)

=

3(x− 9) + 3(x− 1)
(x− 1)(x+ 9)(x− 9)
9(x+ 1) + 9(x+ 9)

(x+ 9)(x− 9)(x+ 1)

=

6x− 30
(x− 1)(x+ 9)(x− 9)

18x+ 90
(x+ 9)(x− 9)(x+ 1)

Then divide by rewriting as a multiplication problem, and cancel common factors:
6x− 30

(x− 1)(x+ 9)(x− 9) ·
(x+ 9)(x− 9)(x+ 1)

18x+ 90

= (6x− 30)(x+ 1)
(18x+ 90)(x− 1)

Finally, factor the numerator and denominator further, if possible, and cancel all com-
mon factors again:

6(x− 5)(x+ 1)
18(x+ 5)(x− 1)

= (x− 5)(x+ 1)
3(x+ 5)(x− 1)

Restricted values are 1, −9, 9, −1, and −5.
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39. First factor all of the denominators:
2

(x+ 1)(x+ 7) + 5
(x+ 7)(x+ 6)

7
(x+ 7)(x+ 6) + 6

(x+ 6)(x− 3)

Then simplify the main numerator and denominator:
2(x+ 6)

(x+ 1)(x+ 7)(x+ 6) + 5(x+ 1)
(x+ 1)(x+ 7)(x+ 6)

7(x− 3)
(x+ 7)(x+ 6)(x− 3) + 6(x+ 7)

(x+ 7)(x+ 6)(x− 3)

=

2(x+ 6) + 5(x+ 1)
(x+ 1)(x+ 7)(x+ 6)
7(x− 3) + 6(x+ 7)

(x+ 7)(x+ 6)(x− 3)

=

7x+ 17
(x+ 1)(x+ 7)(x+ 6)

13x+ 21
(x+ 7)(x+ 6)(x− 3)

Then divide by rewriting as a multiplication problem, and cancel common factors:
7x+ 17

(x+ 1)(x+ 7)(x+ 6) ·
(x+ 7)(x+ 6)(x− 3)

13x+ 21

= (7x+ 17)(x− 3)
(13x+ 21)(x+ 1)

Finally, factor the numerator and denominator further, if possible, and cancel all com-
mon factors again, if any. In this case, the expression does not simplify any further.
Restricted values are −1, −7, −6, 3, and −21/13.
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41. First factor all of the denominators:
6

(x+ 3)(x+ 8) −
6

(x+ 8)(x+ 5)
9

(x+ 8)(x+ 5) −
9

(x+ 5)(x− 8)

Then simplify the main numerator and denominator:
6(x+ 5)

(x+ 3)(x+ 8)(x+ 5) −
6(x+ 3)

(x+ 3)(x+ 8)(x+ 5)
9(x− 8)

(x+ 8)(x+ 5)(x− 8) −
9(x+ 8)

(x+ 8)(x+ 5)(x− 8)

=

6(x+ 5)− 6(x+ 3)
(x+ 3)(x+ 8)(x+ 5)
9(x− 8)− 9(x+ 8)

(x+ 8)(x+ 5)(x− 8)

=

12
(x+ 3)(x+ 8)(x+ 5)

−144
(x+ 8)(x+ 5)(x− 8)

Then divide by rewriting as a multiplication problem, and cancel common factors:
12

(x+ 3)(x+ 8)(x+ 5) ·
(x+ 8)(x+ 5)(x− 8)

−144

= −1(x− 8)
12(x+ 3)

Restricted values are −3, −8, −5, and 8.
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43. First factor all of the denominators:
7

(x− 1)(x− 5) + 7
(x− 5)(x+ 7)

8
(x− 5)(x+ 7) + 8

(x+ 7)(x+ 1)

Then simplify the main numerator and denominator:
7(x+ 7)

(x− 1)(x− 5)(x+ 7) + 7(x− 1)
(x− 1)(x− 5)(x+ 7)

8(x+ 1)
(x− 5)(x+ 7)(x+ 1) + 8(x− 5)

(x− 5)(x+ 7)(x+ 1)

=

7(x+ 7) + 7(x− 1)
(x− 1)(x− 5)(x+ 7)
8(x+ 1) + 8(x− 5)

(x− 5)(x+ 7)(x+ 1)

=

14x+ 42
(x− 1)(x− 5)(x+ 7)

16x− 32
(x− 5)(x+ 7)(x+ 1)

Then divide by rewriting as a multiplication problem, and cancel common factors:
14x+ 42

(x− 1)(x− 5)(x+ 7) ·
(x− 5)(x+ 7)(x+ 1)

16x− 32

= (14x+ 42)(x+ 1)
(16x− 32)(x− 1)

Finally, factor the numerator and denominator further, if possible, and cancel all com-
mon factors again:

14(x+ 3)(x+ 1)
16(x− 2)(x− 1)

= 7(x+ 3)(x+ 1)
8(x− 2)(x− 1)

Restricted values are 1, 5, −7, −1, and 2.
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45. First factor all of the denominators:
4

(x+ 7)(x− 1) −
4

(x− 1)(x+ 3)
4

(x− 1)(x+ 3) −
4

(x+ 3)(x+ 2)

Then simplify the main numerator and denominator:
4(x+ 3)

(x+ 7)(x− 1)(x+ 3) −
4(x+ 7)

(x+ 7)(x− 1)(x+ 3)
4(x+ 2)

(x− 1)(x+ 3)(x+ 2) −
4(x− 1)

(x− 1)(x+ 3)(x+ 2)

=

4(x+ 3)− 4(x+ 7)
(x+ 7)(x− 1)(x+ 3)
4(x+ 2)− 4(x− 1)

(x− 1)(x+ 3)(x+ 2)

=

−16
(x+ 7)(x− 1)(x+ 3)

12
(x− 1)(x+ 3)(x+ 2)

Then divide by rewriting as a multiplication problem, and cancel common factors:
−16

(x+ 7)(x− 1)(x+ 3) ·
(x− 1)(x+ 3)(x+ 2)

12

= −4(x+ 2)
3(x+ 7)

Restricted values are −7, 1, −3, and −2.

47.

f(x)− f(3)
x− 3 =

2
x −

2
3

x− 3 =
2
x −

2
3

x− 3 ·
3x
3x = 6− 2x

3x(x− 3) = −2(x− 3)
3x(x− 3) = − 2

3x

Restricted values are 0 and 3.

49.

f(x)− f(1)
x− 1 =

3
x2 − 3
x− 1 =

3
x2 − 3
x− 1 ·

x2

x2 = 3− 3x2

x2(x− 1) = −3(x− 1)(x+ 1)
x2(x− 1) = −3(x+ 1)

x2

Restricted values are 0 and 1.
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51.

f(x+ h)− f(x)
h

=
7
x+h −

7
x

h
=

7
x+h −

7
x

h
·x(x+ h)
x(x+ h) = 7x− 7(x+ h)

hx(x+ h) = −7h
hx(x+ h) = − 7

h(x+ h)

Restricted values are x "= 0, x "= −h, and h "= 0.

53.

f(1/x) =
1
x + 1
3− 1

x

=
1
x + 1
3− 1

x

· x
x

= 1 + x
3x− 1 = x+ 1

3x− 1

Restricted values are 0 and 1/3.

55.

f(5/x) =
5
x + 1

2− 5
( 5
x

) =
5
x + 1

2− 5
( 5
x

) · x
x

= 5 + x
2x− 25 = x+ 5

2x− 25

Restricted values are 0 and 25/2.

57.

f(f(x)) = f
(
x

x+ 2

)
=

x
x+2
x
x+2 + 2 =

x
x+2
x
x+2 + 2 ·

x+ 2
x+ 2 = x

x+ 2(x+ 2) = x

3x+ 4

Restricted values are −2 and −4/3.
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7.7 Exercises

For each of the rational functions given
in Exercises 1-6, perform each of the
following tasks.

i. Set up a coordinate system on graph
paper. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Plot the zero of the rational function
on your coordinate system and label
it with its coordinates. Plot the verti-
cal and horizontal asymptotes on your
coordinate system and label them with
their equations. Use this informa-
tion (and your graphing calculator)
to draw the graph of f .

iii. Plot the horizontal line y = k on your
coordinate system and label this line
with its equation.

iv. Use your calculator’s intersect util-
ity to help determine the solution of
f(x) = k. Label this point on your
graph with its coordinates.

v. Solve the equation f(x) = k alge-
braically, placing the work for this
solution on your graph paper next to
your coordinate system containing the
graphical solution. Do the answers
agree?

1. f(x) = x− 1
x+ 2 ; k = 3

2. f(x) = x+ 1
x− 2 ; k = −3

3. f(x) = x+ 1
3− x ; k = 2

4. f(x) = x+ 3
2− x ; k = 2

5. f(x) = 2x+ 3
x− 1 ; k = −3

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

6. f(x) = 5− 2x
x− 1 ; k = 3

In Exercises 7-14, use a strictly alge-
braic technique to solve the equation f(x) =
k for the given function and value of k.
You are encouraged to check your result
with your calculator.

7. f(x) = 16x− 9
2x− 1 ; k = 8

8. f(x) = 10x− 3
7x+ 7 ; k = 1

9. f(x) = 5x+ 8
4x+ 1 ; k = −11

10. f(x) = −6x− 11
7x− 2 ; k = −6

11. f(x) = − 35x
7x+ 12 ; k = −5

12. f(x) = −66x− 5
6x− 10 ; k = −11

13. f(x) = 8x+ 2
x− 11 ; k = 11

14. f(x) = 36x− 7
3x− 4 ; k = 12

In Exercises 15-20, use a strictly alge-
braic technique to solve the given equa-
tion. You are encouraged to check your
result with your calculator.

15. x7 + 8
9 = −8

7

16. x3 + 9
2 = −3

8
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17. −57
x

= 27 − 40
x2

18. −117
x

= 54 + 54
x2

19. 7
x

= 4− 3
x2

20. 3
x2 = 5− 3

x

For each of the rational functions given
in Exercises 21-26, perform each of the
following tasks.

i. Set up a coordinate system on graph
paper. Label and scale each axis. Re-
member to draw all lines with a ruler.

ii. Plot the zero of the rational function
on your coordinate system and label
it with its coordinates. You may use
your calculator’s zero utility to find
this, if you wish.

iii. Plot the vertical and horizontal as-
ymptotes on your coordinate system
and label them with their equations.
Use the asymptote and zero informa-
tion (and your graphing calculator)
to draw the graph of f .

iv. Plot the horizontal line y = k on your
coordinate system and label this line
with its equation.

v. Use your calculator’s intersect util-
ity to help determine the solution of
f(x) = k. Label this point on your
graph with its coordinates.

vi. Solve the equation f(x) = k alge-
braically, placing the work for this
soluton on your graph paper next to
your coordinate system containing the
graphical solution. Do the answers
agree?

21. f(x) = 1
x

+ 1
x+ 5 , k = 9/14

22. f(x) = 1
x

+ 1
x− 2 , k = 8/15

23. f(x) = 1
x− 1 −

1
x+ 1 , k = 1/4

24. f(x) = 1
x− 1 −

1
x+ 2 , k = 1/6

25. f(x) = 1
x− 2 + 1

x+ 2 , k = 4

26. f(x) = 1
x− 3 + 1

x+ 2 , k = 5

In Exercises 27-34, use a strictly alge-
braic technique to solve the given equa-
tion. You are encouraged to check your
result with your calculator.

27. 2
x+ 1 + 4

x+ 2 = −3

28. 2
x− 5 −

7
x− 7 = 9

29. 3
x+ 9 −

2
x+ 7 = −3

30. 3
x+ 9 −

6
x+ 7 = 9

31. 2
x+ 9 + 2

x+ 6 = −1

32. 5
x− 6 −

8
x− 7 = −1

33. 3
x+ 3 + 6

x+ 2 = −2

34. 2
x− 4 −

2
x− 1 = 1
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For each of the equations in Exercises 35-
40, perform each of the following tasks.

i. Follow the lead of Example 10 in the
text. Make one side of the equation
equal to zero. Load the nonzero side
into your calculator and draw its graph.

ii. Determine the vertical asymptotes of
by analyzing the equation and the re-
sulting graph on your calculator. Use
the TABLE feature of your calculator
to determine any horizontal asymp-
tote behavior.

iii. Use the zero finding utility in the
CALC menu to determine the zero of
the nonzero side of the resulting equa-
tion.

iv. Set up a coordinate system on graph
paper. Label and scale each axis. Re-
member to draw all lines with a ruler.
Draw the graph of the nonzero side
of the equation. Draw the vertical
and horizontal asymptotes and label
them with their equations. Plot the
x-intercept and label it with its coor-
dinates.

v. Use an algebraic technique to deter-
mine the solution of the equation and
compare it with the solution found by
the graphical analysis above.

35. x

x+ 1 + 8
x2 − 2x− 3 = 2

x− 3

36. x

x+ 4 −
2
x+ 1 = 12

x2 + 5x+ 4

37. x

x+ 1 −
4

2x+ 1 = 2x− 1
2x2 + 3x+ 2

38. 2x
x− 4 −

1
x+ 1 = 4x+ 24

x2 − 3x− 4

39. x

x− 2 + 3
x+ 2 = 8

4− x2

40. x

x− 1 −
4
x+ 1 = x− 6

1− x2

In Exercises 41-68, use a strictly alge-
braic technique to solve the given equa-
tion. You are encouraged to check your
result with your calculator.

41. x

3x− 9 −
9
x

= 1
x− 3

42. 5x
x+ 2 + 5

x− 5 = x+ 6
x2 − 3x− 10

43. 3x
x+ 2 −

7
x

= − 1
2x+ 4

44. 4x
x+ 6 −

4
x+ 4 = x− 4

x2 + 10x+ 24

45. x

x− 5 + 9
4− x = x+ 5

x2 − 9x+ 20

46. 6x
x− 5 −

2
x− 3 = x− 8

x2 − 8x+ 15

47. 2x
x− 4 + 5

2− x = x+ 8
x2 − 6x+ 8

48. x

x− 7 −
8

5− x = x+ 7
x2 − 12x+ 35

49. − x

2x+ 2 −
6
x

= − 2
x+ 1

50. 7x
x+ 3 −

4
2− x = x+ 8

x2 + x− 6

51. 2x
x+ 5 −

2
6− x = x− 2

x2 − x− 30

52. 4x
x+ 1 + 6

x+ 3 = x− 9
x2 + 4x+ 3

53. x

x+ 7 −
2
x+ 5 = x+ 1

x2 + 12x+ 35

54. 5x
6x+ 4 + 6

x
= 1

3x+ 2

55. 2x
3x+ 9 −

4
x

= − 2
x+ 3
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56. 7x
x+ 1 −

4
x+ 2 = x+ 6

x2 + 3x+ 2

57. x

2x− 8 + 8
x

= 2
x− 4

58. 3x
x− 6 + 6

x− 6 = x+ 2
x2 − 12x+ 36

59. x

x+ 2 + 2
x

= − 5
2x+ 4

60. 4x
x− 2 + 2

2− x = x+ 4
x2 − 4x+ 4

61. − 2x
3x− 9 −

3
x

= − 2
x− 3

62. 2x
x+ 1 −

2
x

= 1
2x+ 2

63. x

x+ 1 + 5
x

= 1
4x+ 4

64. 2x
x− 4 −

8
x− 7 = x+ 2

x2 − 11x+ 28

65. − 9x
8x− 2 + 2

x
= − 2

4x− 1

66. 2x
x− 3 −

4
4− x = x− 9

x2 − 7x+ 12

67. 4x
x+ 6 −

5
7 − x = x− 5

x2 − x− 42

68. x

x− 1 −
4
x

= 1
5x− 5
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7.7 Solutions

1. Load f(x) = (x − 1)/(x + 2) into Y1 and y = 3 in Y2, as shown in (a). Use the
intersect utility from the CALC menu to find the point of intersection, as shown in
(b). Note: We had some difficulty with this at first, because the calculator warned
that it could not find a point of intersection. We tried a second time, but this time we
made sure our “guess” was near the point of intersection (and certainly to the left of
the vertical asymptote). This approach provided the solution in (b).

(a) (b)

Note that x = 1 makes the numerator of f(x) = (x−1)/(x+2) zero without making the
denominator zero. Hence, x = 1 is a zero of f and (1, 0) is an x-intercept of the graph
of f . Secondly, the function f is reduced and x = −2 makes the denominator zero.
Thus, x = −2 is a vertical asymptote. Tabular results indicate a horizontal asymptote
y = 1.

(c) (d)

This is enough information to construct the graphs of f(x) = (x−1)/(x+ 2) and y = 3
that follows. Note that we drop a dashed vertical line from the point of intersection to
the x-axis where we label the x-value.



Chapter 7 Rational Functions

Version: Fall 2007

x
10

y
10

x=−2

y=1
(1,0)(1,0)

y=3(−3.5,3)(−3.5,3)

−3.5−3.5

To solve the equation algebraically, first multiply both sides of the equation by x+ 2.
x− 1
x+ 2 = 3

(x+ 2)
[
x− 1
x+ 2

]
= 3(x+ 2)

x− 1 = 3(x+ 2)

Expand, then solve for x.
x− 1 = 3x+ 6
x− 3x = 6 + 1
−2x = 7
x = −7/2

Note how the solution x = −7/2 agrees with the graphical solution found above.

3. Load f(x) = (x + 1)/(3 − x) into Y1 and y = 2 in Y2, as shown in (a). Use the
intersect utility from the CALC menu to find the point of intersection, as shown in
(b). Note: We had some difficulty with this at first, because the calculator warned
that it could not find a point of intersection. We tried a second time, but this time we
made sure our “guess” was near the point of intersection (and certainly to the left of
the vertical asymptote). This approach provided the solution in (b).

(a) (b)

Note that x = −1 makes the numerator of f(x) = (x+ 1)/(3−x) zero without making
the denominator zero. Hence, x = −1 is a zero of f and (−1, 0) is an x-intercept of the
graph of f . Secondly, the function f is reduced and x = 3 makes the denominator zero.



Section 7.7 Solving Rational Equations

Version: Fall 2007

Thus, x = 3 is a vertical asymptote. Tabular results indicate a horizontal asymptote
y = −1.

(c) (d)

This is enough information to construct the graphs of f(x) = (x+ 1)/(3−x) and y = 2
that follows. Note that we drop a dashed vertical line from the point of intersection to
the x-axis where we label the x-value.

x
10

y
10

x=3

y=−1

(−1,0)(−1,0)
y=2 (1.6667,2)(1.6667,2)

1.6667

To solve the equation algebraically, first multiply both sides of the equation by 3− x.
x+ 1
3− x = 2

(3− x)
[
x+ 1
3− x

]
= 2(3− x)

x+ 1 = 2(3− x)

Expand, then solve for x.

x+ 1 = 6− 2x
x+ 2x = 6− 1

3x = 5
x = 5/3

Note how the solution x = 5/3 agrees with the graphical solution found above.
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5. Load f(x) = (2x + 3)/(x − 1) into Y1 and y = −3 in Y2, as shown in (a). Use
the intersect utility from the CALC menu to find the point of intersection, as shown
in (b). Note: We had some difficulty with this at first, because the calculator warned
that it could not find a point of intersection. We tried a second time, but this time we
made sure our “guess” was near the point of intersection (and certainly to the left of
the vertical asymptote). This approach provided the solution in (b).

(a) (b)

Note that x = −3/2 makes the numerator of f(x) = (2x + 3)/(x − 1) zero without
making the denominator zero. Hence, x = −3/2 is a zero of f and (−3/2, 0) is an
x-intercept of the graph of f . Secondly, the function f is reduced and x = 1 makes
the denominator zero. Thus, x = 1 is a vertical asymptote. Tabular results indicate a
horizontal asymptote y = 2.

(c) (d)

This is enough information to construct the graphs of f(x) = (2x + 3)/(x − 1) and
y = −3 that follows. Note that we drop a dashed vertical line from the point of
intersection to the x-axis where we label the x-value.

x
10

y
10

x=1

y=2
(−3/2,0)(−3/2,0)

y=−3 (0,−3)(0,−3)

0
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To solve the equation algebraically, first multiply both sides of the equation by x− 1.
2x+ 3
x− 1 = −3

(x− 1)
[2x+ 3
x− 1

]
= −3(x− 1)

2x+ 3 = −3(x− 1)

Expand, then solve for x.

2x+ 3 = −3x+ 3
2x+ 3x = 3− 3

5x = 0
x = 0

Note how the solution x = 0 agrees with the graphical solution found above.

7. To solve 16x−9
2x−1 = 8, first clear fractions by multiplying both sides of the equation

by the LCD 2x− 1 to obtain

16x− 9 = 16x− 8

Then solve this linear equation. In this case, there are no solutions.

9. To solve 5x+8
4x+1 = −11, first clear fractions by multiplying both sides of the equation

by the LCD 4x+ 1 to obtain

5x+ 8 = −44x− 11

Then solve this linear equation to obtain the solution −19
49 . Since this value does not

cause division by zero in the original equation, it is a valid solution.

11. To solve − 35x
7x+12 = −5, first clear fractions by multiplying both sides of the

equation by the LCD 7x+ 12 to obtain

−35x = −35x− 60

Then solve this linear equation. In this case, there are no solutions.

13. To solve 8x+2
x−11 = 11, first clear fractions by multiplying both sides of the equation

by the LCD x− 11 to obtain

8x+ 2 = 11x− 121

Then solve this linear equation to obtain the solution 41. Since this value does not
cause division by zero in the original equation, it is a valid solution.
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15. The least common denominator (LCD) is 63, so first clear fractions by multiplying
both sides of the equation by the LCD to obtain

9x+ 56 = −72

Then solve this linear equation to obtain the solution −128
9 . Since this value does not

cause division by zero in the original equation, it is a valid solution.

17. The least common denominator (LCD) is x2, so first clear fractions by multiplying
both sides of the equation by the LCD to obtain the quadratic equation

−57x = 27x2 − 40

Then solve this quadratic equation either by factoring or by using the quadratic formula
to obtain the solutions −8

3 and 5
9 . Since each of these values does not cause division by

zero in the original equation, they are both valid solutions.

19. The least common denominator (LCD) is x2, so first clear fractions by multiplying
both sides of the equation by the LCD to obtain the quadratic equation

7x = 4x2 − 3

Then solve this quadratic equation by using the quadratic formula to obtain the solu-
tions 7+

√
97

8 and 7−
√

97
8 . Since each of these values does not cause division by zero in

the original equation, they are both valid solutions.

21. Load f(x) = 1/x + 1/(x + 5) into Y1 and y = 9/14 in Y2, as shown in (a). Use
the intersect utility from the CALC menu to find the points of intersection, as shown
in (b) and (c).

(a) (b) (c)

We can combine terms of f .

f(x) = 1
x

+ 1
x+ 5 = x+ 5

x(x+ 5) + x

x(x+ 5) = 2x+ 5
x(x+ 5)

Note that x = −5/2 makes the numerator of f(x) = (2x+ 5)/(x(x+ 5)) zero without
making the denominator zero. Hence, x = −5/2 is a zero of f and (−5/2, 0) is an
x-intercept of the graph of f . Secondly, the function f is reduced and x = −5 and
x = 0 make the denominator zero. Thus, x = −5 and x = 0 are vertical asymptotes.
Tabular results indicate a horizontal asymptote y = 0.
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(d) (e)

This is enough information to construct the graphs of f(x) = (2x+ 5)/(x(x+ 5)) and
y = 9/14 that follows. The x-value of each point of intersection is a solution of the
equation f(x) = 9/14. Note: In this instance, we avoided the usual dashed vertical
lines because we thought the final picture would be too crowded.

x
10

y
10

x=0x=−5

y=0
(−2.5,0)(−2.5,0)

y=9/14(−3.8889,9/14)(−3.8889,9/14) (2,9/14)(2,9/14)

To solve the equation algebraically, first multiply both sides of the equation by 14x(x+
5).

2x+ 5
x(x+ 5) = 9

14

14x(x+ 5)
[ 2x+ 5
x(x+ 5)

]
= 9

1414x(x+ 5)

14(2x+ 5) = 9x(x+ 5)

Expand, make one side zero.

28x+ 70 = 9x2 + 45x
0 = 9x2 + 17x− 70

Let’s use the quadratic formula.

x = −17 ±
√

172 − 4(9)(−70)
2(9) = −17 ±

√
2809

18 = −17 ± 53
18

This gives us two answers,

x = −17 − 53
18 = −35

9 and x = −17 + 53
18 = 2.
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Note how these solutions agree with the graphical solutions found above.

23. Load f(x) = 1/(x−1)−1/(x+1) into Y1 and y = 1/4 in Y2, as shown in (a). Use
the intersect utility from the CALC menu to find the points of intersection, as shown
in (b) and (c).

(a) (b) (c)

We can combine terms of f .

f(x) = 1
x− 1 −

1
x+ 1 = x+ 1

(x− 1)(x+ 1) −
x− 1

(x− 1)(x+ 1) = 2
(x− 1)(x+ 1)

There is no value of x that will make the numerator zero. Hence, the graph of f has
no x-intercept. Secondly, the function f is reduced and x = −1 and x = 1 make the
denominator zero. Thus, x = −1 and x = 1 are vertical asymptotes. Tabular results
indicate a horizontal asymptote y = 0.

(d) (e)

This is enough information to construct the graphs of f(x) = 2/((x − 1)(x + 1)) and
y = 1/4 that follows. The x-value of each point of intersection is a solution of the
equation f(x) = 1/4. Note: In this instance, we avoided the usual dashed vertical lines
because we thought the final picture would be too crowded.

x
10

y
10

x=−1 x=1

y=0 y=1/4(−3,1/4)(−3,1/4) (3,1/4)(3,1/4)
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To solve the equation algebraically, first multiply both sides of the equation by 4(x −
1)(x+ 1).

2
(x− 1)(x+ 1) = 1

4

4(x− 1)(x+ 1)
[ 2

(x− 1)(x+ 1)

]
= 1

44(x− 1)(x+ 1)

8 = x2 − 1
9 = x2

x = ±3

Note how these solutions agree with the graphical solutions found above.

25. Load f(x) = 1/(x− 2) + 1/(x+ 2) into Y1 and y = 4 in Y2, as shown in (a). Use
the intersect utility from the CALC menu to find the points of intersection, as shown
in (b) and (c).

(a) (b) (c)

We can combine terms of f .

f(x) = 1
x− 2 + 1

x+ 2 = x+ 2
(x− 2)(x+ 2) + x− 2

(x− 2)(x+ 2) = 2x
(x− 2)(x+ 2)

Note that x = 0 makes the numerator equal to zero without making the denominator
zero. Hence, x = 0 is a zero of f and (0, 0) is an x-intercept of the graph of f . Secondly,
the function f is reduced and x = −2 and x = 2 make the denominator zero. Thus,
x = −2 and x = 2 are vertical asymptotes. Tabular results indicate a horizontal
asymptote y = 0.

(d) (e)

This is enough information to construct the graphs of f(x) = 2x/((x− 2)(x+ 2)) and
y = 4 that follows. The x-value of each point of intersection is a solution of the equation
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f(x) = 4. Note: In this instance, we avoided the usual dashed vertical lines because
we thought the final picture would be too crowded.

x
10

y
10

x=−2 x=2

y=0
(0,0)(0,0)

y=4(−1.765564,4)(−1.765564,4) (2.2655644,4)(2.2655644,4)

To solve the equation algebraically, first multiply both sides of the equation by (x −
2)(x+ 2).

2x
(x− 2)(x+ 2) = 4

(x− 2)(x+ 2)
[ 2x

(x− 2)(x+ 2)

]
= 4(x− 2)(x+ 2)

2x = 4(x2 − 4)
2x = 4x2 − 16

Make one side zero and divide both side of the resulting equation by 2.

0 = 4x2 − 2x− 16
0 = 2x2 − x− 8

Let’s use the quadratic formula.

x = −(−1)±
√

(−1)2 − 4(2)(−8)
2(2) = 1±

√
65

4

If you approximate these with your calculator, you will see that they match the ap-
proximations found graphically above.

(f) (g)

Note how these solutions agree with the graphical solutions found above.
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27. The least common denominator (LCD) is (x + 1)(x + 2), so first clear fractions
by multiplying both sides of the equation by the LCD to obtain the equation

2(x+ 2) + 4(x+ 1) = −3(x+ 1)(x+ 2)

Then simplify this quadratic equation to standard form:

−3x2 − 15x− 14 = 0

Finally, solve this quadratic equation by using the quadratic formula to obtain the
solutions −15+

√
57

6 and −15−
√

57
6 . Since each of these values does not cause division by

zero in the original equation, they are both valid solutions.

29. The least common denominator (LCD) is (x + 9)(x + 7), so first clear fractions
by multiplying both sides of the equation by the LCD to obtain the equation

3(x+ 7)− 2(x+ 9) = −3(x+ 9)(x+ 7)

Then simplify this quadratic equation to standard form:

−3x2 − 49x− 192 = 0

Finally, solve this quadratic equation by using the quadratic formula to obtain the
solutions −49+

√
97

6 and −49−
√

97
6 . Since each of these values does not cause division by

zero in the original equation, they are both valid solutions.

31. The least common denominator (LCD) is (x + 9)(x + 6), so first clear fractions
by multiplying both sides of the equation by the LCD to obtain the equation

2(x+ 6) + 2(x+ 9) = −1(x+ 9)(x+ 6)

Then simplify this quadratic equation to standard form:

−x2 − 19x− 84 = 0

Finally, solve this quadratic equation either by factoring or by using the quadratic
formula to obtain the solutions −7 and −12. Since each of these values does not cause
division by zero in the original equation, they are both valid solutions.

33. The least common denominator (LCD) is (x + 3)(x + 2), so first clear fractions
by multiplying both sides of the equation by the LCD to obtain the equation

3(x+ 2) + 6(x+ 3) = −2(x+ 3)(x+ 2)

Then simplify this quadratic equation to standard form:

−2x2 − 19x− 36 = 0

Finally, solve this quadratic equation by using the quadratic formula to obtain the
solutions −19+

√
73

4 and −19−
√

73
4 . Since each of these values does not cause division by

zero in the original equation, they are both valid solutions.
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35. Set
x

x+ 1 + 8
x2 − 2x− 3 −

2
x− 3 = 0,

and load the left-hand side into Y1, as shown in (a). Use the zero finding utility in the
CALC menu to determine the zero, as shown in (b).

(a) (b)

The equation would indicate vertical asymptotes at x = −1 and x = 3, but the image in
(b) would indicate that some sort of cancellation takes place, leaving only one vertical
asymptote at x = −1. The following tables indicate the presence of a horizontal
asymptote y = 1.

(c) (d)

Copy the image onto your homework as follows.

x
10

y
10

x=−1

y=1
(2,0)(2,0)

To solve the equation algebraically, multiply both sides of the equation by the common
denominator (x+ 1)(x− 3).
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x

x+ 1 + 8
x2 − 2x− 3 = 2

x− 3

(x+ 1)(x− 3)
[
x

x+ 1 + 8
(x+ 1)(x− 3)

]
=
[ 2
x− 3

]
(x+ 1)(x− 3)

x(x− 3) + 8 = 2(x+ 1)

Expand, then make one side zero and factor.

x2 − 3x+ 8 = 2x+ 2
x2 − 5x+ 6 = 0

(x− 3)(x− 2) = 0

This would indicate two solutions. However, note that x = 3 is an extraerroeous answer,
as it makes some rational expressions in the original equation undefined. Hence, x = 2
is the only solution. Note that this agrees with the graphical solution above.

37. Set
x

x+ 1 −
4

2x+ 1 −
2x− 1

2x2 + 3x+ 1 = 0

and load the left-hand side into Y1, as shown in (a). Use the zero finding utility in the
CALC menu to determine the zero, as shown in (b).

(a) (b)

The equation would indicate vertical asymptotes at x = −1 and x = −1/2, but the
image in (b) would indicate that some sort of cancellation takes place, leaving only one
vertical asymptote at x = −1. The following tables indicate the presence of a horizontal
asymptote y = 1.

(c) (d)



Chapter 7 Rational Functions

Version: Fall 2007

Copy the image onto your homework as follows.

x
10

y
10

x=−1

y=1
(3,0)(3,0)

To solve the equation algebraically, multiply both sides of the equation by the common
denominator (x+ 1)(2x+ 1).

x

x+ 1 −
4

2x+ 1 = 2x− 1
2x2 + 3x+ 1

(x+ 1)(2x+ 1)
[
x

x+ 1 −
4

2x+ 1

]
=
[ 2x− 1

(2x+ 1)(x+ 1)

]
(x+ 1)(2x+ 1)

x(2x+ 1)− 4(x+ 1) = 2x− 1
Expand, simplify, then make one side zero and factor.

2x2 + x− 4x− 4 = 2x− 1
2x2 − 3x− 4 = 2x− 1
2x2 − 5x− 3 = 0

(2x+ 1)(x− 3) = 0
This would indicate two solutions. However, note that x = −1/2 is an extraerroeous
answer, as it makes some rational expressions in the original equation undefined. Hence,
x = 3 is the only solution. Note that this agrees with the graphical solution above.

39. Set
x

x− 2 + 3
x+ 2 −

8
4− x2 = 0

and load the left-hand side into Y1, as shown in (a). Use the zero finding utility in the
CALC menu to determine the zero, as shown in (b).

(a) (b) (c)
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The equation and graph indicate vertical asymptotes at x = −2 and x = 2. The
following tables indicate the presence of a horizontal asymptote y = 1.

(d) (e)

Copy the image onto your homework as follows.

x
10

y
10

x=−2 x=2

y=1
((−5−

√
17)/2,0)((−5−
√

17)/2,0) ((−5+
√

17)/2,0)((−5+
√

17)/2,0)

First, make a sign change, negating two parts of the last rational expression on the
right-hand side of the equation.

x

x− 2 + 3
x+ 2 = −8

x2 − 4 (1)

To solve the equation algebraically, multiply both sides of the equation by the common
denominator (x+ 2)(x− 2).

x

x− 2 + 3
x+ 2 = −8

(x+ 2)(x− 2)

(x+ 2)(x− 2)
[
x

x− 2 + 3
x+ 2

]
=
[

−8
(x+ 2)(x− 2)

]
(x+ 2)(x− 2)

x(x+ 2) + 3(x− 2) = −8

Expand, simplify, then make one side zero and factor.

x2 + 2x+ 3x− 6 = −8
x2 + 5x− 6 = −8
x2 − 5x+ 2 = 0
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Let’s use the quadratic formula.

x = −5±
√

52 − 4(1)(2)
2(1) = −5±

√
17

2

To compare these exact solutions to the approximate solutions found by graphical
analysis above, use your calculator to find decimal approximations, as shown in (f) and
(g) below.

(f) (g)

41. The least common denominator (LCD) is x(3x− 9), so multiply both sides of the
equation by the LCD to obtain

x2 − 9(3x− 9) = 3x

Then solve this quadratic equation either by factoring or by using the quadratic formula
to obtain the solutions 27 and 3. However, 3 causes division by zero when substituted
for x in the original equation. Therefore, 27 is the only valid solution.

43. The least common denominator (LCD) is x(2x+ 4), so multiply both sides of the
equation by the LCD to obtain

6x2 − 7(2x+ 4) = −x

Then solve this quadratic equation either by factoring or by using the quadratic formula
to obtain the solutions 7

2 and −4
3 . Since each of these values does not cause division

by zero in the original equation, they are both valid solutions.

45. The least common denominator (LCD) is (x−5)(x−4). However, the denominator
of the second term is 4−x, so first rewrite the left side by negating the numerator and
denominator of the second term:

x

x− 5 −
9
x− 4 = x+ 5

x2 − 9x+ 20
Then clear fractions by multiplying both sides of the equation by the LCD to obtain
the equation

x(x− 4)− 9(x− 5) = x+ 5

Then simplify this quadratic equation to standard form:
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x2 − 14x+ 40 = 0

Finally, solve this quadratic equation either by factoring or by using the quadratic
formula to obtain the solutions 10 and 4. However, 4 causes division by zero when
substituted for x in the original equation. Therefore, 10 is the only valid solution.

47. The least common denominator (LCD) is (x−4)(x−2). However, the denominator
of the second term is 2−x, so first rewrite the left side by negating the numerator and
denominator of the second term:

2x
x− 4 −

5
x− 2 = x+ 8

x2 − 6x+ 8
Then clear fractions by multiplying both sides of the equation by the LCD to obtain
the equation

2x(x− 2)− 5(x− 4) = x+ 8

Then simplify this quadratic equation to standard form:

2x2 − 10x+ 12 = 0

Finally, solve this quadratic equation either by factoring or by using the quadratic
formula to obtain the solutions 3 and 2. However, 2 causes division by zero when
substituted for x in the original equation. Therefore, 3 is the only valid solution.

49. The least common denominator (LCD) is x(2x+ 2), so multiply both sides of the
equation by the LCD to obtain

−x2 − 6(2x+ 2) = −4x

Then solve this quadratic equation either by factoring or by using the quadratic formula
to obtain the solutions −6 and −2. Since each of these values does not cause division
by zero in the original equation, they are both valid solutions.

51. The least common denominator (LCD) is (x+5)(x−6). However, the denominator
of the second term is 6−x, so first rewrite the left side by negating the numerator and
denominator of the second term:

2x
x+ 5 + 2

x− 6 = x− 2
x2 − x− 30

Then clear fractions by multiplying both sides of the equation by the LCD to obtain
the equation

2x(x− 6) + 2(x+ 5) = x− 2

Then simplify this quadratic equation to standard form:

2x2 − 11x+ 12 = 0
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Finally, solve this quadratic equation either by factoring or by using the quadratic
formula to obtain the solutions 4 and 3

2 . Since each of these values does not cause
division by zero in the original equation, they are both valid solutions.

53. The least common denominator (LCD) is (x + 7)(x + 5), so first clear fractions
by multiplying both sides of the equation by the LCD to obtain the equation

x(x+ 5)− 2(x+ 7) = x+ 1

Then simplify this quadratic equation to standard form:

x2 + 2x− 15 = 0

Finally, solve this quadratic equation either by factoring or by using the quadratic
formula to obtain the solutions 3 and −5. However, −5 causes division by zero when
substituted for x in the original equation. Therefore, 3 is the only valid solution.

55. The least common denominator (LCD) is x(3x+ 9), so multiply both sides of the
equation by the LCD to obtain

2x2 − 4(3x+ 9) = −6x

Then solve this quadratic equation either by factoring or by using the quadratic formula
to obtain the solutions 6 and −3. However, −3 causes division by zero when substituted
for x in the original equation. Therefore, 6 is the only valid solution.

57. The least common denominator (LCD) is x(2x− 8), so multiply both sides of the
equation by the LCD to obtain

x2 + 8(2x− 8) = 4x

Then solve this quadratic equation either by factoring or by using the quadratic formula
to obtain the solutions 4 and −16. However, 4 causes division by zero when substituted
for x in the original equation. Therefore, −16 is the only valid solution.

59. The least common denominator (LCD) is x(2x+ 4), so multiply both sides of the
equation by the LCD to obtain

2x2 + 2(2x+ 4) = −5x

Then solve this quadratic equation by using the quadratic formula to obtain the solu-
tions

−9 +
√

17
4 and −9−

√
17

4
Since each of these values does not cause division by zero in the original equation, they
are both valid solutions.
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61. The least common denominator (LCD) is x(3x− 9), so multiply both sides of the
equation by the LCD to obtain

−2x2 − 3(3x− 9) = −6x

Then solve this quadratic equation either by factoring or by using the quadratic formula
to obtain the solutions −9

2 and 3. However, 3 causes division by zero when substituted
for x in the original equation. Therefore, −9

2 is the only valid solution.

63. The least common denominator (LCD) is x(4x+ 4), so multiply both sides of the
equation by the LCD to obtain

4x2 + 5(4x+ 4) = x

Then solve this quadratic equation by using the quadratic formula to obtain the solu-
tions

−19 +
√

41
8 and −19−

√
41

8
Since each of these values does not cause division by zero in the original equation, they
are both valid solutions.

65. The least common denominator (LCD) is x(8x− 2), so multiply both sides of the
equation by the LCD to obtain

−9x2 + 2(8x− 2) = −4x

Then solve this quadratic equation either by factoring or by using the quadratic formula
to obtain the solutions 2

9 and 2. Since each of these values does not cause division by
zero in the original equation, they are both valid solutions.

67. The least common denominator (LCD) is (x+6)(x−7). However, the denominator
of the second term is 7−x, so first rewrite the left side by negating the numerator and
denominator of the second term:

4x
x+ 6 + 5

x− 7 = x− 5
x2 − x− 42

Then clear fractions by multiplying both sides of the equation by the LCD to obtain
the equation

4x(x− 7) + 5(x+ 6) = x− 5

Then simplify this quadratic equation to standard form:

4x2 − 24x+ 35 = 0

Finally, solve this quadratic equation either by factoring or by using the quadratic
formula to obtain the solutions 7

2 and 5
2 . Since each of these values does not cause

division by zero in the original equation, they are both valid solutions.
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7.8 Exercises

1. The sum of the reciprocals of two
consecutive odd integers is −16

63 . Find
the two numbers.

2. The sum of the reciprocals of two
consecutive odd integers is 28

195 . Find the
two numbers.

3. The sum of the reciprocals of two
consecutive integers is−19

90 . Find the two
numbers.

4. The sum of a number and its recip-
rocal is 41

20 . Find the number(s).

5. The sum of the reciprocals of two
consecutive even integers is 5

12 . Find the
two numbers.

6. The sum of the reciprocals of two
consecutive integers is 19

90 . Find the two
numbers.

7. The sum of a number and twice its
reciprocal is 9

2 . Find the number(s).

8. The sum of a number and its recip-
rocal is 5

2 . Find the number(s).

9. The sum of the reciprocals of two
consecutive even integers is 11

60 . Find the
two numbers.

10. The sum of a number and twice its
reciprocal is 17

6 . Find the number(s).

11. The sum of the reciprocals of two
numbers is 15/8, and the second number
is 2 larger than the first. Find the two
numbers.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

12. The sum of the reciprocals of two
numbers is 16/15, and the second num-
ber is 1 larger than the first. Find the
two numbers.

13. Moira can paddle her kayak at a
speed of 2 mph in still water. She pad-
dles 3 miles upstream against the cur-
rent and then returns to the starting lo-
cation. The total time of the trip is 9
hours. What is the speed (in mph) of
the current? Round your answer to the
nearest hundredth.

14. Boris is kayaking in a river with a 6
mph current. Suppose that he can kayak
4 miles upstream in the same amount of
time as it takes him to kayak 9 miles
downstream. Find the speed (mph) of
Boris’s kayak in still water.

15. Jacob can paddle his kayak at a
speed of 6 mph in still water. He pad-
dles 5 miles upstream against the cur-
rent and then returns to the starting lo-
cation. The total time of the trip is 5
hours. What is the speed (in mph) of
the current? Round your answer to the
nearest hundredth.

16. Boris can paddle his kayak at a speed
of 6 mph in still water. If he can paddle
5 miles upstream in the same amount of
time as it takes his to paddle 9 miles
downstream, what is the speed of the
current?
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17. Jacob is canoeing in a river with a
5 mph current. Suppose that he can ca-
noe 4 miles upstream in the same amount
of time as it takes him to canoe 8 miles
downstream. Find the speed (mph) of
Jacob’s canoe in still water.

18. The speed of a freight train is 16
mph slower than the speed of a passenger
train. The passenger train travels 518
miles in the same time that the freight
train travels 406 miles. Find the speed
of the freight train.

19. The speed of a freight train is 20
mph slower than the speed of a passenger
train. The passenger train travels 440
miles in the same time that the freight
train travels 280 miles. Find the speed
of the freight train.

20. Emily can paddle her canoe at a
speed of 2 mph in still water. She pad-
dles 5 miles upstream against the cur-
rent and then returns to the starting lo-
cation. The total time of the trip is 6
hours. What is the speed (in mph) of
the current? Round your answer to the
nearest hundredth.

21. Jacob is canoeing in a river with a
2 mph current. Suppose that he can ca-
noe 2 miles upstream in the same amount
of time as it takes him to canoe 5 miles
downstream. Find the speed (mph) of
Jacob’s canoe in still water.

22. Moira can paddle her kayak at a
speed of 2 mph in still water. If she
can paddle 4 miles upstream in the same
amount of time as it takes her to paddle
8 miles downstream, what is the speed of
the current?

23. Boris can paddle his kayak at a speed
of 6 mph in still water. If he can paddle
5 miles upstream in the same amount of
time as it takes his to paddle 10 miles
downstream, what is the speed of the
current?

24. The speed of a freight train is 19
mph slower than the speed of a passenger
train. The passenger train travels 544
miles in the same time that the freight
train travels 392 miles. Find the speed
of the freight train.

25. It takes Jean 15 hours longer to
complete an inventory report than it takes
Sanjay. If they work together, it takes
them 10 hours. How many hours would
it take Sanjay if he worked alone?

26. Jean can paint a room in 5 hours.
It takes Amelie 10 hours to paint the
same room. How many hours will it take
if they work together?

27. It takes Amelie 18 hours longer to
complete an inventory report than it takes
Jean. If they work together, it takes
them 12 hours. How many hours would
it take Jean if she worked alone?

28. Sanjay can paint a room in 5 hours.
It takes Amelie 9 hours to paint the same
room. How many hours will it take if
they work together?

29. It takes Ricardo 12 hours longer
to complete an inventory report than it
takes Sanjay. If they work together, it
takes them 8 hours. How many hours
would it take Sanjay if he worked alone?



Section 7.8 Applications of Rational Functions 745

Version: Fall 2007

30. It takes Ricardo 8 hours longer to
complete an inventory report than it takes
Amelie. If they work together, it takes
them 3 hours. How many hours would it
take Amelie if she worked alone?

31. Jean can paint a room in 4 hours.
It takes Sanjay 7 hours to paint the same
room. How many hours will it take if
they work together?

32. Amelie can paint a room in 5 hours.
It takes Sanjay 9 hours to paint the same
room. How many hours will it take if
they work together?
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7.8 Solutions

1. Start with the equation
1
x

+ 1
x+ 2 = −16

63
Multiply both sides by the LCD 63x(x+ 2):

63(x+ 2) + 63x = −16x(x+ 2)

Simplify to obtain

126x+ 126 = −16x2 − 32x

This quadratic equation has one integer solution x = −9, and the second number is
−9 + 2 = −7.

3. Start with the equation
1
x

+ 1
x+ 1 = −19

90
Multiply both sides by the LCD 90x(x+ 1):

90(x+ 1) + 90x = −19x(x+ 1)

Simplify to obtain

180x+ 90 = −19x2 − 19x

This quadratic equation has one integer solution x = −10, and the second number is
−10 + 1 = −9.

5. Start with the equation
1
x

+ 1
x+ 2 = 5

12
Multiply both sides by the LCD 12x(x+ 2):

12(x+ 2) + 12x = 5x(x+ 2)

Simplify to obtain

24x+ 24 = 5x2 + 10x

This quadratic equation has one integer solution x = 4, and the second number is
4 + 2 = 6.
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7. Start with the equation

x+ 2
(1
x

)
= 9

2

Multiply both sides by the LCD 2x:

2x2 + 4 = 9x

Solve this quadratic equation to get x = 1
2 , 4.

9. Start with the equation
1
x

+ 1
x+ 2 = 11

60
Multiply both sides by the LCD 60x(x+ 2):

60(x+ 2) + 60x = 11x(x+ 2)

Simplify to obtain

120x+ 120 = 11x2 + 22x

This quadratic equation has one integer solution x = 10, and the second number is
10 + 2 = 12.

11. Start with the equation
1
x

+ 1
x+ 2 = 15

8
Multiply both sides by the LCD 8x(x+ 2):

8(x+ 2) + 8x = 15x(x+ 2)

Simplify to obtain

16x+ 16 = 15x2 + 30x

Solve this quadratic equation to get x = 2
3 ,
−8
5 . For x = 2

3 , the other number is
x + 2 = 2

3 + 2 = 8
3 ; and, for x = −8

5 , the other number is x + 2 = −8
5 + 2 = 2

5 . Thus,
the possible pairs of numbers are {2

3 ,
8
3} and {−8

5 ,
2
5}.
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13. Let t1 represent the time it takes for the upstream part of the trip, and t2 represent
the time it takes for the downstream part of the trip. Thus,

t1 + t2 = 9 hours

Also, let c represent the speed of the current. Then the actual speed of the boat going
upstream is 2− c, and the speed downstream is 2 + c. Using the relationship

distance = rate · time,

this leads to the following two equations:

Trip upstream: 3 = (2− c)t1
Trip downstream: 3 = (2 + c)t2

Solving for the time variable in each equation, it follows that

t1 = 3
2− c and t2 = 3

2 + c
Therefore,

9 = t1 + t2 = 3
2− c + 3

2 + c
Now solve this rational equation for c:

9 = 3
2− c + 3

2 + c =⇒ 9(2− c)(2 + c) = 3(2 + c) + 3(2− c)

=⇒ 36− 9c2 = 12
=⇒ 9c2 = 24

=⇒ c = ±
√

8
3

Discarding the negative answer, the speed of the current is ≈ 1.63 mph.

15. Let t1 represent the time it takes for the upstream part of the trip, and t2 represent
the time it takes for the downstream part of the trip. Thus,

t1 + t2 = 5 hours

Also, let c represent the speed of the current. Then the actual speed of the boat going
upstream is 6− c, and the speed downstream is 6 + c. Using the relationship

distance = rate · time,

this leads to the following two equations:

Trip upstream: 5 = (6− c)t1
Trip downstream: 5 = (6 + c)t2



Section 7.8 Applications of Rational Functions

Version: Fall 2007

Solving for the time variable in each equation, it follows that

t1 = 5
6− c and t2 = 5

6 + c
Therefore,

5 = t1 + t2 = 5
6− c + 5

6 + c
Now solve this rational equation for c:

5 = 5
6− c + 5

6 + c =⇒ 5(6− c)(6 + c) = 5(6 + c) + 5(6− c)

=⇒ 180− 5c2 = 60
=⇒ 5c2 = 120

=⇒ c = ±
√

24

Discarding the negative answer, the speed of the current is ≈ 4.90 mph.

17. Let t represent the time it takes for each part of the trip, and let r represent the
speed of the boat in still water. Then the actual speed of the boat going downstream
is r + 5, and the speed upstream is r − 5. Using the relationship

distance = rate · time,

this leads to the following two equations:

Trip downstream: 8 = (r + 5)t
Trip upstream: 4 = (r − 5)t

Solving for t in each equation, it follows that
8
r + 5 = t = 4

r − 5
Now solve this rational equation for r:

8
r + 5 = 4

r − 5 =⇒ 8(r − 5) = 4(r + 5)

=⇒ 4r = 60
=⇒ r = 15 mph
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19. Let t represent the time it takes for each trip, and let r represent the speed of the
freight train. Then the speed of the passenger train is r + 20. Using the relationship

distance = rate · time,

this leads to the following two equations:

Freight train: 280 = rt
Passenger train: 440 = (r + 20)t

Solving for t in each equation, it follows that
280
r

= t = 440
r + 20

Now solve this rational equation for r:
280
r

= 440
r + 20 =⇒ 280(r + 20) = 440r

=⇒ 5600 = 160r
=⇒ r = 35 mph

21. Let t represent the time it takes for each part of the trip, and let r represent the
speed of the boat in still water. Then the actual speed of the boat going downstream
is r + 2, and the speed upstream is r − 2. Using the relationship

distance = rate · time,

this leads to the following two equations:

Trip downstream: 5 = (r + 2)t
Trip upstream: 2 = (r − 2)t

Solving for t in each equation, it follows that
5
r + 2 = t = 2

r − 2
Now solve this rational equation for r:

5
r + 2 = 2

r − 2 =⇒ 5(r − 2) = 2(r + 2)

=⇒ 3r = 14

=⇒ r = 14
3 mph
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23. Let t represent the time it takes for each part of the trip, and let c represent the
speed of the current. Then the actual speed of the boat going downstream is 6 + c, and
the speed upstream is 6− c. Using the relationship

distance = rate · time,

this leads to the following two equations:

Trip downstream: 10 = (6 + c)t
Trip upstream: 5 = (6− c)t

Solving for t in each equation, it follows that
10

6 + c = t = 5
6− c

Now solve this rational equation for r:
10

6 + c = 5
6− c =⇒ 10(6− c) = 5(6 + c)

=⇒ 30 = 15c
=⇒ c = 2 mph

25. Let t represent the unknown time, r represent Jean’s rate (reports/hour), and s
represent Sanjay’s rate. Using the relationship

work = rate · time,

this leads to the following three equations:

Jean: 1 = r(t+ 15)
Sanjay: 1 = st

together: 1 = (r + s) 10

Solve for r and s in the first two equations, and then plug those values into the third
equation to obtain

1 =
( 1
t+ 15 + 1

t

)
10

Now solve this rational equation for t:

1 =
( 1
t+ 15 + 1

t

)
10 =⇒ t(t+ 15) = 10t+ 10(t+ 15)

=⇒ t2 + 15t = 20t+ 150
=⇒ t2 − 5t− 150 = 0
=⇒ (t− 15)(t+ 10) = 0
=⇒ t = 15 hours
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27. Let t represent the unknown time, r represent Amelie’s rate (reports/hour), and
s represent Jean’s rate. Using the relationship

work = rate · time,

this leads to the following three equations:

Amelie: 1 = r(t+ 18)
Jean: 1 = st

together: 1 = (r + s) 12

Solve for r and s in the first two equations, and then plug those values into the third
equation to obtain

1 =
( 1
t+ 18 + 1

t

)
12

Now solve this rational equation for t:

1 =
( 1
t+ 18 + 1

t

)
12 =⇒ t(t+ 18) = 12t+ 12(t+ 18)

=⇒ t2 + 18t = 24t+ 216
=⇒ t2 − 6t− 216 = 0
=⇒ (t− 18)(t+ 12) = 0
=⇒ t = 18 hours

29. Let t represent the unknown time, r represent Ricardo’s rate (reports/hour), and
s represent Sanjay’s rate. Using the relationship

work = rate · time,

this leads to the following three equations:

Ricardo: 1 = r(t+ 12)
Sanjay: 1 = st

together: 1 = (r + s) 8

Solve for r and s in the first two equations, and then plug those values into the third
equation to obtain

1 =
( 1
t+ 12 + 1

t

)
8
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Now solve this rational equation for t:

1 =
( 1
t+ 12 + 1

t

)
8 =⇒ t(t+ 12) = 8t+ 8(t+ 12)

=⇒ t2 + 12t = 16t+ 96
=⇒ t2 − 4t− 96 = 0
=⇒ (t− 12)(t+ 8) = 0
=⇒ t = 12 hours

31. Let t represent the unknown time, r represent Jean’s rate (rooms/hour), and s
represent Sanjay’s rate. Using the relationship

work = rate · time,

this leads to the following three equations:

Jean: 1 = 4r
Sanjay: 1 = 7s

together: 1 = (r + s) t

Solve for r and s in the first two equations, and then plug those values into the third
equation to obtain

1 =
(1

4 + 1
7

)
t

Now solve this rational equation for t:

1 =
(1

4 + 1
7

)
t =⇒ 1 =

(11
28

)
t =⇒ t = 28

11 hours
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8.1 Exercises

In Exercises 1-12, compute the exact
value.

1. 3−5

2. 42

3. (3/2)3

4. (2/3)1

5. 6−2

6. 4−3

7. (2/3)−3

8. (1/3)−3

9. 71

10. (3/2)−4

11. (5/6)3

12. 32

In Exercises 13-24, perform each of the
following tasks for the given equation.

i. Load the left- and right-hand sides of
the given equation into Y1 and Y2, re-
spectively. Adjust the WINDOW para-
meters until all points of intersection
(if any) are visible in your viewing
window. Use the intersect utility
in the CALC menu to determine the
coordinates of any points of intersec-
tion.

ii. Make a copy of the image in your
viewing window on your homework
paper. Label and scale each axis with

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

xmin, xmax, ymin, and ymax. Label
each graph with its equation. Drop
dashed vertical lines from each point
of intersection to the x-axis, then shade
and label each solution of the given
equation on the x-axis. Remember
to draw all lines with a ruler.

iii. Solve each problem algebraically. Use
a calculator to approximate any radi-
cals and compare these solutions with
those found in parts (i) and (ii).

13. x2 = 5

14. x2 = 7

15. x2 = −7

16. x2 = −3

17. x3 = −6

18. x3 = −4

19. x4 = 4

20. x4 = −7

21. x5 = 8

22. x5 = 4

23. x6 = −5

24. x6 = 9

In Exercises 25-40, simplify the given
radical expression.

25.
√

49

26.
√

121
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27.
√
−36

28.
√
−100

29. 3√27

30. 3√−1

31. 3√−125

32. 3√64

33. 4√−16

34. 4√81

35. 4√16

36. 4√−625

37. 5√−32

38. 5√243

39. 5√1024

40. 5√−3125

41. Compare and contrast
√

(−2)2 and
(
√
−2)2.

42. Compare and contrast 4
√

(−3)4 and
( 4√−3)4.

43. Compare and contrast 3
√

(−5)3 and
( 3√−5)3.

44. Compare and contrast 5
√

(−2)5 and
( 5√−2)5.

In Exercises 45-56, compute the exact
value.

45. 25− 3
2

46. 16− 5
4

47. 8 4
3

48. 625− 3
4

49. 16 3
2

50. 64 2
3

51. 27 2
3

52. 625 3
4

53. 256 5
4

54. 4− 3
2

55. 256− 3
4

56. 81− 5
4

In Exercises 57-64, simplify the prod-
uct, and write your answer in the form
xr.

57. x 5
4x

5
4

58. x 5
3x−

5
4

59. x− 1
3x

5
2

60. x− 3
5x

3
2

61. x 4
5x−

4
3

62. x− 5
4x

1
2

63. x− 2
5x−

3
2

64. x− 5
4x

5
2

In Exercises 65-72, simplify the quo-
tient, and write your answer in the form
xr.

65. x
− 5

4

x
1
5
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66. x
− 2

3

x
1
4

67. x
− 1

2

x−
3
5

68. x
− 5

2

x
2
5

69. x
3
5

x−
1
4

70. x
1
3

x−
1
2

71. x
− 5

4

x
2
3

72. x
1
3

x
1
2

In Exercises 73-80, simplify the expres-
sion, and write your answer in the form
xr.

73.
(
x

1
2
) 4

3

74.
(
x−

1
2
)− 1

2

75.
(
x−

5
4
) 1

2

76.
(
x−

1
5
)− 3

2

77.
(
x−

1
2
) 3

2

78.
(
x−

1
3
)− 1

2

79.
(
x

1
5
)− 1

2

80.
(
x

2
5
)− 1

5
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8.1 Answers

1. 1
243

3. 27
8

5. 1
36

7. 27
8

9. 7

11. 125
216

13. Solutions: x = ±
√

5

x
−10 10

y

−10

10
y=x2

y=5

−2.2361 2.2361

15. No real solutions.

x
−10 10

y

−10

10
y=x2

y=−7

17. x = 3√−6

x
−10 10

y

−10

10 y=x3

y=−6

−1.8171
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19. Solutions: x = ± 4√4

x
−10 10

y

−10

10 y=x4

y=4

−1.4142 1.4142

21. x = 5√8

x
−10 10

y

−10

10 y=x5
y=8

1.5157

23. No real solutions.

x
−10 10

y

−10

10 y=x6

y=−5

25. 7

27. Not a real number.

29. 3

31. −5

33. Not a real number.

35. 2

37. −2

39. 4

41.
√

(−2)2 = 2, while (
√
−2)2 is not

a real number.

43. Both equal −5.

45. 1
125

47. 16

49. 64

51. 9

53. 1024

55. 1
64

57. x 5
2

59. x 13
6

61. x− 8
15

63. x− 19
10

65. x− 29
20

67. x 1
10

69. x 17
20

71. x− 23
12
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73. x 2
3

75. x− 5
8

77. x− 3
4

79. x− 1
10
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8.2 Exercises

1. The current population of Fortuna
is 10,000 hearty souls. It is known that
the population is growing at a rate of
4% per year. Assuming this rate remains
constant, perform each of the following
tasks.

a. Set up an equation that models the
population P (t) as a function of time
t.

b. Use the model in the previous part to
predict the population 40 years from
now.

c. Use your calculator to sketch the graph
of the population over the next 40
years.

2. The population of the town of Imag-
ination currently numbers 12,000 people.
It is known that the population is grow-
ing at a rate of 6% per year. Assuming
this rate remains constant, perform each
of the following tasks.

a. Set up an equation that models the
population P (t) as a function of time
t.

b. Use the model in the previous part to
predict the population 30 years from
now.

c. Use your calculator to sketch the graph
of the population over the next 30
years.

3. The population of the town of De-
spairia currently numbers 15,000 individ-
uals. It is known that the population is
decaying at a rate of 5% per year. As-
suming this rate remains constant, per-
form each of the following tasks.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

a. Set up an equation that models the
population P (t) as a function of time
t.

b. Use the model in the previous part to
predict the population 50 years from
now.

c. Use your calculator to sketch the graph
of the population over the next 50
years.

4. The population of the town of Hope-
less currently numbers 25,000 individu-
als. It is known that the population is
decaying at a rate of 6% per year. As-
suming this rate remains constant, per-
form each of the following tasks.

a. Set up an equation that models the
population P (t) as a function of time
t.

b. Use the model in the previous part to
predict the population 40 years from
now.

c. Use your calculator to sketch the graph
of the population over the next 40
years.

In Exercises 5-12, perform each of the
following tasks for the given function.

a. Find the y-intercept of the graph of
the function. Also, use your calcula-
tor to find two points on the graph to
the right of the y-axis, and two points
to the left.

b. Using your five points from (a) as a
guide, set up a coordinate system on
graph paper. Choose and label ap-
propriate scales for each axis. Plot
the five points, and any additional
points you feel are necessary to dis-
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cern the shape of the graph.
c. Draw the horizontal asymptote with

a dashed line, and label it with its
equation.

d. Sketch the graph of the function.
e. Use interval notation to describe both

the domain and range of the function.

5. f(x) = (2.5)x

6. f(x) = (0.1)x

7. f(x) = (0.75)x

8. f(x) = (1.1)x

9. f(x) = 3x + 1

10. f(x) = 4x − 5

11. f(x) = 2x − 3

12. f(x) = 5x + 2

In Exercises 13-20, the graph of an ex-
ponential function of the form f(x) =
bx + c is shown. The dashed red line is
a horizontal asymptote. Determine the
range of the function. Express your an-
swer in interval notation.

13.

x

y

5

5

14.

x

y

5

5

15.

x

y

5

5

16.

x

y

5

5

17.

x

y

5

5
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18.

x

y

5

5

19.

x

y

5

5

20.

x

y

5

5

In Exercises 21-32, compute f(p) at the
given value p.

21. f(x) = (1/3)x; p = −4

22. f(x) = (3/4)x; p = 1

23. f(x) = 5x; p = 5

24. f(x) = (1/3)x; p = 4

25. f(x) = 4x; p = −4

26. f(x) = 5x; p = −3

27. f(x) = (5/2)x; p = −3

28. f(x) = 9x; p = 3

29. f(x) = 5x; p = −4

30. f(x) = 9x; p = 0

31. f(x) = (6/5)x; p = −4

32. f(x) = (3/5)x; p = 0

In Exercises 33-40, use your calcula-
tor to evaluate the function at the given
value p. Round your answer to the near-
est hundredth.

33. f(x) = 10x; p = −0.7.

34. f(x) = 10x; p = −1.60.

35. f(x) = (2/5)x; p = 3.67.

36. f(x) = 2x; p = −3/4.

37. f(x) = 10x; p = 2.07.

38. f(x) = 7x; p = 4/3.

39. f(x) = 10x; p = −1/5.

40. f(x) = (4/3)x; p = 1.15.

41. This exercise explores the property
that exponential growth functions even-
tually increase rapidly as x increases. Let
f(x) = 1.05x. Use your graphing calcu-
lator to graph f on the intervals

(a) [0, 10] and (b) [0, 100].
For (a), use Ymin = 0 and Ymax = 10.
For (b), use Ymin = 0 and Ymax = 100.
Make accurate copies of the images in
your viewing window on your homework
paper. What do you observe when you
compare the two graphs?



786 Chapter 8 Exponential and Logarithmic Functions

Version: Fall 2007

8.2 Answers

1.

a) P (t) = 10 000(1.04)t

b) P (40) ≈ 48 101

c)

3.

a) P (t) = 15 000(0.95)t

b) P (50) ≈ 1 154

c)

5.

a) The y-intercept is (0, 1). Evaluate
the function at x = 1, 2,−1,−2 to
obtain the points (1, 2.5), (2, 6.25),
(−1, 0.4), (−2, 0.16) (other answers are
possible).

b) See the graph in part (d).

c) The horizontal asymptote is y = 0.
See the graph in part (d).

d)

x3

y
10

y=0

f(x)=(2.5)x

e) Domain = (−∞,∞), Range = (0,∞)
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7.

a) The y-intercept is (0, 1). Evaluate
the function at x = 1, 2,−1,−2 to
obtain the points (1, 0.75), (2, 0.56),
(−1, 1.34), (−2, 1.78) (other answers
are possible).

b) See the graph in part (d).

c) The horizontal asymptote is y = 0.
See the graph in part (d).

d)

x5

y
5

y=0

f(x)=(0.75)x

e) Domain = (−∞,∞), Range = (0,∞)

9.

a) The y-intercept is (0, 2). Evaluate
the function at x = 1, 2,−1,−2 to ob-
tain the points (1, 4), (2, 10), (−1, 1.34),
(−2, 1.11) (other answers are possi-
ble).

b) See the graph in part (d).

c) The horizontal asymptote is y = 1.
See the graph in part (d).

d)

x3

y
20

y=1

f(x)=3x+1

e) Domain = (−∞,∞), Range = (1,∞)

11.

a) The y-intercept is (0,−2). Evalu-
ate the function at x = 1, 2,−1,−2
to obtain the points (1,−1), (2, 1),
(−1,−2.5), (−2,−2.75) (other answers
are possible).

b) See the graph in part (d).

c) The horizontal asymptote is y = −3.
See the graph in part (d).

d)

x5

y
5

y=−3

f(x)=2x−3

e) Domain = (−∞,∞), Range = (−3,∞)

13. (−1,∞)

15. (2,∞)

17. (2,∞)
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19. (−2,∞)

21. 81

23. 3125

25. 1
256

27. 8
125

29. 1
625

31. 625
1296

33. 0.20

35. 0.03

37. 117.49

39. 0.63

41.

a) The graph on the interval [0, 10] in-
creases very slowly. In fact, the graph
looks almost linear.

b) The graph on the interval [0, 100] in-
creases slowly at first, but then in-
creases very rapidly on the second half
of the interval.
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8.3 Exercises

1. Suppose that you invest $15,000 at
7% interest compounded monthly. How
much money will be in your account in 4
years? Round your answer to the nearest
cent.

2. Suppose that you invest $14,000 at
3% interest compounded monthly. How
much money will be in your account in 7
years? Round your answer to the nearest
cent.

3. Suppose that you invest $14,000 at
4% interest compounded daily. How much
money will be in your account in 6 years?
Round your answer to the nearest cent.

4. Suppose that you invest $15,000 at
8% interest compounded monthly. How
much money will be in your account in 8
years? Round your answer to the nearest
cent.

5. Suppose that you invest $4,000 at
3% interest compounded monthly. How
much money will be in your account in 7
years? Round your answer to the nearest
cent.

6. Suppose that you invest $3,000 at
5% interest compounded monthly. How
much money will be in your account in 4
years? Round your answer to the nearest
cent.

7. Suppose that you invest $1,000 at
3% interest compounded monthly. How
much money will be in your account in 4
years? Round your answer to the nearest
cent.
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8. Suppose that you invest $19,000 at
2% interest compounded daily. How much
money will be in your account in 9 years?
Round your answer to the nearest cent.

9. Suppose that you can invest money
at 4% interest compounded monthly. How
much should you invest in order to have
$20,000 in 2 years? Round your answer
to the nearest cent.

10. Suppose that you can invest money
at 6% interest compounded daily. How
much should you invest in order to have
$1,000 in 2 years? Round your answer to
the nearest cent.

11. Suppose that you can invest money
at 3% interest compounded daily. How
much should you invest in order to have
$20,000 in 3 years? Round your answer
to the nearest cent.

12. Suppose that you can invest money
at 3% interest compounded monthly. How
much should you invest in order to have
$10,000 in 7 years? Round your answer
to the nearest cent.

13. Suppose that you can invest money
at 9% interest compounded daily. How
much should you invest in order to have
$4,000 in 9 years? Round your answer to
the nearest cent.

14. Suppose that you can invest money
at 8% interest compounded daily. How
much should you invest in order to have
$18,000 in 6 years? Round your answer
to the nearest cent.
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15. Suppose that you can invest money
at 8% interest compounded daily. How
much should you invest in order to have
$17,000 in 6 years? Round your answer
to the nearest cent.

16. Suppose that you can invest money
at 9% interest compounded daily. How
much should you invest in order to have
$5,000 in 7 years? Round your answer to
the nearest cent.

In Exercises 17-24, evaluate the func-
tion at the given value p. Round your
answer to the nearest hundredth.

17. f(x) = ex; p = 1.57.

18. f(x) = ex; p = 2.61.

19. f(x) = ex; p = 3.07.

20. f(x) = ex; p = −4.33.

21. f(x) = ex; p = 1.42.

22. f(x) = ex; p = −0.8.

23. f(x) = ex; p = 4.75.

24. f(x) = ex; p = 3.60.

25. Suppose that you invest $3,000 at
4% interest compounded continuously. How
much money will be in your account in 9
years? Round your answer to the nearest
cent.

26. Suppose that you invest $8,000 at
8% interest compounded continuously. How
much money will be in your account in 7
years? Round your answer to the nearest
cent.

27. Suppose that you invest $1,000 at
2% interest compounded continuously. How

much money will be in your account in 3
years? Round your answer to the nearest
cent.

28. Suppose that you invest $3,000 at
8% interest compounded continuously. How
much money will be in your account in 4
years? Round your answer to the nearest
cent.

29. Suppose that you invest $15,000 at
2% interest compounded continuously. How
much money will be in your account in 4
years? Round your answer to the nearest
cent.

30. Suppose that you invest $8,000 at
2% interest compounded continuously. How
much money will be in your account in 6
years? Round your answer to the nearest
cent.

31. Suppose that you invest $13,000 at
9% interest compounded continuously. How
much money will be in your account in 8
years? Round your answer to the nearest
cent.

32. Suppose that you invest $16,000 at
4% interest compounded continuously. How
much money will be in your account in 6
years? Round your answer to the nearest
cent.

33. Suppose that you can invest money
at 6% interest compounded continuously.
How much should you invest in order to
have $17,000 in 9 years? Round your
answer to the nearest cent.

34. Suppose that you can invest money
at 8% interest compounded continuously.
How much should you invest in order to
have $5,000 in 6 years? Round your an-
swer to the nearest cent.
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35. Suppose that you can invest money
at 8% interest compounded continuously.
How much should you invest in order to
have $10,000 in 6 years? Round your
answer to the nearest cent.

36. Suppose that you can invest money
at 6% interest compounded continuously.
How much should you invest in order to
have $17,000 in 13 years? Round your
answer to the nearest cent.

37. Suppose that you can invest money
at 2% interest compounded continuously.
How much should you invest in order to
have $13,000 in 8 years? Round your
answer to the nearest cent.

38. Suppose that you can invest money
at 9% interest compounded continuously.
How much should you invest in order to
have $10,000 in 15 years? Round your
answer to the nearest cent.

39. Suppose that you can invest money
at 7% interest compounded continuously.
How much should you invest in order to
have $18,000 in 10 years? Round your
answer to the nearest cent.

40. Suppose that you can invest money
at 9% interest compounded continuously.
How much should you invest in order to
have $14,000 in 12 years? Round your
answer to the nearest cent.
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8.3 Answers

1. $19830.81

3. $17797.25

5. $4933.42

7. $1127.33

9. $18464.78

11. $18278.69

13. $1779.61

15. $10519.87

17. 4.81

19. 21.54

21. 4.14

23. 115.58

25. $4299.99

27. $1061.84

29. $16249.31

31. $26707.63

33. $9906.72

35. $6187.83

37. $11077.87

39. $8938.54
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8.4 Exercises

In Exercises 1-12, use the graph to de-
termine whether the function is one-to-
one.

1.

x

y

5

5

2.

x

y

5

5

3.

x

y

5

5
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4.

x

y

5

5

5.

x

y

5

5

6.

x

y

5

5

7.

x

y

5

5
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8.

x

y

5

5

9.

x

y

5

5

10.

x

y

5

5

11.

x

y

5

5

12.

x

y

5

5

In Exercises 13-28, evaluate the com-
position g(f(x)) and simplify your an-
swer.

13. g(x) = 9
x

, f(x) = −2x2 + 5x− 2

14. f(x) = −5
x

, g(x) = −4x2 + x− 1

15. g(x) = 2√x, f(x) = −x− 3

16. f(x) = 3x2 − 3x− 5, g(x) = 6
x

17. g(x) = 3√x, f(x) = 4x+ 1

18. f(x) = −3x− 5, g(x) = −x− 2

19. g(x) = −5x2 + 3x− 4, f(x) = 5
x

20. g(x) = 3x+ 3, f(x) = 4x2− 2x− 2

21. g(x) = 6√x, f(x) = −4x+ 4

22. g(x) = 5x− 3, f(x) = −2x− 4

23. g(x) = 3√x, f(x) = −2x+ 1

24. g(x) = 3
x

, f(x) = −5x2 − 5x− 4

25. f(x) = 5
x

, g(x) = −x+ 1

26. f(x) = 4x2 + 3x− 4, g(x) = 2
x
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27. g(x) = −5x+ 1, f(x) = −3x− 2

28. g(x) = 3x2 + 4x− 3, f(x) = 8
x

In Exercises 29-36, first copy the given
graph of the one-to-one function f(x) onto
your graph paper. Then on the same co-
ordinate system, sketch the graph of the
inverse function f−1(x).

29.

x

y

5

5

30.

x

y

5

5

31.

x

y

5

5

32.

x

y

5

5

33.

x

y

5

5

34.

x

y

5

5

35.

x

y

5

5
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36.

x

y

5

5

In Exercises 37-68, find the formula for
the inverse function f−1(x).

37. f(x) = 5x3 − 5

38. f(x) = 4x7 − 3

39. f(x) = −9x− 3
7x+ 6

40. f(x) = 6x− 4

41. f(x) = 7x− 9

42. f(x) = 7x+ 4

43. f(x) = 3x5 − 9

44. f(x) = 6x+ 7

45. f(x) = 4x+ 2
4x+ 3

46. f(x) = 5x7 + 4

47. f(x) = 4x− 1
2x+ 2

48. f(x) = 7√8x− 3

49. f(x) = 3√−6x− 4

50. f(x) = 8x− 7
3x− 6

51. f(x) = 7√−3x− 5

52. f(x) = 9√8x+ 2

53. f(x) = 3√6x+ 7

54. f(x) = 3x+ 7
2x+ 8

55. f(x) = −5x+ 2

56. f(x) = 6x+ 8

57. f(x) = 9x9 + 5

58. f(x) = 4x5 − 9

59. f(x) = 9x− 3
9x+ 7

60. f(x) = 3√9x− 7

61. f(x) = x4, x ≤ 0

62. f(x) = x4, x ≥ 0

63. f(x) = x2 − 1, x ≤ 0

64. f(x) = x2 + 2, x ≥ 0

65. f(x) = x4 + 3, x ≤ 0

66. f(x) = x4 − 5, x ≥ 0

67. f(x) = (x− 1)2, x ≤ 1

68. f(x) = (x+ 2)2, x ≥ −2
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8.4 Answers

1. not one-to-one

3. not one-to-one

5. not one-to-one

7. one-to-one

9. one-to-one

11. one-to-one

13. − 9
2x2 − 5x+ 2

15. 2
√
−x− 3

17. 3
√

4x+ 1

19. −125
x2 + 15

x
− 4

21. 6
√
−4x+ 4

23. 3
√
−2x+ 1

25. −5/x+ 1

27. 15x+ 11

29.

x

y

5

5

31.

x

y

5

5

33.

x

y

5

5

35.

x

y

5

5

37. 3

√
x+ 5

5

39. −6x− 3
7x+ 9

41. x+ 9
7

43. 5

√
x+ 9

3
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45. −3x− 2
4x− 4

47. −2x+ 1
2x− 4

49. −x
3 + 4
6

51. −x
7 + 5
3

53. x
3 − 7
6

55. −x− 2
5

57. 9

√
x− 5

9

59. −7x+ 3
9x− 9

61. − 4√x

63. −
√
x+ 1

65. − 4√x− 3

67. −
√
x+ 1
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8.5 Exercises

In Exercises 1-18, find the exact value
of the function at the given value b.

1. f(x) = log3(x); b = 5√3.

2. f(x) = log5(x); b = 3125.

3. f(x) = log2(x); b = 1
16 .

4. f(x) = log2(x); b = 4.

5. f(x) = log5(x); b = 5.

6. f(x) = log2(x); b = 8.

7. f(x) = log2(x); b = 32.

8. f(x) = log4(x); b = 1
16 .

9. f(x) = log5(x); b = 1
3125 .

10. f(x) = log5(x); b = 1
25 .

11. f(x) = log5(x); b = 6√5.

12. f(x) = log3(x); b = 3√3.

13. f(x) = log6(x); b = 6√6.

14. f(x) = log5(x); b = 5√5.

15. f(x) = log2(x); b = 6√2.

16. f(x) = log4(x); b = 1
4 .

17. f(x) = log3(x); b = 1
9 .

18. f(x) = log4(x); b = 64.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

In Exercises 19-26, use a calculator to
evaluate the function at the given value
p. Round your answer to the nearest
hundredth.

19. f(x) = ln(x); p = 10.06.

20. f(x) = ln(x); p = 9.87.

21. f(x) = ln(x); p = 2.40.

22. f(x) = ln(x); p = 9.30.

23. f(x) = log(x); p = 7.68.

24. f(x) = log(x); p = 652.22.

25. f(x) = log(x); p = 6.47.

26. f(x) = log(x); p = 86.19.

In Exercises 27-34, solve the given equa-
tion, and round your answer to the near-
est hundredth.

27. 13 = e8x

28. 2 = 8ex

29. 19 = 108x

30. 17 = 102x

31. 7 = 6(10)x

32. 7 = e9x

33. 13 = 8ex

34. 5 = 7(10)x
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In Exercises 35-42, the graph of a log-
arithmic function of the form f(x) =
logb(x − a) is shown. The dashed red
line is a vertical asymptote. Determine
the domain of the function. Express your
answer in interval notation.

35.

x

y

5

5

36.

x

y

5

5

37.

x

y

5

5

38.

x

y

5

5

39.

x

y

5

5

40.

x

y

5

5

41.

x

y

5

5
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42.

x

y

5

5
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8.5 Answers

1. 1
5

3. −4

5. 1

7. 5

9. −5

11. 1
6

13. 1
6

15. 1
6

17. −2

19. 2.31

21. 0.88

23. 0.89

25. 0.81

27. 0.32

29. 0.16

31. 0.07

33. 0.49

35. (0,∞)

37. (−1,∞)

39. (0,∞)

41. (−3,∞)
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8.6 Exercises

In Exercises 1-10, use a calculator to
evaluate the function at the given value
p. Round your answer to the nearest
hundredth.

1. f(x) = log4(x); p = 57.60.

2. f(x) = log4(x); p = 11.22.

3. f(x) = log7(x); p = 2.98.

4. f(x) = log3(x); p = 2.27.

5. f(x) = log6(x); p = 2.56.

6. f(x) = log8(x); p = 289.27.

7. f(x) = log8(x); p = 302.67.

8. f(x) = log5(x); p = 15.70.

9. f(x) = log8(x); p = 46.13.

10. f(x) = log4(x); p = 15.59.

In Exercises 11-18, perform each of the
following tasks.

a) Approximate the solution of the given
equation using your graphing calcu-
lator. Load each side of the equa-
tion into the Y= menu of your calcu-
lator. Adjust the WINDOW parameters
so that the point of intersection of
the graphs is visible in the viewing
window. Use the intersect utility
in the CALC menu of your calculator
to determine the x-coordinate of the
point of intersection. Then make an
accurate copy of the image in your
viewing window on your homework

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

paper.
b) Solve the given equation algebraically,

and round your answer to the nearest
hundredth.

11. 20 = 3(1.2)x

12. 15 = 2(1.8)x

13. 14 = 1.45x

14. 16 = 1.84x

15. −4 = 0.2x − 9

16. 12 = 2.9x + 2

17. 13 = 0.1x+1

18. 19 = 1.2x−6

In Exercises 19-34, solve the given equa-
tion algebraically, and round your an-
swer to the nearest hundredth.

19. 20 = ex−3

20. −4 = ex − 9

21. 23 = 0.9x + 9

22. 10 = ex + 7

23. 19 = ex + 5

24. 4 = 7(2.3)x

25. 18 = ex+4

26. 15 = ex+6

27. 8 = 2.73x
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28. 7 = ex+1

29. 7 = 1.18x

30. 6 = 0.2x−8

31. −7 = 1.3x − 9

32. 11 = 3(0.7)x

33. 23 = ex + 9

34. 20 = 3.2x+1

35. Suppose that you invest $17,000 at
6% interest compounded daily. How many
years will it take for your investment to
double? Round your answer to the near-
est hundredth.

36. Suppose that you invest $6,000 at
9% interest compounded continuously. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

37. Suppose that you invest $16,000 at
6% interest compounded daily. How many
years will it take for your investment to
reach $26,000? Round your answer to
the nearest hundredth.

38. Suppose that you invest $15,000 at
5% interest compounded monthly. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

39. Suppose that you invest $18,000 at
3% interest compounded monthly. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

40. Suppose that you invest $7,000 at
5% interest compounded daily. How many
years will it take for your investment to
reach $13,000? Round your answer to
the nearest hundredth.

41. Suppose that you invest $16,000 at
9% interest compounded continuously. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

42. Suppose that you invest $16,000 at
2% interest compounded continuously. How
many years will it take for your invest-
ment to reach $25,000? Round your an-
swer to the nearest hundredth.

43. Suppose that you invest $2,000 at
5% interest compounded continuously. How
many years will it take for your invest-
ment to reach $10,000? Round your an-
swer to the nearest hundredth.

44. Suppose that you invest $4,000 at
6% interest compounded continuously. How
many years will it take for your invest-
ment to reach $10,000? Round your an-
swer to the nearest hundredth.

45. Suppose that you invest $4,000 at
3% interest compounded daily. How many
years will it take for your investment to
reach $14,000? Round your answer to
the nearest hundredth.

46. Suppose that you invest $13,000 at
2% interest compounded monthly. How
many years will it take for your invest-
ment to reach $20,000? Round your an-
swer to the nearest hundredth.

47. Suppose that you invest $20,000 at
7% interest compounded continuously. How
many years will it take for your invest-
ment to reach $30,000? Round your an-
swer to the nearest hundredth.
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48. Suppose that you invest $16,000 at
4% interest compounded continuously. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

49. Suppose that you invest $8,000 at
8% interest compounded continuously. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

50. Suppose that you invest $3,000 at
3% interest compounded daily. How many
years will it take for your investment to
double? Round your answer to the near-
est hundredth.
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8.6 Answers

1. 2.92

3. 0.56

5. 0.52

7. 2.75

9. 1.84

11.

a)

b) 10.41

13.

a)

b) 1.57

15.

a)

b) −1.00

17.

a)

b) −2.11

19. 6.00

21. −25.05

23. 2.64

25. −1.11

27. 0.70

29. 2.55

31. 2.64

33. 2.64

35. 11.55 years
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37. 8.09 years

39. 23.13 years

41. 7.70 years

43. 32.19 years

45. 41.76 years

47. 5.79 years

49. 8.66 years
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8.7 Exercises

1. Suppose that the population of a cer-
tain town grows at an annual rate of 6%.
If the population is currently 5, 000, what
will it be in 7 years? Round your answer
to the nearest integer.

2. Suppose that the population of a cer-
tain town grows at an annual rate of 5%.
If the population is currently 2,000, how
many years will it take for it to double?
Round your answer to the nearest hun-
dredth.

3. Suppose that a certain radioactive
isotope has an annual decay rate of 7.2%.
How many years will it take for a 227
gram sample to decay to 93 grams? Round
your answer to the nearest hundredth.

4. Suppose that a certain radioactive
isotope has an annual decay rate of 6.8%.
How many years will it take for a 399
gram sample to decay to 157 grams? Round
your answer to the nearest hundredth.

5. Suppose that the population of a cer-
tain town grows at an annual rate of 8%.
If the population is currently 4,000, how
many years will it take for it to double?
Round your answer to the nearest hun-
dredth.

6. Suppose that a certain radioactive
isotope has an annual decay rate of 19.2%.
Starting with a 443 gram sample, how
many grams will be left after 9 years?
Round your answer to the nearest hun-
dredth.

7. Suppose that a certain radioactive
isotope has an annual decay rate of 17.4%.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

What is the half-life (in years) of the iso-
tope? Round your answer to the nearest
hundredth.

8. Suppose that the population of a cer-
tain town grows at an annual rate of 7%.
If the population is currently 8,000, how
many years will it take for it to reach
18,000? Round your answer to the near-
est hundredth.

9. Suppose that a certain radioactive
isotope has an annual decay rate of 17.3%.
Starting with a 214 gram sample, how
many grams will be left after 5 years?
Round your answer to the nearest hun-
dredth.

10. Suppose that the population of a
certain town grows at an annual rate of
7%. If the population grows to 2, 000 in
7 years, what was the original popula-
tion? Round your answer to the nearest
integer.

11. Suppose that the population of a
certain town grows at an annual rate of
3%. If the population is currently 3,000,
how many years will it take for it to dou-
ble? Round your answer to the nearest
hundredth.

12. Suppose that a certain radioactive
isotope has an annual decay rate of 12.5%.
Starting with a 127 gram sample, how
many grams will be left after 6 years?
Round your answer to the nearest hun-
dredth.

13. Suppose that a certain radioactive
isotope has an annual decay rate of 13.1%.
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Starting with a 353 gram sample, how
many grams will be left after 7 years?
Round your answer to the nearest hun-
dredth.

14. Suppose that the population of a
certain town grows at an annual rate of
2%. If the population grows to 9, 000 in
4 years, what was the original popula-
tion? Round your answer to the nearest
integer.

15. Suppose that the population of a
certain town grows at an annual rate of
2%. If the population is currently 7,000,
how many years will it take for it to dou-
ble? Round your answer to the nearest
hundredth.

16. Suppose that a certain radioactive
isotope has an annual decay rate of 5.3%.
How many years will it take for a 217
gram sample to decay to 84 grams? Round
your answer to the nearest hundredth.

17. Suppose that a certain radioactive
isotope has an annual decay rate of 18.7%.
How many years will it take for a 324
gram sample to decay to 163 grams? Round
your answer to the nearest hundredth.

18. Suppose that the population of a
certain town grows at an annual rate of
8%. If the population is currently 8,000,
how many years will it take for it to reach
18,000? Round your answer to the near-
est hundredth.

19. Suppose that a certain radioactive
isotope has an annual decay rate of 2.3%.
If a particular sample decays to 25 grams
after 8 years, how big (in grams) was the
original sample? Round your answer to
the nearest hundredth.

20. Suppose that the population of a
certain town grows at an annual rate of
4%. If the population is currently 7,000,
how many years will it take for it to reach
17,000? Round your answer to the near-
est hundredth.

21. Suppose that a certain radioactive
isotope has an annual decay rate of 9.8%.
If a particular sample decays to 11 grams
after 6 years, how big (in grams) was the
original sample? Round your answer to
the nearest hundredth.

22. Suppose that the population of a
certain town grows at an annual rate of
5%. If the population grows to 6, 000 in
3 years, what was the original popula-
tion? Round your answer to the nearest
integer.

23. Suppose that the population of a
certain town grows at an annual rate of
8%. If the population is currently 6, 000,
what will it be in 5 years? Round your
answer to the nearest integer.

24. Suppose that a certain radioactive
isotope has an annual decay rate of 15.8%.
What is the half-life (in years) of the iso-
tope? Round your answer to the nearest
hundredth.

25. Suppose that the population of a
certain town grows at an annual rate of
9%. If the population grows to 7, 000 in
5 years, what was the original popula-
tion? Round your answer to the nearest
integer.

26. Suppose that a certain radioactive
isotope has an annual decay rate of 18.6%.
If a particular sample decays to 41 grams
after 3 years, how big (in grams) was the
original sample? Round your answer to
the nearest hundredth.
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27. Suppose that a certain radioactive
isotope has an annual decay rate of 5.2%.
What is the half-life (in years) of the iso-
tope? Round your answer to the nearest
hundredth.

28. Suppose that a certain radioactive
isotope has an annual decay rate of 6.5%.
What is the half-life (in years) of the iso-
tope? Round your answer to the nearest
hundredth.

29. Suppose that the population of a
certain town grows at an annual rate of
8%. If the population is currently 2,000,
how many years will it take for it to reach
7,000? Round your answer to the nearest
hundredth.

30. Suppose that a certain radioactive
isotope has an annual decay rate of 3.7%.
If a particular sample decays to 47 grams
after 8 years, how big (in grams) was the
original sample? Round your answer to
the nearest hundredth.

31. Suppose that the population of a
certain town grows at an annual rate of
6%. If the population is currently 7, 000,
what will it be in 7 years? Round your
answer to the nearest integer.

32. Suppose that the population of a
certain town grows at an annual rate of
4%. If the population is currently 1, 000,
what will it be in 3 years? Round your
answer to the nearest integer.

In Exercises 33-40, use the fact that
the decay rate of carbon-14 is 0.012%.
Round your answer to the nearest year.

33. Suppose that only 8.6% of the nor-
mal amount of carbon-14 remains in a
fragment of bone. How old is the bone?

34. Suppose that only 5.2% of the nor-
mal amount of carbon-14 remains in a
fragment of bone. How old is the bone?

35. Suppose that 90.1% of the normal
amount of carbon-14 remains in a piece
of wood. How old is the wood?

36. Suppose that 83.6% of the normal
amount of carbon-14 remains in a piece
of cloth. How old is the cloth?

37. Suppose that only 6.2% of the nor-
mal amount of carbon-14 remains in a
fragment of bone. How old is the bone?

38. Suppose that only 1.3% of the nor-
mal amount of carbon-14 remains in a
fragment of bone. How old is the bone?

39. Suppose that 96.7% of the normal
amount of carbon-14 remains in a piece
of cloth. How old is the cloth?

40. Suppose that 84.9% of the normal
amount of carbon-14 remains in a piece
of wood. How old is the wood?
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8.7 Answers

1. 7610 people

3. 12.39 yrs

5. 8.66 yrs

7. 3.98 yrs

9. 90.11g

11. 23.10 yrs

13. 141.10g

15. 34.66 yrs

17. 3.67 yrs

19. 30.05g

21. 19.80g

23. 8, 951 people

25. 4, 463 people

27. 13.33 yrs

29. 15.66 yrs

31. 10, 654 people

33. 20445 years

35. 869 years

37. 23172 years

39. 280 years
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8.8 Exercises

In Exercises 1-10, compute the value
of the expression. Express your answer
in scientific notation c · 10n.

1. 131808

2. 132759

3. 148524

4. 143697

5. 187642

6. 198693

7. 162803

8. 142569

9. 134550

10. 153827

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1
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8.8 Answers

1. 5.691 · 101710

3. 1.649 · 101137

5. 3.329 · 101458

7. 1.740 · 101774

9. 8.084 · 101169
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8.1 Exercises

In Exercises 1-12, compute the exact
value.

1. 3−5

2. 42

3. (3/2)3

4. (2/3)1

5. 6−2

6. 4−3

7. (2/3)−3

8. (1/3)−3

9. 71

10. (3/2)−4

11. (5/6)3

12. 32

In Exercises 13-24, perform each of the
following tasks for the given equation.

i. Load the left- and right-hand sides of
the given equation into Y1 and Y2, re-
spectively. Adjust the WINDOW para-
meters until all points of intersection
(if any) are visible in your viewing
window. Use the intersect utility
in the CALC menu to determine the
coordinates of any points of intersec-
tion.

ii. Make a copy of the image in your
viewing window on your homework
paper. Label and scale each axis with

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

xmin, xmax, ymin, and ymax. Label
each graph with its equation. Drop
dashed vertical lines from each point
of intersection to the x-axis, then shade
and label each solution of the given
equation on the x-axis. Remember
to draw all lines with a ruler.

iii. Solve each problem algebraically. Use
a calculator to approximate any radi-
cals and compare these solutions with
those found in parts (i) and (ii).

13. x2 = 5

14. x2 = 7

15. x2 = −7

16. x2 = −3

17. x3 = −6

18. x3 = −4

19. x4 = 4

20. x4 = −7

21. x5 = 8

22. x5 = 4

23. x6 = −5

24. x6 = 9

In Exercises 25-40, simplify the given
radical expression.

25.
√

49

26.
√

121
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27.
√
−36

28.
√
−100

29. 3√27

30. 3√−1

31. 3√−125

32. 3√64

33. 4√−16

34. 4√81

35. 4√16

36. 4√−625

37. 5√−32

38. 5√243

39. 5√1024

40. 5√−3125

41. Compare and contrast
√

(−2)2 and
(
√
−2)2.

42. Compare and contrast 4
√

(−3)4 and
( 4√−3)4.

43. Compare and contrast 3
√

(−5)3 and
( 3√−5)3.

44. Compare and contrast 5
√

(−2)5 and
( 5√−2)5.

In Exercises 45-56, compute the exact
value.

45. 25− 3
2

46. 16− 5
4

47. 8 4
3

48. 625− 3
4

49. 16 3
2

50. 64 2
3

51. 27 2
3

52. 625 3
4

53. 256 5
4

54. 4− 3
2

55. 256− 3
4

56. 81− 5
4

In Exercises 57-64, simplify the prod-
uct, and write your answer in the form
xr.

57. x 5
4x

5
4

58. x 5
3x−

5
4

59. x− 1
3x

5
2

60. x− 3
5x

3
2

61. x 4
5x−

4
3

62. x− 5
4x

1
2

63. x− 2
5x−

3
2

64. x− 5
4x

5
2

In Exercises 65-72, simplify the quo-
tient, and write your answer in the form
xr.

65. x
− 5

4

x
1
5



Section 8.1 Exponents and Roots 767

Version: Fall 2007

66. x
− 2

3

x
1
4

67. x
− 1

2

x−
3
5

68. x
− 5

2

x
2
5

69. x
3
5

x−
1
4

70. x
1
3

x−
1
2

71. x
− 5

4

x
2
3

72. x
1
3

x
1
2

In Exercises 73-80, simplify the expres-
sion, and write your answer in the form
xr.

73.
(
x

1
2
) 4

3

74.
(
x−

1
2
)− 1

2

75.
(
x−

5
4
) 1

2

76.
(
x−

1
5
)− 3

2

77.
(
x−

1
2
) 3

2

78.
(
x−

1
3
)− 1

2

79.
(
x

1
5
)− 1

2

80.
(
x

2
5
)− 1

5
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8.1 Solutions

1. 3−5 = 1
35 = 1

243

3.
(3

2

)3
= 27

8

5. 6−2 = 1
62 = 1

36

7.
(2

3

)−3
= 1
(2

3
)3 = 1

8
27

= 27
8

9. 71 = 7

11.
(5

6

)3
= 125

216

13. Using a graphing calculator, note that the graph of y = x2 intersects the graph of
y = 5 in two places. The intersect was used to determine the x-values of the points
of intersection. These are labeled on the x-axis on the image that follows.

x
−10 10

y

−10

10
y=x2

y=5

−2.2361 2.2361

To solve the problem algebraically, the solutions of x2 = 5 are called “ square roots of
5” and are denoted

x2 = 5
x = ±

√
5

x ≈ ±2.236067977



Section 8.1 Exponents and Roots

Version: Fall 2007

A calculator was used to find the approximation. This result agrees nicely with the
approximations found using the intersect utility above.

15. In the image that follows, note that the graph of y = x2 does not intersect the
graph of y = −7. Therefore, the equation x2 = −7 has no real solutions.

x
−10 10

y

−10

10
y=x2

y=−7

To solve the problem algebraically, note that it is not possible to square a real number
and obtain −7. Therefore, the equation

x2 = −7

has no real solutions.

17. In the image that follows, note that the graph of y = x3 intersects the graph of
y = −6 in one location. The intersect utility on the graphing calculator was used to
find the x-value of this point of intersection and this approximation is placed on the
x-axis.

x
−10 10

y

−10

10 y=x3

y=−6

−1.8171

To solve the problem algebraically, note that the solution of x3 = −6 is called the “cube
root of −6 and is denoted by
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x3 = −6
x = 3√−6
x ≈ −1.817120593

A calculator was used to obtain the last approximation. Note that this approximation
agrees nicely with the approximation found above with the intersect utility.

19. Note that the graph of y = x4 intersects the graph of y = 4 in two places. There-
fore, the equation x4 = 4 has two real solutions, which are found with the calculator’s
intersect utility and labeled on the x-axis of the image that follows.

x
−10 10

y

−10

10 y=x4

y=4

−1.4142 1.4142

To solve the equation algebraically, note that the solutions of x4 = 4 are called “fourth
roots of 4” and are denoted by

x4 = 4
x = ± 4√4
x ≈ ±1.414213562

A calculator was used to find the last approximation. Note that these agree nicely with
the results found with the intersect utility above.

21. Note that the graph of y = x5 intersects the graph of y = 8 in one location.
Hence, the equation x5 = 8 has one real solution, which is found using the intersect
utility and labeled on the x-axis in the image that follows.
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x
−10 10

y

−10

10 y=x5
y=8

1.5157

To solve the equation algebraically, note that the solution of x5 = 8 is called the “fifth
root of 8” and is denoted by

x5 = 8
x = 5√8
x ≈ 1.515716567

The last approximation was found by a calculator and agrees nicely with the approxi-
mation found with the intersect utility above.

23. Note that the graph of y = x6 does not intersect the graph of y = −5. Hence,
the equation x6 = −5 has no real solutions.

x
−10 10

y

−10

10 y=x6

y=−5

To solve the equation algebraically, note that it is not possible to raise a real number
to the sixth power and get −5. Hence, the equation

x6 = −5

has no real solutions.

25. The notation
√

49 calls for the positive square root of 49. Note that 72 = 49.
Thus,

√
49 = 7.
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27. The notation
√
−36 calls for the positive square root of −36. It is not possible to

square a real number and get −36. Therefore,
√
−36 is not a real number.

29. The notation 3√27 calls for the cube root of 27. Note that 33 = 27. Hence,
3√27 = 3.

31. The notation 3√−125 calls for the cube root of −125. Note that (−5)3 = −125.
Hence, 3√−125 = −5.

33. The notation 4√−16 calls for the positive fourth root of −16. Note that it is not
possible to raise a real number to the fourth power and get −16. Thus, 4√−16 is not a
real number.

35. The notation 4√16 calls for the positive fourth root of 16. Note that 24 = 16.
Hence, 4√16 = 2.

37. The notation 5√−32 calls for the fifth root of −32. Note that (−2)5 = −32.
Hence, 5√−32 = −2.

39. The notation 5√1024 calls for the fifth root of 1024. Note that 45 = 1024. Thus,
5√1024 = 4.

41.
√

(−2)2 =
√

4 = 2. However,
√
−2 is not defined, so (

√
−2)2 is not a real number.

43. 3
√

(−5)3 = 3√−125 = −5 and ( 3√−5)3 = −5. Therefore, the two expressions are
equal.

45. 25− 3
2 = 1

25 3
2

= 1
(25 1

2 )3
= 1

53 = 1
125

47. 8 4
3 = (8 1

3 )4 = 24 = 16

49. 16 3
2 = (16 1

2 )3 = 43 = 64

51. 27 2
3 = (27 1

3 )2 = 32 = 9

53. 256 5
4 = (256 1

4 )5 = 45 = 1024

55. 256− 3
4 = 1

256 3
4

= 1
(256 1

4 )3
= 1

43 = 1
64

57. x 5
4x

5
4 = x 5

4 + 5
4 = x 5

2

59. x− 1
3x

5
2 = x− 1

3 + 5
2 = x 13

6

61. x 4
5x−

4
3 = x 4

5−
4
3 = x− 8

15



Section 8.1 Exponents and Roots

Version: Fall 2007

63. x− 2
5x−

3
2 = x− 2

5−
3
2 = x− 19

10

65. x
− 5

4

x
1
5

= x− 5
4−

1
5 = x− 29

20

67. x
− 1

2

x−
3
5

= x− 1
2 + 3

5 = x 1
10

69. x
3
5

x−
1
4

= x 3
5 + 1

4 = x 17
20

71. x
− 5

4

x
2
3

= x− 5
4−

2
3 = x− 23

12

73.
(
x

1
2
) 4

3 = x( 1
2 )( 4

3 ) = x 2
3

75.
(
x−

5
4
) 1

2 = x(− 5
4 )( 1

2 ) = x− 5
8

77.
(
x−

1
2
) 3

2 = x(− 1
2 )( 3

2 ) = x− 3
4

79.
(
x

1
5
)− 1

2 = x( 1
5 )(− 1

2 ) = x− 1
10
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8.2 Exercises

1. The current population of Fortuna
is 10,000 hearty souls. It is known that
the population is growing at a rate of
4% per year. Assuming this rate remains
constant, perform each of the following
tasks.

a. Set up an equation that models the
population P (t) as a function of time
t.

b. Use the model in the previous part to
predict the population 40 years from
now.

c. Use your calculator to sketch the graph
of the population over the next 40
years.

2. The population of the town of Imag-
ination currently numbers 12,000 people.
It is known that the population is grow-
ing at a rate of 6% per year. Assuming
this rate remains constant, perform each
of the following tasks.

a. Set up an equation that models the
population P (t) as a function of time
t.

b. Use the model in the previous part to
predict the population 30 years from
now.

c. Use your calculator to sketch the graph
of the population over the next 30
years.

3. The population of the town of De-
spairia currently numbers 15,000 individ-
uals. It is known that the population is
decaying at a rate of 5% per year. As-
suming this rate remains constant, per-
form each of the following tasks.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

a. Set up an equation that models the
population P (t) as a function of time
t.

b. Use the model in the previous part to
predict the population 50 years from
now.

c. Use your calculator to sketch the graph
of the population over the next 50
years.

4. The population of the town of Hope-
less currently numbers 25,000 individu-
als. It is known that the population is
decaying at a rate of 6% per year. As-
suming this rate remains constant, per-
form each of the following tasks.

a. Set up an equation that models the
population P (t) as a function of time
t.

b. Use the model in the previous part to
predict the population 40 years from
now.

c. Use your calculator to sketch the graph
of the population over the next 40
years.

In Exercises 5-12, perform each of the
following tasks for the given function.

a. Find the y-intercept of the graph of
the function. Also, use your calcula-
tor to find two points on the graph to
the right of the y-axis, and two points
to the left.

b. Using your five points from (a) as a
guide, set up a coordinate system on
graph paper. Choose and label ap-
propriate scales for each axis. Plot
the five points, and any additional
points you feel are necessary to dis-



784 Chapter 8 Exponential and Logarithmic Functions

Version: Fall 2007

cern the shape of the graph.
c. Draw the horizontal asymptote with

a dashed line, and label it with its
equation.

d. Sketch the graph of the function.
e. Use interval notation to describe both

the domain and range of the function.

5. f(x) = (2.5)x

6. f(x) = (0.1)x

7. f(x) = (0.75)x

8. f(x) = (1.1)x

9. f(x) = 3x + 1

10. f(x) = 4x − 5

11. f(x) = 2x − 3

12. f(x) = 5x + 2

In Exercises 13-20, the graph of an ex-
ponential function of the form f(x) =
bx + c is shown. The dashed red line is
a horizontal asymptote. Determine the
range of the function. Express your an-
swer in interval notation.

13.

x

y

5

5

14.

x

y

5

5

15.

x

y

5

5

16.

x

y

5

5

17.

x

y

5

5
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18.

x

y

5

5

19.

x

y

5

5

20.

x

y

5

5

In Exercises 21-32, compute f(p) at the
given value p.

21. f(x) = (1/3)x; p = −4

22. f(x) = (3/4)x; p = 1

23. f(x) = 5x; p = 5

24. f(x) = (1/3)x; p = 4

25. f(x) = 4x; p = −4

26. f(x) = 5x; p = −3

27. f(x) = (5/2)x; p = −3

28. f(x) = 9x; p = 3

29. f(x) = 5x; p = −4

30. f(x) = 9x; p = 0

31. f(x) = (6/5)x; p = −4

32. f(x) = (3/5)x; p = 0

In Exercises 33-40, use your calcula-
tor to evaluate the function at the given
value p. Round your answer to the near-
est hundredth.

33. f(x) = 10x; p = −0.7.

34. f(x) = 10x; p = −1.60.

35. f(x) = (2/5)x; p = 3.67.

36. f(x) = 2x; p = −3/4.

37. f(x) = 10x; p = 2.07.

38. f(x) = 7x; p = 4/3.

39. f(x) = 10x; p = −1/5.

40. f(x) = (4/3)x; p = 1.15.

41. This exercise explores the property
that exponential growth functions even-
tually increase rapidly as x increases. Let
f(x) = 1.05x. Use your graphing calcu-
lator to graph f on the intervals

(a) [0, 10] and (b) [0, 100].
For (a), use Ymin = 0 and Ymax = 10.
For (b), use Ymin = 0 and Ymax = 100.
Make accurate copies of the images in
your viewing window on your homework
paper. What do you observe when you
compare the two graphs?
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8.2 Solutions

1.

a) Let P (t) represent the population t years from now. Then, the initial population
(at time t = 0) is

P (0) = 10 000.

The population is growing at a rate of 4% per year. Therefore, the population
at the end of any year will be 104% of the population at the end of the previous
year. Thus, at the end of the first year, the population will be 104% of the initial
population. In symbols,

P (1) = 1.04P (0) = 1.04(10 000).

At the end of the second year, the population will be 104% of the population at the
end of the first year. In symbols,

P (2) = 1.04P (1) = 1.04(1.04(10 000)) = (1.04)2(10 000).

At the end of the third year, the population will be 104% of the population at the
end of the second year. In symbols,

P (3) = 1.04P (2) = 1.04(1.04)2(10 000) = (1.04)3(10 000).

Thus, the pattern is formed. The population at the end of t years is P (t) =
(1.04)t(10 000), or equivalently,

P (t) = 10 000(1.04)t.

b) To find the population at the end of 40 years, set t = 40 and compute

P (40) = 10 000(1.04)40 ≈ 48 010.

c) The graph of the population over the next 40 years is displayed in the sequence of
calculator snapshots that follow. Note especially how we made appropriate settings
for the domain and range in (b).

(a) (b) (c)
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3.

a) Let P (t) represent the population t years from now. Then, the initial population
(at time t = 0) is

P (0) = 15 000.

The population is decaying at a rate of 5% per year. Therefore, the population
at the end of any year will be 95% of the population at the end of the previous
year. Thus, at the end of the first year, the population will be 95% of the initial
population. In symbols,

P (1) = 0.95P (0) = 0.95(15 000).

At the end of the second year, the population will be 95% of the population at the
end of the first year. In symbols,

P (2) = 0.95P (1) = 0.95(0.95(15 000)) = (0.95)2(15 000).

At the end of the third year, the population will be 95% of the population at the
end of the second year. In symbols,

P (3) = 0.95P (2) = 0.95(0.95)2(15 000) = (0.95)3(15 000).

Thus, the pattern is formed. The population at the end of t years is P (t) =
(0.95)t(15 000), or equivalently,

P (t) = 15 000(0.95)t.

b) To find the population at the end of 50 years, set t = 50 and compute

P (50) = 15 000(0.95)50 ≈ 1 154.

c) The graph of the population over the next 50 years is displayed in the sequence of
calculator snapshots that follow. Note especially how we made appropriate settings
for the domain and range in (b).

(a) (b) (c)
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5.

a) The y-intercept is (0, 1). Evaluate the function at x = 1, 2,−1,−2 to obtain the
points (1, 2.5), (2, 6.25), (−1, 0.4), (−2, 0.16) (other answers are possible).

b) See the graph in part (d).

c) Since the base 1.5 is larger than 1, this is an exponential growth function. Therefore,
y = 0 is a horizontal asymptote on the left side of the graph. See the graph in part
(d).

d)

x3

y
10

y=0

f(x)=(2.5)x

e) Domain = (−∞,∞), Range = (0,∞)

7.

a) The y-intercept is (0, 1). Evaluate the function at x = 1, 2,−1,−2 to obtain the
points (1, 0.75), (2, 0.56), (−1, 1.34), (−2, 1.78) (other answers are possible).

b) See the graph in part (d).

c) Since the base 0.75 is smaller than 1, this is an exponential decay function. There-
fore, y = 0 is a horizontal asymptote on the right side of the graph. See the graph
in part (d).

d)

x5

y
5

y=0

f(x)=(0.75)x



Section 8.2 Exponential Functions

Version: Fall 2007

e) Domain = (−∞,∞), Range = (0,∞)

9.

a) The y-intercept is (0, 2). Evaluate the function at x = 1, 2,−1,−2 to obtain the
points (1, 4), (2, 10), (−1, 1.34), (−2, 1.11) (other answers are possible).

b) See the graph in part (d).

c) The graph of f can be obtained from the graph of p(x) = 3x by a vertical shift
up 1 unit. Therefore, the horizontal asymptote y = 0 of the graph of p will also
be shifted up 1 unit, so the graph of f has a horizontal asymptote y = 1. See the
graph in part (d).

d)

x3

y
20

y=1

f(x)=3x+1

e) Domain = (−∞,∞), Range = (1,∞)

11.

a) The y-intercept is (0,−2). Evaluate the function at x = 1, 2,−1,−2 to obtain the
points (1,−1), (2, 1), (−1,−2.5), (−2,−2.75) (other answers are possible).

b) See the graph in part (d).

c) The graph of f can be obtained from the graph of p(x) = 2x by a vertical shift
down 3 units. Therefore, the horizontal asymptote y = 0 of the graph of p will also
be shifted down 3 units, so the graph of f has a horizontal asymptote y = −3. See
the graph in part (d).
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d)

x5

y
5

y=−3

f(x)=2x−3

e) Domain = (−∞,∞), Range = (−3,∞)

13. Project all points on the graph onto the y-axis. This is shaded in red in the figure
below. Thus, the range is the set of all real numbers greater than −1. In interval
notation, the range equals (−1,∞).

x

y

5

5

15. Project all points on the graph onto the y-axis. This is shaded in red in the
figure below. Thus, the range is the set of all real numbers greater than 2. In interval
notation, the range equals (2,∞).

x

y

5

5
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17. Project all points on the graph onto the y-axis. This is shaded in red in the
figure below. Thus, the range is the set of all real numbers greater than 2. In interval
notation, the range equals (2,∞).

x

y

5

5

19. Project all points on the graph onto the y-axis. This is shaded in red in the figure
below. Thus, the range is the set of all real numbers greater than −2. In interval
notation, the range equals (−2,∞).

x

y

5

5

21. f(−4) =
(1

3

)−4
= 1
(1

3
)4 = 1

1
81

= 81

23. f(5) = 55 = 3125

25. f(−4) = 4−4 = 1
44 = 1

256

27. f(−3) =
(5

2

)−3
= 1
(5

2
)3 = 1

125
8

= 8
125

29. f(−4) = 5−4 = 1
54 = 1

625

31. f(−4) =
(6

5

)−4
= 1
(6

5
)4 = 1

1296
625

= 625
1296

33. Using a calculator, f(−0.7) = 10−0.7 ≈ 0.20.

35. Using a calculator, f(3.67) = (2/5)3.67 ≈ 0.03.
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37. Using a calculator, f(2.07) = 102.07 ≈ 117.49.

39. Using a calculator, f(−1/5) = 10−1/5 ≈ 0.63.

41. a) The graph on the interval [0, 10] increases very slowly. In fact, the graph looks
almost linear.

b) The graph on the interval [0, 100] increases slowly at first, but then increases very
rapidly on the second half of the interval.
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8.3 Exercises

1. Suppose that you invest $15,000 at
7% interest compounded monthly. How
much money will be in your account in 4
years? Round your answer to the nearest
cent.

2. Suppose that you invest $14,000 at
3% interest compounded monthly. How
much money will be in your account in 7
years? Round your answer to the nearest
cent.

3. Suppose that you invest $14,000 at
4% interest compounded daily. How much
money will be in your account in 6 years?
Round your answer to the nearest cent.

4. Suppose that you invest $15,000 at
8% interest compounded monthly. How
much money will be in your account in 8
years? Round your answer to the nearest
cent.

5. Suppose that you invest $4,000 at
3% interest compounded monthly. How
much money will be in your account in 7
years? Round your answer to the nearest
cent.

6. Suppose that you invest $3,000 at
5% interest compounded monthly. How
much money will be in your account in 4
years? Round your answer to the nearest
cent.

7. Suppose that you invest $1,000 at
3% interest compounded monthly. How
much money will be in your account in 4
years? Round your answer to the nearest
cent.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

8. Suppose that you invest $19,000 at
2% interest compounded daily. How much
money will be in your account in 9 years?
Round your answer to the nearest cent.

9. Suppose that you can invest money
at 4% interest compounded monthly. How
much should you invest in order to have
$20,000 in 2 years? Round your answer
to the nearest cent.

10. Suppose that you can invest money
at 6% interest compounded daily. How
much should you invest in order to have
$1,000 in 2 years? Round your answer to
the nearest cent.

11. Suppose that you can invest money
at 3% interest compounded daily. How
much should you invest in order to have
$20,000 in 3 years? Round your answer
to the nearest cent.

12. Suppose that you can invest money
at 3% interest compounded monthly. How
much should you invest in order to have
$10,000 in 7 years? Round your answer
to the nearest cent.

13. Suppose that you can invest money
at 9% interest compounded daily. How
much should you invest in order to have
$4,000 in 9 years? Round your answer to
the nearest cent.

14. Suppose that you can invest money
at 8% interest compounded daily. How
much should you invest in order to have
$18,000 in 6 years? Round your answer
to the nearest cent.
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15. Suppose that you can invest money
at 8% interest compounded daily. How
much should you invest in order to have
$17,000 in 6 years? Round your answer
to the nearest cent.

16. Suppose that you can invest money
at 9% interest compounded daily. How
much should you invest in order to have
$5,000 in 7 years? Round your answer to
the nearest cent.

In Exercises 17-24, evaluate the func-
tion at the given value p. Round your
answer to the nearest hundredth.

17. f(x) = ex; p = 1.57.

18. f(x) = ex; p = 2.61.

19. f(x) = ex; p = 3.07.

20. f(x) = ex; p = −4.33.

21. f(x) = ex; p = 1.42.

22. f(x) = ex; p = −0.8.

23. f(x) = ex; p = 4.75.

24. f(x) = ex; p = 3.60.

25. Suppose that you invest $3,000 at
4% interest compounded continuously. How
much money will be in your account in 9
years? Round your answer to the nearest
cent.

26. Suppose that you invest $8,000 at
8% interest compounded continuously. How
much money will be in your account in 7
years? Round your answer to the nearest
cent.

27. Suppose that you invest $1,000 at
2% interest compounded continuously. How

much money will be in your account in 3
years? Round your answer to the nearest
cent.

28. Suppose that you invest $3,000 at
8% interest compounded continuously. How
much money will be in your account in 4
years? Round your answer to the nearest
cent.

29. Suppose that you invest $15,000 at
2% interest compounded continuously. How
much money will be in your account in 4
years? Round your answer to the nearest
cent.

30. Suppose that you invest $8,000 at
2% interest compounded continuously. How
much money will be in your account in 6
years? Round your answer to the nearest
cent.

31. Suppose that you invest $13,000 at
9% interest compounded continuously. How
much money will be in your account in 8
years? Round your answer to the nearest
cent.

32. Suppose that you invest $16,000 at
4% interest compounded continuously. How
much money will be in your account in 6
years? Round your answer to the nearest
cent.

33. Suppose that you can invest money
at 6% interest compounded continuously.
How much should you invest in order to
have $17,000 in 9 years? Round your
answer to the nearest cent.

34. Suppose that you can invest money
at 8% interest compounded continuously.
How much should you invest in order to
have $5,000 in 6 years? Round your an-
swer to the nearest cent.
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35. Suppose that you can invest money
at 8% interest compounded continuously.
How much should you invest in order to
have $10,000 in 6 years? Round your
answer to the nearest cent.

36. Suppose that you can invest money
at 6% interest compounded continuously.
How much should you invest in order to
have $17,000 in 13 years? Round your
answer to the nearest cent.

37. Suppose that you can invest money
at 2% interest compounded continuously.
How much should you invest in order to
have $13,000 in 8 years? Round your
answer to the nearest cent.

38. Suppose that you can invest money
at 9% interest compounded continuously.
How much should you invest in order to
have $10,000 in 15 years? Round your
answer to the nearest cent.

39. Suppose that you can invest money
at 7% interest compounded continuously.
How much should you invest in order to
have $18,000 in 10 years? Round your
answer to the nearest cent.

40. Suppose that you can invest money
at 9% interest compounded continuously.
How much should you invest in order to
have $14,000 in 12 years? Round your
answer to the nearest cent.
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8.3 Solutions

1.

P (t) = 15000
(

1 + 0.07
12

)12t

=⇒ P (4) = 15000
(

1 + 0.07
12

)(12)(4)
≈ 19830.8081682804

3.

P (t) = 14000
(

1 + 0.04
365

)365t

=⇒ P (6) = 14000
(

1 + 0.04
365

)(365)(6)
≈ 17797.2540739749

5.

P (t) = 4000
(

1 + 0.03
12

)12t

=⇒ P (7) = 4000
(

1 + 0.03
12

)(12)(7)
≈ 4933.41920219694

7.

P (t) = 1000
(

1 + 0.03
12

)12t

=⇒ P (4) = 1000
(

1 + 0.03
12

)(12)(4)
≈ 1127.32802103993

9.

P (t) = P0

(
1 + 0.04

12

)12t
=⇒ P (2) = P0

(
1 + 0.04

12

)(12)(2)

=⇒ 20000 = P0

(
1 + 0.04

12

)(12)(2)

=⇒ 20000
(

1 + 0.04
12

)−(12)(2)
= P0

=⇒ P0 ≈ 18464.7832780335



Section 8.3 Applications of Exponential Functions

Version: Fall 2007

11.

P (t) = P0

(
1 + 0.03

365

)365t
=⇒ P (3) = P0

(
1 + 0.03

365

)(365)(3)

=⇒ 20000 = P0

(
1 + 0.03

365

)(365)(3)

=⇒ 20000
(

1 + 0.03
365

)−(365)(3)
= P0

=⇒ P0 ≈ 18278.6913077117

13.

P (t) = P0

(
1 + 0.09

365

)365t
=⇒ P (9) = P0

(
1 + 0.09

365

)(365)(9)

=⇒ 4000 = P0

(
1 + 0.09

365

)(365)(9)

=⇒ 4000
(

1 + 0.09
365

)−(365)(9)
= P0

=⇒ P0 ≈ 1779.6099440245

15.

P (t) = P0

(
1 + 0.08

365

)365t
=⇒ P (6) = P0

(
1 + 0.08

365

)(365)(6)

=⇒ 17000 = P0

(
1 + 0.08

365

)(365)(6)

=⇒ 17000
(

1 + 0.08
365

)−(365)(6)
= P0

=⇒ P0 ≈ 10519.8709393407

17. Using a calculator, f(1.57) = e1.57 ≈ 4.81.

19. Using a calculator, f(3.07) = e3.07 ≈ 21.54.

21. Using a calculator, f(1.42) = e1.42 ≈ 4.14.

23. Using a calculator, f(4.75) = e4.75 ≈ 115.58.
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25.

P (t) = 3000e0.04t =⇒ P (9) = 3000e(0.04)(9)

=⇒ P (9) ≈ 4299.98824368102

27.

P (t) = 1000e0.02t =⇒ P (3) = 1000e(0.02)(3)

=⇒ P (3) ≈ 1061.83654654536

29.

P (t) = 15000e0.02t =⇒ P (4) = 15000e(0.02)(4)

=⇒ P (4) ≈ 16249.3060151244

31.

P (t) = 13000e0.09t =⇒ P (8) = 13000e(0.09)(8)

=⇒ P (8) ≈ 26707.6317383705

33.

P (t) = P0e
0.06t =⇒ P (9) = P0e

(0.06)(9)

=⇒ 17000 = P0e
(0.06)(9)

=⇒ 17000e−(0.06)(9) = P0

=⇒ P0 ≈ 9906.72029035782

35.

P (t) = P0e
0.08t =⇒ P (6) = P0e

(0.08)(6)

=⇒ 10000 = P0e
(0.08)(6)

=⇒ 10000e−(0.08)(6) = P0

=⇒ P0 ≈ 6187.83391806141

37.

P (t) = P0e
0.02t =⇒ P (8) = P0e

(0.02)(8)

=⇒ 13000 = P0e
(0.02)(8)

=⇒ 13000e−(0.02)(8) = P0

=⇒ P0 ≈ 11077.8692565607
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39.

P (t) = P0e
0.07t =⇒ P (10) = P0e

(0.07)(10)

=⇒ 18000 = P0e
(0.07)(10)

=⇒ 18000e−(0.07)(10) = P0

=⇒ P0 ≈ 8938.53546824537
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8.4 Exercises

In Exercises 1-12, use the graph to de-
termine whether the function is one-to-
one.

1.

x

y

5

5

2.

x

y

5

5

3.

x

y

5

5

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

4.

x

y

5

5

5.

x

y

5

5

6.

x

y

5

5

7.

x

y

5

5
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8.

x

y

5

5

9.

x

y

5

5

10.

x

y

5

5

11.

x

y

5

5

12.

x

y

5

5

In Exercises 13-28, evaluate the com-
position g(f(x)) and simplify your an-
swer.

13. g(x) = 9
x

, f(x) = −2x2 + 5x− 2

14. f(x) = −5
x

, g(x) = −4x2 + x− 1

15. g(x) = 2√x, f(x) = −x− 3

16. f(x) = 3x2 − 3x− 5, g(x) = 6
x

17. g(x) = 3√x, f(x) = 4x+ 1

18. f(x) = −3x− 5, g(x) = −x− 2

19. g(x) = −5x2 + 3x− 4, f(x) = 5
x

20. g(x) = 3x+ 3, f(x) = 4x2− 2x− 2

21. g(x) = 6√x, f(x) = −4x+ 4

22. g(x) = 5x− 3, f(x) = −2x− 4

23. g(x) = 3√x, f(x) = −2x+ 1

24. g(x) = 3
x

, f(x) = −5x2 − 5x− 4

25. f(x) = 5
x

, g(x) = −x+ 1

26. f(x) = 4x2 + 3x− 4, g(x) = 2
x
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27. g(x) = −5x+ 1, f(x) = −3x− 2

28. g(x) = 3x2 + 4x− 3, f(x) = 8
x

In Exercises 29-36, first copy the given
graph of the one-to-one function f(x) onto
your graph paper. Then on the same co-
ordinate system, sketch the graph of the
inverse function f−1(x).

29.

x

y

5

5

30.

x

y

5

5

31.

x

y

5

5

32.

x

y

5

5

33.

x

y

5

5

34.

x

y

5

5

35.

x

y

5

5
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36.

x

y

5

5

In Exercises 37-68, find the formula for
the inverse function f−1(x).

37. f(x) = 5x3 − 5

38. f(x) = 4x7 − 3

39. f(x) = −9x− 3
7x+ 6

40. f(x) = 6x− 4

41. f(x) = 7x− 9

42. f(x) = 7x+ 4

43. f(x) = 3x5 − 9

44. f(x) = 6x+ 7

45. f(x) = 4x+ 2
4x+ 3

46. f(x) = 5x7 + 4

47. f(x) = 4x− 1
2x+ 2

48. f(x) = 7√8x− 3

49. f(x) = 3√−6x− 4

50. f(x) = 8x− 7
3x− 6

51. f(x) = 7√−3x− 5

52. f(x) = 9√8x+ 2

53. f(x) = 3√6x+ 7

54. f(x) = 3x+ 7
2x+ 8

55. f(x) = −5x+ 2

56. f(x) = 6x+ 8

57. f(x) = 9x9 + 5

58. f(x) = 4x5 − 9

59. f(x) = 9x− 3
9x+ 7

60. f(x) = 3√9x− 7

61. f(x) = x4, x ≤ 0

62. f(x) = x4, x ≥ 0

63. f(x) = x2 − 1, x ≤ 0

64. f(x) = x2 + 2, x ≥ 0

65. f(x) = x4 + 3, x ≤ 0

66. f(x) = x4 − 5, x ≥ 0

67. f(x) = (x− 1)2, x ≤ 1

68. f(x) = (x+ 2)2, x ≥ −2
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8.4 Solutions

1. The graph fails the horizontal line test. For example, the horizontal line y = 1 cuts
the graph in more than one place. Therefore, the function not is one-to-one.

x

y

5

5

3. The graph fails the horizontal line test. For example, the horizontal line y = 0 cuts
the graph in more than one place. Therefore, the function not is one-to-one.

x

y

5

5

5. The graph fails the horizontal line test. For example, the horizontal line y = 4 cuts
the graph in more than one place. Therefore, the function not is one-to-one.

x

y

5

5

7. The graph meets the horizontal line test. Every horizontal line intersects the graph
no more than once. Therefore, the function is one-to-one.

9. The graph meets the horizontal line test. Every horizontal line intersects the graph
no more than once. Therefore, the function is one-to-one.
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11. The graph meets the horizontal line test. Every horizontal line intersects the
graph no more than once. Therefore, the function is one-to-one.

13. Substitute f(x) for x in the expression 9
x

and simplify:

g(f(x)) = g(−2x2 + 5x− 2) = − 9
2x2 − 5x+ 2

15. Substitute f(x) for x in the expression 2√x:

g(f(x)) = 2
√
−x− 3

17. Substitute f(x) for x in the expression 3√x:

g(f(x)) = 3
√

4x+ 1

19. Substitute f(x) for x in the expression −5x2 + 3x− 4 and simplify:

g(f(x)) = g
(5
x

)
= −5

(5
x

)2
+ 3
(5
x

)
− 4 = −125

x2 + 15
x
− 4

21. Substitute f(x) for x in the expression 6√x:

g(f(x)) = 6
√
−4x+ 4

23. Substitute f(x) for x in the expression 3√x:

g(f(x)) = 3
√
−2x+ 1

25. Substitute f(x) for x in the expression −x+ 1 and simplify:

g(f(x)) = g(5/x) = −5/x+ 1

27. Substitute f(x) for x in the expression −5x+ 1 and simplify:

g(f(x)) = g(−3x− 2)
= −5(−3x− 2) + 1
= 15x+ 10 + 1
= 15x+ 11
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29. If you reflect the given graph across the line y = x (pictured in black), you obtain
the inverse, shown in red.

x

y

5

5

31. If you reflect the given graph across the line y = x (pictured in black), you obtain
the inverse, shown in red.

x

y

5

5

33. If you reflect the given graph across the line y = x (pictured in black), you obtain
the inverse, shown in red.

x

y

5

5

35. If you reflect the given graph across the line y = x (pictured in black), you obtain
the inverse, shown in red.

x

y

5

5
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37. Start with the equation y = 5x3 − 5.
Interchange x and y: x = 5y3 − 5.

Then solve for y: y = 3
√
x+5

5 .

39. Start with the equation y = −9x− 3
7x+ 6 .

Interchange x and y: x = −9y − 3
7y + 6 .

Then solve for y:

x(7y + 6) = −9y + 3 =⇒ (7x+ 9)y = −6x+ 3 =⇒ y = −6x− 3
7x+ 9

41. Start with the equation y = 7x− 9.
Interchange x and y: x = 7y − 9.
Then solve for y: y = x+9

7 .

43. Start with the equation y = 3x5 − 9.
Interchange x and y: x = 3y5 − 9.

Then solve for y: y = 5
√
x+9

3 .

45. Start with the equation y = 4x+ 2
4x+ 3 .

Interchange x and y: x = 4y + 2
4y + 3 .

Then solve for y:

x(4y + 3) = 4y + 2 =⇒ (4x− 4)y = −3x+ 2 =⇒ y = −3x− 2
4x− 4

47. Start with the equation y = 4x− 1
2x+ 2 .

Interchange x and y: x = 4y − 1
2y + 2 .

Then solve for y:

x(2y + 2) = 4y − 1 =⇒ (2x− 4)y = −2x− 1 =⇒ y = −2x+ 1
2x− 4

49. Start with the equation y = 3√−6x− 4.
Interchange x and y: x = 3√−6y − 4.
Then solve for y: y = −x3+4

6 .
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51. Start with the equation y = 7√−3x− 5.
Interchange x and y: x = 7√−3y − 5.
Then solve for y: y = −x7+5

3 .

53. Start with the equation y = 3√6x+ 7.
Interchange x and y: x = 3√6y + 7.
Then solve for y: y = x3−7

6 .

55. Start with the equation y = −5x+ 2.
Interchange x and y: x = −5y + 2.
Then solve for y: y = −x−2

5 .

57. Start with the equation y = 9x9 + 5.
Interchange x and y: x = 9y9 + 5.

Then solve for y: y = 9
√
x−5

9 .

59. Start with the equation y = 9x− 3
9x+ 7 .

Interchange x and y: x = 9y − 3
9y + 7 .

Then solve for y:

x(9y + 7) = 9y − 3 =⇒ (9x− 9)y = −7x− 3 =⇒ y = −7x+ 3
9x− 9

61. Start with the equation y = x4 with the domain condition x ≤ 0.
Interchange x and y: x = y4, y ≤ 0.
Solve for y: y = ± 4√x, y ≤ 0.
The condition y ≤ 0 then implies that y = − 4√x.

63. Start with the equation y = x2 − 1 with the domain condition x ≤ 0.
Interchange x and y: x = y2 − 1, y ≤ 0.
Solve for y: y = ±

√
x+ 1, y ≤ 0.

The condition y ≤ 0 then implies that y = −
√
x+ 1.

65. Start with the equation y = x4 + 3 with the domain condition x ≤ 0.
Interchange x and y: x = y4 + 3, y ≤ 0.
Solve for y: y = ± 4√x− 3, y ≤ 0.
The condition y ≤ 0 then implies that y = − 4√x− 3.
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67. Start with the equation y = (x− 1)2 with the domain condition x ≤ 1.
Interchange x and y: x = (y − 1)2, y ≤ 1.
Solve for y: y = ±√x+ 1, y ≤ 1.
The condition y ≤ 1 then implies that y = −√x+ 1.
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8.5 Exercises

In Exercises 1-18, find the exact value
of the function at the given value b.

1. f(x) = log3(x); b = 5√3.

2. f(x) = log5(x); b = 3125.

3. f(x) = log2(x); b = 1
16 .

4. f(x) = log2(x); b = 4.

5. f(x) = log5(x); b = 5.

6. f(x) = log2(x); b = 8.

7. f(x) = log2(x); b = 32.

8. f(x) = log4(x); b = 1
16 .

9. f(x) = log5(x); b = 1
3125 .

10. f(x) = log5(x); b = 1
25 .

11. f(x) = log5(x); b = 6√5.

12. f(x) = log3(x); b = 3√3.

13. f(x) = log6(x); b = 6√6.

14. f(x) = log5(x); b = 5√5.

15. f(x) = log2(x); b = 6√2.

16. f(x) = log4(x); b = 1
4 .

17. f(x) = log3(x); b = 1
9 .

18. f(x) = log4(x); b = 64.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

In Exercises 19-26, use a calculator to
evaluate the function at the given value
p. Round your answer to the nearest
hundredth.

19. f(x) = ln(x); p = 10.06.

20. f(x) = ln(x); p = 9.87.

21. f(x) = ln(x); p = 2.40.

22. f(x) = ln(x); p = 9.30.

23. f(x) = log(x); p = 7.68.

24. f(x) = log(x); p = 652.22.

25. f(x) = log(x); p = 6.47.

26. f(x) = log(x); p = 86.19.

In Exercises 27-34, solve the given equa-
tion, and round your answer to the near-
est hundredth.

27. 13 = e8x

28. 2 = 8ex

29. 19 = 108x

30. 17 = 102x

31. 7 = 6(10)x

32. 7 = e9x

33. 13 = 8ex

34. 5 = 7(10)x
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In Exercises 35-42, the graph of a log-
arithmic function of the form f(x) =
logb(x − a) is shown. The dashed red
line is a vertical asymptote. Determine
the domain of the function. Express your
answer in interval notation.

35.

x

y

5

5

36.

x

y

5

5

37.

x

y

5

5

38.

x

y

5

5

39.

x

y

5

5

40.

x

y

5

5

41.

x

y

5

5
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42.

x

y

5

5
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8.5 Solutions

1. f( 5√3) = log3( 5√3) = log3(3 1
5 ) = 1

5 .

3.

f

( 1
16

)
= log2

( 1
16

)

= log2

( 1
24

)

= log2

((1
2

)4
)

= log2
(
2−4)

= −4

5. f(5) = log5(5) = log5(51) = 1.

7. f(32) = log2(32) = log2(25) = 5.

9.

f

( 1
3125

)
= log5

( 1
3125

)

= log5

( 1
55

)

= log5

((1
5

)5
)

= log5
(
5−5)

= −5

11. f( 6√5) = log5( 6√5) = log5(5 1
6 ) = 1

6 .

13. f( 6√6) = log6( 6√6) = log6(6 1
6 ) = 1

6 .

15. f( 6√2) = log2( 6√2) = log2(2 1
6 ) = 1

6 .

17.
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f

(1
9

)
= log3

(1
9

)

= log3

( 1
32

)

= log3

((1
3

)2
)

= log3
(
3−2)

= −2

19. Using a calculator, f(10.06) = ln(10.06) ≈ 2.31.

21. Using a calculator, f(2.40) = ln(2.40) ≈ 0.88.

23. Using a calculator, f(7.68) = log(7.68) ≈ 0.89.

25. Using a calculator, f(6.47) = log(6.47) ≈ 0.81.

27.

13 = e8x =⇒ ln(13) = ln(e8x)
=⇒ ln(13) = 8x

=⇒ x = ln(13)
8 ≈ 0.320618669682692

29.

19 = 108x =⇒ log(19) = log(108x)
=⇒ log(19) = 8x

=⇒ x = log(19)
8 ≈ 0.159844200119104

31.

7 = 6(10)x =⇒ 7
6 = 10x

=⇒ log
(7

6

)
= log(10x)

=⇒ log
(7

6

)
= x

=⇒ x = log
(7

6

)
≈ 0.0669467896306132
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33.

13 = 8ex =⇒ 13
8 = ex

=⇒ ln
(13

8

)
= ln(ex)

=⇒ ln
(13

8

)
= x

=⇒ x = ln
(13

8

)
≈ 0.485507815781701

35. Project all points on the graph onto the x-axis. This is shaded in red in the figure
below. Thus, the domain is the set of all real numbers greater than 0. In interval
notation, the domain equals (0,∞).

x

y

5

5

37. Project all points on the graph onto the x-axis. This is shaded in red in the figure
below. Thus, the domain is the set of all real numbers greater than −1. In interval
notation, the domain equals (−1,∞).

x

y

5

5
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39. Project all points on the graph onto the x-axis. This is shaded in red in the figure
below. Thus, the domain is the set of all real numbers greater than 0. In interval
notation, the domain equals (0,∞).

x

y

5

5

41. Project all points on the graph onto the x-axis. This is shaded in red in the figure
below. Thus, the domain is the set of all real numbers greater than −3. In interval
notation, the domain equals (−3,∞).

x

y

5

5
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8.6 Exercises

In Exercises 1-10, use a calculator to
evaluate the function at the given value
p. Round your answer to the nearest
hundredth.

1. f(x) = log4(x); p = 57.60.

2. f(x) = log4(x); p = 11.22.

3. f(x) = log7(x); p = 2.98.

4. f(x) = log3(x); p = 2.27.

5. f(x) = log6(x); p = 2.56.

6. f(x) = log8(x); p = 289.27.

7. f(x) = log8(x); p = 302.67.

8. f(x) = log5(x); p = 15.70.

9. f(x) = log8(x); p = 46.13.

10. f(x) = log4(x); p = 15.59.

In Exercises 11-18, perform each of the
following tasks.

a) Approximate the solution of the given
equation using your graphing calcu-
lator. Load each side of the equa-
tion into the Y= menu of your calcu-
lator. Adjust the WINDOW parameters
so that the point of intersection of
the graphs is visible in the viewing
window. Use the intersect utility
in the CALC menu of your calculator
to determine the x-coordinate of the
point of intersection. Then make an
accurate copy of the image in your
viewing window on your homework

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

paper.
b) Solve the given equation algebraically,

and round your answer to the nearest
hundredth.

11. 20 = 3(1.2)x

12. 15 = 2(1.8)x

13. 14 = 1.45x

14. 16 = 1.84x

15. −4 = 0.2x − 9

16. 12 = 2.9x + 2

17. 13 = 0.1x+1

18. 19 = 1.2x−6

In Exercises 19-34, solve the given equa-
tion algebraically, and round your an-
swer to the nearest hundredth.

19. 20 = ex−3

20. −4 = ex − 9

21. 23 = 0.9x + 9

22. 10 = ex + 7

23. 19 = ex + 5

24. 4 = 7(2.3)x

25. 18 = ex+4

26. 15 = ex+6

27. 8 = 2.73x
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28. 7 = ex+1

29. 7 = 1.18x

30. 6 = 0.2x−8

31. −7 = 1.3x − 9

32. 11 = 3(0.7)x

33. 23 = ex + 9

34. 20 = 3.2x+1

35. Suppose that you invest $17,000 at
6% interest compounded daily. How many
years will it take for your investment to
double? Round your answer to the near-
est hundredth.

36. Suppose that you invest $6,000 at
9% interest compounded continuously. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

37. Suppose that you invest $16,000 at
6% interest compounded daily. How many
years will it take for your investment to
reach $26,000? Round your answer to
the nearest hundredth.

38. Suppose that you invest $15,000 at
5% interest compounded monthly. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

39. Suppose that you invest $18,000 at
3% interest compounded monthly. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

40. Suppose that you invest $7,000 at
5% interest compounded daily. How many
years will it take for your investment to
reach $13,000? Round your answer to
the nearest hundredth.

41. Suppose that you invest $16,000 at
9% interest compounded continuously. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

42. Suppose that you invest $16,000 at
2% interest compounded continuously. How
many years will it take for your invest-
ment to reach $25,000? Round your an-
swer to the nearest hundredth.

43. Suppose that you invest $2,000 at
5% interest compounded continuously. How
many years will it take for your invest-
ment to reach $10,000? Round your an-
swer to the nearest hundredth.

44. Suppose that you invest $4,000 at
6% interest compounded continuously. How
many years will it take for your invest-
ment to reach $10,000? Round your an-
swer to the nearest hundredth.

45. Suppose that you invest $4,000 at
3% interest compounded daily. How many
years will it take for your investment to
reach $14,000? Round your answer to
the nearest hundredth.

46. Suppose that you invest $13,000 at
2% interest compounded monthly. How
many years will it take for your invest-
ment to reach $20,000? Round your an-
swer to the nearest hundredth.

47. Suppose that you invest $20,000 at
7% interest compounded continuously. How
many years will it take for your invest-
ment to reach $30,000? Round your an-
swer to the nearest hundredth.
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48. Suppose that you invest $16,000 at
4% interest compounded continuously. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

49. Suppose that you invest $8,000 at
8% interest compounded continuously. How
many years will it take for your invest-
ment to double? Round your answer to
the nearest hundredth.

50. Suppose that you invest $3,000 at
3% interest compounded daily. How many
years will it take for your investment to
double? Round your answer to the near-
est hundredth.
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8.6 Solutions

1. Using a calculator,

f(57.60) = log4(57.60) = log(57.60)
log 4 ≈ 2.92399845327748

3. Using a calculator,

f(2.98) = log7(2.98) = log(2.98)
log 7 ≈ 0.561137574130754

5. Using a calculator,

f(2.56) = log6(2.56) = log(2.56)
log 6 ≈ 0.524628039999395

7. Using a calculator,

f(302.67) = log8(302.67) = log(302.67)
log 8 ≈ 2.74720062506472

9. Using a calculator,

f(46.13) = log8(46.13) = log(46.13)
log 8 ≈ 1.84254446243031

11. a) The graphical solution is shown below.

b) Here is an algebraic solution:

20 = 3(1.2)x =⇒ 20
3 = 1.2x

=⇒ log
(20

3

)
= log(1.2x)

=⇒ log
(20

3

)
= x · log(1.2)

=⇒ x =
log
(20

3
)

log(1.2) ≈ 10.4053520507718
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13. a) The graphical solution is shown below.

b) Here is an algebraic solution:

14 = 1.45x =⇒ log(14) = log(1.45x)
=⇒ log(14) = 5x · log(1.4)

=⇒ x = log(14)
5 log(1.4) ≈ 1.5686627557246

15. a) The graphical solution is shown below.

b) Here is an algebraic solution:

− 4 = 0.2x − 9 =⇒ 5 = 0.2x

=⇒ log(5) = log(0.2x)
=⇒ log(5) = x · log(0.2)

=⇒ x = log(5)
log(0.2) ≈ −1.00

17. a) The graphical solution is shown below.
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b) Here is an algebraic solution:

13 = 0.1x+1 =⇒ log(13) = log(0.1x+1)
=⇒ log(13) = (x+ 1) log(0.1)

=⇒ log(13)
log(0.1) = x+ 1

=⇒ x = log(13)
log(0.1) − 1 ≈ −2.11394335230684

19.

20 = ex−3 =⇒ ln(20) = ln(ex−3)
=⇒ ln(20) = x− 3
=⇒ x = ln(20) + 3 ≈ 5.99573227355399

21.

23 = 0.9x + 9 =⇒ 14 = 0.9x

=⇒ log(14) = log(0.9x)
=⇒ log(14) = x · log(0.9)

=⇒ x = log(14)
log(0.9) ≈ −25.0478778804195

23.

19 = ex + 5 =⇒ 14 = ex

=⇒ ln(14) = ln(ex)
=⇒ ln(14) = x
=⇒ x = ln(14) ≈ 2.63905732961526

25.

18 = ex+4 =⇒ ln(18) = ln(ex+4)
=⇒ ln(18) = x+ 4
=⇒ x = ln(18)− 4 ≈ −1.10962824210384
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27.

8 = 2.73x =⇒ log(8) = log(2.73x)
=⇒ log(8) = 3x · log(2.7)

=⇒ x = log(8)
3 log(2.7) ≈ 0.697856474455816

29.

7 = 1.18x =⇒ log(7) = log(1.18x)
=⇒ log(7) = 8x · log(1.1)

=⇒ x = log(7)
8 log(1.1) ≈ 2.55207543550219

31.

− 7 = 1.3x − 9 =⇒ 2 = 1.3x

=⇒ log(2) = log(1.3x)
=⇒ log(2) = x · log(1.3)

=⇒ x = log(2)
log(1.3) ≈ 2.64192679581114

33.

23 = ex + 9 =⇒ 14 = ex

=⇒ ln(14) = ln(ex)
=⇒ ln(14) = x
=⇒ x = ln(14) ≈ 2.63905732961526

35. P (t) = 17000
(
1 + 0.06

365
)365t. Therefore,

34000 = 17000
(

1 + 0.06
365

)365t
=⇒ 2 =

(
1 + 0.06

365

)365t

=⇒ log(2) = log
((

1 + 0.06
365

)365t
)

=⇒ log(2) = 365t log
(

1 + 0.06
365

)

=⇒ t = log(2)
365 log

(
1 + 0.06

365
) ≈ 11.5534025000063
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37. P (t) = 16000
(
1 + 0.06

365
)365t. Therefore,

26000 = 16000
(

1 + 0.06
365

)365t
=⇒ 13

8 =
(

1 + 0.06
365

)365t

=⇒ log
(13

8

)
= log

((
1 + 0.06

365

)365t
)

=⇒ log
(13

8

)
= 365t log

(
1 + 0.06

365

)

=⇒ t = log(13
8 )

365 log
(
1 + 0.06

365
) ≈ 8.09246199067501

39. P (t) = 18000
(
1 + 0.03

12
)12t. Therefore,

36000 = 18000
(

1 + 0.03
12

)12t
=⇒ 2 =

(
1 + 0.03

12

)12t

=⇒ log(2) = log
((

1 + 0.03
12

)12t
)

=⇒ log(2) = 12t log
(

1 + 0.03
12

)

=⇒ t = log(2)
12 log

(
1 + 0.03

12
) ≈ 23.1337751324019

41. P (t) = 16000e0.09t. Therefore,

32000 = 16000e0.09t =⇒ 2 = e0.09t

=⇒ ln(2) = 0.09t

=⇒ t = ln(2)
0.09 ≈ 7.70163533955495

43. P (t) = 2000e0.05t. Therefore,

10000 = 2000e0.05t =⇒ 5 = e0.05t

=⇒ ln (5) = 0.05t

=⇒ t = ln(5)
0.05 ≈ 32.188758248682
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45. P (t) = 4000
(
1 + 0.03

365
)365t. Therefore,

14000 = 4000
(

1 + 0.03
365

)365t
=⇒ 7

2 =
(

1 + 0.03
365

)365t

=⇒ log
(7

2

)
= log

((
1 + 0.03

365

)365t
)

=⇒ log
(7

2

)
= 365t log

(
1 + 0.03

365

)

=⇒ t = log(7
2)

365 log
(
1 + 0.03

365
) ≈ 41.7604817066046

47. P (t) = 20000e0.07t. Therefore,

30000 = 20000e0.07t =⇒ 3
2 = e0.07t

=⇒ ln
(3

2

)
= 0.07t

=⇒ t = ln(3
2)

0.07 ≈ 5.79235868725949

49. P (t) = 8000e0.08t. Therefore,

16000 = 8000e0.08t =⇒ 2 = e0.08t

=⇒ ln(2) = 0.08t

=⇒ t = ln(2)
0.08 ≈ 8.66433975699932
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8.7 Exercises

1. Suppose that the population of a cer-
tain town grows at an annual rate of 6%.
If the population is currently 5, 000, what
will it be in 7 years? Round your answer
to the nearest integer.

2. Suppose that the population of a cer-
tain town grows at an annual rate of 5%.
If the population is currently 2,000, how
many years will it take for it to double?
Round your answer to the nearest hun-
dredth.

3. Suppose that a certain radioactive
isotope has an annual decay rate of 7.2%.
How many years will it take for a 227
gram sample to decay to 93 grams? Round
your answer to the nearest hundredth.

4. Suppose that a certain radioactive
isotope has an annual decay rate of 6.8%.
How many years will it take for a 399
gram sample to decay to 157 grams? Round
your answer to the nearest hundredth.

5. Suppose that the population of a cer-
tain town grows at an annual rate of 8%.
If the population is currently 4,000, how
many years will it take for it to double?
Round your answer to the nearest hun-
dredth.

6. Suppose that a certain radioactive
isotope has an annual decay rate of 19.2%.
Starting with a 443 gram sample, how
many grams will be left after 9 years?
Round your answer to the nearest hun-
dredth.

7. Suppose that a certain radioactive
isotope has an annual decay rate of 17.4%.

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

What is the half-life (in years) of the iso-
tope? Round your answer to the nearest
hundredth.

8. Suppose that the population of a cer-
tain town grows at an annual rate of 7%.
If the population is currently 8,000, how
many years will it take for it to reach
18,000? Round your answer to the near-
est hundredth.

9. Suppose that a certain radioactive
isotope has an annual decay rate of 17.3%.
Starting with a 214 gram sample, how
many grams will be left after 5 years?
Round your answer to the nearest hun-
dredth.

10. Suppose that the population of a
certain town grows at an annual rate of
7%. If the population grows to 2, 000 in
7 years, what was the original popula-
tion? Round your answer to the nearest
integer.

11. Suppose that the population of a
certain town grows at an annual rate of
3%. If the population is currently 3,000,
how many years will it take for it to dou-
ble? Round your answer to the nearest
hundredth.

12. Suppose that a certain radioactive
isotope has an annual decay rate of 12.5%.
Starting with a 127 gram sample, how
many grams will be left after 6 years?
Round your answer to the nearest hun-
dredth.

13. Suppose that a certain radioactive
isotope has an annual decay rate of 13.1%.
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Starting with a 353 gram sample, how
many grams will be left after 7 years?
Round your answer to the nearest hun-
dredth.

14. Suppose that the population of a
certain town grows at an annual rate of
2%. If the population grows to 9, 000 in
4 years, what was the original popula-
tion? Round your answer to the nearest
integer.

15. Suppose that the population of a
certain town grows at an annual rate of
2%. If the population is currently 7,000,
how many years will it take for it to dou-
ble? Round your answer to the nearest
hundredth.

16. Suppose that a certain radioactive
isotope has an annual decay rate of 5.3%.
How many years will it take for a 217
gram sample to decay to 84 grams? Round
your answer to the nearest hundredth.

17. Suppose that a certain radioactive
isotope has an annual decay rate of 18.7%.
How many years will it take for a 324
gram sample to decay to 163 grams? Round
your answer to the nearest hundredth.

18. Suppose that the population of a
certain town grows at an annual rate of
8%. If the population is currently 8,000,
how many years will it take for it to reach
18,000? Round your answer to the near-
est hundredth.

19. Suppose that a certain radioactive
isotope has an annual decay rate of 2.3%.
If a particular sample decays to 25 grams
after 8 years, how big (in grams) was the
original sample? Round your answer to
the nearest hundredth.

20. Suppose that the population of a
certain town grows at an annual rate of
4%. If the population is currently 7,000,
how many years will it take for it to reach
17,000? Round your answer to the near-
est hundredth.

21. Suppose that a certain radioactive
isotope has an annual decay rate of 9.8%.
If a particular sample decays to 11 grams
after 6 years, how big (in grams) was the
original sample? Round your answer to
the nearest hundredth.

22. Suppose that the population of a
certain town grows at an annual rate of
5%. If the population grows to 6, 000 in
3 years, what was the original popula-
tion? Round your answer to the nearest
integer.

23. Suppose that the population of a
certain town grows at an annual rate of
8%. If the population is currently 6, 000,
what will it be in 5 years? Round your
answer to the nearest integer.

24. Suppose that a certain radioactive
isotope has an annual decay rate of 15.8%.
What is the half-life (in years) of the iso-
tope? Round your answer to the nearest
hundredth.

25. Suppose that the population of a
certain town grows at an annual rate of
9%. If the population grows to 7, 000 in
5 years, what was the original popula-
tion? Round your answer to the nearest
integer.

26. Suppose that a certain radioactive
isotope has an annual decay rate of 18.6%.
If a particular sample decays to 41 grams
after 3 years, how big (in grams) was the
original sample? Round your answer to
the nearest hundredth.
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27. Suppose that a certain radioactive
isotope has an annual decay rate of 5.2%.
What is the half-life (in years) of the iso-
tope? Round your answer to the nearest
hundredth.

28. Suppose that a certain radioactive
isotope has an annual decay rate of 6.5%.
What is the half-life (in years) of the iso-
tope? Round your answer to the nearest
hundredth.

29. Suppose that the population of a
certain town grows at an annual rate of
8%. If the population is currently 2,000,
how many years will it take for it to reach
7,000? Round your answer to the nearest
hundredth.

30. Suppose that a certain radioactive
isotope has an annual decay rate of 3.7%.
If a particular sample decays to 47 grams
after 8 years, how big (in grams) was the
original sample? Round your answer to
the nearest hundredth.

31. Suppose that the population of a
certain town grows at an annual rate of
6%. If the population is currently 7, 000,
what will it be in 7 years? Round your
answer to the nearest integer.

32. Suppose that the population of a
certain town grows at an annual rate of
4%. If the population is currently 1, 000,
what will it be in 3 years? Round your
answer to the nearest integer.

In Exercises 33-40, use the fact that
the decay rate of carbon-14 is 0.012%.
Round your answer to the nearest year.

33. Suppose that only 8.6% of the nor-
mal amount of carbon-14 remains in a
fragment of bone. How old is the bone?

34. Suppose that only 5.2% of the nor-
mal amount of carbon-14 remains in a
fragment of bone. How old is the bone?

35. Suppose that 90.1% of the normal
amount of carbon-14 remains in a piece
of wood. How old is the wood?

36. Suppose that 83.6% of the normal
amount of carbon-14 remains in a piece
of cloth. How old is the cloth?

37. Suppose that only 6.2% of the nor-
mal amount of carbon-14 remains in a
fragment of bone. How old is the bone?

38. Suppose that only 1.3% of the nor-
mal amount of carbon-14 remains in a
fragment of bone. How old is the bone?

39. Suppose that 96.7% of the normal
amount of carbon-14 remains in a piece
of cloth. How old is the cloth?

40. Suppose that 84.9% of the normal
amount of carbon-14 remains in a piece
of wood. How old is the wood?
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8.7 Solutions

1.

P (t) = 5000e0.06t =⇒ P (7) = 5000e(0.06)(7)

=⇒ P (7) ≈ 7609.80777809317

3. P (t) = 227e−0.072t. Therefore,

93 = 227e−0.072t =⇒ 93
227 = e−0.072t

=⇒ ln
( 93

227

)
= −0.072t

=⇒ t = ln( 93
227 )

−0.072 ≈ 12.3937572823354

5. P (t) = 4000e0.08t. Therefore,

8000 = 4000e0.08t =⇒ 2 = e0.08t

=⇒ ln(2) = 0.08t

=⇒ t = ln(2)
0.08 ≈ 8.66433975699932

7. P (t) = P0e−0.174t. Therefore,
P0
2 = P0e

−0.174t =⇒ 1
2 = e−0.174t

=⇒ ln(0.5) = −0.174t

=⇒ t = ln(0.5)
−0.174 ≈ 3.9836044859767

9.

P (t) = 214e−0.173t =⇒ P (5) = 214e−(0.173)(5)

=⇒ P (5) ≈ 90.1050322622467
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11. P (t) = 3000e0.03t. Therefore,

6000 = 3000e0.03t =⇒ 2 = e0.03t

=⇒ ln(2) = 0.03t

=⇒ t = ln(2)
0.03 ≈ 23.1049060186648

13.

P (t) = 353e−0.131t =⇒ P (7) = 353e−(0.131)(7)

=⇒ P (7) ≈ 141.099886848361

15. P (t) = 7000e0.02t. Therefore,

14000 = 7000e0.02t =⇒ 2 = e0.02t

=⇒ ln(2) = 0.02t

=⇒ t = ln(2)
0.02 ≈ 34.6573590279973

17. P (t) = 324e−0.187t. Therefore,

163 = 324e−0.187t =⇒ 163
324 = e−0.187t

=⇒ ln
(163

324

)
= −0.187t

=⇒ t = ln(163
324)

−0.187 ≈ 3.67376104270357

19. P (t) = P0e−0.023t. Therefore,

25 = P0e
−(0.023)(8) =⇒ 25e(0.023)(8) = P0

=⇒ P0 ≈ 30.0503955774075

21. P (t) = P0e−0.098t. Therefore,

11 = P0e
−(0.098)(6) =⇒ 11e(0.098)(6) = P0

=⇒ P0 ≈ 19.8042244855375

23.

P (t) = 6000e0.08t =⇒ P (5) = 6000e(0.08)(5)

=⇒ P (5) ≈ 8950.94818584762
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25. P (t) = P0e0.09t. Therefore,

7, 000 = P0e
(0.09)(5) =⇒ 7, 000e−(0.09)(5) = P0

=⇒ P0 ≈ 4463.39706135241

27. P (t) = P0e−0.052t. Therefore,
P0
2 = P0e

−0.052t =⇒ 1
2 = e−0.052t

=⇒ ln(0.5) = −0.052t

=⇒ t = ln(0.5)
−0.052 ≈ 13.3297534723066

29. P (t) = 2000e0.08t. Therefore,

7000 = 2000e0.08t =⇒ 7
2 = e0.08t

=⇒ ln
(7

2

)
= 0.08t

=⇒ t = ln(7
2)

0.08 ≈ 15.6595371061921

31.

P (t) = 7000e0.06t =⇒ P (7) = 7000e(0.06)(7)

=⇒ P (7) ≈ 10653.7308893304

33. P (t) = P0e−0.00012t. Therefore,

0.086P0 = P0e
−0.00012t =⇒ 0.086P0 = P0e

−0.00012t

=⇒ ln (0.086) = −0.00012t

=⇒ t = ln(0.086)
−0.00012 ≈ 20445.0665227386

35. P (t) = P0e−0.00012t. Therefore,

0.901P0 = P0e
−0.00012t =⇒ 0.901P0 = P0e

−0.00012t

=⇒ ln (0.901) = −0.00012t

=⇒ t = ln(0.901)
−0.00012 ≈ 868.750178114994



Section 8.7 Exponential Growth and Decay

Version: Fall 2007

37. P (t) = P0e−0.00012t. Therefore,

0.062P0 = P0e
−0.00012t =⇒ 0.062P0 = P0e

−0.00012t

=⇒ ln (0.062) = −0.00012t

=⇒ t = ln(0.062)
−0.00012 ≈ 23171.8407828087

39. P (t) = P0e−0.00012t. Therefore,

0.967P0 = P0e
−0.00012t =⇒ 0.967P0 = P0e

−0.00012t

=⇒ ln (0.967) = −0.00012t

=⇒ t = ln(0.967)
−0.00012 ≈ 279.639862740355
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8.8 Exercises

In Exercises 1-10, compute the value
of the expression. Express your answer
in scientific notation c · 10n.

1. 131808

2. 132759

3. 148524

4. 143697

5. 187642

6. 198693

7. 162803

8. 142569

9. 134550

10. 153827

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1
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8.8 Solutions

1.

y = 131808 =⇒ log(y) = 808 log(131)
=⇒ log(y) = 1710.75520688986
=⇒ y = 101710.75520688986

=⇒ y = 101710+0.755206889857391

=⇒ y = 101710100.755206889857391

=⇒ y ≈ 5.691 · 101710

3.

y = 148524 =⇒ log(y) = 524 log(148)
=⇒ log(y) = 1137.21713886696
=⇒ y = 101137.21713886696

=⇒ y = 101137+0.217138866957384

=⇒ y = 101137100.217138866957384

=⇒ y ≈ 1.649 · 101137

5.

y = 187642 =⇒ log(y) = 642 log(187)
=⇒ log(y) = 1458.52231139643
=⇒ y = 101458.52231139643

=⇒ y = 101458+0.522311396432315

=⇒ y = 101458100.522311396432315

=⇒ y ≈ 3.329 · 101458
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7.

y = 162803 =⇒ log(y) = 803 log(162)
=⇒ log(y) = 1774.24055667773
=⇒ y = 101774.24055667773

=⇒ y = 101774+0.240556677732457

=⇒ y = 101774100.240556677732457

=⇒ y ≈ 1.740 · 101774

9.

y = 134550 =⇒ log(y) = 550 log(134)
=⇒ log(y) = 1169.90763910064
=⇒ y = 101169.90763910064

=⇒ y = 101169+0.907639100644019

=⇒ y = 101169100.907639100644019

=⇒ y ≈ 8.084 · 101169
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9.1 Exercises

In Exercises 1-10, complete each of the
following tasks.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

ii. Complete the table of points for the
given function. Plot each of the points
on your coordinate system, then use
them to help draw the graph of the
given function.

iii. Use different colored pencils to project
all points onto the x- and y-axes to
determine the domain and range. Use
interval notation to describe the do-
main of the given function.

1. f(x) = −√x

x 0 1 4 9
f(x)

2. f(x) =
√
−x

x 0 −1 −4 −9
f(x)

3. f(x) =
√
x+ 2

x −2 −1 2 7
f(x)

4. f(x) =
√

5− x

x −4 1 4 5
f(x)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

5. f(x) = √x+ 2

x 0 1 4 9
f(x)

6. f(x) = √x− 1

x 0 1 4 9
f(x)

7. f(x) =
√
x+ 3 + 2

x −3 −2 1 6
f(x)

8. f(x) =
√
x− 1 + 3

x 1 2 5 10
f(x)

9. f(x) =
√

3− x

x −6 −1 2 3
f(x)

10. f(x) = −
√
x+ 3

x −3 −2 1 6
f(x)
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In Exercises 11-20, perform each of the
following tasks.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Remember to draw all lines with
a ruler.

ii. Use geometric transformations to draw
the graph of the given function on
your coordinate system without the
use of a graphing calculator. Note:
You may check your solution with
your calculator, but you should be
able to produce the graph without
the use of your calculator.

iii. Use different colored pencils to project
the points on the graph of the func-
tion onto the x- and y-axes. Use in-
terval notation to describe the domain
and range of the function.

11. f(x) = √x+ 3

12. f(x) =
√
x+ 3

13. f(x) =
√
x− 2

14. f(x) = √x− 2

15. f(x) =
√
x+ 5 + 1

16. f(x) =
√
x− 2− 1

17. f(x) = −
√
x+ 4

18. f(x) = −√x+ 4

19. f(x) = −√x+ 3

20. f(x) = −
√
x+ 3

21. To draw the graph of the function
f(x) =

√
3− x, perform each of the fol-

lowing steps in sequence without the aid
of a calculator.

i. Set up a coordinate system and sketch

the graph of y = √x. Label the graph
with its equation.

ii. Set up a second coordinate system
and sketch the graph of y =

√
−x.

Label the graph with its equation.
iii. Set up a third coordinate system and

sketch the graph of y =
√
−(x− 3).

Label the graph with its equation. This
is the graph of f(x) =

√
3− x. Use

interval notation to state the domain
and range of this function.

22. To draw the graph of the function
f(x) =

√
−x− 3, perform each of the

following steps in sequence.

i. Set up a coordinate system and sketch
the graph of y = √x. Label the graph
with its equation.

ii. Set up a second coordinate system
and sketch the graph of y =

√
−x.

Label the graph with its equation.
iii. Set up a third coordinate system and

sketch the graph of y =
√
−(x+ 3).

Label the graph with its equation. This
is the graph of f(x) =

√
−x− 3. Use

interval notation to state the domain
and range of this function.

23. To draw the graph of the function
f(x) =

√
−x− 1, perform each of the

following steps in sequence without the
aid of a calculator.

i. Set up a coordinate system and sketch
the graph of y = √x. Label the graph
with its equation.

ii. Set up a second coordinate system
and sketch the graph of y =

√
−x.

Label the graph with its equation.
iii. Set up a third coordinate system and

sketch the graph of y =
√
−(x+ 1).

Label the graph with its equation. This
is the graph of f(x) =

√
−x− 1. Use

interval notation to state the domain
and range of this function.
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24. To draw the graph of the function
f(x) =

√
1− x, perform each of the fol-

lowing steps in sequence.

i. Set up a coordinate system and sketch
the graph of y = √x. Label the graph
with its equation.

ii. Set up a second coordinate system
and sketch the graph of y =

√
−x.

Label the graph with its equation.
iii. Set up a third coordinate system and

sketch the graph of y =
√
−(x− 1).

Label the graph with its equation. This
is the graph of f(x) =

√
1− x. Use

interval notation to state the domain
and range of this function.

In Exercises 25-28, perform each of the
following tasks.

i. Draw the graph of the given func-
tion with your graphing calculator.
Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Label your
graph with its equation. Use the graph
to determine the domain of the func-
tion and describe the domain with in-
terval notation.

ii. Use a purely algebraic approach to
determine the domain of the given
function. Use interval notation to de-
scribe your result. Does it agree with
the graphical result from part (i)?

25. f(x) =
√

2x+ 7

26. f(x) =
√

7 − 2x

27. f(x) =
√

12− 4x

28. f(x) =
√

12 + 2x

In Exercises 29-40, find the domain of
the given function algebraically.

29. f(x) =
√

2x+ 9

30. f(x) =
√
−3x+ 3

31. f(x) =
√
−8x− 3

32. f(x) =
√
−3x+ 6

33. f(x) =
√
−6x− 8

34. f(x) =
√

8x− 6

35. f(x) =
√
−7x+ 2

36. f(x) =
√

8x− 3

37. f(x) =
√

6x+ 3

38. f(x) =
√
x− 5

39. f(x) =
√
−7x− 8

40. f(x) =
√

7x+ 8
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9.1 Answers

1. Domain = [0,∞), Range = (−∞, 0].

x 0 1 4 9
f(x) 0 −1 −2 −3

x
10

y
10

f(x)=−√x

3. Domain = [−2,∞), Range = [0,∞).

x −2 −1 2 7
f(x) 0 1 2 3

x
10

y
10

f(x)=
√
x+2

5. Domain = [0,∞), Range = [2,∞).

x 0 1 4 9
f(x) 2 3 4 5

x
10

y
10

f(x)=√x+2

7. Domain = [−3,∞), Range = [2,∞).

x −3 −2 1 6
f(x) 2 3 4 5

x
10

y
10

f(x)=
√
x+3+2
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9. Domain = (−∞, 3], Range = [0,∞).

x −6 −1 2 3
f(x) 3 2 1 0

x
10

y
10

f(x)=
√

3−x

11. Domain = [0,∞), Range = [3,∞).

x
10

y
10

f(x)=√x+3

13. Domain = [2,∞), Range = [0,∞).

x
10

y
10

f(x)=
√
x−2

15. Domain = [−5,∞), Range = [1,∞).

x
10

y
10

f(x)=
√
x+5+1

17. Domain = [−4,∞), Range = (−∞, 0].

x
10

y
10

f(x)=−
√
x+4

19. Domain = [0,∞), Range = (−∞, 3].

x
10

y
10

f(x)=−√x+3
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21. Domain = (−∞, 3], Range = [0,∞).

x
10

y
10

f(x)=
√

3−x

23. Domain = (−∞,−1], Range = [0,∞).

x
10

y
10

f(x)=
√
−x−1

25. Domain = [−7/2,∞)

x
−10 10

y

−10

10

f(x)=
√

2x+7

−3.5

27. Domain = (−∞, 3]

x
−10 10

y

−10

10
f(x)=

√
12−4x

3

29.
[
−9

2 ,∞
)

31.
(
−∞,−3

8
]

33.
(
−∞,−4

3
]

35.
(
−∞, 2

7
]

37.
[
−1

2 ,∞
)

39.
(
−∞,−8

7
]
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9.2 Exercises

1. Use a calculator to first approximate√
5
√

2. On the same screen, approximate√
10. Report the results on your home-

work paper.

2. Use a calculator to first approximate√
7
√

10. On the same screen, approxi-
mate

√
70. Report the results on your

homework paper.

3. Use a calculator to first approximate√
3
√

11. On the same screen, approxi-
mate

√
33. Report the results on your

homework paper.

4. Use a calculator to first approximate√
5
√

13. On the same screen, approxi-
mate

√
65. Report the results on your

homework paper.

In Exercises 5-20, place each of the rad-
ical expressions in simple radical form.
As in Example 3 in the narrative, check
your result with your calculator.

5.
√

18

6.
√

80

7.
√

112

8.
√

72

9.
√

108

10.
√

54

11.
√

50

12.
√

48

13.
√

245

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

14.
√

150

15.
√

98

16.
√

252

17.
√

45

18.
√

294

19.
√

24

20.
√

32

In Exercises 21-26, use prime factor-
ization (as in Examples 10 and 11 in the
narrative) to assist you in placing the
given radical expression in simple radi-
cal form. Check your result with your
calculator.

21.
√

2016

22.
√

2700

23.
√

14175

24.
√

44000

25.
√

20250

26.
√

3564

In Exercises 27-46, place each of the
given radical expressions in simple rad-
ical form. Make no assumptions about
the sign of the variables. Variables can
either represent positive or negative num-
bers.

27.
√

(6x− 11)4
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28.
√

16h8

29.
√

25f2

30.
√

25j8

31.
√

16m2

32.
√

25a2

33.
√

(7x+ 5)12

34.
√

9w10

35.
√

25x2 − 50x+ 25

36.
√

49x2 − 42x+ 9

37.
√

25x2 + 90x+ 81

38.
√

25f14

39.
√

(3x+ 6)12

40.
√

(9x− 8)12

41.
√

36x2 + 36x+ 9

42.
√

4e2

43.
√

4p10

44.
√

25x12

45.
√

25q6

46.
√

16h12

47. Given that x < 0, place the radical
expression

√
32x6 in simple radical form.

Check your solution on your calculator
for x = −2.

48. Given that x < 0, place the radical
expression

√
54x8 in simple radical form.

Check your solution on your calculator

for x = −2.

49. Given that x < 0, place the radi-
cal expression

√
27x12 in simple radical

form. Check your solution on your cal-
culator for x = −2.

50. Given that x < 0, place the radi-
cal expression

√
44x10 in simple radical

form. Check your solution on your cal-
culator for x = −2.

In Exercises 51-54, follow the lead of
Example 17 in the narrative to simplify
the given radical expression and check
your result with your graphing calcula-
tor.

51. Given that x < 4, place the rad-
ical expression

√
x2 − 8x+ 16 in simple

radical form. Use a graphing calculator
to show that the graphs of the original
expression and your simple radical form
agree for all values of x such that x < 4.

52. Given that x ≥ −2, place the rad-
ical expression

√
x2 + 4x+ 4 in simple

radical form. Use a graphing calculator
to show that the graphs of the original
expression and your simple radical form
agree for all values of x such that x ≥ −2.

53. Given that x ≥ 5, place the radi-
cal expression

√
x2 − 10x+ 25 in simple

radical form. Use a graphing calculator
to show that the graphs of the original
expression and your simple radical form
agree for all values of x such that x ≥ 5.

54. Given that x < −1, place the rad-
ical expression

√
x2 + 2x+ 1 in simple

radical form. Use a graphing calculator
to show that the graphs of the original
expression and your simple radical form
agree for all values of x such that x < −1.
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In Exercises 55-72, place each radical
expression in simple radical form. As-
sume that all variables represent positive
numbers.

55.
√

9d13

56.
√

4k2

57.
√

25x2 + 40x+ 16

58.
√

9x2 − 30x+ 25

59.
√

4j11

60.
√

16j6

61.
√

25m2

62.
√

9e9

63.
√

4c5

64.
√

25z2

65.
√

25h10

66.
√

25b2

67.
√

9s7

68.
√

9e7

69.
√

4p8

70.
√

9d15

71.
√

9q10

72.
√

4w7

In Exercises 73-80, place each given rad-
ical expression in simple radical form. As-
sume that all variables represent positive
numbers.

73.
√

2f5
√

8f3

74.
√

3s3
√

243s3

75.
√

2k7
√

32k3

76.
√

2n9
√

8n3

77.
√

2e9
√

8e3

78.
√

5n9
√

125n3

79.
√

3z5
√

27z3

80.
√

3t7
√

27t3
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9.2 Answers

1.

3.

5. 3
√

2

7. 4
√

7

9. 6
√

3

11. 5
√

2

13. 7
√

5

15. 7
√

2

17. 3
√

5

19. 2
√

6

21. 12
√

14

23. 45
√

7

25. 45
√

10

27. (6x− 11)2

29. 5|f |

31. 4|m|

33. (7x+ 5)6

35. |5x− 5|

37. |5x+ 9|

39. (3x+ 6)6

41. |6x+ 3|

43. 2p4|p|

45. 5q2|q|

47. −4x3√2

49. 3x6√3
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51. −x + 4. The graphs of y = −x +
4 and y =

√
x2 − 8x+ 16 follow. Note

that they agree for x < 4.

53. x− 5. The graphs of y = x− 5 and
y =

√
x2 − 10x+ 25 follow. Note that

they agree for x ≥ 5.

55. 3d6
√
d

57. 5x+ 4

59. 2j5√j

61. 5m

63. 2c2√c

65. 5h5

67. 3s3√s

69. 2p4

71. 3q5

73. 4f4

75. 8k5

77. 4e6

79. 9z4
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9.3 Exercises

1. Use a calculator to first approximate√
5/
√

2. On the same screen, approxi-
mate

√
5/2. Report the results on your

homework paper.

2. Use a calculator to first approximate√
7/
√

5. On the same screen, approxi-
mate

√
7/5. Report the results on your

homework paper.

3. Use a calculator to first approximate√
12/
√

2. On the same screen, approx-
imate

√
6. Report the results on your

homework paper.

4. Use a calculator to first approximate√
15/
√

5. On the same screen, approx-
imate

√
3. Report the results on your

homework paper.

In Exercises 5-16, place each radical ex-
pression in simple radical form. As in
Example 2 in the narrative, check your
result with your calculator.

5.
√

3
8

6.
√

5
12

7.
√

11
20

8.
√

3
2

9.
√

11
18

10.
√

7
5

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

11.
√

4
3

12.
√

16
5

13.
√

49
12

14.
√

81
20

15.
√

100
7

16.
√

36
5

In Exercises 17-28, place each radical
expression in simple radical form. As in
Example 4 in the narrative, check your
result with your calculator.

17. 1√
12

18. 1√
8

19. 1√
20

20. 1√
27

21. 6√
8

22. 4√
12
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23. 5√
20

24. 9√
27

25. 6
2
√

3

26. 10
3
√

5

27. 15
2
√

20

28. 3
2
√

18

In Exercises 29-36, place the given rad-
ical expression in simple form. Use prime
factorization as in Example 8 in the nar-
rative to help you with the calculations.
As in Example 6, check your result with
your calculator.

29. 1√
96

30. 1√
432

31. 1√
250

32. 1√
108

33.
√

5
96

34.
√

2
135

35.
√

2
1485

36.
√

3
280

In Exercises 37-44, place each of the
given radical expressions in simple rad-
ical form. Make no assumptions about
the sign of any variable. Variables can
represent either positive or negative num-
bers.

37.
√

8
x4

38.
√

12
x6

39.
√

20
x2

40.
√

32
x14

41. 2√
8x8

42. 3√
12x6

43. 10√
20x10

44. 12√
6x4

In Exercises 45-48, follow the lead of
Example 8 in the narrative to craft a so-
lution.

45. Given that x < 0, place the radi-
cal expression 6/

√
2x6 in simple radical

form. Check your solution on your cal-
culator for x = −1.

46. Given that x > 0, place the radi-
cal expression 4/

√
12x3 in simple radical

form. Check your solution on your cal-
culator for x = 1.
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47. Given that x > 0, place the radi-
cal expression 8/

√
8x5 in simple radical

form. Check your solution on your cal-
culator for x = 1.

48. Given that x < 0, place the radi-
cal expression 15/

√
20x6 in simple rad-

ical form. Check your solution on your
calculator for x = −1.

In Exercises 49-56, place each of the
radical expressions in simple form. As-
sume that all variables represent positive
numbers.

49.
√

12
x

50.
√

18
x

51.
√

50
x3

52.
√

72
x5

53. 1√
50x

54. 2√
18x

55. 3√
27x3

56. 5√
10x5
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9.3 Answers

1.

3.

5.
√

6/4

7.
√

55/10

9.
√

22/6

11. 2
√

3/3

13. 7
√

3/6

15. 10
√

7/7

17.
√

3/6

19.
√

5/10

21. 3
√

2/2

23.
√

5/2

25.
√

3

27. 3
√

5/4

29.
√

6/24

31.
√

10/50

33.
√

30/24

35.
√

330/495

37. 2
√

2/x2

39. 2
√

5/|x|

41.
√

2/(2x4)

43.
√

5/(x4|x|)

45. −3
√

2/x3

47. 2
√

2x/x3

49. 2
√

3x/x

51. 5
√

2x/x2

53.
√

2x/(10x)

55.
√

3x/(3x2)
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9.4 Exercises

In Exercises 1-14, place each of the rad-
ical expressions in simple radical form.
Check your answer with your calculator.

1. 2(5
√

7)

2. −3(2
√

3)

3. −
√

3(2
√

5)

4.
√

2(3
√

7)

5.
√

3(5
√

6)

6.
√

2(−3
√

10)

7. (2
√

5)(−3
√

3)

8. (−5
√

2)(−2
√

7)

9. (−4
√

3)(2
√

6)

10. (2
√

5)(−3
√

10)

11. (2
√

3)2

12. (−3
√

5)2

13. (−5
√

2)2

14. (7
√

11)2

In Exercises 15-22, use the distributive
property to multiply. Place your final
answer in simple radical form. Check
your result with your calculator.

15. 2(3 +
√

5)

16. −3(4−
√

7)

17. 2(−5 + 4
√

2)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

18. −3(4− 3
√

2)

19.
√

2(2 +
√

2)

20.
√

3(4−
√

6)

21.
√

2(
√

10 +
√

14)

22.
√

3(
√

15−
√

33)

In Exercises 23-30, combine like terms.
Place your final answer in simple radical
form. Check your solution with your cal-
culator.

23. −5
√

2 + 7
√

2

24. 2
√

3 + 3
√

3

25. 2
√

6− 8
√

6

26.
√

7 − 3
√

7

27. 2
√

3− 4
√

2 + 3
√

3

28. 7
√

5 + 2
√

7 − 3
√

5

29. 2
√

3 + 5
√

2− 7
√

3 + 2
√

2

30. 3
√

11− 2
√

7 − 2
√

11 + 4
√

7

In Exercises 31-40, combine like terms
where possible. Place your final answer
in simple radical form. Use your calcu-
lator to check your result.

31.
√

45 +
√

20

32. −4
√

45− 4
√

20

33. 2
√

18−
√

8
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34. −
√

20 + 4
√

45

35. −5
√

27 + 5
√

12

36. 3
√

12− 2
√

27

37. 4
√

20 + 4
√

45

38. −2
√

18− 5
√

8

39. 2
√

45 + 5
√

20

40. 3
√

27 − 4
√

12

In Exercises 41-48, simplify each of the
given rational expressions. Place your fi-
nal answer in simple radical form. Check
your result with your calculator.

41.
√

2− 1√
2

42. 3
√

3− 3√
3

43. 2
√

2− 2√
2

44. 4
√

5− 5√
5

45. 5
√

2 + 3√
2

46. 6
√

3 + 2√
3

47.
√

8− 12√
2
− 3
√

2

48.
√

27 − 6√
3
− 5
√

3

In Exercises 49-60, multiply to expand
each of the given radical expressions. Place
your final answer in simple radical form.
Use your calculator to check your result.

49. (2 +
√

3)(3−
√

3)

50. (5 +
√

2)(2−
√

2)

51. (4 + 3
√

2)(2− 5
√

2)

52. (3 + 5
√

3)(1− 2
√

3)

53. (2 + 3
√

2)(2− 3
√

2)

54. (3 + 2
√

5)(3− 2
√

5)

55. (2
√

3 + 3
√

2)(2
√

3− 3
√

2)

56. (8
√

2 +
√

5)(8
√

2−
√

5)

57. (2 +
√

5)2

58. (3−
√

2)2

59. (
√

3− 2
√

5)2

60. (2
√

3 + 3
√

2)2

In Exercises 61-68, place each of the
given rational expressions in simple rad-
ical form by “rationalizing the denomi-
nator.” Check your result with your cal-
culator.

61. 1√
5 +
√

3

62. 1
2
√

3−
√

2

63. 6
2
√

5−
√

2

64. 9
3
√

3−
√

6
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65. 2 +
√

3
2−
√

3

66. 3−
√

5
3 +
√

5

67.
√

3 +
√

2√
3−
√

2

68. 2
√

3 +
√

2√
3−
√

2

In Exercises 69-76, use the quadratic
formula to find the solutions of the given
equation. Place your solutions in simple
radical form and reduce your solutions to
lowest terms.

69. 3x2 − 8x = 5

70. 5x2 − 2x = 1

71. 5x2 = 2x+ 1

72. 3x2 − 2x = 11

73. 7x2 = 6x+ 2

74. 11x2 + 6x = 4

75. x2 = 2x+ 19

76. 100x2 = 40x− 1

In Exercises 77-80, we will suspend the
usual rule that you should rationalize the
denominator. Instead, just this one time,
rationalize the numerator of the resulting
expression.

77. Given f(x) = √x, evaluate the ex-
pression

f(x)− f(2)
x− 2 ,

and then “rationalize the numerator.”

78. Given f(x) =
√
x+ 2, evaluate the

expression
f(x)− f(3)
x− 3 ,

and then “rationalize the numerator.”

79. Given f(x) = √x, evaluate the ex-
pression

f(x+ h)− f(x)
h

,

and then “rationalize the numerator.”

80. Given f(x) =
√
x− 3, evaluate the

expression
f(x+ h)− f(x)

h
,

and then “rationalize the numerator.”
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9.4 Answers

1. 10
√

7

3. −2
√

15

5. 15
√

2

7. −6
√

15

9. −24
√

2

11. 12

13. 50

15. 6 + 2
√

5

17. −10 + 8
√

2

19. 2
√

2 + 2

21. 2
√

5 + 2
√

7

23. 2
√

2

25. −6
√

6

27. 5
√

3− 4
√

2

29. 7
√

2− 5
√

3

31. 5
√

5

33. 4
√

2

35. −5
√

3

37. 20
√

5

39. 16
√

5

41.
√

2/2

43.
√

2

45. 13
√

2/2

47. −7
√

2

49. 3 +
√

3

51. −22− 14
√

2

53. −14

55. −6

57. 9 + 4
√

5

59. 23− 4
√

15

61.
√

5−
√

3
2

63. 2
√

5 +
√

2
3

65. 7 + 4
√

3

67. 5 + 2
√

6

69. (4±
√

31)/3

71. (1±
√

6)/5

73. (3±
√

23)/7

75. 1± 2
√

5

77. 1
√
x+
√

2

79. 1√
x+ h+√x
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9.5 Exercises

For the rational functions in Exercises 1-
6, perform each of the following tasks.

i. Load the function f and the line y =
k into your graphing calculator. Ad-
just the viewing window so that all
point(s) of intersection of the two graphs
are visible in your viewing window.

ii. Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Label the
graphs with their equations. Remem-
ber to draw all lines with a ruler.

iii. Use the intersect utility to deter-
mine the coordinates of the point(s)
of intersection. Plot the point of in-
tersection on your homework paper
and label it with its coordinates.

iv. Solve the equation f(x) = k alge-
braically. Place your work and so-
lution next to your graph. Do the
solutions agree?

1. f(x) =
√
x+ 3, k = 2

2. f(x) =
√

4− x, k = 3

3. f(x) =
√

7 − 2x, k = 4

4. f(x) =
√

3x+ 5, k = 5

5. f(x) =
√

5 + x, k = 4

6. f(x) =
√

4− x, k = 5

In Exercises 7-12, use an algebraic tech-
nique to solve the given equation. Check
your solutions.

7.
√
−5x+ 5 = 2

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

8.
√

4x+ 6 = 7

9.
√

6x− 8 = 8

10.
√

2x+ 4 = 2

11.
√
−3x+ 1 = 3

12.
√

4x+ 7 = 3

For the rational functions in Exercises 13-
16, perform each of the following tasks.

i. Load the function f and the line y =
k into your graphing calculator. Ad-
just the viewing window so that all
point(s) of intersection of the two graphs
are visible in your viewing window.

ii. Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Label the
graphs with their equations. Remem-
ber to draw all lines with a ruler.

iii. Use the intersect utility to deter-
mine the coordinates of the point(s)
of intersection. Plot the point of in-
tersection on your homework paper
and label it with its coordinates.

iv. Solve the equation f(x) = k alge-
braically. Place your work and so-
lution next to your graph. Do the
solutions agree?

13. f(x) =
√
x+ 3 + x, k = 9

14. f(x) =
√
x+ 6− x, k = 4

15. f(x) =
√
x− 5− x, k = −7

16. f(x) =
√
x+ 5 + x, k = 7
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In Exercises 17-24, use an algebraic tech-
nique to solve the given equation. Check
your solutions.

17.
√
x+ 1 + x = 5

18.
√
x+ 8− x = 8

19.
√
x+ 4 + x = 8

20.
√
x+ 8− x = 2

21.
√
x+ 5− x = 3

22.
√
x+ 5 + x = 7

23.
√
x+ 9− x = 9

24.
√
x+ 7 + x = 5

For the rational functions in Exercises 25-
28, perform each of the following tasks.

i. Load the function f and the line y =
k into your graphing calculator. Ad-
just the viewing window so that all
point(s) of intersection of the two graphs
are visible in your viewing window.

ii. Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Label the
graphs with their equations. Remem-
ber to draw all lines with a ruler.

iii. Use the intersect utility to deter-
mine the coordinates of the point(s)
of intersection. Plot the point of in-
tersection on your homework paper
and label it with its coordinates.

iv. Solve the equation f(x) = k alge-
braically. Place your work and so-
lution next to your graph. Do the
solutions agree?

25. f(x) =
√
x− 1 +

√
x+ 6, k = 7

26. f(x) =
√
x+ 2 +

√
x+ 9, k = 7

27. f(x) =
√
x+ 2 +

√
3x+ 4, k = 2

28. f(x) =
√

6x+ 7 +
√

3x+ 3, k = 1

In Exercises 29-40, use an algebraic tech-
nique to solve the given equation. Check
your solutions.

29.
√
x+ 46−

√
x− 35 = 1

30.
√
x− 16 +

√
x+ 16 = 8

31.
√
x− 19 +

√
x− 6 = 13

32.
√
x+ 31−

√
x+ 12 = 1

33.
√
x− 2−

√
x− 49 = 1

34.
√
x+ 13 +

√
x+ 8 = 5

35.
√
x+ 27 −

√
x− 22 = 1

36.
√
x+ 10 +

√
x+ 13 = 3

37.
√
x+ 30−

√
x− 38 = 2

38.
√
x+ 36−

√
x+ 11 = 1

39.
√
x− 17 +

√
x+ 3 = 10

40.
√
x+ 18 +

√
x+ 13 = 5
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9.5 Answers

1. x = 1

x
10

y
10

f(x)=
√
x+3

y=2(1,2)(1,2)

3. x = −9/2

x
10

y
10

f(x)=
√

7−2x
y=4(−4.5,4)(−4.5,4)

5. x = 11

x
20

y
10

f(x)=
√
x+5
y=4(11,4)(11,4)

7. 1
5

9. 12

11. −8
3

13. x = 6

x
20

y
20

f(x)=
√
x+3+x

y=9(6,9)(6,9)

15. x = 9

x
20

y
20

f(x)=
√
x−5−x

y=−7(9,−7)(9,−7)

17. 3

19. 5

21. −1
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23. −8, −9

25. x = 10

x
20

y
20

f(x)=
√
x−1+

√
x+6

y=7(10,7)(10,7)

27. x = −1

x
20

y
20

f(x)=
√
x+2+

√
3x+4

y=2(−1,2)(−1,2)

29. 1635

31. 55

33. 578

35. 598

37. 294

39. 33
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9.6 Exercises

In Exercises 1-8, state whether or not
the given triple is a Pythagorean Triple.
Give a reason for your answer.

1. (8, 15, 17)

2. (7, 24, 25)

3. (8, 9, 17)

4. (4, 9, 13)

5. (12, 35, 37)

6. (12, 17, 29)

7. (11, 17, 28)

8. (11, 60, 61)

In Exercises 9-16, set up an equation
to model the problem constraints and solve.
Use your answer to find the missing side
of the given right triangle. Include a
sketch with your solution and check your
result.

9.

2
√

3

2

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

10.

2

2

11.

4 8

12.

10

12

13.

2

2
√

3
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14.

12 4
√

3

15.

5 10

16.

8
√

2

8

In Exercises 17-20, set up an equation
that models the problem constraints. Solve
the equation and use the result to answer
the question. Look back and check your
result.

17. The legs of a right triangle are con-
secutive positive integers. The hypotenuse
has length 5. What are the lengths of the
legs?

18. The legs of a right triangle are con-
secutive even integers. The hypotenuse
has length 10. What are the lengths of
the legs?

19. One leg of a right triangle is 1 cen-
timeter less than twice the length of the
first leg. If the length of the hypotenuse
is 17 centimeters, find the lengths of the

legs.

20. One leg of a right triangle is 3 feet
longer than 3 times the length of the first
leg. The length of the hypotenuse is 25
feet. Find the lengths of the legs.

21. Pythagoras is credited with the fol-
lowing formulae that can be used to gen-
erate Pythagorean Triples.

a = m

b = m
2 − 1
2 ,

c = m
2 + 1
2

Use the technique of Example 6 to demon-
strate that the formulae given above will
generate Pythagorean Triples, provided
that m is an odd positive integer larger
than one. Secondly, generate at least
3 instances of Pythagorean Triples with
Pythagoras’s formula.

22. Plato (380 BC) is credited with the
following formulae that can be used to
generate Pythagorean Triples.

a = 2m
b = m2 − 1,
c = m2 + 1

Use the technique of Example 6 to demon-
strate that the formulae given above will
generate Pythagorean Triples, provided
that m is a positive integer larger than
1. Secondly, generate at least 3 instances
of Pythagorean Triples with Plato’s for-
mula.
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In Exercises 23-28, set up an equation
that models the problem constraints. Solve
the equation and use the result to answer
the question. Look back and check your
result.

23. Fritz and Greta are planting a 12-
foot by 18-foot rectangular garden, and
are laying it out using string. They would
like to know the length of a diagonal to
make sure that right angles are formed.
Find the length of a diagonal. Approxi-
mate your answer to within 0.1 feet.

24. Angelina and Markos are planting
a 20-foot by 28-foot rectangular garden,
and are laying it out using string. They
would like to know the length of a diag-
onal to make sure that right angles are
formed. Find the length of a diagonal.
Approximate your answer to within 0.1
feet.

25. The base of a 36-foot long guy wire
is located 16 feet from the base of the
telephone pole that it is anchoring. How
high up the pole does the guy wire reach?
Approximate your answer to within 0.1
feet.

26. The base of a 35-foot long guy wire
is located 10 feet from the base of the
telephone pole that it is anchoring. How
high up the pole does the guy wire reach?
Approximate your answer to within 0.1
feet.

27. A stereo receiver is in a corner of
a 13-foot by 16-foot rectangular room.
Speaker wire will run under a rug, diag-
onally, to a speaker in the far corner. If 3
feet of slack is required on each end, how
long a piece of wire should be purchased?
Approximate your answer to within 0.1
feet.

28. A stereo receiver is in a corner of
a 10-foot by 15-foot rectangular room.
Speaker wire will run under a rug, diag-
onally, to a speaker in the far corner. If 4
feet of slack is required on each end, how
long a piece of wire should be purchased?
Approximate your answer to within 0.1
feet.

In Exercises 29-38, use the distance for-
mula to find the exact distance between
the given points.

29. (−8,−9) and (6,−6)

30. (1, 0) and (−9,−2)

31. (−9, 1) and (−8, 7)

32. (0, 9) and (3, 1)

33. (6,−5) and (−9,−2)

34. (−9, 6) and (1, 4)

35. (−7, 7) and (−3, 6)

36. (−7,−6) and (−2,−4)

37. (4,−3) and (−9, 6)

38. (−7,−1) and (4,−5)

In Exercises 39-42, set up an equation
that models the problem constraints. Solve
the equation and use the result to answer
the question. Look back and check your
result.

39. Find k so that the point (4, k) is
2
√

2 units away from the point (2, 1).

40. Find k so hat the point (k, 1) is
2
√

2 units away from the point (0,−1).
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41. Find k so that the point (k, 1) is√
17 units away from the point (2,−3).

42. Find k so that the point (−1, k) is√
13 units away from the point (−4,−3).

43. Set up a coordinate system on a
sheet of graph paper. Label and scale
each axis. Plot the points P (0, 5) and
Q(4,−3) on your coordinate system.

a) Plot several points that are equidis-
tant from the points P and Q on your
coordinate system. What graph do
you get if you plot all points that are
equidistant from the points P and Q?
Determine the equation of the graph
by examining the resulting image on
your coordinate system.

b) Use the distance formula to find the
equation of the graph of all points
that are equidistant from the points
P and Q. Hint: Let (x, y) represent
an arbitrary point on the graph of all
points equidistant from points P and
Q. Calculate the distances from the
point (x, y) to the points P and Q
separately, then set them equal and
simplify the resulting equation. Note
that this analytical approach should
provide an equation that matches that
found by the graphical approach in
part (a).

44. Set up a coordinate system on a
sheet of graph paper. Label and scale
each axis. Plot the point P (0, 2) and la-
bel it with its coordinates. Draw the line
y = −2 and label it with its equation.

a) Plot several points that are equidis-
tant from the point P and the line
y = −2 on your coordinate system.
What graph do you get if you plot
all points that are equidistant from
the points P and the line y = −2.

b) Use the distance formula to find the
equation of the graph of all points
that are equidistant from the points
P and the line y = −2. Hint: Let
(x, y) represent an arbitrary point on
the graph of all points equidistant from
points P and the line y = −2. Cal-
culate the distances from the point
(x, y) to the points P and the line y =
−2 separately, then set them equal
and simplify the resulting equation.
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45. Copy the following figure onto a
sheet of graph paper. Cut the pieces of
the first figure out with a pair of scis-
sors, then rearrange them to form the
second figure. Explain how this proves
the Pythagorean Theorem.

46. Compare this image to the one that
follows and explain how this proves the
Pythagorean Theorem.

a b

a

b

ab

a

b

c

c
c

c

b a

a

b

ab

b

a

c

c
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9.6 Answers

1. Yes, because 82 + 152 = 172

3. No, because 82 + 92 #= 172

5. Yes, because 122 + 352 = 372

7. No, because 112 + 172 #= 282

9. 4

11. 4
√

3

13. 2
√

2

15. 5
√

3

17. The legs have lengths 3 and 4.

19. The legs have lengths 8 and 15 cen-
timeters.

21. (3, 4, 5), (5, 12, 13), and (7, 24, 25),
with m = 3, 5, and 7, respectively.

23. 21.63 ft

25. 32.25 ft

27. 26.62 ft

29.
√

205

31.
√

37

33.
√

234 = 3
√

26

35.
√

17

37.
√

250 = 5
√

10

39. k = 3, −1.

41. k = 1, 3.

43.

a) In the figure that follows,XP = XQ.

x
−5 10

y

−5

10

P (0,5)P (0,5)

Q(4,−3)Q(4,−3)

y=(1/2)x

X(x,y)X(x,y)

b) y = (1/2)x
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9.1 Exercises

In Exercises 1-10, complete each of the
following tasks.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis.

ii. Complete the table of points for the
given function. Plot each of the points
on your coordinate system, then use
them to help draw the graph of the
given function.

iii. Use different colored pencils to project
all points onto the x- and y-axes to
determine the domain and range. Use
interval notation to describe the do-
main of the given function.

1. f(x) = −√x

x 0 1 4 9
f(x)

2. f(x) =
√
−x

x 0 −1 −4 −9
f(x)

3. f(x) =
√
x+ 2

x −2 −1 2 7
f(x)

4. f(x) =
√

5− x

x −4 1 4 5
f(x)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

5. f(x) = √x+ 2

x 0 1 4 9
f(x)

6. f(x) = √x− 1

x 0 1 4 9
f(x)

7. f(x) =
√
x+ 3 + 2

x −3 −2 1 6
f(x)

8. f(x) =
√
x− 1 + 3

x 1 2 5 10
f(x)

9. f(x) =
√

3− x

x −6 −1 2 3
f(x)

10. f(x) = −
√
x+ 3

x −3 −2 1 6
f(x)
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In Exercises 11-20, perform each of the
following tasks.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each
axis. Remember to draw all lines with
a ruler.

ii. Use geometric transformations to draw
the graph of the given function on
your coordinate system without the
use of a graphing calculator. Note:
You may check your solution with
your calculator, but you should be
able to produce the graph without
the use of your calculator.

iii. Use different colored pencils to project
the points on the graph of the func-
tion onto the x- and y-axes. Use in-
terval notation to describe the domain
and range of the function.

11. f(x) = √x+ 3

12. f(x) =
√
x+ 3

13. f(x) =
√
x− 2

14. f(x) = √x− 2

15. f(x) =
√
x+ 5 + 1

16. f(x) =
√
x− 2− 1

17. f(x) = −
√
x+ 4

18. f(x) = −√x+ 4

19. f(x) = −√x+ 3

20. f(x) = −
√
x+ 3

21. To draw the graph of the function
f(x) =

√
3− x, perform each of the fol-

lowing steps in sequence without the aid
of a calculator.

i. Set up a coordinate system and sketch

the graph of y = √x. Label the graph
with its equation.

ii. Set up a second coordinate system
and sketch the graph of y =

√
−x.

Label the graph with its equation.
iii. Set up a third coordinate system and

sketch the graph of y =
√
−(x− 3).

Label the graph with its equation. This
is the graph of f(x) =

√
3− x. Use

interval notation to state the domain
and range of this function.

22. To draw the graph of the function
f(x) =

√
−x− 3, perform each of the

following steps in sequence.

i. Set up a coordinate system and sketch
the graph of y = √x. Label the graph
with its equation.

ii. Set up a second coordinate system
and sketch the graph of y =

√
−x.

Label the graph with its equation.
iii. Set up a third coordinate system and

sketch the graph of y =
√
−(x+ 3).

Label the graph with its equation. This
is the graph of f(x) =

√
−x− 3. Use

interval notation to state the domain
and range of this function.

23. To draw the graph of the function
f(x) =

√
−x− 1, perform each of the

following steps in sequence without the
aid of a calculator.

i. Set up a coordinate system and sketch
the graph of y = √x. Label the graph
with its equation.

ii. Set up a second coordinate system
and sketch the graph of y =

√
−x.

Label the graph with its equation.
iii. Set up a third coordinate system and

sketch the graph of y =
√
−(x+ 1).

Label the graph with its equation. This
is the graph of f(x) =

√
−x− 1. Use

interval notation to state the domain
and range of this function.
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24. To draw the graph of the function
f(x) =

√
1− x, perform each of the fol-

lowing steps in sequence.

i. Set up a coordinate system and sketch
the graph of y = √x. Label the graph
with its equation.

ii. Set up a second coordinate system
and sketch the graph of y =

√
−x.

Label the graph with its equation.
iii. Set up a third coordinate system and

sketch the graph of y =
√
−(x− 1).

Label the graph with its equation. This
is the graph of f(x) =

√
1− x. Use

interval notation to state the domain
and range of this function.

In Exercises 25-28, perform each of the
following tasks.

i. Draw the graph of the given func-
tion with your graphing calculator.
Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Label your
graph with its equation. Use the graph
to determine the domain of the func-
tion and describe the domain with in-
terval notation.

ii. Use a purely algebraic approach to
determine the domain of the given
function. Use interval notation to de-
scribe your result. Does it agree with
the graphical result from part (i)?

25. f(x) =
√

2x+ 7

26. f(x) =
√

7 − 2x

27. f(x) =
√

12− 4x

28. f(x) =
√

12 + 2x

In Exercises 29-40, find the domain of
the given function algebraically.

29. f(x) =
√

2x+ 9

30. f(x) =
√
−3x+ 3

31. f(x) =
√
−8x− 3

32. f(x) =
√
−3x+ 6

33. f(x) =
√
−6x− 8

34. f(x) =
√

8x− 6

35. f(x) =
√
−7x+ 2

36. f(x) =
√

8x− 3

37. f(x) =
√

6x+ 3

38. f(x) =
√
x− 5

39. f(x) =
√
−7x− 8

40. f(x) =
√

7x+ 8



Chapter 9 Radical Functions

Version: Fall 2007

9.1 Solutions

1. Complete the table for f(x) = −√x.

x 0 1 4 9
f(x) 0 −1 −2 −3

Plot the points in the table and use them to help draw the graph.

x
10

y
10

f(x)=−√x

Project all points on the graph onto the x-axis to determine the domain: Domain =
[0,∞). Project all points on the graph onto the y-axis to determine the range: Range =
(−∞, 0].

3. Complete the table for f(x) =
√
x+ 2.

x −2 −1 2 7
f(x) 0 1 2 3

Plot the points in the table and use them to help draw the graph.

x
10

y
10

f(x)=
√
x+2
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Project all points on the graph onto the x-axis to determine the domain: Domain =
[−2,∞). Project all points on the graph onto the y-axis to determine the range:
Range = [0,∞).

5. Complete the table for f(x) = √x+ 2.

x 0 1 4 9
f(x) 2 3 4 5

Plot the points in the table and use them to draw the graph of f .

x
10

y
10

f(x)=√x+2

Project all points on the graph onto the x-axis to determine the domain: Domain =
[0,∞). Project all points on the graph onto the y-axis to determine the range: Range =
[2,∞).

7. Complete the table for f(x) =
√
x+ 3 + 2.

x −3 −2 1 6
f(x) 2 3 4 5

Plot the points in the table and use them to draw the graph of f .

x
10

y
10

f(x)=
√
x+3+2
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Project all points on the graph onto the x-axis to determine the domain: Domain =
[−3,∞). Project all points on the graph onto the y-axis to determine the range:
Range = [2,∞).

9. Complete the table for f(x) =
√

3− x.

x −6 −1 2 3
f(x) 3 2 1 0

Plot the points in the table and use them to draw the graph of f .

x
10

y
10

f(x)=
√

3−x

Project all points on the graph onto the x-axis to determine the domain: Domain =
(−∞, 3]. Project all points on the graph onto the y-axis to determine the range:
Range = [0,∞).

11. First, plot the graph of y = √x, as shown in (a). Then, add 3 to produce the
equation y = √x+ 3. This will shift the graph of of y = √x upward 3 units, as shown
in (b).

x
10

y
10

x
10

y
10

(a) y = √x. (b) y = √x + 3.

Project all points on the graph onto the x-axis to determine the domain: Domain =
[0,∞). Project all points on the graph onto the y-axis to determine the range: Range =
[3,∞).
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x
10

y
10

f(x)=√x+3

13. First, plot the graph of y = √x, as shown in (a). Then, replace x with x − 2 to
produce the equation y =

√
x− 2. This will shift the graph of of y = √x to the right

2 units, as shown in (b).

x
10

y
10

x
10

y
10

(a) y = √x. (b) y =
√
x− 2.

Project all points on the graph onto the x-axis to determine the domain: Domain =
[2,∞). Project all points on the graph onto the y-axis to determine the range: Range =
[0,∞).

x
10

y
10

f(x)=
√
x−2

15. First, plot the graph of y = √x, as shown in (a). Then, replace x with x + 5 to
produce the equation y =

√
x+ 5. Then add 1 to produce the equation y =

√
x+ 5+1.
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This will shift the graph of of y = √x to the left 5 units, then upward 1 unit, as shown
in (b).

x
10

y
10

x
10

y
10

(a) y = √x. (b) y =
√
x+ 5 + 1.

Project all points on the graph onto the x-axis to determine the domain: Domain =
[−5,∞). Project all points on the graph onto the y-axis to determine the range:
Range = [1,∞).

x
10

y
10

f(x)=
√
x+5+1

17. First, plot the graph of y = √x, as shown in (a). Then, negate to produce the
equation y = −√x. This will reflect the graph of y = √x across the x-axis as shown
in (b). Finally, replace x with x + 4 to produce the equation y = −

√
x+ 4. This will

shift the graph of y = −√x four units to the left, as shown in (c).

x
10

y
10

x
10

y
10

x
10

y
10

(a) y = √x. (b) y = −√x. (c) y = −
√
x+ 4.
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Project all points on the graph onto the x-axis to determine the domain: Domain =
[−4,∞). Project all points on the graph onto the y-axis to determine the range:
Range = (−∞, 0].

x
10

y
10

f(x)=−
√
x+4

19. First, plot the graph of y = √x, as shown in (a). Then, negate to produce the
equation y = −√x. This will reflect the graph of y = √x across the x-axis as shown in
(b). Finally, add 3 to produce the equation y = −√x+ 3. This will shift the graph of
y = −√x three units upward, as shown in (c).

x
10

y
10

x
10

y
10

x
10

y
10

(a) y = √x. (b) y = −√x. (c) y = −√x + 3.

Project all points on the graph onto the x-axis to determine the domain: Domain =
[0,∞). Project all points on the graph onto the y-axis to determine the range: Range =
(−∞, 3].

x
10

y
10

f(x)=−√x+3
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21. First, plot the graph of y = √x, as shown in (a). Then, replace x with −x to
produce the equation y =

√
−x. This will reflect the graph of y = √x across the y-axis,

as shown in (b). Finally, replace x with x− 3 to produce the equation y =
√
−(x− 3).

This will shift the graph of y =
√
−x three units to the right, as shown in (c).

x
10

y
10

x
10

y
10

x
10

y
10

(a) y = √x. (b) y =
√
−x. (c) y =

√
−(x− 3).

Project all points on the graph onto the x-axis to determine the domain: Domain =
(−∞, 3]. Project all points on the graph onto the y-axis to determine the range:
Range = [0,∞).

x
10

y
10

f(x)=
√

3−x

23. First, plot the graph of y = √x, as shown in (a). Then, replace x with −x to
produce the equation y =

√
−x. This will reflect the graph of y = √x across the y-axis,

as shown in (b). Finally, replace x with x+ 1 to produce the equation y =
√
−(x+ 1).

This will shift the graph of y =
√
−x one unit to the left, as shown in (c).
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x
10

y
10

x
10

y
10

x
10

y
10

(a) y = √x. (b) y =
√
−x. (c) y =

√
−(x+ 1).

Project all points on the graph onto the x-axis to determine the domain: Domain =
(−∞,−1]. Project all points on the graph onto the y-axis to determine the range:
Range = [0,∞).

x
10

y
10

f(x)=
√
−x−1

25. We use a graphing calculator to produce the following graph of f(x) =
√

2x+ 7.

x
−10 10

y

−10

10

f(x)=
√

2x+7

−3.5

We estimate that the domain will consist of all real numbers to the right of approxi-
mately −3.5. To find an algebraic solution, note that you cannot take the square root
of a negative number. Hence, the expression under the radical in f(x) =

√
2x+ 7 must

be greater than or equal to zero.
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2x+ 7 ≥ 0
2x ≥ −7
x ≥ −7/2

Hence, the domain is [−7/2,∞).

27. We use a graphing calculator to produce the following graph of f(x) =
√

12− 4x.

x
−10 10

y

−10

10
f(x)=

√
12−4x

3

We estimate that the domain will consist of all real numbers to the left of approximately
3. To find an algebraic solution, note that you cannot take the square root of a negative
number. Hence, the expression under the radical in f(x) =

√
12− 4x must be greater

than or equal to zero.

12− 4x ≥ 0
−4x ≥ −12
x ≤ 3

Hence, the domain is (−∞, 3].

29. The even root of a negative number is not defined as a real number. Thus, 2x+ 9
must be greater than or equal to zero. Since 2x + 9 ≥ 0 implies that x ≥ −9

2 , the
domain is the interval

[
−9

2 ,∞
)
.

31. The even root of a negative number is not defined as a real number. Thus, −8x−3
must be greater than or equal to zero. Since −8x − 3 ≥ 0 implies that x ≤ −3

8 , the
domain is the interval

(
−∞,−3

8
]
.

33. The even root of a negative number is not defined as a real number. Thus, −6x−8
must be greater than or equal to zero. Since −6x − 8 ≥ 0 implies that x ≤ −4

3 , the
domain is the interval

(
−∞,−4

3
]
.

35. The even root of a negative number is not defined as a real number. Thus, −7x+2
must be greater than or equal to zero. Since −7x+2 ≥ 0 implies that x ≤ 2

7 , the domain
is the interval

(
−∞, 2

7
]
.
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37. The even root of a negative number is not defined as a real number. Thus, 6x+ 3
must be greater than or equal to zero. Since 6x + 3 ≥ 0 implies that x ≥ −1

2 , the
domain is the interval

[
−1

2 ,∞
)
.

39. The even root of a negative number is not defined as a real number. Thus, −7x−8
must be greater than or equal to zero. Since −7x − 8 ≥ 0 implies that x ≤ −8

7 , the
domain is the interval

(
−∞,−8

7
]
.
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9.2 Exercises

1. Use a calculator to first approximate√
5
√

2. On the same screen, approximate√
10. Report the results on your home-

work paper.

2. Use a calculator to first approximate√
7
√

10. On the same screen, approxi-
mate

√
70. Report the results on your

homework paper.

3. Use a calculator to first approximate√
3
√

11. On the same screen, approxi-
mate

√
33. Report the results on your

homework paper.

4. Use a calculator to first approximate√
5
√

13. On the same screen, approxi-
mate

√
65. Report the results on your

homework paper.

In Exercises 5-20, place each of the rad-
ical expressions in simple radical form.
As in Example 3 in the narrative, check
your result with your calculator.

5.
√

18

6.
√

80

7.
√

112

8.
√

72

9.
√

108

10.
√

54

11.
√

50

12.
√

48

13.
√

245

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

14.
√

150

15.
√

98

16.
√

252

17.
√

45

18.
√

294

19.
√

24

20.
√

32

In Exercises 21-26, use prime factor-
ization (as in Examples 10 and 11 in the
narrative) to assist you in placing the
given radical expression in simple radi-
cal form. Check your result with your
calculator.

21.
√

2016

22.
√

2700

23.
√

14175

24.
√

44000

25.
√

20250

26.
√

3564

In Exercises 27-46, place each of the
given radical expressions in simple rad-
ical form. Make no assumptions about
the sign of the variables. Variables can
either represent positive or negative num-
bers.

27.
√

(6x− 11)4
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28.
√

16h8

29.
√

25f2

30.
√

25j8

31.
√

16m2

32.
√

25a2

33.
√

(7x+ 5)12

34.
√

9w10

35.
√

25x2 − 50x+ 25

36.
√

49x2 − 42x+ 9

37.
√

25x2 + 90x+ 81

38.
√

25f14

39.
√

(3x+ 6)12

40.
√

(9x− 8)12

41.
√

36x2 + 36x+ 9

42.
√

4e2

43.
√

4p10

44.
√

25x12

45.
√

25q6

46.
√

16h12

47. Given that x < 0, place the radical
expression

√
32x6 in simple radical form.

Check your solution on your calculator
for x = −2.

48. Given that x < 0, place the radical
expression

√
54x8 in simple radical form.

Check your solution on your calculator

for x = −2.

49. Given that x < 0, place the radi-
cal expression

√
27x12 in simple radical

form. Check your solution on your cal-
culator for x = −2.

50. Given that x < 0, place the radi-
cal expression

√
44x10 in simple radical

form. Check your solution on your cal-
culator for x = −2.

In Exercises 51-54, follow the lead of
Example 17 in the narrative to simplify
the given radical expression and check
your result with your graphing calcula-
tor.

51. Given that x < 4, place the rad-
ical expression

√
x2 − 8x+ 16 in simple

radical form. Use a graphing calculator
to show that the graphs of the original
expression and your simple radical form
agree for all values of x such that x < 4.

52. Given that x ≥ −2, place the rad-
ical expression

√
x2 + 4x+ 4 in simple

radical form. Use a graphing calculator
to show that the graphs of the original
expression and your simple radical form
agree for all values of x such that x ≥ −2.

53. Given that x ≥ 5, place the radi-
cal expression

√
x2 − 10x+ 25 in simple

radical form. Use a graphing calculator
to show that the graphs of the original
expression and your simple radical form
agree for all values of x such that x ≥ 5.

54. Given that x < −1, place the rad-
ical expression

√
x2 + 2x+ 1 in simple

radical form. Use a graphing calculator
to show that the graphs of the original
expression and your simple radical form
agree for all values of x such that x < −1.
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In Exercises 55-72, place each radical
expression in simple radical form. As-
sume that all variables represent positive
numbers.

55.
√

9d13

56.
√

4k2

57.
√

25x2 + 40x+ 16

58.
√

9x2 − 30x+ 25

59.
√

4j11

60.
√

16j6

61.
√

25m2

62.
√

9e9

63.
√

4c5

64.
√

25z2

65.
√

25h10

66.
√

25b2

67.
√

9s7

68.
√

9e7

69.
√

4p8

70.
√

9d15

71.
√

9q10

72.
√

4w7

In Exercises 73-80, place each given rad-
ical expression in simple radical form. As-
sume that all variables represent positive
numbers.

73.
√

2f5
√

8f3

74.
√

3s3
√

243s3

75.
√

2k7
√

32k3

76.
√

2n9
√

8n3

77.
√

2e9
√

8e3

78.
√

5n9
√

125n3

79.
√

3z5
√

27z3

80.
√

3t7
√

27t3
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9.2 Solutions

1. Note that
√

5
√

2 =
√

10 ≈ 3.16227766.

3. Note that
√

3
√

11 =
√

33 ≈ 5.744562647.

5.
√

18 =
√

32 · 2 =
√

32
√

2 = 3
√

2

7.
√

112 =
√

42 · 7 =
√

42
√

7 = 4
√

7

9.
√

108 =
√

62 · 3 =
√

62
√

3 = 6
√

3

11.
√

50 =
√

52 · 2 =
√

52
√

2 = 5
√

2

13.
√

245 =
√

72 · 5 =
√

72
√

5 = 7
√

5

15.
√

98 =
√

72 · 2 =
√

72
√

2 = 7
√

2
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17.
√

45 =
√

32 · 5 =
√

32
√

5 = 3
√

5

19.
√

24 =
√

22 · 6 =
√

22
√

6 = 2
√

6

21. Note that 2 + 0 + 1 + 6 = 9, which is divisible by 9. Thus, 2016 is divisible by 9.
Indeed,

2016 = 9 · 224.

The last two digits of 224 are 24, which is divisible by 4. Thus, 224 is divisible by 4.
Indeed, 224 = 4 · 56.

2016 = 9 · 224 = (3 · 3) · (4 · 56).

Continue to primes.

2016 = 3 · 3 · 2 · 2 · 2 · 2 · 2 · 7 = 25 · 32 · 7.

Factor out a perfect square (exponents must be divisible by 2).
√

2016 =
√

25 · 32 · 7 =
√

24 · 32
√

2 · 7 = 22 · 3
√

2 · 7 = 12
√

14

Checking,

23. Money! Anything that ends in 00, 25, 50, or 75 is divisible by 25. Indeed,
14175 = 25 · 567. Further, 5 + 6 + 7 = 18, so 567 is divisible by 9; i.e., 567 = 9 · 63.
Continuing to primes,

14175 = 25 · 567 = 5 · 5 · 9 · 63 = 5 · 5 · 3 · 3 · 3 · 3 · 7.

Factor our a perfect square (exponents divisible by 2).
√

14175 =
√

34 · 52 · 7 =
√

34 · 52
√

7 = 32 · 5
√

7 = 45
√

7
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Checking,

25. Money! Anything that ends in 00, 25, 50, or 75 is divisible by 25. Indeed,
20250 = 25 · 810. Continuing to primes,

20250 = 5 · 5 · 9 · 9 · 10 = 5 · 5 · 3 · 3 · 3 · 3 · 2 · 5.

Factor out a perfect square.
√

20250 =
√

2 · 34 · 53 =
√

34 · 52
√

2 · 5 = 32 · 5
√

2 · 5 = 45
√

10

Checking,

27.
√

(6x− 11)4 =
√

((6x− 11)2)2 = |(6x− 11)2|

However, (6x−11)2 is already nonnegative, so the absolute value bars are unnecessary.
Hence,

√
(6x− 11)4 = (6x− 11)2.

29.
√

25f2 =
√

25
√
f2 = 5|f |

Because f can be any real number, we cannot remove the absolute value bars without
more information.

31.
√

16m2 =
√

42m2 =
√

42
√
m2 = 4|m|

Since the index on the radical is even and, after simplification, the variable is raised to
an odd power, absolute value signs around the simplified variable are necessary.
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33.
√

(7x+ 5)12 =
√

((7x+ 5)6)2 = |(7x+ 5)6|

However, (7x+ 5)6 is already nonnegative, so absolute value signs are unnecessary.
√

(7x+ 5)12 = (7x+ 5)6

35.
√

25x2 − 50x+ 25 =
√

(5x− 5)2 = |5x− 5|

Because x can be any real number, the absolute value signs around the simplified
binomial are necessary.

37.
√

25x2 + 90x+ 81 =
√

(5x+ 9)2 = |5x+ 9|

Because x can be any real number, the absolute value signs around the simplified
binomial are necessary.

39.
√

(3x+ 6)12 =
√

((3x+ 6)6)2 = |(3x+ 6)6|

However, the expression (3x + 6)6 is already nonnegative, so the absolute value bars
are unnecessary.

√
(3x+ 6)12 = (3x+ 6)6

41.
√

36x2 + 36x+ 9 =
√

(6x+ 3)2 = |6x+ 3|

Because x can be any real number, the absolute value signs around the simplified
binomial are necessary.

43.
√

4p10 =
√

4
√

(p5)2 = 2|p5|

Now, we can use the multiplicative property of absolute values and write

2|p5| = 2|p4||p| = 2p4|p|.

Since p can be any real number, absolute value signs around the simplified variable are
necessary.
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45.
√

25q6 =
√

25
√

(q3)2 = 5|q3|

Now, we can use the multiplicative property of absolute values and write

5|q3| = 5|q2||q| = 5q2|q|.

Because q can be any real number, absolute value signs around the simplified variable
are necessary.

47. Factor out a perfect square.
√

32x6 =
√

16x6
√

2 =
√

16
√
x6
√

2 = 4|x3|
√

2

However, |x3| = |x2||x| = x2|x|, since x2 ≥ 0. Thus,
√

32x6 = 4x2|x|
√

2.

If x < 0, then |x| = −x and
√

32x6 = 4x2(−x)
√

2 = −4x3√2.

Checking with x = −2.

49. Factor out a perfect square.
√

27x12 =
√

9x12
√

3 =
√

9
√
x12
√

3 = 3|x6|
√

3.

However, |x6| = x6 since x6 ≥ 0. Thus,
√

27x12 = 3x6√3.

Checking with x = −2.
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51. Factor the perfect square trinomial.
√
x2 − 8x+ 16 =

√
(x− 4)2 = |x− 4|

If x < 4, or equivalently, if x− 4 < 0, then |x− 4| = −(x− 4). Thus,
√
x2 − 8x+ 16 = −x+ 4.

In (b), we’ve drawn the graph of y =
√
x2 − 8x+ 16. In (d), we’ve drawn the graph of

y = −x + 4. Note that the graphs in (b) and (d) agree when x < 4, lending credence
to the fact that

√
x2 − 8x+ 16 = −x+ 4 when x < 4.

(a) (b) (c) (d)

53. Factor the perfect square trinomial.
√
x2 − 10x+ 25 =

√
(x− 5)2 = |x− 5|

If x ≥ 5, or equivalently, x− 5 ≥ 0, then |x− 5| = x− 5. Hence,
√
x2 − 10x+ 25 = x− 5. (1)

In (b), we’ve drawn the graph of y =
√
x2 − 10x+ 25. In (d), we’ve drawn the graph

of y = x− 5. Note that the graphs in (b) and (d) agree when x ≥ 5, lending credence
to the fact that

√
x2 − 10x+ 25 = x− 5 when x ≥ 5.

(a) (b) (c) (d)

55.
√

9d13 =
√

9
√
d12
√
d = 3d6

√
d

57.
√

25x2 + 40x+ 16 =
√

(5x+ 4)2 = 5x+ 4
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59.
√

4j11 =
√

4
√
j10
√
j = 2j5

√
j

61.
√

25m2 =
√

25
√
m2 = 5m

63.
√

4c5 =
√

4c4
√
c = 2c2

√
c

65.
√

25h10 =
√

25
√
h10 = 5h5

67.
√

9s7 =
√

9
√
s6
√
s = 3s3

√
s

69.
√

4p8 =
√

4
√
p8 = 2p4

71.
√

9q10 =
√

9
√
q10 = 3q5

73.
√

2f5
√

8f3 =
√

2 · 8 · f5 · f3 =
√

16f8 =
√

16
√

(f4)2 = 4f4

75.
√

2k7
√

32k3 =
√

2 · 32 · k7 · k3 =
√

64k10 =
√

64
√

(k5)2 = 8k5

77.
√

2e9
√

8e3 =
√

2 · 8 · e9 · e3 =
√

16e12 =
√

16
√

(e6)2 = 4e6

79.
√

3z5
√

27z3 =
√

3 · 27 · z5 · z3 =
√

81z8 =
√

81
√

(z4)2 = 9z4
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9.3 Exercises

1. Use a calculator to first approximate√
5/
√

2. On the same screen, approxi-
mate

√
5/2. Report the results on your

homework paper.

2. Use a calculator to first approximate√
7/
√

5. On the same screen, approxi-
mate

√
7/5. Report the results on your

homework paper.

3. Use a calculator to first approximate√
12/
√

2. On the same screen, approx-
imate

√
6. Report the results on your

homework paper.

4. Use a calculator to first approximate√
15/
√

5. On the same screen, approx-
imate

√
3. Report the results on your

homework paper.

In Exercises 5-16, place each radical ex-
pression in simple radical form. As in
Example 2 in the narrative, check your
result with your calculator.

5.
√

3
8

6.
√

5
12

7.
√

11
20

8.
√

3
2

9.
√

11
18

10.
√

7
5

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

11.
√

4
3

12.
√

16
5

13.
√

49
12

14.
√

81
20

15.
√

100
7

16.
√

36
5

In Exercises 17-28, place each radical
expression in simple radical form. As in
Example 4 in the narrative, check your
result with your calculator.

17. 1√
12

18. 1√
8

19. 1√
20

20. 1√
27

21. 6√
8

22. 4√
12
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23. 5√
20

24. 9√
27

25. 6
2
√

3

26. 10
3
√

5

27. 15
2
√

20

28. 3
2
√

18

In Exercises 29-36, place the given rad-
ical expression in simple form. Use prime
factorization as in Example 8 in the nar-
rative to help you with the calculations.
As in Example 6, check your result with
your calculator.

29. 1√
96

30. 1√
432

31. 1√
250

32. 1√
108

33.
√

5
96

34.
√

2
135

35.
√

2
1485

36.
√

3
280

In Exercises 37-44, place each of the
given radical expressions in simple rad-
ical form. Make no assumptions about
the sign of any variable. Variables can
represent either positive or negative num-
bers.

37.
√

8
x4

38.
√

12
x6

39.
√

20
x2

40.
√

32
x14

41. 2√
8x8

42. 3√
12x6

43. 10√
20x10

44. 12√
6x4

In Exercises 45-48, follow the lead of
Example 8 in the narrative to craft a so-
lution.

45. Given that x < 0, place the radi-
cal expression 6/

√
2x6 in simple radical

form. Check your solution on your cal-
culator for x = −1.

46. Given that x > 0, place the radi-
cal expression 4/

√
12x3 in simple radical

form. Check your solution on your cal-
culator for x = 1.
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47. Given that x > 0, place the radi-
cal expression 8/

√
8x5 in simple radical

form. Check your solution on your cal-
culator for x = 1.

48. Given that x < 0, place the radi-
cal expression 15/

√
20x6 in simple rad-

ical form. Check your solution on your
calculator for x = −1.

In Exercises 49-56, place each of the
radical expressions in simple form. As-
sume that all variables represent positive
numbers.

49.
√

12
x

50.
√

18
x

51.
√

50
x3

52.
√

72
x5

53. 1√
50x

54. 2√
18x

55. 3√
27x3

56. 5√
10x5



Chapter 9 Radical Functions

Version: Fall 2007

9.3 Solutions

1. Both
√

5/
√

2 =
√

5/2 ≈ 1.58113883.

3. Both
√

12/
√

2 =
√

6 ≈ 2.449489743.

5.
√

3
8 =
√

3
8 ·

2
2 =
√

6
16 =

√
6

4

7.
√

11
20 =

√
11
20 ·

5
5 =
√

55
100 =

√
55

10
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9.
√

11
18 =

√
11
18 ·

2
2 =
√

22
36 =

√
22
6

11.
√

4
3 =
√

4
2 ·

3
3 =
√

12
9 =

√
12
3 =

√
4
√

3
3 = 2

√
3

3

13.
√

49
12 =

√
49
12 ·

3
3 =
√

49 · 3
36 =

√
49
√

3
6 = 7

√
3

6

15.
√

100
7 =

√
100
7 ·

7
7 =
√

100 · 7
49 =

√
100
√

7
7 = 10

√
7

7
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17.

1√
12

= 1√
12
·
√

3√
3

=
√

3√
36

=
√

3
6

19.

1√
20

= 1√
20
·
√

5√
5

=
√

5√
100

=
√

5
10

21.

6√
8

= 6√
8
·
√

2√
2

= 6
√

2√
16

= 6
√

2
4 = 3

√
2

2

23.

5√
20

= 5√
20
·
√

5√
5

= 5
√

5√
100

= 5
√

5
10 =

√
5

2
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25.

6
2
√

3
= 6

2
√

3
·
√

3√
3

= 6
√

3
2
√

9
= 6
√

3
6 =

√
3

27.

15
2
√

20
= 15

2
√

20
·
√

5√
5

= 15
√

5
2
√

100
= 15
√

5
20 = 3

√
5

4

29.

1√
96

= 1√
25 · 3

= 1√
25 · 3

·
√

2 · 3√
2 · 3

=
√

2 · 3√
26 · 32

=
√

2 · 3
23 · 3 =

√
6

24

31.

1√
250

= 1√
2 · 53

= 1√
2 · 53

·
√

2 · 5√
2 · 5

=
√

2 · 5√
22 · 54

=
√

2 · 5
2 · 52 =

√
10

50
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33.
√

5
96 =

√
5

25 · 3 =
√

5
25 · 3 ·

2 · 3
2 · 3 =

√
2 · 3 · 5
26 · 32 =

√
2 · 3 · 5
23 · 3 =

√
30

24

35.
√

2
1485 =

√
2

33 · 5 · 11 =
√

2
33 · 5 · 11 ·

3 · 5 · 11
3 · 5 · 11 =

√
2 · 3 · 5 · 11
34 · 52 · 112 =

√
2 · 3 · 5 · 11
32 · 5 · 11 =

√
330

494

37.
√

8
x4 =

√
8√
x4

=
√

4
√

2
|x2| = 2

√
2
x2

39.
√

20
x2 =

√
20√
x2

=
√

4
√

5
|x| = 2

√
5
|x|

41.
2√
8x8

= 2√
8x8
·
√

2√
2

= 2
√

2√
16x8

= 2
√

2
|4x4| = 2

√
2

4x4

43.
10√
20x10

= 10√
20x10

·
√

5√
5

= 10
√

5√
100x10

= 10
√

5
|10x5|

However, |10x5| = |10||x4||x| = 10x4|x|, so

10√
20x10

= 10
√

5
10x4|x| =

√
5

x4|x| .
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45.

6√
2x6

= 6√
2x6
·
√

2√
2

= 6
√

2√
4x6

= 6
√

2
|2x3|

However, |2x3| = |2||x2||x| = 2x2|x|, so

6
√

2
|2x3| = 6

√
2

2x2|x| = 3
√

2
x2|x| .

If x < 0, then |x| = −x and

3
√

2
x2|x| = 3

√
2

x2(−x) = −3
√

2
x3 .

Checking x = −1.

47.

8√
8x5

= 8√
8x5
·
√

2x√
2x

= 8
√

2x√
16x6

= 8
√

2x
|4x3|

However, |4x3| = |4||x2||x| = 4x2|x|, so

8
√

2x
|4x3| = 8

√
2x

4x2|x| = 2
√

2x
x2|x| .

But x > 0, so |x| = x and

2
√

2x
x2|x| = 2

√
2x

x2(x) = 2
√

2x
x3 .

Checking x = 1.
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49.
√

12
x

=
√

12
x
· x
x

=
√

12x
x2 =

√
4
√

3x√
x2

= 2
√

3x
x

51.
√

50
x3 =

√
50
x3 ·
x

x
=
√

50x
x4 =

√
25
√

2x√
x4

= 5
√

2x
x2

53.

1√
50x

= 1√
50x
·
√

2x√
2x

=
√

2x√
100x2

=
√

2x
10x

55.

3√
27x3

= 3√
27x3

·
√

3x√
3x

= 3
√

3x√
81x4

= 3
√

3x
9x2 =

√
3x

3x2
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9.4 Exercises

In Exercises 1-14, place each of the rad-
ical expressions in simple radical form.
Check your answer with your calculator.

1. 2(5
√

7)

2. −3(2
√

3)

3. −
√

3(2
√

5)

4.
√

2(3
√

7)

5.
√

3(5
√

6)

6.
√

2(−3
√

10)

7. (2
√

5)(−3
√

3)

8. (−5
√

2)(−2
√

7)

9. (−4
√

3)(2
√

6)

10. (2
√

5)(−3
√

10)

11. (2
√

3)2

12. (−3
√

5)2

13. (−5
√

2)2

14. (7
√

11)2

In Exercises 15-22, use the distributive
property to multiply. Place your final
answer in simple radical form. Check
your result with your calculator.

15. 2(3 +
√

5)

16. −3(4−
√

7)

17. 2(−5 + 4
√

2)

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

18. −3(4− 3
√

2)

19.
√

2(2 +
√

2)

20.
√

3(4−
√

6)

21.
√

2(
√

10 +
√

14)

22.
√

3(
√

15−
√

33)

In Exercises 23-30, combine like terms.
Place your final answer in simple radical
form. Check your solution with your cal-
culator.

23. −5
√

2 + 7
√

2

24. 2
√

3 + 3
√

3

25. 2
√

6− 8
√

6

26.
√

7 − 3
√

7

27. 2
√

3− 4
√

2 + 3
√

3

28. 7
√

5 + 2
√

7 − 3
√

5

29. 2
√

3 + 5
√

2− 7
√

3 + 2
√

2

30. 3
√

11− 2
√

7 − 2
√

11 + 4
√

7

In Exercises 31-40, combine like terms
where possible. Place your final answer
in simple radical form. Use your calcu-
lator to check your result.

31.
√

45 +
√

20

32. −4
√

45− 4
√

20

33. 2
√

18−
√

8
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34. −
√

20 + 4
√

45

35. −5
√

27 + 5
√

12

36. 3
√

12− 2
√

27

37. 4
√

20 + 4
√

45

38. −2
√

18− 5
√

8

39. 2
√

45 + 5
√

20

40. 3
√

27 − 4
√

12

In Exercises 41-48, simplify each of the
given rational expressions. Place your fi-
nal answer in simple radical form. Check
your result with your calculator.

41.
√

2− 1√
2

42. 3
√

3− 3√
3

43. 2
√

2− 2√
2

44. 4
√

5− 5√
5

45. 5
√

2 + 3√
2

46. 6
√

3 + 2√
3

47.
√

8− 12√
2
− 3
√

2

48.
√

27 − 6√
3
− 5
√

3

In Exercises 49-60, multiply to expand
each of the given radical expressions. Place
your final answer in simple radical form.
Use your calculator to check your result.

49. (2 +
√

3)(3−
√

3)

50. (5 +
√

2)(2−
√

2)

51. (4 + 3
√

2)(2− 5
√

2)

52. (3 + 5
√

3)(1− 2
√

3)

53. (2 + 3
√

2)(2− 3
√

2)

54. (3 + 2
√

5)(3− 2
√

5)

55. (2
√

3 + 3
√

2)(2
√

3− 3
√

2)

56. (8
√

2 +
√

5)(8
√

2−
√

5)

57. (2 +
√

5)2

58. (3−
√

2)2

59. (
√

3− 2
√

5)2

60. (2
√

3 + 3
√

2)2

In Exercises 61-68, place each of the
given rational expressions in simple rad-
ical form by “rationalizing the denomi-
nator.” Check your result with your cal-
culator.

61. 1√
5 +
√

3

62. 1
2
√

3−
√

2

63. 6
2
√

5−
√

2

64. 9
3
√

3−
√

6
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65. 2 +
√

3
2−
√

3

66. 3−
√

5
3 +
√

5

67.
√

3 +
√

2√
3−
√

2

68. 2
√

3 +
√

2√
3−
√

2

In Exercises 69-76, use the quadratic
formula to find the solutions of the given
equation. Place your solutions in simple
radical form and reduce your solutions to
lowest terms.

69. 3x2 − 8x = 5

70. 5x2 − 2x = 1

71. 5x2 = 2x+ 1

72. 3x2 − 2x = 11

73. 7x2 = 6x+ 2

74. 11x2 + 6x = 4

75. x2 = 2x+ 19

76. 100x2 = 40x− 1

In Exercises 77-80, we will suspend the
usual rule that you should rationalize the
denominator. Instead, just this one time,
rationalize the numerator of the resulting
expression.

77. Given f(x) = √x, evaluate the ex-
pression

f(x)− f(2)
x− 2 ,

and then “rationalize the numerator.”

78. Given f(x) =
√
x+ 2, evaluate the

expression
f(x)− f(3)
x− 3 ,

and then “rationalize the numerator.”

79. Given f(x) = √x, evaluate the ex-
pression

f(x+ h)− f(x)
h

,

and then “rationalize the numerator.”

80. Given f(x) =
√
x− 3, evaluate the

expression
f(x+ h)− f(x)

h
,

and then “rationalize the numerator.”
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9.4 Solutions

1. Regroup using the associateive property and simplify.

2(5
√

7) = (2 · 5)
√

7 = 10
√

7

Check.

3. The commutative and associative properties allow us to reorder and regroup.

−
√

3(2
√

5) = 2(−
√

3
√

5) = 2(−
√

15) = −2
√

15

Check.

5. The commutative and associative properties allow us to reorder and regroup.
√

3(5
√

6) = 5(
√

3
√

6) = 5
√

18

This is not in simple form as it is possible to factor out a perfect square.

5
√

18 = 5
√

9
√

2 = 5 · 3
√

2 = 15
√

2

Check.
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7. The commutative and associative properties allow us to reorder and regroup.

(2
√

5)(−3
√

3) = (2 ·−3)(
√

5
√

3) = −6
√

15

Check.

9. The commmutative and associative properties allows us to reorder and regroup.

(−4
√

3)(2
√

6) = (−4 · 2)(
√

3
√

6) = −8
√

18

This answer is not in simple for because we can factor out a perfect square.

−8
√

18 = −8
√

9
√

2 = −8 · 3
√

2 = −24
√

2

Check.

11. Recall that (ab)2 = a2b2.

(2
√

3)2 = (2)2(
√

3)2 = 4 · 3 = 12

Check.
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13. Recall that (ab)2 = a2b2.

(−5
√

2)2 = (−5)2(
√

2)2 = 25 · 2 = 50

Check.

15. Recall the distributive property: a(b+ c) = ab+ ac.

2(3 +
√

5) = 2(3) + 2(
√

5) = 6 + 2
√

5

Check.

17. Recall the distributive property: a(b+ c) = ab+ ac.

2(−5 + 4
√

2) = 2(−5) + 2(4
√

2) = −10 + 8
√

2

Check.

19. Use the distributive property: a(b+ c) = ab+ ac.
√

2(2 +
√

2) =
√

2(2) +
√

2(
√

2) = 2
√

2 +
√

4 = 2
√

2 + 2

Check.
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21. Use the distributive property: a(b+ c) = ab+ ac
√

2(
√

10 +
√

14) =
√

2(
√

10) +
√

2(
√

14) =
√

20 +
√

28

However, this answer is not in simple form because we can factor out perfect squares.
√

20 +
√

28 =
√

4
√

5 +
√

4
√

7 = 2
√

5 + 2
√

7

Check.

23. Use the distributive property to factor out
√

2.

−5
√

2 + 7
√

2 = (−5 + 7)
√

2 = 2
√

2

In practice, we usually just combine −5
√

2 + 7
√

2 much as we do −5x+ 7x = 2x and
simply write −5

√
2 + 7
√

2 = 2
√

2.
Check.

25. Use the distributive property to factor out
√

6.

2
√

6− 8
√

6 = (2− 8)
√

6 = −6
√

6

In practice, we usually just combine 2
√

6 − 8
√

6 much as we do 2x − 8x = −6x and
simply write 2

√
6− 8
√

6 = −6
√

6.
Check.
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27. The commutative and associative properties of addition allows us to reorder and
regroup, then we combine like terms.

2
√

3− 4
√

2 + 3
√

3 = (2
√

3 + 3
√

3)− 4
√

2 = 5
√

3− 4
√

2

Check.

29. The commutative and associative properties of addition allow us to reorder and
regroup, then we can add like terms.

2
√

3 + 5
√

2− 7
√

3 + 2
√

2 = (2
√

3− 7
√

3) + (5
√

2 + 2
√

2) = −5
√

3 + 7
√

2

Check.

31.
√

45 +
√

20 =
√

32 · 5 +
√

22 · 5

= 3
√

5 + 2
√

5

= (3 + 2)
√

5

= 5
√

5

Check.
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33.

2
√

18−
√

8 = 2
√

32 · 2−
√

22 · 2

= 6
√

2− 2
√

2

= (6− 2)
√

2

= 4
√

2

Check.

35.

− 5
√

27 + 5
√

12 = −5
√

32 · 3 + 5
√

22 · 3

= −15
√

3 + 10
√

3

= (−15 + 10)
√

3

= −5
√

3

Check.

37.

4
√

20 + 4
√

45 = 4
√

22 · 5 + 4
√

32 · 5

= 8
√

5 + 12
√

5

= (8 + 12)
√

5

= 20
√

5
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Check.

39.

2
√

45 + 5
√

20 = 2
√

32 · 5 + 5
√

22 · 5

= 6
√

5 + 10
√

5

= (6 + 10)
√

5

= 16
√

5

Check.

41. Place the second term in simple radical form.
√

2− 1√
2

=
√

2− 1√
2
·
√

2√
2

=
√

2−
√

2√
4

=
√

2−
√

2
2

Write each term over a common denominator of 2.
√

2−
√

2
2 =

√
2 · 22 −

√
2

2 = 2
√

2
2 −

√
2

2 =
√

2
2

Check.

43. Place the second term in simple radical form.

2
√

2− 2√
2

= 2
√

2− 2√
2
·
√

2√
2

= 2
√

2− 2
√

2√
4
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Continuing,

2
√

2− 2
√

2
4 = 2

√
2− 2

√
2

2 = 2
√

2−
√

2 =
√

2.

Check.

45. Place the second term in simple radical form.

5
√

2 + 3√
2

= 5
√

2 + 3√
2
·
√

2√
2

= 5
√

2 + 3
√

2√
4

= 5
√

2 + 3
√

2
2

Write equivalent fractions with a common denominator and add.

5
√

2 + 3
√

2
2 = 5

√
2 · 22 + 3

√
2

2 = 10
√

2
2 + 3

√
2

2 = 13
√

2
2

Check.

47. Place the first and second terms in simple radical form.
√

8− 12√
2
− 3
√

2 =
√

4
√

2− 12√
2
·
√

2√
2
− 3
√

2 = 2
√

2− 12
√

2
2 − 3

√
2

Reduce the fractional second term, then combine like terms.

2
√

2− 12
√

2
2 − 3

√
2 = 2

√
2− 6
√

2− 3
√

2 = −7
√

2

Check.
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49. Distribute the second factor times each term of the first factor, then apply the
distributive property a second time.

(2 +
√

3)(3−
√

3) = 2(3−
√

3) +
√

3(3−
√

3) = 6− 2
√

3 + 3
√

3−
√

9

Simplify and combine like terms.

6− 2
√

3 + 3
√

3−
√

9 = 6− 2
√

3 + 3
√

3− 3 = 3 +
√

3

Check.

51. Use the distributive property to multiply the second factor times each term of
the first factor, then use the distributive property a second time.

(4 + 3
√

2)(2− 5
√

2) = 4(2− 5
√

2) + 3
√

2(2− 5
√

2) = 8− 20
√

2 + 6
√

2− 15
√

4

Simplify, then combine like terms.

8− 20
√

2 + 6
√

2− 15
√

4 = 8− 20
√

2 + 6
√

2− 30 = −22− 14
√

2

Check.

53. Here we use the difference of squares pattern: (a+ b)(a− b) = a2 − b2.

(2 + 3
√

2)(2− 3
√

2) = (2)2 − (3
√

2)2

Recall that (ab)2 = a2b2.

(2)2 − (3
√

2)2 = 4− (3)2(
√

2)2 = 4− 9 · 2 = 4− 18 = −14

Check.
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55. Here we use the difference of squares pattern: (a+ b)(a− b) = a2 − b2.

(2
√

3 + 3
√

2)(2
√

3− 3
√

2) = (2
√

3)2 − (3
√

2)2

Recall that (ab)2 = a2b2.

(2
√

3)2 − (3
√

2)2 = (2)2(
√

3)2 − (3)2(
√

2)2 = 4 · 3− 9 · 2 = 12− 18 = −6

Check.

57. Here we use the squaring a binomial pattern: (a+ b)2 = a2 + 2ab+ b2.

(2 +
√

5)2 = (2)2 + 2(2)(
√

5) + (
√

5)2 = 4 + 4
√

5 + 5 = 9 + 4
√

5

Check.

59. Here we use the squaring a binomial pattern: (a − b)2 = a2 − 2ab + b2. Again,
recall that (ab)2 = a2b2.

(
√

3− 2
√

5)2 = (
√

3)2 − 2(
√

3)(2
√

5) + (2
√

5)2 = (
√

3)2 − 2(
√

3)(2
√

5) + (2)2(
√

5)2

Continuing.

(
√

3)2 − 2(
√

3)(2
√

5) + (2)2(
√

5)2 = 3− 4
√

15 + 4 · 5 = 3− 4
√

15 + 20 = 23− 4
√

15

Check.
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61. Multiply numerator and denominator by
√

5−
√

3. Recall the difference of squares
pattern: (a+ b)(a− b) = a2 − b2.

1√
5 +
√

3
= 1√

5 +
√

3
·
√

5−
√

3√
5−
√

3
=

√
5−
√

3
(
√

5)2 − (
√

3)2

Continuing.
√

5−
√

3
(
√

5)2 − (
√

3)2 =
√

5−
√

3
5− 3 =

√
5−
√

3
2

Check.

63. Multiply numerator and denominator by 2
√

5 +
√

2. Recall the difference of
squares pattern: (a+ b)(a− b) = a2 − b2.

6
2
√

5−
√

2
= 6

2
√

5−
√

2
· 2
√

5 +
√

2
2
√

5 +
√

2
= 12

√
5 + 6
√

2
(2
√

5)2 − (
√

2)2

Continuing.

12
√

5 + 6
√

2
(2
√

5)2 − (
√

2)2 = 12
√

5 + 6
√

2
4 · 5− 2 = 12

√
5 + 6
√

2
20− 2 = 12

√
5 + 6
√

2
18

Reduce. Factor the numerator and denominator and cancel.

12
√

5 + 6
√

2
18 = 6(2

√
5 +
√

2)
6 · 3 = 6(2

√
5 +
√

2)
6 · 3 = 2

√
5 +
√

2
3

Alternatively, some like to reduce by dividing numerator and denominator by 6.

12
√

5 + 6
√

2
18 =

12
√

5
6 − 6

√
2

6
18
6

= 2
√

5 +
√

2
3

Check.
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65. Multiply numerator and denominator by 2 +
√

3.
2 +
√

3
2−
√

3
= 2 +

√
3

2−
√

3
· 2 +

√
3

2 +
√

3
= (2 +

√
3)2

(2−
√

3)(2 +
√

3)

Use the squaring a binomial pattern (a+ b)2 = a2 + 2ab+ b2 on the numerator and the
difference of squares pattern (a+ b)(a− b) = a2 − b2 on the denominator.

(2 +
√

3)2

(2−
√

3)(2 +
√

3)
= (2)2 + 2(2)(

√
3) + (

√
3)2

(2)2 − (
√

3)2 (1)

Continuing.
(2)2 + 2(2)(

√
3) + (

√
3)2

(2)2 − (
√

3)2 = 4 + 4
√

3 + 3
4− 3 = 7 + 4

√
3

Check.

67. Multiply numerator and denominator by
√

3 +
√

2.
√

3 +
√

2√
3−
√

2
=
√

3 +
√

2√
3−
√

2
·
√

3 +
√

2√
3 +
√

2
= (

√
3 +
√

2)2

(
√

3−
√

2)(
√

3 +
√

2)

Use the squaring a binomial pattern (a+ b)2 = a2 + 2ab+ b2 on the numerator and the
difference of squares pattern (a+ b)(a− b) = a2 − b2 on the denominator.

(
√

3 +
√

2)2

(
√

3−
√

2)(
√

3 +
√

2)
= (
√

3)2 + 2(
√

3)(
√

2) + (
√

2)2

(
√

3)2 − (
√

2)2 (2)

Continuing.
(
√

3)2 + 2(
√

3)(
√

2) + (
√

2)2

(
√

3)2 − (
√

2)2 = 3 + 2
√

6 + 2
3− 2 = 5 + 2

√
6

Check.

69. The equation is nonlinear, so make one side zero.
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3x2 − 8x− 5 = 0

Compare 3x2 − 8x − 5 = 0 with ax2 + bx + c = 0 and note that a = 3, b = −8, and
c = −5. Write down the quadratic formula and substitute.

x = −b±
√
b2 − 4ac

2a = −(−8)±
√

(−8)2 − 4(3)(−5)
2(3) = 8±

√
124

6

Factor a perfect square from the radical in the numerator.

x = 8±
√

4
√

31
6 = 8± 2

√
31

6
Factor the numerator and cancel.

x = 8± 2
√

31
6 = 2(4±

√
31)

2 · 3 = 2(4±
√

31)
2 · 3 = 4±

√
31

3

71. The equation is nonlinear, so make one side zero.

5x2 − 2x− 1 = 0

Compare 5x2 − 2x − 1 = 0 with ax2 + bx + c = 0 and note that a = 5, b = −2, and
c = −1. Write down the quadratic formula and substitute.

x = −b±
√
b2 − 4ac

2a = −(−2)±
√

(−2)2 − 4(5)(−1)
2(5) = 2±

√
24

10

Factor a perfect square from the radical in the numerator.

x = 2±
√

24
10 = 2±

√
4
√

6
10 = 2± 2

√
6

10
Factor the numerator and cancel.

x = 2± 2
√

6
10 = 2(1±

√
6)

2 · 5 = 2(1±
√

6)
2 · 5 = 1±

√
6

5

73. The equation is nonlinear, so make one side zero.

7x2 − 6x− 2 = 0

Compare 7x2 − 6x − 2 = 0 with ax2 + bx + c = 0 and note that a = 7, b = −6, and
c = −2. Write down the quadratic formula and substitute.

x = −b±
√
b2 − 4ac

2a = −(−6)±
√

(−6)2 − 4(7)(−2)
2(7) = 6±

√
92

14

Factor a perfect square from the radical in the numerator.

x = 6±
√

92
14 = 6±

√
4
√

23
14 = 6± 2

√
23

14
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Factor the numerator and cancel.

x = 6± 2
√

23
14 = 2(3±

√
23)

2 · 7 = 2(3±
√

23)
2 · 7 = 3±

√
23

7

75. The equation is nonlinear, so make one side zero.

x2 − 2x− 19 = 0

Compare x2 − 2x − 19 = 0 with ax2 + bx + c = 0 and note that a = 1, b = −2, and
c = −19. Write down the quadratic formula and substitute.

x = −b±
√
b2 − 4ac

2a = −(−2)±
√

(−2)2 − 4(1)(−19)
2(1) = 2±

√
80

2

Factor a perfect square from the radical in the numerator.

x = 2±
√

80
2 = 2±

√
16
√

5
2 = 2± 4

√
5

2
Factor the numerator and cancel.

x = 2± 4
√

5
2 = 2(1± 2

√
5)

2 = 2(1± 2
√

5)
2 = 1± 2

√
5

77. If f(x) = √x, then
f(x)− f(2)
x− 2 =

√
x−
√

2
x− 2 .

To “rationalize the numerator,” multiply numerator and denominator by √x +
√

2,
then use the difference of squares pattern to simplify.

√
x−
√

2
x− 2 =

√
x−
√

2
x− 2 ·

√
x+
√

2
√
x+
√

2
= (√x)2 − (

√
2)2

(x− 2)(√x+
√

2)
= x− 2

(x− 2)(√x+
√

2)

Numerator and denominator are factored, so we can cancel,
x− 2

(x− 2)(√x+
√

2)
= x− 2

(x− 2)(√x+
√

2)
= 1
√
x+
√

2
,

provided, of course, that x #= 2.

79. If f(x) = √x, then
f(x+ h)− f(x)

h
=
√
x+ h−√x
h

.

To “rationalize the numerator,” multiply numerator and denominator by
√
x+ h+√x,

then use the difference of squares pattern to simplify.
√
x+ h−√x
h

=
√
x+ h−√x
h

·
√
x+ h+√x√
x+ h+√x

= (
√
x+ h)2 − (√x)2

h(
√
x+ h+√x)

= x+ h− x
h(
√
x+ h+√x)
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Simplify, then cancel.
x+ h− x

h(
√
x+ h+√x)

= h

h(
√
x+ h+√x)

= h

h(
√
x+ h+√x)

= 1√
x+ h+√x

The result is valid provided h #= 0.
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9.5 Exercises

For the rational functions in Exercises 1-
6, perform each of the following tasks.

i. Load the function f and the line y =
k into your graphing calculator. Ad-
just the viewing window so that all
point(s) of intersection of the two graphs
are visible in your viewing window.

ii. Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Label the
graphs with their equations. Remem-
ber to draw all lines with a ruler.

iii. Use the intersect utility to deter-
mine the coordinates of the point(s)
of intersection. Plot the point of in-
tersection on your homework paper
and label it with its coordinates.

iv. Solve the equation f(x) = k alge-
braically. Place your work and so-
lution next to your graph. Do the
solutions agree?

1. f(x) =
√
x+ 3, k = 2

2. f(x) =
√

4− x, k = 3

3. f(x) =
√

7 − 2x, k = 4

4. f(x) =
√

3x+ 5, k = 5

5. f(x) =
√

5 + x, k = 4

6. f(x) =
√

4− x, k = 5

In Exercises 7-12, use an algebraic tech-
nique to solve the given equation. Check
your solutions.

7.
√
−5x+ 5 = 2

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

8.
√

4x+ 6 = 7

9.
√

6x− 8 = 8

10.
√

2x+ 4 = 2

11.
√
−3x+ 1 = 3

12.
√

4x+ 7 = 3

For the rational functions in Exercises 13-
16, perform each of the following tasks.

i. Load the function f and the line y =
k into your graphing calculator. Ad-
just the viewing window so that all
point(s) of intersection of the two graphs
are visible in your viewing window.

ii. Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Label the
graphs with their equations. Remem-
ber to draw all lines with a ruler.

iii. Use the intersect utility to deter-
mine the coordinates of the point(s)
of intersection. Plot the point of in-
tersection on your homework paper
and label it with its coordinates.

iv. Solve the equation f(x) = k alge-
braically. Place your work and so-
lution next to your graph. Do the
solutions agree?

13. f(x) =
√
x+ 3 + x, k = 9

14. f(x) =
√
x+ 6− x, k = 4

15. f(x) =
√
x− 5− x, k = −7

16. f(x) =
√
x+ 5 + x, k = 7
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In Exercises 17-24, use an algebraic tech-
nique to solve the given equation. Check
your solutions.

17.
√
x+ 1 + x = 5

18.
√
x+ 8− x = 8

19.
√
x+ 4 + x = 8

20.
√
x+ 8− x = 2

21.
√
x+ 5− x = 3

22.
√
x+ 5 + x = 7

23.
√
x+ 9− x = 9

24.
√
x+ 7 + x = 5

For the rational functions in Exercises 25-
28, perform each of the following tasks.

i. Load the function f and the line y =
k into your graphing calculator. Ad-
just the viewing window so that all
point(s) of intersection of the two graphs
are visible in your viewing window.

ii. Copy the image in your viewing win-
dow onto your homework paper. La-
bel and scale each axis with xmin,
xmax, ymin, and ymax. Label the
graphs with their equations. Remem-
ber to draw all lines with a ruler.

iii. Use the intersect utility to deter-
mine the coordinates of the point(s)
of intersection. Plot the point of in-
tersection on your homework paper
and label it with its coordinates.

iv. Solve the equation f(x) = k alge-
braically. Place your work and so-
lution next to your graph. Do the
solutions agree?

25. f(x) =
√
x− 1 +

√
x+ 6, k = 7

26. f(x) =
√
x+ 2 +

√
x+ 9, k = 7

27. f(x) =
√
x+ 2 +

√
3x+ 4, k = 2

28. f(x) =
√

6x+ 7 +
√

3x+ 3, k = 1

In Exercises 29-40, use an algebraic tech-
nique to solve the given equation. Check
your solutions.

29.
√
x+ 46−

√
x− 35 = 1

30.
√
x− 16 +

√
x+ 16 = 8

31.
√
x− 19 +

√
x− 6 = 13

32.
√
x+ 31−

√
x+ 12 = 1

33.
√
x− 2−

√
x− 49 = 1

34.
√
x+ 13 +

√
x+ 8 = 5

35.
√
x+ 27 −

√
x− 22 = 1

36.
√
x+ 10 +

√
x+ 13 = 3

37.
√
x+ 30−

√
x− 38 = 2

38.
√
x+ 36−

√
x+ 11 = 1

39.
√
x− 17 +

√
x+ 3 = 10

40.
√
x+ 18 +

√
x+ 13 = 5
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9.5 Solutions

1. Using the calculator’s intersect utility, we arrive at the following result.

x
10

y
10

f(x)=
√
x+3

y=2(1,2)(1,2)

To solve f(x) = 2 algebraically, replace f(x) with
√
x+ 3, then square both sides of

the resulting equation.

f(x) = 2
√
x+ 3 = 2

(
√
x+ 3)2 = (2)2

Continuing,

x+ 3 = 4
x = 1

Note that this agrees nicely with the graphical solution, but we should still check that
our answer is not an extraneous solution. Check x = 1 in

√
x+ 3 = 2
√

1 + 3 = 2
√

4 = 2

The solution checks!
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3. Using the calculator’s intersect utility, we arrive at the following result.

x
10

y
10

f(x)=
√

7−2x
y=4(−4.5,4)(−4.5,4)

To solve f(x) = 4 algebraically, replace f(x) with
√

7 − 2x, then square both sides of
the resulting equation.

f(x) = 4
√

7 − 2x = 4
(
√

7 − 2x)2 = (4)2

Continuing,

7 − 2x = 16
−2x = 6
x = −9/2

Note that this agrees nicely with the graphical solution, but we should still check that
our answer is not an extraneous solution. Check x = −9/2 in

√
7 − 2x = 4

√
7 − 2(−9/2) = 4
√

7 + 9 = 4
√

16 = 4

The solution checks!
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5. Using the calculator’s intersect utility, we arrive at the following result.

x
20

y
10

f(x)=
√
x+5
y=4(11,4)(11,4)

To solve f(x) = 4 algebraically, replace f(x) with
√

5 + x, then square both sides of
the resulting equation.

f(x) = 4
√

5 + x = 4
(
√

5 + x)2 = (4)2

Continuing,

5 + x = 16
x = 11

Note that this agrees nicely with the graphical solution, but we should still check that
our answer is not an extraneous solution. Check x = 11 in

√
5 + x = 4

√
5 + 11 = 4
√

16 = 4

The solution checks!

7.
√
−5x+ 5 = 2 =⇒ −5x+ 5 = 22 =⇒ −5x+ 5 = 4 =⇒ x = 1

5

9.
√

6x− 8 = 8 =⇒ 6x− 8 = 82 =⇒ 6x− 8 = 64 =⇒ x = 12

11.
√
−3x+ 1 = 3 =⇒ −3x+ 1 = 32 =⇒ −3x+ 1 = 9 =⇒ x = −8

3
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13. The calculator’s intersect utility provides the following solution.

x
20

y
20

f(x)=
√
x+3+x

y=9(6,9)(6,9)

To solve f(x) = 9 algebraically, replace f(x) with
√
x+ 3 + x, isolate the radical, then

square both sides of the resulting equation.

f(x) = 9
√
x+ 3 + x = 9
√
x+ 3 = 9− x

(
√
x+ 3)2 = (9− x)2

x+ 3 = 81− 18x+ x2

This last equation is nonlinear, so make one side zero and factor.

0 = x2 − 19x+ 78
0 = (x− 6)(x− 13)

The solution x = 6 agrees with the graphical solution above and checking,
√
x+ 3 + x = 9
√

6 + 3 + 6 = 9
3 + 6 = 9

.

Thus, x = 6 is a solution. On the other hand, checking x = 13 reveals
√
x+ 3 + x = 9

√
13 + 3 + 13 = 9

4 + 13 = 9
.

Thus, x = 13 is not a solution.
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15. The calculator’s intersect utility provides the following solution.

x
20

y
20

f(x)=
√
x−5−x

y=−7(9,−7)(9,−7)

To solve f(x) = −7 algebraically, replace f(x) with
√
x− 5 − x, isolate the radical,

then square both sides of the resulting equation.

f(x) = −7
√
x− 5− x = −7
√
x− 5 = x− 7

(
√
x− 5)2 = (x− 7)2

x− 5 = x2 − 14x+ 49

This last equation is nonlinear, so make one side zero and factor.

0 = x2 − 15x+ 54
0 = (x− 9)(x− 6)

The solution x = 9 agrees with the graphical solution above and checking,
√
x− 5− x = −7
√

9− 5− 9 = −7
2− 9 = −7

.

Thus, x = 9 is a solution. On the other hand, checking x = 6 reveals
√
x− 5− x = −7
√

6− 5− 6 = −7
1− 6 = −7

.

Thus, x = 6 is not a solution.
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17.
√
x+ 1 + x = 5

=⇒
√
x+ 1 = −x+ 5

=⇒ x+ 1 = (−x+ 5)2

=⇒ x+ 1 = x2 − 10x+ 25
=⇒ x2 − 11x+ 24 = 0

Solving this quadratic equation yields x = 8, 3. However, 8 does not solve the original
equation.

19.
√
x+ 4 + x = 8

=⇒
√
x+ 4 = −x+ 8

=⇒ x+ 4 = (−x+ 8)2

=⇒ x+ 4 = x2 − 16x+ 64
=⇒ x2 − 17x+ 60 = 0

Solving this quadratic equation yields x = 12, 5. However, 12 does not solve the
original equation.

21.
√
x+ 5− x = 3

=⇒
√
x+ 5 = x+ 3

=⇒ x+ 5 = (x+ 3)2

=⇒ x+ 5 = x2 + 6x+ 9
=⇒ x2 + 5x+ 4 = 0

Solving this quadratic equation yields x = −1,−4. However, −4 does not solve the
original equation.

23.
√
x+ 9− x = 9

=⇒
√
x+ 9 = x+ 9

=⇒ x+ 9 = (x+ 9)2

=⇒ x+ 9 = x2 + 18x+ 81
=⇒ x2 + 17x+ 72 = 0
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Solving this quadratic equation yields x = −8,−9.

25. The calculator’s intersect utility provides the following solution.

x
20

y
20

f(x)=
√
x−1+

√
x+6

y=7(10,7)(10,7)

To solve f(x) = 7 algebraically, replace f(x) with
√
x− 1 +

√
x+ 6, isolate one of the

radicals, then square both sides of the resulting equation.

f(x) = 7
√
x− 1 +

√
x+ 6 = 7
√
x+ 6 = 7 −

√
x− 1

(
√
x+ 6)2 = (7 −

√
x− 1)2

x+ 6 = 49− 14
√
x− 1 + x− 1

Isolate the remaining radical, divide both sides of the resulting equation by 14, then
square both sides of the resulting equation.

14
√
x− 1 = 42
√
x− 1 = 3

(
√
x− 1)2 = (3)2

x− 1 = 9
x = 10

The solution x = 10 agrees with the graphical solution above, but we still need to
check.

√
x− 1 +

√
x+ 6 = 7

√
10− 1 +

√
10 + 6 = 7
3 + 4 = 7

.

Thus, x = 10 is a solution.
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27. The calculator’s intersect utility provides the following solution.

x
20

y
20

f(x)=
√
x+2+

√
3x+4

y=2(−1,2)(−1,2)

To solve f(x) = 2 algebraically, replace f(x) with
√
x+ 2 +

√
3x+ 4, isolate one of the

radicals, then square both sides of the resulting equation.
f(x) = 2

√
x+ 2 +

√
3x+ 4 = 2
√

3x+ 4 = 2−
√
x+ 2

(
√

3x+ 4)2 = (2−
√
x+ 2)2

3x+ 4 = 4− 4
√
x+ 2 + x+ 2

Isolate the remaining radical, divide both sides of the resulting equation by 2, then
square both sides of the resulting equation.

4
√
x+ 2 = 2− 2x

2
√
x+ 2 = 1− x

(2
√
x+ 2)2 = (1− x)2

4(x+ 2) = 1− 2x+ x2

4x+ 8 = 1− 2x+ x2

This last equation is nonlinear, so make one side zero, then factor.
0 = x2 − 6x− 7
0 = (x+ 1)(x− 7)

The solution x = −1 agrees with the graphical solution above, but we still need to
check.

√
x+ 2 +

√
3x+ 4 = 2

√
−1 + 2 +

√
3(−1) + 4 = 2

1 + 1 = 2
.

Thus, x = −1 is a solution. On the other hand, checking x = 7,
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√
x+ 2 +

√
3x+ 4 = 2

√
7 + 2 +

√
3(7) + 4 = 2

3 + 5 = 2
.

Thus, x = 7 is not a solution.

29.
√
x+ 46 = 1 +

√
x− 35

=⇒ x+ 46 = (1 +
√
x− 35)2

=⇒ x+ 46 = 1 + 2
√
x− 35 + (x− 35)

=⇒ 80 = 2
√
x− 35

=⇒ 40 =
√
x− 35

=⇒ 402 = (
√
x− 35)2

=⇒ 1600 = x− 35
=⇒ x = 1635

31.
√
x− 19 = 13−

√
x− 6

=⇒ x− 19 = (13−
√
x− 6)2

=⇒ x− 19 = 169− 26
√
x− 6 + (x− 6)

=⇒ 26
√
x− 6 = 182

=⇒
√
x− 6 = 7

=⇒ (
√
x− 6)2 = 72

=⇒ x− 6 = 49
=⇒ x = 55
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33.
√
x− 2 = 1 +

√
x− 49

=⇒ x− 2 = (1 +
√
x− 49)2

=⇒ x− 2 = 1 + 2
√
x− 49 + (x− 49)

=⇒ 46 = 2
√
x− 49

=⇒ 23 =
√
x− 49

=⇒ 232 = (
√
x− 49)2

=⇒ 529 = x− 49
=⇒ x = 578

35.
√
x+ 27 = 1 +

√
x− 22

=⇒ x+ 27 = (1 +
√
x− 22)2

=⇒ x+ 27 = 1 + 2
√
x− 22 + (x− 22)

=⇒ 48 = 2
√
x− 22

=⇒ 24 =
√
x− 22

=⇒ 242 = (
√
x− 22)2

=⇒ 576 = x− 22
=⇒ x = 598

37.
√
x+ 30 = 2 +

√
x− 38

=⇒ x+ 30 = (2 +
√
x− 38)2

=⇒ x+ 30 = 4 + 4
√
x− 38 + (x− 38)

=⇒ 64 = 4
√
x− 38

=⇒ 16 =
√
x− 38

=⇒ 162 = (
√
x− 38)2

=⇒ 256 = x− 38
=⇒ x = 294



Section 9.5 Radical Equations

Version: Fall 2007

39.
√
x− 17 = 10−

√
x+ 3

=⇒ x− 17 = (10−
√
x+ 3)2

=⇒ x− 17 = 100− 20
√
x+ 3 + (x+ 3)

=⇒ 20
√
x+ 3 = 120

=⇒
√
x+ 3 = 6

=⇒ (
√
x+ 3)2 = 62

=⇒ x+ 3 = 36
=⇒ x = 33
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9.6 Exercises

In Exercises 1-8, state whether or not
the given triple is a Pythagorean Triple.
Give a reason for your answer.

1. (8, 15, 17)

2. (7, 24, 25)

3. (8, 9, 17)

4. (4, 9, 13)

5. (12, 35, 37)

6. (12, 17, 29)

7. (11, 17, 28)

8. (11, 60, 61)

In Exercises 9-16, set up an equation
to model the problem constraints and solve.
Use your answer to find the missing side
of the given right triangle. Include a
sketch with your solution and check your
result.

9.

2
√

3

2

Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/1

10.

2

2

11.

4 8

12.

10

12

13.

2

2
√

3
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14.

12 4
√

3

15.

5 10

16.

8
√

2

8

In Exercises 17-20, set up an equation
that models the problem constraints. Solve
the equation and use the result to answer
the question. Look back and check your
result.

17. The legs of a right triangle are con-
secutive positive integers. The hypotenuse
has length 5. What are the lengths of the
legs?

18. The legs of a right triangle are con-
secutive even integers. The hypotenuse
has length 10. What are the lengths of
the legs?

19. One leg of a right triangle is 1 cen-
timeter less than twice the length of the
first leg. If the length of the hypotenuse
is 17 centimeters, find the lengths of the

legs.

20. One leg of a right triangle is 3 feet
longer than 3 times the length of the first
leg. The length of the hypotenuse is 25
feet. Find the lengths of the legs.

21. Pythagoras is credited with the fol-
lowing formulae that can be used to gen-
erate Pythagorean Triples.

a = m

b = m
2 − 1
2 ,

c = m
2 + 1
2

Use the technique of Example 6 to demon-
strate that the formulae given above will
generate Pythagorean Triples, provided
that m is an odd positive integer larger
than one. Secondly, generate at least
3 instances of Pythagorean Triples with
Pythagoras’s formula.

22. Plato (380 BC) is credited with the
following formulae that can be used to
generate Pythagorean Triples.

a = 2m
b = m2 − 1,
c = m2 + 1

Use the technique of Example 6 to demon-
strate that the formulae given above will
generate Pythagorean Triples, provided
that m is a positive integer larger than
1. Secondly, generate at least 3 instances
of Pythagorean Triples with Plato’s for-
mula.
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In Exercises 23-28, set up an equation
that models the problem constraints. Solve
the equation and use the result to answer
the question. Look back and check your
result.

23. Fritz and Greta are planting a 12-
foot by 18-foot rectangular garden, and
are laying it out using string. They would
like to know the length of a diagonal to
make sure that right angles are formed.
Find the length of a diagonal. Approxi-
mate your answer to within 0.1 feet.

24. Angelina and Markos are planting
a 20-foot by 28-foot rectangular garden,
and are laying it out using string. They
would like to know the length of a diag-
onal to make sure that right angles are
formed. Find the length of a diagonal.
Approximate your answer to within 0.1
feet.

25. The base of a 36-foot long guy wire
is located 16 feet from the base of the
telephone pole that it is anchoring. How
high up the pole does the guy wire reach?
Approximate your answer to within 0.1
feet.

26. The base of a 35-foot long guy wire
is located 10 feet from the base of the
telephone pole that it is anchoring. How
high up the pole does the guy wire reach?
Approximate your answer to within 0.1
feet.

27. A stereo receiver is in a corner of
a 13-foot by 16-foot rectangular room.
Speaker wire will run under a rug, diag-
onally, to a speaker in the far corner. If 3
feet of slack is required on each end, how
long a piece of wire should be purchased?
Approximate your answer to within 0.1
feet.

28. A stereo receiver is in a corner of
a 10-foot by 15-foot rectangular room.
Speaker wire will run under a rug, diag-
onally, to a speaker in the far corner. If 4
feet of slack is required on each end, how
long a piece of wire should be purchased?
Approximate your answer to within 0.1
feet.

In Exercises 29-38, use the distance for-
mula to find the exact distance between
the given points.

29. (−8,−9) and (6,−6)

30. (1, 0) and (−9,−2)

31. (−9, 1) and (−8, 7)

32. (0, 9) and (3, 1)

33. (6,−5) and (−9,−2)

34. (−9, 6) and (1, 4)

35. (−7, 7) and (−3, 6)

36. (−7,−6) and (−2,−4)

37. (4,−3) and (−9, 6)

38. (−7,−1) and (4,−5)

In Exercises 39-42, set up an equation
that models the problem constraints. Solve
the equation and use the result to answer
the question. Look back and check your
result.

39. Find k so that the point (4, k) is
2
√

2 units away from the point (2, 1).

40. Find k so hat the point (k, 1) is
2
√

2 units away from the point (0,−1).
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41. Find k so that the point (k, 1) is√
17 units away from the point (2,−3).

42. Find k so that the point (−1, k) is√
13 units away from the point (−4,−3).

43. Set up a coordinate system on a
sheet of graph paper. Label and scale
each axis. Plot the points P (0, 5) and
Q(4,−3) on your coordinate system.

a) Plot several points that are equidis-
tant from the points P and Q on your
coordinate system. What graph do
you get if you plot all points that are
equidistant from the points P and Q?
Determine the equation of the graph
by examining the resulting image on
your coordinate system.

b) Use the distance formula to find the
equation of the graph of all points
that are equidistant from the points
P and Q. Hint: Let (x, y) represent
an arbitrary point on the graph of all
points equidistant from points P and
Q. Calculate the distances from the
point (x, y) to the points P and Q
separately, then set them equal and
simplify the resulting equation. Note
that this analytical approach should
provide an equation that matches that
found by the graphical approach in
part (a).

44. Set up a coordinate system on a
sheet of graph paper. Label and scale
each axis. Plot the point P (0, 2) and la-
bel it with its coordinates. Draw the line
y = −2 and label it with its equation.

a) Plot several points that are equidis-
tant from the point P and the line
y = −2 on your coordinate system.
What graph do you get if you plot
all points that are equidistant from
the points P and the line y = −2.

b) Use the distance formula to find the
equation of the graph of all points
that are equidistant from the points
P and the line y = −2. Hint: Let
(x, y) represent an arbitrary point on
the graph of all points equidistant from
points P and the line y = −2. Cal-
culate the distances from the point
(x, y) to the points P and the line y =
−2 separately, then set them equal
and simplify the resulting equation.
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45. Copy the following figure onto a
sheet of graph paper. Cut the pieces of
the first figure out with a pair of scis-
sors, then rearrange them to form the
second figure. Explain how this proves
the Pythagorean Theorem.

46. Compare this image to the one that
follows and explain how this proves the
Pythagorean Theorem.

a b

a

b

ab

a

b

c

c
c

c

b a

a

b

ab

b

a

c

c
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9.6 Solutions

1. We check to see if (8, 15, 17) satisfies the Pythagorean Theorem.

82 + 152 = 172

64 + 225 = 281
289 = 289

Thus, (8, 15, 17) is a Pythagorean triple.

3. We check to see if (8, 9, 17) satisfies the Pythagorean Theorem.

82 + 92 = 172

64 + 81 = 281
145 = 289

Thus, (8, 9, 17) is not a Pythagorean triple.

5. We check to see if (12, 35, 37) satisfies the Pythagorean Theorem.

122 + 352 = 372

144 + 1225 = 1369
1369 = 1369

Thus, (12, 35, 37) is a Pythagorean triple.

7. We check to see if (11, 17, 28) satisfies the Pythagorean Theorem.

112 + 172 = 282

121 + 289 = 784
410 = 784

Thus, (11, 17, 28) is not a Pythagorean triple.

9. Let x represent the missing side of the triangle.

2
√

3

2x
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Use the Pythagorean Theorem to solve for x.

x2 = 22 + (2
√

3)2

x2 = 4 + 12
x2 = 16
x = 4

11. Let x represent the missing side of the triangle.

4 8

x

Use the Pythagorean Theorem to solve for x.

82 = 42 + x2

64 = 16 + x2

48 = x2

x =
√

48
x =
√

16
√

3
x = 4

√
3

13. Let x represent the missing side of the triangle.

2

2
√

3 x

Use the Pythagorean Theorem to solve for x.

(2
√

3)2 = x2 + 22

12 = x2 + 4
8 = x2

x =
√

8
x =
√

4
√

2
x = 2

√
2
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15. Let x represent the missing side of the triangle.

5 10

x

Use the Pythagorean Theorem to solve for x.

102 = 52 + x2

100 = 25 + x2

75 = x2

x =
√

75
x =
√

25
√

3
x = 5

√
3

17. Let x represent the length of one leg. If the legs are consecutive positive integers,
then the second leg would have length x+ 1.

x 5

x+1

Use the Pythagorean Theorem to write

52 = x2 + (x+ 1)2.

Expand, make one side zero, then factor.

25 = x2 + x2 + 2x+ 1
0 = 2x2 + 2x− 24
0 = x2 + x− 12 Divide through by 2.
0 = (x+ 4)(x− 3)

The solution x = −4 must be discarded (the length of a leg must be a positive integer).
The second solution, x = 3, dictates that the second leg has length x+ 1 = 4. Hence,
the dimensions are (3, 4, 5), which is a well-known Pythagorean Triple.
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19. Let x represent the length of one leg. The second leg is one less that twice the
first leg, so the second leg has length 2x− 1.

x 17

2x−1

Use the Pythagorean Theorem to write

172 = x2 + (2x− 1)2.

Expand, then make one side zero.

289 = x2 + 4x2 − 4x+ 1
0 = 5x2 − 4x− 288

It is not readily apparent how to factor (ac = (5)(−288) is quite large), so we will use
the quadratic formula.

x = −(−4)±
√

(−4)2 − 4(5)(−288)
2(5) = 4±

√
5776

10 = 4± 76
10

One solution is x = −72/10 = −7.2, which we will discard because it is negative. The
second solution is x = 80/10 = 8, which seems reasonable. If the length of the first leg
is x = 8, then the length of the second leg is 2x − 1 = 2(8) − 1 = 15. You can check
that (8, 15, 17) forms a Pythagorean Triple.

21. With m and odd integer, let a = m, b = (m2 − 1)/2, and c = (m2 + 1)/2. Note
that

a2 + b2 = m2 +
(
m2 − 1

2

)2

= m2 + m
4 − 2m2 + 1

4

= 4m2

4 + m
4 − 2m2 + 1

4

= m
4 + 2m2 + 1

4 .

On the other hand,

c2 =
(
m2 + 1

2

)2
= m

4 + 2m2 + 1
4 .
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Hence, c2 = a2 + b2, and the expressions for a, b, and c will produce Pythagorean
Triples. For example, the results for m = 3, 5, and 7 are provided in the following
table.

m a b c

3 3 4 5
5 5 12 13
7 7 24 25

23.

diagonal =
√

122 + 182 =
√

468 ≈ 21.63

25.

height =
√

362 − 162 =
√

1040 ≈ 32.25

27.

length = 2(3) +
√

132 + 162 = 6 +
√

425 ≈ 26.62

29.

distance =
√

(6− (−8))2 + ((−6)− (−9))2 =
√

205

31.

distance =
√

((−8)− (−9))2 + (7 − 1)2 =
√

37

33.

distance =
√

((−9)− 6)2 + ((−2)− (−5))2 =
√

234 = 3
√

26

35.

distance =
√

((−3)− (−7))2 + (6− 7)2 =
√

17

37.

distance =
√

((−9)− 4)2 + (6− (−3))2 =
√

250 = 5
√

10
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39. We want to find k so that the points (4, k) and (2, 1) are 2
√

2 units apart. The
distance d between (4, k) and (2, 1) is found with the distance formula.

d =
√

(4− 2)2 + (k − 1)2

d =
√

4 + k2 − 2k + 1
d =
√
k2 − 2k + 5

Now, set d = 2
√

2, then square both sides of the resulting equation.

2
√

2 =
√
k2 − 2k + 5

(2
√

2)2 = (
√
k2 − 2k + 5)2

8 = k2 − 2k + 5

This equation is nonlinear, so make one side zero and factor.
0 = k2 − 2k − 3
0 = (k − 3)(k + 1)

The solution k = 3 provides (4, k) = (4, 3). The solution k = −1 provides (4, k) =
(4,−1). It is easily checked that both of these points are 2

√
2 units away from the

point (2, 1). For example, in the case of the point (4, 3), the distance between (4, 3)
and (2, 1) is

d =
√

(4− 2)2 + (3− 1)2 =
√

4 + 4 =
√

8 =
√

4
√

2 = 2
√

2.

We leave it to readers to check the distance of the second point from (2, 1).

41. We want to find k so that the points (k, 1) and (2,−3) are
√

17 units apart. The
distance d between (k, 1) and (2,−3) is found with the distance formula.

d =
√

(k − 2)2 + (1− (−3))2

d =
√
k2 − 4k + 4 + 16

d =
√
k2 − 4k + 20

Now, set d =
√

17, then square both sides of the resulting equation.
√

17 =
√
k2 − 4k + 20

(
√

17)2 = (
√
k2 − 4k + 20)2

17 = k2 − 4k + 20

This equation is nonlinear, so make one side zero and factor.
0 = k2 − 4k + 3
0 = (k − 1)(k − 3)

The solution k = 1 provides (k, 1) = (1, 1). The solution k = 3 provides (k, 1) = (3, 1).
It is easily checked that both of these points are

√
17 units away from the point (2,−3).

For example, in the case of the point (1, 1), the distance between (1, 1) and (2,−3) is
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d =
√

(1− 2)2 + (1− (−3))2 =
√

1 + 16 =
√

17.

We leave it to readers to check the distance of the second point from (2,−3).

43.

a) In the figure that follows, XP = XQ.

x
−5 10

y

−5

10

P (0,5)P (0,5)

Q(4,−3)Q(4,−3)

y=(1/2)x

X(x,y)X(x,y)

It would appear that all points on the line that is the perpendicular bisector of
the segment PQ are equidistant from the points P and Q. This line appears to go
through the origin with slope 1/2. Therefore, using y = mx + b, the equation of
this line appears to be y = (1/2)x+ 0, or more simply, y = (1/2)x.

b) In the image above, we have P (0, 5), Q(4,−3), and an arbitrary point X(x, y) on
the perpendicular bisector of the segment joining P and Q. Thus, the distances XP
and XQ must be equal. However, the distance XP , the distance between X(x, y)
and P (0, 5) is given by

XP =
√

(x− 0)2 + (y − 5)2 =
√
x2 + (y − 5)2.

On the other hand, the distance XQ between X(x, y) and Q(4,−3) is given by

XQ =
√

(x− 4)2 + (y − (−3))2 =
√

(x− 4)2 + (y + 3)2.

Set these distances equal and square both sides of the resulting equation.

XP = XQ
√
x2 + (y − 5)2 =

√
(x− 4)2 + (y + 3)2

(
√
x2 + (y − 5)2)2 = (

√
(x− 4)2 + (y + 3)2)2

x2 + (y − 5)2 = (x− 4)2 + (y + 3)2

Expand.

x2 + y2 − 10y + 25 = x2 − 8x+ 16 + y2 + 6y + 9
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Subtract x2 and y2 from both sides of the equation and simplify.

−10y + 25 = −8x+ 6y + 25

Subtract 25 from both sides of the equation, then solve for y.

−10y = −8x+ 6y
−10y − 6y = −8x
−16y = −8x

Dividing both sides of this last equation provides y = (1/2)x, the same result we
got with our graph above.




