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Intent

This text is designed to serve as a one-semester intro-
duction to trigonometry and its applications for college
students.

Assumptions

It is assumed that students have basic skills in solving
linear and quadratic equations, working with radicals,
and simple graphing as well as some acquaintance
with, and access to, a scientific calculator.

There is no separate chapter of review material.
Most students react negatively to such a chapter, and
many teachers get bogged down in unnecessary details
in such a chapter. In this book, material is reviewed as
it is encountered during the exposition of the new ma-
terial. Focusing on old skills when they become nec-
essary provides a more interesting sequence for
students. The best motivation for reviewing something
is the fact that it is needed to learn something new.
Examples go out of their way to review the algebraic
skills being applied, as they first arise.

@ Calculators

It is assumed that students have constant access to a
modern scientific/engineering calculator. In terms of
approximate calculations, the text is completely cal-
culator oriented. However, the usual exact radian/

degree values, for %(30‘*), %(45"), and their multiples,

are explicitly used as well.

Many students today have access to graphing cal-
culators. The book is designed to be used without these
calculators, but their use is encouraged. The text shows
how to use these calculators for the many graphs that
occur in trigonometry. The TEXAS INSTRUMENTS TI-81
is used to illustrate within the text. Appendix B, Fur-
ther uses for graphing calculators and computers,
shows further detail on using the TI-81 and also pres-
ents matenal on using the CASIO fx-7000 graphing
calculator.

Content

Chapter 1 reviews the basic geometric foundations of
right triangle trigonometry, followed by the trigonom-
etry of the right triangle. The term trigonometric ratio
is used to distinguish the definitions made in terms of
the right triangle from those made in chapter 2 in terms
of points in the plane. We begin with right triangle
trigonometry for at least the following four reasons.
First, a survey of mathematics teachers indicated a
clear preference for this approach. Second, this allows
students to start the course in territory that is probably
familiar, degree measure and right triangles. Third, ap-
plications in this area can be drawn from everyday ex-
perience. Fourth, this approach is most helpful to those
students who may be starting a physics or other tech-
nical course at the same time.

The secant, cosecant, and cotangent functions are
defined as reciprocals of the cosine, sine and tangent
functions. In this way students are exposed to identities
immediately, and, after all, this is the way we view
these functions in advanced applications.

The use of the calculator, including a basic use of
the inverse trigonometric functions, is covered in this
chapter.

The chapter ends with a section that introduces
trigonometric equations, both conditional and identi-
ties. It is important for students to see equations in-
volving trigonometric functions early and throughout
the course. The topic of conditional equations is revis-
ited in the context of radian measure in chapter 2. In
this way, the inevitable chapter on trigonometric equa-
tions (chapter 5) becomes simply an expansion of pre-
vious material, instead of the cold shock it often is for
students.

Chapter 2 begins with a review of functions, which
are introduced in terms of sets of ordered pairs. This
approach combines mathematical precision with ped-
agogical simplicity (as opposed to a long statement
about rules associating something with something
else). It also permits a much simpler, more natural de-
velopment of the concepts of one-to-one and inverse
functions and has no negative impact on acquiring
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ability with f{x) terminology. In addition, this approach
helps avoid the documented problem that most students
cannot separate the concept of a function from a de-
fining expression (i.e., an equation).

This chapter then covers the trigonometry of
angles in standard position. In this exposition of ana-
Iytic trigonometry, we refer to trigonometric functions
not ratios. The topic is first completely covered with
familiar angle measure. Radians are then introduced,
and the topic is revisited in these terms, including the
solution of simple conditional equations in terms of
radians.

Chapter 3 gives a more in-depth treatment of the
properties of the trigonometric functions as functions
from the real numbers to the real numbers. Domains,
ranges, and graphs are stressed. An uncommon method
of graphing periodic functions is introduced here.
Period and phase shift are not treated separately but are
integrated into one step. It is our experience that this
independently discovered the method of graphing quite
complicated functions is easily and quickly taught and
learned. It also provides a basis for understanding what
makes periodic functions intrinsically different from
nonperiodic functions.

This chapter also supports the use of graphing cal-
culators to obtain graphs, for those who have access to
these calculators.

Chapter 4 discusses the inverse of any function,
then fully treats the inverse trigonometric functions.
Students will have some feeling for these functions
from earlier chapters, where they were explicitly men-
tioned in the context of finding unknown angles and
solving conditional equations. The simplification of ex-
pressions involving these functions, using reference
triangles, is stressed. This skill is very important in a
calculus course.

The definitions of the inverse cosecant and secant
functions are made in terms of the inverse sine and
cosine functions. Although less common than other
possible definitions, this is in keeping with other
sources and provides a great simplicity in learning and
using these functions. Some calculus texts define the
ranges of these functions differently than as presented
here (for good reason, in that context), but the addi-
tional complexity is not pedagogically warranted for

an introduction. The definitions here, by the way, agree
with those used in at least one popular symbolic algebra
computer package.

Chapter 5 is a full treatment of trigonometric iden-
tities and conditional equations. The modern depth of
coverage and the introduction in earlier chapters of
most of the concepts should provide the basis for suc-
cess for both teachers and students. Section 5-0 is ex-
plicitly designed to widen the scope of how students
understand an expression to include trigonometric
functions.

Chapter 6 presents topics that are applications of
the previous material. The laws of sines and cosines
are presented, and analytic vectors are introduced. The
way in which the law of sines is presented should elim-
inate confusion for most students. The important fact
that no triangle has more than one obtuse angle is
stressed and used to solve triangles in a directed way.

Chapter 7 covers complex numbers, including De
Moivre’s theorem, and polar coordinates. The graphing
of polar coordinates includes an independently discov-
ered approach to the graphing of certain polar equa-
tions using the rectangular coordinate graph as a guide.
This is a nontraditional approach, which the authors
have used with success. It is easy to use, promotes a
““feeling’” for polar graphs, and reviews the graphing
of trigonometric equations in rectangular coordinates.

Appendixes

Appendix A discusses using addition of ordinates for
graphing. This topic is of much less practical value in
the age of the electronic graphing device, but it can be
a valuable pedagogical tool to promote the under-
standing of functions.

Appendix B presents more material on using
graphing calculators. It can be used to enhance a course
where every student has access to these wonderful
devices.

Appendix C is the lengthy algebraic development
of an identity, which may or may not be used in the
course. This development has been set aside in an ap-
pendix because its inclusion within the text does not
promote students’ reading of the text or even a better
understanding of the material.



Appendix D provides graphical material which the
student may want to reproduce and have handy as an
aid in studying.

Appendix E provides the answers to odd-numbered
exercise problems, all chapter review problems, and all
chapter test problems. Solutions are also provided for
those trial exercise problems whose number is boxed
in the exercise sets.

Exposition of the Material

We have attempted to write the exposition of the ma-
terial in clear, understandable prose, in a logical order
of development. Each section of a chapter is designed
to provide accessible reading for students and clear ex-
amples of the skills that students are expected to master
in that section. We have also tried to provide a cross
section of applications, mainly in the exercises. These
are designed to put the subject in a wider context of
knowledge and therefore to pique students’ interest. In
particular, we have tried to show that trigonometry has
become more important than ever in the age of the dig-
ital computer.

Each section of every chapter ends with a list of
mastery points, which clearly states what students
should know from that section. The exercise sets are
designed to enable students to apply the material
learned in the examples within the text, which attempt
to provide a clear outline of the skills that the student
must master. The exercise sets reinforce these skills
explicitly, with many problems similar to the exam-
ples. Some problems require that students synthesize
what has been learned, and a few require above-
average efforts to solve. These are marked with the

symbol E . The complete solutions to those problems
whose numbers are contained in boxes, called trial
problems, are given in Appendix E.

A set of core problems are indicated in each ex-
ercise set by having their numbers in color. These prob-
lems exemplify each of the mastery points. Thus, if
students can do these problems without error or diffi-
culty then they have mastered the skills presented in
that section. This is provided for those students who
do not have the time to work a larger subset of the
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exercises. All students are still well advised to do the
more difficult less skill oriented problems at the end of
the exercise set when assigned.

Each chapter ends with a chapter summary,
chapter review, and chapter test. The summary serves
as a memory jogger, to be occasionally reviewed after
the chapter is completed. The review consists of prob-
lems that enable students to practice the skills acquired
throughout the chapter; these problems are keyed by
section. The test is designed to allow students to prac-
tice a chapter test before seeing one in class. The ma-
terial in the chapter test is removed from its
exposition—this is the opportunity for students to see
the material out of context, which is the situation when
taking an in-class test.

Text Features
Some of the themes which we believe make this text
special include the following.

» Algorithmic The text is explicit about procedures
for accomplishing the skills required. These proce-
dures are highlighted in the text. The examples ex-
plicitly follow these procedures.

» Detailed Skills and knowledge that are often as-
sumed of students, but that in fact are not present,
are explicitly covered. Rationalizing denominators
is shown many times, as are many other algebraic
manipulations, in the examples. Another example of
this is the explicit coverage of the manipulation of
the fractions involved in the radian measures, which
are multiples of % and % and achieving a feeling
for the location on the unit circle of these measures.
Still another is the algebraic manipulations often
used in solving identities.

s Gradual skill building The level of algebraic com-
petence required builds through the chapters. For ex-
ample, solving equations in which a product equals
zero is covered early, whereas factoring is postponed
until the chapter on identities.

Identities and conditional equations are difficult,
so they are introduced early, and revisited lightly in
the chapters preceding the chapter on trigonometric
equations.
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Solving right triangles is so basic to trigonom-
etry at all levels of abstraction that it must be second
nature. For this reason, right triangles are stressed not
only in the applications and theoretical development
but also as a means of finding the values of trigo-
nometric functions when given the value of one of
them. This is most important in a calculus course.

¢ Repetition of themes There are many themes that
are revisited over and over in the chapters. Examples
include solving conditional equations and manipu-
lating identities, solving right triangles, and the idea
of reference angles. In addition, a great deal of ma-
terial is explicitly repeated when radian measure is
covered in the last third of chapter 2.

Vectors in two dimensions, complex numbers in
polar form, and polar coordinates have a great deal
of similarity in skills required, particularly in con-
versions between rectangular and polar forms. We
have stressed these similarities.

 Balance of concrete versus abstract Most attention
is paid to numeric manipulations, as in solving tri-
angles and finding the values of trigonometric func-
tions when given the value of one trigonometric
function, but attention is paid to symbolic manipu-
lation as well. Using these skills with symbolic ma-
nipulation is important in a calculus course, and they
have not been short changed.

Some of the exercises, always toward the end of
each exercise set, also stress more abstract thinking,
as well as the investigation of related ideas.

Changes from the Previous Edition
All references to tables of values have been deleted in
this edition. This simplifies the material in the earlier
chapters, allowing some material to migrate toward the
front of the text. Functions are now explicitly reviewed
earlier, at the beginning of chapter 2. This better pro-
vides the setting for the introduction of the trigono-
metric functions.

The topic of radian measure occurs earlier, in
chapter 2 also. This provides the setting for reviewing
the trigonometric functions in a new context.

A section on graphing by addition of ordinates is
moved to the appendixes. Introductory material on the
inverse trigonometric functions and trigonometric
equations is more thoroughly integrated into the earlier
chapters.

The chapter on identities is refashioned to include
a more explicit review of equation solving and alge-
braic manipulation. Several sections were combined,
which allows a more coherent presentation of the
material.

In the previous edition, vectors and complex num-
bers each got two sections. The material on vectors was
simplified by lessening the stress on geometric vectors
and proceeding more quickly to analytic vectors. Thus,
vectors are now treated in one section. It also seemed
pedagogically appropriate and feasible to combine the
two sections on complex numbers into one, with only
minor adjustments in coverage, at no loss of depth. A
section on graphing polar equations has been added.

The appendix on graphing calculators is new, as is
the discussion of these calculators within the text. It is
only a matter of time and economics before these de-
vices are universally used in mathematics courses, and
they can certainly be used with this text.

An appendix was added containing material stu-
dents may want to reproduce xerographically. In par-
ticular, rectangular and polar coordinate templates are
provided.

Supplements

For the instructor

The Instructor’s Manual includes an introduction to
the text, 2 guide to the supplements that accompany
Trigonometry, and reproducible chapter tests. Also in-
cluded are a complete listing of all mastery points and
suggested course schedules based on the mastery
points. The final section of the Instructor’s Manual
contains answers to the reproducible materials.

The Instructor’s Solutions Manual contains com-
pletely worked-out solutions to all of the exercises in
the textbook.

Sclected Overhead Transparencies are available to
enhance classroom presentations.



WCB Computerized Testing Program provides you
with an easy-to-use computerized testing and grade
management program. No programming experience is
required to generate tests randomly, by objective, by
section, or by selecting specific test items. In addition,
test items can be edited and new test items can be
added. Also included with the WCB Computerized
Testing Program is an on-line testing option which
allows students to take tests on the computer. Tests can
then be graded and the scores forwarded to the grade-
keeping portion of the program.

The Test Item File is a printed version of the com-
puterized testing program that allows you to examine
all of the prepared test items and choose test items
based on chapter, section, or objective. The objectives
are taken directly from Trigonometry.

For the student

The Student’s Solutions Manual introduces the student
to the textbook and includes solutions to every-other
odd-numbered section exercise and odd-numbered
end-of-chapter exercise problems. It is available for
student purchase.

Videotapes covering the major topics in each
chapter are available. Each concept is introduced with
a real-world problem and is followed by careful expla-
nation and worked-out examples using computer-
generated graphics. These videos can be used in the
math lab for remediation or even the classroom to mo-
tivate or enhance the lecture. The videotapes are avail-
able free to qualified adopters.

The concepts and skills developed in Trigonometry
are reinforced through the interactive Software.

The Plotter is software for graphing and analyzing
functions. This software simulates a graphing calcu-
lator on a PC. You may use it to do the technology
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exercises even if you don’t have a graphics calculator.
A manual is included that describes operations and in-
cludes student exercises. The software is menu driven
and has an easy-to-use window-type interface. The
high-quality graphics can also be used for classroom
presentation and demonstration. Students who go on to
calculus classes will want to keep the software for
future use.
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The Trigonometric
Ratios

7-0 Introduction

Initially trigonometry was developed to express relationships between the
sizes of the arcs in circles and the chords determining those arcs. (An arc is a
portion of the circumference of a circle; a chord is a line segment going from
one point on a circle to another.) These relationships were used in astronomy
more than two thousand years ago to study what is called the celestial sphere.
In fact, until the fifteenth century, trigonometry was mostly applied to spheres.
This part of trigonometry is now called spherical trigonometry, and it is still
used in navigation and astronomy.

After the fifteenth century, trigonometry was also used to relate the
measure of angles in a triangle to the lengths of the sides of the triangle. The
word ‘‘trigonometry,”” which means ‘‘triangle measurement,”’ is credited to
Bartholomaus Pitiscus (1561-1613). Besides being used in surveying, trigo-
nometry became important for the physics being developed by Sir Isaac
Newton and others. Practically all the ideas of trigonometry had been devel-
oped by the eighteenth century.

Over the next two hundred years, trigonometry became more and more
important as it was used to describe many physical phenomena, such as elec-
tricity, magnetism, and sound.

Today, in the age of the computer, trigonometry is being used even more.
The computer can control manufacturing machines to great precison, but only
if trigonometry is used to describe where this precision is to be applied. This
whole area of engineering, called numerical control, relies heavily on the ideas
we will study in this book. Computer graphics use aspects of projective ge-
ometry, which again uses the concepts of trigonometry. Voice recognition by
computers uses a concept in mathematics called Fourier transforms, which
again is built on these same ideas.

From medicine to manufacturing, from solar design to computer art, the
ideas we study here are found over and over again.



2 Chapter 1

The Trigonometric Ratios

In this chapter we learn how trigonometry provides a method for telling
us a great deal about a right triangle from limited information. These simple
ideas, widely applied in science, engineering, and mathematics, lay the
groundwork for some of the more advanced ideas we will eventually need.

Students are expected to have access to engineering or scientific cal-
culators to facilitate many of the calculations throughout this text. Many
calculations are followed by the notation , where n is an integer.
This indicates that the appropriate calculator steps are shown at the end of
that section. Steps are shown for a generic algebraic calculator (one with an
E key, indicated by (&) and for a generic postfix notation calculator (in-
dicated by (B)). The latter calculator has no key but has an
or key instead. Steps are also shown for the Texas Instruments TI-81
calculator. These are indicated by [TI-81].

Some preliminary words are in order about calculating with a calculator.
It is difficult to give a general rule for the number of digits that should appear
in the final result of a calculation, and a discussion of this is outside the scope
and intent of this book. The number of digits to which an approximate number
should be rounded is specified throughout the text. The number of digits is
chosen to represent a reasonable, if sometimes arbitrary, value.

Also, we will apply the most straightforward rounding rule to values. That
is, if the first discarded digit is 5 or above we round up, otherwise we do not.
Thus, 2.349 rounds to 2.35 to two decimal places, and to 2.3 to one decimal
place.

7-7 Angle measurement, the right triangle,
and the Pythagorean theorem

Vertex —

Figure 1-1

Angle measurement

An angle is composed of two rays, both beginning at what is called the vertex
of the angle. Figure 1-1 shows a representation of an angle.

In modern geometry a method of angle measurement is assumed. We will
assume that angles can be measured in degrees. The notation for degrees is °.
A common and useful interpretation of angle measure is ‘‘the amount of ro-
tation’” of one ray away from the other. In this context, 90° corresponds to a
quarter-rotation, 180° to a half-rotation, 270° to a three-quarter rotation, and
360° to a full rotation. Naturally, the measurement of an angle does not nec-
essarily imply any actual rotation. See figure 1-2.

90°

Figure 1-2
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Section 1-1  Angle Measurement, the Right Triangle, and the Pythagorean Theorem 3

An angle with measure between 0° and 90° is said to be acute; an angle
with measure 90° is right; an angle with measure between 90° and 180° is
obtuse; and an angle with measure 180° is a straight angle.

One degree is divided into smaller units in two ways: using the degree,
minute, second system and using the decimal degree system.

In the degree, minute, second (DMS) system a degree is divided into 60
equal parts called minutes, and each minute is divided into 60 equal parts
called seconds. This is analogous to the way in which hours are divided into
minutes and seconds on the clock. The notation for minutes is ' and the no-
tation for seconds is '’. For example, 51°18'22"" means 51 degrees, 18
minutes, and 22 seconds.

In the decimal degree system the degree measure is written in decimal
notation. For example, 2.53° is in decimal degrees and means 2 and 53 hun-
dredths of a degree.

Calculators will generally not perform operations on values in the DMS
system, so we must be able to convert from this system to decimal form.
Many calculators are programmed to do this. They typically use keys marked
[°’ *] or [—>H]. This is illustrated in example 1-1 A for two typical cal-
culators. Also note that we use the fact that there are 60 minutes in one degree,
and 60? = 3,600 seconds in one degree.

Convert 46°42'27"" to decimal degrees to the nearest 0.001°.

Manually:

5 421\° 27 \° Rewrite minutes and seconds
46° + (@) + (3600) as fractional parts of a degree
46.7075° Cs 1
46.708° Round to the nearest 0.001°

Calculator A:
46 ]0111|42 |01 )
Calculator B:

46.4227 “’H"* stands for hours |
The right triangle

A closed figure composed of three straight sides will always include three
angles, and these figures are therefore called triangles! (7ri is from the Latin
for three). (Actually the angles are formed by extending the sides, which are
line segments, to form rays.)

A useful property of triangles is that the measures of the three angles of
a triangle always add up to 180°. This fact was known thousands of years ago
and its first known demonstration appears in Euclid’s Elements, an ancient
Greek book on geometry. This allows us to find the measure of the third angle
in a triangle if we know the measures of the other two: if we add the measures

o |2

INote that, unless otherwise specified, all references to lines, triangles, etc., are to these
concepts as they occur in plane, or Euclidean, geometry. Fortunately, this is the geometry with
which the reader is most likely to be familiar, but it is worth mentioning that mathematics
recognizes other ‘‘types’” of geometry, called non-Euclidean geometries. In fact, several of
these geometries find applications in modern physics.
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B Example 7-7 B

Opposite to
angle A

Adjacent to

/ angle A
A c
Figure 1-3
@
c;’\"‘(\\)5
e Leg
Acute
angle
/ 2 90°
Leg
Figure 14
B
¢
a
A 5 C
Figure 1-5

of the two known angles and subtract this from the known total, 180°, the
result must be the measure of the third angle.

Note We often denote angles using Greek letters. The letters most often
used are « (alpha), B (beta), vy (gamma), and 6 (theta).

Find the measure of angle o in the triangle in the figure.

95°18’
o 35°8"
o = 180° — (95°18' + 35°8")
= 180° — 130°26' = 179°60" — 130°26" = 49°34’ |

When we say that a side of a triangle is opposite to an angle, we are referring
to the side that is not used to form the angle. When we say that a side of a
triangle is adjacent to an angle, we mean that the side actually forms one side
of the angle. For example, in triangle ABC in figure 1-3, we would say that
side BC is opposite to angle A, while sides AB and AC are each adjacent to
angle A.

A right triangle is a triangle in which one of the angles is a right angle
(90°). In such a triangle, two of the angles must be acute (less than 90°), since
their measures must add up to 90°. The side of a right triangle that is opposite
the right angle is called the hypotenuse, and the sides that are adjacent to the
right angle are sometimes called legs. See figure 1-4.

One particular way to label right triangles is widely used. Unless we are
told otherwise, in a right triangle we always label the right angle C and the
two acute angles A and B. The lengths of the legs are always labeled a and b,
with a opposite angle A and b opposite angle B. The hypotenuse is always
labeled ¢. This is illustrated in figure 1-5.

Note The symbol _C denctes a right angle.

The Pythagorean theorem

We often use the following theorem.? It is one of the most important facts in
mathematics.

The Pythagorean theorem
In a right triangle with legs having lengths @ and b and hypotenuse having
length ¢,

2+ p=

We use the Pythagorean theorem to find the length of the hypotenuse of a
right triangle if we know the lengths of the two legs.

2The word theorem means a statement that has been proved to be true, and the proof of this
theorem is credited to the Greek mathematician Pythagoras (sixth century B.C.), who is said to
have sacrificed an ox as an offering of thanks. In the last two thousand years literally
hundreds of proofs of this theorem have been given.
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B Example 7-7 D

Section 1-1  Angle Measurement, the Right Triangle, and the Pythagorean Theorem 5

If the two legs of a right triangle have lengths 6 and 8, what is the length of
the hypotenuse?

b=8
To use the Pythagorean theorem, we label one leg a and the other b. See the
figure. Let a = 6 and b = 8 and use the theorem as follows:
a+ b =c2s06> + 8 =¢?
100 = ¢?
To find ¢ we take the principal square root of 100:

V100 = ¢

10=¢ |

The Pythagorean theorem also provides a way to find the length of one
leg of a right triangle if the hypotenuse and the other leg are known.

If one leg of a right triangle has length 7, and the hypotenuse has length 14,
find the length of the other leg. Find the answer both exactly and to the nearest
tenth.

Let a = 7 and b be the unknown side, as in the figure. Then,

a® + b = ¢?

SO 5
72 + bt = 142
49 + b2 = 196 .
.
b2 = 147 ‘ o

b= 14T o

b = /(493)

b= ./49./3 A b &

b= 7\/5 Exact solution

=12 Approximate solution® [ CS 2 |

It can also be shown that if a®> + b? = ¢2, then that triangle is a right triangle,
and the right angle is opposite side c.

3When we write something like 7./3 = 12.1, we mean that 7./3 is approximately 12.1. This
use of the symbol = is adhered to in this text to signify approximate values.
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B Example 7-7 F

1. Is the triangle in the figure a right triangle?

12

If the triangle is a right triangle, then the hypotenuse would be the side
having length 13 (the hypotenuse of a right triangle is always the longest
side). Therefore the legs would have lengths 5 and 12. We now add the
squares of the lengths of the legs and see if this sum equals the square of
the hypotenuse, 13.

52 4+ 122 = 25 + 144 = 169, and
132 = 169

Thus, a*> + b* = ¢? and, therefore, the triangle is a right triangle.

Note Inpart 1 of example 1-1 E, we stated that the hypotenuse of a
right triangle is always the longest side. This is because in any triangle,
whether or not it is a right triangle, the longest side is always opposite
the largest angle. Similarly, the shortest side is always opposite the
smallest angle.

2. The sides of a triangle have lengths 32, 53, and 62. Is the triangle a right
triangle?

Using the Pythagorean theorem,
322 + 532 = 1,024 + 2,809 = 3,833 and 622 = 3,844

Since a? + b% # 2, we see that the triangle is not a right triangle. ||

As we said earlier, the Pythagorean theorem is one of the most important facts
in mathematics because it has so many applications to practical situations and
technical problems. Many situations in science and technology can be de-
scribed, or modeled, using right triangles. If we know that a physical situation
can be described in terms of right triangles, then all of the mathematics that
applies to right triangles can be used to learn more about the situation or to
solve a given problem.

In practice we must often make simplifying assumptions about the situ-
ation. For example, we may assume that a telephone pole makes a right angle
with the ground, when in fact it is unlikely that the angle is exactly 90°, or we
may assume that the earth is flat, that ‘‘level’” roads are perfectly level, etc.
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A guy wire is to be attached to the top of a flagpole and anchored in the
ground at a point 32 feet from the base of the flagpole. If the pole is 85
feet high, how long will the guy wire have to be, to the nearest foot?

We first draw a figure to describe the problem, as shown. We assume that
a flagpole is constructed to form as close to a 90° angle with the ground
as possible. Also, we ignore the fact that the wire will actually sag
somewhat and therefore is not a true straight line.

We can see from the figure that the unknown length of the guy wire
L is the hypotenuse of a right triangle in which the legs have lengths 85
and 32. Thus, the Pythagorean theorem provides the answer.

852 + 322 = [?

8,249 = I?

V8249 =L

90.8 = L

To the nearest foot, the guy wire must be 91 feet long.

In the theory of alternating current* in electronics, the total circuit
impedance Z in an inductive circuit can be found if we know the
inductive reactance X; and the resistance R by using the impedance
diagram shown in the figure.

Reactance

Vi X

R Resistance

Suppose R = 320 ohms and X; = 160 ohms. Find Z to the nearest ten
ohms.
Using the Pythagorean theorem,

ZZ = R2 + X]_2

7 = 3207 + 1607
Z? = 128,000

Z = /128,000

Z = 35738

Z = 360 ohms, to the nearest ten ohms

“As in many other examples and problems in this text, the reader may not be familiar with the
terminology and/or the facts involved in the application being illustrated. Please note,

however, that where the necessary background is not provided, the problem is phrased so that
it is clear to the reader which mathematical operation is required to achieve the desired result.
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3. An aircraft is flying with an airspeed of 120 knots® and a heading of due
north. A 30-knot wind is blowing from the west. What is the aircraft’s
ground speed, to the nearest knot?

Wind speed
EE s mas It is a fact of physics that we can represent the speeds and directions
9 given above in a right triangle as illustrated in the figure. The ground
B0 a speed of the aircraft is the length of the hypotenuse. Solving the triangle
2 .
g5 grsf,:gmg shows that the ground speed is 124 knots:
39 - SPeeq
% 8|/ ana d:r@Ctioi (ground speed)? = 120* + 30% = 15,300
3 || ™eotenuse d speed = /15,300
=F ground speed = ;

~ 124

Calculator steps
1. @ 46 42 [+] 60 27 [+] 3600 [ =] Display
@) 46 [ENTER] 42 [ENTER] 60 [+ ] [+] 27
3600 [+ |
[TI-81] 46 [+] 42 [=] 60 [+]27 [=] 3600
2.@®7 [x]3 (=] Display
® 7 [ENTER] 3 [x]
[T-81] 7 [/] 3 [ENTER]
3.@® 85 [+] 32 [=] [L&] Display
® 85 [2] 32 [&]
(re8t] [/7] [d8s [*] [+]32 [4] [b] [ENTER]

Can you

e State whether a given angle is acute, right, straight, or obtuse?

e Convert from the degree, minute, second system to the decimal degree
system?

e Find the third angle of any triangle when you know the other two
angles?

e Give the definition of right triangle and draw and label one using the
conventional notation?

e State the Pythagorean theorem?

e Use the Pythagorean theorem to find one side of a right triangle when
you know the other two sides?

*One knot means one nautical mile per hour. A nautical mile is 315 of a degree on the earth’s
circumference. It is approximately 6,080.27 feet. Nautical miles are often used in the
navigation of ships and aircraft.
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Exercise 7-7

Convert each angle to its measure in decimal degrees. Round the answer to the nearest 0.001° where necessary. Also, state
whether each angle is acute, obtuse, straight, or right.

1. 13°25' 2, TTHE56" 3. 0512 4. 42°37"
5. 25°33'19" [ 6] 87213 7. 165°47" 8. 19°15'
9. 33°5755™" 10. 0°19'12" 11. 159°59’ 12. 20°1’
13. Draw a representation of a right triangle and label it 14. State the Pythagorean theorem from memory.

using the conventional labeling (using A, B, C, a, b, ¢).

In the following problems find the measure of the angle 6.

15. 16. 82.65°
88.6°

43.2° 8 85.17°

19.

43°45"

In the following problems state whether each triangle is a right triangle or not; if the triangle is a right triangle, state the
length of the hypotenuse.

21. 22
<.
| PN
2 &
0.4 0.5 12.0 9.2
4
0.3 7.6
24. 8 25. 23 26. 24
0.32 /’& /\7
257
= 25
2
o)

|2
-~

In the following problems two of the three sides of a right triangle are given. Use the Pythagorean theorem to calculate the
length of the missing side; leave your answer in exact form and also approximate your answer to the same number of
decimal places as the data (if necessary).

a b c a

b c a b c
27. 9 12 ? 28. 10 ? 26 ? 8 10
30. 5 10 7 3L 12 ? 18 32, ? 6.8 9.2
33. 5 3 ) 34. 132 19.6 ? 35. 100 150 9
36. 0.66 1.42 ? 7. 7 3 ? 38. 4 ? /23
39. 6.3 ? 15.0 40. 2 ? 3 3/2 45 9
42. 3./2 2 4./5 43. 7 19 28 44, 1,002 3,512 2
45. 1 1 7 46. 30 ? 50



10

Chapter 1 The Trigonometric Ratios

Solve the following problems.

47.

48.

49,

A flagpole is 55 feet tall and is supported by a wire at-
tached at the top of the pole and to the ground 26 feet
from the base of the pole. How long is the wire, to the
nearest foot?

A flagpole is 93 feet tall and is supported by a guy wire
that is 157 feet long, attached at the top of the pole and
to the ground some distance from the base of the pole.
Find the distance of the wire’s ground attachment point
from the base of the pole, to the nearest foot.

A surveyor has made the measurements shown in the
diagram in order to compute the width of a pond. How
wide is the pond, to the nearest 0.1 foot?

=
\9%“ Pond

215 N

This diagram is called an impedance diagram. It is used to
compute total impedance in a certain electronic circuit. X,
means inductive reactance, R is resistance, and Z is
impedance. All units are ohms.

&
3
=],
8
o Z X
R Resistance
50. If X; is 40.0 ohms and R is 56.6 ohms, calculate the total

51.

52.

53.

impedance Z to the nearest 0.1 ohm.

Suppose that X; is 5.68 ohms and R is 19.25 ohms. Find
Z to the nearest 0.01 ohm.

If Z = 213 ohms and R = 183 ohms, find X; to the
nearest ohm.

If X; = 2,150 ohms and Z = 4,340 ohms, find R to the
nearest 10 ohms.

A triangular piece of land has been surveyed and the

55.

56.

results are shown in the diagram. What can you say about
the accuracy of the survey? Give a reason for your
answer.

110°0"

28°32' 33°28"

A rectangular piece of land has been surveyed and the
results are shown in the diagram. What can you say about
the accuracy of the survey? Give a reason for your
answer.

T

_-"/
*\b«ﬁg‘g/ i

50.01t

-~

e

120.01t

A machinist has to cut a rectangular piece of steel along
its diagonal. The saw that will be used can cut this type
and thickness of steel at the rate of 0.75 inch per minute.
If the piece is 13.8 inches long and 9.6 inches wide,
calculate how many minutes (to the nearest minute) it
will take to cut the piece.

Do problem 56 but assume that the piece is 15.0 centi-

38.

39.

60.

meters (cm) long and 10.5 cm wide and that the saw will
cut at 0.8 cm per minute.

The ladder on a fire truck can extend 125 feet. If the
truck is 25 feet from a building, how high up the building
can the ladder reach, to the nearest tenth of a foot?

If the fire truck of problem 58 moves 5 more feet from
the building (to 30 feet), does the height up the building
that the ladder can reach decrease by 5 feet? If not, how
much does it decrease, to the nearest tenth of a foot?

Find the ground speed, to the nearest knot, of an aircraft
flying with a heading due east and an airspeed of 132
knots if there is a wind blowing from the north at 23
knots.

@ Find the ground speed, to the nearest knot, of an aircraft

62.

flying with a heading due west and an airspeed of 105
knots if there is a wind blowing from the north at 18
knots.

Find the ground speed, to the nearest knot, of an aircraft
flying with a heading due south and an airspeed of 178
knots if there is a wind blowing from the east at 25 knots.



63.

64.

65.

Find the speed relative to the ground, to the nearest knot,
of a boat heading directly across a river at 16 knots if
the current is moving at 4.3 knots.

To the nearest + inch, find the length of the diagonal of
an 84-inch by 11-inch piece of paper.

In the ‘‘Mathematics of Warfare’” by F. W. Lanchester
(from The World of Mathematics by James R. Newman),
Mr. Lanchester presents the idea that, all other things
being equal, the strengths of fighting forces add in a
manner proportional to the squares of their numbers. Re-
ferring to the diagram, this means that a force of size B
is equal to two forces of sizes a and b; that C is equal
to the combined strengths of a, b, and c¢; etc. Assuming

Section 1-2  The Trigonometric Ratios 1

that forces a, b, ¢, d, and e are of size 20, 5, 12, 8, and
10, respectively, find the size of force E that is equivalent
to the combined strengths of these forces. Find this force
to the nearest unit.

7=2 The trigonometric ratios

Trigonometry has existed in one form or another for more than two thousand
years. The creator of trigonometry is said to have been the Greek Hipparchus
of the second century B.C. The Hindus and, primarily, the Arabs continued
developing the subject. In the fifteenth and sixteenth centuries, the Germans
developed trigonometry into the form presented here.

The primary trigonometric ratios

We first define the sine, cosine, and tangent ratios, abbreviated sin, cos, and
tan, respectively. We refer to these as the primary trigonometric ratios.

Primary trigonometric ratios
If 8 is either of the two acute angles in a right triangle (refer to figure

1-6), then:

Side
opposite
angie 8

Side adiacent to ang!é 8

Figure 1-6

Ratio Definition
ne =
o5 =

no

_ length of side opposite 8
length of hypotenuse

_ length of side adjacent to 8
length of hypotenuse

_length of side opposite 8
" length of side adjacent to 8
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B Example 7-2 A

Note 'sin 8" means “the sine of angle 6" and is read “'sine theta.”
cos 6" means “‘the cosine of angle 8" and is read “'cosine theta.”

tan 8’ means "‘the tangent of angle 6" and is read "“tangent
theta.”

An abbreviated version of these definitions is

sin § = PP
yp

&

cos B = 2
hyp

opp

tan 6 = —
AT = g

These ratios are used in astronomy, surveying, engineering, science, and math-

ematics. In fact, there is virtually no area of science and technology that does
not use them.

1. Find the sine, cosine, and tangent ratios for angles A and B in right
triangle ABC, where @ = 3 and b = 6.

Recall that the right angle is always labeled C, side a is opposite angle 4,

and side b is opposite angle B. We show this and the given data in the
figure.

First, we find ¢ by the Pythagorean theorem.
@ + b=
B2 LR =
45 = ¢2
V45 =c
~(O)5) = ¢
\/§\/5_ =c
3\/5 =c
Now find the sine ratio for each angle A and B. Since the sine ratio

for an angle is the length of the side opposite the angle over the length of
the hypotenuse, we have

: side opposite angle A a 3 1
sin A = S i =
hypotenuse e 845 5
_ L S5
V3 S5 5
G0 B = side opposite angle B _ b _ 6 _

P
Gl

hypotenuse c 3

2 V5 _25

BB
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To find the cosine ratio we form the ratios of the sides adjacent to
each angle over the length of the hypotenuse.

e side adjacent to angle A = b _ 6 _ 2 _ &
hypotenuse ¢ 345 5 5

ook He side adjacent to angle B _a _ 8 _ kS _ /3
hypotenuse e 35 5 5

The tangent of an angle is the length of the side opposite the angle
over the length of the side adjacent to the angle. Thus,

o side opposite angle A a 3 1
n = _——_—————= —
side adjacent to angle A b 6 2
id ite angle B b 6
can side opposite angle b_6_,

~ side adjacent to angle B BRE

2. Find the sine, cosine, and tangent ratios, in terms of the values x and y
only, for the angle labeled X in the right triangle in the figure.

¥

£ Tl
y

X Z

Using the Pythagorean theorem, we find the hypotenuse:
Z2 = x> + )’2
r= JP T P
Since the sine of an acute angle in a right triangle is the length of
the side opposite the angle divided by the length of the hypotenuse, then

. X o y X
sin X = ———; similarly, cos X = ———and tan X = —.
A R Y SRk y =

The reciprocal trigonometric ratios

The final three trigonometric ratios are called the cosecant (csc), secant (sec),
and cotangent (cot) of an acute angle of a right triangle. These ratios are the
reciprocals of the three ratios above.
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B Example 7-2 B

B Example 7-2 C

Reciprocal trigonometric ratios
If 8 represents either acute angle of a right triangle, then

1 1
scl =——, seCl=—, coth=——
sin @ cos 6 tan 6

Note The definitions of csc 9, sec 8, and cot 8 given here are equivalent
to the following definitions:
h h
csc =£,sece=£,
o}

adj
cot® =
adj opp

We could use these as the definitions for these three ratios.

It is worth stressing that the following pairs of ratios are reciprocals:

cosine and secant
sine and cosecant
tangent and cotangent

This means that if we know one ratio, we can invert it to find the other ratio
in the pair.

1. sin A = £ . Find csc A.
Invert 5, giving csc A =

2. cot B = 5. Find tan B.
Invert 3 to gettan B = +

3. sec A = 1.6. Find cos A.
Invert 1.6 to get 75, or 0.625, so cos A = 0.625.

=

1. Given the triangle in the figure, find the six trigonometric ratios of 0.

Since we are not told the length of the hypotenuse, we calculate it, using
the Pythagorean theorem:

32+42=9+16=25,and /25 =5

dj 4 3
sm(—)=@=i, 0S =ﬂ=—,t =E=—,
hyp 5 h; 5 adj 4
1 1 1 1
csc B = — =—=i,sec:9= =——i,
sin 6 1 3 cos 6 + 4
3 1 4
cot =——=—=—
6 2 3



B
-
2 a=4
c

B Example 7-2 D
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2. Find sin B and cos B for the triangle in the figure.

First we find the length of side b, using the Pythagorean theorem:
a>+ b>=c?s016 + b2 =64, 0rb? = 48,50 b = /48 = /(16)(3)
= 4\/37.

e e
¢ 8 2
a 4 1
cosB—~c——8—2 =

The fundamental identity of trigonometry
Recall that an identity is an equation that is true for any valid replacement of
the variable. The following trigonometric identity is so important that it is
often called the fundamental identity of trigonometry.

The fundamental identity of trigonometry
If 8 is either acute angle in a right triangle, then
sin?@ + cos?8 = 1
Concept
If we sguare both the sine and the cosine ratios for a given angle and add
these guantities, we always get 1.

Note 1. In chapter 2 we see that 6 does not have to be acute.
2. The notation sin26 means (sin 9)2, and cos28 means (cos 6)2.

i

1. Show that the fundamental identity of trigonometry applies to the results
of part 2 of example 1-2 C.

Recall that in part 2 of example 1-2 C the angle is called B, not 8. Also,

3
sinB=TandcosB=%.

sin B)? + (cos B)?

4.0

sin?B + cos2B

Il
—

+ o
]

I
i ——
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B Example 7-2 £

A c

Figure 1-7

2. Prove that the fundamental identity of trigonometry applies to angle A in
any right triangle ABC.

sin?A + cos?2A = (sin A)? + (cos A)?

() (%)

a> b
2 a2
a2 =t
C2
and, since g2 + b2 = ¢2,
o2
T2
=1 =

Finding other trigonometric ratios from a
known ratio

If we know one of the trigonometric ratios of an angle, we can construct a
right triangle with an angle for which that ratio is true. We can use this triangle
to compute the other five trigonometric ratios.

In right triangle ABC, sin A = 4 . Draw a triangle in which sin A is 4, and
use this to compute the other five trigonometric ratios for angle A.

. . .. 4a a 1 . ’ . :
Since sin A is —, we see that — = 5 Thus, a right triangle in which
c &

a = 1 and ¢ = 2 would work. This is shown in the figure. We then compute
b by the Pythagorean theorem,

G 2

1%+ B2 = 22

»¥=3

b=.3

and then compute the other five ratios for angle A:

3 I 3 2 2.3
cos A =£,tanA=—ﬁor£,secA=—or—f,

2 3 J3 3
cscA=2,c0tA=\/§ E

A logical question is whether any other triangles would work in example 1—
2 E; the answer is yes. In fact, since £ reduces to 4, we could use the triangle
in figure 1-7. However, our values for the six ratios would not change.
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B
€ g=3
A—EC
b=1
B
;\
g a
A
b=x =
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273
For example, we find that b = /12, or 2\/5; thus, cos A = Tf which

3 : :
reduces to the same value, % The other ratios will also reduce to the same

values we already obtained.

Similarly, we could start with any fraction that is equivalent to + . This
means that we could use an unlimited number of triangles in such problems.

This is true because of the properties of similar triangles, discussed in section
1-3.

1. cot B = 3. Draw a right triangle for which this is true and compute the
other five trigonometric ratios for B.
We know that if cot B = 3, then tan B = + (see example 1-2 B) and tan
_ o
adj
This is shown in the figure.
Using the Pythagorean theorem, we find c:
= +FP=3+12=10

c=+/10

With this we can now compute the four remaining ratios:

1 J/10 3 3/10

sin B = —— =

e, B= ’
e 0m o gm0

|
sec B =TO,CSCB = 10

= — . Thus, a triangle in which » = 1 and a = 3 would work.
a

2. In right triangle ABC, cos A = x. Draw a right triangle for which this is

true and find tan B in terms of x.

If we think of x as % we see that cos A in the triangle shown in the

figure is x.
From the Pythagorean theorem we find a:
& =r B
12 =a% + x2
e

J1—=x2=a

Now we can find tan B:

i X

a L =2

tan B =

[
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Can you
e State the definitions of the six trigonometric ratios?

e Find the six trigonometric ratios of an angle in a right triangle when you
know the lengths of the sides?

State and use the fundamental identity of trigonometry?

Find the remaining five ratios for an angle if given one of the six ratios
for an angle in a right triangle?

Exercise 7-2

1. Draw a right triangle, label it in the standard way (using A, B, C, a, b, c), and use it to define the six trigonometric ratios
for both acute angles.

In the following problems you are given parts of right triangle ABC; use this information to compute the six trigonometric
ratios for the angle specified.

a b (& Find ratios for this angle a b & Find ratios for this angle
2.3 4 A 3.3 4 B
4. 5 13 A S 1 3 B
6. 4 V10 A 7.5 ST B
8. 2 J13 A 9.2 V5 B

10. 4 7 A ., 12 13 B
12. 5 12 A 13. 6 10 A
14. 10 15 A /3 4 A
16. x y A T G z B
18. 1 1 A 1 2 B
20. 5 8 A 21. 9 5 B

22. You will learn in section 1-3 that if the sine ratio for an acute angle is more than 0.5, then the angle is larger than 30°. In
a right triangle, ¢ = 3 and ¢ = 5; is angle B more or less than 30°7

In the following problems you are given one of the trigonometric ratios for an angle. Use this to sketch a triangle for which
the ratio is true, and then use this triangle to find the other five trigonometric ratios for that angle.

23. sinA =+ 24. cos B =+ 25. cos A = 0.5 26. tan B = 4
27. secA =3 28. cot B = 0.2 29, sinA = 5 30. cscB= 16

cos A = 0.9

Solve the following problems.

32. Show that the fundamental identity of trigonometry ap- 35. In right triangle ABC, tan A = x. Sketch a triangle for
plies to the results of problems 27 and 29. which this is true and use it to find sin B in terms of the

33. Show that the fundamental identity of trigonometry vaabls &) (koAb hinit for prohilem 34.)
applies to angle B in any right triangle ABC. 36. In right triangle ABC, sec A = x. Sketch a triangle for
which this is true and use it to find sec B in terms of the

34. In right triangle ABC, sin A = x. Sketch a triangle for :

which this is true and use it to find sin B in termg of the gl

In right triangle ABC, tan B = x. Sketch a triangle for
which this is true and use it to find tan A in terms of the

variable x.

variable x. (Hint: x= -;i )
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7-3 Angle measure and the values of the trigonometric ratios

B
L ]
A 5 c
5
' »
a
—
A ’
b’ ¢
Figure 1-8
60°
e
60° c
c
80°
Figure 1-9

Figure 1-10

Trigonometric ratios for equal
angles are equal

It is possible to have angles of the same measure in different right triangles.
Angles A and A’ in figure 1-8 are examples. The trigonometric ratios will have
the same value for these angles. This is because these triangles are similar—
that is, they have the same shape, but perhaps different sizes. It is a theorem
of geometry that corresponding ratios in similar figures are equal. Thus, in

’

a a . .
figure 1-8, — = —, so sin A = sin A’. For the same reasons, the other five
e ¢

trigonometric ratios are also equal.
Note Read A’ as’'A-prime,” B’ as “'B-prime,”’ etc.

These facts mean that the values of the trigonometric ratios for an acute
angle do not depend upon the particular right triangle in which it appears. For

an acute angle with a given measure, the values of the trigonometric ratios
will always be the same.

Values for angles of measure 30°, 45°, and 60°
We now find the trigonometric ratios for some special angles—30°, 45°, and
60°. Figure 1-9 shows an equilateral triangle, which is a triangle in which all
sides have equal length. We label this length c.

We construct the line AC, as shown in figure 1-10, which forms a right
triangle with acute angles A = 30° and B = 60°. The length « is half of ¢, so

a= % . We find b next.

bZ—CZ_aZ—CZ_(i)Z_ﬂEE_C_Z
= = S =

4 4
36
4
b



20 Chapter 1 The Trigonometric Ratios

Angle A is a 30° angle, so we will write sin 30° to mean the value of the sine
ratio associated with an angle of measure 30°. Thus,

S
S T
sin = ==
V3,
b 2 3
cos P =—=—=—
¢ c 2
c
a 2 1 3
tan30° = —=—=—=—
b3, /3 3
2

60°=_=_=
sin = 2
g
o_a_2_1
cos 60° = S
J3
2 ¢
tan 60° = — = — = /3
{8
,

In the exercises we will compute the sine, cosine and tangent ratios for a
45° angle; these are shown in table 1-1, along with the values obtained above.

Sine Cosine Tangent

1 3 3
50 L V3 V3

2 2 8
s 2 2 i

2 2

<3 1

60° == —= 3

2 2 <4
Table 1-1

General values

It is actually impossible to find the exact values of the trigonometric ratios for
most angles. Tables of approximate values were calculated long ago. The
earliest known table of trigonometric values, for the equivalent of the sine
ratio, was created by Hipparchus of Nicaea about 150 B.c. In the second cen-
tury A D. Ptolemy constructed a table of values of the sine ratio for acute angles
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in increments of one-quarter degree. Today we use calculators to approximate
these values. When using a calculator it is important that the calculator be in
degree mode. This means that the calculator is expecting the measure of the
angle in decimal degrees. Check your calculator’s manual to make sure it is
in degree mode. This is usually done with a key marked or simply
. ““DRG’’ means degrees, radians, grads. We discuss radian measure
in a later section. Grads, or grades, is the metric measure for an angle. There
are 100 grads in a right angle. We will not use this measure in this text.

To select degree mode on the Texas Instruments TI-81 it is necessary to

select “‘Deg’’ under the | MODE | feature. To do this, select | MODE |,

darken in the “‘Deg’’ mode indicator (use the four cursor-moving ‘‘arrow”’
keys) and select | ENTER |.
Find each value rounded to four decimal places.

1. sin 34.51° 34.51 Display [0.5665500655
sin 34.51° = 0.5666 TI-81 34.51 [ENTER

2, tan 84.6° 84.6 Display [10.57889499
tan 84.6° = 10.5789 TI-81 84.6 [ENTER

3. sec 33.5°
Since there is no secant key on a calculator we use the fact that sec 33.5°

1
pierry— Compute cos 33.5° and divide it into one; the key is

designed for this type of situation.

33.5 Display [ 1.199204943

[Ti-81] [(] [cos] 335
ENTER
Note that on the TI-81 the key 1s the key.

sec 33.5° = 1.1992

4. cot 87.23° 23 = —
co cot 87.23 tan 87.23° S0 use

87.23
Display [0.04838332158 |
[T1-81] [(] [TAN] 87.23

cot 87.23° = 0.0484
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sin~! cos ! tan~!
[sin] | cos | [ tan |

B Example 7-3 B

5. cos 13°43’
Recall that angles in the DMS system must be converted to decimal
degrees. We show the calculation with and without special calculator
keys. (See also example 1-1 A.)

No special keys: 13 43 E 60 El
Display

Calculator A: 13 [°27] 43 [°°] [cos]

Calculator B: 13.43

13 [£] 43 [=] 60

cos 13°43" = 0.9715 |

Finding an angle from a known
trigonometric ratio

It is important to be able to reverse the operations discussed above. For ex-
ample, if 0 is an acute angle and sin 8 = 3, what is 6? We can see from table
1-1 that & must be 30°. The calculator is programmed to solve this problem.
This is done with the inverse trigonometric ratios called the inverse sine
(sin~1), inverse cosine (cos~!) and inverse tangent (tan—!) ratios. The super-
script —1 does not indicate a reciprocal value in the way that, say, 2-! = .
We will study these ratios in more detail later. For now we illustrate how to
find the acute angle whose sine, cosine, or tangent value is known.

For this, most calculators use the appropriate key (sin, cos, tan), prefixed
by another key such as [SHIFT|, [2nd]|, |INV] or [ARC]. The appro-
priate function is generally shown above the key itself. The result is always
an angle in decimal degrees (when the calculator is in degree mode). We will
show the necessary two keystrokes as one.

Find 0 in the following problems using the calculator. Assume 8 is an acute
angle. Round the answer to the nearest 0.01°.

1. cos 6 = 0.4602
We need to calculate cos~—10.4602.

0.4602 Display [62.59998611

[TI-81] [COS-!] .4602
8 ~ 62.60°

2. tan B = 1.2231
Calculate tan—11.2231.

1.2231 [tan~!] Display [50.73075144
TI-81] [TAN-1] 1.2231 [ENTER

6 = 50.73°
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3. ¢csc 0= 1.0551

We use the fact that if csc 8 = 1.0551, then sin 8 = . Thus we

1.0551
LOSSI).Use the key. (On the TI-81 the [ 1/x
key is the key.)
1.0551 Display
[TI-81] [SIN-1] 1.0551

0 =71.40° |

compute sin~! (

Solving right triangles

One application of trigonometry that occurs in many situations is solving right
triangles—this means discovering the lengths of all sides and the measures
of all angles of the triangle. We will round the values we compute to the same
number of decimal places as the given data.

These types of situations fall into two categories, ones in which we know
one side and one acute angle and others in which we know two sides and no
angles. Each category is illustrated in example 1-3 C.

W Example 7-2 C Solve the following right triangles.
1. A = 35.6°, a = 13.6 (one side, one angle)
B To solve this triangle we need to find the lengths of sides b and ¢ and

the measure of angle B. Since angle C is always 90°, angles A and B
total 90°. Thus, angle B is 90° — 35.6° = 54.4°. We now note that

a=13.6 5 a
sin A = —, so that
¢
35.6°
A 5 c . . 136
sin 35.6° = —
c
¢ sin 35.6° = 13.6 Multiply each member by ¢
13.6 o ) )
= Divide each member by sin 35.6°
sin 35.6°
c=234 G541

Now we find » by noting that tan A = % :

13.6
tan 35.6° = —
an b
b tan 35.6° = 13.6 Multiply each member by b

13.6 n
—— Divide each member by tan 35.6°
tan 35.6°

b=19.0

Since we know the lengths of all sides and all angles we have solved
the triangle. To summarize, a = 13.6, b = 19.0, ¢ = 23.4, A = 35.6°,
B =54.4° C = 90°.
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B
c
a=32
A c
b=57
25 -
Oy
i
65° [

2. a=3.2,b=5.7(two sides)

We can find the length of side ¢ by the Pythagorean theorem.
2=a*+ P
%= 39 4. 572
¢ =42.73

c = 4273
c=6.5

We can find angle A by noting that tan A =

SRS

tan A = —
5.7

3.2
A =tan ! — [E
&)
A =29 .3°
We know that the sum of the measures of A and B is 90°, so B = 90°
— 29.3° = 60.7°. This completes the process of finding the lengths of

all sides and measures of all angles. Thus, a = 3.2, b = 5.7, ¢ = 6.5,
A =293, B=60.7° C =90°

. A tag on a 25-foot ladder states that, for safety reasons, the angle that the

ladder makes with the ground should not exceed 65°. How high can the
ladder reach without exceeding this angle, to the nearest 0.1 feet?

We need to find £ in the figure. If we observe that & 1s opposite the
known angle and that the length of the hypotenuse of the triangle is
known, we see that we can use the sine ratio.

h

in 65° = —

= 23
25s8in65°=h Multiply each member by 25

27=h

The ladder can reach a height of approximately 22.7 feet without
exceeding a 65° angle with the ground. =

Calculator steps
1L @ 13.6 [=] 3556 [=] Display

® 13.6 [ENTER] 35.6 [sin]| [+]
13.6 [£] 35.6

2. ® 13.6 [=] 356 [=] Display [18.99627899

® 13.6 [ENTER]| 35.6 [tan] [=]

136 [+] 35.6
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3.8
®
4.0
®

32 [=] 57 [=] [ten]
32 [ENTER] 5.7 [+] [tnT]
[Tax-] [d 32 [=] 57 [] [ENTER]

25 [x] 65 [sin] [=]

Angle Measure and the Values of the Trigonometric Ratios 25

Display | 29.31000707

Display | 22.65769468

25 [ENTER] 65 [sin]

25 [SIN] 65 [ENTER |

Can you

e Compute the value of the trigonometric ratios for a given acute angle,
using a calculator?

s Compute the value of an acute angle, given the value of a
trigonometric ratio, using a calculator?

e Solve a right triangle when given one side and one acute angle?

e Solve a right triangle when given two sides?

._-'M;'as.tery; pomts

Exercise 7-3

Use a calculator to find four-decimal-place approximations for the following.

1. sin 31.28° 2. eps B5:23°
5. cot 28.87° 6. csc 5.15°
sec 66.47° 10. sin 35.56°
sin 78°33 14. cos 17°45'
17. tan 35°8’ 18. cos 23°24'
21. sin 48°8' 22. tan 33°38’
24. A surveyor needs to compute R in the following formula

as part of finding the area of the segment of a circle:

Ic
R = ——— . Find R to three decimal places if LC = 425.0
2sin/

feet and I = 13.2°.

Compute R using the formula of the previous problem if

LC = 611.1 meters and / = 18°20'. Round the answer
to two decimal places.

3
s

15.
19.
23.

26.

tan 11.95° 4. sec 40.08°
sin 40.28° 8. tan 76.23°
sin 78.33° 12. cos 17.45°
cos 85°28' 16. tan 40°41’
cos 56°24' 20. cot 13°3'
sec 86°22'

In the mathematical modeling of an aerodynamics
problem the following equation arises:

y=xcosAcos B—x*cosAsinB — x>sinA

Compute y to two decimal places if x = 2.5, A = 317,
and B = 17°.

Compute y to two decimal places using the formula of

28.

problem 26 if x = 1.2, A = 10°, and B = 15°.

The average power in an AC circuit is given by the for-
mula P = VI cos 8. Compute P (in watts) if V = 120
volts, I = 2.3 amperes, and 8 = 45°, to the nearest 0.1
watt.
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29.

30.
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Compute P using the formula of problem 28 if V = 42
volts, I = 25 amperes, and 6 = 45°, to the nearest 0.1
watt.

A formula that relates the distance across the flats of a
piece of hexagonal stock in relation to the distance
across the corners is f = 2r cos 6. A machinist needs to
compute f for a piece of stock in which » = 28 milli-
meters (mm) and 6 = 30°. Compute f to the nearest 0.1
mm.

Using the formula of problem 30 find r if f = 21.4 inches

32.

and 6 = 25°.

Using the formula of problem 30 find 8 to the nearest
0.1 if f = 36.8 millimeters and r = 24.0.

Find the unknown acute angle 8 to the nearest 0.01°.

34.
37.

40.
43.
46.

sin 8 = 0.3746 35. sin 6 = 0.8007

tan 8 = 1.8807 38. sin 0 = 0.9484
35.9

tan 6 = 1.0014 41. sin § = —

an M 83

tan 6 = 2 44. csc 6 = 1.1243

cot = 2.5 su:c(%l=E

2.35

33. Find the exact values for the sine, cosine, and tangent

ratios for an angle of measure 45° by proceeding in the
following manner. Draw an isosceles right triangle—a
right triangle in which the two legs have the same length.
Label this length one. Observe that the two acute angles
must be 45°. Now find the length of the hypotenuse and
use the definitions of the trigonometric ratios to find the
desired values.

36. cos 68 = 0.1028
39. cos B = 0.8515

42, cos 0 = —
45. sec 6 = 4.8097

In the following problems you are given one side and one angle of a right triangle. Solve the triangle. Round all answers to
the same number of decimal places as the data.

a=152B=38% 50. a = 12.6, B = 17.9°
52. a = 525.4 =70.3° 53. b = 0.672, A = 29.4°
55. b =21.8, B = 78.0° 56. b = 2.14, B = 50.4°
58. ¢ =3.45 A4 = 46.2° 9] c = 122, B=65.5°

51. a = 11.1, A = 13.7°
54. b =152, A = 81.3°
57. ¢ = 10.0, A = 15.0°
60. ¢ = 31.5, B = 62.0°

In the following problems you are given two sides of a right triangle. Solve the triangle. Round all lengths to the same
number of decimal places as the data and all angles to the nearest 0.1°.

61..a=13.1, 5 =156 62. a = 5.67,b
64. a = 2.82, b = 1.09 65. a =
bi=513,¢ = 113.0 68. b =
70. a = 33.1,c = 41.0 71. b = 84.0, ¢ = 90.1

72.

The figure illustrates an impedance diagram used in elec-
tronics theory. If Z (impedance) = 10.35 ohms and X;
(inductive reactance) = 4.24 ohms, find 6 (phase angle)
to the nearest degree and R (resistance) to the nearest
0.01 ohm.

Reactance

X

R Resistance

17:8, ¢ = 25.2
4.55, c = 5.66

63. a=022,b=1.34
66. a = 311, ¢ = 561
69. a =12.0,c = 13.0

73. Use the impedance diagram of problem 72 to find Z if

= 24.2° and X; = 22.6 ohms.

74. The diagram illustrates the measurements a surveyor
made to find the width w of a pond; compute the width
to the nearest foot.
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The diagram illustrates the tip of a threading tool; find
angle 8 to the nearest degree.

qm-:--}

3 |
—s—

The diagram illustrates a piece of wood that is being

975

78.

mass produced to form the bottom of a planter. Find
dimension a in the figure to the nearest 0.01 inch if

. . 360°
b = 8+ inches. Note: angle 8 is =

A formula found in electronics is E = , Where E

. 4
Icos®
is voltage, P is power, I is current, and 0 is phase angle.
Find E (in volts) if P = 45.0 watts, I = 2.5 amperes, and
8 = 15°. Round the answer to the nearest 0.1 volt.

The diagram illustrates the wind triangle problem in air
navigation. A plane has an airspeed of 155 mph and
heading of due north. It is flying in a wind from the west
with a speed of 30 mph. Find the ground speed S and the
ground direction 8, each to the nearest unit.

30

155
n

79.

80.

81,

82.

83.
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An angle of elevation is an angle formed by one hori-
zontal ray and another ray that is above the horizontal.
Angle 8 in the diagram is the angle of elevation to an
aircraft that radar shows has a slant distance of 12.4
miles from the radar site. If 6 is 30.1°, find the elevation
h of the aircraft, to the nearest 100 feet. Remember that
1 mile = 5,280 feet.

If it is known that an aircraft is flying at 28,500 feet and
the angle of elevation of a radar beam tracking the air-
craft is 8.2°, what is the slant distance d from the radar
to the aircraft, to the nearest 100 feet?

The diagram illustrates the path of a laser beam on an
optics table. Compute the total distance traveled by the
beam to the nearest millimeter.

30 mm
i 58
Som T
-
23mm e
ﬁ o 48 mm

An angle of depression is an angle formed by one hor-
izontal ray and another ray that is below the horizontal.
Angle 8 in the figure is the angle of depression formed
by the line of sight of an observer in an airport control
tower looking at a helicopter on the ground. If 6 is 17.2°
and the tower is 257 feet high, how far is the aircraft
from the base of the tower, to the nearest foot.

C—1

[

Tower

If an aircraft is 1.23 miles from the foot of the tower in
problem 82, what is 0, to the nearest 0.1°7 (Remember,

1 mile = 5,280 ft.)
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84. The diagram is a top view of a portion of a spiral stair-
case that an architect has designed. If 8; = 0, = 03, find
the length x to one decimal place. (Caution: Carry out
your calculations to as many digits as practical to avoid
an accumulation of errors.)

83
8 cm

9, I
122 cm

85. If the architect of problem 84 revises the plans so that
B, = 0, + 5° and B3 = 8, + 5° find x to one decimal
place.

86. In right triangle ABC, A = 45° and b = 4. Solve this
triangle using exact values only. (Use the exact values
for sin 45° etc., and do not approximate radicals as
decimals.)

In right triangle ABC, B = 60° and b = 8. Solve this
triangle using exact values only. (Use the exact values
for sin 60° etc., and do not approximate radicals as
decimals.)

7-4 Introduction to trigonometric equations

This section introduces equations involving the trigonometric ratios. In
chapter 2 we learn about the trigonometric functions. The material covered
here applies to these functions as well.

Equations can be categorized as identities and conditional equations. An
identity is an equation that is true for every allowed value of its variable (or
variables). For example,

2+3)=2x+6

is an identity, since the left member and right member of the equation represent
the same value, regardless of the value of x. Similarly

32

i

is an identity; the left member equals the right member for every value of x
for which both members are defined. Observe that the left member is not
defined for the value 0, so the identity is true for all real values except zero.

A conditional equation is an equation that is true only for some, but not
all, values that may replace the variable. For example,

6x = 12

is true if and only if x is replaced by 2, and

=9

is true if and only if x is replaced by 3 or —3.
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Identities
We have seen the reciprocal ratio identities
1 1
csch =——,sech = ,coth =
sin 6 cos 0 tan 6
Similarly,
sin 0 - cos 0 ! tan 0 1
S — =, n —
csc 6 sec O cot 0

are identities.
Knowing these identities permits us to simplify certain trigonometric

expressions.
B Example 7-4 A Simplify each trigonometric expression.
1. csc O sin 6
csc O sin O
: 1
—Sme-sme sc8=—0
1
Thus, csc 0 sin 6 = 1.
2. 1 —csch
csc
1—csch
csc 6
1 csc B a-b_a b
csc® cscO ¢ £ &
sin@ — 1 Sin b = ——
csC 6
I=1sed . : J : :
Thus, T sin ® — 1. The right member is considered simpler
&
because it is not a rational expression. B

Two more useful identities are

sin cos 0
tan @ = ——, cot 0 = —
5 cos 0 sin 6
To see why the first is true consider angle A in figure 1-11. Note that
a
< a
PP . S L S R T ise t
nA=—,an = — = — . — = — also. It is left as an exercise to
b cosA b c b b
A & et
b ¢

Figure 1-11 show that the same is true for angle B and that the second identity is true.
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B Example -4 B

W Example 74 C

Simplify each expression.
1. cot ousin o0 — tan o)

cot ¢i(sin ot — tan o)
cot ¢ sin &0 — cot o tan &
cos O

tan O

cos o
sin o

Note We replaced cot o by

alb — o =ab — ac

cos o
ot ='——1 cot o=
sin o @an o
in one term and by - in another
@an o

term. We use whichever identity better suits the rest of the term.

Thus, cot o (sin ¢t — tan o) = cos ¢ — 1.

2. sec B (cos B — cot )

sec B(cos 6 — cot 0)
sec 0 cos 0 — sec B cot @

cos 6 e
1

¥ sin 6

1 —cscb

Thus sec 6(cos 6 — cot 8) = 1 — csc 6.

1 cos 6
cos 6 sin @

[

We also use the fundamental identity of trigonometry (section 1-2):

sin?0 + cos20 = 1

1. Simplify the expression
1 5 1
sec’8  csc?B
1 1
+
(sec 0)2  (csc 9)?

1 \? I \*
+
(sec 0 csc O
(cos 8)% + (sin 6)2
1

1

Thus, + =
sec’®  csc?h

2. Simplify the expression 1 — sin?P.
1 — sin’P
(sin?B + cos?B) — sin?B
cos2P

Thus, 1 — sin?p = cos?.

+ "
secZ0  csc?0

sec?8 means (sec 0)2, csc20 means (csc 0)2

1 1
—— =050, ——=sinb
sec B csc o

The fundamental identity of trigonometry

1 = sin’B + cos?p
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3. Verify the fundamental identity of trigonometry for 6 = 60°.

sin?60° + cos260° =

2
+

N

I
—

2 2
£ + L sin60°=\/—§,c0360°:%
2 2

Conditional trigonometric equations

Section 1-3 showed that if we have an equation like tan 6 = 4, then one value
of 0 is tan—'4 = 76°. This is an example of a simple conditional trigonometric
equation. Solutions to such equations rely on the inverse sine, cosine, and
tangent functions as illustrated in section 1-3.

Solve the following conditional equations to the nearest 0.1°.

1. 2sinx =1
sinx =+
x = 30°
2. 5sinx=3
sinx =%
x = sin~ '
x=36.9°
3. sin5x = 0.8
5x = sin~10.8
in—10.8
= %— or + sin~10.8
x=10.6°
4, 4cos 30 =3
cos 3o = 3
300 = cos™13
cos~ 13
o=—F—or +cos 15
o=13.8°

Divide both members by 2

Table 1-1, section 1-3

Divide both members by 5

Cs1

cs2

Divide both members by 4

Divide both members by 3

GS3

31

=

Observe in example 1-4 D when it is proper to divide, and when it is not. An

expression like

indicates the product of 10 and sin x. Thus, for example, the expression

10 sin x

5

However,

=—5Hsinx= 2 sinx

would not reduce. This is because the 5 is not dividing a product. The ex-
pression ‘“‘sin 10x>" does not represent multiplication.



32 Chapter 1 The Trigonometric Ratios

10.
An expression like sin ?x can be simplified to sin 2x, since the 5 is

dividing the product 10x.

Calculator steps
L® 3 [=] 5 [=] [sin]
® 3 [ENTER] 5 [=] [sinT]
[T1-81] [SIN-'] [(] 3 [=]5 D]
2. @ 8 [sin1] [=]5 [=]
® 805 =
[TI-81] [SIN-1] .8 [=] 5
2@ 3E+ = =3 =
® 3 [ENER] 4 5] (7] 3 (5]
[tr81] [cos™] [d3 [=]4 D] [=]3

Can you |
I e Simplify simple trigonometric expressions? '
I ® Solve simple equations involving the trigonometric ratios?

Exercise 7-4

Simplify the following trigonometric expressions.

1. tan O cot O 2. sec 6 cos @ 3. cos B(1 — sec B)
6—-1
4. cot ot(tan ¢ + sin o) 5. secB(cot8 + cos B — 1) E)-S—,—-e—
sin
cos O — sin Of sin® +cos B — 2
L 2T R R L1 — cos?
cos O cos 6 9. 1 = cos*
10. cos 6 cos 6 + sin?8 11. cos P(sec B — cos B) 12. —sin 9(sin B — csc 8)
13. (cos 8 + sin 0)(cos O — sin 8) + 2 sin26 14. Verify by computation that the fundamental identity is
true when 8 = 30°.
15. Using approximate values check the fundamental 16. Use the two identities cot 6 = L and tan 6 = s g
identity when tan © 0s 6
a. 6=16°50'  b. 6 =50° to show that cot § = S22
sin 6
sin 6

in 0
18. Show that tan 6 = ——— when 0 = 60° (use values
cos B cos 6

when 6 = 32°40°". from table 1-1).

17. Use approximate values to show that tan 8 =
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Use identities to show that the left side of each equation can be simplified to become the right side.

19. tan x(cotx + cscx) = 1 + secx
21. sin B(cot B — csc B + sin B) = cos B — cos?P

23. cosocsc or +sec ) =cota + 1

Solve the following conditional equations to the nearest 0.1°.

25. 2cosx=1 ﬁtanx=1
29. 5sinx =1 30. 3sinx =2
sinx:_2_ 34, c:scx:2
5 11
37. tan 2x = /3 38. sin 2x = 0.8
41. 2 cos 4x = 1 [42] 3 sin 2x = 0.75
sin 6 |

45. Show that in any right triangle ABC tan 6 = is

os 6
true when angle 0 is angle B.

20. csc o(cos o — sin o) = cot o — 1
22 w =1—cotx

sin x
24. tan B(cot B — cos B) = 1 — sin B

27. 2sinx = /3 28. ﬁcosle

31. 2tanx =9 32. 4cotx=3
35. sin 3x = + 36. cos 2x = +
39.csc3x=3 40. 4sin2x = 3

43. 2tan 3x = 8

44, 1 sin3x = +

Chapter 7 summary

= A degree can be divided into smaller parts in one of two
ways—into minutes and seconds or into decimal parts.

« The sum of the measures of the three angles of any triangle
is 180°.

e A right triangle is a triangle in which one of the angles is
a right (90°) angle. The side of a right triangle that is op-
posite the right angle is called the hypotenuse, and the
sides that form the right angle are called the legs.

= The standard method of labeling right triangles is to label
the right angle C and the two acute angles A and B. The
sides are always labeled a and b, with a opposite angle A
and b opposite angle B. The hypotenuse is always labeled
G

» The Pythagorean theorem Given aright triangle with legs
a and b and hypotenuse c, then a@* + b? = ¢%

» If @2 + b? = ¢? in a triangle, then that triangle is a right
triangle, and the right angle is opposite side c.

« If 8 is one of the two acute angles in a right triangle, then

_ length of leg opposite 8

sin 6 =
length of hypotenuse
e B length of leg adjacent to 6
length of hypotenuse

{370 = length of leg opposite 0

length of leg adjacent to 8

1

sec B = cOse,c:scﬂ =ﬁ,cot8:m

Fundamental identity of trigonometry If 0 is either acute
angle in a right triangle, then
sin?f + cos?8 = 1
The following pairs of ratios are reciprocals:
cosine and secant

sine and cosecant
tangent and cotangent

If we know one of the trigonometric ratios of an angle, we
can find a triangle for which that ratio is true. We can use
this triangle to compute the other five trigonometric ratios
for that angle.

The value of a trigonometric ratio depends only on the
measure of the angle and not on the right triangle in which
it appears.

A right triangle is said to be solved once the lengths of its
three sides and the measures of its two acute angles are
known. To solve a right triangle, we must already know at
least one side and either another side or one acute angle.

Several important trigonometric identities are

in 6 - 0 ! tan 6
sin 6§ = ,cos 6 = ,tan @ = 4
csc 0 ec 0 cot @
sin 0 cos 0
tan O = ,cot@ = —
cos 8 sin 6
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Chapter 7 review

[1-1] Converteach angle to its measure in decimal degrees.
Round your answer to the nearest 0.01°. Also, state whether
each angle is acute, obtuse, or right.

1. 17°34'17"" 2. 84°9" 3. 125°37" 4. 39°45'43""
Find the measure of the missing angle, 6.
5, 81°4312" 6. 28.7°
2]
38°19'56"
8!

In the following problems two of the three sides of a right
triangle are given. Use the Pythagorean theorem to calculate
the length of the missing side; give your answer in exact form
and in approximate form, rounded to one decimal place if
necessary.

a b c
7.8 12 ?
8.9 7 26
9. ? 8 13

10. A flagpole is 46 feet tall and is supported by a wire at-
tached at the top of the pole and to the ground 25 feet
from the base of the pole. How long is the wire (to the
nearest foot)?

11. The diagram is called an impedance diagram and is used
in computing total impedance in a certain electronics
circuit. It shows that inductive reactance Xz is 40.0 ohms
and that impedance Z is 56.6 ohms. Calculate the resis-
tance R to the nearest tenth of an ohm.

Reactance

A2 X, =400

R Resistance

[1-2] Inthe following problems you are given parts of right
triangle ABC. Use this information to compute the six trig-
onometric ratios for the angle specified.

a b ¢ Find ratios for this angle
12. 3 7 A
13. 5 1155 B

14. 2 J10 A

15. In right triangle ABC, sin A = %. Draw a triangle for
which this is true and use it to find sin B.

16. In right triangle ABC, tan A = 5. Draw a triangle for
which this is true and use it to find cos B.

17. In right triangle ABC, sec A = 3. Draw a triangle for
which this is true and use it to find tan B.

18. In right triangle ABC, tan B = 0.8. Draw a triangle for
which this is true and use it to find sec A.

[1-3] Use an electronic calculator to find four-decimal-
place approximations for the following.

19. sin 15.5° 20. sec 68.2° 21. tan 17.9°
22. sin 40.8° 23. tan 16.3° 24. sec 25.7°
25. cot 31°20' 26. sec 85°40' 27. tan 31°30'

28. csc 43°107 29. tan 63°30’ 30. sec 86°40’

31. Find four-digit approximations for all six trigonometric
ratios for

a. 53.20° b. 53°20’

32. A surveyor needs to compute R in the following formula
as part of finding the area of the segment of a circle.

LC
R = — . Find R to three decimal placesif LC = 315.2
2sin 7
meters and [ = 22.6°.

Find the unknown acute angle 6 to the nearest 0.1°.
33. sin 6 = 0.6314 34. cos 6 = 0.1382

35. tan 6 = ﬂ 36. sec 6 = 2.351

50.0

37. cscif = 1.425 38. cot B = 6.310

In the following problems two of the five values that must
be known to solve right triangle ABC are given. Find the
other three values. Round all answers to the same accuracy
as the data.

a b c A B
39, 233 ARl
40. 11.4 23.0
41. 4.00 8.55
42. 66.0 63.1°



43. Ground radar shows that an aircraft is 22.6 kilometers
from the radar site, at an angle of elevation of 11.2°. Find
the aircraft’s altitude to the nearest 0.01 kilometer.

44, The diagram is a top view of a portion of a machine part.
Find the length x to the nearest tenth of a millimeter.

13.42 mm

Chapter 1 Test 35

[1-4]

45. Show that the fundamental identity of trigonometry is
true for an angle of measure 45°. (Use exact values.)

Simplify the following trigonometric expressions:

46. cot B sec @ 47. csc 6(sin 6 — tan 0)
: " s
48. sin '9 1 49, coso +2 — cotot
sin 0 cos o
50. (1 + sin 8)(1 — sin 6)
51. Solve 3 sin 2x = 2 for x to the nearest 0.1°.

Chapter 7 test

1. Convert 26°27'43" to its measure in decimal degrees.
Round your answer to the nearest 0.001°.

2. Find the measure of the missing angle 6.

97.27°

18.52°

3. In right triangle ABC, a = 6 and ¢ = 12. Find b. Leave
your answer in exact form.

4. A flagpole is 46 feet tall and is supported by an 87-foot
guy wire attached at the top of the pole and to the ground.
How far from the base of the pole is the ground attach-
ment point of the wire (to the nearest 0.1 foot)?

5. In right triangle ABC, sec A = & . Draw a triangle for
which this is true and use it to find tan B.

Find approximations for the following, to four decimal
places.

6. sin 25.5° 7. sec 78.3° 8. cot 31°50'

9. The average power, in watts, in an AC circuit is given
by the formula P = VI cos 6. Compute P (in watts) if V
= 220 volts, I = 4.1 amperes, and 6 = 48° (to the nearest
0.1 watt).

Find the unknown acute angle 6 to the nearest 0.1°.
10. sin 6 = 0.1314 11. sec 6 = 4.121

12. In right triangle ABC, a = 3.8 and A = 21.4°. Solve the
triangle, rounding answers to the nearest tenth.

13. In right triangle ABC, a = 5.2 and b = 7.9. Solve the
triangle, rounding answers to the nearest tenth.

14. If the angle of depression from an aircraft to a ground
point 13.6 miles away is 12.5°, how high is the aircraft
flying, to the nearest ten feet?

15. Simplify the expression cos 8(sec 8 — cos 0).

16. Solve sec 5x = 5 for x to the nearest 0.1°.



The Trigonometric
Functions

In this chapter we widen the application of trigonometric concepts to include
angles of any degree measure. We then learn about another method of angle
measurement, called radian measure. This is the system of measurement most
often used in higher mathematics, engineering, and the sciences. We begin by
reviewing the idea of function.

2-7 Functions

36

The concept of a function is basic to higher mathematics. It provides a way
to describe, or model, many real-world situations. For example, the tempera-
ture of a metal bar, heated at one end, varies with the distance from the heated
end. We say that the temperature along the bar is a function of the distance
along the bar. The number of pounds of tomatoes sold in a given geographic
area may vary with the retail price per pound. We say that the number of
pounds sold is a function of retail price. In short, any time a change in one
measurable quantity can be linked to a change in another measurable quantity,
the idea of function can be used to give precise meaning to the idea.
A useful definition of function is the following:

Function
A function is a set of ordered pairs having the property that no first
element of the ordered pairs repeats.

For example, f = {(1,3), (4,9), (—2,6)} is a function since, first, it is a set of
ordered pairs and second, no first element of these ordered pairs repeats—that
is, they are all different. However, g = {(1.3), (4,9), (4,6)} is not a function
since, although it is a set of ordered pairs, one of the first elements (4) is
repeated.
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If the weight of some type of steel bar is 1.5 pounds per foot and the bar
comes in 1-, 2-, 5-, 8-, and 10-foot lengths, then a function that describes the
weight of a bar would be {(1,1.5), (2,3), (5,7.5), (8,12), (10,15)}, where, of
course, the first element of each pair is the length of the bar and the second
element is the weight.

The set of all first elements of the ordered pairs in a function is called the
domain of the function, and the set of all second elements is called the range
of the function. The domain of f (above) is {—2,1,4}, and the range of fis
{3,6,9}.

One to one
A function is said to be one to one if no second element of the ordered
pairs repeats.

For example, the function f mentioned above is one to one, whereas the func-
tion 2 = {(1,5), (2,9), (3,9)} is not one to one since there is a second element,
9, of the ordered pairs that repeats.

For each set of ordered pairs listed,

a. State whether the set is a function or not.
b. If a function, state the domain and range.
c¢. If a function, state whether it is one to one or not.
1. {(—2,8), (5.9), (100,19)}
a. The set is a function since no first element repeats.
b. The domain is {—2, 5, 100}, and the range is {8, 9, 19}.
¢. It is one to one since no second element repeats.
2. {(—20,—10), (—3,0), (—3,1), (22,15)}
a. The set is not a function since the first element —3 repeats.
3. 4(—5:3); (—=1.9),(12,9),:(256,256)}
a. The set is a function since no first element repeats.
b. The domain is {—5, —1, 12, 256}, and the range is {3, 9, 256}.
¢. The function is not one to one because the second element 9 is
repeated. =

If we reverse the first and second elements in each ordered pair of a
one-to-one function f we get a new function. For example, consider the func-
tion f.

f=1{(2.3), (5,9). (7.16)}

If we reverse the ordered pairs, we get
{(3,2),/(9,9), (16,7)}
which is also a function. If we reverse the ordered pairs of the function
k= {(1,5), (2,9), (3.9)}

we get
{(5.1), (9.2), (9.3)}
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B Example 2-7 B

which is not a function (because one of the first elements, 9, is repeated). This
first element repeated because a second element repeated in function h. Note
that & was not a one-to-one function.

Now consider the situation in a general way. If we reverse the elements
of each ordered pair in a one-to-one function, then no first element in the
resulting set will repeat since no second element in the original function was
repeated. Thus, reversing the ordered pairs of a one-to-one function produces
a function.

If we reverse the elements of each ordered pair in a function that is not
one to one, the resulting set cannot be a function, since if the function was
not one to one there was a second element that repeated, which becomes a
repeated first element in the resulting set. Taken together these statements
prove the following theorem:

Theorem
Reversing the elements of the ordered pairs of a function produces a
function if and only if the function is one to one.

We call the function produced by reversing the ordered pairs of a one-to-
one function f the inverse function f~1.

Note A symbol for function with a superscript “‘—1" does not mean the
same thing as an expression with an exponent *’—1.”" Although 3-'" means

|
1 1

. 1 1
ETE and x~1 means = the symbol 7~ does not mean — if f
I

represents a function.

In each of the given sets of ordered pairs,

a. Determine if the set is a function.
b. If a function, state the domain and range.
c. If a one-to-one function, state its inverse function.

1. /= {(1,3). (1.5}, (2,5), (4,9}
a. fis not a function since a first element, 1, repeats.
2. g = {(—2,-8), (0,2), (2,3), (8,8)}
a. g is a function since no first element repeats.
b. The domain of g is {—2, 0, 2, 8}, and the range is {—8§, 2, 3, 8}.
¢. g is one to one since no second element repeats. Therefore, it has an
inverse.

gt = {(—8,-2), (2,0), (3.2), (8.8)}

3. k= {(—1,0), (0,0), (1,2)}
a. his a function since no first element repeats.
b. The domain of & is {—1, 0, 1}, and the range is {0, 2}.
¢. his not one to one because there is a second element, 0, which
repeats. Therefore, i does not have an inverse function. il
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Function notation

We often describe an ordered pair of a function by using **fof x,”” or “‘f(x)”’
notation. For example, in the function fis defined as f = {(—2.6), (1,3), (4,9)}
we would say

fi-2)=6 “fof —2is 6
f) =3 “fof 1is 3
fi4) =9 “fof 4is 9

Thus, fix) notation is a way of describing what range element is associated
with a given domain element.

Note f(—2)isread ""fof —2" or “fat —2." Also, letters other than "7’
can be used. We could write “"g(x)"’ or "h(x),” for example.

In the function f = {(—100,10), (—50,20), (0,30)} state
a. i—50) b. f(10)

a. fi—>50) is 20, since the range element associated with —50 is 20.

b. f(10) does not exist. This is because 10 is not in the domain, so we have
no way to relate it to some element in the range. |

Since most functions contain an infinite number of ordered pairs, we
cannot describe them with a list. In these cases we use a rule. The rule is
usually combined with f{x) notation. For example, we might describe a func-
tion f with the rule

flx) =5x—3

This rule tells us that to form an ordered pair that belongs to the function,
where the domain element is x, compute 5x — 3. This is the range element. If
x = 2, then 5x — 3 becomes 5(2) — 3 = 7, so the ordered pair (2,7) is in the
function f. Usually we write

fx) = 5x— 3
f2)=52)-3
f2)=17

The statement f(2) = 7, verbalized ‘‘f of 2 is 7,”” means that for the domain
element 2 the range element is 7.

1. If a function fis described by the rule
f&x)=—3x +1

form the ordered pairs in f for the domain elements (a) —2, (b) 3, and
(c) 5.
a. fi-2) = —-3(-2) +1
fi—=2) = 7, s0 (—2,7) is an ordered pair in f.
b. f3)=-33)+1
f(3) = —8, so (3,—8) is an ordered pair in f.
¢. fi5) = —14, so (5,—14) is an ordered pair in f.
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2. If a function g is described by the rule
glx) =% —9x +3

form the ordered pairs in g for the domain elements (a) —35, (b) /2, and
(c) 10.
& gl=3)=[—2)F —2(—5) +3

g(—5) = 38, so (—5,38) is an ordered pair in g.
b. g(/2) = (V2 — 2(v/2) + 3

g =2-2/2+3=5-2/2,

S0 (ﬁ,S - Zﬁ) is an ordered pair in g.
c. g(10) = 10% — 2(10) + 3

g(10) = 83, so (10,83) is an ordered pair in g.

In these examples we never stated exactly what the domain of each func-
tion was. If we are not told what the domain is, we always use all real numbers
for which the rule makes sense. This is called the implied domain.

3
For example, if the rule for a function f were fix) = = then the
¥

domain would be every real number except 2, since f(2) would be

3 3 " _
Y which is undefined. If fix) = 2

a function, the domain would be all the real numbers except +1, since either
value would make the denominator of the expression 0.

The trigonometric ratios are functions in the sense of our definition. They
can be viewed as sets of ordered pairs in which no first element repeats. For
example the sine ratio can be described as the ordered pairs (degree measure
of angle, sine of angle). It would include, for example, the ordered pairs

1 J2 43
o 40__u {5 e, £ ”
(30,2),( S > ),(60,2 ),etc

)i 1 were the rule that described

Can you

e State the definition of a function?

¢ Determine if a set is a function?

e State whether a function is one to one?

e State the inverse of a one-to-one function?

e Use f(x) notation to form ordered pairs in a function?

Exercise 2=7

In each of the following sets of ordered pairs:
a. Determine if the set is a function.
b. If a function, state the domain and range.
¢. If a one-to-one function, state the inverse.

L. /= {(3,5), (4.5), (6.9), (7.10)} 2.

g = {(=4-3), (—11), (1,3}, 2,5)}
3. b= {(=2,-2), 34, (4.3)} 4. f

{(0.5,2), (1.5,3). (2.4), (2.5,5)}
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5. g = {(1,4), (1,5), (5,9), (6,10)} 6. h = {(—10,—5), (10,5), (12,20), (20,30)}
7. = {(L1), (2.2), (3.3), (4.4)} El g = {(=3,5), (5.8), (8,13), (13,21)}
Assume f = {(—3,6), (—2,9), (—1,0), (0,19), (4% 1), (2w,11), (200,220), (300,7)} in problems 9 and 10.
9. Find 10. Find

a. i—2) b. A0) ec. fi2m) d. A7) e. f(250) a. fi—-1) b. f4d) c fAm) d. f300)

In each of the following problems a rule that describes a function is given. Form the ordered pairs that this function contains
for the following domain elements:

a. -2 b. 0 c. V3 d. + e. 5
11. fix) = 5x — 3 12. g(x) =2 — 3x 13. h(x) = (x — 3)(x + 2) 14 flx) =22 — 2x + 3
15. g =22 +x — 1 16. h(x) = x 17. fix) = 3x* — 22 + 2 18. g(x) = 1 — 22
x 4
h(x)_x+3 20.ﬂx)—x2_1

21. The statement #(x) = 500 — 2x states the functional re-
lationship between the temperature  of an iron rod at a
point x centimeters from the heated end. Find the tem-
perature (in degrees centigrade) for points that are (a) 3
cm, (b) 12 cm, and (¢) 104 cm from the heated end.

2-2 The trigonometric functions—definitions

There are many situations where we have to think of angles as being nonacute.
This is often a situation in which we wish to describe an amount of rotation.
For example, a ship may turn through an angle of 215°, a computed tomog-
raphy (CT) scanner used in medical diagnosis may move through an angle of
360°, or a surveyor may find the measure of the angle at one corner of a piece
of land to be 165°20’. For these situations, we often place the angle in a
rectangular (x-y) coordinate system.

The x-y (rectangular) coordinate system

We graph using the x-y rectangular coordinate system. Recall that an ordered
pair is a pair of numbers listed in parentheses, separated by a comma. In the
ordered pair (x,y) x is called the first component and y is called the second
: : component; (5,—3), (9,3), and (4,%) are examples of ordered pairs. The
S AW graphing system we use is formed by sets of vertical and horizontal lines; one
: ' ' vertical line is called the y-axis, and one horizontal line is called the x-axis.
The geometric plane (flat surface) that contains this system of lines is called
the coordinate plane. See figure 2—1.

The graph of an ordered pair is the geometric point in the coordinate
plane located by moving left or right, as appropriate, according to the first
component of the ordered pair, and vertically a number of units corresponding
to the second component of the ordered pair. The graphs of the points A(3,2),
B(—43), C(2,—5), and D(2.0) are shown in the figure. The first and second
elements of the ordered pair associated with a geometric point in the coordi-
nate plane are called its coordinates.

Figure 2-1
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The Trigonometric Functions

Angles in standard position

Angle in standard position

An angle in standard position is formed by two rays, one of which always
lies on the nonnegative portion of the x-axis. This ray is called the initial
side. The second ray is called the terminal side. It may be in any
guadrant or along any axis.

Figure 2-2 shows an angle in standard position, with measure 150°. Observe
the labeling of the quadrants formed by the x-axis and the y-axis. They are
called quadrants I through IV as shown. We generally use the word ‘‘angle’’
instead of the phrase ‘‘angle in standard position.”’

If the measure of the angle is positive, we picture the terminal side as
having moved away from the initial side in a counterclockwise direction; if
the measure of the angle is negative we picture the terminal side as having
moved away from the initial side in a clockwise direction. If an angle’s
measure is greater than 360° or less than —360° we consider the angle to have
‘“‘gone around’’ more than once. Several examples of angles in standard po-
sition are shown in figure 2—3. In part ¢ we show the angle as a 360° revolution,
followed by an additional 200° turn.

) y 4

~210°

X kj X

AN
/

560°
—55°

(a) (b) ()
Figure 2-3

Angles which have the same terminal side are said to be coterminal.
(All angles in standard position have the same initial side.) The 150° angle in
figure 2-2 and the —210° angle in figure 2-3 (b) are coterminal. We can see
this when we realize that in each case the angle formed by the negative side
of the x-axis and the terminal side of each angle is 30°. Since £360° represents
one complete revolution, coterminal angles are angles whose degree measures
differ by an integer multiple of 360°. This forms the basis for our definition.

Coterminal angles
Two angles’ o and B are said to be coterminal if
o = B + k(360%, k an integer.
Concept
Two angles are coterminal if the difference of their degree measures is
evenly divisible by 360°.

'Remember, 0. is the Greek letter alpha, and B is the Greek letter beta.
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In each case find a coterminal angle with measure x such that 0° = x << 360°.
1. 875°

875° — 360° = 515° Subtract 360° until x is found
515° — 360° = 155° The required angle is 155°
We could have done this more elegantly by computing 875° — 2(360°).
2. —1,000°
—1,000° + 360° = —640° Add 360° until x is found
—640° + 360° = —280°
—280° + 360° = 80°

Or solve by computing —1,000° + 3(360°) = —1,000° + 1,080° = 80°.H

The trigonometric functions

We now define the six trigonometric functions. They have the same names as
the six trigonometric ratios, and the same abbreviations. The trigonometric
ratios are functions with domain the set of acute angles. The trigonometric
functions have the set of all angles as their domain. We used the word ratio
to distinguish the two sets of functions. For acute angles the trigonometric
functions are essentially the same as the trigonometric ratios. The following
definition refers to figure 2—4.

The trigonometric functions

Let 8 be an angle in standard position, and let (xy) be any point on the
terminal side of the angle, except (0,0). Let r = /X + )2 be the distance
from the origin to the point. Then,

; / %
sme:i, cos 8 = ~—, tanez—x—
r i i
r : 4 : X
sch=—, sech =—, coth =—
¥y X ¥

Note 1. We define rso that r> 0.
2. If x or y in the point (x,)) is zero, then those ratios with x or y in
the denominator are not defined.
3. Unlike the trigonometric ratios, the trigenometric functions can
take on negative values.
4. We sometimes call the cosecant, secant, and cotangent
functions the reciprocal trigonometric functions.

It can be proven that for a given angle, it does not matter what point on
the terminal side is chosen; the values of the trigonometric functions will be
the same. This is illustrated in example 2-2 D.

It can also be seen that coterminal angles have the same values for the
trigonometric functions. This is because two coterminal angles have the same
terminal side, and the definitions depend solely on a point on the terminal side.

The definitions of the trigonometric functions imply the following iden-
tities for all values of 6 for which any denominator is nonzero. These identities
look identical to those for the trigonometric ratios; however, those were shown
to be true only for acute angles in right triangles.
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Reciprocal function identities
. 1 ; 1
cscﬂ=f-r;—é, 51n9=m
secﬁ-'——-—l—'—, oS = ——
cos 8 6
cote =——, taﬁ8=—l——
tan 8 cot 6

To see that the first reciprocal function identity is true observe that csc 6 =
r 1

= = . It is left as an exercise to show that the rest of these are true.
y y sinb

Using the reciprocal function identities we can usually find the values of the
cosecant, secant, and cotangent functions by finding the reciprocal of the sine,
cosine, and tangent functions.

Two other identities that can be useful are the following; again, they are
true only for those values of 6 for which no denominator is 0.

Tangent/cotangent identities
o=l a0
Cos 8 sin 8

sin 6 . " : : :
Show that tan 8 = 1s an identity for the trigonometric functions.
c

os 6

We show that each member of the equation is equivalent to the same thing.

sin 6
tan 6
cos 0
X
y r -
=S — Apply the definitions
X X
I
Y F e
== s Algebra of division
r %
Y Reduce A
5 P
sin 0 sin 0
Thus,tan9=land :l,sotan8= ; |
x cos 0 X cos 0

Example 2-2 C illustrates finding values of the trigonometric functions for an
angle in standard position, given a point on the terminal side of the angle.
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B Example 2-2 C In each problem a point on the terminal side of an angle 6 is given. Use it to
find the trigonometric functions for that angle. Also, make a sketch of the
angle.

. 1. (3,—4)

A

j_ ’ y = x2 + yz Definition
X =i f

s = /32 + (—4P Replace x.y

i =5
i 1 5
- sinﬂﬂl=——,csc8—,—=——
r sin
X 3 i 5
e:——:—’ = ——
cos i 5 ek cos 6 3
¥ 4 1 3
t = = —— —-—— e ——
an 6 - 3,c0t0 5 4

2% (—8.—2)
r=Jx2+ Definition
= /J(—8)2 + (—2)? Replace x,y
= /68 =2/17
_ 2 1 J17
31n9=—2\/ﬁ=—\/ﬁ:—17,c506=—\/1_7
8 4 4/17 LIT

,sec = —

cos B = — = — =
2T 17 17 4

1
tan9=—8=z,cote=4

3. (0,—3)
r=J0®+(=32=3
! y =3 1
sin " 3 ,csc O sin 0
1
cose=i=£=0,sece= = —, undefined
r 3 cos 6 0
— 0
tan 6 = e —— , undefined; cot 6 = C(_)S i =—=0
% 0 sin 0 -1

As illustrated here, when the tangent function is undefined the cotangent
function is defined. In this one case it is useful to use the appropriate

. - s X
tangent/cotangent identity or equivalently cot 6 = —.
¥
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¥ 4. (a,—3a),a >0
Since the x-coordinate is positive the angle is in quadrants I or I'V; since
the y-coordinate is negative, we choose quadrant IV for our sketch.

r= Ja + (=3ap = /10a? = a./10

PLgE g el
T L L

P n 3a 3 3./10 J10

i sin @ = = — = — Rl e

IL a~/10 10 10 3

—-3a

T a 1 V10

T 0= = = , 8 = /10

I cos 2/10 ~ 710 10 sec

tan B = %3_61 = —3,coth = —i i
a 3

Example 2-2 D illustrates that the value of the trigonometric functions
for a given angle depend only on the measure of the angle and not on the point
that is chosen on its terminal side.

B Example 2-2 D The point (—2,3) is on the terminal side of an angle 8 in standard position.
Find two other points that would also be on the terminal side of this angle
and then compute the value of the sine, cosine, and tangent functions with
9 I all three points.

- We can find other points on the terminal side of this angle by multiplying
15 both values, —2 and 3, by the same amount. Thus, if we double them we
G2 obtain the point (—4,6). If we take half of each we obtain (—1,14). All three
points are shown in the figure.

The computations for the three points are shown in the table. The same
results are obtained regardless of which point is used to perform the

calculation.
Point X r sin 0 cos 0 tan 0
3 3
_11..1... 1 _“13 2 _3\‘I3 ;1___2"13 i__-?’_
i 2 JI3 13 EREC 2

f Can you
| e \When given an angle 8, find a positive coterminal angle with measure x i
i such that 0° < x < 360%7
e Sketch an angle and find the values of the six trigonometric functions |

when given a point on the terminal side of the angle?
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Exercise 2=2

In problems 1-17,
a. Draw the initial and terminal side of the given angle.
b. State the measure of the smallest nonnegative angle that is coterminal with the given angle.

1. 420° 2. —40° 3. 230° 4. 1,000° 5. 1,800.6°
6. 1,260° 7. 547.9° 8. 2,000° 9. —870° 10. 625°
11. 525° 12. —610° [13] -1.5303° 14. 390° 15. —720°
16. —11.9° 17. —313°
18. An automobile engine is timed to fire the spark plug for 20. If an automobile engine is timed to fire at 8.6° BTDC,
cylinder 1 at 8 BTDC (before top dead center), which, what is the equivalent amount ATDC?

for our purposes, is —8°. Assuming this engine rotates
in a counterclockwise direction, what is the equivalent
amount ATDC (after TDC) (i.e., the least nonnegative
angle coterminal with it)? 22. In an electronic circuit with an inductive component to
the impedance, the current follows the voltage. For ex-
ample, the current may follow the voltage by 15°, in
which case we could say the phase angle of the current
is —15°, relative to the voltage. We could just as easily
N say that the phase angle of the voltage is 345°, relative

A
kj to the current. Find the phase angle of the voltage rela-
Y

21. If an automobile engine is timed to fire at 6.1° BTDC,
what is the equivalent amount ATDC?

ATDC

tive to the current if the phase angle of the current rel-

BTDC ative to the wvoltage is (a) —88° (b) —24.33°

(c) —35°36', (d) —16.56° (e) —0°14', (f) —0.14°.

(Find the least nonnegative coterminal angle in each

19. If an automobile engine is timed to fire at 13° BTDC, case.)
what is the equivalent amount ATDC?

In the following problems you are given a point that lies on the terminal side of an angle in standard position. In each case,
compute the value of all six trigonometric functions for the angle.

23. (3,6) 24. (—2.,5) 25. (—5,8) 26. (—7,—8) 27. (2,-2)

28. (3,0 29. (—14) 30. (0,—4) 31. (—10,—15) 32. 3../5)

33. (-/2.6) 34. 3,—/6) (—3—2 36. (1,—/3) 37. (/6,-/10)

In the following problems you are given a point that lies on the terminal side of an angle in standard position. In each case,
compute the value of all six trigonometric functions for the angle. Assume a > 0, b > 0.

(b,—2b) 39. (2a,—a) 40. (—a,—a) 41. (/2b,b) 42. (3a,+/3a)
sz g ]
2 372
. ; 1. . . cos 0 |
45. Show that the identity sec 6§ = o is true, except 47. Show that the identity cot § = <in 0 is true, except
1
where cos 8 = 0. where sin 8 = 0.
1
46. Show that the identity cot 6 = oo is true, except 48. Show that the identity cos 6 = 5 is true.
sec
where tan 8 = 0. . o 1
49. Show that the identity sin 6 = o is true.
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and the equation becomes y = mx.

Show that if two different points lie on the terminal side
of an angle in standard position, then using either point
gives the same value for the sine function. For the sake
of simplicity assume the terminal side is not vertical or
horizontal. Represent the points as (x;,y;) and (x2,¥2).
Note that these points lie on the same line. The equation
of any line that passes through the origin is of the
form vy = mx, so we know that for the same value of m,
¥1 = mx; and y; = mx,. This means that the points (x1,y1)
and (x7,v,) can be rewritten as (x;,mx;) and (xp,7mx2). Use
these versions of the points to compute the length r for
each point. Then show that the value of the sine function
is the same when computed using either point.

¥
i

(Xzs.}’z)

(x1.54)

51.

52.

™ To solve the following two problems, we must recall that the equation of a nonvertical straight line can be put in the
2 form y = mx + b, where m is the slope and b is the y-intercept. If a straight line passes through the origin then » = 0

Show that if the trigonometric function values are the
same for two points, then these points lie on the terminal
side of the same angle. Assume for simplicity that these
points are not located on either the x-axis or the y-axis.
To show that the points lie on the terminal side of the
same angle we must show that both points lie on the
same line and are in the same quadrant. Let (x;,y;) and
(x2,y2) represent the two points, and consider the value
of the tangent function as given by each point. This can
be used to show that y; = mx; and y» = mx, (for the
same value of m). This means that the two points lie on
the same line. Now explain why they must be in the same
quadrant.

Fill in the table below. One way to do this is to choose
points on the terminal side of each angle and apply the
definitions of each function. For example, a point on the
terminal side of an angle of measure 0° is (1,0).

0 sinf [ cos® | tan® | csc B | secO | cotB

Ou

90°

180°

270°

2-3 Values for any angle—the reference angle/ASTC procedure

The values of the trigonometric functions for an angle of any measure are
related to the values for the acute angles of the first quadrant. These values
(for the first quadrant) are the same as those for the trigonometric ratios for
acute angles. The values of the trigonometric functions for any angle have a
sign and a ‘“‘size’’ (absolute value). We first discuss the sign of the basic
trigonometric functions, then the size.

The ASTC rule—the signs of the
trigonometric functions by quadrant

The sign of the value of a trigonometric function for an angle depends on the
quadrant in which the angle terminates. Figure 2-5 shows the quadrants in
which the sine, cosine, and tangent functions are positive. (They are negative
in the other quadrants.)



90°

y
Sine>0 Sine>0
Cosine >0
Tangent>0
11

180° x0°
Hi[ vV

Tangent> 0| Cosine>0

270°
Figure 2-5

B Example 2-3 A
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The figure shows that the sine function is positive in quadrants I and II,
and therefore negative in quadrants III and IV. This is because the sine func-

tion is defined by the ratio e ; since r is always positive this ratio is positive
r

where y is positive, in quadrants I and II. Since the cosine function is — and
r
r > 0, the cosine is positive where x is positive: quadrants T and IV. The
tangent function is defined by 8 , S0 it is positive where x and y are both
x

positive (quadrant T) or both negative (quadrant III).
Figure 2-5 should be memorized; it represents the ASTC rule.

The ASTC rule

in quadrant i, All the trigonometric functions are positive.
In gquadrant 1, the Sine function is positive.

In quadrant ll, the Tangent function is positive.

In quadrant IV, the Cosine function is positive.

One memory aid is the sentence ‘“All Students Take Calculus.””

Since the sign of the reciprocal of a value is the same as the value, the
sign of the cosecant function is the same as the sign of the sine function, that
of the secant function is the same as that of the cosine function, and the sign
of the cotangent function is the same as that of the tangent function.

The ASTC rule can be used to determine in which quadrant a given angle
terminates.

Determine in which quadrant the given angle 6 terminates.

1. sin0 < 0,tan 0 > 0
If sin 8 < 0 then 6 terminates in quadrants IIT or TV.
If tan 6 > O then 8 terminates in quadrants I or III.
Thus, for both conditions to be true, 8 must terminate in quadrant IIL.

2.¢c080<0,sin0 >0
cos 8 < 0 means 6 terminates in quadrant IT or III.
sin 8 > 0 means 6 terminates in quadrant I or II.
Thus, 0 terminates in quadrant I |

Reference angles

Angles whose degree measures are integer multiples of 90°, such as 0°, £90°,
+180°, £270°, etc. are called quadrantal angles because their terminal sides
fall between two quadrants. All other angles are nonquadrantal angles. A ref-
erence angle for a nonquadrantal angle is the acute angle formed by the ter-
minal side of the angle and the x-axis. A reference angle is not defined for
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B Example 2-5 B

>

—180° AB/
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¥ Y
I I
8 ? 6’ 6
X X
(a) (b)
¥ ¥
A
8 9
X X
& 8’
1l v
(c) (d)
Figure 2-6

quadrantal angles. Figure 2—6 shows a reference angle, 8’ (theta-prime) for an
angle O terminating in each quadrant.

A reference angle is always acute (between 0° and 90°) and is always
formed by the terminal side of the angle and the x-axis (never the y-axis). As
will be illustrated in example 2-3 B, a good way to find a reference angle is
to sketch the angle itself. This should make clear what computation to perform.

Compute and sketch the reference angle for each angle.
1. 47°

This angle terminates in quadrant I. The reference angle is the same as
the angle itself, 47°.

2. —125°
This angle terminates in quadrant III. The positive difference between

—125° and —180° is 180° — 125° = 55°, which is the value of the
reference angle.



180° y/\

215°

= Enf ¥ 3600

.
N

150°
B
() r

|y| i_[SO".'

—
C x|

>/

Figure 2-7
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3. 215°
This angle terminates in quadrant III also. Here the reference angle is
215° — 180° = 35°.

4. —312°
This angle terminates in quadrant I. The value of the reference angle
is the positive difference between —312° and —360° = 360° — 312°
= 48°. ]

It can be seen that if 0° < 8 << 360° then the reference angle 8’ can be found
according to the following formulas.

0 in quadrant I: ' =9

0 in quadrant II: 6’ = 180° — 6
0 in quadrant TIl: 6’ = 6 — 180°
0 in quadrant IV: 0’ = 360° — 0

The absolute value of the trigonometric
functions for any angle

The absolute value of a trigonometric function for any angle is the same as
the trigonometric ratio for the corresponding reference angle. Figure 2-7 il-
lustrates this idea for the angle 150°. If an angle of measure 150° is in standard
position, then we find the values of the trigonometric functions by taking a
point on its terminal side (the point B(x,y) in the figure), and using the defi-
nitions of these functions in terms of x, y, and r.

¥
As seen in the figure, the absolute value of sin 150° is —— . This is also
r

the value of the trigonometric ratio for the reference angle, with measure 30°:
] length of side opposite 30°
sin 30° =
length of hypotenuse
= 5 . Thus, in absolute value, |sin 150°| = sin 30° = 4. Since we know that
the sine function is positive in quadrant II, sin 150° =

. We know from section 1-3 that sin 30°

B
5 .

The reference angle/ASTC procedure

The facts discussed in the previous paragraphs provide a method for finding
the exact values of the basic trigonometric functions for any nonquadrantal
angle whose reference angle is 30°, 45°, or 60°. We call this the reference
angle/ASTC procedure.
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B Example 2-3 C

Reference angle/ASTC procedure

To find the exact value of a trigonometric function for a nonquadrantal

angle whose reference angle is 30°, 45°, or 60°;

1. Find the value of the reference angle.

2. Find the value of the appropriate trigonometric ratio for the reference
angle from table 1-1, section 1-3.

3. Determine the sign of this value using the ASTC rule (figure 2--5).

For convenience, the needed table and figure are repeated here (see table 2-1

and figure 2-8).

90°
Yy
e Sine Cosine Tangent
Cosine =0
Tangent>0 1 \/’3; \/g
30° — - -
180° LU X 0° 2 2 3
| v - ﬁ Q :
Tangent> 0| Cosine >0 j_ 2
3 1
60° == = 3
270° 2 2 V3
Figure 2-8 Table 2-1

Find the exact value of the given trigonometric function for the given angle.

1. cos 210°

9’ = 210° — 180° = 30°

cos 30° = ﬁ

2
cos 210° = —£
2
2. tan (—45°)
8’ = 45°
tan 45° = 1
tan (—45°%) = —1

3. tan 840°

840° — 2(360°) = 120°
0’ = 180° — 120° = 60°
tan 60° = /3

tan 840° = —./3

Find the value of the reference angle

Table 2—-1 (memorized value)

A 210° angle terminates in quadrant Ill,
where the cosine function is negative

Find the value of the reference angle
Table 2-1 (memorized value)

A —45° angle terminates in quadrant IV,
where the tangent function is negative

120° and 840° are coterminal
Reference angle for 840°
Memorized value

840° terminates in quadrant Il, where the
tangent function is negative [ |

The values of the trigonometric functions for quadrantal angles can be found
by selecting any point on the terminal side of the angle and using the

definitions.
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Find the values of the six trigonometric functions for the angle with mea-
sure 900°.

900° — 2(360°) = 180°, so 900° and 180° are coterminal angles.

The point (—1,0) is on the terminal side of a 180° angle, and is therefore on
the terminal side of a 900° angle. Use this point to find the values for 900°.

r= V(12 +0P=1,x=-1,y=0.

oo = Le = P SO
sin 900° = 5 1 0, csc 900 Sn 900" = 0 undefined
x =i 1 1
900°=—=—=—-1,8c900° = ———=—= —1
= ro1 L cos 900°  —1
0 1 1
tan 900° = % =i 0, cot 900° = @n 90— 0 undefined =

Approximate values of the trigonometric
functions—calculators

Approximate values of the trigonometric functions are calculated using the
same calculator keys as for the trigonometric ratios; for acute angles the ratios
and functions have the same values. Recall from section 1-3 that the calculator
must be in degree mode when entering angle measure in degrees.

Find four decimal place approximations to the following function values.

Make sure the calculator is in degree mode.

1. sin 133° 133 Display [0.731353701

sin 133° = 0.7314 [TI-81] [SIN] 133 [ENTER]

2. tan (—18°%)
tan (—18°) = —0.3249

3. sec (—335.6°)

sec (—335.6°) = 1.0981

18 Display
[ TI-81] [TAN]| [(-)] 18 [ENTER]

1
cos (—335.6°%)

335.6
[TI-81] |cos]| [(-)] 3356
Display =

sec (—335.6°) =
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Solutions to trigonometric equations

Recall from chapter 1 that we use the inverse trigonometric functions to solve
trigonometric equations of the form sin 8 = k, cos 8 = k, tan 6 = k, where k
is a known constant. In particular, to find one value of 6 in each equation, we
use the following facts:

if sin 8 = k, then one solution for 0 is 6 = sin—! &

if cos 8 = k, then one solution for 0 is 8 = cos™1 k

if tan © = £k, then one solution for 9 is § = tan~! k
In chapters 4 and 5 we will examine this situation in more depth, but for now

we will simply rely on these facts, and on the fact that these inverse trigono-
metric functions are programmed into calculators as seen in section 1-3.

B Example 2-3 F Find one solution to each trigonometric equation, to the nearest 0.1°.

1. sin 6 = —0.8500
8 = sin~1(—0.8500) =~ —58.2°

2. cos 8 = —0.8500
0 = cos 1(—0.8500) = 148.2° =

Mastery points

Can you

e Determine in which quadrant an angle terminates when given the signs
of two of the trigonometric function values for that angle?

e Compute and sketch the reference angle for a given nonguadrantal
angle & with given degree measure?

® Find the exact value of any trigonometric function for an angle whose

reference angle is 30°, 45°, or 60°, using the reference angle/ASTC
procedure?

e Find the exact value of any trigonometric function for a quadrantal
angle?

e Find the approximate value of any trigonometric function using a
calculator?

e Find the approximate value of one solution to an equation of the form
sinB=k cosB =k tan 9 = k?

Exercise 2=3

In the following problems you are given the sign of two of the trigonometric functions of an angle in standard position. State
in which quadrant the angle terminates.

1.8sin6>0,cos06 <0 2. 8ecB<0,tan0 >0 3.c080 >0,tan08 >0 4. cot < 0,cc0>0
5. tan 0 < 0,csc8 <0 sec8>0,csc9<0 7.cscB>0,cos08<0 8.tan 6 > 0,sin 6 < 0
9. 5ec 6 >0,sin0 <0 10. cot 8 > 0,sin 6 > 0 11. sin O < 0,sec 6 <0
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For each of the following angles, find the measure of the reference angle 6'.

12.,39.3° 13. 164.2° 14. 213.2°

17. —255.3° 18. —100.4° 130.7°

22. 512.8° 23. —279.5° 24. 292.3°
Find the exact trigonometric function value for each angle.

27. sin 135° 28. cos 120° 29. sin 210°
32. sin 240° 33. sin(—120°) 34. cos(—315°)
37. cot 300° 38. sin 450° 39. cos(—450°)

42. sin 840°

sin(—690°)

44. cot 215°

Find the trigonometric function value for each angle to four decimal places.

47. sin 113.4°
tan 527.2°
57. csc 285.3°

48. cos 88.2°
53. sec(—13°)
58. sec 211°

49, tan 214.6°
54, sin(—88°)

59. cos(—133.2%

Find one approximate solution to each equation, to the nearest 0.1°.

61. sin 6 = 0.25 62. sin§ = +
66. tan 6 = 3 67. sin 8 = —0.59
69. In a certain electrical circuit the instantaneous voltage E

70.

71.

(in volts) is found by the formula E = 156 sin (6 + 45°).
Compute E to the nearest 0.01 volt for the following
values of 6:

a. 0° b. 45° ¢. 100° d. —200°

e 13 5 = AT

In a certain electrical circuit the instantaneous current /
(in amperes) is found by the formula I = 1.6 cos(8007)°.
Find I to the nearest 0.01 ampere for the following
values of z:

a. 0 b. 025 ¢. 085 d. 1 e. —1 f. =25 g. —0.02

If a force of 200 pounds is applied to a rope to drag an
object, the actual force tending to move the object hor-
izontally is f(6) = 200 cos 0, where 6 is the angle the
rope makes with the horizontal. Compute the force
tending to move the object horizontally if the angle of
the rope is
a. 0°

b. 25° ¢ 50°

63. cos 8 = —0.5
68. cos 6 = —0.18

72,

73.

74.

75,
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15. 427.1° 16. —16.8°

20. —671.3° 21. —181.0°

25. —252° 26. 312°

30. cos 330° 31. tan 300°

35. cos 660° 36. csc(—315°)
40. tan(—540°) 41. csc 90°

45, sec 150° 46. tan 330°

50. csc 345°10’ 51. cot 412°

55. cos(—355°20") 56. tan(—248.6°)

60. sin(—293°50")
64. cos 6 = 0.813 tan§ = —&

If a rocket is moving through the air at a speed of 1,200
mph, at an angle of 6° with the horizontal, then the rate
at which it is rising is v(8) = 1200 sin 6. Find the rate
at which a rocket moving at 1200 mph is rising if the
angle it makes with the horizontal is

a. 50° b. 60° c. 70° d. 80°

Use the values 30° and 60° to see if the statement
sin(20) = 2 sin 8 is true. (Let 6 be 30°.)

Use the values 30° and 60° to see if the statement
sin % = %19 is true. (Let 6 be 60°.)

Use the values 30° 60° 90° to see if the statement
sin(et + B) = sin o + sin B is true.

2—4 Finding values from other values—reference triangles

Finding a general angle from a value
and quadrant

In sections 1-3 and 1-4 we learned how to find the degree measure of an acute
angle if we know the value of one of the trigonometric ratios for that angle.
We used the inverse sine, cosine, or tangent function as appropriate. We are
now dealing with angles of any measure, but the same procedure can be used
to find the value of a reference angle. From this we can find the least nonneg-
ative measure for an angle.
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B Example 2-4 A

As is illustrated in example 2-4 A, we always find a reference angle 8’
by finding the inverse sine, cosine, or tangent function value for a positive
value. We use a positive value to obtain an acute angle (all reference angles
are acute). We could summarize the procedure as follows.

Finding the least nonnegative measure of an angle

from a trigonometric function value and information

about a quadrant.

1. if necessary use the ASTC rule? to determine the quadrant for the
terminal side of the angle.

2. Usesin', cos™', or tan~" to find §’. Use the absolute value of the
given trigonometric function value.

3. Apply 8’ to the correct quadrant to determine the value of 0.

Note We find the "least nonnegative value.”” There are actually an
unlimited number of values, since the trigonometric values are the same for
all coterminal angles.

In section 2-3 we saw formulas that find 8’ if 0° < 6 < 360°. These for-
mulas can be solved for 8 if necessary and thus provide a formula for finding
6 given 6'.

Relationship between 6 and 8’ if 0° < § < 360°
8 in Quadrant I 8 =8 0=8
6 inQuadrantl: 8 =180°—=6 6= 180° -9’
8in Quadrantlll: 8 =8 — 180° 6 =0+ 180°
8inQuadrantIV: 8 =360°-8 0 =360°—10"

It is interesting to observe that the formulas are the ‘‘same’ when solved for
8 and 0’ for every quadrant except quadrant III.

Find the least nonnegative measure of 6 to the nearest 0.1°.

1. sin® = 0.5150 and cos 6 << 0
Since sin © > 0 and cos 8 < 0, 6 terminates in quadrant II (see
the figure). We find the acute reference angle 6 just as we did in
section 1-2.

8’ = sin~! 0.5150 = 31.0°
Thus, 6 = 180° — 31.0° = 149.0°.

Note The calculator can be used to verify our result by checking that
sin 149° = 0.5150 and that cos 149° < 0.

2Section 2-3.
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B Example 24 B
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2. tan O = —0.6644 and sin 8 < 0
Since tan O < 0 and sin 0 < 0, 8 terminates in quadrant IV.
f' = tan~! 0.6644 = 33.6° Note we use the positive value 0.6644
8 = 360° — 0’ = 3264° |

Example 2—4 B applies several of the things we have been studying.

The point (3,—8) is on the terminal side of 6.
a. Draw a representation of 0.
b. Find the exact value of the trigonometric functions for 6.
¢. Find the least nonnegative measure of 6, to the nearest 0.1°.

a. The representation is shown in the figure.

y
A

9

°TN )
\

(3-8)

b. Applying the definitions of section 2-2:
FE B+ =3 (8P = T3

y -8 8/T3 1 I3
sing=—=—== ——, f=—=—"—
r 73 73 sin @ 8
% 3 347 1 s
gosll S0 — m— sec B = = —
r 73 73 cos 6 3
y 8 1 3
tan = > = ——, th=——=——
BEE T 8 Ot T ne 8
¢. We can find 8’ by using the fact that tan 8’ = |tan 6| = §, so that
8’ = tan~! £ = 69.4°, so
0 = 360° — 69.4° = 290.6° =

There are many places in science and technology where we find applications
for trigonometric functions. With the advent of numerically controlled, or
computer-controlled, machines these applications are becoming more
common.
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B Example 2-4 C

225

(¥
257°20

I ' v
Figure 2-9

B Example 2-4 D

(TN

-1

A technician is setting up a numerically controlled grinding wheel. The
starting position for the wheel must be at an angle of 257°20" and must be
22.5 inches from the origin (assuming the machine uses our usual x-y
coordinate system). Find the x- and y-coordinates of the point at which the
grinding wheel must start, to the nearest tenth of an inch.

The figure illustrates the situation. We have r = 22.5 inches and 6 =
257°20’. By definition, sin 8 = w and cos 0 = i, so we find x and y as
r r

follows:
. ¥
257200 = ——
s 25
y = 22.5 sin 257°20’
y = —22.0 inches cs1
X
25720 = ——
€08 25

% = 22.5 cos 25720
x = —4.9 inches

Thus, the starting coordinates, in inches, for the grinder are (—4.9,—22.0). @

Exact values of the trigonometric functions
from a known value—reference triangles

There are many situations in which we know the exact value of one of the
trigonometric functions for a given angle and need to find the exact value of
one or more of the remaining five trigonometric functions for the same angle.
We can do this by using a reference triangle, which is a convenient way of
combining the idea of reference angle and right triangle. A reference triangle
is a right triangle with one leg on the x-axis and one leg parallel to the y-axis.
The acute angle on the x-axis is the reference angle for the angle in question.
The lengths of the legs of a reference triangle are treated as directed distances
(i.e., positive or negative); the hypotenuse is always positive. This is illustrated
in example 2—4 D. Figure 2-9 shows a reference triangle for each quadrant.

In each case draw a representation of angle 6 and use a reference triangle to
help find the values of the other five trigonometric functions. Also, find the
least positive value of 0 to the nearest 0.1°.

1. sin® = —%andtan 6 > 0
We know 8 terminates in quadrant III since sin 6 < 0 and tan 8 > 0.
We construct a right triangle in quadrant III in which one acute
angle is a reference angle. This is shown in the figure. We label
the hypotenuse 4 and the directed side opposite 8" as —1. Thus,
_ length of side opposite 8"
- length of hypotenuse E

13

B

sin

a? + (—1)> = 4% Find the value of |a L using the Pythagorean theorem; since we
a =15 are squaring values this theorem works for directed distances

a. = .15

We choose a = —./15 since it is negative as a directed distance.
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3.
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We can now use the definitions of the trigonometric ratios for 8’
along with the directed distances to find the remaining trigonometric
function values for 0.

adjacent 15 opposite = /15
cos B = = - ,tan B = — = =
hypotenuse 4 adjacent —./15 15

1 1 4 4./15

= —4, 6= =
sin 6 SEk

cos9= JI5 15

csc B =

1
cot B =—— =715
tan 0

We now find an approximation to 6.
sin @' = 4,500 = sin~! = 14.5°, 50 6 = 180° + 14.5° = 194.5°.

59

Note The reference triangle works because it is equivalent to finding

a point on the terminal side of 8 and applying the definitions of the

trigonometric functions (section 2-2). The reference iriangle above was
equivalent to finding the point {(—./15,—1) to be on the terminal side of

angle 6. (Figure 2-10)

1
cot B = = and 270° < 8 < 360°

If cot 6 = — then tan 6 = —4. The figure shows a reference triangle for

an angle in quadrant IV with tangent —4.
=12 + (—4)

c= /17

: opposite -4 4./17 1 NG W
sin § = = = ,C080 =—= ——,
hypotenuse /17 17 V17 17
1 L7 1
cscﬂ—sine———4 ,secﬁgcose— 17

tan 8’ = 4,500’ = tan~14 = 76.0°, and § = 360° — 8’ = 284°.

sin & = u and O terminates in quadrant II
The figure shows a reference triangle in quadrant II, where sin 8’ = u.

ur + a2 =12 Find the value of side a

a==*/1—u

a=—1—u? Choose a < 0 as a directed distance
a

cosB=T:a= —J1 —
U u u

tanf = — = = - s
a -J1 —u? J1 = u?

5 1 1 0 1 1

sec § = == y Bsl = ——

cos B V1 — u? sin 0 u

cot § = = —

Since we do not know the actual value of u we cannot make a
determination of an approximate value for angle 0.
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Calculator steps

L®

225 [0 257 [+] 20 [+] 60 (=]
Display

® 22.5 |ENTER | 257 |ENTER | 20 [ENTER] 60

[£]
225 [x] [ 257 [+]20 [=] 60 [O]

Can you

® Find an approximation to the least nonnegative measure of an angle,
given the value of one of the trigonometric functions and the sign of a

second for that angle?

e Apply the definitions of the trigonometric functions in appropriate

situations?

e Use reference triangles to find the exact values of the remaining
trigonometric functions for a given angle, when given the value of one
of the trigonometric functions of that angle?

Exercise 2-4

Find the measure of the least nonnegative angle that meets the conditions given in the following problems, to the

nearest 0.1°.

1. sin 8 = 0.8251,cos 6 > 0
4. sin 6 = —0.6508, tan 6 > 0
7. tan 6 = —0.0349,¢csc B8 <0
10. sin @ =3, cos B < 0

cosB:--g—,tan9>0

2. cos®=—-0.1771,sin 0 < 0

5. sec B =—1.0642,s5in0 <0
8. cos = —0.2222,8in0 >0

11. cot®@ = —5,sin 0 >0

14. cos 6 = —%,ta.n9<0

3.
6.
g,
12.

tan 6 = 0.6569, sec 8 > 0
csc B = —1.3673,tan 6 > 0
sinB:-;’;—,cosB>0
tan = —5,sin 6 <0

In each case (a) draw a representation of angle 6 and (b) use a reference triangle to help find the values of the other
trigonometric functions. Also, (c¢) find the reference angle 8’ and the least positive value of 8 to the nearest 0.1°.

15. sin9=%,c058>0

5
18. cos 6 = —E,tan9<0

21. tan B = 2,cos 0 <0
24. csc8 = —2,secH >0

27.sin6 = —3,tan 6 >0
30, sec § = /O, c5¢ 08 <0
33. cos b = —%,sin&)-o

4
16. sinﬁ:?,cosﬂ<0

19. sinf =1
22. tan 6 = 3,cos 6 >0

cscB:—l

28. sin® = —Z_ tan® < 0

3l. coze=§,sine<o

34, cos 6 = —i,sin9<0
V10

17.

20.

23.
26.
29.

32

35.

1
cosBz—?,tan9>0
cos B =1
cscB = —5,secB8 <0
sec B = —1
secB =4,c5c0>0
cot8 =4 ,sin6 >0
tan @ =1, sec 6 <0
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36. tan 6 = L, sec § >0

39. sinB=L,tanB<0

<3

Solve the following problems.

/3

41. The point (2,—5) is on the terminal side of 6.
a. Find the exact value of each of the trigonometric
functions for 6.
b. Find the least nonnegative measure of 6, to the
nearest 0.1°.

42. The point (—3,—9) is on the terminal side of 8.
a. Find the exact value of each of the trigonometric
functions for 6.
b. Find the least nonnegative measure of 6, to the
nearest 0.1°.

43. A numerically controlled drill is being set up to drill a
hole in a piece of steel 6.8 millimeters from the origin
at an angle of 135°30’. To the nearest 0.01 millimeter,
what are the coordinates of this point?

44. Suppose the hole in problem 43 must be 10.25 inches
from the origin at an angle of 13°20’. Find the coordi-

nates of this point to the nearest 0.01 inch.

45. Suppose the hole in problem 43 must be 8.25 centimeters
from the origin at an angle of —134.4°. Find the coor-

dinates of this point to the nearest 0.01 centimeter.

46. A numerically controlled drill must drill four holes on a
circle whose center is at the origin with radius 17.8 cen-
timeters, as shown in the diagram. The holes must be
drilled wherever on this circle the x-coordinate is £10.0
centimeters. Find the y-coordinate and angle (to the
nearest 0.1°) for each of these four holes.

Suppose in problem 46 four additional holes must be
drilled wherever the y-coordinate is £15.5 cm. Find the
x-coordinate and angle for each of these holes.

37.secO=35,tan 6 >0
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38. secf =4,tan 6 <0

1
40. sin® =—=,tan 6 > 0

48. A technician is aligning a laser device that is used to cut
patterns out of cloth. The device is positioned at an angle
of 135.20° and at a distance 5.50 feet from the origin.
What should the x- and y-coordinates be at this point, to
the nearest 0.01 foot?

A scanning device used in medical diagnosis has a
moving part that moves with great precision in a circle
around the patient. Assume the y-axis is perpendicular
to the top of the table on which the patient lies and the
x-axis is at right angles to the length of the table. The
diameter of the machine is 4 feet 3.5 inches. Find the
coordinates of the moving part when the angle is 211.5°,
to the nearest 0.1 inch.

In problems 50-55 find values of the other five
trigonometric functions in terms of .

50. cos § = u and 0 terminates in quadrant I.

51. tan 6 = u and 6 terminates in quadrant I.

cos 8 = u and 9 terminates in quadrant III.
53. tan ® = u and 0 terminates in quadrant IIL.
54. sin 8 = # + 1 and 6 terminates in quadrant L.
cos 8 = 1 — u and 0 terminates in quadrant 1.

56. In the June 1980 issue of Popular Science magazine Mr.
R.J. Ransil presented several formulas for calculating
saw angles for compound miters. The formulas are:

180°
number of sides
tan(arm angle) = cot(A4) - sin(slope)
sin(tilt angle) = cos(A) - cos(slope)

angle A = 90° —

Arm angles and tilt angles are acute.
Calculate the arm angle and tilt angle to the nearest
0.1° for the following numbers of sides and slopes:

Number of sides Slope (in degrees)
3 5
5
7 25
7 30
6 35
8 35
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A surveying manual describes how to find distance BP Note that the first formula does not give angle p but only
in the figure. The distance AP can be found, but trees sin p. Also, assume p is acute. Solve the sequence of
prevent measuring angle a. Angle b can be measured, formulas to compute the distance BP to the nearest 0.1
but not distance BP. The manual instructs the surveyor footif AB = 512.4 feet, AP = 322.6 feet, and b = 28.3°.
;?)HESELS‘BP by solying; the following. sequence: jof 58. Find BP in problem 57 to the nearest 0.1 meter if

[ AB = 319.2 meters, AP = 225.7 meters, and » = 31.6°.
. _ABsinb
sinp = T
a=180°— (b + p)
BP — AP. sin a
sin b

2-5 Radian measure—definitions

Figure 2-11

The unit circle
The circle with radius one and center at the origin is described by the equation
X2+y2=1

It is called the unit circle. See figure 2-11. Observe that the absolute values
of the x- and y-coordinates of any point not on an axis describe the lengths of
two sides of a right triangle with hypotenuse of length one. The Pythagorean
theorem shows that for these points x> + y2 = 1. Those points of the circle
that are on an axis also satisfy this equation.

The circumference C of a circle with radius r is the distance around the
circle. This distance is found using the relation C = 27r. Since the radius r
for the unit circle is one, its circumference is C = 2w (about 6.28 units).

Note The constant & is approximately 3.14159. It is a much-used
number, about which entire books have been written. It is an irrational
number, and has been approximated to over a billion digits!3

Radian measure

A second system of angle measurement is called radians. This system is used
extensively in engineering and scientific applications, as well as in the cal-
culus. We will use it throughout the rest of this book. To define this system
of angle measurement we use the unit circle.

Let 8 be an angle in standard position, and let s represent the distance
from the point (1,0) along the circumference of the unit circle to the terminal

3An interesting book on T is A History of ® by Petr Beckmann, Golem Press, Boulder, Colo.,
1977. Gregory V. and David V. Chudnovsky of Columbia University calculated 1,011,196,691
digits of w in 1989.
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side of 0. The distance s is called the arc length (see figure 2-12). If the
distance is measured in a clockwise direction we say s is positive, and if in a
counterclockwise direction s is negative.

We define the radian measure of an angle to be this arc length s.

Radian measure of an angle in standard position
Let 8 be an angle in standard position. Let s be the corresponding arc
length on the unit circle. Let s be positive if measured in the
counterclockwise direction, and negative if measured in the clockwise
direction.

Then s is the radian measure of the angle 8.

For example, an angle of degree measure 180° has an arc length that corre-
sponds to half the circumference of the unit circle. Thus, the corresponding
radian measure is half of the circumference, or one-half of 2w, which is .
Thus, the radian measure of an angle that corresponds to a rotation of one-
half a circle, in the counterclockwise direction, is 7 (see figure 2—13).

Conversions between radian
and degree measure

Since 360° corresponds to a full revolution, and the circumference of the unit
circle (2m) also corresponds to a complete revolution about the unit circle, the
following relation is true.

arc length (s) ~ measure of angle in degrees

circumference (2rm) B 360°

If we multiply each member by 2 we obtain the same true statement, but with
smaller denominators of 7w and 180°.
We use this proportion* to convert between degree and radian measure.

Radian/degree proportion
Let 8 be an angle in standard position with degree measure 8° and radian
measure s. Then, o

S o

n©  180°

The radian measure of an angle is a real number, defined with no units in
mind. We often add the word radians after such a measure, but this is not
necessary where it is clear that the real number refers to the measure of an
angle. Observe that in the radian/degree proportion the ratio of degrees to
degrees is unitless also. For example, 4 is the same as the unitless ratio % .

We can describe the measure of an angle in standard position by using
degree measure or by stating the arc length to which the angle corresponds on
the unit circle (its radian measure). The proportion above shows the relation-
ship between these two systems.

%A proportion is a statement of equality between two ratios (fractions).
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B Example 2-5A Compute the radian or degree measure, given the measure for each angle in
degrees or radians.
1. 90°
S & Radian/d rti
e adla egree proporton
n 180° Sree propern
> 20 Replace 8° by 90
e eplace 8° F
x 180° : :
= 90(m) Multiply each member by ; drop the
180 reference to degrees
T
Si= -—2— Simplify the fraction

Thus, 90° corresponds to % (radians).

Radian/degree proportion

Replace §° with —210°

_ —210m) _ 7n

180° 6

7
Therefore, —210° corresponds to _?TE-

5 I
"5
LI
n 180° Radian/degree proportion
7_Tc
5 0° n
i e Replace s by —
n  180° 2
7_71: : _1_ - 6° Division by m is the same as multiplication by i
5 m 180° &
7 (o] o] &
? - 180° = 0 Multiply each member by 180°
252° = @°
n

5 (radians) corresponds to 252°.
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Note that this means s = 1 radian.

s 6° , .
; = 180° Radian/degree proportion
1 0°
T 180°
180° o
=0 Multiply each member by 180°
19
180° — g
T
. ! 180
5730°=0 Decimal approximation to —
7

o

0
or about 57.3°. ||

Thus, 1 radian corresponds to

Note Itis useful to remember that 1 radian is a little less than 60°, and
that 2r radians exactly equals 360C°.

Common radian measures

The unit circle can be very helpful in getting a feeling for radian measure.
Those values of radian measure that correspond to quadrantal angles (0°, 90°,
180°, etc.) and to angles with reference angles of 30°, 45°, and 60° are common.

) . T b
In particular, the following correspondences are useful: ? and 30°, ? and

T
45°, and — and 60°. The unit circle can be conveniently marked in terms of

T
multiples of 3 radians (30°) and of multiples of % radians (45°). This is

shown in figure 2—14.

Q-
ST

6

Figure 2-14
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na=

|
% ©

n
&

3n
2
Figure 2-15

B Example 2-5 B

Coterminal and reference angles
in radian measure

Figure 2-15 shows the smallest positive radian measure of the quadrantal
angles, as well as the fact that a full revolution (circle) can be described by
21 radians. Observe that the quadrantal angles 0°, 90°, 180°, 270°, and 360°
L 3n

are, in radians, 0, ?, 5, ?, and 2m.

In degree measure, all angles that differ in measure by integer multiples
of 360° are coterminal. For radian measure the difference is multiples of 27.
If k£ is an integer (positive, zero, or negative), then integer multiples of 27w are
k - 2w, or 2km.

Coterminal angles, radian measure
Two angles ¢ and B are coterminal if o« = B + 2km, k an integer.

Reference angles are found in the same manner as with degree measure
(section 2-2) except that 180° becomes © and 360° becomes 2. If the measure
of 0 in radians is positive and less than 27, the following rules give the value
of 8’, the reference angle.

Quadrant in which 0 terminates Value of 6', the reference angle
I Hie—20
I 0=m -6
I 0 =0—m
v 0 =2n—-196

For each angle 6 find the least positive coterminal angle ¢ (that is,
0 = o < 2m) and then find the reference angle 8'.

T
1. e
¢ 6

I
It is difficult, at first, to deal with quantities like ? This is because we

are not used to radian measure, and because it can be difficult to compare
the values of fractions.

2t 6 121 R V4
If we convert 21 to — - — = ——, we can see that — << —  or
1 6 6 6 6

T . i
F < 2m, so that 0 is already less than 2%, so ot = 6 = ?
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To determine the reference angle for ® we must determine in which

In . : : .
quadrant E terminates. If you cannot see that it terminates in quadrant

III then use the following method.
Rewrite the quadrantal angles in terms of denominators of 6, the

n
denominator of ? :

Quadrant I I 111 v
b/ 3n
Quadrantal Angle 0 > T > 2n
0 3n 61 on 121
D inator of 6 = — — = =
enominator o 5 6 5 p G
6 7 9 7 3 7
Now observethat?n<%c<-£orﬂ: < ?n<?ﬂ:, so?nis in
quadrant IIT.
e,f?_n_n_’/_:rc_é_n__n:_ ' drant IIl, 8' = 8
6 —6 6_6 Inguadrant lll, 8’ =8 — =«
im. T
Thus, the reference angle for — is "
11m
6 =—
3

61
Since 2n = 3 we see that 0 > 2n. We must subtract multiples of 2n

until we arrive at an angle o, 0 = o < 2m.

5w 3 11 5w
Since 3 < 2m, the angle o is ?n Thus, Tn is coterminal with 3 To

- : 5n . . om 10m
locate in which quadrant the angle & terminates, rewrite BT and

the quadrantal angles in terms of denominators of 6. (It is not convenient
to rewrite the quadrantal angles in terms of denominators of 3.)
Examining the values used in part 1 of this example we see that

o _10m 12 3 5T 5n
& & < ?n S0 %E < 3 < 27 and 3 is in quadrant IV. Thus,
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3.

137
0= ——
4

8n : o ;
We first add multiples of 2r = o7 to obtain a positive valued coterminal

; : 8 . : s
angle o. It is clear that one multiple of 75 will not give a positive result,

so we will add two multiples.

13w (87:) 13t 16m 3m
+2|—)= —+

T4 4 4 4 4

3n 137 .
To find a reference angle we will use x instead of = We rewrite

the quadrantal angles in terms of denominators of 4.

Quadrant I II I v
T 3n
Quadrantal Angle 0 = T Y 2n
Denomimatorofs O 4 6n  8m
enominator o 4 1 4 4 7
Si 2:'1:<3:rc<4n thtn<3nn 5 T, .
— < —<—,weseethat — < —m, 8080 = —isin
MY =4 Ty Ve 5 A 4
, Jt _4n 3w
quadrant II, and 8’ = 7 Pkl £ 4 -

Radian measure and arc length in any circle

(e
-

¥ A simple relation exists between the radian measure s of an angle 6 and arc
length L determined by that angle on the circumference of any circle (figure
2-16). Geometry tells us that corresponding parts of similar figures form equal

. | . . s L .
i 7 ratios. This means, in this case, that T = —, or L = rs. Thus, if s is the
r

radian measure of an angle with vertex at the center of a circle of radius r,
and L is the corresponding arc length, then

L=rs
Figure 2-16 . .
Thus, the arc length L on any circle equals the product of the radius of the
circle and the radian measure of the related angle.
Example 2-5 C Use the relation L = rs to solve each problem.
y 1. Find the length of the arc determined by a central angle of measure 2.5

N

radians on a circle of radius 5.2 inches.

L=rs
L = 5.2(2.5) Replace rwith 5.2, s with 2.5
= 13 inches
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2. Find the measure in radians of the central angle corresponding to an arc
length of 13.5 mm on a circle of diameter 6.8 mm.

r = 3.4 mm One-half the diameter
L=rs

13.5 mm = (3.4 mm)s Substitute known values
135 _

34 °

397 =5 Rounding to nearest 0.1

Thus, the central angle measures 3.97 radians.

3. A railroad car has wheels with diameter 1.4 m (meters). If the wheels
move through an angle of 200°, how far does the train move?

As illustrated, the distance the train will move is the same as the arc
length L on the wheel. This length is determined by the central angle of
200°. We will find the measure of the central angle, 6, in radians, then
use the relation L = rs.

200° s 0 s
180° 1 180° =@
10 s =
i educe
9 4
10m
? =5 Multiply each member by &
L=rs
10w
L=0.7 T The radius r is half the diameter of 1.4 m; s = 8 (in radians)
L=24m

Thus, the train moves 2.4 meters when the wheels move through an angle
of 200°. =

Area of a sector of a circle

A sector of a circle is that part enclosed between two radii. See the shaded
part of figure 2—17 for an example. The area A of a circle with radius » is
determined by the equation A = mr2. The area of a sector of a circle is pro-
portional to the measure of the central angle 6 determining the sector. Thus,
the area of a sector with central angle 0 with measure s radians is part of a
circle determined by

angle X area of whole circle
s s
X w2 =
™" T2

Thus, the area of a sector of a circle of radius r is

A, =—p

oL
2
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B Example 2-5 D Use the formula for the area of a sector of a circle to solve the problem.

Find the area of a sector determined by a central angle of 2 radians in a circle
of diameter 8.5'".
The radius r is half the diameter, or 4.25"".

2
A= %rz = -2—(4.252) =~ 18.06 square inches, rounded to the nearest 0.01 in.?

Mastery points

Can you
e State the equation of the unit circle?
e Convert between degree and radian measure for angles?

e Mark off a unit circle in units of — radians and in units of 7 radians?

e Find the reference angle for an angle given in radian measure?
e Use the relation L = rs to solve problems concerning arc length on any
circle?

) S . .
e Use the relation A, = Erz to find the area of a sector of a circle?

Exercise 2-5
1. State the algebraic relation (equation) that describes the unit circle.

Convert the following degree measures to radian measures. Leave your answers both in exact form and approximated to two
decimal places.

2. 30° 3. 45° 4. 60° 5. 100° 6. —200° 7.. —300°
8. =1357 9. 270° 10. 750° 11. 127° —422° 13. =305°

Convert the following radian measures into degree measures. Leave answers both in exact form and approximated to two
decimal places.

5n 11m 2n 3n 10m 2n
14. — 15, — T o= y PR e
5 6 16 = 1 5 18 9 19 9
5n 17n S5m 3 11 12
20, — Iy — 22, —— 23— 24, — 25—
3 E 6 il 3 2 6 3 17
26. 1.5 27.2 28. 3.25 -5 30. —6
Find the reference angle for the following angles.
2n 5n 11n n 4m 5w
31. — 32. — — 4. — N —— 36. —
3 2 33 5 3 3 35 3 6 6
3n n 5w b1 2n 5m
37. a 38. ) 39. 3 40. — 7 41. — 3 42. — 3
7
i 44. -

6 6



Solve the following problems.

45. The circle is marked off in units of % (or 30%). Mark

each angle shown with its appropriate measure. Reduce
fractions.

46. The circle is marked off in units of % (or 45°). Mark

each angle shown with its appropriate measure. Reduce
fractions.

47. The circle is marked off in degrees. Also shown is the
approximate location of 1 radian, which is approxi-
mately 57°. Mark off the approximate locations of 2, 3,
4, 5, and 6 radians.

o, &
%5.8,% &3
7, @ o
0o By
7500 1 %Qn
7805 20
1702 10°
180° 0°
190° 350¢
900’ 3400
r?"\o 5 ‘?GOu
£
g &, “0s
P 52,0
TSE BE
Vo o
270°
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48. Find the length of the arc determined by a central angle
of 2.1 (radians) on a circle of diameter 10 inches.

49. Find the measure, in radians, of a central angle on a
circle of radius 4.5 mm (millimeter) determined by an
arc length of 12 mm, to the nearest 0.1 radian.

50. Find the length of the arc determined by a central angle
of 300° on a circle of diameter 12 mm.

51. Find the length of the arc determined by a central angle
of 45° on a circle of radius 8.3 inches, to the nearest 0.1
inch.

Find the measure, in both radians and degrees, of the
central angle determined by an arc length of 14.5 mm
on a circle with diameter 10.3 mm. Round both answers
to the nearest tenth.

a The diameter of a wheel on an automobile is 32.4 inches.
If the wheel moves through an angle of 85°, how far will
the car move?

54. The diameter of a wheel that moves the cable of a ski
lift is 5.75 meters, as shown in the diagram. Through
what angle, in degrees, does the wheel have to move to
advance one of the chairs a distance of 10 meters?

fe— 10m —]

5.?5”?

Find the area of the sector of a circle determined by the given angle and radius. Where necessary round the answer to two

decimal places.

55. 4, 7 inches 56. -%-, 10 millimeters

: 6w .
59. 3, 6 inches 60. 5 22 centimeters

57. -3-52, 6 centimeters 58. 2.4, 5 inches

15°, 9 millimeters

62. 135° 24 inches
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63.

64.

65.

66.
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Find the radian measure of the central angle necessary
to form a sector of area 14.6 cm? on a circle of radius
4.85 centimeters. Round the answer to two decimal
places.

Find the degree measure of the central angle necessary
to form a sector of area 200 in.2 on a circle of diameter
50 inches. Round to the nearest 0.1°.

" The figure shows a sector of a circle that was
=4 painted on the concrete in front of an airport ter-
minal. The radius is now to be extended by 25 feet, to a
total of 180 feet. The paint that will cover the unpainted
area in the new, larger sector covers about 150 square
feet per gallon. How many gallons will it take, to the
nearest half gallon, to cover the new, unpainted area?

155%

: The alternator on an automobile engine is attached

=4 by a belt to a wheel on the engine. The wheel on
the engine has a diameter of 14.88 cm (see the fig-
ure), and the wheel on the alternator has a diameter of

9.86 cm. If the wheel driven by the engine moves
through an angle of 2.85 radians, through what angle
does the alternator move, to the nearest 0.01 radian?

Alternator

Engine

67. A decal is being made to indicate timing marks on a

wheel attached to the front of an engine (see the dia-
gram). The radius of the wheel is §6.6 mm. What should
the distance be between the —10° and 10° marks, to the
nearest millimeter?

2-6 Radlian measure—values of the trigonometric functions

In this section we relate radian measure to the trigonometric functions. The
concepts here are the same as seen in sections 2-2 through 2—4, concerning

degree measure.

Relationship between points on the unit
circle and the trigonometric function values
Recall that if (x,y) is a point on the terminal side of an angle 6 (in standard

position), and r = /x* + y?, then sin 6 = 2 and cos & = . On the unit

i3 F

circle, r = 1, so sin 6 = y, and cos 8 = x. Thus, if (x,y) is the point on the
unit circle that intersects the terminal side of an angle 8, then sin 8 = y and
cos B = x. Figure 2—-18 shows this fact.
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Figure 2-18

This figure is very useful because it shows the degree and radian measure
for many common angles with measure between 0° and 360° (0 and 27 in
radian measure). The angles shown are either quadrantal or have reference

T b
angles of measure 30° %), 45° 1) or 60° (;) The figure also shows

the point on the terminal side of an angle where it meets the unit circle. As
stated above, the (x,y) pair at each point on the unit circle is (cos 0,sin 8) for
the corresponding angle. Note that the radian measure is shown for the values
1,2,3,. . . ,6as well as for the multiples of m mentioned above. For example,

2
2 (radians) is near ?n = 2.1 (radians), or 120°.

Observe that you can find the sine or cosine value for any of the angles
shown by observing the symmetries in figure 2—-18. For example, the coordi-

4n 1 3
nates at £l must be ~ ,,‘_é___ . As seen in figure 2-19, traveling through
the origin from one point on the unit circle to another simply changes the signs
_ 4. 1 L 4An, /3
of the x- and y-coordinates. Thus, cos — is —? and sin ? 18 _T :

: 5T
Similarly, the coordinates at o (figure 2—18) must have the same
b . .
y-coordinate as at z , but the opposite of the x-coordinate. Thus, the coor-

: . . .. 5m
dinates there must be (—— ,—), and from this point we know that sin —

6
| 5
=Siﬂ150°=y=7,cos?n=cos LA = —?_
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Sine | Cosine | Tangent
el L] 2| B
6’ 2 2 3
2
5|2 2|
4 2 2
b V3 1
— 00 | = — 3
3 * 2 | 2 3
Table 2-2
i
2
5 4
Sine>0 Sine>0
Cosine >0
Tangent>0
4 11 <0
v
Tangent> 0| Cosine>0
3r
2
Figure 2-20

B Example 2-6 A

The Trigonometric Functions

Using the reference angle/ASTC procedure

with radian measure

The reference angle/ASTC procedure (section 2-3) can also be used instead
of figure 2-18. It is restated here. Table 2-2 is the same as table 2—1 except
that the radian measure of each angle is included. Figure 2-20 is the same as
figure 2-5 except that the quadrantal angles less than 21 (360°) are shown in
radian measure.

Reference angle/ASTC procedure for radian measure

To find the value of a trigonometric function for a nonquadrantal angle
hose ref e, 2, oL

whose reference angle is =, ==, or =:

Find the value of the reference angle.

Find the value of the appropriate trigonometric function for the

reference angle from table 2-2.

3. Determine the sign of this value using the ASTC rule (figure 2-20).

M) =

Use table 2-2 and the ASTC rule to find the exact value of each expression.

I
1cos —
co 6

This was shown in part 1 of example 2-5 B

T
Stepl: 06 =—
ep 5

Table 2-2

> &

Step 2: cos 8" = cos % =

m ;
Step 3: cos o <0 ASTC rule; cos 8 < 0 in quadrant Il

5
Thus, cos L —ﬁ .
6 2
2 si 1ln
. sin —
3
T
Step1: 6' = = Shown in part 2 of example 2-5 B
T 3
Step 2: sin ? — ——2 Table 2-2
5m . ;
Step3: sin— <0 ASTC rule; sin B < 0 in quadrant IV

e

S 1
Thus, sin RN and therefore sin k. .
3 2 3 2
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13m®
3. cot(— 7 )

Cot(_w_n) __ 1
4 13w
ol -F)
131 T :
In part 3 of example 2-5 B, we saw that _T and T are coterminal,

. T
and the reference angle for either is i S0

( 131:) 3n
tan| —— | = tan —
4 4
3n
We proceed to find tan e

3n,. T«
Step 1: The reference angle for 4 18 a1

T
Step2: tan— =1
ep an 4

3n ; : o
Step 3: Y terminates in quadrant II, where the tangent function is
. 3n
negative, so tan i < 0.

3n
Thus, tan — = —1.
us, tan 4

Now we can finish the problem.

Calculators are programmed to accept angle input in radian measure.
All scientific calculators have a key, often marked | DRG] or | MODE] to
tell the calculator to accept angles in radian measure. On the TI-81 use the
key to select the mode display. Then use the four cursor keys
to darken Rad, and use [ ENTER | to change to radian mode. Use
(|2nd| [ CLEAR ]) to exit the mode display.

Thus, for angles that are not coterminal with those in figure 2—-18 we use
the calculator, in radian mode. This is illustrated in example 2-6 B.
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B Example 2-6 B

Find the required value with a calculator; round the answer to four decimal
places.

Make sure the calculator is in radian mode.

1. sin 1.2
1.2 Display
[SIN] 1.2 [ENTER]
sin 1.2 = 0.9320
2. cot(=0.7)

cot(—0.7) =

tan(—0.7)
T+ = [tan | | 1/x Display
[ [taN] [(®] .7D] [x1] [ENTER]

cot(—0.7) = —1.1872 E

As with degrees, we need to be able to find an angle in radians when given
the value of one of the trigonometric functions for that angle, and information
about the quadrant. As in section 2-3 we will restrict ourselves to the least
(smallest value) nonnegative solution to trigonometric equations.

- . 1 . .
Since a reference angle is acute (between 0 and > radians), and since the

values of all the trigonometric functions are positive for acute angles (quadrant
I, ASTC rule) we always use a nonnegative value io find a reference angle.
This is illustrated in the following example.

In section 2-5 we saw formulas that give 6’ if 0 < 6 < 2x. If these are
solved for 6, we obtain formulas for finding 6 given 8’ and the quadrant in
which 0 terminates.

Relationship between 6 and 6’ if 0 < § < 2x

0 in Quadrant I: =8 6=4¢
8 in Quadrant II: 6 =n-—8 8=n~— 0
9 in Quadrant lil; 0=0-1 B=n+48

8 in Quadrant IV: =2n~0 6=2n-—¥¢




B Example 2-6 C

y

ME]

£

2n
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Find the least nonnegative value of 6, in radians. Round to two decimal places
if necessary.

1. sin® = —%,cos6 <0
0’ = sin 1% Always use a nonnegative value to find
a reference angle
14
0" =— Table 2-2
6
0 is in quadrant III, since sin << 0 and cos 6 < 0.
i
9=‘J‘I:+F In quadrant i = + 8’
T T 6rk W
0 =— T+ —=—+—
6 6 5] 6

2.cos0=—-08,tan 6 <0
0" = cos ' 0.8 Use the nonnegative value
8" = 0.64 radians 0.8 (In radian mode.)

0.6435011088

[181] [cos—] & [enter]
6 is in quadrant II since cos 8 < 0, tan 6 < 0.
6 = — 8’ = 2.50 radians H

Solutions to trigonometric equations

In sections 1-4 and 2-3 we examined solutions to equations involving the
trigonometric ratios and functions in terms of degrees. Chapter 5 treats this
subject in more depth, but this is a very important topic, so we revisit it here.

In the problems in example 2-6 D there are an unlimited number of an-
swers. We will look for one basic answer in each case. By limiting the prob-
lems to practically all nonnegative values we can almost always find answers
in the first quadrant in a very straightforward way.

The objective here is not to completely solve these equations, but to get
used to the algebra involved in solving trigonometric equations. These equa-
tions use the following facts, which are presented in depth in chapters 4
and 5:

if sin 8 = k, then one solution is 8 = sin~lk
if cos 8 = k, then one solution is § = cos™'k
if tan 8 = k, then one solution is 6 = tan~!k

We will see some equations that use the zero product property: If a
product is zero, then at least one factor is zero. For example, if

sinx(sinx — 1) =0

then either
sinx =0

or
sinx—1=0
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B Example 2-6 D

Find a solution to each equation, in radians. Round to two decimal places
when necessary.

1. 4cosx =1
4ecosx=1
cosx =+

x = cos™4+ = 1.32 (radians)

2. 3sin2x =2
3sin2x =2
sin 2x = £ Divide both members by 3
2x = sin~1%
x = +sin1%

x = 0.36 (radians) 112 x] [T2 [=]13 0] [=]
(me1] (1 [=]2 O] 5N [ 2 [=]

3 0]
X
3 i =15
sy
X
=15
2
2 nt1s
2

x=2tan 115
x = 1.97 (radians)
4. 2sin® — 1)(sin® + 1) =0
This is a product that equals zero, so we apply the zero product property.
2sin6—1=0 or sin0+1=0

2smf = ] or sinf = —1]
3n
inf =+ 0 =—
sin = >
0 = sin~11+
T
0 =—
6
; T 3n
Thus, there are two solutions, & and > ]

Mastery points

Can you
* Find the exact value of a trigonometric function for an angle whose

. W W b
reference angle is 5y OF 5 as well as gquadrantal angles?

¢ Find approximate values of the trigopnometric functions with a calculator
when the angle is given in radians?
e Find a solution, in radians, to certain trigonometric equations?
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Exercise 2-6
Find the exact function values for the following angles.
. 2n 5 1im n _ 4n
1. sin 3 tan4 cos = 4.tan6 5. cos 3
3 T 5n b
sin 5?“ 7. sin Tn 8. cos = 9. tan 3 10. sin(—I)
2 7
11. tan| — = 12. sec(—m) 13. sin| ——= 14. cos| ——
3 6 6
Find the following function values where the angle is given in radian measure. Round your answers to four decimal places.
15. sin 0.9 16. cos 1.1 17. tan 0.5 18. sec 1.4 19. csc 0.7 20. cot 1.5
21. sin 2.3 22. cos 3.5 23, tan 4.1 sec 5.2 25, csc. 2.5 26. cot 1.9

Find the least nonnegative value of 8, in radians. Round to two decimal places if necessary.

Ve

27. cos 8 = —%,tan B > 0 28. tan 0 = /3,5in 8 <0 29. sin 6 = ——~,tan 8 <0

2
30. sat:e:ﬁ,sinﬂ‘)O 31. cotb = —1,sec8 >0 32. tan 6 = —/3,cos 6 >0
33. ¢cscO=—2,cos0>0 sin 8 = —0.5624,tan 6 > 0 35.tan B = —2.5,¢csc 0 >0
36. cot® = —0.3,sin 6 >0 37. cos 8 = —0.885,tan 6 > 0 38. sin 0 = —0.2258,cos 8 > 0

39. csc b= —3,8ec B8 <0

Find one solution to the following equations, in radians. Round to two decimal places if necessary.

40. 4 cos 38 =2 41. 3sin28 =1 42, Ltan20 =1 43. 2tan B =5
]
44. 2sin 30 = /3 45. sin?=1 46. 2sec 36 =06 47. sin 30 = &
48] @sino — sino -1 =0 49, cos B(2cos § — 1) =0
50. tan B(tan 6 — 1) = 0 51. (2sin 0 — /3)sin@ — 1) =0
52. In a certain series circuit the applied voltage V in volts In interpreting an electrocardiogram a cardiologist ob-
is determined by the function tains values @ and b from the heights of certain peaks,
V = 200 sin(35¢ + 1) and the value of angle 0, which depends on where the

where ¢ represents time in milliseconds and the expres-

. - . is calculated from the expression
sion 35¢ + 1 is in radians. Compute V to the nearest 0.1 P

electrodes are attached to the patient. Then the value V

7) ST
volt for the following values of #: V= va + b - b cos b .
a. 0 b. 0.1 c. 08 a1 i e ,
The value of V helps the cardiologist diagnose specific
53. The position 4 at the end of a spring, under certain initial heart abnormalities. Compute Vifa = 6.2 cm, b = 3.5
conditions, as a function of time # in seconds, is cm, and & = 2.6 (radians). Round the answer to two
d = 3 cos 8 — — sin 8¢ decimal places. The units will be centimeters.
Compute d for the following values of #: 56. If a 100-pound force pushes on an object at an angle 6
3x s b. + that is measured between the direction of the force and

8 =

the direction of motion of the object, then the amount of

54. An equation that arises in finding the trajectory of a

rocket is )
' e £8) = 100 cos b
T 1+ ecos(s — C) Find the force f for the following values of 8 (all in
Find rif p = 200, ¢ = 1.5, C = 0.5, and Gizus). e oRs doatmal plase:

a: v=1 b. s =125 a. 0.2 b. 0.4 c. 0.6 d.

force actually moving the object is given by the function

ra-

1
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57. An equation that can be used to compute sin x, if x is in
radians, is called the Maclaurin series for the sine func-

Check the results with the sine key of a calculator. (Some
computers use a method similar to this for computing

tion. It is the trigonometric functions.)
3 7 9
sinx=x— — + x_s o= R . 58. (See problem 57.) The Maclaurin series for the cosine
31 5t 71 9! U - -
function, if x is in radians, is
where - o 2 B 8
t=1-2:-3= cosx =1 ——+———F —— i
2 1 ! | [
51=1-2-3-4.5 = 120, A L

Use the first four of the five terms shown above to cal-
culate approximations to

T'=1-2-3-4-5.6-7 = 5,040, etc.
(n! is read ‘‘n factorial’’ and is definedas 1 -2 -3 -4

) a. cos 0.8 b. cos 1 c. cos 1.3
Although the Maclaurin series goes on forever, d. Appmximate cos 10° by first converting 10° to
good accuracy is obtained by using the first few terms. radians.

Use the first four of the five terms shown here to compute
approximations to

a. sin0.1 b. sin 0.5 c. sin 1 d. sin%

Chapter 2 summary

A function is a set of ordered pairs having the property that
no first element of the ordered pairs repeats.

The ASTC rule
In quadrant I, All the trigonometric functions

are positive.

A function is one to one if no second element of the ordered

pairs repeats. In quadrant II, the  Sine function is positive.

A one-to-one function f has an inverse function f~1. In quadrant 11T, the

In quadrant IV, the

Tangent function is positive.

An angle in standard position is formed by two rays, one
of which always lies on the nonnegative portion of the
x-axis. This ray is called the initial side. The second ray is
called the terminal side. It may be in any quadrant or along
any axis.

Cosine function is positive.

* Angles whose degree measures are integer multiples of
90°, such as 0°, £ 90°, + 180°, £270°, etc., are called quad-
rantal angles.

» A reference angle for a nonquadrantal angle is the acute
angle formed by the terminal side of the angle and the
x-axis.

= If 0° < 8 < 360° then the following relate the reference
angle 8’ and the angle 6.

Two angles o and B are said to be coterminal if
o = B + k(360°), k an integer.
The trigonometric functions Let 6 be an angle in standard

position, and let (x,y) be any point on the terminal side of
the angle, except (0,0). Let r = /x? + y? be the distance

- ; 0 in Quadrant I: 6 =6 0 =0
from the origin to the point. Then .
¥ - ¥ 8 in Quadrant II: 6'=180°—06 6 =180°— @’
Sg=s b= e 8 in Quadrant IIl: 0’ = 6 — 180° = 180° + ¢’
> o o 6 in Quadrant IV: 08" =360°—6 06 =360°— 6’
o= v’ SIS X W= ; « The absolute value of a trigonometric function for any
« Tangent/cotangent identities angle is the same as the trigonometric ratio for the corre-
S ° co8D sponding reference angle.
tan 6 = ,cotl =

0 - :
os 8 sin 6
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» Reference angle/ASTC procedure To find the exact value Radian/degree proportion Let 6 be an angle in standard

of a trigonometric function for a nonquadrantal angle position with degree measure 6° and radian measure s.
T ] 0°
whose re;ercnce angle is 30° or =, 45° or—- ). or Then -;— = 30°
60° (or 3 ) = Relationship between an angle 8, 0 < 8 < 2m, and 8/, its
1. Find the value of the reference angle. reference angle in radian measure.
2. Find the value of the appropriate trigonometric ratio Quadrant in which
for the reference angle from the following table. 0 terminates
3. Determine the sign of this value using the ASTC rule. 1 8’ =9 8=8
Sine Cosine Tangent I 8 =m—9 6=m—90
I 0 =6—-= 6=n+0
L V3 V3 v W T Bl
6 2 2 3 L "
. X e J2 e If 5 is the radian measure of an angle with vertex at the
455 5 N 2 1 center of a circle of radius 7, and L is the corresponding
7 3 1 arc length, then L = rs.
anl | L — V3
3 2 2

¢ The area of a sector of a circle of radius ris A, = ir2.

= Solutions to simple trigonometric equations: 2
if sin 8 = £, then one solution for 8 is 6 = sin~! k e If (x,y) is the point on the unit circle that intersects the
if cos 8 = k, then one solution for 8 is 6 = cos~1 k terminal side of an angle 8, then sin & = y and cos § = x.
if tan 6 = k, then one solution for 6 is 6 = tan~1 k

* Finding the least nonnegative measure of an angle from a
trigonometric function value and information about a
quadrant.

1. If necessary use the ASTC rule to determine the
quadrant for the terminal side of the angle.
2. Use sin~!, cos™1, or tan~! to find 8’. Use the absolute
valpg "4 the ‘given ingonomieind runéuon value.
3. Apply 0' to the correct quadrant to determine the
value of 6.

* A reference triangle is a right triangle with one leg on the

x-axis and one leg parallel to the y-axis.

* The circle with radius one and center at the origin is de-
scribed by the equation x? + y2 = 1. It is called the unit
circle.

* Let 68 be an angle in standard position. Let s be the corre-
sponding arc length on the unit circle. Let s be positive if
measured in the counterclockwise direction, and negative
if measured in the clockwise direction. Then s is the radian
measure of the angle 9.

[2-1] In each of the following sets of ordered pairs:
a. Determine if the set is a function.

b. If a function, state the domain and range.

¢. If a one-to-one function, state the inverse function.

. (L), (4,5), (6,7), (7,10)}
. {(=2,-3), (=1,1), (1,2), (2,5)}
. {(1,3), (2.5), (2,9). (6,100}

W o =
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In each of the following problems a rule that describes a
function is given. Form the ordered pairs that this function
contains for the following domain elements:

a. —1 b.0 ¢ /5 d. +

4 i) =4 — 2
6. fix) =x*-35

5. fix) = 322 — 2x + 3

3x
7.f(x)=x_1

[2-2] In the following exercises draw the initial side and
terminal side of the given angle. Also, state the measure of
the smallest nonnegative angle that is coterminal with the
angle.

8. 465° 9. —40.25° 10. —270°
11. 1,800.6° 12. 132°18' 13. 547°26’
14. 429.3° 15 —0°15"

In the following problems you are given a point that lies on
the terminal side of an angle in standard position. In each
case draw a representation of the least positive angle that has
the point on its terminal side and compute all six trigono-
metric functions for the angle.

16. (5,—12) B8

19. 2,./3) 20. (—/2.3)
22. (a,—2a), a >0

18. (0,—3)
21. (1,—/6)

[2-3] In the following problems you are given the sign of
two of the trigonometric functions of an angle in standard
position. State in which quadrant the angle terminates.

23, 8in 0 <0,cos9 <0 24, sec 6 < 0,tan 0 >0
25. cos9>0,tan B <0 26. cot® < 0,csc B8 <0
27. csc @ >0,cot8 <0 28. tan 0 < 0,cos 8 <0
29. tan 6 > 0,csc 8 <0 30. sec8>0,c5¢0 <0

In the following problems you are given the degree measure
of an angle in standard position. For each indicate the
measure of the reference angle 6'.

31. 46.3° 32. 323°16’ 33. 421°48’
34. —22.7° 35. —248.7° 36. —105.15°
37. 242.57°

In the following problems you are asked to find a trigono-
metric function value for an angle. If the reference angle is
30°, 45°, or 60°, give the exact answer. Otherwise find the
required value to four decimal places.

38. sin 213.4° 39. cos 240°

40. tan(—114.6°) 41. csc 870°

42. cot 212.3° 43. tan 213.9°

44. sec 300° 45. cos(—133°20")

46. sin(—293°40")

[2-4] In the following problems you are given a trigono-
metric function value of an angle in standard position, along
with the sign of one of the other function values. Find the

measure of the smallest nonnegative angle that meets these
conditions, to the nearest 0.1°.

47. sin 6 = 0.3251, cos 6 <0
48. cos 6 = —0.7771,5in 6 > 0
49. tan 6 = 0.6306,s8ec 8 <0
50. sin 6 = —0.9088,tan 6 <
51. sec 6 = —2.0642,sin 9 >0
52. cot © = 4.1046, sin § < 0

3
53. sinﬂ:%,cosﬂ<0
54. tan 0 = —2,s5in 6 < 0

5
55. cos=——,tan B <0
13

In the following problems you are given the value of one
trigonometric function and the sign of another function of an
angle in standard position. Draw a representation of the least
positive angle that meets these conditions and use it. Com-
pute the exact value of the remaining five trigonometric
functions.

56. sin® = %,cos 0 >0 57.cos8=—L tan >0
58. cos @ = —F,tan8>0 59.cosB ==, coth<0
60. tan 6 = —2,cos 6 <0 61. csc 0 = —4,sec H >0
62. sec® = 6,cs¢c 6 <0 63. cot8 =2,s5in08 <0
64. cot® =% ,sinh <0 65. tan B = % ,sec 8 <0
66. tan 8 = 0,cos 6 >0 67. sin 6 = 0.25,cos 0 < 0

68. sin 6 = z and 6 terminates in quadrant II. Find tan 8 in
terms of z.

69. tan 6 = z and 0 terminates in quadrant I'V. Find cos 0 in
terms of z.

70. In a certain electrical circuit the instantaneous voltage E
(in volts) is found by the formula

E = 120 sin(® + 15°)
Compute E to the nearest 0.01 volt for the following
values of 6:
a. 0° b. 45°
e. —15° f. —45°

c. 84.2° d. —200°

71. For a surveyor to locate a point by measuring an angle
at one station and a distance from another one, the dis-
tance BP must be found by solving the following se-
quence of formulas:

AB sin b
i =— ° < p < 90°
sinp == (©* < p <907
a=180°— (& + p)
BP=AP-sina

sin b

Compute the distance BP to the nearest 0.1 meter if AB
= 211.5 meters, AP = 185.7 meters, and b = 29.6°.



72. A machinist is setting up a numerically controlled drill.
The drill must drill a hole in a piece of steel 9.0 milli-
meters from the origin at an angle of 125°30'. To the
nearest 0.1 millimeter, what are the coordinates of this
point?

73. Suppose the hole of problem 72 must be 8.075 inches
from the origin at an angle of 10.2°. Find the coordinates
of this point to the nearest 0.1 inch.

74. A technician is aligning a laser device used to cut pat-
terns from cloth, and positions the device at an angle of
—42.3° and a distance of 6.90 feet from the origin. What
should the x- and y-coordinates be at this point to the
nearest 0.1 foot?

[2-5] Convert the following degree measures into radian
measures. Leave your answers both in exact form and ap-
proximated to two decimal places.

5. 1207 76. —215° 77. 430°

Convert the following radian measures into degree measures.
Leave your answers both in exact form and approximated to
two decimal places.

Tn lix 5m
78. — 79, —— i m—

2 3 L 7
81. 2.5 82. —42

83. Find the length of the arc determined by a central angle
of 3.9 (radians) on a circle of diameter 6.3 inches, to the
nearest 0.1 inch.

84. Find the measure, in radians, of a central angle on a
circle of radius 8.8 mm determined by an arc length of
20 mm, to the nearest 0.1 radian.

85. Find the length of the arc determined by a central angle
of 150° on a circle of diameter 15 mm.

86. The diameter of a wheel on an automobile is 30 inches.
If the wheel moves through an angle of 385°, how far
will the car move?

Chapter 2 Test a3

Find the area of the sector determined by each of the fol-
lowing angles and radii. Give both the exact answer and a
two-decimal-place approximation.

87. 30°, 9 inches 88. 240°, 8 mm
11 o2 .
89. T 6 mm 90. ? , 7 inches

[2—6] Find the following function values where the angle
is given in radian measure. Round your answer to four dec-
imal places.

91. sin 1.9 92, sec 2.4 93. tan 4.5
Find the exact function values for the following angles.
94. sin 5_1t 9s5. tanég- 96. cos 7_1:
T 4an ! S5
97. cos == 98. tan(—?) 99, sm( = )
T
100. —
sec 7]

Find the least nonnegative value of 6 in radians. Round to
two decimal places if necessary.

101. sin 6 = —%‘,cos 0>0

102. tan 9 = —1.82,5in 6 >0

Find one solution to the following equations, in radians.

Round to two decimal places if necessary.

103. 2sin 6 = 0.84 104. 3tan 20 = 5

105. (2cos® — 1)(cos® — 1) =0

106. The position d at the end of a spring, under certain
initial conditions, as a function of time ¢ in seconds, is

d =+ cos 8 — + sin 8

Compute d if t = 4.

Chapter 2 test

1. Draw the initial side and terminal side of the given angle.
Also, state the measure of the least nonnegative angle
that is coterminal with the given angle.

a. 665° b. —417°

In the following problems you are given a point that lies on
the terminal side of an angle in standard position. In each
case draw a representation of the least positive angle that has
the point on its terminal side and compute all six trigono-
metric function values for the angle (leave answers exact).

2. (6,—12) 3. (=2,—6) 4. (2aa),a>0
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In the following problems you are given the value of one
trigonometric function and the sign of another function of an
angle in standard position. (a) Draw a representation of the
least positive angle that meets these conditions. (b) Use a
reference triangle to compute the exact value of the re-
maining five trigonometric functions. (¢) Use one of the
function values to find the least positive measure of the angle
to the nearest 0.1°.

5.sin0=-—+,cos8>0 6. tan6 = 8,cos 8 <0

In the following problems you are given the degree measure
of an angle in standard position. For each indicate the
measure of the reference angle 6'.

7. 246.2° 8. —55.6°

In the following problems you are asked to find a trigono-
metric function value for an angle. Find the required value
to four decimal places.

9. sin 116.4° 10. tan(—14.8°) 11.. esc 115720

In the following problems you are given a trigonometric
function value of an angle in standard position, along with
the sign of one of the other function values. Find the measure
of the smallest nonnegative angle that meets these conditions
to the nearest 0.1°.

12. sin 6 = —0.2961, cos 6 < 0
13. sec 6 = —2.0642,sin 6 > 0

14. In a certain electrical circuit the instantaneous current [
is found by the formula I = 5.4 cos(6 — 25°). Compute
I to the nearest 0.1 ampere for 8 = 45°.

15. The arm of an industrial robot is positioned at 22.6 cen-
timeters from the origin at an angle of 261.42°. To the
nearest 0.1 centimeter, what are the coordinates of this
point?

16. To align a precision laser that is part of an optical bench,
a technician points the device at a test point with coor-
dinates (—211.5, 620.0) (inches). Assuming the bench is
coordinatized in the usual way, with the laser at the
origin, (a) what angle should the laser’s indicator show
to the nearest 0.1°, and (b) how far from the origin is
the test point?

17. Convert 415° into radian measure. Leave your answer
both in exact form and approximated to two decimal
places.

in
18. Convert I into degree measure.

19. Find the length of the arc subtended by a central angle
of 5.0 (radians) on a circle of diameter 8.2 inches, to the
nearest 0.1 inch.

20. The diameter of a wheel on a pulley is 14 cm (see the
diagram). If the wheel moves through an angle of 120°,
how far will the belt that the wheel drives move?

NN 120°

21. Find a four-decimal-place approximation to csc 2.5.
: Sm
22. Find the exact value of cos e

23. Find the area of the sector determined by a central angle
T
of = (radians) in a circle of diameter 32 mm, to the

nearest 0.01 mm?2.

24. Let f = {(2,—3), (3,5), (3,6), (10,12)}.
a. Is fa function?
b. If so, is it one to one?
¢. Does fhave an inverse? If so, state it.

25, If the function f is described by the rule fix) = x2 — 3x
+ 5, state the ordered pair that is an element of f when
the domain element is (a) —4 and (b) /2.

Find the least nonnegative value of 6 in radians. Round to
two decimal places if necessary.

26. sin 6 = —+,c0s0 >0

27. tan 8 = /3,sin 0 <0

Find one solution to the following equations, in radians.
Round to two decimal places if necessary.

28. +cos B =020 29. 2tan 30 = 4.2
30. sin6(2sinf — 1) =0

31. The position d at the end of a spring, under certain initial
conditions, as a function of time ¢ in seconds, is d =

i
+ cos 41 — 4 sin 41. Compute d if = 6



Properties of the
Trigonometric
Functions

To understand many applications of the trigonometric functions it is necessary
to have a good understanding of the properties of these functions. As with any
functions, we can gain a great deal of knowledge from their graphs. There are
many graphing calculators and computer programs available today that are
capable of graphing functions defined from equations. We will illustrate the
graphing of trigonometric functions by two methods:

1. obtaining important information about the graph, then using this
information to sketch the graph by hand, and

2. using a graphing calculator.

We use the TI-81 graphing calculator to illustrate using a graphing cal-
culator. The process is practically the same with another brand or model.

Before going further, we show some basics of using the TI-81 graphing
calculator. The reader can jump to section 3-1 if not using a graphing
calculator.

3-0 T/-87 graphing basics

RANGE

Xmin=—10
Xmax=10
Xscl=1
Ymin=—10
Ymax=10
Yscl=1
Xres=1

Table 3-1

Setting the range for the screen

Graphing calculators have a way to describe which part of the coordinate plane
will be displayed. It is called setting the RANGE. Using the |RANGE | key

shows a display similar to that in table 3—1. The Xmin and Xmax values refer
to the range of x values which will be displayed. The Ymin and Ymax values
refer to the range of y values which will be displayed. The Xscl and Yscl
values refer to the tick marks which will appear on the screen. The Xres refers
to the number of x values which will be calculated. It should be left at 1.

Throughout the text we will show the Xmin, Xmax, Xscl, Ymin, Ymax
and Yscl values, in this order, in a box labeled RANGE. For the values shown
in figure 3—1 we would write [RANGE —10.10.1,—10.10,1 |. This omits the
value for Xres, which we will assume is 1.

85
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By entering numeric values and using the key to move down
the list, the values in the RANGE can be changed. Note that to obtain a neg-
ative number the (change sign) key is used, not the EI (subtract)
key.

Figure 3—1 shows the screen appearance for various settings of Xmax,
Xmin, Ymax, and Ymin. Xscl and Yscl are 1 except where labeled Yscl=3
and Xscl=2. After setting these values with the key, use the
key to show the screen. Using the button readies the
calculator for numeric calculations again. The settings in part (a) of figure
3-1 are the ‘‘standard’’ settings, obtained by selecting 6.

- = = & =
Ymax=10 S Ymax=10 | Yscl=3
e | Xscl=2
| N I ) IS A A . U | :I 1 O e O 1 1 1 1 I ] I 1
Xmin=—10 - Xmax=10 Xmin=-10 L Xmax=10
_ Ymin—10 F  Ymin—1o0 | r
[ RANGE —10,10,1,—10,10,1 | [ RANGE —10,10,2,—10,10,3
(a) (b)
(" Ymax=10 [ = (o Ymax=15 E
— L ]
: L]
C .
1E ®
R ety T :
Xmin=-5 = Xmax=10 o Vet
C o/  Xmin=5 :
\__ Ymin==5[ y, \0‘/‘/. l'l:I!'I e & o e ® X.ma:: 15-},
[ RANGE —5,10,1,—5,10,1 | [ RANGE 5,15,1,5,15,1 |
(© (d)
Figure 3-1

Observe that the distance between units are not the same on the screen.
The calculator automatically makes horizontal units 1.5 times as long as
vertical units. To have horizontal and vertical distances the same, use the
function, where option 5 says SQUARE. This makes the screen use
the same scale for distance vertically and horizontally by changing the values
of Xmin and Xmax. In most cases, having equal horizontal and vertical scales
will not be important.
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When graphing trigonometric functions | ZOOM | 7 (Trig) can be useful.
It sets Range settings to

RANGE —6.28 (—21),6.28 (271),1.57 (%),—3,3,.25

Graphing an equation in which y
is described in terms of x

If an equation describes values for a variable y in terms of a variable x, the
graphing calculator can be used to view the graph of the equation.

Graph each equation.

1. Graphy = 2x — 3
This could be done without a graphing calculator with practically no
knowledge of graphing by a table of values, by letting x take on many
values, such as —3, -2, —1, 0, 1, 2, 3, etc., and computing y for each
one. In fact, this table is shown here. The y-values are computed by
computing 2x — 3 for the given x-value. Each pair of values for x and y
represents an ordered pair (x,y) (we always write the x-value first). If we
plot enough of these values in a coordinate system we start to see a
picture emerge. In this case it is a straight line.

Of course the point of this section is to have the calculator
automatically calculate the x- and y-values and plot them. Assuming the
standard RANGE settings (obtained by 6) proceed as follows
to obtain the graph:

e
Il

Allows us to enter up to four equations.

The variable x.

L
—

Y =2X-3
IYZ:
The display looks like Ys=
:Y4=

[]

Note If there are any equations already entered for Y, use the

key before entering the equation. If there are any extra
equations entered for Y,, Y3, or Y,, move down with the down arrow
key [ V] to that equation and use the key to clear that
entry. Use & to obtain the standard Range settings. The figure
shows what the display will look like.



88 Chapter 3 Properties of the Trigonometric Functions

i i 123 e et

L I i 1 i

o o

[xlT] [+]1 O] [,

[ RANGE —3.3.1,—.3,1.3..1 ]

[
Nof

s

N

1

2. Graphy = o e
The following steps would produce a graph similar to that shown in the
figure.
Steps Explanation
Enter the x- and y-axis limits.
[(=)]3 [ENTER] Xmin becomes —3.
3 Xmax becomes 3.
1 Xscl becomes 1.
[(=)] 3 [ENTER] Ymin becomes —0.3.
1.3 Ymax becomes 1.3.
= Yscl becomes 0.1.

The key 1s used to define a reciprocal (something divided into one).

(¥=] [d [XIT1] 2] [=] [XIT] [+]1 ] [=1] [GRAPH]

3. y=sinx + cos x

Make sure the calculator is in radian mode (with the | MODE | key).

Steps

Explanation

Enter graphing mode. Remove

SIN| [XIT COsS X| T the previous function.

[zooMm] 7

[Y=] [sIN] [XIT]

[RANGE —6.28,6.28.1.57.—3,3,.25 |

Select standard settings for
trigonometric functions. The
graphing begins automatically
after ZOOM 7 is selected.

=

In the remainder of this text we show how to enter the function and the Range
settings for each graph, assuming the reader is using the TI-81 graphing cal-
culator. The steps are practically the same for other brands and models.

3-7 Graphs and properties of the sine, cosine,
and tangent functions

Graph of the sine function

The graph of y = sin x for x between 0 and 2 is shown in figure 3-2. This
graph can be obtained by plotting points for various values of x. For example,
the points for the following table of values are shown in the figure.



x (radians) sin x

0 0
z 1

6 2

2

4 2

T 3

3 > 0.9)
L 1

2

Section 3-1  Graphs and Properties of the Sine, Cosine, and Tangent Functions 89

Y

;

0.9

0.7

0577
5 3 — X
mnTT (o ¥4
543 2 5 > 2

_1__
y=sinx, 0<x<2n

[y=] [sIN] [XIT] [RANGE 0.6.28,1.57,.—1.5.1.5.1 |

Figure 3-2

The graph in figure 3-2 repeats itself, as shown in figure 3-3, for other
values of x because for values of x greater than 27 or less than O we have
angles that are coterminal with values we have already plotted. Thus, every
21 units we find that the part of the graph that was shown in figure 3-3 is
repeated. If we memorize the graph in figure 3-2, we can use it to reproduce
the graph in figure 3-3.

¥

NWANAWAW
v-zn — / n\7 31\

y=sinx

SIN| [XIT] [RANGE —10,10.3.14,—1.5.1.5.1 ]

Figure 3-3

The repetitious nature of the sine function can be described with the

identity
sin x = sin (x + k- 2m), k any integer
We say that the sine function is 2n-periodic, or is periodic with period 2.
Note Any function that repeats the same pattern over and over is said to
be periodic. The period is the length of the shortest pattern that produces
the function when repeated. Algebraically, a function 7 is p-periodic if there
is a number p, p = 0, such that
fix + p) = fx)

for all x in the domain, and p is the smallest such number.
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N K

T :‘1: 4} : T T X
X P=X X \
sin(-x) |

—1+

Figure 34

Several observations can be made by looking at the graph of y = sinx in
figure 3—4. The domain of the sine function is all real numbers; that is, x can
be any real number. The range of the sine function is restricted to the values
between and including —1 to 1. In other words, if R represents the collection
of all real numbers, then:

Domaing,.: R
and
Rangeg: —1 =y =1

Note The domain is verbalized as “'all real numbers'’; the range is
verbalized as “"all real numbers y having the property that y = —1 and

4

y=1,

Another important point is that sin(—x) = —(sin x) for any value x. This
is illustrated in figure 3—4, where we see that if we go equal distances in the
positive and negative directions along the x-axis, the value of the sine function
at each place is of the same magnitude (absolute value) but of the opposite
sign. Any function for which f{—x) = —f(x) is true for all x in its domain is
called an odd function; therefore, sine is an odd function.

Graph of the cosine function

Plotting various values of ordered pairs (x,y), where y = cos x, and then con-
necting them with a smooth curve produces the graph shown in figure 3-5 for
x between and including 0 and 2r. For example, we know that cos 0 = 1,

T /3 T
cos — = —,

6 2
figure 3-5.

cos T = —1, etc. These values are shown in

y=cosx, 0<x<2n

o|a

-1 AT

[y=] [cos] [xIT] [RANGE 0,6.28,1.57,—1.5.1.5.1 |

Figure 3-5
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Just as with the sine function, the cosine function repeats after 2w units.
The identity that states this algebraically is cos x = cos(x + k - 2m), k any
integer. As with the sine function, we also say that the cosine function is
21-periodic. i

The graph of y = cos x is shown in figure 3-5. If we memorize the graph
in figure 3-5, we can use it to reproduce the graph in figure 3-6.

1 cycle 1 cycle 1 cycle |
_5n _an _x n an 5 7n
5 \? 2/—\2 2/\2 S
1 I I (RN 1 I ! ! Pl iy ! L 1 el ’ L
T T T T T T T T T T T T | L =X
S NG T NE S5 om N\ S

y=Ccos X

[Y=] [cos] [x|T] [RANGE —10,10,3.14,—1.5,1.5.1 |

Figure 3-6

Several observations can be made by looking at the graph of y = cos xin
figure 3-6. The domain of the cosine function is all real numbers; that is, x
can be any real number. The range of the cosine function is restricted to the
values between and including —1 to 1. These are, of course, the same as the
domain and range of the sine function.

Domainggsine: R
and
Rangecosine: =1 =y =1

We also see that cos(—x) = cos x. This is illustrated in figure 3-7, where we
see that if we go equal distances in the positive and negative directions along
the x-axis, the value of the cosine function at each place is the same value.
Any function for which f{—x) = f{x) is true for all x in its domain is called an
even function; therefore, cosine is an even function.

Yy
p—k ; — 55 : > x
- n. =] =[x 1 g T
2 2

Figure 3-7

Finally, the graphs of the sine and cosine functions have exactly the same
shape; either one becomes the other if it is shifted right or left a suitable

. T - . .
amount. The smallest such amount is 7 , which is described in the statement

: L 5 - :
that sm(x T ?) = cos x. This statement is proved in chapter 5.
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X tan x
0 = 0
T 3
< T
= =052 :
T
i 1
=079
% =~ 1.05 S3~17
1.25 =39
1.50 ~14.1
1.55 ~ 48.1
% ~ 1.57 undefined
y
t
y=tan x|
o
14
} t X
$ Al ok
o 2
1
Figure 3-8
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Graph of the tangent function

To obtain the graph of the tangent function, we also compute values and plot

. il .
points. Some values for x between 0 and o are shown in the table. Observe

sin x

i
that as x gets closer to > tan x gets larger. If we recall that tan x = :
cos x

T
we can see why this is true. As x approaches £ (from below), sin x approaches

. . T . T
1, since sin 5= 1, and cos x approaches 0, since cos - 0. Now as the

denominator, cos x, gets smaller and smaller we divide it into values of sin X

. . ; 1 :
which are close to 1. Effectively we are calculating , or the reciprocal of
cos x

cos x. The smaller the absolute value of a number, the larger is its reciprocal.

1
For example, the reciprocal of — is 100, and of is 10,000. Thus, as

100 10,000
sin x
cos x gets smaller, gets larger and larger, and so tan x = gets
cOoS X cos x
L T
larger and larger. Since cos — = 0, tan i is not defined. For the same

2
o T
o < x < =y in figure 3-8. It can be proved that the tangent function is
n-periodic; that is, for any x, tan x = tan(x + km), k any integer. The actual
proof will be an exercise in chapter 5. This T-periodic property means that
the graph of the tangent function repeats every T units. More of the graph of
¥y = tan x is shown in figure 3-9. The vertical dashed lines indicate values

s
reason, tan(——) is not defined either. The graph of y = tan x is shown for

I y=tan x

5m 2n _Sr —n 2n

a
SIET
n|gT

[TaN]| [XIT] [RANGE —7,7,1.57,—5.5.1

Figure 3-9
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sin x

of x for which the tangent function is not defined. Since tan x = we

cos X
know that the tangent function is not defined wherever cos x = 0. The vertical
dashed lines are called asymptotes of the tangent function and occur wherever
cos x = 0.

The domain of the tangent function is all values of x except where
cos x = 0, and the range is all values of y.

. U .
Domaingsgens: * 7 ? + km, k any integer

Rangeuagen: R
It will also be an exercise to show that the tangent function is an odd
function; that is, tan(—x) = —(tan x) for any x in its domain.
Table 3—2 summarizes the properties of the three functions we have
examined.

Function Domain Range Period
y=sinx R —1l=y=1 2n
Yy =cosx R ~lo= y= 2n
L
y =tanx x# 5 + kn R T

sin(—x) = —(sin x) (odd)

cos(—x) = cos x (even)

tan(—x) = —(tan x) (odd)
Table 3-2

We can use the odd-even properties of these functions to simplify some
computations.

5n
1. Find tan| —— ).
11! an( 6)

Since tangent is an odd function, we know that

a5 =(=F] n

51 . . i . 51T
6 terminates in quadrant II, so its reference angle is @ — — = —, and

6 6’
n_ /3

tan — 3 Also, the tangent function is negative in quadrant II, so

6
5w /3
tan — = — =
6 3
5m I3 3 5m 3
Theref — === == ot e
erefore, (tané) ( 3) 3 andtan( 6) 3
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2. Find cos(—210°).
Since the cosine function is an even function, cos(—210°) = cos 210°.

3
The reference angle for 210° is 30°, and cos 30° = % . Since 210°

terminates in quadrant III where the cosine function is negative, cos 210°
3 3
= —%. Therefore, cos(—210°) = —%. |

Mastery points

Can you

e Sketch the graphs of the sine, cosine, and tangent functions?

e State the domain, range, and period of the sine, cosine, and tangent
functions?

¢ Use the odd-even properties to compute the values of sin x, cos x, and
tan x for negative values of x?

Exercise 3-7
1. Sketch the graphs of 2. From memory, or using their graphs as an aid, state the
a. y =sinx b. y = cos x c.y=tanx domain, range, and period of each of the functions
sine, cosine, and tangent.
3. Using the graph of y = sin x as a guide, describe all 4. Using the graph of y = cos x as a guide, describe all
values of x for which sin x is values of x for which cos x is
a. 1 b. -1 c. 0 a. 1 b =1 c. 0

5. Using the graph of y = tan x as a guide, describe all
values of x for which tan x is 0.

Use the appropriate property, odd or even, to simplify the computation of the exact value of the (a) sine, (b) cosine, and
(c) tangent functions for the following values.

T s 5n
s g —— . —45° e

In the text we stated that a function fis odd if f{—x) = —f(x) for all x in its domain and is even if fl—x) = flx) for all x in its
domain. An algebraic example of an odd function is f(x) = x3, since

=) = (=2
S
—fx)
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Thus, to illustrate this point, again using f{x) = x3, we can see that {—2) = —8, f{2) = 8, and so f{—2) = —A2).
An example of an even function is fix) = x?, since we can show that f{—x) = f(x).

fl=x) = (=x
=5
= fix)
Some functions are neither odd nor even, such as fix) = x — 3, since f{—x) = —x — 3, but —f(x) = —(x — 3) = —x + 3, 50
f(—x) is neither f{x) nor —f(x), as we see when we compare
fix)=x-—3
A—x)=~—x—3
—ftg) =%+ 3
Compute f{—x) and —f(x) for each of the following functions, and state whether the function is odd, even, or neither.
10. fix) = x 11. fix) = 3x 12. f(x) = 3x> 13. fix) = —x2
14. f(x) = 2x* — 4x? 15. flx) = 322 — 2x* 16. flx) = 2x® — 4x fix) = 3x — 223
2 -1 x> — X
18. fix) = 3sinx 19. f(z) = 2 cos x 20. fix) = — 21. fix) = =
: : sin x
22. f(x) = sin’x 23. f(x) = tan x 24. fix) = sinx + cos x 25. flx) =
. x
Hint: Rewrite as =
cos X

3-2 Graphs and properties of the reciprocal functions

To graph the reciprocal functions cosecant, secant, and cotangent, we can use
the graphs of the sine, cosine, and tangent functions as our guide.

The graph of the cosecant function

1
Remember that csc x = st Thus, to graph y = csc x we first graph y =
X

sin x, and then examine the reciprocal values. Figure 3—10 shows the graph of
vy = sin x for 0 = x = 2w, as well as dashed lines that represent the cosecant
function values for these values of x.
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y=sinx
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4 N,
il / \
il
[¥=] [sIN] [XIT] [x'] [ENTER] [Y=] [SIN]
[ RANGE 0,6.28.1.57.—3.3.1 |

Figure 3-10

To see that the dashed lines represent the values for the cosecant, consider
the table, which shows both the sine and cosecant values for selected values
of x. These selected values are also illustrated in figure 3—10.

Referring to figure 3—10 and the table, we see that as x increases from

e

T 5 2 .
E to ? , sin x increases from + to 1, and the reciprocal values, csc x, decrease

from 2 to 1. Also, as sin x decreases in absolute value (i.e., gets closer to the
x-axis), the reciprocal gets larger in absolute value. Wherever sin xis 1 or —1,
80 is its reciprocal value, csc x. Wherever sin x approaches 0, the absolute
value of csc x approaches infinity (gets larger and larger). Note that if sin x
approaches 0 through positive values, its reciprocal gets larger and larger, and
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wherever sin x approaches 0 through negative values, csc x becomes larger
and larger in absolute value, although it is negative.

To graph y = csc x, we can rely on the graph of y = sin x for our guide.
The steps are:

1. Graph y = sin x.

[}

. Wherever sin xis +1 or —1, so is csc x.

W

. Wherever sin x is 0, draw vertical dashed lines (asymptotes).

e

. As sin x approaches 0, draw csc x getting greater and greater in absolute
value, positive or negative depending on the sign of the sine function.

The graph of y = csc x is shown in figure 3-11; the graph of y = sin x is
shown as a dashed line.

y =C8C X

y:sinx R et 1+ ~ q‘ e »

.
e
~,
e
.
¥

,.
C‘4~
3
|
o
o
S
3
1
&
ek
T
|

[Y=] [siN] [xIT] 1]

[ RANGE —10.10.3.14,—5,5.1 |

Figure 3-11

Note that the domain of the cosecant function is all x except where
sin x = 0, and the range is all y greater than or equal to 1 in absolute value.
This range reflects the fact that since sin x is less than or equal to 1 in absolute

1
value, —— must be greater than or equal to 1 in absolute value. Also, the
sin x

cosecant function is 2m-periodic, just as the sine function is.

The graph of the secant function

The graph of y = sec x is analyzed in the same manner as the graph of
1

sinx

S 1 .
y = csc x, except that we are considering y = instead of y =
COS X
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Figure 3-13

Hla+
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Thus, to graph y = sec x, we can rely on the graph of y = cos x for our
guide. The steps are the same as when graphing the cosecant function, except
that the cosine function is our guide. This produces the graph of y = sec x,
which is shown along with the graph of y = cos x in figure 3—12.

y y=secx
l‘ ‘\ l‘ ‘\ e ‘\ 0' R l' ‘\
SN SN P SN SN
; y J 0y /! \ F '\ S
oy M e e M T I
——————— —3 —t - X
Ln 7. S 3tk R fre T 5t Jn O,
: s~ TR D T H el ot B e A T e
2/. D 2 gl p b b 2
y=0cos X 1

Y= [cos] [xIT] 1]

[ RANGE —10,10,3.14,—5.5.1 |

Figure 3-12

The domain is, of course, where cos x = 0, and the range is the same as
that of the cosecant function. The secant function is also 2n-periodic.

The graph of the cotangent function

Since cot x = e except where tan x = (, we can obtain the graph of
an x

y = cot x by analyzing the graph of y = tan x as we did previously for the
other reciprocal functions. The graphs of both y = tan x and y = cot x are
shown in figure 3—13. Note that wherever tan x is 0, we have a vertical as-
ymptote, and wherever tan x approaches infinity or negative infinity, cot x
approaches 0. This should make sense, since as a quantity gets greater and
greater in absolute value, its reciprocal will get smaller and smaller in absolute
value. Note that y = cot x is m-periodic as is the tangent function, its domain

. . , COos X . .
is all x except where sin x = 0 | since cot x = —— |, and its range is all real
sin x

numbers, as is the range of the tangent function.

Note One way to remember where the vertical asymptotes are for the
cotangent function is to sketch the graph of the sine function. Wherever
sin x is 0, cot x does not exist, and instead ““goes to infinity or negative
infinity.”” This is where we draw the vertical asymptotes.
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The graph of y = cot x is shown in figure 3-14.

¥
o]
: y=cdfx
1_-
—2r N\ ~E
} —=x
_5_ _3_ = il T 3_ 2;1;5_11
2 2 2 \T 2 2 2
I
I ENTER
—si [RANGE —8,8,3.14,—5.5.1 |
Figure 3-14

The properties of the three reciprocal trigonometric functions are sum-
marized in table 3—3, where k is any integer.

Function Domain Range Period
y=cscx x#kn ly| =1 2r

¥y = secx x#%—%—kx ly| =1 2

y =cotx x # kn R b4
Table 3-3

Can you
e Sketch the graphs of the reciprocal functions?
e State the domain, range, and period of the reciprocal functions?

Exercise 3-2

1. Sketch the graphs of the three reciprocal trigonometric
functions.

1
3. Use the identity csc x = —— to show that cosecant is
sin x
an odd function.
. . 1 .
5. Use the identity cot x = po— 1o show that cotangent is
X

an odd function.

2. State the domain, range, and period for each of the
three reciprocal trigonometric functions.

; : 1 :
4. Use the identity sec x = to show that secant is an
cos X

even function.
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5-3 Linear transformations of the sine and cosine functions

In section 3-1 we developed the graphs of the sine and cosine functions. Most
scientific and technological applications of these functions require that they
be transformed in some way to fit measured or theoretical data. In this section
we examine some of the ways in which this can be done. In particular, we will
examine operations called linear transformations.

Graphically, linear transformations are operations that move a graph in
some fixed direction, or ‘‘squeeze’ or ‘‘expand’’ the graph uniformly. The
linear transformations we examine are scaling factors and translations.

Vertical scaling factors and translations

Consider the graph of y = 3 sin x, and what this equation tells us to do to
compute y for a given value of x. First, we are to compute the value of sin x,
and then multiply this value by 3. Thus, for the same value of x, the expression
3 sin x will be 3 times greater (in absolute value) than the expression sin x. If
we then compare the graph of y = 3 sin x with the graph of y = sin x, the
y-values of the first must be 3 times greater than the y-values of the second.
See figure 3-15.

! v=| [sIN] [XIT] [ENTER]
3 [xIT],

[ RANGE —6.28,6.28,1.57.—4.4.1 |

Figure 3-15

For the same reasons, the graph of y = 2 cos x is the same as that of
¥y = cos x, except that it reaches a magnitude of 2 instead of 1. See figure
3-16. Except for this vertical change in scale, the graph is the same as that of
Y = COS x.
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Y
A
y=2cos x
_z n 3n S
} 2 2, 2§ , y2,, .
—2n - T 2n 3n
il
y=cos X Ly=] [cos] [XIT] [ENTER] 2
T [ xIT],
| [RANGE —3.25,8.1.57.—3.3.1 |
Y
Figure 3-16

If the coefficient of the sine or cosine value is negative, a reflection about
the horizontal axis occurs. Consider, for example, the graph of y = —4 cos x
compared to the graph of y = cos x. To compute a y-value in y = —4 cos x,
we first compute cos x and then multiply this value by —4. Multiplying by a
negative value changes the sign of the value being multiplied. Thus, whenever
y is negative in the graph y = cos x, the y in y = —4 cos x is positive and
scaled (multiplied) by a factor of 4. Also, whenever y is positive in the graph
¥ = cos x, the yin y = —4 cos x is negative and scaled by a factor of 4. See

figure 3-17.

y

=—4 COoS Xj

=N/
B EE

Figure 3-17

VI

Ly=] [cos] [XIT] [ENTER]
[(©] 4 [cos] [XIT].
[ RANGE —3.25.8.1.57,—5.5.1 |
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In general, the graphs of y = A sin x and y = A cos x are scaled vertically
by a vertical scaling factor | A |. That is, the magnitude of the graph is changed
from one to |A | . Also, the graph is reflected about the horizontal (x) axis if
A < 0. |A| is usually called the amplitude of the function. If the sine or
cosine function describes sound waves in the air, then the amplitude corre-
sponds to the loudness of the sound; indeed, we often use the word amplitude
to describe this property of a sound.

Now consider the graph of y = sin x + 3 (not to be confused with
y = sin(x + 3)). To compute a value of y for a given xin y = sin x + 3, we
first compute the value of sin x and then add 3 to this value. This means that
for a given x, sin x + 3 is 3 units greater than sin x. Thus, if we compare the
graphs of y = sin x and y = sin x + 3, the second graph must be 3 units higher
than the first, since to compute a y in the second equation we do the same
thing as in the first (compute sin x), but then add 3. This vertical shift is shown
in figure 3-18.

y=sinx+3

AN
v}\/én 3Un:

y=sinx

[y=] [siN] [xIT] [EnTER] [SIN] [XIT] [+]3,

[ RANGE —4.10,3.14,—2.5.1 ]

Figure 3-18

In general, the graph of y = sinx + D and y = cos x + D, is the same
as the graph of y = sin x and y = cos x, respectively, but shifted up or down
| D| units. This shift is called a vertical translation.
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B Example 3-5 A4 1. Graph y = 4 cos x.

This is the same as the graph of y = cos x, except scaled vertically by a
factor of 4. Thus, the amplitude is 4. This is shown in the figure.

—5+

v=]4 [cos]| [xIT]|, [RANGE —8,12,1.57,—5.5.1 |

2. Graphy = 2 sinx — 3.

The 2 affects the amplitude of the graph, and the —3 causes a vertical
translation down, because we are subtracting values from 2 sin x. In the
first figure we draw a sine curve with amplitude 2.

y
24
1+ y=2sinx
t t + X
- _E E glt ™
2 2 2
-2+
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15

In the second figure we show the same curve translated down 3 units.
1+

B
2

-2+

y=2sinx-3

-5+

4

[Y=12 [siN] [xIT] [=]3 [,
| RANGE —4.7.1.57,—6,1,1 ]

3. Graphy = —2 cosx + 2.5.

We first graph y = —2 cos x; the amplitude is |—2| = 2, and the —2
reflects the graph about the horizontal axis. See the first figure.




Sine function

y

1 '\ /
t =X
\1_1:/ 2n
¥
Cosine function

Figure 3-19
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Now we shift this graph up 2.5 units. See the second figure.

y=-2cos x+25

X T — 2n
2

v=] [(=)] 2 [cos]| [xIT] [+]2.5 [ENTER] 25,

[RANGE —4.7.1.57.—1,5,1 |

[l

Horizontal scaling factors and translations

We have seen how to transform the graph of a sine or cosine function verti-
cally. It is just as important to be able to do this horizontally.

The argument of a function is the expression to be used as the domain
element when doing computations. In y = sin x or y = cos x, the x is the
argument of the function. In y = sin 3x, the expression 3x is the argument. In
y = cos(x — 4) the expression x — 4 is the argument. Iny = 2 sin 4x — 3, 4x
is the argument. The argument is the quantity we ‘‘take the sine or cosine of.”’

Now consider what we know about the sine and cosine functions. As the
argument goes from 0 to 27, each of these functions produces the graph shown
in figure 3-19. We call the portion of each graph shown in figure 3-19 the
basic sine cycle and the basic cosine cycle, respectively. Each of these basic
cycles is repeated over and over to get the final, complete graphs of y = sin
x and y = cos x. The important fact is that as the argument takes on values
from 0 to 2w, we get one basic cycle of the function. Note that the basic sine
cycle is 0 at its beginning, middle, and end points. The basic cosine function
starts with y = 1, ends with y = 1, and y = —1 at the midpoint of the cycle.

L
Now consider what the graph of y = sin| x — ry should look like. We
know that one basic cycle of the sine function is produced as the argument

L . ; T
goes from O to 2w. In this case, the argument is the expression x — — . We
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. I 7
examine x — I as it takes on all values from 0 to 2w to find out what values

x takes on. We can do this algebraically, using
vy

O=x——1=2%
4

This states that the argument runs (takes on values) from 0 to 2. Now we can

T
solve this statement for x by adding E to each part.

1SJCSZ'JE—I—E
4 4
££x£9_fc
4 4

. b
What we learn from this process is that for the expression x — = to take

9
on all values from 0 to 27, x must take on all values from % to In . Now we

can reason as follows:

1. We know that one basic cycle of the sine function is produced as the

. s i 5
argument, in this case x — I , varies from 0 to 2.

. T ! . T 9
2. The expression x — 7 varies from 0 to 2m as x varies from ) to -

g
3. Therefore, the expression sin(x = Z) produces one basic cycle of the

. : : T Om
sine function as x varies from T to 4

L
Thus, our basic cycle does not start at 0 and end at 27 but starts at =y and
on
ends at 2 See figure 3-20.

¥

1+ ‘
S
m_SJnix 4j
/E ’ S—U
4 4
]

Figure 3-20

X

SIPIN
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| on T
I t — itis— — — = — = 2m. Thi
f we find the distance between 4 and — m ,itis 1 2 n 7. This

is the “‘length’” of one basic cycle and is called the ‘‘period’’ of the function.
We will define the period of the sine and cosine functions shortly. Right now,
let us simply observe that a good rule for marking the x-axis is to divide it by
using increments of one half of the period. To find this amount, divide the
period by two (or multiply by one half). Thus, for convenience we marked the

2r b4
horizontal scale in increments of ? = T, starting at T . Note that the function
crosses the x-axis halfway between the beginning and end of the cycle
51
at ?) and has high and low points halfway between this point and the be-

ginning and end points of the cycle.

Now, since we know that the sine function is periodic, and we have
graphed one cycle, we repeat this cycle to obtain the complete graph. See
figure 3-21.

y=sinfx- %)
w 91|: 1(Un
[=] [=] [=14 [,

RANGE —6,14,.785 (%),—2,2,1

Figure 3-21

Although we looked at the previous function in some detail, we can state
the process we used in just a few steps. To understand these steps, remember
the underlying idea we used:

We know what the graphs of the sine and cosine functions look like as
their arguments take on values from 0 to 2. We therefore find out what
values x has to take on for the argument to take on all values from 0 to
2m. As x takes on these values, we get one basic cycle of the sine or
cosine function.

We now state the procedure to graph sine and cosine functions where the
argument is of the form Bx + C, B > 0.
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Graphing
y=AsinBx + O) + Dand
y=AcsBx+ O+ D B>0

1. Solve 0 = Bx + € = 2z for x. This gives the left and right end points
for one basic cycle.

2. Label the amplitude |A|. Use the left and right end points found in
step 1, along with the amplitude, to draw one basic cycle. Reflect
about the horizontal axis if A < 0.

3. Repeat this cycle to obtain as much of the graph as desired.

4. Apply a vertical shift D if necessary.

Note We will discuss the case where B < 0 shortly.

We need to define the term period, used above, and another term, phase
shift, before proceeding with more examples. To do this we perform step 1
for the general case. Solving 0 = Bx + C = 2x for x:

0=Bx+C=2n
—-C=Bx=2n—-C Subtract C from each expression

2r — C

— e iR

Divide each expression by B

(B : ] :
The expression 3 is called the phase shift of the sine or cosine function

being examined. The difference between the left and right end points of the
basic cycle,

2n—c_(__c_)_2n:—c+£
B B B B
_2r—-C+C
- B
— 2
B

1s called the period of the sine or cosine function. B is also the number of
complete cycles in 27 units.

It is not necessary to memorize these general expressions since the method
we are using will produce these results anyway. With these terms, however,
we can now state a precise guideline for marking off the x-axis when we graph.
Mark the axis in increments of one half of the period, starting at the phase
shift.
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B Example 3-3 B 1. Graph y = 2 cos 4x. Show three cycles. State the amplitude, period, and
phase shift.
Amplitude is 2, with no reflection about the x-axis.
Step 1: Solve 0 = 4x = 2r for x.

0

—=

2_:'1:
4

=

»|&

Divide by 4

4
==

IA

&£

2

We know that one basic cycle of the cosine function starts at 0
T T

and ends at 5 The period is > and the phase shift is 0. The

x-axis will be marked off in increments of one half of the

L T
i) Ay W
a2 4
Step 2: Draw one basic cycle with amplitude 2. See part (a) of the
figure.

Step 3: We get two more basic cycles by marking off one more period
b4
to the right of ? and one more to the left of 0. We then draw

in the basic cycles. See part (b) of the figure.

y=2cos 4x 2

u X + t t t u =X
< / _E\An [ 0=z f = \3= [
14 2 Va1l \af] 2 \4
-2+ —o+

(@) (b)

INERS
A+

[y=]2 [cos] 4 [xIT], [RANGE —2.4,.785.—3.3.1 |
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2. Graph y = cos(3x — 7). Show three cycles. State the amplitude, period,
and phase shift.

Stepl: 0=3x—n=2n

T=3x=3xn Add = to each expression
Y
? =x=<T Divide each expression by 3

We know that we get one basic cycle of the cosine function as
) T e T 2
x varies from 3 to 1. The phase shift is 30 and the period is

21 T 1 2=m
. We mark the x-axis in increments of — - —

L E_2m
3 3 2 3

T : s . s
T starting at 3 the phase shift, because this is where one

basic cycle will start.

Step 2: We mark the amplitude, 1, and draw one basic cycle. See part
(a) of the figure.

Step 3: In part (b) of the figure we show one more cycle on each “‘side’’
of the basic cycle.

LN LN R

B =cos(3x— )

(a ()

[¥=] [cos] [d3 [xIT] [-] [=] D],

RANGE —1.25,6,.524(%),—2,2,1

3. Graphy = -3 sin(3 = %) Show three cycles. State the amplitude,

period, and phase shift.

The amplitude will be [ =3 | = 3 for this function. Because —3 << 0,
there will be a reflection of the graph about the horizontal axis.

Step 1: 0£3x—%£2n

U=12%— m= tn Multiply each expression by 4
T=12x < 9xn

£‘<x£9—nor£_xs3—:rE

12 12 12 4
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T ¢ =® 8m 2=n
1 is — iodis—— —=— = —_
The phase shift is 15 and the period is m o1 3
2

e 1 o )
We mark the x-axis in increments of DY = 3 starting at

4
%. Actually, we will use the value g instead of % for

convenience.

4n
Step 2: We mark the x-axis in increments of D) and draw a sine cycle

b 9
between D) and % with amplitude 3. This is shown by the
dashed lines in part (a) of the figure. Its reflection about the

horizontal axis is shown in solid lines.

4m
Step 3: We mark off more increments of - and draw two more cycles.

sn
12

See part (b) of the figure.

Yy y
4 y=3sin(@x- %)

X X
for T _ £l on [1on \izx
HEE 1 12 12 [72 |32
‘. _2--
1 ——Ssinl‘(éx—i) i PR T
¥ 4 - 4
(a) (b)

[¥=1 [&]3 [siN] [d3 [XIT] [=] (=14 O,

RANGE ~2,5,.262(%>,—4,4,1

]

If B is negative in the argument Bx + C, we use the odd and even iden-
tities to get an equivalent expression with B positive. Recall these identities
(section 3-1):

sin(—x) = —(sin x)
cos(—x) = cos x
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B Example 3-3 C

3.

Concept

We can change the sign of the argument of the sine function and still
have an equivalent expression if we change the sign of the coefficient of
the sine function itself. We can change the sign of the argument of the
cosine function and still have an equivalent expression. We do not change
the sign of the coefficient of the cosine function,

. Rewrite y = 2 cos(—3x) so that the coefficient of x is positive.

Changing the sign of the argument, —3x, we get 3x. We do not change
the sign of the coefficient of the cosine function since it is an even
function. Thus,

y = 2 cos(—3x) becomes
y = 2 cos 3x

These are equivalent functions, so they have the same graph.

. Rewrite y = 3 sin(—2x + ) so that the coefficient of x is positive.

The sine function is an odd function, so we change the sign of both the
argument and the coefficient of the function. We change the sign of the
coefficient of the function, 3, to —3.

To change the sign of the argument, —2x + 7, we must change the
sign of both terms, giving 2x — 7. Thus,

¥ = 3 sin(—2x + m) becomes
y = —3sin(2x — m)

These two functions have the same graph.

X - sy
Rewrite y = cos(-? - 3) so that the coefficient of x is positive.

We change the sign of each term of the argument, but we do not change
the sign of the coefficient of the function itself. Thus,

y = cos(—% = 3) becomes
X
¥ cos( 2 )
Rewrite y = —sin(—%) so that the coefficient of x is positive.

X X
Change the sign of % to 3 and of the coefficient of the sine function,

—1,to 1.
. 26
y = —sm(—?) becomes

y = sin — 2
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Example 3-3 D illustrates how to use the odd/even properties to help graph a
function.

2x
B Example 3-3 D Graph y = —2 sin(-? + 1). Show three cycles, and state the amplitude,

period, and phase shift.

Since the x term of the argument is negative, we use the odd property of the
sine function to change both the sign of the argument and the sign of the
coefficient of the function. This gives us the equivalent function

2x
=9 sl —— 1
y sm(3 )

Stepl:OS%—lSZTC

0=2x—3=6rn
3=2x=6m + 3
3< 6m + 3

—=x=
2 2
., .. 6n+3 3 om
Phase shift is =, and period is 5 55 3n. We mark
the x-axis by using 2 as our starting point and using increments of

3n
DR which is one half of the period. In this case, we also compute

decimal approximations to the results to make it easier to plot our
points. Several of the computations are

p— = = z_z

2 2 2 8

LET Ry A | A T O
=== = )

2 2 2 G

3+46n 3 34+ 9n

2 g g 0

and

_§n_3_n_3—3n~_32

2 3 ST

3—3xr 3n 3 -—o6n
—— == 179
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Step 2: One basic cycle is shown in part (a) of the figure.
Step 3: Two more cycles are shown in part (b) of the figure.

Yy y
4

FAYS o o wFAWNA)

B Exomple 3-3 F

/246V12 _8_64{2‘/2& WmmW@

=—25|n———1) —2sm*——1)
v

(a) (b)

[x=] [ 2 [sw] [ [&]2 [xIT] =13 =1 [

[RANGE —8,20,2,—3.3,1 |

O

We can observe at this point that the method we have been using has given
us both horizontal translations and scaling factors. Phase shift is a horizontal

2n
translation, and if we divide the pcrmd , by 27 (the period of the basic

. : : 1 :
sine or cosine function), we get 50 horizontal scale factor. Normally we do

not actually compute the horizontal scale factor.
There are times when we will want to find the equation of a function,
given some of its properties.

1. Find the equation of the cosine function in the figure.

f—be S

We know the equation is of the form

y=Acos(Bx+ C)+ D
It is shifted up 2 units, so D is +2. The distance between the high and
low points is 6. The amplitude is one half this value, or 3, so |A| = 3.

Since a basic cycle starts at 0 and ends at 2%, we know the argument is
simply x. Thus, the equationis y = 3 cos x + 2.
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2. Find an equation of the sine function in the figure.

\ ?:/\ /\x
I ARV

‘We know that the equation is of the form
y=AsinBx + C) + D

Since the distance between the high and low points of the graph is 4, we
know that A is 2. Also, there is no vertical shift, so D is 0.
We need to find the argument of the function. Note that a cycle of

T gk
this function starts at I and ends at — . We can work backward from

this information.
We know that we get one basic cycle as x takes on values between
. e 1 n
these two points; that is, T =x= e
Our objective is to arrange the values so that the left value is 0 and
the right value is 2m. (Remember, we are working back to the argument
of the function.)

First, we want the left value to be 0.
nT=<=4x=17n Multiply by 4
O0=4x—m=6r Subtractn

Now we want the right point to be 2n. Dividing by 3 will do this.

0 dx—m 61
= = —

3 3 3
4x ©
0=—-—=2xn
3 3
. dx 0w i
We thus find the argument 15? —q Thus, our final answer is
2 g 4x b |
=2 simle—=—"— — | =
¥ 33

In some applications we want to express values of x in degrees as opposed to
radians. Our procedures are the same, except that our limits for the basic cycles
are 0° and 360° instead of 0 and 2x.
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W Example 3-3 F

1.

An AC (alternating current) signal with peak-to-peak voltage of 170
volts and phase shift of 120°, riding on a DC level of 100 volts, could be
described by the function

y = 85 sin(x + 120°) + 100

where y represents volts and x is in degrees. Graph one cycle of this
function.

Amplitude is 85, and the 100 represents a vertical shift in the positive
direction. To find period and phase shift we proceed as follows:
Step 1: 0° = x + 120° = 360°
—120° = x = 240°
Phase shift is —120° and period is 240° — (—120°) = 360°. We
mark the x-axis in increments of half the period, 180°, starting at

—120°.
Step 2: We see that a basic cycle begins at —120° and ends at 240°. See
the figure. o
\ﬁ 85 sin(x + 120°)
. ; J ; =X
-120° -60° 0O° 6 120°  180°  4o°
-85+

(a)

Step 3: We also label the amplitude, 85. We then shift the graph
vertically by 100 units. See the figure.

¥y
+185
y=285sin(x+ 120°) + 100
100
151
; - t .‘ t - X
—-120° -60° 0° 60° 120° 180° 240°

(b)

Put the calculator in DEGREE mode (use the | MODE | key).
[Y=] 85 [sIN] [xIT] 120 [+] 100 [ENTER] 100,

[ RANGE —130,250,60,—10,190,20 |
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2. An electronic signal is to be modeled with the sine function. The peak-
to-peak voltage is 340 volts (amplitude is 170 volts). There is a phase
shift of 30°, and the period is 120°. The signal is at 200 volts above
ground potential. (There is a vertical shift of 200.) Find the sine function
that will model this signal.

We know that the function is of the form
y=Asin(Bx +C)+ D

and that A = 170 and D = 200. To find B and C we can proceed ‘‘back-
ward.”” We know that we get one basic cycle as x varies between 30°, the
phase shift, and 30° + 120°, or phase shift + period.

30° = x <307+ 120°

Now adjust this so that phase shift is 0° and period is 360°.
30° = x=1150°

Subtract 30° from each expression to get 0° phase shift.

0° =x — 30°%= 120°
Multiply each term by 3, since this will make the end point 360°.

0° = 3x — 90° = 360°
Thus, the argument of the function is 3x — 90°, and the function we

want is
¥y = 170 sin(3x — 90°) + 200 E
Mastery points
Can you

e Graph an equation of the form

y=AsinBx+ C + Dor
y=Acos(Bx + C) + D?
* Find a sine or cosine equation that is appropriate, given values of A and
D and the initial and terminal points of a basic cycle?

Exercise 3-3

Graph three cycles of the following functions.

1. y = 5sinx 2. y=5cosx 3.y=2cosx 4. y=tsinx
5.y=—4cosx 6. y = —2sinx 7.y = —Fsinx 8. y=—3sinx
9. y=2sinx+1 10. y=3cosx — 2 y=—%cosx—2 12. y= —%sinx + 3
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Graph three cycles of the following functions. State the amplitude, period, and phase shift of each.

13, 3= P b 14. y = 3 cos % i cos(x ~ %) 16 5 = Salf L)

17. y = £ 5in(3x + @) 18. y = % cos 5x 19. y = —cos 3x 20. y = —sinx

Y= *cos(Zx =+ %) 22, y = —sin(3x — %) 23. y = sin(3x + 2m) 24. y = cos(2x — 3m)

25. y = cos 27x 26. y = sin mx 27. y=2sin3x + 2 28. y=3cos2x —3

29. y= —3cosx + 1 30. y=—sindx + 1 3l. y=2sin(Zx—7m) + 1 32. y=3sin(3x+m) — 3
3B.y=sinmx + 1 34.y=2cos%—2

Use the odd/even properties of the sine and cosine functions to rewrite each of the following functions as an equivalent
function in which the coefficient of x is positive.

35. y = sin(—2x) 36. y = cos(—x) 37. y = —cos(—3x) 38. y = —sin(—5x)
39. y = sin(—x — 3) 40. y = cos(—2x + 4) 41. y = sin(—x) — 3 42, y = cos(—2x) + 4

y= =3 cos(—2x+%) 44, y:QSin(_i_ n

Use the odd/even properties of the sine and cosine functions to rewrite each of the following functions as an equivalent
function in which the coefficient of x is positive. Then graph three cycles of the function.

45, y = sin(—x) 46. v = cos(—2x) 47. y = cos(—x - %) 48. y = 2 sin(—2x + )
49, y = —sin(—2mx + m) 50. y = —cos(—mx) y = sin(—mx + 1) 52. y = 2 cos(—3mx — 2)

Assume that each of the following graphs is the graph of a sine function of the form y = A sin(Bx + C) + D. Find values of
A, B, C, and D that would produce each graph.

53. 54. y
A
3
iR /
=% /{1 2
—5-
o P
A
54+
2-—
iy /
—— A A—+—f—~x 2
7 B Uﬁ 4 \/
—o §4
" > x
0 0 3n 3n
2
57. Do problem 53, assuming that the graph is a cosine func- 58. Do problem 54, assuming that the graph is a cosine func-

tion of the form y = A cos(Bx + C) + D. tion of the form y = A cos(Bx + C) + D.
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59. Do problem 535, assuming that the graph is a cosine func-

tion of the form y = A cos(Bx + C) + D.

Linear Transformations of the Tangent, Cotangent, Secant, and Cosecant Functions (Optional)

60.

119

Do problem 56, assuming that the graph is a cosine func-
tion of the form y = A cos(Bx + C) + D.

Graph one cycle of each of the following functions. Mark the horizontal axis in degrees.

61. y = 3 sin(x + 60°)

65. An electronic signal modeled with the sine function has

66.

a peak-to-peak voltage of 120 volts (amplitude is 60
volts), phase shift of 90°, and period of 54°. Find an
equation of the sine function that will model this signal.

An ocean wave is being modeled with the sine function.
Its amplitude is 6 feet and its phase shift (with respect
to another wave) is —180°. If the period is 720°, find an
equation of the sine function that will model this wave.

One of the components of a function that could describe

the earth’s ice ages for the last 500,000 years is de-
scribed by a sine function with amplitude 0.5, period
360°
43
an equation for this component.

, 0° phase shift, and vertical translation 23.5. Find

62. y = —50 cos(x — 120°)

63.
68.

69.

70

71.

y = 10 sin(2x — 180°)

The activity of sunspots seems to follow an 1l-year
cycle. Assuming that this activity can be roughly mod-
eled with a sine wave, construct a sine function with

y = 25 cos 3x

o

360
period ETH: amplitude 1, phase shift 90°, and vertical
translation 2.
Graph the following functions on the same set of axes:

. . X
y=sinx;y=sm3x;andy=sm?.

Graph the following functions on the same set of axes:
- : T : b

Yy =sixy = sm(x-i— ?), and y = sin x + N

Graph the following functions on the same set of axes:

ki . ;
y = cos o and y = sin x. Draw a conclusion from

’ 1
the graph. [Hint: Rewrite as y = cos(—x e ?):|

34 Linear transformations of the tangent, cotangent,
secant, and cosecant functions (optional)

The tangent and cotangent functions

The tangent and cotangent functions are w-periodic, so the basic cycle for each
is 7 units long instead of the 27 units for the sine and cosine functions. Figure
3-22 shows a basic cycle for the tangent and cotangent functions.

4 y=cotx

Figure 3-22

|
RN
t
LR
IME]
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. T T .
Note that the basic tangent cycle starts at 5 and ends at i The basic

cotangent cycle starts at 0 and ends at . Also note that the functions are +1
or —1 at the points that are 4+ and 2 of the distance between the cycle end
points. We will call these the one-quarter and three-quarter points.

Graphing functions of the form y = A tan(Bx + C) and y = A cot(Bx +
C) is done in a manner very similar to that for the sine and cosine functions.
Although the concept of amplitude does not make sense for these functions,
the vertical scaling factor A does affect the graph. In fact, these functions take
on values of +A at the one-quarter and three-quarter points (unless there is a
vertical shift) instead of £1.

To graph functions of the form
¥ = Atan(Bx + ¢) and
y = A cotiBx + Q)

1. For the tangent function, solve

I : . b1
~— LB L=
2 2

for x.
For the cotangent function, solve

g=Bx+C<x

for x.

2. Step 1 gives the left and right end points for one basic cycle. Draw this
cycle. Label the “one-quarter’” and “three-quarter’” points with y = A
and y = —A, as appropriate. If A < 0, this cycle is reflected about the
horizontal axis.

3. Repeat this cycle to obtain as much of the graph as desired.

We will not concern ourselves with defining the period and phase shift
for the tangent and cotangent functions. A guideline for marking off the
x-axis is to use increments of one fourth of the length of one basic cycle to
locate the one-quarter and three-quarter points.

B Example 3-4 A 1. Graph y = % tan 3x. Show three cycles.

Step 1: Solve —% <3x < % for x.

—% g i;- . Divide by 3 (or multiply by +). The length of

6 6 3 12
increments on the x-axis.

¥ T n 1
one basic cycle is — — (——) =—.We useZ . l;- L
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Step 2: We now know that we get one basic tangent cycle starting at
s . T :
S and ending at - We draw vertical asymptotes at these

points and sketch one cycle of the tangent function. With the
vertical scaling factor of + we label the one-quarter and three-
quarter points as shown in part (a) of the figure.

Step 3: Two more cycles are shown in part (b) of the figure.

Y Y
A 'y
5"- -
L
y=i-tan Bx 4T Y= danis
2 sl
14 24
1
_E 1y 1+
6 2|/
t t X + X
IR A L _E L _ x eis x
2 12 € 2 3 3 2
A_.“I o e

(@) (b)

[vy=] .5 [TaN] 3 [XIT],

RANGE —2,2,.524(%),—4,4,1

2. Graph y = cot(Zx = %) Show three cycles.

Step 1: We put the argument between 0 and © and solve for x:

T
0<2x—?<:'t

0= 6x — < 3n Multiply by 3

T < bx < 4m Add

b4 4m —_—

?<x<? Divide by 6

or

6 73

’ L2 W T . .

A basic cycle is T R =5 units long. We mark the x-axis

; e T . T
by adding or subtracting increments of F units from "
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| T 2n . .
Step 2: We have one basic cycle between 3 and 5 ; the basic graph is

shown in part (a) of the figure.
Step 3: The finished graph, including three cycles, is shown in part (b)

of the figure.
y y:COT(ZX*E) y y:cot(zx—i)
3 3
1 it
+ X X
& 7x 5m\3n2 & 2\ & 5\ Z& 1M\ -7
6 2412%4 3 12 12 12\
=HL 43

(a) (b)

[x=1 [d [Tan] [d2 XIT] [=] [=] [Z]3 O O] =4,

[ RANGE —1.5,4,0.524.—3.3,1 |

O

If the coefficient of x is negative, we use the fact that the tangent and
cotangent functions are odd to rewrite the function with this coefficient

positive.
W Example 34 5 Graph y = —cot(—nx). Show three cycles.
Since the coefficient of x, —m, is negative, we rewrite this function as
¥y = cot Tx.
Stepl: 0<mx<m
O<x=<1 Divide by ©

A basic cycle is 1 unit long, and we use + for an increment on the
X-axis.

Step 2: One basic cycle is shown in part (a) of the figure.
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Step 3: Two more cycles are shown in part (b) of the figure.

y =—cot{—nx) 3{ ¥y =—cot(—nx)

[N e
o=
o=
o=

-1 1+

(a) (b)

=1 [&] [TaN] [(&] [XIT] 1,

[RANGE —1.222.5.—3.3.1 |

=

The secant and cosecant functions

To graph variations of the secant and cosecant functions, we use the fact that
they are reciprocals of the cosine and sine functions, respectively. Figure
3-11 shows the graph of the cosecant function and figure 3-12 shows the
graph of the secant function. Observe that the ranges are |y = 1, and that
they have vertical asymptotes where their reciprocal function, cosine or sine,
is zero.

Consider the graph of a function of the form

y = A csc(Bx + C)

We know it is a modification of the graph shown in figure 3—11. Since it is
equivalent to the graph of

= Aams)
sin(Bx + O)

we can construct the graph of y = sin(Bx + C) and, graphically, form the
reciprocal to get the graph we want.
For example, consider the graph of y = 3 csc 2x. This will have the same
1
graph asy = 3 ol Thus, we can first graph y = sin 2x and graphically
sin
form the reciprocal, as we did in section 3-3.
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The graph of y = sin 2x is shown in figure 3-23. In figure 3-24 we show
1
the graph of y = Py We do this by drawing vertical asymptotes wherever
1

sin 2x is zero, and letting the reciprocal graph go to infinity as sin 2x gets
closer and closer to zero.

y
y=sin2x
X TN N 7
A ey A f o
5 4‘.’ % < F, '.\ é\
LA "-£';-- AT L.
v
Figure 3-23
iy F X ,-"”
., X
é on

Figure 3-24

1
In figure 3-25 we show the graph of y = 3(@) Each point is three

times higher or lower than each corresponding point on the graph in figure
3-25. This is also the graph we wanted originally.
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Y y=2csc(8x—m)

[x=]3 [d [si]2 [xIT] D] [,

[ RANGE —4.7.1.57,—5,5.1 |

Figure 3-25

Observe that we could have originally graphed y = 3 sin 2x and used this
as our guide, since in the graph of y = 3 sin 2x, |y| = 3, while in the graph
ofy=3csc2x, |y| =3.

Based on this example, and what we have done in the preceding sections
of this chapter, we can state the following.

Procedure for graphing functions of the form
¥ = AcscBx + ) and
¥ = AsecBx + Q)

1. Graph y = AsinBx + C) or y = A cos(Bx + C), whichever is the
appropriate reciprocal function.

2. Graphically form the reciprocal by drawing vertical asymptotes
wherever the graph in step 1 is 0, and draw the graph getting larger
and larger in absolute value wherever the reciprocal function
approaches 0.
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W Example 34 C

Properties of the Trigonometric Functions

Graph ¥y = 2 ¢sc(3x — m).
Step 1: Graph y = 2 sin(3x — m).

0=3x-—-m=<2n
= 3x =31

T

—=x=0

3

Four cycles are shown in the first figure. We draw this graph using
dashed lines, because it is not part of the graph we have been asked

to show.
¥
o~ ,-"2\" ™ ™
At a e
g 2R LI 3 Im
3 h B3 3B
v sl Y v, X
y=2sin(3x-r)

Step 2: We draw vertical asymptotes wherever the graph of y =
2 sin(3x — m) is O; that is, where it crosses the x-axis. We then
form the reciprocal function, as shown in the next figure.

Yy 2 cse(3x—m)

v

[y=12 [ [siN] [d3 [xIT] [=] [=] O] DI G

RANGE —3.2,6,1.05(%),—4,4,1

|

If the coefficient of x is negative, we use the odd/even properties of the
sine and cosine functions as appropriate.
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2
W Example 3-4 D Graph y = 2 csc(—T’“).
: 2rx . . .
Step 1: Graphy = 2 sin =T Since the argument is negative, we use the
: ; : . . 2mx
odd property of the sine function to rewrite this as y = —2 sin 5 -
0 =— =
0=2nrx =<6 Multiply by 3
0=x=3 Divide by 2x

2
The graph of y = —2 sin ?'mx is shown in the figure, part (a).

Step 2: The reciprocal function is shown in part (b) of the figure.

VY /\ /\ Y
ANANAAA

y=-2sin QLX
(a)
y
y=2 csof- 22%)
| ey ¢$ ; s
.; ... .
—& L 3’ _\ &,
i k L 4 e PRX
B ' =-Zsin —=
y=-=2sin 3
b)

[x=]2 [d [siv] [ [=)]2 [x] [=13 DJ OJ =0

[RANGE —4.5.6.5,1.5,—4.4.1 |
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Mastery éo"i nts

Can you
e Graph functions of the form

y = Atan(Bx + C), and
y = A cot(Bx + C)?

e Graph functions of the form

y = A sec(Bx + C) and
y=AccBx + 07

Exercise 3-4

Graph three cycles of the following functions.

1. y=5tanx 2. y=—4cotx 3. y=tan 4x 4.y=c0t—;£-

T T
5.y= cot(x—;) 6. y = 3 tan(2x + m) [7]y= —cot(2x+%) 8. y= —tau(?:x—?)
9. y = cot 2mx 10. y = tan mx

Use the odd/even properties of the tangent and cotangent functions to rewrite each of the following functions as an
equivalent function in which the coefficient of x is positive. Then graph three cycles of the function.

11. y = tan(—2x) 12. y = cot(—x) 13. y = —cot(—mx)
14. y = —tan(—2mx) y = tan(—x — m) 16. y = cot(—2x + 4m)
Graph three cycles of the following functions.
17. y'=% ése x 18. y = L secx 19. y = —4cscx 20. y = 2 sec 4x
x T
21. y =3 csc > 22, y= csc(x - ?> 23. y = 3 sec(2x + m) ¥y = % sec(3x + m)
25. y = cse(2x — 3m) 26. y = csc 2mx 27. y = sec mx

Use the odd/even properties of the sine and cosine functions to graph each of the following functions.

y = sec(—2x) 29. y = csc(—x) 30. y=3 csc(—2x H %) 3. y=2 sec(—% - TE)
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Chapter 3 summary
» Basic graphs

» Graph of the sine and cosine functions.

¥
4
' 1 cycle ok 1 cycle | 1 cycle |
K
X
~2n -5 -7 i 1 n 2 3n 4n
-+ y=sinx
¥
A
1 cycle 1 cycle | 1 cycle |
_5r _3n L ki 3n 5 n
; :N:}: /\2. ;;ZA:\? — 2/:‘)(
S SNES A [ TNESs e NS
¥ =c08 X
* Graph of the tangent function. 2. The amplitude is |A|.
 This is the height of the basic graph above and
J( below the x-axis.
! coyels e The graph is shifted about the horizontal axis if
£ y:ta ¥ A < 0
T Draw one basic cycle with the information from
e steps 1 and 2.
L AR R " 3. Repeat the cycle obtained from steps 1 to 3 to
5 ‘ a3 'T—' + 1'“' 3 '3;1 ‘ obtain more of the graph.
3 "B "3BT BTG 4. Shift the graph vertically D units.
T ¥ Yy
+

= To graph sine and cosine functions of the form

y = Asin(Bx + C) + D and
y =Acos(Bx + C) + D, where B> 0
1. Solve 0 = Bx + C = 2m s0 x is the middle
member.
= This gives the left and right end points for one
basic cycle.
* The left end point is the phase shift.
= The difference between the end points is the
period.

Basic sine cycle Basic cosine cycle

« If the coefficient of x, B, is negative in the
argument Bx + C we first use the odd and even
properties to get an equivalent expression with B
positive.
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* To graph functions of the form

y = Atan(Bx + €) and
v=AcotBx + C),B>0

’ i
1. For the tangent function, solve Ty <Bx+C

] >
< 5 for x; for the cotangent function solve

0 < Bx + C < =« for x. This gives the left and right
end points for one basic cycle. The difference
between the end points is the period. The left end
point is the phase shift.

. Use the values from step 1 to draw one basic cycle.
Label the one-quarter and three-quarter points with
y = A and y = —A as appropriate. Repeat this
cycle to obtain as much of the graph as desired.

Basic tangent cycle Basic cotangent cycle

I
\

y=tan x|

2+
i

ENEIRE
P+

3. Create the cosecant or secant graph by starting at the
highest and lowest points of the sine or cosine graph
and sketching values that increase in absolute value
from that point as x approaches the vertical asymp-
totes. Note that these functions are not defined at the

asymptotes.
¥ y=CSC X
y=sinx | % P I Pt o
’ h L * L LY ’ * ’
i J 2 , J 4 / 5 ;
1 'l 1 Y il A 1 b 1 i 1 b il ¢ L L 1
: 2 WD AL R i TR B 5 7 x
S/ Ao = 7Y, s i
)% y=secx
l" “\ l” “\ l' ﬁ‘i fl' “\ I" “\
— —— — S
,géﬂ: 7, A.én N EAY ’.érc 5. dm Gh,
G _/n U K A St ok Jgm Om
3/4!"""_ 2 21T 2 X2 2~ 2 2
y=0c0s X L

* To graphy = A cse(Bx + C) ory = A sec(Bx + C):
1. Graph the appropriate reciprocal function,
y=Asin(Bx + C)ory = A cos(Bx + O)
2. Sketch in vertical asymptotes wherever the sine or
cosine function is zero.
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* Summary of the properties of the cosecant, secant, and co-
tangent functions (k an integer).

Function Domain Range Period Function Domain Range Period
y =sinx R -l=y=1 2=x ViCse & x ¥ km |y =1 2
= R -l=y=1 2
'y 1'c =3 . ¥y =secx x#%Jrkir ly| =1 21
=t #*— + R
A = 2 AL = y=cotx x # kn R b
sin(—x) = —sin x (odd) cse(—x) = —cscx  (odd)
cos(—x) = cos x (even) sec(—x) = sec x (even)
tan(—x) = —tan x (odd) cot(—x) = —cotx (odd)
Chapter 3 review
[3-1] Use the odd/even properties of the sine and cosine functions

1. Sketch the graph of the sine function; state the domain,
range, and period of the sine function.

2. Using the graph of y = cos x as a guide, describe all
values of x for which cos x is 1.

Use the appropriate property, even or odd, to calculate the

exact function value.

3. cos(gi) 4. tan(—4—n)
6 3
5

5. sin(——g) 6. sec(—%)

Test the function for the even/odd property.

2 -1 .
7. fix) = 8. fix) = xsinx
9. fix) =tan x - cos x
[3-2]

10. Sketch the graph of the cosecant function.
11. State the domain and range of the cotangent function.

12. Show that fix) = is an odd function.

sec x
13. Show that the function f(x) = sec x - sin?x + x* is an
even function.

[3-3] Graph three cycles of the following functions. State
the amplitude, period, and phase shift of each.
15. y = —%cosx
17. y = 2 sin 3x
X . T

19. y =2 sin| — + —

4 m(z 3)
21. y=3cos2x — 3

14. y =2 sinx
16. y =3 sinx — 2

18. vy = cos(x + —;-)

20. y = cos 3xn

to rewrite each of the following functions as an equivalent
function in which the coefficient of x is positive. Then graph
three cycles of the function.

2.y = cos(—Zx + %) 23. y = 3 sin(—x + @)

24. Graph three cycles of the function
¥y = 2 sin(3x + 60°). Mark the horizontal
axis in degrees.

25. Assume that the following graph is of a cosine
function of the form y = A cos(Bx + C) + D. Find the
values of A, B, C, and D and rewrite the function using
these values.

M,
=
’/

L~
|}
N

B~ :J\\ r
|
)
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26. Most people have heard about the theory of

Properties of the Trigonometric Functions

[3-4] Graph three cycles of the following functions.

biorhythms. This theory maintains that at birth three 27. y = tan 4x 28. y = tan(3x + 7
cycles are started—physical, emotional, and T
intellectual. The physical cycle has a period of 23 29. y =2 cot| x — T 30. y = —2sec3x
(days). Assuming an amplitude of 1, a phase shift of 2
—10 (days), and no vertical translation, create an 31. y =csc Y 32. y = sec(Zx — W)
equa?ion that f:lescribes the physical cycle in terms of 33. y = csc 3mx
the sine function.

Chapter 3 test

1. Using the graph of y = sin x as a guide, describe all 10. Assume that the graph is of the form

values of x for which sin x is —1.
2. Use the appropriate property, even or odd, to calculate

5w
the exact function value of tan -3 /)

3. Test the function fix) = x + sin x for the even/odd
property.
Graph three cycles of the following functions. State the am-
plitude, period, and phase shift of each.
4, y=2sinx+ 2

6. y= 3sin(£+£)

5. y=3cos2x

3 2

Graph three cycles of the following functions.

7.y =3 tan nx
9. y = —csc dnx

8. y =sec(Bx— 1)

11.
12.

13.

14.

y = A sin(Bx + C) + D. Find values of A, B,
C, and D that would produce the graph and write
the corresponding equation.

¥
2
1
. ; ; e
7n & ' '
3 il 3
-2
Sketch the graph of the secant function.

Show that the function f{x) = sec x - sin x + x% is an
odd function.

In the theory of biorhythms, the emotional cycle has a
period of 28 (days). Assuming an amplitude of 1, a
phase shift of 5 (days), and no vertical translation,
create an equation that describes the emotional cycle in
terms of the sine function.

An electronic signal is to be modeled with the sine
function. Amplitude is 25 volts, phase shift is —20°,
period is 150°, and there is a vertical shift of 10 volts.
Find a sine function that will model this signal.
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Trigonometric

I The Inverse
Functions

In previous chapters we have used what we called the inverse trigonometric
functions. For example, we stated that if sin & = 0.3, then one value of 0 is
0 = sin~! 0.3. In this chapter we examine these inverse trigonometric functions
in complete detail.

We use these functions both to solve trigonometric equations like that in
the last paragraph, to solve triangles, and to describe angles in terms of given
information. These functions are also useful in advanced mathematics (cal-
culus in particular) where they provide a means to simplify certain algebraic
expressions.

We begin the chapter by examining the general topic of inverse functions,
and then apply this topic to trigonometry.

4-7 The inverse of a function

In section 2—1 we introduced the idea of the inverse of a function. We stated
that

o A function is a set of ordered pairs in which no first element is
repeated.

o A one-to-one function is a function in which no second element is
repeated.

« Reversing the elements of the ordered pairs of a function produces a
function if, and only if, the function is one to one.

For example,
H ={(1.5), (2,7), (—3,—5)}
is a one-to-one function, and its inverse function is

H1'={(5.1),(7.2),(-5-5)}

133
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Domain of 7 Domain of g

g

Domain of 7 Domain of g

Figure 4-1

Showing that two given functions
are inverses

=3
Now consider the two functions f{x) = 2x + 3 and g(x) = xT By com-

putation we could determine the following facts.

fill)y=5and g(5) =1
fi2) =T7and g(7) =2
f(=5)=—T7and g(-7) = -5
(Compare to H and H~! on page 133 and figure 4-1.)
Whatever value z we try, f sends z to some value z', and g sends 7z’ back
to z. In fact we can prove this; let z represent any real number. Then,

fz) = 2z + 3 and

ity ot B

> Z

Also

-3
g(2) = iz—and

(5459 -

When two functions f and g act this way we say they are inverse functions.
This is because, whenever an ordered pair (a,b) is in f, the ordered pair formed
by reversing its elements (b,a) is in g. The functions H and H~!, and f and g,
above, are examples of this.

The notation for the inverse of a function is the superscript —1, so using

—3
this notation, if f(x) = 2x + 3 (as above) we can say that f1(x) = xT . Note

the superscript — 1, when applied to the name of a function, is not an exponent;
it does not indicate division, as it does if applied as an exponent of a real
valued expression.

1
f1(x) does not mean —

)
To show that two functions Fand g are inverses
of each other
Show that

[11 M #x) =y, then gly) = x, and
[2] if g} = y, then ) = x.

14, g

Note In practice "'y represents an expression in x.
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Show that f and g are the inverse functions of each other.

.A=1x—1;g(x) =3x + 3
[1] Assume f(x) = y, then y = +x — 1. Replace fx) by y
Show that g(v) = x:

g) =3y +3 Replace x by yin g(x) = 3x + 3
=3Gx—1)+3 Replace y by +x — 1
=% — 3 +3
=x

[2] Assume g(x) = y, theny = 3x + 3.
Show that f(y) = x:

= "%'y =1 Replace x by y in f(X):%Xf'l
= %(3-’5 5= Replace y by 3x + 3
=x+ 1 =1
=x

Thus, we have shown conditions [1] and [2] above, so f and g are inverse
functions.

2. fix) = V3 8(x) = 2%, x =0

[1] ¥ = \/J_C Let y represent fx)
g = ¥ Determine g(y)
= (Vx?
=X (Jap=a
[2] y=xhx=0 Let y represent g(x)
) = \6 Determine Ay)
— ‘/.x_z
=% JE=aifa=0

Thus, we have shown conditions [1] and [2], so fand g are inverse
functions.

=

Graphical analysis of relations for the
function and one-to-one properties

The graph of a relation can be used to determine whether that relation is a
function, and whether or not a function is one to one. This is done by the
vertical line test and the horizontal line test.

Vertical line test for a function
If no vertical line crosses the graph of a relation in more than one place,
the relation is a function.
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B Example 4-7 B

The vertical line test works for the following reason. Assume a vertical line
crosses a graph at more than one point. Since these two points are in a vertical
line their first components (the x-values) are equal. Therefore, the function
must have two points in which the first element repeats, and it is therefore not
a function.

Horizontal line test for a one-to-one function
If no horizontal line crosses the graph of a function in more than one
place, the function is one to one.

The horizontal line test works for reasons similar to those for the vertical line
test. If a horizontal line crosses a function at two (or more) points, then these
are different domain elements (first components) with the same range elements
(second component). Therefore the function is not one to one.

Tell which relations are functions, and which functions are one to one.

y ¥y y

N A

—5

a_
_\5 5

\

@)

-5

(b)

Figure 4-2

1. Relation (a) is not a function since there are clearly many vertical lines
that would intersect the graph in at least two places.

2. Relation (b) is a function since no vertical line will intersect the graph in
more than one place. It is also one to one since no horizontal line will
intersect the graph in more than one place.

3. Relation (c) is a function by the vertical line test, but not a one-to-one
function. |

The graph of a function’s inverse

The fact that the ordered pairs reverse in a function’s inverse function means
that the graph of f~! is a reflection of the graph of f about the line y = x. By
way of example, observe the graphs of the functions in example 4-1 A. These
are shown in figure 4-2. To draw a graph that is symmetric about the line
¥y = x to a given graph, we draw lines perpendicular to the line y = x, as
shown, and plot points at equal distances from this line, but on the other side
of this line. Since the ordered pairs of f all reverse in f-! the domain of f is
the range of {1, and the range of f is the domain of f~'.
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W Example 4-7 C Given the graph of the one-to-one function f, sketch the graph of its inverse
function f~1.

To graph f~! we construct the line y = x, which is a straight line passing
through the origin with a slope of 1. We then construct various straight lines
perpendicular to this line, starting on the graph of the function, and extending
an equal distance to the other side of the line y = x.

=

rl
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Mastery points

Can you

e Demonstrate that two functions are inverses of each other?
* Given a graph that represents a one-to-one function, graph its inverse
function?

Exercise 4-7
Show that the following functions f and g are inverses of each other. Assume the domains as indicated are correct.
1.ﬂx)=2x—7;g(x)=%x+3% 2.ﬂx)=—%x+-§-;g(x)=*3x+%
3. f) =gx+ 5800 =3x— 8 4 ) =z — 1 glgy= x4 1
5. fr) = 2x — 5 g(x) = L(x + 5) 6.f(x)=§-—3;g(x)=5(x+ 3)

2 2 3 3
s =—; = 4 ———— =i o)

Sx) T 380 AT 8. fx) T+ 8® .
3 3 3 3
g, =7 — —- = L. =5+ 2 = i
=17 x,g(x) - 10. fix) =5 x_l,g(x) o 1

x el | Sx+ 1
ll-ﬂx)—x—_—l,‘g(x)—x_1 12-ﬂx)—:.g(x)—x_l
B.y=x2—-9x=0;gx)=-/x+9 4. )= V4 -2 g =2—- L2 x=0
15. 709 = S52h/= v& 16. flx) = x* — 3; g(x) = Yx + 3
17. ) =22 -2+ 3, x=1;8(0) = J/x— 2+ 1 18. )= Vx+9 -2 g)=x2+ 4x—5,x= -2

2x 3x X3 1l
19-ﬁx)—m,g(x)—m Zﬂ-ﬁx)—m,g(x)—Z—:
Tell which relation is a function, and which functions are one to one.
21. ¥ 22, y

A
51 5

% + 7 + X + + X
W 5 -5 /5

-5+ 5+




23. 7 e y
51 5t
; ™ : X
-5 =5 \
-51 5
/’
Sketch the graph of /!, given the graph of the one-to-one function f.
25. 26. v 27. v
| \ i L
AL me
\
\
X
\
: X
Y
\ 4
\
¥ :
28. i 29. y 30. y
i k:
1/ -
/s
/
X
+ —
1 0y
%
. /
[
\
// x
1
-------- \
Yo

Section 4-1

The Inverse of a Function
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F7™ When a function is described by an algebraic expression
<=4 involving polynomials and radicals, the inverse of the
function can often be found by the following procedure,

33. The area of a rectangle with width 4 and length x + 4,
x = 0,18 A(x) = 4(x + 4). Find the inverse of 4, which
would give the value of x for a given area.

which is described in terms of the variables x and y, but could

be in terms of any two variables:

1. Replace the f(x) symbol by y.

2. Exchange the two variables; replace x by v and v bv x.
3. Solve for y. The resulting expression in x describes the

A falling object with no initial vertical velocity falls a
distance d(x) = 1672 feet in ¢ seconds, ¢+ > 0. Find the
inverse of this function, which would cive the time nec-

essary to rail’a aistance a. °

inverse function. 35. In an electronic circuit in which two resistances are in
parallel, and the value of the resistances are 20 ohms and

Example 20x
x4 1 x ohms, the total resistance is R(x) = . Find the

20+ x
inverse of this function, which would give the value of
x required for a total resistance R.

Find the inverse of the function flx) = ——.
X

1. Replace the f(x) symbol by y:

¥ = - : 1 36. C(r) = %(t — 32) gives the centigrade temperature for a
B reh nes iy wanabes given temp_erature‘.t in degrccs Fahrenheit. Find the in-
3 &1 verse of this function, which would find the Fahrenheit
x=— temperature for a given temperature in degrees
Y centigrade.
3. Solve for y:
xy=y+1
xy—y=1 All y terms on one side
yx—1) =1
1
YTy - 1
This is f~1:
F) = —— o
2= 1

4-2 The inverse sine function

We have already encountered the inverse sine, cosine, and tangent functions
in sections 1-3, 1-4, 2-3, 2-4, and 2-6. In these sections we solved for 0
in equations such as sin 0 = 0.5. We know that one solution is § = 30°, or

6 = 7= (radians). Using the sine function in reverse in this way is really using

the inverse sine function, which we will study in this section.

In section 2-1 we said that the inverse of a function is formed by inter-
changing the first and second components of all of the ordered pairs in the
function and that a function has an inverse if and only if it is a one-to-one
function. Since the sine function, like any other function, is a set of ordered
pairs, we may ask if it has an inverse. Naturally, it does only if it is one to
one. The sine function is, however, not one to one. We can see this by looking
at its graph in figure 4-3. Note the horizontal line y = + . This line intersects

T 3t 13m 17;
with (crosses) the graph at many points: 5°'6°6° 6" etc. The points
of intersection show all of the places where the sine function is + . Since there
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N
-« . : X
_In\-m . 5n 2nf 13n  17n\3n
6 6 6 6 6

il

Figure 4-3

is more than one such point, there is more than one ordered pair in the sine
function that has 1 as its second element. Some of these ordered pairs are

(% ,%), (EGE %), (13?:% ,%), etc. Thus, there is a repetition in the second
element of these ordered pairs, and the sine function is, therefore, not one to
one.

In general, if we can find a horizontal line that intersects the graph of a
function in more than one point, then the function cannot be one to one. This
graphic test is the horizontal line test, presented in section 4-1.

Since we can quickly see from our knowledge of the graphs of the six
trigonometric functions (see chapter 3) that they would all fail the horizontal
line test, we know that none of these functions is one to one.

Experience has shown, however, that there is a real need for inverses of
these functions. By compromising a little, we can indeed define inverse func-
tions for the six trigonometric functions. The compromise we must make is to
form the inverse of only a small part of each function. This part is chosen so
that it will include the entire range of the given function but will be one to
one. We do this by limiting the domain.

For the sine function we select that portion whose ordered pairs are de-

T T
fined for &y i e EL See figure 4—4. Note that this new function is one

to one, since there is no horizontal line that would intersect the graph in more
than one point. Since it is one to one, it has an inverse function. This inverse
function is denoted by sin~!, which is read ‘‘inverse sine function.”” The or-
dered pairs of this inverse sine function are the reversals of the ordered pairs
of the one-to-one portion of the sine function we selected.

We know that if y = sin—'x, then the ordered pair (x,y) is in the inverse
sine function. The ordered pair (y,x) is therefore in the selected one-to-one
portion of the sine function. If (y,x) is in this part of the sine function, then
-E—Syiiandx = sin y.

2 2

Note Remember that if an ordered pair is in the sine function, then the
second element of the pair is the sine of the first.
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Using the previous statements as a guide, we make the following defini-
tion of the inverse sine function.

The inverse sine function
¥ = sin~'x means

1.siny=x
e A
3. |x| =1

Concept
If we think of sin—'x as representing an angle, and since we know that

T T . :
angles between i T and i are in the first and fourth quadrants, we can
interpret y = sin~"x in the following way: "‘sin~'x is the angle in quadrant |
or quadrant IV whose sine is x.” (We are referring to negative angles in
guadrant IV.)

The domain of the inverse sine function is —1 = x = 1, or |x| =1,
which is the range of the sine function. The range of the inverse sine function
is

T : s e . -
=5 = sin~lx = o which is the domain of the one-to-one portion of the

sine function that we selected. Note that these are parts 2 and 3 of the defi-
nition. More explicitly,

Domaing,-1: |x| =1

e L R,
£Csin—1: 5 y= )

Another notation for sin~'x is aresin x. This is because an arc on the unit
circle can represent an angle, and so arcsin x means ‘‘the arc (angle) whose
sine is x, in quadrant I or quadrant IV.”” With the advent of the electronic
calculator a third notation might be invsin x, since a key is used on
some calculators to find inverse sine values.

The graph of the inverse of any function can be found by reflecting
each point in the graph of the function across the line y = x, as seen in sec-
tion 4-1.

To graph y = sin~'x, we reflect the one-to-one portion of the graph of
y = sin x (figure 4-4) across the line y = x. The reflecting process is illustrated
in figure 4-5, and the final graph of y = sin~!x is shown in figure 4-6.
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¥
y \\//..{,,_
2 K
e S =]
V= Ly 2] (51 2
273 T ,’.-" 2
y=sinx '(E\/g) y=sin x
—_— 2 I2: o > x : . x
-2_T 1 1 ® 2 3 4 21 1
2 2
// 4 y=sinlx
A=l _E |
A 2
—2
Figure 4-5
Y;=sin-1X

[ RANGE —3,3,.5,—2,2,.785 |

Figure 4-6

Although the inverse trigonometric functions are defined using radian
measure, we often want the result in degrees. For the inverse sine function we

2 T
therefore want angles between —90° and 90°, since these correspond to =

I r
and ? radians.

1. Find sin~!} in both radians and degrees.

To use the definition, we write y = sin~!+. Then we know that

siny =+
and

£< <£

7 Y3

| 1 T T T
We know that sing = E’ and?is between —? and?, o)
y:£= sin—-.
6 2

It is often easier to solve these problems if we restate them verbally.
Remember that sin~!4 can be interpreted to mean ‘‘the angle in quadrant
I or quadrant IV whose sine is +.”> We have memorized the fact that this
. T
is —.

6

1 T
Thus, sin*lg = Note that this corresponds to 30°.
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2
2. Find arcsin(—%) in both radians and degrees.

We are asked to find the angle in quadrant I or quadrant IV whose sine is
2
5 Since the sine function is positive in quadrant I, we must look in

L B 7
quadrant IV. We know that sin I = 7 , S0 We use ? as a reference

. T
angle to find that the angle we want is oy

2 T
Thus, arcsin(—u—\zi) =7 This corresponds to —45°. H
. . . 4 T
‘We memorized the sine values for certain angles, such as ) (30°), e

T
(45°), and 3 (60°). In most cases, however, we can obtain only decimal ap-

proximations. For this we use calculators, as shown below and in sections
1-3, 1-4, 2-4, and 2—6. We will round radian answers to two decimal places
and degree answers to one decimal place.

1. Find sin~'0.5312 in both radians and degrees.

Put the calculator in radian mode. Most calculators use either a | SIN—!
key or the [INV | (or [ ARC] or [2nd]) before the [SIN] key.

5313 or Display: [0.560016290
5312
[TI-81] [2nd] [SIN] .5312

Thus, sin~10.5312 = 0.56.

To obtain the result in degrees, put the calculator in degree mode
before performing the calculations. When we round to one decimal place,
we get 32.1°.

2. Find arcsin(—0.9249) in both radians and degrees.

We want the arc (angle) whose sine is —0.9249 and is in quadrant T
or quadrant I'V. The negative value tells us we want an angle in
quadrant IV.

Make sure the calculator is in radian mode.

9249 [ +/—] [INV] [SIN] (or [SIN-1]) Display: [ —1.180772498
[TL-81] [2nd] [SIN] [(—)] .9249

and round to two decimal places, or —1.18. Thus, arcsin(—0.9249)
= —L.18.
Performing the same calculator steps in degree mode gives —67.7°. 12
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{ sin12-
"3
3
2
X
%
y
X
= X
arcsin
5
(_E) i
6
y
A
1
2z
\arcsin 2z
X
X
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It is often important to be able to simplify expressions that involve
combinations of the trigonometric and inverse trigonometric functions.
This can often be done with the aid of the reference triangle we studied in
section 2—4.

1. Simplify tan(sin~1%).

Since % is positive, the angle represented by sin~!3 is in quadrant L

(Remember, the range of the sin~! function is quadrant I and quadrant
IV.) Since sin~'% means the angle in quadrant I whose sine is % , we can
draw a reference triangle (section 2-4) in quadrant I for this angle. See
the figure. Using the Pythagorean theorem, we calculate the third side of
the triangle to be /5. From this we can see that the tangent of this angle
L2 _2 525 g B3

13\6— \/§ \/5— s - us, tan(sin~15) = 5

2. Simplify sec[arcsin(—2)].

Arcsin(—3) represents an angle in quadrant IV whose sine is —% . A
reference triangle for such an angle is shown in the figure.
We compute the length of side x to be /11. Now we can compute

1
, and the secant of this angle is then

6 /11 _6/11
JIT =11 il

1
the cosine of this angle to be 6

6
the reciprocal of the cosine. That is, = . Thus,
= J11

6-/11
T
3. Simplify tan(arcsin 2z), if z > 0.

sec[arcsin(—3)] =

Since z > 0, then 2z is also positive, so arcsin 2z represents an angle in
quadrant I whose sine is 2z. A reference triangle for such an angle is
shown in the figure.
We find the horizontal side x by the Pythagorean theorem.
12 = x2 + (22)
?2=1-47
X ==yl —dz?
Since x is positive, we chose the positive solution when we took the
square root.
We can now find the tangent of this angle. We form the ratio of the
. . . . 2z
side opposite the angle to the side adjacent to the angle to get ﬁ
—z
We will not rationalize this denominator.

2
Thus, tan(arcsin 2z) = ﬁ, ifz>=0.
=i
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sin™'z

4.

: T
however, x is an angle between —? and

Compute cos(sin~1z), z < 0.

Since z < 0, sin~!z represents an angle in quadrant IV. A reference
triangle for such an angle is shown in the figure. Note that we do not
write —z, but simply z, for the directed vertical distance, since z already
represents a negative quantity.

We find the length x.

JC2 4 Z?, = ]_2
2=1—-2
x=./1—z*
11 e w2
Now we compute the cosine of this angle. It is - i or /1 — 72
Thus, cos(sin~'z) = /1 — 22if z < 0.
n
Compute sin —l(sin ?)
N o 1 . T e .
We know that sin 5 = —— since its reference angle is Y and it is in
: : . In . 1
quadrant ITI. (See section 2-3.) Thus, sin~!| sin == sin~1 - )
Thus, we need the angle in quadrant I or quadrant IV whose sine is —<-.
b
The angle is in quadrant IV since its sine is negative; therefore, it is e
in radians or —30°. ]
Part 5 of example 4-2 C shows that sin~!(sin x) is not necessarily x. If,

T

X then this is true (try a few ex-

amples). Thus, we note:

sin~!(sin x) = x if and only if —% =x= %

Also,

sin(sin"!x) = xifandonlyif —1 =x =1

This last restriction applies simply because the domain of the inverse sine
functionis —1 = x = 1.
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Mastery points

Can you

e Compute exact and approximate values for the inverse of the sine
function?

e Simplify expressions that combine the trigonometric functions and the
inverse sine function?

e State the domain and range of the inverse sine function?

Exercise 4-2

1. Sketch the graph of the inverse sine function. 2. State the domain and range of the inverse sine
function.

Find exact values for each of the following expressions. State the results in both radians and degrees.

3
3. sin1(—9) 4. arcsinT 5. sin~10

N J3
6. arcsin| —X= in| X2 . sin~!
arcsm( ) arcsin 5 8. sin~!1

Find approximate values for the following expressions in both radians and degrees. Round the values for radians to two
decimal places and for degrees to one decimal place.

9. sin~10.8823 10. arcsin 0.8253 11. sin—10.9323 12. sin—10.6442
sin-1(—0.9976) 14. sin-1(—0.2955) 15. arcsin(—0.2571) 16. arcsin(—0.9888)
Simplify each of the following expressions.

17. tan(arcsin %) 18. cos(arcsin %“) 19. sec[sin—l(—%)]

2
20. tan[arcsin (—0.8)] cot(sin‘lé) 22. csc(sin‘%)
23. cos(arcsin 0.3) 24. tan(arcsin 0.4) 25. cos(sin~'z).z > 0
26. cos(sin~13z),z< 0 tan[sin-'(1 + 2)l,1 +z <0 28. cos(arcsin ~/2)
29. sec(arcsin /27) cot(sin~!'/z — 1) 31. sin*l(sin %)
2
32. arcsin(tan %) 331 arcs'm(cos ?ﬂ) sinl(sin llTn)
; . . 5w
35. sin~!(cos 0) 36. arcsm(sm —6—)

37. Q Recall that a function f is periodic if there is a
number p, p = 0, such that fix) = fix + p) for all
x in the domain of the function. Can a periodic function

be one to one? Give a reason for your answer.
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4-3 The inverse cosine and inverse tangent functions

The inverse of the cosine function is formed in the same way as the inverse
of the sine function. We first select a one-to-one portion. This is chosen to be
between 0 and 7. See figure 4-7.

The graph of y = cos~lx is the reflection of this portion of the cosine
function across the line y = x (shown in figure 4-7 by a dashed line). The
graph of the inverse cosine function is shown separately in figure 4-8.

y

y=cos™x

n|

Yi=cos~ ! X
[RANGE —3.3,.5,—.5,3.5..785 |

Figure 4-8

We can see from the graph that

Domaines-1: |x| =1
Range,,c: 0=y =m

The inverse cosine function is defined as follows:

The inverse cosine function
y = cos~'x means
1. cosy=x
2 0=y=n
3 |x| =1
Concept
cos~'x is the angle in quadrant | or quadrant Il whose cosine is x.

Arccos x and inveos x mean the same thing as cos~!x. Note that in degrees
the inverse cosine varies from 0° to 180°.
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1. Find cos~ 4 in both radians and degrees.

We want the angle in quadrant I or quadrant IT whose cosine is + . Since
this 1s a positive value, the angle is in quadrant I. We know cos

b4 1 e
3 - 2% cos‘lﬂ-z—- = Note that this is equivalent to 60°.

2. Find arccos ~% in both radians and degrees.

2
We want the angle in quadrant I or quadrant II whose cosine is =3

Since this is a negative value, the angle is in quadrant IT. We know cos

T 2 £ o
ik % SORNEUEE S, As i reference angle in quadrant II. This gives us
T 3
T — =1 g for our angle. See the figure.
2 3n
Thus, arccos(ﬁ§) = which is equivalent to 135°. 4]

As with the inverse sine function, we sometimes need approximate an-
swers. This is illustrated in example 4-3 B.

1. Find co0s~'0.9638 in both radians and degrees.

We are looking for the angle in quadrant I or quadrant II whose cosine is
0.9638. Since this is a positive value, the angle is in quadrant I. Putting
the calculator in radian mode,

9638 [INV] [COS] (or [COS-1]) Display: [ 0.269890866
[TI-81] [2nd] [COS] .9638 | ENTER

Thus, cos~10.9638 =~ 0.27.
If the calculation is done with the calculator in degree mode the
result is approximately 15.5°.

2. Find arccos(—0.5141) in both radians and degrees.

We are looking for the angle in quadrant I or quadrant IT whose cosine is
—0.5141. Since this value is negative, the angle is in quadrant II.
In radian mode,

5141 [+/—] |INV] [COS]| Display: |[2.110754365
[T1-81] [2nd] [CcOS] [(=)] .5141 [ENTER |

Thus, arccos(—0.5141) = 2.11. When calculated in degree mode the
result is approximately 120.9°. |
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The inverse of the tangent function is formed in the same way as the
inverses of the sine and cosine functions. We first select a one-to-one portion.
. T T —
This is chosen to be between —— and ? . (In fact, this is the same as our
basic tangent cycle from section 3—1.) The graph of y = tan~lx is the reflection
of this basic cycle across the line y = x. The graph of the basic cycle and its
reflection are shown in figure 4-9 and the graph of the inverse tangent function

is shown in figure 4-10.

Yy y:ptanx
4 } S
i A
3+ | /,/"
A [/
X f/‘/
' ; ; : ; - : : : | ! > X
-6 -8 _%4 1&E2 3 4 5
4___/;-/// 1_1:1“ i /
Er
S
| 1
// i
/ |1
% 1
Figure 4-9
y
T
2 y=tan'x
X
7T
2
Y,=tan"! X
I RANGE —3,3,.5.—2.2..785 |
V

Figure 4-10
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The domain of the inverse tangent function is all the reals, and the range
. T T ..
is all values between i and Ch Observe that the range is in quadrants I

and IV, as is the range of the inverse sine function, except that the range of

. ; . . b b4
the inverse tangent function does not include the points 7 and?
themselves.

Thus,

Domaing,-1: R
yis
Range,p-1: — <y < 5

The inverse tangent function
¥ = tan~'x means
1. tany = x and
2. s <yp< =
2 2
Concept
tan—'x means the angle in quadrant | or quadrant IV whose tangent is x.

Note Since x can take on any value, we do not restrict it in the definition
as we did for the inverse sine and inverse cosine functions.

Arctan x and invtan x are other notations for tan—lx.

1. Find tan~!./3 in both radians and degrees.

We want the angle in quadrant I or quadrant IV whose tangent is /3.
Since this is a positive value, the angle is in quadrant I. We know tan

% = /3,50 tan /3 = % . This is 60°, also.

2. Find arctan(—1) in both radians and degrees.

We want the angle in quadrant I or quadrant IV whose tangent is —1.
Since this is a negative value, the angle is in quadrant IV. We know tan

T T . . .
i = 1, so we use n as a reference angle in quadrant IV. This gives us

T
1 or —45°, for our angle.

Thus, arctan(—1) = —%, or —45°. i

Example 4-3 D illustrates obtaining approximate values with the
calculator.
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B Example 4-3 D

B Example 4-3 £

y
-1y 2 1
cosTI(-=
=)
3
X
s
-2
¥
Y
1
X
arctan(—2)

r

Find arctan(—1.9208) in both radians and degrees.

We are looking for the angle in quadrant I or quadrant IV whose tangent is
—1.9208. Since this value is negative the angle is in quadrant IV.

1.9208 [+/—] [INV] [TAN] (or [TAN-1]) Display: | —1.090791948
[TI-81] [2nd] [TAN] [(—)] 1.9208 [ENTER

Thus, the result is about —1.09 radians and —62.5°. ]

The domains and ranges of the inverses of the sine, cosine, and tangent
functions are summarized in table 4-1. Also indicated are the quadrants to
which the ranges correspond.

Function Domain Range Quadrants
y = sin-lx x| =1 —=ys> LIV
y = cos lx [x =1 0=y=mn 1,11
y = tan~lx R S y < L, |
2 2
Table 4-1

We can simplify expressions that involve combinations of the trigono-
metric and inverse trigonometric functions using the reference triangle, as we
did in the previous section.

1. Simplify tan[cos—'(—3)].

Since —% is negative, the angle represented by cos~!(—%) is in quadrant
I1. (Remember, the range of this function is quadrants I and II.) Since
cos~!(—%) means the angle in quadrant II whose cosine is —% , we draw
a reference triangle in quadrant II for this angle. See the figure.

Using the Pythagorean theorem, we calculate the third side of the
triangle to be /5. From this we can see that the tangent of this angle is
S5

—=3 " 5

Thus, tan[cosl(—%)] = _.?_

2. Simplify sec[arctan(—2)].

Arctan(—2) represents an angle in quadrant IV whose tangentis —2. A
reference triangle for such an angle is shown in the figure.

Using the Pythagorean theorem, we compute the length of the
hypotenuse to be /5. From this triangle we can find the secant of this

| ) ;
angle. We see that the cosine is E so the secant is the reciprocal,

or ﬁ

Thus, sec[arctan(—2)] = J5.
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y 3. Simplify sin(arctan 2z), if z > 0.

Since z > 0, then 2z is also positive, so arctan 2z represents an angle in
quadrant I whose tangent is 2z. A reference triangle for such an angle is

h shown in the figure.
2z We find the hypotenuse / using the Pythagorean theorem.
arctan 2z 12 4+ (22)2 = ]2
y X 1 + 422 =h?

JI+4Z2=h

We can now find the sine of this angle. We form the ratio of the side

opposite the angle to the hypotenuse to get > - We will not

L
1 + 47
rationalize this denominator.

2
Thus, sin(arctan 2z) = e ifz>0.

1+ 472
4. Find tan‘i[sin(u-g-)].
tan‘l[sin(—%)]= tan~1(—1)

T
= —— or —45° |
4

One application of the inverse trigonometric functions is to describe an
angle in a given situation with a mathematical expression.

B Example 4-3 F 1. Describe angle 6 in the figure using an inverse trigonometric function.

. h .
We can see that the tangent of 8 is FE s0 “°8 is an angle whose tangent

e ** This is what t 2 f =ta 1
is —. is is what tan~!— means, so 8 = tan~'—.
d d d

2. A jet aircraft is flying at 20,000 feet. If x represents the distance from a
ground observer to the aircraft (also in feet), describe the angle of
elevation from the observer to the aircraft in terms of an inverse
trigonometric function.

If we represent the situation as shown in the figure, where 0 indicates the

20,000 ..
angle of elevation, we see that 8 is an angle whose sine is . This is
X

20,000

what the expression sin™! means.

X

20,000 . .20,000

Thus, since sin 6 = .0 = sm*‘o—.
X

i
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W Example 4-3 G

describe one of the solutions to a trigonometric equation in exact form.

1.

Another way in which the inverse trigonometric functions are used is to

sin 8 = (.7. Describe one value of 6 in exact form.

Since the equation tells us that 8 is an angle whose sine is 0.7, we write
6 = sin~!0.7. This expression is exact. We could approximate sin~10.7

with a calculator, but the decimal number we obtained would only be an

approximation.
Thus, if sin 8 = 0.7, one exact value of 6 is sin—10.7.

. tan 8 = z. Describe one value of 9 in exact form.

We see that 6 = tan~!z, so one value would be tan—!z.

. cos 26 = 0.55. Describe one value of 6 in exact form.

-1
26 = cos~!0.55,50 6 = w is one value of 6.

. 3 sin 8 = 0.69. Describe one value of 6 in exact form.

If we divide both sides by 3, we see that sin 8 = 0.23. Thus,
8 = sin10.23 gives one exact value of 0.

. A sin Bx = C. Describe one value of x in exact form.

Dividing both sides by A:

. C
sin Bx = I
Then,
¢
Bx = sm‘lj
Dividing both sides by B:
silcr1£
A
=78

Thus, one value of x that satisfies the equation A sin Bx = C is

e
sin
A

B

Finally, it is not too hard to verify that the following identities are true:

cos~H(cosx) = xifandonlyif 0 =x=n
cos(cos™lx) = xifandonlyif —1 =x =1

. . T s
tan~!(tan x) = x if and only if e AR o
tan(tan—1x) = x for all x
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Can you
e Compute exact and approximate values for the inverses of the cosine
and tangent functions?

¢ Simplify expressions that combine the trigonometric functions and their
inverses?

e State the domains and ranges of these inverse trigonometric functions?

e Apply these inverse trigonometric functions to describe angles in
physical situations?

e Apply these inverse trigonometric functions to give one exact solution
to trigonometric equations?

Exercise 4-53

1. Sketch the graph of each function.

a. inverse sine
b. inverse cosine
¢. inverse tangent

2. State the domain and range for each function.

a. inverse sine
b. inverse cosine
¢. inverse tangent

Find exact values for each of the following expressions in both radians and degrees.

3. cos~i(—%)

8. tan—'1

hundredths.

13. sin~10.8823
17. tan—10.9316
21. sin~1(—0.9976)
25. arccos(—0.9902)

3
4. ==
arccos >

9. arctan(—-/3)

14. arctan 11.08
18. cos—10.6442
22. cos~1(—0.2955)
26. tan~1(—3.4776)

Simplify each of the following expressions.

27. cos(ta.n*l—g-)

tan[cos~1(—%5)]

35. cos(arctan 0.3)
39. tan(arccos z), z > 0
43. sin(cos™13z),z <0

47. cos(arctan /2z)

cos! (cos 1—}:—)

28. sin(cos~'%)
32. sin[arccos(—0.8)]

36. sin(arctan 0.4)
40. sin(tan~!z), z > 0
44. cos(arctan 27),z > 0

48. tan(cos~!\/z — 1)

52. tan—!(cos 0)

5. cos~0

10. cos-1§

2
6. arccos| ————
o

()

15. arccos 0.8253
19. arcsin 0.7961
arctan(—0.2553)

29. sin(arccos %)
33. sin(tan~1./3)

37. sin(cos~lz),z >0
cos(arctan z), z < 0
45. sec[tan~(1 + 2)],z >0

T
49, tan~!{ sin —
sin —

5w
53. arccos (tan T)

7. arcsin

43
2

i ()

Find approximate values for the following expressions, in both degrees and radians. Round degrees to tenths and radians to

16.
20.
24,

arcsin 0.6131
sin~10.8776
arccos(—0.9888)

cos(arctan 2)

9
. csc(cos“%)

. cos(arccos z), z > 0

tan(cos™1z),z << 0
sin(arccos \/2)

il .z T
COSTEl SE
6

cos~!| cos i
2
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In the following problems state the angle 8 shown in each diagram in terms of an inverse trigonometric function.

85, 56.

| A picture hangs on a wall so that the bottom of the
=4 picture is 5 feet above the floor. The picture is 2

feet high. Describe the angle subtended by the picture at

the eye of an observer, in terms of an inverse trigono-
metric function, if the observer’s eye is also 5 feet above

the floor and the observer is x feet away from the wall.

60. A radar antenna will track the launch of a rocket from a
point 12,500 feet from the rocket. Both are at the same
ground elevation at launch. If a represents the altitude
of the rocket in feet, describe the angle of elevation of
the rocket at the radar site in terms of an inverse trigo-
nometric function.

57. 38.

61. An aircraft is flying toward an airport at an elevation of
3,500 feet above the airport. Describe the angle of de-
pression of the airport at the aircraft in terms of the dis-
tance z from the aircraft directly to the airport, using an
inverse trigonometric function.

In the following problems describe one value of 8, or x, in exact form, in terms of an inverse trigonometric function.

62. sin 6 = 0.75
66. 2sin6 = 1.6

63. cos 8 = —0.8
67. 3tan0 =5

70. sin 26 = 0.76 71. tan 30 = 9

74. 4cos 36 =3 75. 2sin40 = 1.5

A cos Bx _

78.
(&4

79. Atan(Bx + C) = D

F7§ Many computer languages only provide an arctan-
=4 gent function. In these situations we must program

our own arcsine and arccosine functions. Use appro-
priate reference triangles to show that the following are

identities.
[ S =1
2
a. arcsin(x) a.rctan( = if |x| <1
. = —_— 1 X
1= a2
T :
&3 ifx=1
=
(mcm(ﬁi) fo<x=1
X
T .
b. arccos(x) = < i ifx=0
1= 2
a.rctan(x) +n if-1=x<0
\ X

64. tan 6 = 3 65. tan 8 = 4.1
tan
68. 2 sin 8 = —0.1 69. Te =10

0 30
72. cos 3 = —0:42 73. sin e —0.56

300528__7_ 6si1159_1_0
T8 40 5 13

sin(2x + 3) = 0.6

76

80. cos(x — 2) = 0.2
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4-4 The inverse cotangent secant and cosecant functions

The reciprocal trigonometric functions (cotangent, secant, cosecant) and their
inverses were useful for computations before the advent of electronic calcu-
lating devices like calculators and computers; today they have no practical use
in computation. This is why calculators do not have keys for the reciprocal
functions, and why programming languages, such as FORTRAN, BASIC, or
Pascal, do not support these functions. These functions still have value in
expressing certain expressions in higher mathematics, however, and that is
why we study them here.

The inverse cotangent function

We define the inverse cotangent function by reversing the ordered pairs in
the basic cotangent cycle; that is, we restrict the domain to 0 < x < 7. Figure
4-11 shows the inverse cotangent function, cot™!. The domain is R, and the
range is 0 < y < 7. As we might suspect arccot x also means cot=—Lx:

y=cot'x
f t t + t t =X
=5 -3 5 6
/‘/:
/’:
Va
.’/
//+’
3
Figure 4-11

The inverse cotangent function

¥ = cot~'x means
1. coty=x
2. 02y<e#

There are several ways to compute values of the inverse cotangent function.
One way is to use the identity

P14
cot x = o tan~1x
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This identity can be seen by considering the graphs of y = cot~lx (fizure
4-11) and y = tan~'x (figure 4-12). Figure 4-12 shows the sequence of op-
erations that will transform one graph into the other. Part (a) shows y = tan—lx.
Part (b) shows the transformation caused by the scaling factor —1. Part (c)

T
shows the vertical shift caused by adding > This result is the same as the

graph of the inverse cotangent function.

y y
4 A
b
T y=tan"'x y=—tan"x
2
+ t + t X + t 1 =X
-4 -2 2 4 -4 -2 2 4
B
2
(a) (b)
Y
T
y=(~tanx) + =
T
2
" ; y ™ x
=k o 2 4
L
2
()
Y1=T’:/2_tal'lil X
[RANGE —3.3,.5,—.5,3.5,.785 |
Figure 4-12

Note that this transformation of graphs does not absolutely guarantee that
T : ; .
the identity cot~lx = > tan~lx is true. It should be proven algebraically.

We will not prove it here.

The inverse secant function

1
Recall the identity sec 6 = o We use this to define the inverse of the
cos

secant function. Suppose we stated that y = sec~'x. Then sec y = x. We
proceed as shown.
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v = sec”lx An expression we want to define
secy = x We expect the expression to have this property
1 1

=X sech =——
cos y cos 6
cos ! —1 1 cos ! cos

= — =X’ =X —=

L X cos y Y% y
- . e
y= cos~1— Since y is the angle whose cosine is =
x
1

sec™lx = cos~l—
X

We use this sequence of steps to motivate our definition. As expected, arcsec
x also means sec™lx.

The inverse secant function

sec~lx = co‘s-‘% if |x] =1

We require |x| = 1 so that | —| = 1, as required by the inverse cosine

function. The range of the secant function is the range of the inverse cosine

T, ¢
function since the latter defines the former, except that 5 is not in the range.

b 1
This is because ? = cos~ !0, and there is no value of x such that — = 0.
X

Inverse cosecant function

: ; 1 . o
The identity ¢sc 6 = — o’ and reasoning similar to that above, leads to the
sin

following definition for the inverse cosecant (arcsecant) function.

The inverse cosecant function

gee e — sin-‘% i x) =1

For reasons similar to those stated earlier, the domain of the inverse cosecant
function is \x] = 1, and the range is the same as that of the inverse sine

il 1
function, except for 0, which is sin~!0, and — can not take on the value 0.
X

Note It is not worth the effort to study the graphs of the functions of
this section. Wa presanted the graph of the inverse cotangent function
only to justify the identity presented earlier.
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B Example 44 A

B Example 44 B

1
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sec™'3

Summary of properties

Table 4-2 summarizes the domains and ranges of the functions introduced
previously.

Function Domain Range Quadrants
y = cot~lx R 0<y<m LII
T

y = seclx |x| =1 OSySTc,y#? I, 11

T i
y = csc™lx |x] =1 =i g —— ) I, IV

2 2

Table 4-2

Note in this table that quadrant I always corresponds to a nonnegative domain
clement (a nonnegative value of x), and quadrant Il or IV corresponds to
negative domain elements.

Find the given values in both radians and degrees. Round radians to two dec-
imal places and degrees to one decimal place where necessary.

1. cot~1(—4)

T T
—— =l =Y it -1
> tan—4(—4) cot='x 5~ tanx
= 2.90 (radians) Calculator in radian mode
= 90° — tan~1(—4)
= 166.0° Calculator in degree mode
Thus, cot™!(—4) = 166.0° or 2.90 (radians).
2. sec—12
= cos~1+ Definition of sec-'8
T
= 60° or —
3

Thus, sec=12 = 60° or %

As we saw in section 4-3 some expressions that involve both the trigonometric
and inverse trigonometric functions can be simplified by using a reference
triangle.

Simplify the expression.

1. sin(sec™13)
sec™13 = cos'%, by definition. This is a first quadrant angle. The figure
shows a reference triangle in this quadrant in which the cosine of the
angle is .
y=VE-T= /B=2/]

opposite  2./2
hypotenuse 3

The sine of this angle is
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2. sec(cot™12)
cot~12 is an angle in quadrant I. Since its cotangent is 2, its tangent is 5.
A reference triangle for a quadrant I angle with tangent % is shown in the
figure.

cot™2

2
r = /35 (Pythagorean theorem), so the cosine of the angle is f,

2 & S5 J5

and therefore the secant is EN Thus, sec(cot™12) = o -
Note The identity cot~'x = % — tan—'x would not be helpful in

simplifying this expression. It is used for computing values of cot~'x.
3. cos(csc1(z +2),z>0

by definition. Since

. 1
CSC_1(Z+2) CSCﬁl(Z =+ 2) = Sll’lflz T2

5 is positive,

in—1
Z+2 S

1
> is an angle in quadrant I (see the figure). We find y by the

Pythagorean theorem.

% (Z+ 22 =12+
2oty pd— 1=

VP t+4z+3=y

adjacent  y = JZ2+4z+3

hypotenuse o+ 2 ze 2

The cosine of the angle is

Mastery points

Can you

¢ State the domain and range of the inverse cotangent, cosecant, and
secant functions?

e Find exact values, in both radians and degrees, for expressions of the
form cot="x, csc—'x, and sec—'x, for appropriate values of x, using the
definitions of these functions?

» Find approximate values, in both radians and degrees, for expressions of
the form sin—"x, cos~'x, and tan—'x, using a calculator and the
definitions of these functions?

o Simplify expressions that involve combinations of the trigonometric and
inverse trigonometric functions, using a reference triangle where
appropriate?
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Exercise 4-4

Compute the exact value of the following expressions.

)

2. arcsec —T
2./3

a.rccsc,T

1. csc12

6. cot-1(—./3)

3. arccot 1

8. csc-1./2

4. arccsc(—1) 5. sec™(—=2)

9. arccot 0 10. arcsec(—+/2)

Compute approximate values of the following expressions in both radians (to hundredths) and degrees (to tenths).

11. csc13.3534 12. cot~10.5080

15. arccot 5.1997 16. sec™(—2.0126)
19. arccsc 3.1790 20. arccot(—8.3534)
Simplify the following expressions.

21. sin(csc13) 22. cos(cot™12)

25. csc(arccot 5) 26. sec(arccsc%)

29, tan[sec"l(—-g—)] 30. csc[sec‘l(—%)]

33. sec(cot1z),z <0 34, tan(arcsecz),z <0

37. tan[sec{z + 1)),z + 1 >0

3
39. cscl arcese— |,z >0
Z

13. arcsec(—2.9986)

14. arccsc(—2.5087)
sec-1(—11.1261)

18. csc1(—3.8898)

B

23. cot(arcsec 4)

cos[arccsc(—%)]

31. sin(csc™1z),z >0 32. cot(sec™'z),z > 0
35. cos(arcsec 2z), z > 0 36. sin(csc13z),z <0
38. cscf[sec (1 — 2)],1 —2>0

sec cot“i 22+ 1>0
i ol |

24. sin(sec™'1.3)
28. tan[arccsc(—%—)]

Chapter 4 sumimary

= To show that two functions f and g are inverses of each
other
Show that [1] If fix) = y, then g(y) = x, and
[2] If g(x) = y, then f(y) = x.
* Vertical line test for a function If no vertical line
crosses the graph of a relation in more than one place,
the relation is a function.

« Horizontal line test for a one-to-one function If no
horizontal line crosses the graph of a function in more
than one place, the function is one to one.

* Inverse sine function
¥y = sin~lx means
l.siny=x

T T
LT
s

3. —-1=x=1

+ Inverse cosine function
¥ = cos~lx means
l. cosy=x
2. 0=y=x
8 —l=x=1

* Inverse tangent function
y = tan~!x means
l. tany = x

1 T
g
5 2 3

* Inverse cotangent function
y = cot~lx means
l.coty =x
2. 0<y<m

. T
e cot™lx = — — tan~lx
2
s 1 1 1 H
* Inverse secant function sec~'x = cos~1—if |x| =1
X

L ; 1,
» Inverse cosecant function csc™lx = sin~'—if |x| = 1
x



= Summary of the properties of the inverse sine, cosine,
and tangent functions.

Function Domain Range Quadrants
y=sinlx | (%] =1 | —=y== | LIV
2 2
y = cosIx |x| =1 0=y=mn ILII
y = tan~lx R =5 <y < e LIV
2 2
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» Summary of the properties of the inverse cotangent, secant, and cosecant functions.

Function Domain Range

Quadrants

y=cot'lx | R

0<y<m LII

y=seclx | |x| =1 OSyﬁﬂz,y#% LII
p=reserlm b =] =1 ——g—sys%,yséo LIV
Chapter 4 review

[4-1] Show that the following functions fand g are inverses
of each other.
XS

3

1. fix) =3x — 5 glx) =

3x —¥
2. = g(x) =———
S g | &) x—3
Each of the following diagrams shows the graph of a func-
tion. Use the horizontal line test to determine if the function
is or is not one to one.
3. 7 4. v

3

[4-2]
5. Sketch the graph of the inverse sine function.

6. State the domain and range of the inverse sine
function.

Find exact values for each of the following expressions in
both radians and degrees.

3
7. sin-}(—+ 8. arcsin=~
2
9. sin~'% 10. wcsin(—%)
11. arcsin 0 12. sin~1(—1)

Find approximate values for the following expressions in
both radians and degrees.

13. sin~10.9737 14. arcsin(—0.4882)

Simplify the following expressions.

15. cos(sin~12) 16. tan(sin—4)

17 sec[sin“l(—%)] 18. tan(sin~1z),z >0
19. cos[arcsin(l +z)],1 +z>0

[4-3]
20. Sketch the graph of the inverse cosine function.

21. State the domain and range of the inverse tangent
function.

Find exact values for each of the following expressions in
both radians and degrees.

22. cos*‘(—%) 23. arcc:os—3

2
24. cos*l% 25. mcsin(—%)
26. arctan./3 27. tan~1(—1)
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Find approximate values for the following expressions in
both radians and degrees.
28. tan-11.5601

30. arccos(—0.3051)

29. arccos 0.4882

Simplify the following expressions.

31. cos(tan-1%) L

32. sec(cos~ 1

i

33. tan[cos~(—5)] 34. cos~! sing

35. tan(cos™1z),z > 0
36. cosfarctan(l + 2)], 1 + z> 0

For the following diagrams state the angle 0 in terms of an
inverse trigonometric function.

37. 38.

39. A camera is to be placed on the ground x feet from a
flagpole that is 35 feet high. Describe the angle deter-
mined by the flagpole at the camera in terms of an in-
verse trigonometric function.

In the following problems describe one value of 6 in exact
form, in terms of an inverse trigonometric function.

40. cos 6 = 0.89 41. sin § = —0.88
42. +sinf = —0.1 43. 2tan B = 10

44. sin 206 = 0.76 45. 2 cos 30 = 1.4
46. cos(20 + 3) = 0.6 47. sin 20 + 3 = 3.6

[4-4] Compute the exact value of the following expressions
in both radians and degrees.
2./3 )

49. arccsc( —T
51. cot-1(—~/3)

Compute approximate values of the following expressions in
both radians and degrees.

52. csc14.3864
54. arcsec(—4.0420)

48. sec™12
50. arccsc(—2)

53. cot~11.5601
55. arcesc(—6.6917)

Simplify the following expressions.

56. tan(csc~13) 57. cot(arcsec 4)

58. sin(arccot 5) 59. csclarcsee(—4)]
60. sin(cot™z),z >0 61. cot(csclz),z>0
62. tan[sec 1z + 1),z +1>0

63. cscfsec (1 — 2)],1 —z>0

Chapter 4 test

1. Sketch the graph of the inverse tangent function.
2. State the domain and range of the inverse cosecant
function.

Find exact values for each of the following expressions in
both radians and degrees.

3. sec™i(-2)

5.icse~12

2

4. in—
arcsin 2

6. arctany/3

Find approximate values for the following expressions in
both radians and degrees.

7. tan~11.4617 8. arccos(—0.4169)
9. arcsec(—1.4830) 10. arccsc 3.4971
Simplify the following expressions.

11. cot(sin~1%) 12. sin[tan—1(—4)]
13. tan[sec 1(—3)] 14. sec(cos~1z),z >0

15. sinfarccot (1 + 2)],1 +z> 0
16. tan(sec~12z),z >0
17. secl[esc (1 — 2)],1 —z>0

18. State the angle 6 in terms of an inverse trigonometric
function.

19. A taut line is connected to the top of a building that is
52 feet high and to a point on the ground some distance
from the building. The length of the line is x. Let 6 be
the angle formed by the ground and by the line. Describe
the angle 8 in terms of an inverse trigonometric function.

In the following problems describe one value of 8 in exact
form in terms of an inverse trigonometric function.

20. sec O = 2.25 21. 2sin 6 = —1.88
22, sin 36 = 0.75 23. 4cos(20 — 3) =24



Trigonometric
Equations

Recall that trigonometric equations were introduced in section 1-4, and re-
visited in 2-6. In this chapter, we first study trigonometric identities; these are
very important in the study of the calculus and certain engineering applica-
tions. We then examine conditional trigonometric equations in more depth
than we did previously.

Section 5-0 reviews important facts about equations and equation solving.
Some of this material has been covered in this text, and the rest should be
known from previous mathematics courses.

5-0 Equation solving—review
Factoring

To factor means to write as a product. Several common types of factoring that
we will need in this chapter to deal with equations are categorized as common
factor, difference of two squares, and quadratic trinomial. It is assumed that
the student is familiar with each topic. They are presented here both with
familiar algebraic forms and with similar trigonometric forms.

Expression Factored form
Common factor
Algebraic a’b — ab? ab(a — b)
Trigonometric  sin?0 cos 0 — sin 6 cos26 sin 6 cos 8(sin 8 — cos 0)
Difference of two squares
Algebraic at — b (a? — b)) (a? + b?) or

(a — b)a + b)(a? + b?)

Trigonometric  sin*d — cos*d (sin?6 — cos26)(sin’® + cos?0)

which becomes
(sin 6 — cos B)(sin 0 + cos 6)(1)

165
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B Example 5-0 A

Expression Factored form
Quadratic trinomial
Algebraic 2 == 3 P =13 1)
Trigonometric 2 sin?x — sinx — 3 (2sinx — 3)sinx + 1)

When it is difficult to see how a particular trigonometric expression can be
factored, a method called substitution may help. This is illustrated in example
5-0 A.

Factor 6 tan?0 — 11 tan 6 + 3

If this is difficult to factor, try substitution.
Let u = tan 0. Then u? = tan?0.

Thus, we can rewrite the equation as

6u? — 1lu + 3
which factors into

Qu—-3)3Bu—-1) Quadratic trinomial
Now replace u by tan 6:
(2tan® — 3)(3tan 6 — 1) ||

Equations

lAn equation is a statement of equality of two expressions.

Examples of equations are
3x =27
Bn2i= 27
tan O = 1
x+ 3x = 4dx

An equation involving only one variable is called an equation in one variable.

A solution to an equation in one variable is a real number that makes the
statement of equality true when it replaces the variable.

For example, 9 is a solution to the equation 3x = 27,

3 and —3 are both solutions to the equation 3x? = 27
(i
73 is a solution to the equation tan 8 = 1

any number is a solution to the equation x + 3x = 4x
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Identities and conditional equations

An identity is an equation that is true for all valid replacement values of
the variable.

A conditional equation is an equation that is not true for all valid
replacement values of the variable.

The equation
3x—2x+3)=x—10

is an identity, which can be seen by combining the terms in the left member,
obtaining

% — 10=%—10
The left side will clearly equal the right side regardless of the value of x. We
have seen that

sin*6 + cos?0 = 1
is an identity.

Most of this chapter is concerned with trigonometric identities.

Conditional linear equations

We have solved many linear trigonometric equations in previous sections, like
the following.

1. 6sinx =3 2. 3 tani=1= 1
sinx =+ 3tan 0 = 2
x = sin~t tan § = %
0 = tan~!%

Conditional quadratic equations

We have not previously discussed this type of equation. A quadratic equation
is an equation of the form ax* + bx + ¢ = 0, where @ # 0. There are two
common methods for solving these equations: factoring and the quadratic
formula.

Factoring uses the zero product property introduced in section 2—6:

If ab =0,thena =0or b = 0.

The quadratic formula is as follows.
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B Example 5-0 B

Quadratic formula
lfax? + bx+ c =0, anda # 0, then
—b+ JBF —dat —b— JB = dac
=l and Fee—r -
2a 2a
are both solutions fo the equation.
bt /B — 4
The formula is usuvally abbreviated as x = > s
a

Both methods for solving quadratic equations are illustrated in example
5-0 B.

Solve each quadratic equation for sin x, cos x, or tan x, as appropriate.

1. 6tan’x — 1l tanx = —3
6tan’x — 1l tanx +3 =0 Add -3 to both members
2tanx —3)3tanx — 1) =0 Factor the left member
2tanx —3=0or3tanx—1 =10 Zero product property

2tanx =3 or3tanx =1

tanx = S ortanx = +

2. 2cosx —cosx—2=0
This expression does not factor, so we use the quadratic formula.
w2 b= =le= =2
—(1 + SR H2ND) o =1 — VTP —AQ)(=2)
2(2) 2(2)
1+ J17 - V17

4 4

COs X =

|

Cosx =

Equivalent equations using substitution

Consider the equation
(2x—32-32x—3)—-10=0
If we replace 2x — 3 by, say u, then we obtain the equation
w—3u—10=0
which we solve as
u—5u+2)=0
u=—-2o0r5
We now replace u by 2x — 3 to obtain
2x—3=-2o0r2x—3=5
2x=lor2x=8
x=torx=4
Anytime we can replace an expression by a variable like # we obtain an
equivalent equation that may be easier to solve or otherwise manipulate.
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B Example 5-0 C Use substitution to help solve each problem.

1. Solve the equation 2(5x + 3)® — (5x + 3)2 = 0.
Let u = 5x + 3. Then,

2 —ur=0
w2QRu—1)=20
w=0o0r2u—1=0
u=0oru=73
5 +3=0o0r5x +3 =
5= —3o0r5x = —% d 3=
x=—forz=H-$ = -

2
(39 = 1) =3
o 2
2. Simplify

Sl

Letu =36 — % . Then the expression is

0

v

@1 _@oDEHD sl

1—u  —m-1 -1
b
Replace u by 39—*2—:
L T
—u—1=—|30—-—]|—-1=-30+——
u ( 2) 1 30 2 1 |

Mastery points

Can you

e Factor trigonometric expressions?

e Solve quadratic equations for x, sin x, cos x, or tan x?

e Use substitution to help solve equations and simplify expressions?

Exercise 5-0

Note: The solutions to all of these exercises are given in appendix E. This section is not reviewed explicitly in the chapter
review or the chapter test. It is designed to prepare for the rest of the chapter.

Factor each trigonometric expression.

1. sin?@ — sin @ 2. cos’6 + 3 cos 6 3. cos*® — cos20
4. sin’f — sin®0 5. cos?x + cos x — 20 6. tan?x + 2 tan x — 24
7. 2sin?2x — 7sinx + 3 8. 9cos®0 — 15 cos®0 — 6 cos @ 9. 6csc?0 — S5¢sc B+ 1
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Solve each quadratic equation for sin 8, cos 8, tan 8, etc., as appropriate.

10. tan?0 — tan ® =0 11. tan®6 — tan & = 2
13. sec®® — 5sec?8 +4 =0 14. 36 sin*0 — 13sin20 + 1 =10
16. sin?0 — 3sin® — 5 =0 17. 2sec?@ +3sec®—7 =0

Use substitution to help solve each equation.

18. 2x — 6 — (2x — 62 =10

Use substitution to help simplify each expression.

12. 6sin?0 + 5sin@ +1 =0

208 — 3P —383x— P+ 1

) AE) ] 5

2]
=

Gx— 37— 1

5=7 Basic trigonometric identities

Review of some identities

Recall from section 1-4 and 5-0 that an identity is an equation that is true for
every allowed value of its variable (or variables). We have seen the following

identities in previous sections.

Reciprocal identities

1
e = e sech =
St

no cos b’

! 1 1
sin @ =——, cosf = ——
csc B sec

Tangenticotangent identities
sin 9 e o CDER

tan § = —— ot =

cos 6’ sin 9
Fundamental identity of trigonometry

sin?@ + cos?8 = 1

1
cotf = ——
tan 6

; 1
t =—
ANt = e

Two other forms of the fundamental identity are sin?0 = 1 — cos20 and

cos?® = 1 — sin?8.

If each term in the fundamental identity is divided by cos28 we obtain

sin?@

cos28 1

cosZ6

sin 6
cos 6

cos?®  cos2@

2 1 2
+ 1 =
) (cos 6)

tan?0 + 1 = sec?@
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Similarly, if each term of the fundamental identity is divided by sin?8 we
obtain the identity cot?® + 1 = csc?6. These two identities, along with the
fundamental identity, are called the Pythagorean identities. They are sum-
marized here.

Pythagorean identities
Useful forms
sin?8 + cos?8 = 1 sin2@ = 1 ~ cos28 cos20 = 1 — sinZ@
tan? + 1 = sec’d tanf = sec?9 ~ 1 sec?d — tan?f = 1
cot?0 + 1 = csc?8 cot?@ = ¢sc2@ —~ 1 csc20 — cot?g = 1

Preliminary notes on algebra

When working with trigonometric equations there are certain algebraic prin-
ciples that are used over and over. It is a good idea to get used to these
principles, and the associated notation, now—it will make the rest of this
chapter much easier.

These principles are illustrated in example 5-1 A. We also use the prin-
ciple that we do not leave fractions in a final answer when possible. For

1 . . .
example, can be rewritten as tan 6. Also we note that a binomial of the
(&

ot 6
form x + y is called the conjugate of the binomial x — y, and vice versa.

Perform the algebra indicated, and note the category of algebraic manipulation
for later reference. Do not leave a fraction for an answer when possible.
atb a b
1. Separating fractions: =—+ —
c c G

. I —sin6 .
Rewrite ——— as two fractions.
sin 0

l—sinﬂ_ 1 __sinG
sin 6 sin® sin 6
=cscB—1

2. Multiplying binomial conjugates: (a + b)(a — b) = a*> — b*
Multiply (1 — sin 8)(1 + sin ).

(1 — sin 8)(1 + sin 0)

Il

12 — (sin 0)2
= 1 — sin®0
= cos20 Pythagorean identity
3. Factoring quadratic binomials into conjugates: a*> — b* =
(a + b)(a — b)

csc20 — cotZ0
Factor the numerator of ————

csc B —cot 6
csc?0 — cot?®  (csc O — cot 8)(csc § + cot §)
csc B — cot B csc O — cot

csc B + cot @
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4. Multiplying numerator and denominator of a fraction by a conjugate of
the numerator or denominator:

1 —cos6

Multiply the numerator and denominator of —— 5 by the conjugate
sin

of the numerator.

1—cos® 1+cos® 11— cos?d
sin® 1+cos@ sin (1 + cos 8)
_ sin?0
~ sin 6(1 + cos 6)
_ sin®
"1+ cos®
5. Factoring the sign from a binomial: —(a — b) = b — a
Simplify M
sin 6
cos’ —1  —(1 — cos?0)
sin® sin 6

_ —sin?@

"~ sin®

= —sin 6 ||

Transforming expressions

Identities and the principles illustrated above aid in simplifying and trans-
forming trigonometric expressions. We proceed by replacing given parts of
an expression by equivalent parts from the identities summarized above, as
well as any other identities we have studied. There is no single correct se-
quence of steps! We proceed by trial and error, guided by past experience.

Although there are many ways to proceed in transforming an expression,
we will note some guidelines for this process.

1. When functions appear raised to the second power, such as sin20, tan26,
etc., look for expressions that appear in the Pythagorean identities.
a. It may be possible to combine two terms into one.
sec? — tan®0
sin
b. Tt is always possible to rewrite one second degree term as two.
ec? tan?0 + 1

8
example: s 1 becomes a0 - 1° which becomes 1.

1 .
example: becomes S0’ which becomes csc 6.
sin
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2. Sometimes it pays to rewrite all functions in terms of the sine and cosine
functions.

0 1 0 sin 0 0 cos 6
g s¢ assine,tan ascose,cot e
3. Look for factors of the Pythagorean identities. These are things like
1 — cos 6, which is a factor of 1 — cos®0, and sec 8 + tan 0, which is a
factor of sec?8 — tan. These can often be transformed as in part 4 of
example 5-1 A.

; 1
Rewrite sec 0 as
cos

Example 5-1 B illustrates these guidelines.

Simplify each expression into one term.

1. 1 — cos?4q

sin?40 sinZdg + cos?4e, = 1, so 1 — cos?4o = sin?4ao
2. (1 — secx)(1 + sec x)

1 — secx (@—bla+b)=a—b?

—(seczx — 1)

—tanZx

Simplify the expression into as few factors as possible.
3. cotBsec Osin

cot 6 sec 6 sin 6

cos® 1 ) _ o _
- : - sin O Rewrite everything in terms of sin 8, cos 8
sin® cos O
1
cosH 1 1
— —— - sint Divide out the common factors
sirf ces®
1 1
1 ]|

Verifying identities

If we can show that one member of an equation can be transformed into the
other member by replacing expressions using identities and performing alge-
braic transformations, then we say we have verified the equation to be an
identity.

Although there are many ways to proceed in verifying an identity, there
are some guidelines for this process. The guidelines 1 through 3 apply to
verifying identities as well as simplifying individual expressions. Example
5-1 C illustrates another guideline, which applies to verifying identities.

4. Begin with the more complicated member of an equation, and try to
simplify it.

A fraction is almost always considered more complicated than a nonfraction.
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W Example 5-7 C Verify that each equation is an identity by showing that one member of the
identity can be transformed into the other member.

1. tan B csc O = sec 0

tan 0 csc © Begin with the left member
sin 6 1 ) o ]
S Rewrite everything in terms of sin 8 and cos 8
cos 0 sin @
1 . :
Reduce by a factor of sin 6
cos 6
sec 0 sec § =

cos 0

1
2.Eﬂﬁ——(zscﬁ=_mﬁsecﬁ

1
TE Begin with the left member; it is more complicated
sin p — csc
1 Rewrite everything in terms of sin 8 and cos 8; we
1 arrive at a complex fraction
sin f — —
P sin B
1 sin 3 Multiply numerator and denominator by sin B; this
o sin B is to simplify the complex fraction
sin f — —
sin 3
i 1 .
ﬂ sin B(sin B - —) =sin?B — 1
sin?p — 1 sin B
sin 3 _ o .
T"TB) Factor the sign from the binomial denominator
—(1 — s
sin B
—cos?P
sin B 1
cos B cosf
—tan f sec B
cosZot i
T ———=1—sino
1+ sin o
cos2oL
1+ sino
1 — sina ‘
——1 T cos?0 = 1 — sin?f
sin o
(1 — sin o)(1 + sin o)
T s m* —n? = (m— n}m + n)

]l —sino
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It is not absolutely necessary to transform just one side or the other of an
identity. When both members of an identity are very complicated it is easier
to transform both members, as in example 5-1 D.

Verify the identity.

sin20 tan?8 + 1 = sec?0 — cos?0 sec20 + cos?B

Left member Right member
sin20 tan20 + 1 sec20 — cos?B sec?® + cos?0
sin?0 tan%@ -+ sin?6 + cos?0 sec?(1 — cos?0) + cos20
sin?0(tan2 + 1) + cos20 sec?d sin?f + cos?0
sin26 sec?® + cos20 > sin?8 + cos?8
1 0s0

sinZ6 + cos?6

cos?0
tan?8 + cos20 tan20 + cos?0 |

Since the left side and right side can be transformed into the same ex-
pression, they are equivalent. This is true because we could actually take the
steps on one side and add them to the other side in reverse order, arriving at
the required result.

Of course most equations are not identities. To show that an equation is
not an identity we need to find a value for the variable for which each member
of the equation is defined, but that produces different results in the two mem-
bers. This value is called a counter example; it shows that the equation is not
an identity.

Show by counter example that cos x + sin x cot x = sin x is not an identity.

Choose a value for which both the left and right members are defined;

T .
x = ri is such a value (most values would serve the purpose).

Left member Right member
cos x + sin x cot x sin x
cos - + si = cot - sin = Replace x by TE
— n— cot—F— — I =
4 4 4 4 4
ﬁ+ﬁ | ﬁ lﬁs‘mi*‘—ﬁ'cmif1
2 5 2 Y TG T T
2.2
2

/2

: 2 . - o
Since /2 # % we have shown that the given equation is not an identity. @
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As noted in example 5-1 E, most values will serve as a counter example
for an equation that is not an identity. However, aveoid using zero, since there
are many equations that are not identities for which both sides evaluate to the
same value when zero is used.

An example is sin 8 = 1 — cos 0. This equation is not an identity, but
observe that replacing 6 by 0 produces 0 = 0, which might lead one to believe
that this equation is an identity.

Maste.ry poﬁiht‘s

Can you

e State the reciprocal identities, fundamental identity, and the remaining
Pythagorean identities from memory?

e Recognize useful forms of the Pythagorean identities?

e Transform forms of the Pythagorean identities into simpler forms?

e Transform one side of an identity into the other side?

Show that an equation is not an identity by a counter example?

Exercise 5-7

Each of the following expressions can be simplified into the form 1, —1, sin 8, cos 8, tan 8, cot 8, sec 8, csc 8, sin0, cos?8
tan?@, cot?0, sec?, or csc?0. Show the transformation of each expression into one of these forms.

)

in 6
o g, cof 3. tan 8 csc 0
tan 6 cot 6
4. sec O cot O 5. cot?0 sin2@ 6. sin20 sec20
0 —1 0+1
7. (tan20 + 1)(1 — sin6) 8. (1 — cos?8)(1 + cot?6) g, (€ : u)]f:c .
+ —t i
10. (sec 6 + tan 6)(sec 6 an 0) 11. csc 8 sin 6 12. ta.nf] cot 6
cos20 cot 6 sin 6
13. cos B(sec 8 — cos 0) 14. cos?6(1 + cot20) 15. csc?0(1 — cos?8)
16. sin?6(csc?6 — 1) 17. cot?0 — csc?0 tan®0 — sec?6
t
19. tan?8(cot26 + 1) g, =2 21. sec26(csc2d — 1)
sec x
sec cot 0 sec 0 csc?0 — 1
22, ————— 23— 24, —————
tan @ csc @ csc 6 csc?g
25. sin x + cos x cot x 26. cos x + sin x tan x 27. tan x CcSC X COS X
+
28. S e 29, secx — tan x sin x 30. (cscx + 1)(sec x — tan x)
tanx + 1
secty — tany

31. (csc x + cot x)(1 — cos x) _—

sec’y + tanZy



Verify the following identities.

i G}
33. cscB+cot9=$
sin 0

sec O tan 0

csc® +cot® 1+ cos®
tan?0 + sec?f

39. = sin?0 + 1
sec?d
42, cot x cos x = ¢csc x — sin x
45 1 L0 0
, ————— = ¢ot 0 csc
sec 6 — cos @
cot B
48. =csc B —sin®
sec 0
51 cotx + 1 sinx+ cosx
“ecotx— 1 cosx — sinx
1+ sin cos
54. >~ Y
cos y 1 —siny
1 1
57. = — = 2 sec3x
1—sinx 1+ sinx
59. sin*x — cos®x = 1 — 2 cos®x

61. cot’x — cos’x = cot’x cos?x
tany —coty tan’y — 1

63. =
tan y + coty secZy
1 —sinx

65. ———— = (tan x — sec x)?
1+ sinx

67. sec*x — sec’x = tan*x + tan’x

69. 2 cos?y — 1 = cos?y — sin?y
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1+sin® csc 0 cos 6
34. tan 6 + 0 =——— 35. e -
e cos 6 sec® +tan® sin O + sin%0
1+ cscB 1+ siné tan® +1 sin® + cos @
3. ——— =cot 9| ——— 38. = —
1+sech O (1+cosﬁ) tan® —1 sin® —cos 6
cot?® + csc?f .
————— =1+ cos?8 41. tanysiny = secy — cos y
csc?0
1 + cot?@ 26
43, — 220 _ o129 csc29 g~ g el
tan?6 csc O+ 1
1 tan 6
., ——————— = sin 0 cos O 47. 2= = i 9t B
cot B + tan 8 csc B
tan?0 1
49, ———— =1 +sec B 50, ————— =secx + tan x
sec 6 — 1 sec x — tan x
1 + sin cscy + 1 sin x 1 —cosx
S 53. =—
1—siny cscy—1 1+ cosx sin x
55 CoSs X __cos’x cos x __cotx
"secx—tanx 1 —sinx "cosx+sinx 1+ cotx
cos cos
58. A4 i 2 tan y
cscyt+1 cscy—1
60. (tan?y + 1)(cot?y + 1) = sec?y + cscy
62. csc?y + sec?y = sec?y csc?y
cot?x — 1
64, —————— =1 — 2 sin’x
cot?x + 1

66.

68.
70.

sec’x — 1 = tan?x sec?x + tan’x

sin?x — cos?x
tan x — cot x = ——

In problems 71-80 show by counter example that each equation is not an identity.

71. sin® =1 — cos @

75. sin?6 — 2 cos 0 sin 6 + cos20 = 2
77. csc O +secBcot =2

. —————— = sin?0
1+ cosB e

81. Verify by calculation that (1 — csc?0)(1 — sec?0) = 1

for the values

T T
Lh=— b o=—
a b. 1

72. tan?0 — cot?f = 1

73.

76.
78.

80.

82.

c. Is this equation an identity?

sin X cOS X

cos*x — sinx = 1 — 2 sin%x

0= 74. sin § =
= csc 6 s cos 0
tan20 — tan 0 = 0
sin® + 2sinfBcos 6 =0

1

——— =sec
tan 8 + csc 6

; : sin @ — cos 0
Verify by calculation that — oE 8 =tanf — 1

0s
for the values

T 3n
i b. 8 = g = Is this equation an identity?
Verify by calculation that tan*d — tan?8 = 6 for the
es

i 4n : ) . .
= —3— b. 8 = 3 ¢. Is this equation an identity?

6 a. 9
83. Verify by calculation that 2 sin?8 + sin 6 = 1 for the
values valu
L 3n
a. 0 = = b. 8 = 5 Is this equation an identity? a. 0
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5-2 The sum and difference identities

Four important identities are called the sum and difference identities.

Sum and difference identities for sine and cosine
[1] coso + B) = cos o cos B — sineesin B
[2]  cosle — B) = cos o cos B + sin a.sin B
[31  sin{o + B) = sin . cos B + cos e sin B
[4]  sinfo — B) = sin o cos B ~ cos a sin B

The last three of these four identities can be developed using the first. Their
verification is left as exercises. A demonstration that identity [1] is true is
given in appendix B.

The sum and difference identities have several applications, illustrated in

example 5-2 A.
T = T n
B Example 5-2 A 1. Use the fact thatﬁ= A g™ find the exact value of cos T -
. co a8 =
cos — = =i
12 \3 " g
cos tE i sin T sin e { ) i i
= — cos — — — sin— +B) = =
3 4 3 A cos(et + B) = cos o cos B — sin o sin B
_1 V2 V2 V2 62—
23 3 2 4 4 4

2, Show that cos(mt — 8) = —cos 8 for any angle 6.

cos(m — 0) = cos T cos B + sin 7t sin O
(—1)cos® + 0sin 0
= —cos 0 O

Identity [1] can be used to prove the following identities (the proofs are
left for the exercises). These identities are called the cofunction identities.

Cofunction identities

(5] sm(-gm - e) = cos 6]

a
o
A
SR

Mla o)A

—e)=sin9

[71 tan(% = e) = cot 6 [8] cot( = 6) =tan 6

.Nlﬁ

[9] Sec(% — e) =ese g [10] csc( — — 9) =secH

The reason for the name of these identities is as follows.
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T
‘When the sum of two angles is 90°, or ? radians, the angles are said to

T b
be complementary. The angles 5 e 6 and 6 add up to > so they are
complementary angles. Each is said to be the complement of the other. The
cofunction identities say, in effect,
trig function (angle) = “‘co’ trig function (complement of angle)

)

Thus, the sine and ‘“‘co’” sine appear in one identity, the tangent and *‘co’
tangent appear in another, and the secant and “‘co’ secant in the third. When-

. : . :
ever the sum of two angles is ? (or 90°), a trigonometric function of one
equals the “‘co’” trigonometric function of the other. Thus for example, the
following statements are true:
sin 50° = cos 40° 50° + 40° = 90°
T by T T
2

S€C— = C8C — —_—t— = —
6 3 6 3

cot 130° = tan(—40%) 130° + (—40°) = 90°
Rewrite each function value in terms of its cofunction.
1. sin 34°
sin 34° = co0s(90° — 34°) = cos 56°

2. csc—

2m T 2% T
csc ? = SBC(? - ?) = 8eC E
Simplify each expression.

sin 10°

cos 80°

sin 10°  cos 80°
cos 80°  cos 80°

T T
4. sin*— + sin*—
6 3

L b b T b b L

Fo et e e 7 el R R bl

sin + sin = sin + cos = = sin*— + cos =1H
6 3 6 ( 2 3 ) 6 6

Two more important identities are the sum and difference formulas for the

tangent function.
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Sum and difference identities for tangent

tana +tan P
11 P G atnp
. ses -2 = B

tano = tan B
12 t B e
2] anio = p) 1+ tanotan B

The derivation of the first identity is as follows.

sin(oe + B)  sin o cos B + cos o sin B

tan(or + B) = = 2 -
B cos(t + B) cosocos — sinosin B
sin ¢ cos B + cos & sin B Divide numerator and
P B denominator by

= - , cos o cos B
cos o cos B — sin o sin 3

cos o cos B
sinccos B . cos o sinP
cos otcos B cos o cos B
cosccos P sinosinf
cos o cos B " cos o cos B
sin(x+si11[3
cosa  cosB  tano+ tan B
sino. sin 1 — tan o tan
COSOC-COSB

Example 5-2 C illustrates using this identity.

B Example 5-2 C Use the fact that 15° = 45° — 30° to find the exact value of tan 15°.
tan 15° = tan(45° — 30°)
A
_ tan 45° — tan 30° _ 3
1 + tan 45° tan 30° 1+1(£)
3
A
_ 3 3 3-48 3-43
_1+£'3 " 5+.3 53— .3
3
_9-6/3+3 12-63

iy ‘
55 > V3 =

Some problems can be solved by using the identities above and reference
triangles (section 2—4).
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sin ¢ = %, o in quadrant I; cos B = —+%, B in quadrant II. Find the exact
value of cos(ot — B).

Yy
pd
3
2 3 ]
o [ B
X X
V5 -4
ORI = é sin B = il We find the necessary values
B 5 from the reference triangles

cos(o. — B) = cos ¢t cos B + sin o sin B

_S5( 4y, 23
3 5 5 5
4J§+£

Mastery points

Can you

e State the sum and difference identities?

e State and apply the cofunction identities?

= Apply the sum and difference identities to find exact values of sine,
cosine, and tangent for certain angles?

e Apply the sum and difference identities to find exact values of sine,
cosine, and tangent for o + B and o — [ given information about o
and 3?

e Verify identities using the sum and difference identities?

Exercise 5-2

Rewrite each function in terms of its cofunction.

1. sin 18° 2. cos 42°

6. cot £ 7=

6

3. tan 8° 4. csc 100° 5, sec —

@) e
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Simplify each expression.

cos 635° b T sin25°
11. —— 12. tan — tan — 13. 20° 70° e
S 25° My o c0s285°
15. sin oL sec i 16. cos?25° + cos?65° tan?8° — csc282° 18 oG
) 5710 ’ . " 1 — cos260°
3
19. tan 40° tan 50° 20. tan 19° tan 71° 21. sec — sin — 22. cot — cot =
6 3 5 10
3
23. sin?10° + sin?80° 24. tan?25° — csc?65° 25. seCZ% — (:012% 26. coszg + cosZ%

Use the sum and difference identities to find the exact value of each of the following. Observe that each value is the sum or

difference of values chosen from %(30"), %(45"), and %(60“’).

T b 5w 5 T Wi

: — 2 = . sin — : = . sin— . tan —
27. Cos T tan ) 29. sin 2 30. cos T 31. sin 2 32. tan 7
33. sin 15° 34. tan 15° 35. cos 105° 36. sin 105° 37. tan 75° 38. cos 15°

Each of the following problems presents information about two angles, o and B, including the quadrant in which the angle
terminates. Use the information to find the required value.

39. cos o0 = 4, quadrant I; sin B = 2, quadrant I. Find cos 0. = —1%, quadrant IT; sin B = <, quadrant II. Find
sin(o + B). cos(o — B).

41. sin o = 73, quadrant IT; cos B = —<, quadrant IIL 42. sin oo = —%, quadrant IV; sin B = —1, quadrant IV.
Find tan(o — [B). Find sin(o + B).

43. sin o = —%, quadrant IV; cos B = . quadrant IV. 44. cos o = —% , quadrant IT; sin B = —& , quadrant IIL
Find cos(at + B). Find sin(o. — B).

. , | 2 . NE
45. sin o0 = %, quadrant I; cos B = —+, quadrant IIIL. 46. cos o0 = =l quadrant I'V; sin § = — quadrant

Find ~ B).
SR S III. Find tan(e. + B).

47. sin o = 4, quadrant I; tan f = L quadrant I. Find tan o0 = <, quadrant I1I; sin B = —+ | quadrant IIL.
sin(a + B). Find cos(a — B).

49. cos o = 5, quadrant IV; tan B = —<, quadrant IV. 50. cos o = 4, quadrant I; cos B = ﬁ , quadrant TV.
Find tan(c. — B). - 2

Find sin(ct + B).

51. tan o0 = 2, quadrant ITI; cos B = -% , quadrant IL. 52. sin o = —8 | quadrant I1I; tan B = — | quadrant IV.
Find cos(oc — B). Find tan(o + B).

53. sino = %, quadrant I; sin B = —1, quadrant III. Find 54. cos o = f% , quadrant IIT; cos B = —& , quadrant III.
sin(ot — B). Find cos(o + B).

55. cos oL = —72 , quadrant IT; sin B = % , quadrant II. 56. cos o = —%, quadrant IIT; sin B = 1, quadrant II.

Find tan(o. + B). Find tan(o — B).

Use the sum and difference identities to verify the following identities.

57. sin{t — 0) = sin © 58. sin(mw + 8) = —sin 0 59. cos(m — 06) = —cos 8

60. cos(m + 0) = —cos O 61. tan(mt — 0) = —tan 0 62. tan(w + 0) = tan 0

63. Use the sum formula to show that the sine function is 64. Use the sum formula to show that the cosine function
2n-periodic; that is, that sin(6 + 271) = sin 0. is 27-periodic; that is, that cos(f + 2w) = cos 6.

65. Use the sum formula to show that the tangent function
is m-periodic; that is, that tan(f + w) = tan 0.
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The following identities are important because they express a product of factors as a sum of terms. Verify each identity.

66.
68.

F7 A picture on a wall is 2 feet
bued tall and 6 feet above eye level;
see the diagram. Compute the exact
value of sin(o. — B).

sin ¢ cos B = F[sin(ee + B) + sin(o — B)]
cos o cos B = —;‘[cos(ot + B) + cos(or — B)]

67.
69.

71. | Referring to the figure, find

cos o sin B = +[sin(c; + B) — sin(ct — B)]
sin o sin B = S{cos(cx — B) — cos(a + B)]

72. F ™ Use the identities for sin(ct +

b (a) the exact value of tan o,
and (b) use this to find the exact
value of x. Hint: Compute tan(ot +

b=d B) and cos(a + PB) to find sin 6
in the diagram.

4

45°).
T Kl
o
5
20'
N
45° }(_
] [k

g

" The following problems are designed to show that the sum and difference identities for sine and cosine [2], [3], and [4],
=4 and the cofunction identities, [5] through [10], are true, using the fact that identity [1] is true. The problems are in the
necessary logical order.

73.

4.

75.

Use identity [1], cos(ce + ) = cos ae cos B — sin @ sin
B, to verify identity [2], cos(oc — B) = cos @ cos B +
sin o sin B. Do this by replacing B by (— ) in the identity
for cos(o + B) and simplifying, using the even and odd
properties for the sine and cosine functions.

Verify the identity [5], cos(% = G) = sin 8, by using

b
identity [2], letting o = o and B = 0.

The identity [6], sin(% — 9) = cos 0, is really the same
as identity [5]. Show this as follows. Let o0 = % — 8,

T L

so that 6 = R Replace 5 6 by o in the left
member of identity [5], then replace 6 in the right
member by % — ¢ Then observe that ¢ and 0 are ar-

bitrary values, so the result can be rewritten in terms of
6.

Verify identity [3], sin(ct + B) = sin 0. cos B + cos o

77.

78.

sin B, as follows.

. T
sin 6 = cos( ) B)

sin(ar + B) = cos[% — e o B)]

This is identity [5],
which we know
is true

Replace by o + B
. hid T
sin(ax + B) = cos[(; — OC) — B} Regroup TG B

Now use identity [2] to expand the right member of this
equation, then apply identities [5] and [6] to simplify the
result and obtain identity [3].

Use the identity [3], sin(ot + B) = sin o cos f + cos o
sin B, to verify the identity [4], sin(ct — B) = sin o cos
B — cos « sin B. Do this by replacing B by (—p) in
identity [3].

T
Verify identity [7], tan(j — B) = cot B using the fact

s x

that tan x = ;
08 X
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79. Verify identity [8], cot(

78 for guidance.

) = tan 8. See problem 81. Verify identity [10], csc(—;t— — 8) = sec 0. See problem

80 for guidance.

80. Verify identity [91, sec(% = e) = csc 0 using the fact

1

cos x

that sec x =

5-5 The double-angle and half-angle identities

B Example 5-3 A
y
— /21 T

X

Double-angle identities

Some more important identities are the double-angle identities. Recall that
if we multiply a value by two we say we double the value.

Double-angle identities
[1] sin 20 = 2 sin ¢ ¢os o [2-a] €os 20, = COS2¢ — SinZo
[2-b] cos 2o, = 1 — 2 sino

2 tan
e [2-c] cos 200 = 2 cos?o — 1

3 1 =
Blends o

Observe that we present three identities for cos 2a. This is because identities
[2-b] and [2-c] get so much use in the development of other identities.
The proof of [1] is as follows.

sin(or + B) = sin o cos B + cos o sin B Sum identity from section 5-2
sin(ot + o) = sin ¢ cos & + ¢os ¢ sin o letB=a
sin 20t = 2 sin ¢ cos o o+o=2a

The verification of the remaining identities is left for the exercises. They

are done in a similar way, starting with the identities for cos(ot + B) and
tan(or + [3).

1. If sin 8 = —% and @ lies in quadrant 111, find exact values of sin 28, cos
20, and tan 26.

First construct a reference triangle for 8 to obtain any required
trigonometric function values for that angle.

sin 260 = 2 sin 0 cos 6

= 2(—1)(H£) sin § = 7%;@3 9= _\«"2'1

5 5 5
4./21
25
cos 20 = cos?@ — sin?

=(_E)2_(_£)2=2__4_=_11

5



The Double-Angle and Half-Angle Identities

Section 5-3
2 tan 6
tan20—-——1_tan29
> 2) 4
V21 V21
= . -
1_(1 iz
<21 21
i
_J21 4 21 a7
17 o1 17 17
2

tan 20 could also be obtained from tan 26 =

2. Find an identity for tan 30 in terms of tan 0.

tan 30 = tan(20 + @)

tan 20 + tan 0

1 — tan 26 tan 0
2tan 0
1 — tan20

2 tan

I—~—1 __tanezetanﬁ

~ 2tan § + tan 6(1 — tan20)

= tan20) — 2 tan20

_ 3tan 6 — tan’0

1 -3tan’

+ tan 6

Half-angle identities

185

sin 260
cos 20
30=20+0
t + 1
tan(o + B) = M

1—tanotan p

2tan @

Replace tan 26 by =
b

Multiply numerator and
denominator by (1 — tan26)

Combine

A further set of important identities is the half-angle identities.

Half-angle identities

4 sinS = /1—"—2“-’5—‘3 [6-2]
cos—;- = /H%E [6-b]

[6-]

1 — cos a
1+ cosa
sin o

1+ cos o

T ==coe of
sin o

—
Q
=
I
|+

&
=

ST IENT E RN
Il

o+
{e}]
=3
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We verify identity [5] as follows:

2cos?® — 1 = cos 260 Identity [2-c] above
2¢cos?0 =1+ cos 28
2hag 1+ cos 28
2
o 1+ coso

o
= Replace 6 by =

2
o 1+ cosc
cos 7 =+ —-—2— Take the square root of each member

The verification of the remaining identities is left for the exercises.

The choice of plus or minus in identities [4], [5], and [6-2a] depends on
the quadrant in which the angle in question terminates (using the ASTC rule
from section 2-3). It is only possible to determine the quadrant if we have
information about the measure of the angle. To see why, consider figure 5-1.

90°
135° y y

o7

2
630°

Figure 5-1

]
I£180° =6 = 270° then 90° = > = 135°; in this case, 0 terminates in quadrant
]
III and ? terminates in quadrant II. However, if 540° = 8 =< 630° then

0 ]
270° = = = 315°. In this case, 8 also terminates in quadrant III but ? ter-

minates in quadrant I'V.
These identities have applications such as those shown in example 5-3 B.
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W Example 5-3 8 1. Use the fact that 22.5° is one half of 45° to find the exact value of sin

29.5¢.

sin 22.5°

o [1—cosa .
sin— =+ |——— o = 45°
2 Y 2

We know sin 22.5° > 0, so choose plus

3
2. cos O = ? and %t < @ < 2x. Find the exact value for cos £ .

3

3n 0 0
Since i <0 < 2 — £ 7 < T, SO —2— terminates in quadrant II, where

4
the cosine function is negative.

cosi#— /1 + cos 6
2 2

1+
2

Il

2.5

5

. . 6 : :
Choose minus since = terminates in quadrant Il

]
where cos e <0

iy 3
Replace cos 8 with &

~EE= V- B

=

It is important to understand how to rewrite identities with different forms of
the argument. For example, the following identities are all the same; the ar-
gument of each is shown in different forms.

[1] sin 200 = 2 sin oL cos O
sin 40, = 2 sin 20 cos 200

’ . o
sino = 2 sin— cos —
2 2

Example 5-3 C illustrates.

identity [1] of the double-angle identities
Replace o in [1] by 2a

Replace o in [1] by %
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W Example 5-3 C Rewrite each expression as an expression of the form a sin x, a cos x, or
a tan x, for appropriate values of ¢ and x.

1. 2 sin 46 cos 40
Compare
[1] 2 sin o cos o = sin 201
2 sin 40 cos 40

We can see that we should replace o by 46 in identity [1] to obtain
2 sin 40 cos 40. Then,

2 sin o cos oL = sin 20 Identity [1]
2 sin 40 cos 40 = sin 2(40) Replace by 46
= sin 80
Thus, 2 sin 48 cos 40 = sin 86.
2 4 tan 20
" 1 — tan?20
__2_tan_a = tan 20 Identity [3]
1 — tan?q
4 tan ¢ ,
m = 2 tan 20 Multiply each member by 2
% = 2 tan 40 Replace o by 26
3. c0s?80° — sin280°
Compare
cos?a — sinZor = cos 200 Identity [2] of the double-angle identities

cos280° — sin?80°

Since 80° replaces o, we know that cos 2c becomes cos 2(80)° =
cos 160°. Thus, c0s280° — sin280° = cos 160°. ||

A similar idea is illustrated in example 5-3 D.

W Example 5-2 D Find a value of 0 for which the statement sin 110° = 2 sin 0 cos 8 is true, then
rewrite the statement replacing 6 by this value.

Compare

sin 110° = 2 sin 6 cos 6
sin 20 = 2 sin 0 cos B
Let20 = 110% s0 8 = 55°
The statement becomes sin 110° = 2 sin 55° cos 55°. |
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The identities of this and the previous sections may be combined to verify
new identities.

Verify the following identities.

2 tan 6
1. sin20 = ——
1 + tanZ6
It is best to work with the right member since it is more complicated.
2 tan 0 tan 6 it i .
T o e = ano. + = Seco.
1 + tan?@ sec?f
=2-tan B cos?@ cosa=
sec o
sin 6
=2 cos%0
cos 0
: 1
=2sin 0 cos 6 —— . c05%8 = cos 6§
cos 8
= sin 20 sin 20 = 2 sin . €os &

2. sin 46 = 8 sin 0 cos?0 — 4 sin 6 cos O
Although the right member is more complicated, it is easier to begin with
sin 46 and expand this expression.

sin 40

sin[2(20)]

2 sin 26 cos 260 Use sin 2ot = 2 sin ¢ cos o, with o = 26

= 2(2 sin 0 cos 0)(2 cos?d — 1)

= 4 sin O cos 0(2 cos? — 1)

= 8 sin O cos*@ — 4 sin 6 cos 8 EE|

Mastery points

Can you

e Write the double-angle and half-angle identities?

e Use the double-angle and half-angle identities to find exact values of
sin 20, cos 26, tan 28, sin % cos -g— , tan % ?

s Use the double-angle and half-angle identities to derive new identities
and to verify given identities?

s Rewrite certain identities as a trigonometric function of k8, k an
integer?
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Exercise 5-3

Use the identities of this section to rewrite each expression as an expression of the form a sin x, g cos x, or a tan x, for
appropriate values of a and x.

1. 2sin %:— cos % 2, 2 5in.52° cosH2° 3. cos?3m — sin?3x 4. 2 cos?5m — 1
2 6 tan 10° n
i
5.1 - 2sin®— B —— L 21— — 4
2 sin 0 x 7 ! — a210° 8cos >
1 — tan®* —
9. 2 sin 66 cos 60 10. 4 sin 26 cos 20 11. 6 cos?58 — 3 12. 8 cos?306 — 4
]
10 tan 30 by
ja, — 14 ————— 15. 2 — 4 sin?70 16. + — sin?20
1 — tan?39 0 2 i
I —itande——
2
- 0 . 8
17. 3 cos?38 — 3 sin?30 18. 2 cosz? -2 smzaﬂ

Find a value of 6 for which each statement is true.

4 r ) I em 5w i
19. sin 140° = 2 sin 0 cos 0 20. sin 0 cos 8 = = sin 5 21. cos ? = cos?0 — sinZd
4 tan 0 o .
22. 2 tan 86° = ——— 23. 3cos 70° = 6 cos?® — 3 24. cos 560° = 1 — 2 sin20
1 — tan?9

. 1 —cosB 1 — cos 46° 1 T
- ¢ = f— ; = |— 27 8= f—[1+x =
25. sin 10 > 26. tan 6 I coe 4G cos 2 1+ cos i
T 1 2 1 —cos @ 1+ cos B
28. sin— = —_— — i e e % 00 =
8. sin 6 / 5 (1 — cos 8) 29, tan p <m0 30. cos 4 f—2

Find the exact value of sin 26, cos 20, and tan 26 for each of the following.

3 b 12 3n 4 7
.5infl=—,0<0<— . si = —— < i<= : = - —<f8<
31. sin 6 5 ,0< o > 32. sin @ 13,J'l: 0 = 33. cos 6 ) T

3 3n 8 3n ] 3n
34. t: = —-—,— << 35. = == L8 = — i = — << —
ane P 0 <2m 5. ¢csc 6 5,71: 0 > 36. tan 0 12,'11: 0 >
; .0 0 6 .
Find the exact value of sin 5 cos o and tan B for each of the following.

5 3T T
37.secf= —— m<h <= =-J/15—<p<
37. sec 2,11: 0 > tanB ' 6<n

3 13
39. cotﬁ=—2,?n<e<2n 40. cos9=z,§<6<2ﬂ:

Use the half-angle identities to find the exact value of sin 8, cos 6, and tan 6 for the following values of 6.

T T S5n
41. 15° or— 42.) 22.5°, or — 43. 75°, or —
"1 42 g 12
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Use the sum/difference identities (from section 5-2) and the results of problems 41 and 42 to compute the exact value of the

following. Observe that 37.5° = 15° + 22.5°

sin 37.5° 45. cos 37.5°

47. Find sin 7.5°; see problem 41.

Verify the following identities.

46. tan 37.5°
48. Find cos 7.5°; see problem 41.

49, sin 28 + 1 = (sin ® + cos 8)2 50. cos 20 + 2 sin20 = 1 51. cos*® — sin*® = cos 26
1 + cos 26 1 + cos 26 2 tan 8
52, cot )= ————— 53, —————— = cot® 54, tan 20 = ———
0 sin 20 *T—cos20 0 an 2 — sec’d
2 20
55. cot 0 — tan § = ——— 56. 2 csc 20 = tan 0 + cot 0
sin 26
57. sin 26 — 4 sin®*0 cos & = sin 26 cos 26 58. cos 40 = 1 — 8 sin20 cos?0
2 2 cos’8 2(tan 6 + tan®
59 cacdl = ———— 60. L = 2 cos 0 + sin 20 61. tan 20 = Lienb tiiduy)
1 — cos 20 1—sinf 1 — tan0
1 — tan?28 il
62. cot 48 = == 63. 2csc20sinBcosB =1 64. sec20 = ———
2 tan 26 1 — 2 sin?0
1 — tan?6 csc B — cot © 0 0 1 — cos?6
. = — 66. ——— = 0 tan? — 67. 2 = ——————
s EE 1 + tan6 1+ cos @ 5¢ 2 cos 2 2—2cosH
0 8 0 0 sin?@
: T s B e ) 4 2 ¥ g it
68. sec’f — cos 2 tan2 + sin’ > 69. cos 2 sin 2 1
0 0 0 (] cos?8 + 3 0 2
70. sin®— — 2—=— 0 ", 2t 2 — = 72. tan? — = — —
0 s 2 cos 2 e Al fum 2 = 2 2+ 2cos 8 2 1 + cos 6
0 csc B —cot @ 0 6 . 1+ secH 0
73. sinz? = 74. 4 Sin27 COSZ? = sin%@ 75. S%e; = 2 c032?
2 ]
76. tani+coti=_— 77. 2cost— —cos 0 =1
2 2 sin 6 2

78. Show that sin 38 = 3 sin 8 — 4 sin?0.

79. 7 Find an identity for cos 30 in terms of cos 0. See
bed problem 78.

E z Find identities for (a) sin 46 in terms of sin 6 and
=24 cos 0 and for (b) cos 46 in terms of cos 6.

81. F ‘3]‘ Find identities for (a) sin 56 in terms of sin 6 and
k=4 for (b) cos 56 in terms of cos 6.

82. Finding the center of gravity of a certain solid involves

o . a1 —cos2a

e expression jga| —————

= Y\ 1 — cos a

equivalent to -g—a(l =+ cos o).

. Show that this is

1 -
§3. Show that tan — = — > & (i 3entity [6-c]). Do this
2 sin O

as follows. Let % = 0, so that o = 26. Replace % and

o in the identity. Then, simplify the right member; the
most direct route will use cos 26 = 1 — 2 sin?8.

o sin o
4. Sh that tan — = —— (i i -b]).
84. Show that tan > e (identity [6-b]). See the

previous problem.

]
85. ™ a. Use the identity for sin — with 6 = 30° to find
eid 2

the exact value of sin 15°.
b. Use o0 = 45°, B = 30° and sin(x — B) to find the
exact value of sin 15°.
¢. Show that the values in (a) and (b) are the same. You
may find useful the principle that if @ > 0 and
b > 0, then @ = b? implies that a = b.

86. a. Find tan 15° with the identity for tan % (half-angle

identity [6-a]), with o = 30°.

o

i sin
b. Rewrite tan 15° as =
cos 15

[5], with o = 30° to compute tan 15°.
¢. Show that the values in parts a and b are the same.

87. Verify half-angle identities [5] and [6-a].
88. Verify the double-angle identities [2-a], [2-b], [2-c], and
[3].

and use identities [4] and
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¢ il
In the figure, 8; = 8,. Use the identity for cos =5 to find 90. In the figure, 8; = 8,. Use the identity for tan > to find
the length of side x. the length of side x.

The following four identities are important in some situations because they relate the sums and differences of trigonometric
expressions to the products of trigonometric expressions. Verify each identity.

91. sin 20 + sin 2B = 2 sin(a + B) - cos(a — B) 92. sin 200 — sin 2B = 2 sin(ot — PB) - cos(ot + B)
93. cos 200 + cos 2B = 2 cos(a + B) - cos(a — B) 94. cos 200 — cos 2B = —2 sin(or + B) - sin(o — B)
(Hint: Convert everything to cosine.) (Hint: Convert everything to cosine.)

95. Professor Gilbert Strang of the Massachusetts Institute
of Technology has shown! an interesting relationship be-

. 1 1
tween the identity cot 20 = —| cot 6 — and the
2 cot
subject of chaotic behavior in iterative systems. Verify 1¢‘A Chaotic Search for i,”” The College Mathematics Journal,
this identity. Vol. 22, No. 1, January 1991.

54 Condjitional trigonomeftric equations

Conditional trigonometric equations were introduced in section 1—4, and were
revisited several times in chapter 2, as well as in section 5-0. In this section,
we examine these equations in a more general way, and examine using the
graphing calculator to find approximate solutions.

Remember that whenever we compute an inverse trigonometric function
to solve an equation we use the absolute value of the argument, which gives
us the reference angle of the answer.

Primary solutions

In this section we solve for values that are in both degree and radian measure.
We determine all solutions that fall between 0° = x < 360° or, in radian
measure, 0 = x << 21. We call such solutions primary solutions. Example
5—4 A illustrates.
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B Example 5-4 A Find all primary solutions for the following trigonometric equations. Find the
solutions in degrees (nearest tenth) and radians (four decimal places).

1. 5sino=—2

Ssino = —2
sino = —%

Since sin ¢ << 0 all solutions are in quadrants IIT and IV.

o = Sin*I% As noted earlier we use | —% ‘
o' = 23.6° or 0.4115 radians Degree mode, radian mode
Degrees:

o = 180° + 23.6° or 360° — 23.6°
Radians:
o=m + 04115 or 2w — 04115
Thus, in degrees o =~ 203.6° or 336.4°; in radians o = 3.5531 or 5.8717.

2. cos0=—1

2;
= 1 cos & < 0 so all solutions are in
cos 8 = —7 drants Il and II
quaarants il an
0’ = cos~ 1+ Use the absolute value of —4
, 5 71 ; Exact values, obtained from the unit
6" = 60° or ? radians circle, figure 2-18
T In guadrant Il § = 180° — 8'; in gquadrant

9=180°i60°orni? e =180°+ 8

2n  4m
6 = 120° or 240° (degrees) or 3 or 3 (radians).

3.2cos?@ —cosB—1=0
The left member is quadratic in the variable cos 8. It can be factored. If
this is difficult to see, try substitution as illustrated in section 5-0.
2cos’® —cosB —1=0
(2cos® + 1)(cos 8 —1)=10
2cos0+1=0o0rcos®—1=0 Zero factor property

cos 8 = —1 cos @ =1
0’ = cos™lt 87 =icos1
i .
' = 60° or 3 0" = 0° or 0 (radians)

6 = 120° or 240° (degrees)

2 4
0= ?n or?Tt (radians); 8 = 0° or 0.

In degrees, the solutions are 0°, 120°, and 240° and in radians they are 0,

2 4
—n,and—ﬁ.

3 3
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4, tan?x + 4tanx = 1
tan?x + 4tanx — 1 =0
This is quadratic, but it will not factor. Solve it using the quadratic
formula, as presented in section 5-0.

—4+ 42—4(1)(_1) a=1b=4c=-1in

tan x = —-bt /b — dac
2(1) oy
-4+ /20 —-4x2./5 =
= = b = ST =
2 2
=-2+./5
tanx = -2 + /5 tanx = -2 — /5
X = tan~{(=2 + /3) x =tanl|-2 - /5]
= 13.3°, 0.2318 (radians) = tan~1(2 + /5)
x is in quadrants I or III since = 76.7°, 1.3390 (radians)
— ﬁ > (. x is in quadrants IT or IV since
x=13.3° or 180° + 13.3° —2 =SS =0.
=0.2318 or w + 0.2318 x=180° — 76.7° or 360° — 76.7°
=1 — 1.3390 or 2n — 1.3390

Thus, x = 13.3%, 193.3°, 103.3°, and 283.3° or 0.2318, 3.3734, 1.8026,
and 4.9442. )

Using a graphing calculator
to help solve an equation

How the solutions of an equation relate to its graph

To see the relationship between solving an equation and its graph, consider
the equation 3 sin x = 2. This is equivalent to solving 3 sinx — 2 = 0. Now,
consider the function y = 3 sin x — 2. Solving 3 sin x — 2 = 0 is equivalent
to finding all values of x that make y = 0 in the function y = 3 sin x — 2.
Figure 5-2 shows the graph of this function for the interval 0 to 27 (graphed
with the calculator in radian mode).

v /\ ™
1 1 1 i

[Y=]3 [sIN] [XIT] [=] 2
[ RANGE 0,6.28,1.57.—5.1.1 |

L J
Figure 5-2
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C
7
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Figure 5-3
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The x-coordinates of the points where the curve crosses the x-axis, marked
a and b, are x = 0.7297 or 2.4119. Because the value of y is zero at these
values of x, we also refer to these x-values as zeros of the function.

Thus, if we are solving an equation in which one member is zero, the
solutions correspond to the x-intercepts of the graph of the nonzero member
of the equation. The graph in figure 5-2 shows that there are two primary
solutions.

Using the TI-81 trace function to find approximations
to solutions

The Trace function in the calculator can be used to find an approximate value
of a solution. For example, graph the function as shown above, then select
. A blinking box appears on the function toward the center of the
screen. By using the left and right cursor keys E and ‘I] we can cause the
cursor to trace the function, all the while indicating its x- and y-coordinates
at the bottom of the screen. By ‘‘tracing’ to the point b we see that x is about
2.286 and y is about 0.057. Of course if we were at the exact solution, y would
be zero.

By zooming in (using 2) and reselecting TRACE we can get a
better approximation to the actual value, and by repeatedly zooming in again
and tracing again we can obtain more and more accurate values for x.

This method of finding approximations to solutions is tedious and inef-
ficient. We next show a much better way to find approximations to solutions.

The TI-81 and Newton’s method

There are numeric methods for finding solutions to equations quickly and with
great accuracy by using a programmable calculator. One can write a program
that searches for a zero of a function. This is useful when the function is well
behaved around the zero. For our purposes here, by well behaved we mean
that one continuous, smooth line could be used to draw the graph of the func-
tion near the zero in question. A good method is called Newton’s method. The
Texas Instruments TI-81 calculator handbook presents a program called
NEWTON that implements this method.

Figure 5-3 illustrates how Newton’s method gets closer and closer to a
root. Assume a function f has a zero at c in figure 5-3. Suppose x; is a value
of x near ¢. The program uses the line that is tangent to (i.e., just touches) the
function f at the point (xy,f(x;)) to locate the point x,, which is closer to c.
The program then uses the line that is tangent to the function f at the point
(x2, f(x1)) to locate the point x3, which is even closer to ¢. The program repeats
this until the difference between the last x-value and the newest x-value is less
than a predetermined error value.
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The algebraic way in which the program discovers the tangent line at each
step is left for a course in the calculus. With a little background in this subject,
it is not hard to understand. The program NEWTON can be entered into the
calculator as follows:

(»] ENTER Program edit mode
[2nd] [ALPHA | (Alpha lock)

Enter the keys that correspond to the word N E W T O N. For example, T is

over the key.

Use this after entering the name
NEWTON.

Now type in the program as shown.

Program Keystroke guide

:(Xmax — Xmin)/100—D Xmax is in VARS RNG.

Xmin is in VARS RNG.

—D is [,
:Lbl 1 Lbl is in PRGM CTL.
:X-Y/NDeriv(Y;,D)—R Y, is in Y-VARS.

NDeriv is 8.

“D” is [ALPHA| [.] [ALPHA]
x1].

—Ris [STOR] [x].
:If abs (X-R)=abs (X/1£10) If is in [PRGM | CTL.

= is in TEST ([2nd] [MATH)).
1E10 is 1 10.

:Goto 2 Goto is in [PRGM ] CTL.

R—X Use [ALPHA
[(XIT].

:Goto 1

:Lbl 2

:Disp ““ROOT="" Use [PRGM | /O 1 [ A-LOCK |
ROOT 1

:Disp R

Example 5—4 B illustrates using this program NEWTON to find approximate
solutions to a trigonometric equation.
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B Example 5-4 B Solve the following problems using the programmable calculator.

1. S5sino = —2

This is equivalent to 5 sin o + 2 = 0; find the zeros of the function

= 5sinx + 2.
Graph y = 5 sin x + 2. This is shown above, with Xmin=—.1,
Xmax=6.3, Ymin=—3, Ymax="7. The calculator is in radian mode. Use
the trace feature to position the cursor near the zero between 3 and 4.
Now execute the program NEWTON. To do this, select , select
the number that corresponds to the NEWTON program, and use
to execute the program. The value 3.5531095 appears. This is
one of the zeros.

Graph the function again, select trace, position the cursor near the second
zero, and run the program NEWTON again. The value 5.871668461
appears. This is an approximation to the second zero.

Repeating these steps in degree mode will find approximations to the
zeros in degree mode. Of course Xmin should be something like —10°,
and Xmax about 360°. The results displayed, in degrees, are
203.5781785° and 336.4218215°.

. tan’x + 4 tanx = 1

This is equivalent to tan®x + 4 tan x — 1 = 0. Graph y = tan®x + 4 tan x
4 — 1 with Xmin=-—0.1, Xmax=7, Ymin=—3, Ymax=6.3. This would be
entered as Y;=(tan X)*+4tan X—1. The graph is shown in the figure.
Select trace, position the cursor near the first zero, and run the program
; [ é NEWTON. The value 0.2318238045 appears. This is an approximation
to the first zero.

<
b2

P

N

Regraph the function and repeat the first step at each zero. The values
that appears are 1.802620131, 3.373416458, and 4.944212785.

As in part 1 of the example, redo the problem in degree mode to obtain
the results in degrees. The values displayed are 13.28252559°,
103.2825256°, 193.2825256°, and 283.2825256°. =

Using identities to help solve an equation

When an expression involves more than one trigonometric function we often
use identities to rewrite the equation in terms of a single trigonometric func-
tion. This is illustrated in example 5—4 C.
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B Example 5-4 C Find all primary solutions for the following trigonometric equations. Find the
solutions in degrees (nearest tenth) and radians (four decimal places).

1. tan 6 — cot 6 = 0
tan 6 —cot 8 = 0

‘LaIlB—LEO CotB=—1—wheretanB—r‘O
tan 0 tan 8

tan20 — 1 =0 Multiply each term by tan 6

tan? = 1

tan 6 = 1

T
When tan 8 = 1, 8’ is 45° or T (see table 2—1), so using this fact and the
ASTC rule for tan 0 > 0 we obtain 6 = 45° or 180° + 45°, or % or
b
R
4
When tan 6 = —1, 8’ = 45° or%, but 6 = 180° — 45° or

360° — 45°, or in radians T — % or 2w — %

Thus, the primary solutions in degrees are 45°, 135°, 225°, and 315°
4 S L L

and in radians are -, 7=, 7=, and =

2. 2cos2x — 3sinx—3=0
2cos?2x — 3sinx—3=0
2(1 —sin?x) — 3sinx—3 =0 cos?8 = 1 — sin%0
2—2sin’x—3sinx—3=0
—2sin’x — 3sinx—1=0
2sin?2x+ 3sinx+1=0
2 sinx+ D(sinx + 1) =0

2sinx+1=0 sinx+1=0
2sinx = —1 sinx = —1
sinx = —4 x = 270° or%r
It 1lxn
= 2107 330% or —, —
x or o
Tt 3¢ 11_1c

The pri luti 21072707, 330° ot — s s :
e primary solutions are or T e -
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Finding all solutions to a trigonometric
equation
We need to take note of the fact that there are an infinite number of solutions
to the equations we solved in the preceding problems. Because the trigono-
metric functions are periodic the set of all solutions can be found by adding
all integral values of the appropriate period (21 or ) to the solution.

This can be illustrated for part 3 of example 5—4 A, where we found that

2n 47

the primary solutions to cos § = —4 are i and 5 (in radians). However, the
cosine function is 27-periodic, which means that cos(0 + 2km) = cos 9 for
any value of 8 and for integer values of k. Thus, the actual set of all radian-

2n 4m
valued solutions for this problem is = + 2km and 3 + 2km, k any integer.

This idea is illustrated in figure 5—4.

We use this periodicity for solving trigonometric equations where the
coefficient of the argument is not 1. In this situation, it is easier to find all
solutions than to find just the primary solutions. This is illustrated in example
5-4 D.

2n
3 1 period
2n v 2r
y=cos x
1 e} h rh 1 K-\n il I Iy ' (I I AX
—— e — =G R
-2n -5 7 =ieanlot T 5 2n 3ns
! 2n 2n 2n !
4n
3
Figure 54

Find all solutions for the following trigonometric equations. Find the solutions
in degrees (nearest tenth) and radians (four decimal places).

1. 3sin2x = -2

3sin2x = —2
sin 2x = —%
Since sin 2x < 0, 2x is in quadrants III or IV.
(2x)" = sin~1%

(2x)" = 41.8° or 0.7297 radians
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Note 1. Do not divide both members by 2 at this point. It is necessary
to find all solutions for 2x before dividing by 2.

2. Although we show the intermediate values above as 41.8°
and 0.7297, it is important to keep the maximum accuracy
of the calculator up to the last step of the problem. Thus,
the calculations that follow are actually performed with the
values |41.8103149] and [0.7297276562 |. All calculators
have the capability to store at least one value in memory,
which should be used to avoid tedious and error-prone
reentry of values.

g {180" + 41.8° or 360° — 41.8° (degrees) 2xis an angle in

 + 0.7297 or 2r — 0.7297 (radians) quadrants lll or IV
Depiss 221.8°, 318.2° (degrees) Primary solutions
3.8713, 5.5535 (radians) for 2x
To describe all solutions we add multiples of the period of the sine function,
360° or 2x.

3.8713 + 2km, 5.5535 + 2kn

We now divide each solution by 2.

_J110.9° + k- 180°, 159.1° + k- 180°
19357 + km, 2.7768 + kn
This describes all solutions to the equation. To find primary solutions for

x we would compute the values above fork = Q0 and k = 1. If k£ = 2 the
solutions are greater than 360° (2m), and if k is negative the solutions are

2y = {221.8" + k- 360°, 318.2° + k - 360°

negative.
X \/g
2. tan — = —
2 T g
X3
2"3
X \/?_a
= = tan—1—
2 3
X T
— | =30°, —
5 5 T I . . X
— = 30°, 210°, or 56 These are the primary solutions for?

The tangent function is n-periodic. Thus, we add integer multiples of
180° () to obtain all solutions.

30° + k- 180° 210° + k- 180° (degrees)

% o+ Im 5 "+ kn (radians)

0| &



Section 5-4  Conditional Trigonometric Equations 201

This describes all solutions. However, 210° — 30° = 180°, and similarly

Tt =
AR T, so the solutions can be described more compactly.

X T
— =30°+ k- 180°, or— + km
2 %
T
x = 60° + k- 360° or 3 + 2kn Multiply each member by 2

All solutions for x are x = 60° + k - 360° or —;E— + 2km.

Equations involving more than
one multiple of the angle

If an equation mixes multiples of values with the values themselves, such as
6 and 26 in example 5—4 E, we can eliminate the multiple value with an
appropriate identity.

B Example 5-4 F Solve sin 26 — sin 8 = 0; find primary solutions.
sin26 —sin® =0
2sinBcosB —sin® =0 sin 2 = 2 sin e cos @

sin 0(2cos® — 1) =0
sind=0o0r2cos®@—1=0

sin® =0 2¢cos8—1=0
cos 8 =&
o o T 51 "
8 = 0° 180°, or 0, @ (radians) 8 = 60°, 300°, or F g (radians)
. b1 5T -
The solutions are 0°, 60°, 180°, 300° or 0, 3 T, S (radians).

Can you
e Solve linear and quadratic trigonometric equations?

= Solve trigonometric equations involving multiple angles?

s Sclve trigonometric equations by applying an appropriate identity?

Exercise 54

Find all primary solutions to the following trigenometric equations. Leave answers in both degrees and radians. All answers
should be exact.

1. tan® + 1 =0 2.5in8—1=0 3.2cos8—1=0 [4]2coso+1=0

5 J/3tan®-1=0 6. cotf+ /3=0 7. csc0+2=0 8. sec8—2=0

9. 3sin?0 -3 =0 10. 3 csc?0 =3 11. sec?0 =1 12. tan?0 — 1 =0
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13. (cos 8 — I)(sinB® + 1) =0 14. (sec B + 2)(csc B —2) =0 15. (2 cos?® — 1)(cot® — 1) =0
16. (3tan?0 — 1)(/3sec® —2) =0 17. sin?0 —sin® =0 18. cos20 + cos 8 =0

19. tan®6 — /3tan B = 0 [20] cos?6 — L cos 6 = 0 21. 2sin%0 + sin 6 — 1 =0

22. cos?0 +2cosB+1=0 23. 2509 —sin 9 =0 24. 2 ¢cos’@ +3cosf =2

25. 2sinfBcos® —sin® =0 26. 2sinBcosB +cos B =0 ﬁtan8c0t8+cot6=0
28. 2 tan®0 cos § — tan?0 = 0 29. tanxcotx =0 30. sinxcosx =0

3l. 2sinx—cscx+1=0 32. 2cosx +tsecx—3=0 tanx+c0tx=—2
2—sinx—cscx=0 35, 2sin®x —cos x = 1 36. 2cos?x —3sinx =3

37. 4 tan?x = 3 sec?x 38. 4cot?x — 3cescx =0 39. sin’x — cos2x =0

40. cot?x + cscZx = 0 2 tan?x sin x = tanZx 42. sin®xcos x —cosx =0

Solve the following equations using the quadratic formula if necessary and the calculator. Find the primary solutions in both
radians and degrees. Round radian answers to hundredths, and degree answers to tenths.

43. 6sin2x — 2sinx—1 =0 44. 3cos?x +cosx—2=10 45. cot’x —3cotx—2 =0
tan2x+5tanx+2=0 47. sec’x — 2secx—4 =0 48. 2 csc’x —cscx — 5 =0
49, tanx + 2secx =3 50. 3cotx—cscx—1=0

Find all solutions to the following trigonometric equations, both in degrees and in radians.

3
51. cosx =+ 52. sinx =1 53. cotx = —/3 54. cosx = =5
2 2
55. sinx=—\/7_ 56. tanx = —1 tanx:I 58. secx:ﬁ
3
59. cscx =2 60. tan — = 1 61. sin— _ 3 62. sin 3x = 0
2 27 2
63. cos 3x = —1 sec%zl 65. 3cot2x = /3 66. 2 sin 3x = —1
67. 2cos 4x = —1 68. —/3 tan 5x = 1 69. 2cos2x +1=10 70. tan20 — 1 =0
3
71. cot20 — /3=0 72. 2 cos 30 = —1 73. 25in 20 = 1 sin%=§
2./3 ) ) 3
75. sec 30 = 2 76. csc 20 = _\Tﬁ 77. ﬁtanI =] 78. cot? = \/?_

Find the primary solutions to the following trigonometric equations, both in radians and degrees. Find solutions in radians to
hundredths, and in degrees to the nearest tenth of a degree, where necessary.

79. cos 26 + sin 8 = 0 80. cos 20 —cos 6 =0 sin 20 +sin 6 =0 82. cos?® — sin20 = 1
0 0
83. cos20 =1 —sin ® 84. cos20 =cos B — 1 8s. sin%= tan? 86. sin;z cos 6
87 2sec€)—csc7—B sine—cse 89 i—cose—l 920 cotB—tani=O
. 2 5 0 § > = s >

91. sin 26 — cos = cos?6

In the mathematical modeling of an aerodynamics problem the following equation arises:

y=xcosAcosB —x?cosAsinB — x*sinA

Problems 92 and 93 use this equation.

@® If A = 0.855, B = 1.052, and y = 0, solve for x FYIfB=07x=2andy= —8, find A to the
bed to the nearest 0.01. keeid nearest 0.01. Find the least nonnegative
solution(s).
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™ A mechanical device is constructed as shown in the diagram. The arm OA moves through angle 6, from 0° to 90°. Two
= positions are shown. Point A moves along a circle of radius 1.0 meters, and point B moves horizontally only. The

distance AB is fixed by arm AB at 1.2 meters. The area of the shaded rectangle is the product of its length and width,

A = Gw.
Y y
A
T T A 4
1.0m 1.0m -
al o w %%
- 5 N
L2
o “ e b,
: X x
O‘ -— Or -— 5

94. Show that A = sin 8./1.44 — sin?8. (The units are

square meters.)
Find 0 when A = 0.5 m?. Round the answer to the
nearest 0.1°.

95. Find A, to the nearest 0.01 m?, when 6 = 0°, 30°, 45°,
60°, and 90°.

Chapter 5 summary

A trigonometric identity is a trigonometric equation
that is true for all permissible replacements of the
variable for which each member is defined.

To verify that a trigonometric equation is an identity we
must show that each member of the equation is
equivalent to the same expression.

* Sum and difference identities for sine and cosine
cos(c. + B) = cos ccos B — sin c sin B
cos(ot — B) = cos o cos B + sin a sin B
sin(o + B) = sin o cos B + cos @ sin
sin(ot — B) = sin o cos B — cos o sin B
tan ¢ + tan

tan(o + B) = 1 :
« To show that an equation is not an identity find a value tan o tan B
for the variable for which the statement is not true. This tan(o — B) = tano —tan f

value is called a counter example.

Reciprocal identities

Fundamental identity of trigonometry

1+ tan o tan B

. i .
* When the sum of two angles is 90°, or > radians, the

1
csc b = = see b= g 8 Sa0 angles are said to be complementary.
1 1 ¢ Cofunction identities
sihf=——m, cos = ——, neg=——- P T
csc § sec 0 o sin 778 = cos § cot;—ﬁ = tan 0
» Tangent and cotangent identities
: b T
. Snd oot G 0 cos(— o 9) = sin B sec(— — B) = csc 6
cos 6° in 0 2 2
&
2

sin?0 + cos?0 = 1
Pythagorean identities
sin20 + cos20 = 1

Useful forms
sin?0 = 1 — cos?0

tan(—xz-— 8) = cot 0

* Double-angle identities
sin 20 = 2 sin oL cos O

costi= 1:— winZ 2 tan o cos 200 = 1 — 2 sin®¢
tan 200 = ————— = 2
sec?d = tan?0 + 1 tan?0 = sec?8 — 1 1 — tano cos 20 = 2 cosat — |
sec?0 — tan?0 = 1
csc?0 = cot?® + 1 cot?8 = ¢sc29 — 1

csc29 — cot?9 = 1

cos 20, = cos?o. — sina
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» Half-angle identities

.o 1—coso o 1 —cosa
sin—=x |—— tan — = £_[————
2 2 2 1+ cosa
o 1+ cosa o sin o
cos— ==+ [——— tan — = ——————
2 2 2 1+ cosa
o

1 —cosa
tan =
2 sin o

» Primary solutions are solutions that fall between
0° = x = 360° or, in radian measure, 0 = x < 2m.

* The trigonometric functions are periodic, so the set of all
solutions can be found by adding all integral values of
the appropriate period (27 or m) to the solution.

Chapter 5 review

[5-1] Show that the trigonometric expression on the left is
equivalent to the simplified expression on the right.

cot 6

cos 8

2. sec O tan 8; sec?0 sin 0

tan2@

3. ———; 5in?0 csct
sec?@ — 1 st ©
csc?e — 1

4, ———; cott
sec?® — 1 i

t.
5. —-CSC(? ane;csc:f)sece
sin 9

6. sin?8 — cos?®; 2 sin?9 — 1

1.

jlese0

Obtain an equivalent expression involving only the sine and
cosine functions. Simplify the resulting expression.

7. csc O — sec 6 8. tan 6 + cot 0

sec 0 1 —coth

“tan § — cot § Tesch+ 1
sec?d — 1 1 — cot2d
sec?0 T esc?9 — 1

Verify that each equation is an identity.

13. cscx —tanxcotx =cscx — 1

14. sin?x + sinZx cot?x = 1

15. cse?x — sec?x = csclx sec2x(cos®x — sinZx)
1 sin x

16.

cscx—cotx 1 -—cosx
17. tan x — 1 = sec x(sin x — cos x)

P
escio— 1
18. e cos?x csctx
sin%x
1 1

19. + = —2 tanZx

1L +escx 1~—cscx
20. sin?x + sin%x cos?x = 1 — cos*x

secZx

21. tan*x + tan’x =

cot2x

1 —cotx sinx—cosx

22,

1+cscx  sinx—+ 1

Show by counter example that the following equations are

not identities.

23. sin® +cos B =1
—
“coth —cscH

24. tan B — sinBcos 6 =0

= sec 0

[5-2] Use the sum and difference formulas to find the exact
value of the following.

T T
: = 27. ——
26. cos T tan( 12)
28. sin 105° 29. tan(—15°)
30. Given sin ot = 3 and cos B = —%, o and B lie in
quadrant IT, find
a. sin(o — B) b. tan(o + B)

3 ik
31. Given cos o = —% and sin § = ~ o lies in

quadrant IT and B lies in quadrant I11, find
a. cos (o0 + B) b. tan(o. — B)
32. Givensin 0. = —i5 and cos B = &, o lies in quadrant
IV and B lies in quadrant I, find
a. sec(or + B) b. cot(ax — B)

Using the sum and difference formulas, verify each of the
following identities.

sinfo. + B)  cot o + cot B
" cos(e — B)  cotocotP + 1

34. cos(%rc + 9) = gin 6

35 sin(% = G) = %(cos 6 — sin 6)

6 cos(a + B)

L = cot O — tan
sin ¢ cos B P



1
37. Using the identity cot & = and the identity
tan o

tan(c + B), show that cot(0 + ©) = cot 6.

[5-3] Using the double-angle identities, find angle 0 that
makes the following statements true.

38. cos B = cos?62° — sin?62°

39. sin © = 2 sin 57 cos ST

40. tan 8 = 41. cos 24° =1 — 2 sin?8

0 i
42. Express 6 sin - cos as a single trigonometric

function of a constant k times 6.

43. Express as a single trigonometric function

4 tan
1 — tan240
of a constant k times 6.
44. Given cos 6 = _Tsi! 0 lies in quadrant III, find the
exact value of a. tan 20 b. sin 20

45. Given sin 6 = % , 0 lies in quadrant II, find the exact
value of a. cos 20 b. tan 20

46. Giventan 8 = —<, 8 lies in quadrant IV, find the
exact value of a. csc 26 b. cot 28

Verify the following identities.

47. sin 2x — cos x = cos x(2 sinx — 1)
48. 1 + cos 2x = 2 cos?x
cos 2x 1
49, —=— =

2 —4sin’x 2 cot?x — 1
51. sin 2x — cos 2x = 2 cos x(sinx — cos x) + 1

= 2cotx
50. tan 2x =

Using the half-angle identities, find the exact value of the
following.

52. tan 22.5° 53. cos(—15°)
5w 3n
54. sin — 55. =
sin 5 cos 5

b
56. Givcncosx=%,0<x<—2‘,ﬁnd

= x
a. sin — b. tan —
2 2

. i 5 3

57. Givensinx = —%, @ <x<?, find
o x
a. sec — b. cot—
2 2
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58. Findsiniifcosﬁ = —landn<9<3—m.
2 18 2

Verify the following equations are identities.

0 1+ cos® 5] 1}
50, oot = — I Lo
) S8 e 2
o 2
61, tan— st ==
an C§C2 Sme

[54] Solve the following conditional equations for

T
0 = <=—.

62. 2sinx—1=0 63. 3cot’x —1=0
64. (sinx — 1)(2cosx—1)=0
65. (4sin?x — I)(secx —2) =0

Solve the following conditional equations for 0° = 6 < 360°,

66. cot?d —cotB =0 67. sec’8 — 4 =0
68. 2cos?® —cosB —1=0
69. 2sin@ —csc®+1=0

70. 2 cot B cos § = cot?0 71. 2sin*0 — 3 cos 6 =3

Find all solutions in radians to the following equations. Use
the quadratic formula and calculator where necessary (round
such answers to the nearest hundredth).

72. cos’x —1=0

74. sinx —2cscx =3

73. tan*x — 3tanx — 3 =0
75. sec’tx — secx = 2

Solve each of the following equations for 0 = x < 27 (pri-
mary solutions, radians).

76. 2sindx =1 77.2cos%—\/§=0

1
78.\/§tan%+1=0 79. sm%:?

Solve each of the following equations for 0° = 0 < 360°.

0
80. 2 cos 50 =1 81. 3 tarﬁ: =9

82. tan 60 — cot 66 = 0 83. cos 6 +sin20 =0

Find all solutions in radians to the following equations. Find
solutions to the nearest hundredth, where necessary.

84. cos%— sinx =0

85. (cot4x — /3)(csc 3x + 2) = 0
86. 3sin?2x —sin2x—2=0
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Chapter 5 test
1.

Show that the expression csc?x sin x cos x is equivalent
to cot x.

CsCx — seCc x

. Write the expression ———— as an expression in

tan x + cot x
sine and cosine and simplify.

Show by counter example that the equation cot x — 2
tan x = 1 is not an identity.

. Given cos o = —% and sin B = £, o lies in quadrant

IIT and B lies in quadrant IT, find sin(ct + B).

5. Givencos x = —% , x lies in quadrant II, find sin 2x.

5 T X
6. Givencscx = 3, — < x < T, find tan —.

2 2

. Using the appropriate half-angle formula, find sec 22.5°.

. Verify the following identities.

1+ cotf i
a ——=3in 0 + cos 0
csc 0
cosZx — 1
b. T= -1
sin’x

C. cos(e - 3_7r) = —sin 6
2

d. cos 2x — sin 2x = —1 + 2 cos x(cos x — sin x)

9. Solve the equation 4 cosx — 1 = 0 for 0 < x < 2x.

10. Sclve the equation (cot 8 — -/3)(sec 0 + 2) = 0 for
0° = 0 < 360°.

11. Find all primary solutions, in radians, to the equation
6 sin®x + 5 sin x — 1 = 0. (Use the quadratic formula
and the calculator if necessary.)

12. Solve the equation sin?50 — 1 = 0 for 0° < 0 < 360°.
13. Find all primary solutions, in radians, to the equation

sec% —-2=0.

I+l —a?
—-—2—m , find sin 2x. (Hint: Use sin®2x

= 4 sin®x cos2x.)

14. If sin?x =



Oblique Triangles
and Vectors

In this chapter we examine several applications of the trigonometric functions.
We begin with the law of sines and the law of cosines. These are theorems
that permit the solution of triangles which are not right triangles. (Recall that
we examined the solution of right triangles in section 1-3.) We then introduce
the subject of vectors, which has wide application in science and engineering,
and which, in a generalized form called linear algebra, has applications in the
social and economic sciences as well.

6-7 The law of sines

A triangle in which none of the angles is a right angle is called an oblique
triangle. One method for solving certain oblique triangles is the law of sines.
The following paragraphs develop this law.

First, we observe that af least two of the angles in every triangle are acute.
If only one angle were acute (less than 90°) then the other two would be obtuse
or right (greater than or equal to 90°). This is impossible since the sum of
these two angles would be greater than or equal to 180°, and thus the sum of
all three angles would be greater than 180°.

207
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Now we consider any triangle ABC, and label two of the acute angles A
Cxy and C. Angle B may be acute, obtuse, or right. We place the triangle in a
i coordinate system so that angle B is in standard position. Figure 6—1 shows
a | % sketches for the cases where B is (a) acute, (b) right, and (c) obtuse.
¥ o From vertex B we construct a line segment perpendicular to side AC and
L7 label this line 4. From what we know about right triangles we can see that, in
B z o all three cases,

h h
— and sinC =—
C a

(a) sin A =

If we solve for & in each, we obtain
h=csinA and A=asinC

Since ¢ sin A and a sin C equal the same quantity (%) they themselves must
be equal. Thus,
csinA =asin C
csinA _asinC

Divide both members by ac
ac ac

sinA _sinC

= Remove common factors
a c

We now extend the relation above to include angle B and side b. Let (x,y) be
the coordinates of the vertex of angle C. From what we know about the trig-
onometric functions for any angle in standard position (chapter 2), we see that

X sin B =< or y=asinB
a

(c)
Figure 6-1

From what we know about right triangles,
sin A = % or y=bsinA

Thus, asin B = y = b sin A, so

asinB = bsin A
sin A _sinB

a b

Putting these results together we have the law of sines.

The law of sines
In any triangle ABC,
snA _sinB _sinC
g B E

Corncept
The ratio of the sine of an angle to the length of the side opposite that
angle is the same for all angles in any triangle.

Note We only use two of the three ratios at a time.
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In the rest of this chapter we always assume side a is opposite angle A,
side b is opposite angle B, and side c is opposite angle C.

Solve the triangle ABC. Round off answers to tenths.

a=132,A=213% B =614°

It is a good idea to make a table of values:

a’ 132, A: 21.3°

b9 B: 614°

e g (B

We can find C first.
C=180°—-—A—B

180° — 21.3° — 61.4°

= 97.3°

Now we fill in the law of sines.

The sum of the measure of all three angles is 180°

sinA _ sinB _ sinC

a b

(&

sin 21.3°  sin 61.4°  sin 97.3°

13.2

C

To use the law of sines we must always know one of the three ratios completely.
In this case, we know the first ratio, so we use it to solve the other two.

Using the first and second ratios:
sin 21.3°  sin 61.4°

132 b
b sin 21.3° = 13.2 sin 61.4°
13.2 sin 61.4°
==—————— =31
sin 21.3° s

Using the first and third ratios:
sin 21.3° _ sin 97.3°

132 ¢
¢ sin 21.3° = 13.2 sin 97.3°
13.2 sin 97.3°
o BRI e

sin 21.3°
Thus we have solved the triangle:
az 132 A 21.3°

b: 319 B: 61.4°
c: 36.0 C: 97.3%

Multiply each member by 13.2b

Divide each member by sin 21.3°

Multiply each member by 13.2c

Divide each member by sin 21.3°
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The ambiguous case

If we are given only one of the two angles of a triangle it is possible to get
two different solutions to the problem. The reason for this is shown in example
6-1 B. When we use the law of sines to solve a triangle for which only one
angle is known we call this the ambiguous case.

W Example 6-7 B Solve each triangle. Round off answers to tenths.
v 1. a = 28.5,b = 30.0, A = 65°.
a: 28.5 Ar 65° Make a table of values
b: 30.0 Bs
c: ? Cs 7
= o sin65° sinB _ sin C Fill values into the law of sines
' x 285 300 ¢
sin 65° sin B Use the first two ratios to find angle B
285 300
{ 30.0 sin 65° = 28.5 sin B
30.0 sin 65° e
28.5
A reference angle for angle B is found with the inverse sine function.
107.44° 30.0 sin 65°
72.55° B’ = sin~l| ——— | = 72.56°
_\ x ( 28.5 )
\ Since angle B is in a triangle, we know its measure is between 0° and

180°. Thus, using B’ as a reference angle B could be either 72.56° or
180° — 72.56° = 107.44°. See the figure.

At this point we must divide the problem into two cases: the case
where B = 72.56° and the one where B = 107.44°.

Case 1: B = 72.56°
a: 28.5 A: 65°
b: 30.0 B: 72.56°
¢ 7 : 2
C = 180° — 65° — 72.56° = 42 44°



¢
900 28.5
A 212 B
C
30,0
28.5

Figure 6-2
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We can use the value of angle C to find c.
sin 65° sin 42.44°
285 @
¢ sin 65° = 28.5 sin 42.44°
285 sin 42.44°
T sin65°

=21.2

Thus, C=424°, c=21.2.
Case 2: B = 107.44°
a: 28.5 A:r 65°
b: 30.0 B: 107.44°
e 2 C: 2
C = 180° — 65° — 107.44° = 7.56°
sin 65°  sin 7.56°
285 ¢
¢ sin 65° = 28.5 sin 7.56°
” 28.5 sin 7.56° i
sin 65° ’

Thus, €'=7.6°% c=4.1.
We can summarize these two solutions in two tables.

Case 1 Case 2

a: 28.5 A: 65° a: 28.5 A: 65°
b: 30.0 B: 72.6° b: 30.0 B: 107.4°
el ) C: 424° er 4l C: 76"

Figure 6-2 shows the two triangles. The last figure shows both triangles
together, where we can see why the ambiguous case was possible—with
the given information (a = 28.5, b = 30.0, A = 65°), side a could be in
one of two positions, giving two possible triangles.

As a final check on our work, we observe that the sum of the angles
in each case is 180°, and that in each case the longest side is opposite the
largest angle and the shortest side is opposite the smallest angle. These
are facts that should be true for any triangle.
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2. b=512,¢=321,B =6.1°
a2 A ? Mzke a table of values
b: 51.2 B: 6.1°
¢ 321 C: 9

sinA sin6.1° sinC Fill values into the law of sines
a 512 321
\ 32.1 sin 6.1° Using the last two ratics
T

C' = 3.82°, which we will round to 3.8° in the final answer.
C=3.82°0r 180° — 3.82° = 176.18".
Case 1: C = 3.82°

a:? A:?
b 51.2 B: 6.1°
&' 321 C: 3.82°

A =180° — 3.82° — 6.1° = 170.08°
sin 170.08°  sin 6.1°

Use the first two ratios

a T 512
51.2 si 08°
g et MM
sin 6.1

This finishes case 1: A = 170.08°, a = 83.0.
Case 2: C=176.18°
a: ? A:?
b: 512 B: 6.1°
er 32.1 C: 176.18°
A=180° — 176.18° — 6.1° = —2.28°
Since an angle in a triangle cannot have negative measure this
case does not produce a solution.
Thus, the solution to case 1 is the only solution.
a: 83.0 A: 170.1°
b: 51.2 B: 6.1°
e 321 C: 3.8°

The law of sines is used in many applications of trigonometry.
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Solve the following problems using the law of sines.

1. A surveyor made the measurements shown in the figure to measure the
distance d across a lake. Find the distance to the nearest meter.

Using the law of sines, we know that

sin 135°  sin 17°

213 d
213d sin 135° _ 213d sin 17°
1 213 1 d
d sin 135° = 213 sin 17°
213 sin 17°
= —————— = 88.1 met
sin 135° 88.1 meters

Thus, to the nearest meter the distance across the lake is 88 meters.

2. The figure illustrates the following situation. A hang glider'is flying at
18.4 mph pointed due east, with the wind blowing at 17.9 mph in the
direction shown. The result is that the hang glider travels in a direction
42.3° north of east, with a ground speed of r mph. Assuming that 8, is
acute, find the ground speed r and the direction of the wind, 6,.

Using the law of sines, we know

sin 42.3° sinB; sin
179 184  r
18.4 sin 42.3°

17.9

SiIlBl =

0, =43.77°
9, =0, =4397° 8, is an acute angle
0, =~ 180° — 42.3° — 43.77° = 93.93°

We can now find r.

sin 42.3° _ sin 93.93°
G
__17.9 sim 93.43"
~ sind23°
Thus, the hang glider is traveling with a ground speed of 26.5 mph, and

the wind is blowing in the direction 93.9° north of west (or 3.9° east of
north). =

= 26.5

Mastery points

Can you
e State and use the law of sines to solve oblique triangles?
e Recognize and solve the ambiguous case when using the law of sines?
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Exercise 6-7

In the following problems round answers to the same number of decimal places as the data, unless otherwise specified.

Solve the following oblique triangles using the law of sines.

1. a =125, A = 35°, B = 49° 2. b=17.1,B = 100° C = 10° 3. a= 125 B=13.6° C = 132°
4. ¢ =9.04, A =51.6° B = 40.0° 5.5 =925 A=47°, B =100° 6. c =102, A = 16.7°, B = 89.2°
a=0452,A =67.6° C=91.8° 8. b =0.508, B = 13.1°, C = 5.2° 9. ¢ = 5.00, A = 100°, B = 45°
10. a = 10.9, B = 76.9°, C = 100°
Solve the following oblique triangles using the law of sines.
11. @ = 12.5,b = 13.2, B = 49° 12. b = 37.1,¢ = 21.3, B = 100° 13) a = 425, ¢ = 2.86, A = 132°
14. ¢ = 9.04,a = 21.3, C = 10.0° [15] b =925, ¢ =986, B = 43.7° 16. ¢ = 102,a = 16.7,A = 89.2°
17. a=4,b =22, A = 30° 18. a = 0.452, ¢ = 0.606, C = 91.8° 19. b = 6.35,c =4.29, C = 42.3°
20. b =0.508,c =109, C =5.2° 21. ¢ =5.00, b = 8.00, B = 45.0° 22. a =109, ¢c = 169, C = 100.0°
23. Ground-based radar at point A determines that the angle 25. The diagram shows a situation in which astronomers
of elevation to an aircraft 42.9 miles away is 13.2°. Radar made measurements at two locations of a new, slow-
at point B is on a straight line between a point on the moving asteroid. Using their measurements, find the dis-
ground directly below the aircraft and the radar at A and tance d to the asteroid, to the nearest 100 miles.

determines that the same aircraftis 13.6 miles away from
point B. To the nearest 0.1 mile, find the distance from
A 10 B. (See the diagram.)

153,800 mi

W d
' 81.5° s
88.G° Asteroid

26. A surveyor made the measurements shown in the dia-
gram. Find the distance across the lake, to the nearest

foot.

A d B
24. Two forest rangers sight a fire. Their reports are plotted

on a map and yield the results shown in the diagram. 1i3e Lake

41°
283yd \
AI:'.J_j-go 3 5 5 7 i 5 Bonl T
4 The diagram illustrates a situation in which a ship is
8.23 mil

840 moving at 12.6 knots heading due east. It is moving
through a current moving east of north at 8.4 knots. The
result is that the ship is moving at an angle of 58° east

If the locations of the rangers are 8.23 miles apart, of north. Find the true speed S of the ship.
how far is the fire from Station A, to the nearest 0.1 mile?

B

i

North

8.4
58°

East



28.

29.

30

31.

A ship travels due east to a point 8,000 meters from its
starting point. It then turns toward the south through an
angle of 65° and proceeds until it crosses a line of sight
from the starting position to itself that is 35° south of
east. At this point, how far is the ship from its starting
point, to the nearest 10 meters?

8,000 m

\\{35‘

.

Two cities are 75 miles apart. An aircraft that is between
the two cities is being tracked from radar in each city.
City A’s radar shows that the aircraft is at an angle of
elevation of 40°; city B’s radar shows that the slant dis-
tance of the plane to city B is 58 miles and that the angle
of elevation there is less than 40°. What is the slant dis-
tance d from the plane to city A, to the nearest mile?

A : 75 mi B

Find the height of the aircraft in problem 29, to the
nearest 100 feet (1 mile = 5,280 feet). Use the diagram
for help.

F7™ Show that in any oblique triangle ABC, if k is the
bed altitude of the triangle relative to side b, then an
b-tan A -tan C

. Use the dia-
tan A + tan C

expression for k is b =

grams for help.

32.

33.
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Quadrilateral ABCD is shown in the diagram.

AB = 17.3, AD = 18.9, angle A = 110°, angle ABD =
52°, angle BDC = 41°, angle C = 93°. Find the length
of CD to the nearest 0.1. (Hint: Draw diagonal BD.)

C

7™ Show that in any triangle ABC, (1)a = bcos C +

=L ccosB, (2)b=ccosA+acosC,and (3)ec=a
cos B + b cos A. (Hint: The diagram shows angle A in
standard position when the angle is acute, right, or
obtuse.)

y y
A
Blxy) B (x)
c a o a
C C i
Al~x b x A b
Y
B(xy)
a
]
o
% |A b
Show why the statements
b—x

X
cos A =—andcos C =
¢

are true in each case, and then use them to show that (2)
is true.

An Army observation point is 325 yards northeast (i.e.,
45° north of east) of a second point. At this point a tank
is sighted on a line of sight 37° south of east. The same
tank is sighted at the second point along a line of sight
18° north of east. To the nearest yard, how far is the tank
from the first observation point?
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35, D Recall that the formula for the area of a triangle is
=2 Lpj (one half the product of the base and height).
Use the formula to show that the area of any triangle
ABC is ke sin A.

36. The figure shows three wires that are attached from a
common point to the side of a building. Find the lengths
of b and ¢, to the nearest inch.

46"

37. F T The Rhind Mathematical Papyrus is an Egyptian
bed work on mathematics. It dates to the sixteenth cen-
tury B.C., and contains material from the nineteenth cen-
tury B.C. It contains 84 problems, including tables for
manipulations of fractions.

Problems 51-53 of the Papyrus include the fol-
lowing formula for finding the area of a four-sided figure
like ABCD in the figure: +(a + ¢) X +(b + d). (Observe

that +(a + ¢) is the average length of the two sides a
and c¢; the same is true for -é—(b + d).) This formula is
inaccurate. Except for rectangles, it gives an answer that
is too large. It was used for the purpose of taxing land,
which shows that there is not always an economic in-
centive to get the correct answer.

Problem 35 shows that the area of any triangle ABC
is 2be sin A. Tt is also 2ac sin B, or ~ab sin C. Geo-
metrically, this is one-half the product of two sides and
the sine of the angle between those two sides.

a. Use this result to show that the area of the four-sided
figure can be described by
%{ab sinA + adsin D + be sin B + ¢d sin C)
b. Use the result of part a, along with the fact that for
0 <8 << 180° 0 < sin 6 < 1 to show that the Egyp-
tian formula is always too large, except for rectan-

gles, when it is exact. (Assume angles A, B, C, and
D are all less than 180°.)

6-2 The law of cosines

y There are some oblique triangles that cannot be solved using the law of sines.

|J"2—Jf1‘

Figure 6-3 ure 6-3.

(% o) This happens when we do not know any of the three ratios completely. In
i these cases we use the law of cosines. To develop this law, we will use the
distance formula of analytic geometry: If (x;,y;) and (x,,y;) are two points in
the x-y coordinate plane, then the distance d between them is defined as

d= V0 — )+ (02 — )
This definition is based on the Pythagorean theorem, since the value

|x2 — x;| is the length of one side of a right triangle of which the distance
d is the hypotenuse, and |y, — y1| is the length of the second side. See fig-
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. Find the distance between the points (—4,7) and (2,10).

Using (x1,y1) = (—4.,7) and (x2,y2) = (2.10), we have

d=JR2 = (-9HP+ (10 - 77
J36+9

1l

Note The points could have been used in the reverse order with the
same result. That is, (¢;,y1) = (2,10) and (x,.,y5) = (—4,7).

. Assume that an optics table is coordinatized in the usual rectangular

coordinate system. Three mirrors are located on the table at points
A (—5.,8), B (10.4), and C (—4,—6). Find the distance traversed by a
laser beam traveling from A to B to C and back to A, both exactly and to
the nearest 0.1. See the figure.

We use the distance formula: d = /(x2 — x1)? + (yo — y1)* To find
the distance from A to B, we can let A be the first point and B be the
second. Then the formula becomes

AB = \/(xB —Xar = e — ya)*-
We fill in the given values.
AB = J[I0 = (=5)F + (4 - 8
= J15% + (—4)
= /241 = 15.52 (to two decimal places)

To find the distance from A to C, we can let A be the first point and C be
the second.

AC = (e — x4 + e — yaP
= JI(=4) — (=35> + [(—6) — 8]
_ iy
= /197 = 14.04

To find the distance from B to C, we can let B be the first point and C be
the second.

BC = /(xc — xg)* + (yc — ¥a)*
V(=4 — 102 + [(—6) — 4]
V(=147 + (=10

= /296 = J4(74) = 2/74 = 17.20

The exact total distance is

AB + AC + BC = /241 + /197 + 2./74 (exactly)
=46.8 O

[

Il

We now use the distance formula in our development of the law of cosines.
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y
4 (x9
)
(0,0) (2.0}
c B
Figure 6-4

Let AABC be any triangle. Put angle C in standard position, and call (x,y)
the point at vertex A, as illustrated in figure 6-4.

Note The figure shows C as an obtuse angle. The algebraic statements
that follow do not use this fact, however. Thus, they would also apply if C
were acute or right.

Now apply the distance formula to distance c.
d= o — x) + (02 — y1P
Use (x2,y2) = (a,0) and (x1.y1) = (x.3)-
c=(@—xP+ 0 - y?
A= — D+ (P
=i —2ax +22 +37*
We know that x> + y* = b? (also by the distance formula), so we replace
x* + y? in the above equation by b2
2= a?— 2ax + b?
=a? + b? — 2ax

We know that cos C = % by the definition of the cosine function (chapter 2).

Thus, x = b cos C, and we replace x in the equation above by b cos C.
¢ =a*+ B> — 2abcos C

The equation ¢ = > + b% — 2ab cos C is called the law of cosines for
angle C. If we had put angle A or angle B in standard position, we would have
arrived at two other versions of this law. All three versions are:

The law of cosines

Law of cosines for angle A: &% = b2 + ¢ — 2bc cos A

Law of cosines for angle B: b2 = a2 + 2 — 2ac cos B

Law of cosines for angle ¢ 2 = a2 + b2 — 2ab cos C
Concept
The law of cosines states that in any triangle the square of the length of
one side equals the sum of the squares of the lengths of the other two
sides less twice the product of these lengths and the cosine of the angle
opposite the first side.

When solving oblique triangles, the law of cosines should be used when-
ever the law of sines cannot be used.
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1. Solve oblique triangle ABC if a = 3.7, ¢ = 4.8, and angle B = 43.9°. See

the figure.
C
37, b
43.9°
B 4.8 =

Observe that we do not know any of the three ratios of the law of sines
completely: we know the length of side a but not the measure of angle 4,
the length of side ¢ but not the measure of angle C, and the measure of
angle B but not the length of side b. This indicates that we must use the
law of cosines to help solve the problem.

Since we know angle B, we use the form of the law of cosines in
which angle B appears:

b2 =a?>+ ¢ — 2accos B

3.72 + 4.82 — 2(3.7)(4.8)(cos 43.9%)

b= /37> + 48 — 2(3.7)(4.8)(cos 43.9°) [C51
~ 3.337068251 . . .

(which we will round off to 3.337 for now and to 3.3 in the final answer).

Now we use the law of sines to find one of the angles, either A or C.
It is best to find angle A first, because we know angle A is not the largest
angle in the triangle (angle C is) and, therefore, angle A must be acute.
This will eliminate the ambiguous case.

3 3337
sinA  sin 43.9°
3.337(sin A) = 3.7(sin 43.9°)
_3.(sin 43.9°%)
T 3337
A" = 50.2°

(remember, A’ is the reference angle for angle A). We know that A is acute,

so we do not have to worry about the supplement of A (which we normally

do whenever we find an angle using the law of sines), so A = 50.2°. Also,

C = 180° — A — B=180° — 50.2° — 43.9° = 85.9°. Since we now know

all three angles and all three sides of the triangle, we are done.
A=502°B=439° C=859°
a=37,b=33,c=48

Note As illustrated in the last example, it is never necessary to use the

law of cosines more than once to solve a triangle. We complete the
solution with the law of sines.

sin
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2. Solve oblique triangle ABC if a = 0.915, b = 0.207, and ¢ = 0.719. See

the figure.
0.719
0.207 A e
¢ 0.915

We do not know any of the angles, so we cannot use the law of sines.
(Without any angles, we cannot know any of the three ratios in the law
of sines.) We use the law of cosines to find one of the angles.

It is best to find the largest angle first; this will be angle A since it is
opposite the longest side a. The reason for finding the largest angle first
is explained in the note below. We must use the form of the law of
cosines that includes angle A.

a> =b?>+ ¢ — 2bccos A
We often solve for cos A before we use the law of cosines.

a* =b*>+ ¢ — 2bccos A
2bccos A =b2+ ¢z — a2
b2 + CZ _a2

A=
cos 2be

Substituting values, we get

0.207% + 0.719? — 0.9152
2(0.207)(0.719)
= —0.9320.
A = 158.74° €52

cos A =

Now we know the measure of the largest angle: A = 158.74°. We can
now use the law of sines to find another angle. We must use the ratio

since A is the only angle measure we know. To find angle B we use

0915 0207
sin 158.74°  sin B

to find that
B' = 4.70°

Since we have already found the largest angle A, we know that the re-
maining two angles are acute, and so we do not have to worry about the
supplement of B'; thus, B = 4.70° and C = 180° — 158.7° — 4.7° =

16.6°. The triangle is solved because we now know all three sides (which
were given) and all three angles. A = 158.7°, B = 4.7°, C = 16.6°.
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Note There is no ambiguous case for the law of cosines because the
range of the inverse cosine function includes all angles from 0° to 180°.
If an angle is not acute, its cosine will be negative (as above), and then
we know the angle is between 90° and 180°. Thus, when finding an
angle of a triangle using the law of cosines (as above), it is best to find
the largest angle first. If the largest angle is obtuse we will find this out
directly; either way, the remaining angles are acute and, therefore, easy
to find with the law of sines.

3. A sheet metal worker must make the triangular pattern shown in the
figure. Find the angle of inclination 8 and the length of side x.

Using the law of cosines, we see that
x2 = 10.82 + 23.62 — 2(10.8)(23.6) cos 105°

x = 805.54
x=28.38
We can now use the law of sines to find 6.
28.38 10.8

sin 105°  sin 8
28.38 sin B ~ 10.8 sin 105°
10.8 sin 105°

inf=———1—=0.3676
o 2838
8" =21.6°
8 is acute because it is not the largest angle in the triangle, so 6 = 21.6°.
o ¥ 4. Find the measure of angle ACB in part 2 of example 6-2 A to the nearest
(Z 5 0.1°. Recall that we have a triangle whose vertices were the points A
(10.4) (—5,8), B (10,4), and C (—4,—6). See the figure.
B In part 2 of example 6-2 A we used the distance formula to establish

X AB = /241 = 15.52

/ AC = /197 = 14.04

BC = 2/74=17.20

(72_5) To find angle ACB, we use the law of cosines with angle C.
c2=a?+ b2 — 2abcos C
c a® + b* — 2
gos C=———
2ab
@V + (1972 — (V2417
22/ 74)(/197)
296 + 197 — 241
= = 0.5218
4(/T4)(/19T)

C =58.5" cs3 O
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B Example 6-2 C

In triangle ABC, a = 4, b = 6, ¢ = 12. Solve the triangle.
We must use the law of cosines to solve this triangle. If we wish to find the
largest angle, which is C, we use
@* br— 2
2ab
42462 — 122
2(4)(6)

=

T 48

= —1.9167
Note that this result shows that there is no angle C, since | cos x| = 1 for any
value of x. Thus, there is no solution to this triangle.

cos C =

Example 6-2 C illustrates a situation in which the law of cosines shows
us that there is no solution. There is no solution because ¢ + b < ¢. It is a
fact that any two sides of a triangle must have a total length greater than the
third side. This is often called the triangle inequality. Any time we are given
the lengths of three sides of a triangle, it is a good idea to check that the sum
of the lengths of any two sides is greater than the length of the remaining side.

Mastery points

Can you
e State the three forms of the law of cosines?

e Use the law of cosines to solve triangles when the law of sines cannot
be used?

¢ Use the distance formula?

Calculator steps
1. @37 [+] 4.8 (]2 [x]37 [x] 48 [x]439
[=]
® 3.7 [£2] 48 [+]2 [ENTER] 3.7 [x] 4.8 [x]43.9
=
[(]3.7 [+] 4.8 [=]2 [x]37 [x]48
[cos] 43.9
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2. @ 207 [+].719 [=] 915 (=] [=]2 [=] 207
(=] 719 [=]
® 207 719 915 [=]2 [=] 207 [=] .719
[=] [cosT]

[T1-81] [cos'] [0 [ 207 2] [=] 719 [&2] [=] 915 [2]

D) (=] [@2 [x] 207 [x] .7119 D] D] [ENTER]
3.®296 [+]197 [=] 241 [=] [=]4 [=] 74 &) [=] 197

® 296 [ENTER] 197 [+] 241 [=]4 [=] 74 [ ] [=] 197

(/%] [=] [Cos!

[ 296 (] 197 (=] 241 O] [=] [ 4

() 74 L] 197 O]

Exercise 6-2
Find the distance between the following points.

1. (3,—4), (-2,6) 2. (3,—1), (4,—8) (=5,—2): [0—1)
d. (=2, =3) (4] 5. 40, =30 (—%=12) 6. (10,—1), (2,0)

Solve the following oblique triangles. You will have to use the law of cosines as the first step. Round your answers to the
same number of decimal places as the data.

7.a=32,b=59,C=1394° 8.4a=49,b=32,C=782° b=613,c=239 A =124.0°
10. b = 123.0, c = 89.4, A = 19.5° 11. a =314, c = 17.0.B = 100.3? 12. a = 67.25, ¢ = 13.56, B = 76.30°
a=235>b=194,¢c =350 14. a = 61.7, b = 80.0, c = 102.0 15. a = 0.214, b = 0.399, ¢ = 0.500
16. a =1.03,5=098,¢c = 1.75 17. a = 13.2, 56 =59, C = 139.4° 18. a=149,b =132, C = 45.0°

19. b = 61.3,c =43.9, A = 245° 20. b =1239,¢c =894, A =79.5° 21. a = 30.0, ¢ = 20.0, B = 112.0°
22. ¢ =672, ¢ = 155, B = 76357 23. a=1235,b =194, ¢c = 354 24. a = 61.7, b = 80.0, c = 42.0
25. a =0.21,5 =049, C = 1.50° 26. a=100,b=139,¢ =175
27. A surveyor made the measurements shown in the dia- 28. Calculate the measure of the smallest angle in a triangle

gram to calculate the distance across a lake. whose sides have measure 22.1 ¢m, 32.6 cm, and 40.5

cm.

29. Calculate the measure of the largest angle in a triangle
whose sides have measure 12.3 in., 16.2 in., and 19.0 in.

30. A numerically controlled laser cloth cutter is being set
up to cut a triangular pattern. The vertices of the triangle
are at A (2,5), B (4,8), and C (5,12).
a. Find the length of side AB.
b. Determine the meagure of the three angles to the
Compute the distance to the nearest 0.1 foot. nearest 0.1°.




224

Chapter 6  Obligue Triangles and Vectors

In the same situation as in problem 30, the vertices of

32.

33.

34.

35

36.

37.

38.

another piece of triangular cloth are determined to be at
A(0,5), B(2,3), and C(8,4). Determine the measure of the
largest of the three angles A, B, or C, to the nearest 0.1°.

Two ships are being tracked by radar. One ship is deter-
mined to be 17.6 miles from the radar, while the second
is 22.5 miles from the radar. The lines of sight from the
radar to the two ships form an angle of 47.2°. (See the
diagram.) Find the distance between the two ships to the
nearest 0.1 mile.

17.6 mi

47.2°

22.5 mi

In the situation described in problem 32, what would be
the angle formed by the two lines of sight to the ships if
the ships were 31.5 miles apart?

A ship leaves a harbor heading due east and travels 17.3
km. It then turns north through a 33° angle and travels
for another 22.0 km. How far is the ship from its starting
point, to the nearest kilometer?

A plane takes off and travels southeast (45° south of east)
for 27 miles, then turns due south and travels for 16
miles. How far is it from its starting position, to the
nearest mile?

The points (5,3), (—2,1), and (1,—4) form a triangle.
Find the measure of the smallest angle in this triangle,
to the nearest 0.1°.

Find the measure of the largest angle in the triangle of
problem 36, to the nearest 0.1°.

Two observers are 87 meters apart, and a range finder
shows that a certain building is 111 meters from one
observer and 114 meters from the other. What is the
angle formed by the two lines of sight from the building
to the observers, to the nearest degree?

39.

40.

™9 The triangle in the diagram is a right triangle. Can
bud the law of cosines be used to find the length of ¢?
Compare using the law of cosines to using the Pythag-
orean theorem.

21.3

A 0

40.0

7 The diagram shows three triangles in which angle
k=4 (Cis (a) acute, (b) right, and (c) obtuse.
B
B
z
c 8 8
407
5 10 @ A 10 t
(@) (b)
B
C,
8
oy
A 10 c

If we use the Pythagorean theorem and apply it to the
right triangle in (b) and apply the law of cosines to angle
C in all three situations, the resulting equations are

2 =a®+ b and

2 =a>+ b — 2abcos C
We can view the expression —2ab cos C as a ‘‘correction
factor” to the Pythagorean theorem that will give the
correct result, even when angle C is not 90°.

Solve for side ¢ in each case, using the law of co-
sines, and discuss how the correction factor ‘‘knows™’
when to increase the length of side ¢ (as in [c]) and when
to decrease it (as in [a]).
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6-3 Vectors
Head
Tail
A B
Tail Ao
Figure 6-5
y y
45°
X
3 Z120°
Y
Figure 6-6
y
i
et
=2
.... _3
...... _4 i
£ Y i
Figure 6-7

If we know that a plane flying over a certain spot is flying at 100 mph, we
cannot tell where it will be in 1 hour without also knowing its direction. This
combination of speed and direction is called velocity. Many other natural phe-
nomena are described by a magnitude and direction: forces of all types, ac-
celerations, alternating voltage in electricity theory are all examples. A
conceptual tool used to describe two such pieces of information is the vector.
It is noteworthy that the concept of vectors extends into an area of mathematics
called linear algebra, which has applications in every field of knowledge, from
physics and economics to medicine and sociology.

We imagine a vector as a directed line segment. That is, a finite portion
of a straight line that is considered to be pointing in one direction. Our rep-
resentation of vectors would commonly be called ‘‘arrows.”” Examples of
vectors are shown in figure 6-5. Observe that we use the terms head and tail
to describe the ‘‘end’’ and ‘‘beginning’’ of a vector, respectively, and that we
often use capital letters, such as A and B, to name a vector.

One way to describe a vector is by specifying its length and direction.
The length is called the magnitude of the vector, and for a vector A we denote
its magnitude by |A| (the same notation as that for absolute value of a real
number). The direction of a vector is specified by an angle, 8, usually specified
in degrees, measured in the same way as angles in standard position. When
we specify a vector this way we say it is in pelar form.

Polar form of a vector

A vector A in polar form is the ordered pair A = (|A], 8,)
|A| is the magnitude of vector A; |A| = 0.

8, is the direction of vector A.

Note The polar form of a vector is not unique; all coterminal values of 8,
are equivalent.

Figure 6—6 illustrates the vectors (2,45°) and (3,—120°).

A vector can also be specified by using its relative rectangular coordi-
nates. For a vector in standard position this is equivalent to specifying the
coordinates of its head (see figure 6-8). If a vector is not in standard position,
its relative rectangular coordinates are relative to the coordinates of the vec-
tor’s tail. We refer to these coordinates as describing the rectangular form
of a vector.

Rectangular form of a vector

A vector A in rectangular form is A = (4, A), where A, is called the
horizontal component of the vector and A, is called the vertical
component of the vector.

Figure 6-7 illustrates the vector A(3,2), shown in three different positions.
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[Al

94

(Ax?,Ay)

i1 A, = 1Al sino,

A= Al

x

Figure 6-8

X
cos 8,

B Example 6-5 A4

y
°
i \z5.0
205}
? 125°
| By
-14.3
N
T ~145 VAL
J 15°
—39;
| 150
)

Converting polar form to rectangular form
There is a useful relation for converting the polar form of a vector to its
rectangular form. If we recall the definitions of section 2-2 for an angle in
standard position, we can see the following.

To convert polar form to rectangular form
Given vector A = (|A|,84) = (A, A),
B, = §A§_ cosb, and A, = |A]sing,

A
This is true because, by the definitions of section 5-2, cos 0, = —— and

) |A]
sin 64 = Ty . Figure 6-8 illustrates this relationship.

Example 6-3 A illustrates converting a vector in polar to form to its rect-
angular form.

Convert from polar to rectangular form.

1. Convert the polar form of the vector to the rectangular form
(approximate to the nearest tenth). A = (25.0,125°).

A, = |A| cos 8,4 = 25.0 cos 125° =~ —14.3
Ay = |A] sin 8, = 25.0 sin 125° = 20.5

Thus, the rectangular form is (—14.3,20.5) (see the figure).

2. An aircraft is moving in the direction 15° south of west at 150 knots.
Find the east-west and north-south components of its velocity V to the
nearest knot and interpret the results.

As we see in the figure the aircraft’s velocity is the vector
V = (150,195°). The east-west component is

Ve = | V| cos 8y
= 150 cos 195° = —145
The north-south component is
Vy = | V| sin 6y
= 150 sin 195° = —39
Thus, the aircraft is moving west at 145 knots and south at 39 knots. [



Section 6-3  Vectors 227

Converting rectangular form to polar form

When we convert from rectangular to polar form we always give the direction
of the vector 8y so that it has the smallest possible absolute value. This means
we will choose By so that —180° < By = 180°. One reason for doing this is
that this is the result obtained from electronic calculators (see the discussion
following example 6-3 B).

Examining figure 6—8 shows that, for a given vector V = (V,,V,) =

(|V].6v). |V]| = V/V2+ V2, and tanby = % if V, # 0. The angle 8} =

x

V,
tan—ivy is only the reference angle and 6y depends on the quadrant in which
X

the vector occurs.

Reference angles obtained with the inverse tangent function fall in the
range —90° < 8’ < 90° (quadrant I and quadrant IV). If V, > O this is the
value of 8y, since that angle should be in quadrant I or quadrant I'V.

If V., < 0, By can be obtained by adding or subtracting 180° to or from
0v. If 81 << 0, add 180°, and if 8% = 0, subtract 180°. This can be incorporated
into a rule as follows.

To convert rectangular form to polar form
Given vector V = (V,, V) = (| V|,8,). Then,

V] = vV & Vz, 0= tan-‘% if V, # 0, and

By >0
B, =140,~ 180°if 8, >0
8, + 180°if8, <0 HV, <O

Note If V, = 0 then 8,is 90°if V, > 0, and —90° if V. < 0. This is clear
from a sketch of the vector.

The examples and the exercises will make clear why the rule works when
V., < 0. Example 6-3 B illustrates finding the polar form of a vector when its
rectangular form is known.
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B Example 6-3 B

y
23.0
Oy |
i—19.2
[v] i
v
y
|A]
15.7}
H SA
M N
—432

Convert to polar form.

1.

2.

The horizontal component of a force vector is 23.0 pounds to the right;
its vertical component is 19.2 pounds down. Find the force vector V, to
the nearest 0.1 pound.

The vector is (23.0,—19.2) in rectangular form. We can find ] V| using
the Pythagorean theorem:

|V|2 = 23.02 + (—19.2)2
| V| = 30.0
We now find 8} the reference angle for 8y.

By = tan“l(:z—l:—(f) = —39.9°

0y =8y, V,>0
Thus, V = (30.0,—39.9°).
Vector A = (—43.2,15.7). Find the polar form of A.
4] = VBT 22

= /(—43.2)? + (—15.7)? = 46.0 Nearest tenth

—43.2
04 = —20.0° + 180° = 160.0° Ap50,04 0

Thus, A = (46.0,160.0°).

94 = tan~! = —20.0°

Using special calculator keys

Most engineering/scientific calculators are programmed to perform the con-
versions of examples 6-3 A and 6-3 B. These calculators have keys marked
“R — P”’ or simply **—P’’ (rectangular to polar conversion) and “‘P — R”’
“*— R’" (polar to rectangular conversion), or something equivalent. The
results are stored in locations referred to as x and y. Typical keystrokes
are illustrated here. Part 1 of example 6-3 A would be done as follows. (The

or

TI-81 is discussed below.)
A = (25.0,125°9

25

125 [=] Display: [ —14.33941091
x>y Display: | 20.47880111

Thus A = (—14.3,20.5).
Part 1 of example 6-3 B would be done in the following way.
V = (23.0,—19.2)

23

19.2 =] Display [29.96064085
XY Display: | —39.855454183 |

Thus, V = (30.0,—39.9°).
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The TI-81 uses the values X, Y, R, 6. (Y, R, 6 are [ALPHA| 1, [x].
and 3, respectively.) It also uses the two MATH functions “‘R » P("* (Rect-
angular to polar) and “‘P $ R("* (Polar to rectangular).

Example 6-3 A, part 1:

Deg Make sure the calculator is in degree mode.
223 [Eles

Display:
[ALPHA | 1 [ENTER ] Display:

Example 6-3 B, part 1:

[MATH] 123 (][] 19
[J2 Display:

[ ALPHA | 3 | ENTER | Display: | —39.855454183 |

Addition of vectors

It has been shown experimentally that most natural phenomena that are de-
scribed by vectors combine as if they were connected tail to head in a series.
The result is a vector with its tail at the tail of the first vector in the series,
and its head at the head of the last vector in the series. The resulting vector is
called the resultant vector. This is illustrated in figure 6-9, where vectors 4,
B, and C combine into the resultant vector Z. This idea is the basis for the
definition of addition of vectors which we develop here.

Example 6-3 C illustrates that this process is equivalent to summing all
the horizontal components and, separately, the vertical components. This is
the basis for the definition of the addition of two vectors.

Vector sum
Let Z be the resultant (vector sum) of two vectors A = (A, A,) and
B = (B,B,). Then we say Z = A + B, where

Z,=A,+B and Z,=A +B,

Observe that this definition describes how to add two vectors whose rect-
angular form is known. When vectors are known in polar form they must first
be converted to rectangular form. This is illustrated in example 6-3 C.
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B Example 6-3 C

y EE N

oo
e

13.
40.2°

2054

~164.6°

Find the vector sum of the given vectors.
1. A =(—3,5) and B = (1,3)
7y, = A, + By= —3F.l= =2
Z,=A,+B,=5+3=8
Z=(-28)
This is illustrated in the figure.
2. A=(2,—1),B=(-63D,C=(3,-2)
Zo=IA R B R G 2 (—6) 8=
Z,=A+B,+C=—-%+33+(-2)=1
Z=(-11)
3. V= (13.8,40.2%, W = (20.9,164.6°)
Note that these vectors are in polar form. See the figure.
Z. =V, + W,
| V| cos By + |W| cos By
13.8 cos 40.2° + 20.9 cos 164.6° = —9.6093
V, + W,
| V| sin 8y + | W| sin Oy
13.8 sin 40.2° + 20.9 sin 164.6° = 14.4574
Thus, Z = (—9.6,14.5) (to nearest tenth).

We should find Z in polar form, since V and W were given in this
form.

Z=JZ2+ Zi = /(—9.6093)2 + 14.45892 = 17.4 (nearest 0.1)
; Z, 14.4589
0z =tan = = tan~ | —— | = —56.4°
2= M7 T To.6093
8, = 6z + 180° =~ 123.6° Since Z, < 0, and 6, is negative, we add 180°
Thus, in polar form, Z = (17.4,123.6°).

Z

‘X

4. Three forces are acting on a point, where F; is 25 pounds acting in the
direction 30°, F is 40 points acting in the direction 100°, and F3 is 50
pounds acting in the direction —40°. Find the resultant force acting on
the point.

Find the resultant of the three vectors A(25,30%), B(40,100°), and
C(50,—40°).
Zx=F1x+F2x+F3x
= 25 cos 30° + 40 cos 100° + 50 cos(—40°) = 53.01
Z,=Fy, + Fyy + F3,
= 25 sin 30° + 40 sin 100° + 50 sin(—40°) = 19.75

|Z]| = VZ+ 2
= ./53.01%2 + 19.75? = 56.6 pounds
; . 1975

tan 0, = < = ——:0z=204°

Z. 5301°
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Since Z, and Z, are both positive, the resultant is in the first quadrant, so
0; = 8= 204°.
Thus, Z = (56.6,20.4°). |

Problem 76 in the exercises presents a program that adds two or more
vectors given in polar form.

Example 6-3 D illustrates a general principle of navigating aircraft (and,
analogously, ships at sea). The speed of the aircraft relative to the air is called
the airspeed, and the direction in which the aircraft is pointed is its heading.
The airspeed and heading combine into the heading vector, H. The wind
vector, W, is the speed and direction of the wind. If we add these two vectors
we get the true course and ground speed of the plane, T = H + W. T is the
speed and direction relative to the earth’s surface.

An aircraft is flying with heading 5° north of east and airspeed 123 knots. The
wind is blowing at 32 knots in the direction 10° west of south. Find the true
course and ground speed of the aircraft (see the figure).

260°
5° north 1

of east
e 5°

10° west

of south
10°

H = (123,5%); W = (32,260°) N
T=H+W
Tx = Hx o Wx 123

= |H|cos 65 + | W|cos Oy w T

= 123 cos 5° + 32 cos 260° = 116.98 h
T, = H, + W,

= |H|sin 85 + | W|sin 8y 2

= 123 sin 5° + 32 sin 260° = —20.79

, T. ~20.79

0r = ta.n‘lﬁ = tan‘l(m) =~ —10° To nearest degree

8, = B7since T, > 0,

T| = JT¢ + Tf = /116.982 + (—20.79)2 = 119.

Thus, the ground speed of the aircraft is 119 knots and the true course is 10°
south of east. =]

The zero vector and the opposite of a vector

It is useful to define a zero vector and the opposite of a vector. The zero vector
is defined so its length is zero. The direction does not matter. The opposite of
a vector is defined to have equal length but opposite direction. We do this by
adding or subtracting 180°. Both definitions are in terms of polar form.
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Zero vector

The vector 0 = (0,8), where 8 is any angle, is the zero vector.
Opposite of a vector

Given a vector V = (| V| ,8), then =V means its opposite, and =V =
(| V].8v£ 180°).

In computing the opposite we generally choose whichever value, 6y +
180° or By — 180°, has the smallest absolute value. It is easy to show that for
any vector V,

V+(-V)=0
Example 6-3 E illustrates uses of the zero vector and the opposite of a vector.
B Example 6-3 F 1. An aircraft’s on-board inertial navigation computer shows that the
aircraft is traveling due north at 200 knots with respect to the ground,
Nc}nh and that the aircraft is headed 20° east of north with an airspeed of 225

knots. Using vector subtraction, find the wind vector W. Interpret this

\ vector.

We know that true course and ground speed 7 are due north and 200
knots. Thus, T = (200,90°). Heading and airspeed are 20° east of north
and 225 knots. Thus, H = (225,70°) (see the figure).

H+W=T Aircraft heading + wind = true course

ot W=T-H Solve! for W

X East

=T+ (-H)
\ W = (200,90°) + (225,250°) —H = (225,70° + 180°)
Sott W, = 200 cos 90° + 225 cos 250° = —76.95

W, = 200 sin 90° + 225 sin 250° = —11.43
|W| = /WZ + W2 = 7780
—11.43
0w = tan~? ~ —8.4°
i (—76.95)
Bw = By — 180° = —8.4° + 180° W, <0and )y >0
= 1718

Thus, W = (77.8,—171.6°). This tells us that the wind is blowing in a
direction 8.4° south of west at 77.8 knots.

'We are assuming we can solve a vector-valued equation as we solve real-valued equations. In
fact, it can be proved that this is valid.
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2. A large sign is suspended between two buildings by two wires, as in the
figure. One wire acts at an angle of 45° above the horizontal and has a
tension (force) T, of 400 pounds. If the sign weighs 800 pounds (vector
W), compute a vector that describes T, the tension and direction of the
second wire, to the nearest unit.

We use a fact from physics to describe the situation. Since the sign is
motionless, all the forces acting on it must be balanced, or add to zero.
Thus, we proceed as follows.

T+ To+W=0 All forces balanced
Hh=-T1—W Sclve for T,
T; = (400,45°), so — T, = (400,45° + 180°) = (400,225°)

W = (800,270%), so —W = (800,270° — 180°) = (800,90°)
T = —Tu + (W)
400 cos 225° + 800 cos 90° = —282.84
Ty = —Tyy + (—W))
= 400 sin 225° + 800 sin 90° = 517.16
|T2| = ./(—282.84) + 517.162 = 589 pounds.

Il

07, = tan! %2124) = —61.3°
0r, = 180° + 07, T < 0,60, <0
=~ 118.7°
Thus, to the nearest unit T, = (589,119°).

Can you
e Find the horizontal and vertical components of a vector?

e Find the magnitude and direction of a vector when given the horizontal
and vertical components?
e Add or subtract vectors?

e Apply vectors to navigation and force problems?

Exercise 6-3

Convert each vector from its polar to its rectangular form. Leave all answers to the nearest tenth unless the reference angle is
30°, 45°, or 60°.

1. (40,30%) 2. (15:2,33.6%) (100.0,122.3%) 4. (4.2,97.3°)
5. (10.0,200.0%) 6. (18,1207 7. (25,300%) 8. (82.0,341.9°)
9. (6,—45%) 10. (5.9,59.2%) 11. (7.8,—264.3°) 12. (20.0,—333.07%
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Convert each vector to polar form. Round to the nearest tenth unless an exact form is possible (if the reference angle is 30°,

15
19

(—v2-8)

< (=3.0,5.2)
(3, —10)

16. (—12.5,31.0)
20. (—12.5,—20.3)
24. (—1,0.4)

Add the following vectors. Leave the resultant in rectangular form. Round the resultant to the nearest tenth.

45°, or 60°).

13. (3.0,4.0) 14. (31.2,6.9)
17: (+/3,—2) 18. (3,—3)
21. (—6.8,3.4) 22, (=84)
25. (—3,8), (2.12)

27. (/2.5), (//8.,1), (/30,—6)

26
28

. (43D, (-1,-29)
L (5,—13), (—1 .8), 73 —D)

Add the following vectors. Leave the resultant in polar form. Round the resultant to the nearest tenth.

29.
31.
33.
35.
37.

41.

(30.0,307),(15:2,33.6°)

(10.0,200°), (29.3,250°)
(3.2,—45.0%, (5.9,—59.2°)
(41.9,—-213.0°%), (7.7,—264.3°)
£3:5,19.27), (2-7.83:1°). (4.3.145.7°)
(15.3,311°), (20.9,117°), (13.2,83°)
(3.5,—25°), (6.8,25°), (4.2,50°)

An aircraft is moving in the direction 25° north of west

44,

45.

46.

48.

at 150 knots. Find the east-west and north-south com-
ponents of its velocity to the nearest knot and interpret
the results.

An aircraft is moving in the direction 35° east of south
at 120 knots. Find the east-west and north-south com-
ponents of its velocity to the nearest knot and interpret
the results.

An aircraft is moving in the direction 15° north of east
at 200 knots. Find the east-west and north-south com-
ponents of its velocity to the nearest knot and interpret
the results.

A rocket is climbing with a speed of 825 knots and an
angle of climb of 58.6°. (The angle of climb is the angle
measured from the ground to its flight path.) Find the
horizontal and vertical components of the rocket’s ve-
locity, to the nearest knot.

. An aircraft is traveling in a direction 30° west of north.

Its speed is 456 knots. Find the east-west and north-south
components of its velocity, to the nearest knot. (Re-
member that 30° west of north corresponds to the angle
120%.)

At the location of a ship, the Gulf Stream ocean current
is moving to the northwest at a speed of 8.2 knots. Find
the east-west and north-south components of its velocity,
to the nearest knot.

30
32
34
36
38
40
42

. (100,0°), (4.2,97.3%)

. (13.7,300.0%), (82.0,341.9°)

. (37.9,—100.5%), (69.2,—170.1°)

. (20.0,—333.0%, (39.2,—359.0°)

. (7.1,13.8%), (6.2,131°), (10.4,215°%)
. (3.2,19.5%), (5.1,45.0%), (6.0,180°)
. (25,-30°), (25,—60°), (25,—100°)

A ship has left an east-coast harbor and has been sailing

50.

51.

in a direction 32° north of east for 2.5 hours, at a speed
of 18 knots. (a) How far north of the harbor has it gone,
to the nearest nautical mile? (b) How far east of the
harbor has it gone, to the nearest nautical mile?

A force is acting on a tree stump at a 40° angle of ele-
vation. See the diagram. If the force is 2,500 pounds,
find its vertical and horizontal components, to the
nearest pound.

A 2,250 pound force is pulling on a sled loaded with
lumber, at an angle of elevation of 33°. If the sled will
not move until the horizontal component of the force
exceeds 1,900 pounds, will the sled move?

A sled loaded with lumber will not move until the hor-

izontal component of the applied force is 1,200 pounds
or more. If a winch being used to move the sled can apply
a maximum force of 1,700 pounds, what is the largest
angle of elevation at which the winch can act on the sled
and move it?



53.

Consider a force of 1,000 pounds acting at an angle of
elevation of 15° on a point.

a. Compute the horizontal and vertical components of
the force.

b. Double the force to 2,000 pounds and recompute the
horizontal and vertical components. Do they double
also?

¢. Double the angle of elevation to 30° (keep the force
at 1,000 pounds). Recompute the horizontal and ver-
tical components. Do they double also?

A plane is flying over Minneapolis with a ground speed

56.

57.

58.

of 200 miles per hour and true course due east. After 1
hour it turns to a true course of 60° south of east, main-
taining the same ground speed. After flying for an ad-
ditional half-hour, the navigator notes its position on a
map. How far and in what direction is the plane from
Minneapolis, to the nearest unit?

. A plane is flying over Orlando with ground speed 135

miles per hour, and true course 23° north of east. After
1 hour it turns to a true course of 40° south of west,
maintaining the same ground speed. After fiying for an
additional hour the navigator notes its position on a map.
How far and in what direction is the plane from Orlando,
to the nearest unit?

Two forces are acting on a point, 12.6 pounds in the
direction 123° and 15.8 pounds in the direction 211°.
Compute the magnitude and direction of the resultant
force to the nearest tenth.

Two forces are acting on a point, 2.6 newtons in the
direction 18.3° and 15.8 newtons in the direction —86.2°.
Compute the magnitude and direction of the resultant
force, to the nearest tenth.

Three forces are acting on a point: 27.6 newtons in the
direction 18.3°, 32.1 newtons at 223.0°, and 46.8 new-
tons at —30.0°. Find the resultant force acting on the
point, to the nearest 0.1 newton.

Three forces are acting on a point: 199 pounds at 19.0°,

60.

175 pounds at 131.0°, and 96 pounds at 130.0°. Find the
resultant force acting on the point, to the nearest 0.1
pound.

A ship leaves its harbor traveling 10° north of east. After
1 hour it turns to the direction 40° south of east. After 2
more hours, it turns to the direction 15° west of south.
The shop travels for 1 half hour more and then stops.
The ship has maintained a steady speed of 16 knots (nau-
tical miles per hour) for the entire trip. How many nau-
tical miles, and in what direction, is the ship from its
starting position, to the nearest knot?

61.

62.

63.
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A ship leaves its harbor traveling 15° west of south. After
1 hour it turns to the direction 34° south of west. After
2 more hours, it turns to the direction 10° north of west.
The ship travels for 1 half hour more and then stops. The
ship has maintained a steady speed of 20 knots for the
entire trip. How many nautical miles, and in what direc-
tion, is the ship from its starting position, to the nearest
knot?

An aircraft is flying with an airspeed of 123 knots and a
heading of 30° west of north. The wind is blowing in the
direction 15° south of west at 26 knots. Add the heading
and wind vectors to find the aircraft’s true course and
ground speed, to the nearest integer.

If the wind in problem 62 now shifts to 35 knots in the
direction 10° west of south, find the aircraft’s new true
course and ground speed, to the nearest integer.

A ship is traveling through an ocean current that flows

65.

in the direction 5° east of north at 7.2 knots. The ship’s
heading is 10° north of west, and its speed relative to the
water is 19.6 knots. Add these two vectors to find the
ship’s true course and speed, to the nearest tenth.

A ship is traveling through an ocean current that flows
in the direction 15° west of north at 7.2 knots. The ship’s
heading is 10° north of east, and its speed relative to the
water is 26.1 knots. Add these two vectors to find the
ship’s true course and speed, to the nearest tenth.

The voltage in an alternating current circuit adds vec-

67.

68.

69.

70.

torially. If one voltage E; is 122 volts with phase angle
30° and a second voltage E; is 86 volts with phase angle
21°, find the magnitude and phase angle of the resultant
voltage Er to the nearest unit.

(Refer to problem 66.) In an AC circuit E,; is 240 volts
at —45° and E; is 115 volts at +45°. Find the resultant
Er to the nearest unit.

An aircraft has a ground speed of 135 knots and true
course 35° east of north. If its heading is due north and
airspeed is 120 knots, find the direction and speed of the
wind, to the nearest unit.

An aircraft has a ground speed of 80 knots and true
course 15° west of north. If the wind is directly from the
northeast at 12 knots, find the plane’s heading and air-
speed, to the nearest unit.

A ship is traveling at 14 knots, relative to the water, with
heading 20° south of west. If the true speed and direction
of the ship is 12 knots due west, find the speed and di-
rection of the ocean current, to the nearest tenth.
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The ocean current in a certain area is 6.4 knots with
direction 8° east of south. A ship in the area is traveling
with true direction of 12 knots at 25° east of north. Find
the ship’s heading and speed relative to the water, to the
nearest tenth.

72. Two cables support a 1-ton (2,000 pound) sign between
two buildings. One of the cables has a tension of 1,500
pounds and acts at an angle of 33° above the horizontal.
The other cable is attached to the other building. Find
the tension in the other cable as well as its direction
relative to the horizontal, to the nearest unit.

:]:J
a3
(3

Two cables support a sign between two buildings. The
tension and direction of one cable is 456 pounds at 63°
above the horizontal. If the sign weighs 650 pounds, find
the tension in the other cable, as well as its direction
relative to the horizontal, to the nearest unit.

;

7 Prove that vector addition is commutative. That is,
hid if A and B are vectors, then A + B = B + A. (Hint:
Real number addition is commutative, and the horizontal
and vertical components of a vector are real values.)

75. F' Prove that vector addition is associative. That is, if
e A, B, and C are vectors,then (A + B) + C= A +
(B + C). (Hint: Real number addition is associative, and
the horizontal and vertical components of a vector are
real values.)

71| Write a program for a computer or programmable
———= calculator that will add two or more vectors when
given in polar form.

Chapter 6 summary

* The law of sines
sinA _sinB _sinC

b ¢
The ambiguous case When the law of sines is applied to
a situation in which only one of the two angles of a triangle
is known, 1t is possible to get two different solutions to the
problem. This is called the ambiguous case.

In any triangle ABC,

* The law of cosines For any triangle ABC,
a? = b* + ¢ — 2bc cos A

=g+ c* — 2accos B
c?=g?+ b2 — 2abcos C

Polar form of a vector A vector A in polar form is the
ordered pair A = (]A | ,04).
|A| is the magnitude of vector A; |A| = 0.

04 is the direction of vector A.

Rectangular form of a vector A vector A in rectangular
form is A = (A, A,), where A, is the horizontal component
of the vector and A, is the vertical component of the vector.
= To convert polar form to rectangular form
Given vector A = (’A .B84) = (4.A,),

Ay = |A| cos B4

A, = \A] sin 6,4

* To convert rectangular form to polar form
Given vector V = (V,v,) = (| V| ,0v). Then,

’ o
|V| = VVE+ V2 0y = tan“;’ if V. # 0, and
oy ifV,>0
By = 16y — 180°if By > 0
Oy + 180°if By < 0 if V., <0

¢ Vector sum Let Z = (Z,,Z,) be the resultant (vector sum)
of two vectors A = (Ay,A,) and B = (B,,B,). Then, Z = A
+ B, andZ, = A, + B;and Z, = A, + B,.

* With regard to an aircraft, T = H + W, where
T is the vector of ground speed and true course
H is the vector of airspeed and aircraft heading
W is the vector of the speed and direction of the wind.

» Zero vector The vector 0 = (0,0), where 6 is any angle,
is the zero vector.

Opposite of a vector Given a vector V = ([V
~V = (]V].8y = 180°.

,8y), then
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Chapter 6 review

[6-1] Solve the following oblique triangles using the law
of sines. Round answers to the nearest tenth.

1. a = 10.6, A = 47.9°, B = 10.3°
2. b =3.55,B=23.8° C=52°
3. a=100,b=130,B = 79.0°

4. a=126,c=7.0,C =327

5. A lost pilot is given a position report by triangulation
with two radar sites. The situation is shown in the dia-
gram. Find the distance of the aircraft from radar site A4,
to the nearest mile.

Aircraft

[6=2] Solve the following oblique triangles, to the nearest
tenth. You will have to use the law of cosines as the first
step.

6.a=4.1,b=06.8, C=294°

7. b =60.0,c=200,A=921°

8 a=2146=27.0,B=112°

9, ga=43556=178,¢c =350

10. a = 31.7, b = 80.0, ¢ = 105

11. A technician is setting up a numerically controlled
grinding machine. A triangular pattern is to be ground
and, therefore, must be coordinatized. The vertices of the
triangle are at A(—2,5), B(4.7), and C(5,—2). Solve the
resulting triangle. Round answers to the nearest 0.1.

12. A ship leaves a harbor heading due west and travels 23.3
km. It then turns north through a 63° angle and travels
for another 10.0 km. How far is the ship from its starting
point, to the nearest kilometer?

[6-3]

13. Convert the vector (27.2,29.0°), to rectangular form.
Round to the nearest 0.1.

14. The horizontal and vertical components of a vector are
19.6 and 30.5, respectively. Find the magnitude and di-
rection of the vector.

15. A rocket climbs with a speed of 450 knots and an angle
of climb of 34.6°. (The angle of climb is the angle mea-
sured from the ground to its flight path.) Find the hori-
zontal and vertical components of the rocket’s velocity,
to the nearest knot.

16. A force is acting on a cart at a 13.5° angle of elevation
(13.5° measured from the ground up to the force vector).
If the force is 256 pounds, find the vertical and hori-
zontal components, to the nearest pound.

Add the following vectors. Round the resultant to the nearest
tenth.

17. (33.0,14.7°), (15.2,33.6%)

18. (10.2,112.3%), (4.2,19.3°)

19. (3.5,29.2%), (1.7.43.1°), (4.3,115.0°)
20. (7.1,13.8%), (6.6,142.0°), (11.9,215.0°)

21. Two forces are acting on a point, 126 pounds in the di-
rection 223° and 158 pounds in the direction 311°. Com-
pute the magnitude and direction of the resultant force,
to the nearest unit.

22. A ship leaves its harbor traveling 15° south of east. After
1 hour it turns to the direction 40° south of east. After 2
more hours it turns to the direction 25° west of south.
The ship travels for 1 half-hour more and then stops. The
ship has maintained a steady speed of 18 knots for the
entire trip. How many nautical miles and in what direc-
tion is the ship from its starting position, to the nearest
integer?

23. An aircraft is flying with an airspeed of 195 knots and
heading of 24° west of north. The wind is blowing in the
direction 25° west of south at 19 knots. Add the heading
and wind vectors to find the aircraft’s true course and
ground speed, to the nearest integer.

24. An aircraft’s true course and ground speed are 120° at
225 knots. The wind is blowing in a direction 15° south
of east at 30 knots. Find the heading and airspeed of the
aircraft, to the nearest unit.
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Chapter 6 test

1. In triangle ABC, b = 22.6, A = 13.5°, and C = 82.1°
Solve this triangle. Round answers to the nearest tenth.
2. In triangle ABC, b = 22.6, ¢ = 24.0, and C = 62.1°.
Solve this triangle. Round answers to the nearest tenth.

3. Intriangle ABC, a = 25.9, ¢ = 16.2, and B = 100°. Solve
this triangle. Round answers to the nearest tenth.

4. Intriangle ABC, a = 2.55, b = 3.12, and ¢ = 4.00. Solve
this triangle. Round answers to the nearest tenth.

5. The distance to a boat on a lake is being found by tri-
angulation from two points on shore. The situation is
shown in the diagram. Find the distance to the boat from
site B, to the nearest yard.

Ny

==

42° 75°
A 78 yd 5

10.

. Given the three points A(6,8), B(—3,5), and C(10,—4),

find the angle formed by line segments AR and BC, to
the nearest 0.1°.

. Convert the vector (2,30°) to rectangular form. Leave the

answer in exact form.

The horizontal and vertical components of a vector are
4.0 and 5.0. Find the magnitude and direction of the
vector, to the nearest tenth.

. Add the vectors (5.4,19.0°) and (8.0,123°). Round the

resultant to the nearest tenth.

A sign is suspended between two buildings. One cable
from which the sign is suspended has a tension of 535
pounds and acts at an angle of elevation of 62°. If the
weight of the sign is 1,000 pounds, find the tension and
angle of elevation in the other cable, to the nearest unit.



Complex Numbers
and Polar
Coordinates

In this chapter we examine more applications of the trigonometric functions.
We first define complex numbers, and then show how trigonometry is useful
in representing these numbers as well as computing with them.

We then introduce polar coordinates, a system of coordinates that is useful
in describing many situations where periodic motion is involved.

7-7 Complex numbers

Complex numbers were developed hundreds of years ago, but they became
much more important about 100 years ago when they began to be used to
model physical phenomena, particularly in the study of electricity. Their de-
velopment and use centers on the number 1.

The i stands for the word imaginary; and represents V—1. We learned in
the past that the square root of a negative number is not defined since, for
example, if i = </—1, then 2 = —1, and we know that the square of any real
number is positive or zero. Nevertheless, equations like x> = —1 produce the
“solution’’ +/—1. To the mathematicians of the sixteenth and later centuries
these numbers were bothersome. They keep occurring when solving equations,
yet, to these people, such numbers could not exist. René Descartes coined the
term ‘‘imaginary’’ to describe solutions to equations that involved the square
roots of negative numbers, and this term has persisted to this day. (In fact, the
term ‘‘real’’ number was coined in reaction to the word ‘‘imaginary.’”)

It turned out, however, that the study of certain physical laws almost
demanded the existence of \/:T and today the existence of a number such
as i is no longer doubted. Since the property i = —1 is incompatible with the
properties of the real number system, a new number system was introduced
to incorporate these imaginary numbers. This system is the complex number
system, and we now study its properties.

239
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B Example 7-7 A

B Example 7-7 B

The square root of —1

= e

Rectangular form of a complex number

A complex number is an expression of the form & + bi, where a and b
are real numbers. a is called the real part, and b is called the imaginary
part of the number. a + bi is called the rectangular form of a complex
number,

2 + 3i is an example of a complex number; 2 is its real part and 3 is its
imaginary part.

Identify the real and imaginary parts of the following complex numbers:
a. 5+ 7 b. 2 —i c. 4 d. —6i

a. Real part: 5; imaginary part: 7.
b. Real part: 2; imaginary part: —1. 2—i=24+(=)

c. If we represent 4 as 4 + 0i, we see that the real part is 4 and the
imaginary part is 0.

d. Represent —6i as 0 — 6i to see that the real part is 0 and the imaginary
part is —6. A complex number in which the real part is zero is usually
called a pure imaginary number. [

Complex conjugate
a — biis called the complex conjugate of a + bi,

Form the complex conjugate of each complex number.

1. 5 +Ti
5 — 7i is the complex conjugate of 5 + 7i.
2.4 -5;

4 + 51 is the complex conjugate of 4 — 5i.

We rewrite 7 as 7 + 0i, whose complex conjugate is 7 — 0i or 7.
Thus, 7 is the complex conjugate of 7.
4. —9i
We rewrite —9i as 0 — 9, whose complex conjugate is 0 + 97 or
9i. Thus, 9i is the complex conjugate of —9i. [ |

An algebra exists for the complex numbers. Rules have been established
for the addition, subtraction, multiplication, and division of complex numbers.
These operations obey the rules of the real number system if we treat i as a
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B Example 7-7 D
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symbol having the property i> = —1. The definitions of these operations are
given and illustrated in the following paragraphs. First, however, we must
define what it means for two complex numbers to be equal.

Equality of complex numbers
The complex numbers a + bi and ¢ + di are equal if and only if a = c and
b =d.

The complex numbers are not ordered; that is, a given complex number is
never said to be greater than or less than another complex number.
We now define and illustrate addition and subtraction.

Addition and subtraction of complex numbers
@+b)+c+d)=@+) + b+ di
fa+b)l~lc+di=@=0+b=di

Concept

To add or subtract two complex numbers, add or subtract the real parts

and the imaginary parts separately.

Perform the indicated operations and simplify.
1. (5 + 4i) + (3 + 20)
G+4D)+@B+2D)=5+3+4i+2i=8+6i
2. 5+4)— (3 + 20
G+4D—-—@B+2)=5-3+4i—-2i=2+2i a

Multiplication of complex numbers
(a + bi(c + diy = (ac — bd) + (ad + bo)i
Concept
This definition is equivalent to our usual rules for the multiplication of real
number expressions if we replace 2 by —1.
+ bi(c + di Multiply as if real expressions
ac + adi + bei + bdi?
ac + adi + bci ~ bd Remember that 2 = ~1
(ac — bd) + (ad + bc)i

e

Perform the indicated operations and simplify.
1. (5+4D3 + 2i)

(5 + 43 + 2i) = 15 + 10i + 12i + 82
15 + 22 + 8(—1)
15+ 22i — 8

7 = 22¢

Il

Il
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2. (=2 53— 5i)

(—2+ 503 — 5) = —6 + 10i + 15 — 252
=6 + 251 — 25(=1)
=ibh 289 - 25

19 + 25i

Il

Il

3. 5i(6 — 4i)

5i(6 — 4i) = 30i — 202
= 30i + 20
=20 + 30¢

Note We always write the real part of a complex number first.

Division of complex numbers
g+ b ac+bd " bt = ad.
c+di 2+ A+

Concept
The above result is obtained by muitiplying the numerator and
denominator of the quotient by the conjugate of the denominator.
atbi a+b c—d
c+di c+d c—d
_ac — adi + bg — bdP
T @ —cdi+cdi - P
ac + bd + (bc — ad)i
=T 2+ d?
LS+ by be-ad,
TR R

B Example 7-7 E Perform the indicated operations and simplify each expression.
1 5+ 4
"3+ 2

5+4i S+4 3-2 15— 10i + 12i — 82
342 342 3-2 9—6i+ 6i— 42
1542 +8
T 944
_23+2i
13

— 23 £
=5t

Note A complex number must have two parts, a real and an
imaginary part. This is why we performed the last step in the previous
part.
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Figure 7-1

B Example 7-7 F
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—2 £.5
= 3 — 4§
—2+5i —2+5i 3+4 —6—8i+ 15— 20
3—4i 3—4i 3+4i 9+ 12i—12i+ 16
=26+
25
=B+
5i
3'6—4i
5. 5 6+4 30i—20 20 30
6—4i 6-—4i 6+4 36+16 52 52
=-S5+ 3 |

Complex numbers can be graphed as ordered pairs in a rectangular co-
ordinate system by letting horizontal distances represent the real part and ver-
tical distances represent the imaginary part of each complex number. Figure
7-1 shows the graph of (a) 5 + 2i, (b) —3 + 44, (¢) —6, and (d) —2i. A graph
of complex numbers, such as those in figure 7-1, is called an Argand dia-
gram. Example 7-1 F illustrates one application.

In alternating current theory in electronics, complex numbers are used to
represent impedance Z, a measure of the way in which a circuit retards the
flow of current through it. The real part of an impedance is called the
resistance R, and the imaginary part is called the reactance X. Thus, Z = R
+ Xi. The units for Z, R, and X are ohms. Graph circuit impedance Z if R =
100 ohms and X = —50 ohms.

Z =R + Xi = 100 — 50i. The graph is shown in the figure.

i

100+
50+
+ + + = X
-100 -50 50 100
—50+ L
{100,-50)
-100+ =
|
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Polar form of a complex number

We can use the graph of a complex number as a guide to develop another way
to represent a complex number. Given the complex number a + bi, let r
represent the distance from the origin to the point (a,b) and let 0 represent the
angle in standard position determined by the ray containing the origin and
(a,b). See figure 7-2. Using the definitions of section 2-2 we obtain cos 6 =

a ; b . .
— and sin @ = — . Thus, @ = rcos 0 and » = r sin 6. This means we can
7 r

rewrite a + bi as r cos 0 + (r sin 0)i, or #(cos 8 + i sin 0). The expression
cos 0 + i sin 8 occurs so often it is abbreviated as c¢is 0, so a + bi = rcis 0.
This form is called the polar form of a complex number.! Also, note that

b
r = ./a? + b? and that tan 6 = —.
a

Polar form of a complex number
If z=a + biis a complex number that determines an angle 8, then
Z=rdst
is its polar form, where cis 6 means cos 8 + /sin 6, and
r=JZ D

The value r is called the modulus of z, which is also written |z|.

Note 1. The value of 6 is not unigue. All coterminal values preduce
the same rectangular form. Thus, 2 cis 10° is equivalent to
2 cis 370°.
2. The modulus is the distance from the origin to the complex
coordinate (g,b).

Polar-rectangular conversions

As with vectors (section 6-3), we generally give a value of 6 so that —180°
< § = 180°. A method for converting from rectangular form to polar form is
a paraphrase of the method for converting vectors from rectangular to polar
form.

Given a complex number z = 2 + bi = r cis 8. Then,
= b4 8, hand= tan—1§ (ifa+ 0), and

o o
0=18 - 180°1f8' >0 .
ot & YE e < T3%0

Note Ifa=0then0is90°if b >0, and —90°if b < 0. A sketch will
make the choice clear.

IIn 1893 Irving Stringham first used the notation cis B = cos § + i sin .
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B Example 7-7 G Convert between polar and rectangular form.

1. 5 — 10:
The graph is shown in the figure.

r=|5—10i] = /53 + (—10P = /125 = 5./3

' = tam‘li = tan—l(_sl ) = tan~1(—2), so 8’ = —63.4°
a

8=06"=-634° a>0

Thus, the polar form of 5 — 10i is Sﬁ cis(—63.4°) or about
(11.1,—63.4°).

i 2. 5 cis 150°

5 cis 150° = 5(cos 150° + i sin 150°)

b 3 1
(a.b) — 5(_£ e g e —
X
_ 535,
2 2
508 &
Thus, 5 cis 150° = —*}L + ?i or about —4.3 + 2.5i. =

Polar-rectangular conversions on a calculator
As stated in the previous section, most calculators are programmed to perform
polar/rectangular conversions. This conversion works equally well for vectors
(section 6-3) and for complex numbers. The conversion is done with keys
marked “R — P> or ““—= P”’ and P — R’” or **— R’ or something equiv-
alent. The results are stored in locations referred to as x and y. Typical key-
strokes are illustrated here. (The TI-81 steps are shown below.)
Part 1 of example 7-1 G would be done as follows.

z=5—10i

5 [RoP]10 [+/=] [=] Display: [11.18033989

Display: | —63.43494882

Thus, z = (11.1,—63.4°).
Part 2 of example 7-1 G would be done in the following way.

z = 5 cis 150°

5 150 [=] Display: [ —4.330127019
Display:

Thus, z = —4.3 + 2.5i.

The TI-81 uses the values X, Y, R, and 0. (Y, R, 6 are 1,
, and 3, respectively.) It also uses the two MATH functions “‘R $ P(”’
(rectangular to polar) and ‘‘P § R(*’ (polar to rectangular).
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MODE | Deg | ENTER Make sure the calculator is in degree mode.
Example 7-1 G, part 1:

[MATH] 15 [ALPHA] [.] [(&] 10
Display: | 11.18033989
| ALPHA | 3 [ENTER ] Display: | —63.43494882

Example 7-1 G, part 2:

[MATH]| 25 [ALPHA] [.] 150
Display: [ —4.330127019

[ALPHA] 1 [ENTER] Display:

Multiplication and division of complex
numbers in polar form

Multiplication and division of complex numbers in rectangular form is quite
complicated. The following theorems show that these procedures are quite
simple when the complex numbers are in polar form.

Complex multiplication—polar form
(r; €is 8,)(r5 cis 85) = nr cis (0, + 05)
Complex division—polar form
sy | 5 .
e = — 5 (B, — 0,), 5 = 0
s 8, T {8, 5)
Concept

To multiply, multiply the moduli and add the angles. To divide, divide the
moduli and subtract the angles.

‘We can see that the first theorem is true by converting the complex num-
bers into rectangular form and performing the multiplication as defined earlier
in this section.

(rycishy)(racishs)
= (ricos8; + irysinf;)(rcos6, + irysinf,)
= rirpcosf;cosb, + irrcos0isinf, + irjrasind cos0, + i2r;r5in8;sind;
= rircos8;c080, — r17;8in0;sin0, + iryrpcos0;5in6, + irrysind;cosBs
Recall that 2 = —1

= riry[(cosB cosB; — sinb;sinby) + i(sinB;cosB, + cosh;sinb,)]

Now use the identities for cos(o. + B) and sin(ee + B) from section 5-2.
rira[cos(0; + 63) + isin(8; + 65)]
= ﬁFQCiS(B] + 92)

The proof of the process for division in polar form is left as an exercise.
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In electronics, Ohm’s law states V = IZ, where V means voltage, [ means
current, and Z means impedance. The units are volts, amperes, and ohms,
respectively. Often complex numbers are used to describe the values of volts,
amperes, and ohms. The fact that the angles add in forming the product models
the physical situation in an electronics circuit. This use is illustrated in ex-
ample 7-1 H, part 2.

Multiply or divide the complex numbers.

1. (2 cis 110°%)(10 cis 300°)
=210 cis(110° + 300°)
= 20 cis 410°
= 207cis 50° 410° and 50° are coterminal

2. In a certain electronic circuit current I = 4 cis 30° amperes and
impedance Z = 2 cis 15°. Use Ohm’s law, V = IZ, to compute voltage V.
V=1IZ
= (4 cis 30°)(2 cis 15°)
= 8§ cis 45° (volts)
15 cis 30°
18 cis 80°
= Bcis(30° — 80°) = Zcis(—50°) O

De Moivre’s theorem

Consider the following computations for successive powers of a complex
number r cis 6.

(rcis®)! = rcis 0
(r cis 8)2 = (r cis 8)(r cis 0) = 72 cis 26
(r cis 8)® = (r cis 0)(r cis 0)2 = (r cis 0)(#2 cis 20) = #° cis 30
(r cis 8)* = (r cis 8)(r cis 0)* = (r cis 0)(73 cis 30) = 7 cis 48
It is logical to assume that the pattern above continues. This is true, and

the result is called De Moivre’s theorem. It actually turns out that the expo-
nent can be any real number.

De Moivre’s theorem
(r cis 8)" = ricis n@ for any real number n.

This theorem is illustrated in example 7-1 1.

Use De Moivre’s theorem to compute the following.

1. (5 cis 137°)3; leave the answer in polar form.
= 55183+ 137°)

125 cis 411°

125 cis 51°
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2. (1 + 0.80)%; leave the answer in rectangular form; round to the nearest
tenth.

We could of course multiply (1 + 0.8i) by itself five times to obtain the
result. The amount of work is prohibitive. If we put the number in polar
form we can use De Moivre’s theorem.

3
|1+ 08i] = VIZ+0.82~1.281;0 = tan‘lOT=38.66°

Then 1 + 0.8{ = 1.281 cis 38.66°. Then

(1 + 0.80)% = (1.281 cis 38.66°)¢
= 1.2816 cis(6 - 38.66%)
= 442 cis 231.96°
= 4.42 cos 231.96° + 4.42 sin 231.96°%
2 =27 357

Thus, (1 + 0.81)% = —2.7 — 3.5i, to the nearest tenth. |

De Moivre’'s theorem for roots
In the complex number system, every number except 0 has n nth roots; that
is, two square roots, three cube roots, four fourth roots, etc. These can be

1
expressed by De Moivre's theorem by replacing n by —; recall that
n

2

! 1 L
xF = Jx, x> = IJx x* = Y, ete.

De Moivre’s theorem for roots
The n nth roots of r¢is 8 are of the form

%.(e k - 360°
£ Glsye
n n

),Osk<n

where k and n are positive integers.

We can show that any number of the form above is an nth root of r cis 8 by

raising it to the nth power.
['_(e k-360°ﬂ" (A) [(e k-360°)]
rreisy—+ r% els oty
n n n n
rcis(6 + k- 360°)

=rcis @ 6 + k- 360° is coterminal to 9
If ¥ = n we get a repetition of a previous root. The proof of this is left as an
exercise. The proof of the fact that the roots are all distinct and that there are
no other roots is beyond the scope of this text,
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Find the roots.
1. Find the three cube roots of 1.

l=1cis0°
Evaluate l% cis(%o + b §600) = cis(k - 120°) for k=0, 1, 2.
k=0: cis0®=cos0°+isin0°=1+0i=1
k= 1: cis 120° = cos 120° + i sin 120° = —% - %i
k= 2: cis 240° = cos 240° + i sin 240° = —% = 731'
Thus, the three cube roots of 1 are 1, —? + ?i,—% = —?i.

2. Find decimal approximations (to tenths) of the four fourth roots of
10 — 2./39i.
10 — 2./39i = 16 cis 308.68°
3 (308.68" | k- 360°

16* cis
4 4

Evaluate 2 cis(77.17 + k- 90°) for k = 0, 1, 2, 3.

k= 0: 2cis 77.17° = 2(cos 77.17° + i sin 77.17°) = 04 + 2.0i

E=1: 2cis 167.17° = 2(cos 167.17° + i sin 167.17°) = —2.0 + 0.4i

k=2 2cis257.17° = 2(cos 257.17° + i sin 257.17°) = —04 — 2.0i

k=73: 2cis347.17° = 2(cos 347.17° + isin 347.17°) = 2.0 — 0.4
Thus, the four fourth roots of 10 — 2./39i are approximately 0.4 + 2.0i,
—2.0 + 0.4i, —0.4 — 2.0i, and 2.0 — 0.4i.

3. In electronics apparent power P can be determined by P = I°Z. If we
| P | P
solve this for current [ we get [ = = 7 Use I = -7 to determine [ to

the nearest tenth if P = 10 — 2iand Z = 1 + 3i.

P =10 — 2i ~ 10.2 cis 348.69°
Z =1+ 3i=3.16 cis 71.57°
P 102 cis 348.69°

Z ~ 3.16cis 71.57°

) = 2 cis(77.17 + k - 90°)

= 3.23 cis 271.12°

2t 277.12° k- 360°
We evaluate the expression 3,932 cis( > + > d ) fork=0,1.

k=0 ./3.23cis 138.56°= —1.3 + 1.2{
k=12 /3023 ¢is 318567 = 1.3 — 127

Thus, the current [ is about —1.3 + 1.2i or 1.3 — 1.2i (amperes). ||
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Mastery points

Can you

e |dentify the real and imaginary parts of a complex number?

e Form the conjugate of a complex number?

e Evaluate complex expressions involving addition, subtraction,
multiplication, and division?

* Graph a complex number when given in rectangular or polar form?

¢ Convert between the rectangular and polar forms of complex numbers?

e Multiply and divide complex numbers in polar form?

e State and use De Moivre’s theorem for integral powers?

e State and use De Moivre’s theorem for roots?

Exercise 7-7

Identify the real and imaginary parts of the following complex numbers.

1.4 -5; 2. 34 Uk 3. —4+i 4. 3i
5012 6. —i 7. =10 + 2¢ 8. -9 —i
For each problem (a) find the complex conjugate and (b) graph the number and its conjugate in the same graph.
9. 4 - 5] 10. 3 + 11i 11. —4 + i 12. 3i

13. 12 14. —i 15. —10 + 2§ 16. -9 — i

Simplify each expression by performing the indicated operations. Do all operations in rectangular form (do not convert to
polar form).

17. (5 + 4i) + (=3 + 2i) 18, (=11 + 89 ~i—1 =4
19. 3 + 2i) + (—6i) — (2 + 3i) — 10 20. (7 + 4i) — (=13 + 4)
21. 13 —-Ti+3i—4 2. —8 — @4+ 3D+ 2—(—6— i
(15 + 49)(3 + 12i) W (=0 S-S — 55
25. —5i(6 — 4i) 26. (4 — 30 &= 305 28. i(2))(3i)(—1i)
5+ 4i —3 4 3+ 6i 541
29. : 2,
ST N Sa —2—i e
Write the polar form of each complex number. Round the results to the nearest tenth.
33, 5 — 2 34. /2 + 3i 35. —1 + 3; B6] V3 - 2i 37. -3 + 4i 38. 13 — 9i

Write the polar form of each complex number. Leave the result in exact form.

Bo]l 3+ 40. 1 - /3 41. 3 + 3i 2. —1+ J3
43. -1 —i 4. /5 - /5 45. 5i 46. —3i
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Write the rectangular form of the following numbers. Round the results to the nearest tenth.

3 cis 15° 48. 5 cis 20° 49. 4.5 cis 35° 50. 10 cis 40°
51. /2 cis 315° 52. 200 cis 8° 53. 13.6 cis(—25°) 54. 12 cis(—67)
Write the rectangular form of the following numbers. Leave the result in exact form.
55. /3 cis 30° 56. 4 cis 210° 57. 10 cis 300° 6 cis 135°
59. /10 cis 180° 60. 2 cis 90° 61. /8 cis 315° 62. 5 cis 240°
Multiply or divide the following complex numbers. Leave the result in polar form.
63. (5 cis 30°)(3 cis 45°) 64. (2 cis 18°)(4.5 cis 100°) 65. (5.4 cis 300°)(2 cis 300°)
20 cis 100° 100 cis 45°
. (0.5 cis 230° i s _ et
66. (0.5 cis 230°)(80 cis 200°) 5 ois 20° 200 ois 15°
40 cis 80° 90 cis 300°
" 18 cis 160° " 50 cis 100°

Use De Moivre’s theorem to compute the power indicated. Leave the answer in the form in which the problem is stated
(polar or rectangular).

71. (8 cis 100°)? 72. (5 cis 10°) (3 cis 200°)2 74. (2 cis 300°)°
75. (0.5 — 1.20)% (round to nearest tenth) (0.8 + 0.6)!° (round to nearest tenth)
77. Find the 3 cube roots of 8 in exact form. In a parallel electronics circuit with two legs, total im-

78. Find the 4 fourth roots of —1 i t form. s
- Y S pedance Zr is Z 2z . Find Z7 in a circuit in which

79. Find the 4 fourth roots of 81 in exact form. ;
80. Find the 6 sixth roots of —64 in exact form. Z, =2+ iand Z, = 3 — 5i. Leave the answer in polar
81. Find the 3 cube roots of 75 — 100i to the nearest tenth. form.

2. Find the 4 fourth roots of /3 + 3/ to th t tenth. : .
0 ehie 2 pwash sp01s af 3 3t the mearsst o 88. Find Zr in a parallel circuit in which Z; = 12 + 3i and

83. In electronics, one version of Ohm’s law says that Z, = 4 — 2i. Leave the answer in polar form. See
\’% " . - problem 87.
I = —, where [ is current, V is voltage, and Z is impe- P
4 . ] R . i ) 80. Use I = [—todetermine [ if P =5 + 2iand Z =
dance. Find [ in a circuit in which V is 125 cis 25° and VA

Z is 50 cis 45°. 1 — 4i. Leave the result in rectangular form, to the
s : : th ; t t(k=01
84. Find I in a circuit in which ¥V = 200 c¢is 40° and Z = 4 demeneaninhs SIS i R Sl Uian:Be

Moivre’s th .
cis 50°. See problem 83. phoeis Gicomem)

85. Find V in a circuit where / = 10 cis 15° and Z = 5 cis 90. Use I = i% to determine [ if P = —2 + 2i and

30°. See problem 83. ] !
Z = 2 — i. Leave the result in rectangular form, to the

86. Find Z in a circuit where I = 40 cis 200° and V = 10 cis nearest hundredth. Use the first square root (k = 0 in De
125°. See problem 83. Moivre’s theorem).
91. Is the following an identity: a cis(—8) = —a cis 6?7 Show
why or why not.

Multiplication by i can be interpreted as a 90° rotation. If z represents the complex number given in each of the following
problems, compute and graph (a) z, (b) iz, (¢) iz, (d) iz

92. 4 +2i 93] -3 + i 94. 5i 95. 6 96. 1 — i 97. -1 —i
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98. Letz = —2 + 2i, zp = 1 — /3i. Form the product in 101. 7™ Warning: This problem requires a great deal of

99,

In this section we stated that

two ways: (a) by multiplication in rectangular form and
(b) by changing each value into polar form (in exact
form) and performing the multiplication in polar form.
Then (c) convert the answer to (b) back to rectangular
form and verify that the answers to (a) and (b) are the
same.

F"™ A numerically controlled machine is programmed
bud 1o rotate a laser beam according to mathematical
rules. The laser initially points to the point 1 + i.

a. Find the rectangular form of a complex number z
such that the angle of the product z(1 + i) is 30°
greater than the angle of 1 + i, without changing the
modulus of 1 + 4

b. Give the rectangular form of the point to which the
laser points after this rotation. Round the answer to

= algebraic manipulation. De Moivre’s theorem for
roots states that the n nth roots of r cis 6 are of the form

L 1 6 k- 360°
(rcis®)” = #" cis(%ﬁ+ z6 ,0=k<mn,
n

where k and n are positive integers. Show that if k =
n, then the expression is a repetition of another root.
That is, it is the same as the expression for some value
of k < n. Do this in the following manner.

k b
First, if k = n, then — = @ + —, where b < n. (Think
n n

of the example 22 = 5, so % = 4 + %) This means
k=an+ b b<n
Next, show that the following steps are true:

L _(9 k-360°)
¥ cisl— +

two decimal places. n n
¢. Give the rectangular form of the point to which the L Te (an+b)-360°
laser points after eight such rotations, starting at the s e +: oy — Why?

point 1 + 7. Round the answer to two decimal places.

1 cis 6 ? 5 s
——— = Lcis(8; — 6,).
2 C18 92 r

Prove that this is true. Use the proof in the text that

(ry cis 8)(rz cis 82) = rir cis(B; + 02) as a guide.

1 . 360°
=r" Cis[(ﬁ— + Do ) +a- 360°:|.
n n

Show the algebra for this step

Finally, now expand this last expression into terms of
sine and cosine (i.e., expand ‘‘cis 0’"), and then apply
the identities for the cosine and sine of a sum (section
5-2.).

7-2 Polar coordinates

Some natural phenomena, such as the motion of the planets, the contour of a
cam on an automobile camshaft, the path traveled by a client on many of the
rides in an amusement park, or the field strength around a radio transmitter,
can be described most simply by describing the motion in terms of distance
from some point as a line moves in a circle. The polar coordinate system is a
coordinate system that is better suited to describing these phenomena than are
rectangular coordinates. James Bernoulli is often credited with the creation of
polar coordinates in 1691, although Isaac Newton used them earlier. A polar
coordinate system is a series of concentric circles and an angle reference line
(see figure 7-3). The common center of the circles is called the pole.

Basic definitions

Polar coordinates

The polar coordinates of a point is an ordered pair of the form (1,6), where
ris the radius, and 8 is an angle, often measured in radians.
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Figure 7-3
A point in polar form is located by finding the radius line corresponding to
the angle 6, often stated in radians, and moving 7 units from the center along

5 5
this line. Figure 7-3 shows the graphs? of the points (5%) (A), (2%) (B),

and (4’%) (). In each of these cases r > 0.

If two points have equal radii and coterminal angles they will have the
same graph. For this reason we define such points to be equivalent. If r < 0
we interpret this to mean a change of direction by 7 radians (the opposite
direction).

Equivalence of points
1. roy = (B) if o and B are coterminal angles.
2. (=18} = (8 + 7).

Note (—r8) = (6 — m) is also true.

This definition means that (1,0), (1,2%), (1,4n), (1,—2n), (1,—4n), (—1.m),
(—1,3m), (—1,—7), etc. all describe the same point! This can occasionally lead
to some confusion.

Example 7-2 A illustrates the basic definitions.

ZPolar coordinate paper is widely available.
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3
B Example 7-2 A 1. List 3 other coordinates for the point (2 I) with at least one so that

r < 0.

3n 3n i ‘ ]
2— ] =2—+ 2x Adding 2x gives a coterminal angle

4 4
11w
- (2
3n . : .
2, + 471 Adding 4z gives a coterminal angle
. w_n
’ 4
2 Adding or subtracting w gives a coterminal
> 4 angle in which r changes sign
n
—2—

2. Plot the point ( 5 —-)
11 11 5
( 5 _n) = (5,—6E = n) = (S,g), which is plotted at A in figure 7-3.
O

Polar-rectangular coordinate conversions

~¥i 7 There is a way to relate polar and rectangular coordinates. Figure 7—4 shows
: ,J)\ polar and rectangular coordinates superimposed. From the definitions of
: ; Y . . X
o —7} 3 section 2-2 we know that if P = (x,y) = (r,0), r > 0, then cos § = — and
NETaae '
1lelzld
F| ure 7-4 J
g Thus, to convert from polar to rectangular coordinates we have only to
use
x=rcos 0
y = rsin0

In fact, it will be an exercise to show that we can use the same relations when
r <2 0. Example 7-2 B illustrates a polar to rectangular conversion.

T
B Example 7-2 B Convert the polar coordinates (2,?) to rectangular coordinates.

R e L = =
xX=rc¢ =2cos—=2.-—=
3 2

>

]

Thus, the rectangular coordinates are (1,\/5). ]

y=rsin8=2sin%=2-
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To convert from rectangular to polar coordinates we use the fact that 72 =
x2+ y?andtan 6 = 2 if x # 0. This also means 0’ = tan-1% |
x o

As with vectors and complex numbers (sections 6-3 and 7-1) we always
leave the angle 8 so that it is the smallest possible absolute value. In this case,
using radian measure, we always choose 0 so that —mt < 8 = 1.

A rule for finding 0 is essentially the same as that for finding 8y for vectors,
and 0 for complex numbers.

Given polar coordinates for point £, P = (xy) = (5.8),
r=JX ty, tanb = tan“? if x # 0, and

6’ ifx>0
0=48" —-nife’' >0 .

G anEgap "ET0

Note Ifx=0then8iszify> 0, and —xif y < 0. This is clear from a
sketch.

Convert the rectangular coordinates into polar coordinates.

1. (—2./3.2)
P=(-2/3+22=16,r=4
ﬁ) — an"lﬁ tan-7 is an odd function,

2
8’ = tan~l——== tan‘l(——
-2./3 3

3 so tan-(—x) = —tan~'x
b4 Wy
so 8’ = —%.x<0,6' <0,500=08"+n= —?+n=?.

Sm
Therefore, the required polar coordinates are (4,—).

2, (—2—5)
= (-2 + (-5P =29, r = /29~ 539
9’ tan~'3 = 1.19 (radians)
x<0,0 >0,500 =8 — = tan"'3 — 7« (exactly), or approximately

1.19 — w = —1.95. Thus, the polar coordinates are (/29, tan~'2.5 — m)
exactly, or approximately (5.39,—1.95). H

Conversions with a calculator

Engineering/scientific calculators are programmed to perform the conversions
of example 7-2 C, using the same method and keys shown in section 6-3 for
vectors and in section 7—1 for complex numbers. These calculators have keys
marked R — P and P — R. or something equivalent. The results are stored in
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locations referred to as x and y. Typical keystrokes are illustrated here. For
these examples we want the calculator in radian mode. The steps for the
TI-81 are shown below.

Example 7-2 B would be done as follows:

(213&) (polar)

2 [p>R] [ [=] [=]3 0] [=] Display: [1]
Display:

Thus, (2—2}) ~(1,1.73),

Example 7-2 C, part 2, would be done in the following way:
(—=2,—5) (rectangular)

2 R—>P|5 [+/-] [=] Display: [5.385164807
Display: | —1.951302704

Thus, (—2,—5) (rectangular) = (5.39,—1.95) (polar).

The TI-81 uses the values X, Y, R, and 0. (Y, R, 0 are 1,
, and 3, respectively.) It also uses the two MATH functions ‘R § P(’’
(rectangular to polar) and “‘P # R(” (polar to rectangular).

Example 7-2 B:

Rad Make sure the calculator is in radian mode.
(MATH| 22 [ALPHA] [] [( = [=]3

Display:
ALPHA | 1 [ENTER Display:

Example 7-2 C, part 2:

IMATH] 1 [(=)] 2 [ALPHA] [.] [(®)]5

Display: [5.385164807
[ALPHA | 3 [ENTER | Display: | —1.951302704

Conversion of equations between
rectangular and polar form
Analytic geometry is the modeling of geometry in the language of algebra.
Thus, a nonvertical line in analytic geometry is an equation of the form
y = mx + b, and a circle with center at the origin and radius r is an equation
of the form x? + y? = r2.

Equations can also be written using polar coordinates. Examples are

r= 3 cos B
= sec O
= 2

cos 0 =1
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tan ~1(-2)
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It is often useful to discover the polar coordinate version of a rectangular
coordinate equation. We say that a rectangular equation and a polar equation
are equivalent if they describe the same set of points, assuming the appropriate
rectangular/polar conversions of the points themselves.

Conversion of equations from rectangular
to polar form
To convert an equation in rectangular form into an equivalent equation in
polar form, use the relations used to convert a point from rectangular to
polar form:

x=rcosh, y=rsing and 2 =x2 + )2

When possible we customarily write a polar equation in which r is described

as a function of 6. That is, to the extent possible, we put all terms with 7 in

one member of the equation, and all other terms in the other member.
Example 7-2 D illustrates conversions from rectangular to polar form.

Convert each rectangular equation into polar form.
1. The line y = 3x — 2.
y=3x—2
rsin@ = 3(rcos8) — 2 X=rcos8,y=rsno

It is customary to solve a polar

2=3rcos® —rsinf equation for r if possible

2 =r(3 cos 6 — sin 0)
2
e —
3cosB —sin @
2. The liney = —2x.

y=—2x

rsin® = —2rcos 0 X=rcos®, y=rsing

G = —3 pell Divide both members by r, this

assumes r # 0 (see below)

sin __, Divide both members by cos 8; this

cos 0 assumes cos 8 # O (see below)

tan B = —2
This equation is equivalent to the equation y = —2x. To see this, first
observe that it does not mention r. This means r can be any value. The
values of § for which tan 8 = —2 are in quadrants II and IV, where the
tangent function takes on negative values. All points (r,8) for which
tan ® = —2 and r takes on any value are shown in the figure. This is the
line y = —2x.

It was all right to assume r # 0 above because the resulting solution
includes the pole as a solution (this is where r = 0).

Tt was also valid to assume cos 6 # 0, for two reasons. One is that
we arrive at an equation that satisfies the requirements and thus we do
not need to consider the case where cos 6§ = 0. Second, when cos 6 = 0,
sin 0 is 1. These values do not solve the equation sin § = —2 cos 6, so
that cos 8 = 0 cannot occur in this situation.



258 Chapter 7 Complex Numbers and Polar Coordinates

3. The circle x* + y* = 1.

oy =]
7% — 1 X+yp=r
r==I
Either r = 1 or r = —1 describes a circle with radius one, since 8 is not

restricted but may take on any value. Thus, either equation is valid.
4. The hyperbola x> — y? = 2. (See footnote3.)
X2 — yz =2
(rcos 0)2 — (rsin 02 = 2
7 cos?0 — r2sin%0 = 2
r*(cos?8 — sin?f) = 2

r’cos 20 = 2 cos 20 = cos?8 — sin28
2
~ cos 26
2 = 2 sec 20
Thus, either 7°cos 26 = 2 or r? = 2 sec 20 are valid equations of the
given rectangular equation. |

Conversion of equations from polar to rectangular
form

To convert from polar to rectangular coordinates we use the relations

S X
51n6=1, c059=7, 2= x? &2
r

Example 7-2 E illustrates converting polar equations into rectangular form.

B Example 7-2 E Convert the polar equation into rectangular form.

1. r=5sec 6
s
rﬁcosB
rcosh =35

X X
rii—i= % cosh=—
r

x=25

*Hyperbolas are not covered in this text. Any equation of the form ax®> — by? = ¢, @, b, ¢ # 0,
and a and b have the same sign, is a hyperbola.
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2. r> = cos 28
We do not have any relation for cos 28, so we use an identity to
replace it.

72 = cos?0 — sin?0 cos 260 = cos?0 — sin?@
2 2
2= o O 2 cose=i,sin6=l
r r r r
B 22
2 2
o= X2 — 2
()C2 -t y2)2 = x2 — yZ r°o= (2 = 02+ yER
3.r=1+cos@
X
=14 —
r
r=r+zx Multiply each member by r

32 HyE =t x
X AW —ix=

(& + 3 — 2P = Square both members to obtain 2

(o + 3 — 2 =2 + 37 Now replace /2 by x2 + )2

=28+ + 2?2 — 2002 — 2 =0 Expand the left member
and combine terms =)

Note Observe that r can be replaced by squaring both members as
necessary to olotain r2, or any even power of r.

In example 7-2 E we used the identities sin 8 = 2 and cos = = . This
r

=

is only valid if » ¥ 0. The value of r is zero only if the pole is a solution to
the given polar equation. Thus, when the pole is a solution to the polar equa-
tion we must verify that the point (0,0) is a solution to the resulting rectangular
equation.

In example 7-2 E, part 1, the pole is not a solution, since if r = 0,0 = 5

5
8 = —— VFh tion 0 =
sec — e equation

equation x = 5 does not pass through the origin either.)

In example 7-2 E, part 2, r can take on the value 0: 0 = cos 20 has
solutions. Thus, the pole is part of this equation. Observe that the point (0,0)
is also a solution to the equation (x? + y?)2 = x* — y2.

0 has no solution. (The rectangular
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et o L
‘ Mastery points

| Can you

e Graph points in the polar coordinate system?

e Give alternate polar coordinates for a given point?

e Convert between polar and rectangular coordinates?

* Convert equations between polar and rectangular form?

Exercise 7-2
Graph the following points in polar coordinates.

1. 3.0) 2. (4.7) an (Z,E) 4. (1,2—) 5. (2,:%rc 6.
4’ T

lim T 5 T
() a2 weam w(eB)  w(ad)  m(et
13. (4,2) 14. (3.5) 15] (—4.6) 16. (—4%) 17. (5,4—’“) 18. (4,5n)

List three other coordinates for the point, with two points having r > 0 and one point having r < 0.

b1 T e Y AR B G T
o= i s kil (622 =5 23. (2.2 4.
19 (2 ) 20 (1 3 ) 21 (6, ) 22 ( 5 5 ) 2.2 2

Convert the following polar coordinates into rectangular coordinates. Leave the result in exact form.

T b 5m 1l 4m 3T
25, | 4— 26. —— . = - — s S . e
(2)  w(eE) () w () () s ()

Convert the following polar coordinates into rectangular coordinates to two-decimal place accuracy.

2.1 32. (5,1.2) 33. (3,0.82) 34. (3,5) 35. (4,4) 36. (1,6)
Convert the following rectangular coordinates into polar coordinates. Leave the result in exact form.
37. (-243,-2)  38. (3,-3) (-2,0) 40. (—1,./3) 41. (-4,-4) 42. (0,1)
Convert the following rectangular coordinates into polar coordinates to two-decimal place accuracy.
43. (2.3) 44. (-52) ls] -4 46. (—4,-3) 47. (5.4) 48. (-3,5)
Convert the following rectangular equations into polar equations.
49, y = 4x 50. y = —2x &y=*3x+2 52, y=5x—3
y=mx+b,b-7£0 54. y=2 55/ — 222 =35 56. 2 —x=4
57. 3% & 2p2= 1 58. X2 +y2=3
Convert the following polar equations into rectangular equations.
59. r =sin 8 60. 2r = cos 6 61. r=2secH 62. r=3cscH
[63] r = 3 sin 20 64. r=2cos 0 65. r2 = sin 20 66. r = cos 28
3 5

67. > =tan § 68. rsinf =35 69 r = —————— 70. r = ——

: ik e R T g T—



71. Show that a polar equation of 2xy = 5 is 72 = 5 csc 26.

72. In the text we noted that x = r cos 0 if r > 0. Show that
this is also true for a point given in polar coordinates
where r < 0. (Hint: Consider a point P = (r,8), where
r < 0. Then P = (—r,0 + ), where —r > 0. Therefore,
since —r > 0, x = —r cos(® + m) is true. Proceed from
here.)

73. In the text we noted that y = r sin 8 if » > 0. Show that
this is also true for a point given in polar coordinates
where r < 0. See the hint in problem 72.

74. The shape of a cam that drives a certain sewing machine
needle is described by the polar equation r = 3 — 2 cos 6.
Convert this equation into rectangular form.
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75. The path that an industrial robot must follow to paint a

76

T

pattern on a part being manufactured is described by the
curve r = 1 — 2 sin 6. Convert this equation into rect-
angular form.

The pattern of strongest radiation of a certain bidirec-
tional radio antenna is described by the curve r = 1 +
sin 20. Convert this equation into rectangular form.

The pattern of strongest radiation of a certain radio an-
tenna is described by the equation » = 1 + 2 sin 20. This
pattern is said to have side lobes. Convert this equation
into rectangular form.

In the October 1983 issue of Scientific American, Jearl Walker described several rides, the Scrambler and the Calypso, at the

Geauga Lake Amusement Park near Cleveland, Ohio.

Assume the path taken by the Scrambler is described by
the polar equation r = 2 cos 30. Convert this equation
into rectangular form. It will be necessary to rewrite cos
36 in terms of cos 0. See problem 79 in section 5-3.

79. Assume the path of the Calypso is described by the equa-

tion r = 1 — 3 cos 6. Convert this equation into rect-
angular form.

7-3 Graphs of polar equations

There are several ways to graph polar equations. The graphing calculator can
be used, or one can sketch a graph by hand. We illustrate how to obtain polar
graphs with the TI-81 graphing calculator. To achieve a sketch of a graph by
hand we employ three methods:

1. plotting points,

2. putting a polar equation into rectangular form, and

3. using the corresponding rectangular graph as a guide.

The examples show how to create polar graphs both by hand and by graphing

calculator.

Graphing polar equations with the graphing

calculator

The TI-81 uses a mode called Parametric Mode to graph polar equations.
Parametric mode uses two functions to produce rectangular coordinates. The
first produces the x-coordinates, and the second produces the y-coordinates.
We illustrate how to use the process by graphing the polar equation r = sin?6.

The polar equation r = sin?0 generates a collection of polar coordinates
(,8). In this case, r is sin26, so the polar coordinates generated are (sin%6,0).
To convert a polar coordinate to a rectangular coordinate we map (7,6) to (x,y)
= (r cos 0,7 sin 0) (section 7-2), so for this function we map (sin?8,0) to the
point (x,y) = (sin?6 - cos 6,sin? - sin 8).
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As stated above, in parametric mode a point (x,y) is calculated from two
separate equations that depend on a third variable, usually called ¢ (the TI-81
uses T). Thus, we graph the set of rectangular coordinates (sin?t - cos z,sin?z -
sin #), which of course is the same as (sin? - cos 7,sin*¢). We usually let 7 take
on the values from 0 to 27 to obtain the graph, but this may need to be adjusted
depending on the functions in question.

As illustrated above, to graph a polar function of the form r = f(8), put
the calculator in parametric mode and graph

Xir=HT)-cos T
Y1T=f(T) -sin T

To create the graph of the polar equation » = sin?6 do the following:

(zoom] 5

Select Param instead of Function. Do this by positioning
the blinking square over Param and using . Also
select Polar instead of Rect. This has no effect except when
using the trace feature. Then the values T, R and 6 are shown
instead of T, X and Y.

The display now shows the variables X;r and Yt (as well
as others). Enter the equations shown above. Note that in
parametric mode the key is used to enter T. The
display should look like :X;r=(sin T)?**cos T

:Y1T= (Siﬂ T)3
Remember, the exponent 3 is 3.
The range display is different in parametric mode. Set the

following values: Tmin=0
Tmax=6.28 (21

{1
Tstep=.105 l\%)

1

)

1

Xmin=—1
Kmax=1
Xscl=.5
Ymin=-—1
Ymax=1
Yscl=.5

We want the display to be square.

The graph is drawn as shown in figure 7-5.

-

B

.

Figure 7-5



W Example 7-5 A

0 r
T T
= — =04
4 8
3n 3n
= —= 1.2
4 8
2 4
21 T =3.1
11 11
Hm | lm_ o
4 8

Table 7-1
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We show the range settings in the rest of this section in the order shown above.
Thus, for the graph above we show

X,r=(sin T)2*cos T, Y;pr=(sin T)3,
RANGE | 0,6.28,0.105,—1.1,.5,—1,1,.5, [ Z00M | 5

Graphing polar equations by plotting points

Of course any graph can be obtained by plotting enough points. Example
7-3 A shows a case where this might be done without plotting too many points.

]
Graph the polar equation r = EX 0 =0.

We observe that r increases at half the rate of 8. A table of values is given in
table 7-1, and these values are plotted in the figure.

0
2

™
]

e
a9
\"w
%8
A5
(NE]

%
@|a

X
RS
AN

NZ ”
T AL 2] * 5
" \ ifr
IR A

3
X )
o
@,

KLY
XK s
v

=3

»1g
olf ‘

The graph shows points (r,8) for 0 = § = 4m, but the graph, a spiral, continues
on forever.

Xir=T/2*cos T, Y r=T/2*sin T,

RANGE | 0,20,0.105,—6.6,1,—6,6,1, | ZOOM | 5

=
[—

The next two methods presented can save the time required to calculate the
many points that are often required to graph an equation by plotting points.
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B Example 7-3 B

Graphing polar equations by putting in
rectangular form

Graph the polar equation 6 = 2.
An angle of 2 (radians) is shown in part (a) of the figure. Any point (7,2),
r > 0, lies on the terminal side of this angle.

Recall that (—r,8) = (r,0 + ®). Therefore (—r,2) = (r,2 + 7). Thus, when
r is negative, its graph is along the line containing the terminal side of the
angle 8 = 2 + m. Thus, the graph of 6 = 2 is the line shown in part (b) of the
figure.

Another way to see the shape of this graph is to rewrite the equation in
rectangular form.

tan 0 =

tan 2 = =2

Mo w e

y = (tan 2)x Straight line, slope = tan 2
y=—2.2x tan 2= —2.2

Thus, the graph is the line y = —2.2x.
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The equation § = 2 does not describe r as a function of 6, since r is not even
mentioned! This means that r can take on any value. Thus, any point in the
graph is of the form (r,2). Parametrically we let » = T and 8 = 2.

XlT:T*CDS 2, YszT*Sin 2,

—7,7.0.105,—6,6,1,—6,6,1, [ ZOOM | 5

Graphing polar equations using the
rectangular form as a guide

The rectangular form of an equation can provide guidance for drawing the
polar form of an equation. This is especially true when the rectangular form
is periodic. There are two principles involved in this process. To discuss this
we define the term ‘‘positive lobe.”” A positive lobe is a portion of a graph in
rectangular coordinates that starts and ends on the x-axis, and is continuous
(it has no breaks, such as a vertical asymptote). Figure 7-6 (a) shows two
positive lobes, at A and at B.

Every positive lobe corresponds to a lobe in a polar graph. A lobe (in a
polar graph) is a closed figure that starts and ends at the pole. Figure 7-6
shows the correspondence between two positive lobes A and B in a rectangular
graph (a), and the corresponding lobes in a polar graph (b).

()
r 63 2A
e'I
A
LA B B j r
7,
L6, 65—8, 0,
94
(@) (b)
Figure 7-6

Another important point uses the fact that (—r,8) has the same graph as
(r,0 £ 7). This means that negative lobes in a rectangular graph may be redrawn
as positive lobes by shifting their graphs *r units, before graphing in polar
coordinates. Although this method sometimes seems complicated, with a little
practice it is much easier than having to plot many points. Example 7-3 C
illustrates this method.



266 Chapter 7 Complex Numbers and Polar Coordinates

B Example 7-3 C Graph the polar equation, using the rectangular form as a guide.

1. r=2sin 6
Part (a) of the figure is the graph of r = 25in 9, 0 < 6 < 27, in
rectangular coordinates (as done in chapter 3). We observe that there is a
positive lobe from 0 = 0 = . This lobe is graphed in part (b) of the
figure. Table 7-2 shows values plotted in both graphs. The negative lobe
from 7 to 2m gives the same graph in polar form as the positive lobe.
This is because if we shifted the negative lobe 1 units to the left and
made it positive, it would be the same as the positive lobe.

0 2sin 0

0 0

ks 1

6

K 173

3

T 2

2

2n 1.7

3

57 1

3

b 0
Table 7-2

The lobe in the polar graph is a circle with center at the polar point

L
(? ,1). We will not prove the fact that the graph is actually a circle.

Xir=2%sin T*cos T, Y;7=2%sin T*sin T,

RANGE | 0,3.14,0.105,—2,2,1,—2,2,1, | ZOOM | 5
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2. r=3cos 26
First graph in rectangular coordinates (as in section 3-3).
0=20=2m
0=6=mn Divide each member by 2

We get one basic cosine cycle, with amplitude 3, as 0 takes on values
from O to 7. There are thus two basic cycles from 0 to 2x. Part (a) of the
figure shows this graph.

Part (b) of the figure is obtained from part (a) in the following

b
manner. Part (a) shows that as 9 goes from 0 to I’ r goes from 3 down

to 0. In part (b), r = 3 when 8 = 0. As 0 increases to %, r moves down
to 0. This produces the half of a lobe labeled a.

Part (a) also shows that as 8 goes from %—TE to T, » goes from O to 3.
This produces the half lobe b in part (b) of the figure. As 8 continues
from T to % (part (a)), r goes from 3 back down to 0. This produces the

effect at ¢ in part (b).
The half lobe at d (part (b)) is produced from what r is doing at 4 in

part (a).
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Part (c) of the figure shows one way to handle negative lobes in the
rectangular graph. Shifting 6 by @ or —r units causes r to change its

b 3n .
sign; thus, we can shift the negative lobe between Y and 2 by adding

: 5 . Im L .
7T, to the interval 7 to T , and in the process the negative lobe becomes
positive.

5 n
Similarly, the negative lobe between In and 5 is shifted —m units to

: : n_3n . -
lie on the interval T to i and becomes a positive lobe. These positive

lobes in the rectangular graph in part (c) produce the lobes shown in part
(d) of the figure.

Part (e) of the figure shows the complete graph produced by
combining the graphs of parts (b) and (d).

.
2

ro|a

Xit=3%*cos2T*cos T, Y 1=3%cos2T*sin T,

0,6.3,0.105,—3,3,1.—3,3.1, 5
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4 3.r=1+2sinH

r The graph of ¥ = 1 + 2 sin 0 in rectangular coordinates is shown in part

(a) of the figure. It is the graph of y = 2 sin 6, shifted up by one unit.
Note that r goes from 0 up to 3 and back to 0 between angles 6, and

8,. It would help to find these two angles. They occur where r = 0, so

we solve for 8 where r = 0.

r=14 28n9
0

(@) =

@ is an angle in quadrant III or IV, since sin 6 < 0. Thus, 8 is

T T 11
bieito g % = 5 and 2w — 3 = _6E By subtracting the period, 27,

11w ! T
from —~6— we can see that 6; is ——.
Now, referring to part (a) of the figure, we see that as 6 goes from

T L
e to £ r goes from 0 to 3. This is shown in part (b) of the figure.

r Tn
Similarly, as 8 goes from > to % r goes from 3 back down to 0. This

is shown in part (c).

(SE]

(b} (c)
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0 In part (a) of the figure we see that » < 0 for E =0 = & By
S T S SR it S 6 6
s B oLy adding or subtracting 7, » becomes positive. Here it is easier to subtract &t
/\/ R T 5w 5 4
T // p from each of these values, giving ? =0 = F . The result is shown in
/ // rectangular coordinates in part (d), where we see that r varies from 0 to 1
/g\‘_/ and back to 0 as 6 moves over this interval. The graph of the positive
o+ > lobe g, in polar coordinates, is shown in part (e) of the figure. The final
T% % %ﬂ n %ﬂ %EQTE graph of r = 1 + 2 sin 6 is a combination of parts (b), (c) and (e). It is

shown in part (f) of the figure.

AU
2

®|a

(e)

Xir=(1+2sinT)*cos T, Yip=(1+2sinT)*sin T,

RANGE | 0,6.3,0.105,—3,3,1,—3,3,1, | ZOOM | 5

Il

Classification of the graphs of equations in
polar coordinates

Some classification of the graphs of polar equations has been done. In the
following, k represents a constant.

1. An equation of the form r = kB produces a spiral (example 7-3 A).
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2. An equation of the form r sin 8 = k or r cos 8 = k produces a horizontal
or vertical straight line for its graph. When graphing these, it is easiest
to put the equation in rectangular form. For example, r sin 6 = 2 can be

transformed, using sin 6 = i .
I

rsin@ =2

r-")'}"=2
F

y=12

This is a horizontal straight line.
3. Equations of the form 6 = k also produce straight lines (example 7-3 B).
4. Equations of the form r = k produce circles with center at the pole.

5. Equations of the form r = k cos 8 or r = k sin 6 also produce circles,
which pass through the pole, but have centers elsewhere (example 7-3 C,
part 1).

6. The graph of an equation of the form r = k cos nb or r = k sin n8 is
called a rose. It has n leaves if n is odd, and 2n leaves if n is even.
Example 7-3 C, part 2, is a four-leafed rose.

7. Equations of the form r = a + b cos 0 or r = a + b sin 6 produce a
figure called the limacon. Example 7-3 C, part 3, is an example. If
la] = [&

, the graph is heart shaped and is called a cardioid.

Mastery pOei:_nﬂtS'

b Can you
e Graph a polar equation by plotting points?
e Graph a polar equation by using its rectangular graph as a guide?

Exercise 7=5

Graph the polar equation.

l.r=6 2 r=2 3.r=-3 [4]r=-1
5.6=1 6. 6 =3 7.e=% (8] 0= —1

9. rsinf =6 10. rcos @ =1 11. rcos 8 —2=0 rsin8=—3
13. r=3sin 14) r =2 cos 8 15. r = 4 cos 0 16. r = sin

17. r = 3 sin 26 18. r = 2 cos 38 19. r =3 cos 48 20] » = sin 30

2. r=1+sin 8 22. r=1—5sin8 23. r=1—2cos @ 24, r=2—3sin6
25. r=2— 2sin 28 r=1—c0526 27. r=1 + cos 30 28. r =2 + sin 26

6 ]
29. r=0,8<0 30. r=1+6,08>0 3. r=—,8>0 B2l r=1+-.0>0
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33. The shape of a cam that drives a certain sewing machine
needle is described by the polar equation r = 3 — 2 cos 6.
Draw the cam by graphing this equation.

34. The path an industrial robot must follow to paint a pat-
tern on a part being manufactured is described by the
curve r = 1 — 2 sin 0. Graph this equation.

35. The pattern of strongest radiation of a certain bidirec-
tional radio antenna is described by the curve r = 1 +
sin 2. Graph this pattern.

36. The pattern of strongest radiation of a certain radio an-
tenna is described by the equation » = 1 + 2 sin 26. This
pattern is said to have side lobes. Graph the pattern.

As noted in section 7-2, in the October 1983 issue of Scientific American, Jearl Walker described several rides at the Geauga
Lake Amusement Park near Cleveland, Ohio. The Scrambler is a ride whose motion could be described as a three-leafed
rose, and the motion of the Calypso could be described as a limagon.

37. Graph the path taken by the Scrambler, assuming that its
motion is described by the polar equation r = 2 cos 36.

38. Graph the path of the Calypso, assuming that its motion
is described by the equation r = 1 — 3 cos 8.

Chapter 7 summeary

* Imaginary unit i = ./—1
* Complex number (rectangular form) A number of the
form a + bi, a and b both real numbers.

* Complex conjugate The complex conjugate of a + bi is
a — bi.

Equality of complex numbers ¢ + bi = ¢ + di if and
onlyifa =cand b = d.

Polar form of a complex number If z = a + bi is a com-
plex number that determines an angle 8, then r cis 0 is its
polar form, where cis 8 means cos 6 + i sin 6. The value
r is called the modulus of z, which is also written | z|,and

b
r=a*+ b, tan® = tan'—, and
a
8’ ifa>0
6=406"—180°if0" >0 .
<
o+ igmecgr < 220
* Complex multiplication—polar form
(ry cis 81)(ra cis B3) = rirp cis(8; + 62).
= Complex division—polar form
is ©
B T ially = B e,
rz C18 62 T2
* De Moivre’s theorem (r cis 8)" = r* cis 10 for any real
number n.

* De Moivre’s theorem for roots The n nth roots of
k- 360")

n

1 1
. S R i ] B
r cis 8 are of the form (r cis )" = r" c1s<— -+
n
0 = k < n, where k and n are positive integers.

¢ The polar coordinates of a point is an ordered pair of the
form (7,0), where r is the radius and 0 is an angle.

= Equivalence of points in polar coordinates
1. (r,o) = (7,B) if o and B are coterminal angles.
2. (—n9) = (.0 £ ).

Relation between polar and rectangular coordinates If

P = (x,y) = (,0), r > 0, then cos 6 = = and sin 6 =
r

2 . Thus, x = r cos 6 and y = r sin 8. Also,
1

r=x*+y%, tan@' = tan“l, and
x
8’ ifx>0
0=40"—mif8’ >0
8"+ mifg’ <0
* To convert a rectangular equation into a polar equation use
the relations x = rcos 6, y = rsin 8, and r2 = x2 + y2

ifx<0

¢ To convert a polar equation into a rectangular equation use

} X
the relations sin 0 = - ,cos 8 = — and 2 = x2 + 32,
r r
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Chapter 7 review
[7-1] Identify the real and imaginary parts of the following

complex numbers.
1. 8 =i 2. 3¢ 3. 12 4. —i

Simplify each expression by performing the indicated
operations.

5. (2—4) + (=3 + 20
7. (5 — 43 + 120)

6. (=7 tdn— (=13 +3)
8. (=2=90(3 —16s)

9. 4i(2 — 3i) 10. (4 — (2 — 39)(5 + 2i)
10 — 44 =2 8 + 6i
. 2 51
11 5+ 28 - 2 —4i 14i
If zy =2 + i and zp = 3 — 2i, evaluate the following
expressions.
14. 2z, — z» 15. 213 — z2)
16. & + 22 17. 2z — 22)
=2 2z,

In each of the following problems, (a) find the complex con-
jugate of the given number and (b) graph both the number
and its complex conjugate in the same graph.

18. —4 + 3i 19. -4 +i 20. 3i 21. 17

Write the polar forms of the following numbers (to the
nearest tenth).

22.3 — 2§ 23. /3 + 3i 24, —1 — 2§

Write the polar forms of the following complex numbers.
Leave the result in exact form.

25. JS3—i 26. 3 +3i 27. —4i

Write the rectangular forms of the following complex num-
bers (to the nearest tenth).

28. 3 cis 35° 29. 3 cis 243°

Write the rectangular forms of the following complex num-

bers. Leave the result in exact form.
30. 3 cis 240° 31. 10 cis 330°

Multiply the following complex numbers.
32. (2 cis 25°)(3 cis 45°)
33. (2 cis 18°)(6.5 cis 122°)
Divide the following complex numbers.
40 cis 120° 50 cis 45°
5 cis 20° " 100 cis 9°

36. Compute the cube of 2 cis 130°.
37. Compute the fourth power of 2 cis 150°.

38. Compute an approximation to (0.8 + 0.60)% (to the
nearest tenth).

39. Find the 4 fourth roots of 16 in exact form.

40. Find the 3 cube roots of —27 in exact form.

41. In electronics one version of Ohm’s law says that

V
I= =z where I is current, V is voltage, and Z is impe-

dance. Find [ in a circuit in which V = 130 cis 25° and
Z is 30 cis 75°.

[7-2] Graph the following points in polar coordinates.

42. (2.0) 3. 2.7 44. (3%“)
45. (—6,11?“) 46. (1—2—) 47. (=3.m)
48. (2.1) 49. (3,4) 50. (—4,1)

Convert the following polar coordinates into rectangular co-
ordinates. Leave the result in exact form.

1w 21 5
. — 52. | 4— v | —2—
51 (3’6) (3) 53(23)

Convert the following polar coordinates into rectangular co-
ordinates to two-decimal-place accuracy.

54. (2,1) 55. (5.2) 56. (1,0.5)

Convert the following rectangular coordinates into polar co-
ordinates to two-decimal-place accuracy.

57. (2,1) 58. (—=5.3) 59. (—1,—4)

Convert the following rectangular equations into polar
equations.

60. y = —3x
62. 2yt —x?=35

6l. y=4x+ 2
63. 2 —3x=0

Convert the following polar equations into rectangular
equations.

64. r = sin 0 65. r=2secH
66. 2 = sin 20 67. r2 =tan 0
3
68. rsin® =2 69. r=—"—
r sin r p——

[7-3] Graph the polar equations.

70. r= -2 71 0 =—

72. 2rsin 6 = §
74. r = sin 20
76. r=1+ 2cos 6

73. r=3cos b
75. r = 3 cos 30
77. r=2 —sin @
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Chapter 7 test

Simplify each expression by performing the indicated
operations.

1L (12 — 40 — (=3 + 20)
2=
2i— 37

2. (1 — 4)(2 + 8i)

3.

4. If z = 1 + 2i, evaluate 322 — 27 + 5.

5. Write the polar form of the number 4 — 5i (to the nearest
tenth).

6. Write the rectangular form of the number 2 cis 120°.
Leave the result in exact form.

7. Multiply (2 cis 325°)(7 cis 145°). Leave the result in
polar form.

he r P 1 f
. Leave the result in olar rorm.
2 ci 202

9. Compute the cube of 3 cis 150°.
10. Find the 4 fourth roots of —16 in exact form.

8. Divide

Graph the following points in polar coordinates.

lix b
.l 2— 12. (2—
H (2 6) ( 3)

13, (=2:1)

Convert the following polar coordinates into rectangular co-
ordinates to two-decimal-place accuracy.

14. (3,0.8) 15. (—5,2)

Convert the following rectangular coordinates into polar co-
ordinates. Leave the result in exact form.

16. (—/3.-1) 17. (—5.5)

Convert the following rectangular equations into polar
equations.

18. y=-3x+5 19. 22 —x =35

Convert the following polar equations into rectangular
equations.

20, =2 ¢csc@ 21. 2 = cos 20

Graph the polar equations.

22. r=—-0,6>0
24. r = 3 cos 20

23, = Diesc O
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Graphing—Addition of Ordinates

Although the advent of desktop computers and calculators with graphics ca-
pabilities has given many users of trigonometry the ability to graph a function
without putting pencil to paper, there are often instances where it is useful to
be able to obtain a quick sketch of a function by hand. The method we examine
in this section, addition of ordinates, can be very helpful in this regard. Also,
studying this method leads to a fuller understanding of functions, and this
understanding will aid even the person using a computer’s graphing capabil-
ities. We assume a thorough knowledge of section 3-3.

We learned in section 2—1 that a function is a set of ordered pairs in which
no first element repeats. When we graph a function in a rectangular coordinate
system, we use two perpendicular axes. We use horizontal distances to rep-
resent domain elements, or values of the argument of the function. Vertical
distances are used to represent range elements, or values of the function for
a given value of the argument. In this way, each ordered pair represents a
domain element and the corresponding range element. In an ordered pair, the
first element is sometimes called the abscissa; the second element is then
called the ordinate. For example, consider the graph of a function f, shown
in figure A—1. Although we do not know the “‘formula’” for f (i.e., an expres-
sion that defines f), or even whether such a formula exists, we can still see
that f{1) = 2 and f{2) = 4. We know that f(1) = 2, because if we go a horizontal
distance of 1, corresponding to domain element 1, or an abscissa of 1, we see
that the associated vertical distance is 2, representing a range element, or
ordinate, of 2.

In general, if we go a horizontal distance x, the corresponding vertical
distance represents f{x).

Since we use the y-axis to plot values of f{x), we often write y = f(x), or
replace fx) by y in a formula.

The graph of a linear function is relatively simple. A linear function is a
function of the form fix) = mx + b. (We often simply write y = mx + b.) The
graph of such a function is a straight line. This means that if we can find two
points on the line (i.e., that satisfy the function) we know the graph is a straight
line which must pass through them.

Thus, to graph a linear function, we find two points that lie on the line
and draw a straight line through them. Usually these two points are the x- and
y-intercepts.

275
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B Example A

Y

A

f(x)=3x-8

y=-3x

Figure A-2

1. Graph the linear function fix) = 3x — 6.

It is easier to do the necessary algebra if we replace f{x) by y, giving
y =3x— 6.

To find the x-intercept we replace y by 0, since for any point on the
x-axis, y is 0.

y=53x—6
0=3x—6
2=x

Therefore, the x-intercept is (2,0).
To find the y-intercept we replace x by 0.

y=3x—-6
y=30)—6
¥ =it

Therefore, the y-intercept is (0,—6).
In the figure we plot these two points and draw the straight line
through them.

2. Graph the linear function f{x) = —3x.
First we write y = —3x. Replacing x by 0 or y by 0 gives the same result,
(0,0). The origin is, therefore, the only intercept. Since one point is not
enough to determine a straight line, we find another. Replace x by some
value other than 0, say 2.

y = —3x

y=-32

y=—6
Therefore, a second point that lies on the line is (2,—6). In the figure, we
plot both points and draw the line that passes through them. O

Now, consider the graph of flx) = x + 2. First, we shall relabel this
as y = x + 2, Its graph is shown in figure A-2. If we graph the equation
¥y = x, shown in dashed lines in figure A-2, we see that every point in the
graph of y = x + 2 is two units above every point in the graph of y = x.
Another way to view this is that the graph of y = x + 2 is the sum of the
graphs of y = x and y = 2. This summing is done vertically. (We are adding
the ordinates.) That is, to graph y = x + 2 for a given value of x, we take the
vertical distance in the graph of y = x and add the vertical distance in y = 2.
This process is shown for x = 3 and for x = —35 in figure A-3. Note that we
treat each distance as a directed distance. If the function is positive, we move
up; if negative, we move down.

For example, at the point x = 3, we move up three units and then two
more units. The length 3 represents the value of the equation y = x when x is
3. The length 2 represents the value of the equation y = 2 when x is 3.
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At the point x = —5, we add vertical lengths —5 and 2. The length —5
(5 in the downward direction) represents the value of the equation y = x when
x is —5, and the length 2 represents the value of the equation y = 2 when x
is —5.

Figure A—4 illustrates the process of addition of ordinates in general. We
assume that we have a function % described by an expression that is the sum
of the expressions for two functions f and g. That is, h(x) = flx) + g(x). For
the purpose of illustration, f(x) might be the expression 0.25 + sin x, and g(x)
might be the expression cos(x + 0.5). Then, A(x) would be

h(x) = fix) + gx)
= (0.25 + sin x) + [cos (x + 0.5)]
= sin x + cos(x + 0.5) + 0.25

In figure A—4 we see the graphs of the two functions, f and g, and the addition
of ordinates at xj, x», X3, X4, and xs.

Figure A—4(a) shows the process at x;. f(x;) and g(x;) are both positive,
so the value of A(x;) is represented by the combined heights of fand g at this
point.

Figure A—4(b) shows the case where f(x,) = g(x,). Since these values are
equal, the combined value flx,) + g(x) is twice the height of either for g at
this point.

y
hix)

glx;) {
fix) {[

e iyl
o,

hix) 7 X\ i

), gbe) |

Figure A-4
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Figure A-4 (continued)

Figure A—4(c) illustrates the situation where one function is 0 at a point.
Here, g(x3) = 0; thus, the sum of f(x;) + g(xs) is just f{xz). In other words, at
X3, the functions % and f take on equal values.

Figure A—4(d) illustrates a situation where the functions have opposite
signs. f(xs) is positive and g(x,) is negative. Thus, to form the value of A(xs)
we g0 up to f{xs) and come back down a distance corresponding to the height
of g(x4).
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Figure A-5
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Figure A—4(e) is like the situation at x4, except that f(xs) and g(xs) have
equal absolute values. Thus, their sum is 0, so that k(xs) = 0.

This discussion can provide guidelines for finding the graph of a sum of
two functions using addition of ordinates.

1. Wherever the two functions cross, the result is twice the height of the
functions (as in figure A—4 (b)).

2. Wherever one function is zero the result is the same as the other function
(figure A—4 (¢)).

3. Wherever the functions have opposite signs but equal absolute values the
result is 0 (figure A—4 (e)).

Using these guidelines we can often obtain quite a few points in the result.
We must then graph enough intermediate points (as in figure A—4 (a) and (d))
to get a good idea of what the result looks like.

The function f(x) = x + sin x provides a concrete example. First we
rewrite y = x + sin x for convenience. We view this as the sum of the graphs
of y = x and y = sin x. See figure A-5, where the graph of each of these
functions is shown. ‘

To obtain the graph of y = x + sin x, we proceed in the following way.
We select an abscissa (moving a given horizontal distance along the x-axis)
and then add the ordinate of y = x and y = sin x. This is shown for several
abscissas in figure A—6. Observe that wherever the function y = sin x is zero,
the result is the other function, y = x. This is guideline 2, above. Many other
points in the graph of y = x + sin x are also shown in figure A—6, on the
dotted line. We graph only enough points to see what the finished graph looks
like. Actually, with a little experience, we often require only a few points to
see the result. The graph of y = x + sin x is shown in figure A—7. We can
view this as the function y = sin x “‘riding on’’ the function y = x.

y=x+sinx
+ + > X
n 2x 3m

—10+
Y

Figure A—6

Figure A7
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1. Graph the equation y = sinx + cos x for 0 = x = 2rx.

The figure shows the graphs of y = sin x and y = cos x in dashed lines,
along with the additions of ordinates for several values of x. In
particular, at x; the functions have equal values and so the result is twice
the height of either. At x; one function is zero, so the result is the same
as the nonzero function. At x; both functions are negative, but there is
nothing special about either (i.e., none of the three guidelines apply). We
must add the signed distances here. At x, the functions have equal
absolute values but opposite signs. Thus, the result is 0 at this point.

The result is shown at many other points also, on the solid line. The
graph of y = sin x + cos x is shown in the next figure.

¥

A
/\ : /: |
(0] T 2n

1=

-
1

y=sinx+cosx

T\
4)

Note It can be shown thatsinx + cosx = /2 séni}\x *
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2. Graph the equation y = sin x + sin 2x for 0 = x = 2.

The figure shows the graphs of y = sin x and y = sin 2x in dashed lines,
along with the additions of ordinates for several values of x, and the
result at many other points (solid line).

Y

e [

y=sin x+sin 2x

4

|
If the expression includes subtraction, we rewrite it in terms of addition.

B Example C Graph the equation y = sin x — cos x for 0 = x = 2x.
Since it is easier to picture addition of ordinates than to picture subtraction,
we rewrite the equation as

y = sinx + (—cos x)
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We now graph y = sin x and y = —cos x. These are shown in the first figure
with the additions of ordinates for several values of x and the result on the
solid line.

%

-1

|

The result is shown in the second figure.

¥

L s

T T X
(o} T 2n
Yy=sin x—cos x
—14

([ =)
Note It can be shown that sin x — cos x = /2 sin| x — 1 ). |
b /
W Example D 1. An electronic signal that is described by the equation y = 2 sin x — 1 is

serving as a carrier for another signal described by y = + sin 2x. That is,
the finished signal is described by y = 2 sin x — 1 + 4 sin 2x. Graph this
signal for 0 = x < 2m.

We will graph y = 2 sinx — 1 and y = + sin 2x in dashed lines.
Although we could graph y = 2 sin x — 1 itself by the method of
addition of ordinates, we should recall that this is just the graph of

y = 2 sin x shifted down by one unit (section 3-3). The graphs of these
two signal components are shown in the first figure, as well as the
addition of several ordinates. The results are shown for many points on
the solid line.
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The result is shown in the second figure.

y

y=2sinx-1 +E'sin2x

2. Assume a pure musical tone is being represented by y = sin x. Its second
harmonic is then y = 1 sin 2x, and y = -+ sin 3x represents the third
harmonic. Assume that all three tones are present and describe the result
graphically.

We graph the three functions separately and then add the ordinates of all
three. The three graphs are shown in the first figure, as are the addition
of ordinates for several values of x and the result for many points on the
dotted line.

There are some points that can be of help in a complicated case like
this.

Wherever one of the functions is zero, the result is the sum of the
other two functions. Thus, good selections for x are values where any
of the three functions cross the x-axis (points x5, x4, x5, X6, X7, X8, X10,
and x;;).
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Also, wherever two of the functions have equal absolute values but
opposite signs, the result is the third function (points x5 and xg).

At other points we must simply compute the sum for three values
(point x7).

1
= — 2
y= o sin2x

_—

X?Vf "y JA“H

The result is shown in the second figure.

¥

. 1 . .
ui = —sin?
1 y=sinx+ 2sm X + 3sm3x

Can you
® Graph a function using addition of ordinates?

Exrercise A

Graph the following linear functions.

L flx)=5x-3 2. lx)= —2x+7 3. flx) = —x + 3
4. fx) = tx + 2 (5] fx) = 2x — 1 [6] /0 = —2«
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Graph the following functions, using addition of ordinates, for 0 = x = 2m.

Toyi= i 2isin %
11. y = sin x + sin 3x

8. y= —x +sinx
12. y = sin 2x + cos x

9. y=2x+2sinx
y=sin2x+c033x

y=sinx—sin3x

10. y = 2x + sin 2x
14. y=2x — sinx
15. y= —x —sinx

19. y = sin 2x — cos x

16. y=2x — 2sinx 18. y =sinx — cos x

The equation of time combines the effects of the incli- 22. Most people have heard about the theory of biorhythms.

21.

nation of the earth in its orbit about the sun, and the
eccentricity of the orbit. It gives the difference between
mean solar time and actual solar time throughout the
year. The function that describes the effect of the eccen-
tricity of the earth’s orbit can be approximately de-

T
scribed by y = 7.5 sin ?x, and the function that

First stated by Dr. Wilhelm Fliess in Germany at the
beginning of the century, this theory maintains that at
birth three cycles are started—physical, emotional, and
intellectual. These have periods of 23, 28, and 33 days,
respectively, and can be (presumably) described by si-
nusoidal waves. With a time axis in days, we compute
the equation for the physical as follows:

describes the effect of the inclination of the earth is ap- 0=x=23
; . I . 2n 2n 2n
roximatel = 10 sin —x. The amplitudes tell the —0) = —x = —(23
P Yy : p == 0%

number of degrees of deviation between mean and actual
solar time.
To find the combined effects, we graph the sum of

0<2—Tcx<2ﬂ:
==

2n
: . T LT : : o .
the bwoe Funetions, y= 75 sin : + + 10 sin = Graph Thus, the equation for the physical state is y = sin 73"
a. Find the equations for the emotional and intellectual

this equation of time for 0 = x = 12 (for 12 months).

The electric voltage supplied to United States homes has

a frequency of 60 cycles per second (cps), or a period of

25 of one second. It can be described by the function

y = 180 sin 120mx, where the amplitude is instantaneous

voltage and x is in seconds.

a. Graph this function. Use divisions of 55 of one
second, and graph two complete cycles.

b. Suppose that a wind-driven home generator is gen-
erating electricity, but due to a fault in its speed
governor it is generating at 50 cps and is only pro-
ducing 25 volts. Assuming that these sources are in
phase at some point and that they are tied together
(electrically speaking), the resulting voltage can be
described by y = 180 sin 120mx + 25 sin 100mx
(until a fuse blows). Graph this resultant voltage for
0=x=z.

cycles.

b. Graph the function that is the sum of these three
cycles using addition of ordinates. Graph it for the
first 33 days of life. (All three functions start to-
gether, or are in phase, at birth.)

¢. Find the period of the resulting function, in both
days and years.
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The use of a scientific calculator has been assumed throughout this text. We
have also shown the use of graphing calculators. This appendix presents prob-
lems that are best done only with a graphing calculator.

Specific examples refer to the Texas Instruments T/-8/ programmable,
graphing calculator and a Casio fx-7000G programmable, graphing calculator.
It is assumed that the user has read at least the introductory material in the
handbook for the calculator.

Finding zeros of functions

This topic was introduced in section 5-4. We revisit it here with examples
that are difficult to solve algebraically. We also show how to accomplish these
same tasks with the Casio and Texas Instruments calculators.

Estimating zeros from the graph

The approximate zeros of a function can be found by graphing the function.
This is because a zero of a function is an x-intercept of the function’s graph.

Find approximate zeros to the function f{x) = 2 sin(/2x) — + for0 = x <2n
by graphing.
Texas Instruments TI-81 Calculator

The following steps would produce a graph similar to that shown in the upper
screen in the figure. It is essential that the | MODE | key be used to set the
calculator to radian (Rad) mode. As can be seen in the graph the function has

Steps Explanation

Enter the x- and y-axis limits.
0 Xmin becomes 0.

75 Xmax becomes 7.5.

I Xscl becomes 1.

[(-)] 2.5 [ENTER]| | Ymin becomes —2.5.

2.5 Ymax becomes 2.5.

1 Yscl becomes 1.

Quit

Enter the function into Y;.

[y=1 2 [sin] [ [2nd] [>2] [ 2 [XIT]
(=105 [GRAPH]

287
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zeros at approximate x-values of 0.1 and 4.1. It would be possible to obtain a
better estimate by using the trace feature. For example, select and
use the \El and @ keys to move the blinking dot as close to the point (b)
as possible. Then use [ZOOM | 2 [ENTER | to expand the display. It will

then look like the lower screen. Using the feature again will show
that point (b) is between the values 4.16 and 4.20. The trace feature shows the
current value of x and y in the display. By noting the values of x when the
value of y changes sign we can find estimates of the value of x at the zero at
(b). By repeating the zoom and trace features we could find a better and better
estimate of the zero at (b). By resetting the range and zooming we could repeat
the process for the zero at (a).

Casio fx-7000G Calculator

The following steps will produce a graph similar to that shown in the previous
figure. As can be seen in the graph the function has zeros at approximate x-
values of 0.1 and 4.1

Steps Explanation
Enter the x- and y-axis limits.
0 Xmin becomes 0.
7.5 [EXE Xmax becomes 7.5.
1 | EXE Xscl becomes 1.
(=) 25 Ymin becomes —2.5.
2.5 |[EXE Ymax becomes 2.5.
1 Yscl becomes 1.

We are back at the execution level at this point. If

not, use the key again.

““Y ="’ appears
2 LA [d2

[=]0s

It is possible to obtain a better estimate by using the Trace feature. For

example, select | SHIFT (trace) and use the and keys

to move the blinking dot as close to the point (b) as possible. Then use
(multiply) to expand the display. It will then look like the
lower screen in the preceding figure. Using the trace feature again will show
that point (b) is approximately 4.149. (The trace feature shows the current
value of x in the display.) By repeating the trace feature we could find a better
and better estimate of the zero at (b). By resetting the range and zooming we
could repeat the process for the zero at (a). 5]

The TI-81 and Newton’s Method

Section 5—4 presented solving equations using Newton’s method on the TI-81
calculator. The next example solves the previous problem using this method.
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Find the zeros of y = 2 sin(+/2x) — + for 0 < x < 27 (from example A) using
Newton’s method.

We assume the function is entered into Y; as described in example A, and use
the trace function to position the cursor near the point (a) in the figure there.
Then select 1 (assumes the program NEWTON is stored as the first
program). The display shows Prgm1 in the display. Use to run the
program and find the approximate value of x at the point (a) to be
0.0319236557 when the program is finished.

Note The zoom feature must be used several times before the root at (a)
can be found by the program NEWTON. Not zooming produces an error.

‘ XMAX — XMIN :
This is because the program calculates a value D = — = This

value D is used to compute new values of x. Using XMAX of 7.5 and XMIN
of 0 produces a value of D that causes the program to try to use a negative
value of x. The value ./2x causes a problem when this happens. Rerun the

program bi resetting the range to its initial values, then selecting | GRAPH

and then | TRACE | again, placing the cursor near (b). This will show that
the zero at (b) is approximately 4.172907423. i

Newton’s method, used in example B, cannot be conveniently programmed
into the Casio calculator. This is because the Texas Instruments calculator has
a built-in function called NDeriv that is not available in the Casio. For the
Casio, we illustrate another method for approximating zeros of functions—
the method of bisection. This method is also suitable for programming on a
computer. At the end of this appendix is a Pascal language program for this
method.

The Casio fx-7000G and the method of bisection

Figure B—1 illustrates the method of bisection! for some hypothetical function.
We let z mean zero, L mean lower, U mean upper, and A mean average. Sup-
pose we know there is exactly one zero of the function, at z in the figure,
between two values, L and U (part 1 of figure B—1). We can see that f{iL) <0
and AU) > 0.

L
If welet A =

be the average of L and U, A divides the interval

between L and U in half. We calculate f{A) and discover that f{A) << 0. This
means the zero z must be between A and U. This is because the function must
go from a negative value at A to a positive value at U, thus taking on the value
0 somewhere in between. Thus, change L to mean the value at ¢, and repeat
the process (part 2 of figure B-1).

ITo “*bisect’ means to cut in half.
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We now consider the new smaller interval from L to U, and compute the

U
. Since f{A) > 0 the zero is between L

midpoint of this interval, A =

and A. We therefore let U represent this value of ¢ (part 3 of figure B—1) and
repeat the process, obtaining the new point A. We repeat this process until we
find a value x so that f{x) = 0, or until the interval is so short that its midpoint
is a good enough approximation to the zero.

To simplify the program we require AL) < 0 and f{U) > 0, as in figure
B-1. If this is not true, we interchange the values of L and U. This does not
affect the procedure.

An algorithm for this procedure is described below. A program for a Casio
Jfx-7000G calculator and a Pascal language program are given at the end of
this appendix.

Finding a root of a function by bisection

Assumpitions

1. The function has exactly one zero between two values L and U, L < U.
2. The function is continuous for all values from L to U inclusive.

3. fiL) # 0 and AL) # 0.

4. f{L) and fU) have different signs (the root is not of even multiplicity).

Algorithm {Comments are enclosed in braces.}
Start:  Read in the values L and U.
If L) > 0 then {We want L) < 0, AU) > 0}
interchange L and U.
Loop: Let A = L——gwg ; {A is the average of L and U}
If fiA) = 0 then
go to Finish. {A is the zero and we are done}
If |L — U] < some_predetermined_value then
go to Finish.
If RA) < 0 then {See figure B-1}
letfi = A {Part 1 of the figure.}
otherwise {f{4) > 0 so}
letU = A {Part 2 of the figure}
go to Loop.

Finish: Print out the value of A.

The program for the Casio given at the end of this appendix requires two input
values of x, which provide an upper (U) and lower (L) bound for an interval
that contains a single zero of an equation. These values might easily be found
by graphing the equation. The program is stored in, say program 8.

The function for which the zeros are to be calculated is stored as program
9. It must be an expression in the variable X and its last statement must be
—>¥.

Example C illustrates using this program.
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Find the zeros of y = 2 sin(~/2x) — 0.5 (from example A) using the method
of bisection, programmed into program 8 on a Casio fx-7000G. (We assume
the Casio program that implements the method of bisection has been entered
into program 8.)

To enter the equation y = 2 sin(~/2x) — 0.5 into memory as program 9 proceed
as follows.

Key strokes Comments

MODE Enter WRT (Program WRITE) mode.

Use the key to select Program 9.

Then :

MODE Go back to run mode.

To run the program to find the zero proceed as follows. Based on figure B—1
weuse L =0, U = 1.

Key strokes | Comments

| Prog | [EXE| Execute program 8.

? The ? in the display means to enter a value.
0 Enter the value 0. This is L.

9

1 Enter the value 1. This is U.

0.03192365567 appears when the program is finished.

The zero at (a) in figure B—1 is thus approximately 0.03192365567. Re-
running the program with suitable values for L and U shows that the zero at
(b) is approximately 4.172907423. =
Note that the program in 8 can be used with any expression that is entered
into program 9. The only requirement is that the expression end with “*—y.”
Note If the graph of a function does not cross the x axis at a zero, the
zero is said to have even multiplicity. For example, fix) = (sin x — )2 has a

i % v o . N ’ ) 1 11
zero at E' but neither the method of bisection nor Newton’s method will

find it. Figure B2 shows the graph of this function.
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Solving systems of two equations
in two variables

A system of two equations in two variables is a collection of two equations,
each of which is described in terms of the same two variables, usually x and
y. To solve a 