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Chapter 3

Section 3-1: Vector Algebra

Problem 3.1 Vector A starts at point (1,—1,—2) and ends at point (2,—1,0). Find
a unit vector in the direction of A.

Solution:

A= ﬁ(2‘1)+§'(—1 —(=1))+3(0—(=2)) = &+ 22,

ey LT
P &;"E = 0.45 -+ £0.89.

Al ~ 224

Problem3.2 Givenvectors A=%2—-93+4+%, B=%2-9+23,and C=%4+§2—-322,
show that C is perpendicular to both A and B.

Solution:

A-C=(2-93+2)-(24+92-22)=8-6-2=0,
B-C=(22-§+123)-(%4+§2-22)=8-2-6=0.

Problem 33 In Cartesian coordinates, the three corners of a triangle are P, (0,2,2),
P(2,-2,2),2nd P3(1,1,—2). Find the area of the iriangle.

—_ —_
Solution: LetB = PP, = %2 — $4 and C = P|P; = ¥ — § — 24 represent two sides of
the triangle. Since the magnitude of the cross product is the area of the parallelogram
(see the definition of cross product in Section 3-1.4), half of this is the area of the
triangle:
A=1iBxC|=1|(R2-94)x (2—§—24)|
= 3IR(—4)(=4) + (= (2)(=4)) +2(2(~1) - (=4)1)|
= 1816+ 98 +22) = 3/ 162+ 82+22 = 24/324 =9,

where the cross product is evaluated with Eq. (3.27).

Problem 3.4 Given A=%2—-93+2l and B =&B, + 72+ IB,:
(2) find B, and B, if A is parallel to B;
(b) find a relation between B, and B, if A is perpendicular to B.
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Selution:
(a) If A is parallel to B, then their directions are equal or opposite: 84 = +8p, Or
A/lA| = =B/|B|,
%2-§34+%2 | B, +§2+2B;

V14 VA+BI+BL

From the y-component,
= £2
V14 \/4+BI+B?

which can only be solved for the minus sign (which means that A and B must point
in opposite directions for them to be parallel). Solving for B2+ B2,

9 4 20
Bip= (:5\/14) —4 = T

From the x-component,

2 -B g o 236 _—4
Vid 1 /56/9° *T 314 3
and, from the z-component,
-2
B, = —.
N 3

This is consistent with our result for B2 + B2,

These results could also have been obtained by assuming 045 was 0° or 180° and
solving |A||B| = +A-B, or by solving A X B = 0.

(b) I A is perpendicular to B, then their dot product is zero (see Section 3-1.4).
Using Eq. (3.17),

0=A-B=2B,—6+E,,
or
B,=6-2B,.

There are 2n infinite number of vectors which could be B and be perpendicular to ﬁ,
but their x- and z-components must satisfy this relation.

This result could have also been obtained by assuming 843 = 90° and calculating
|Al[B| = [AxBJ.

Problem 3.5 Given vectors A = £+ §2—23, B =%3— 4, and C = §3 — 24, find
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(a) A and &,

(b) the component of B along C;
() Bac,

(d) AxC,

(e) A(BxC),

@ Ax(BxC),

(g) &xB,and

i) (AXF)-2.

Solution:
(2) From Eq. (3.4),

A=112+224+ (=3 =V14,

and, from Eq. (3.5),

5, = i+92-23
A — ‘\/—1—"4‘ .
(b) The component of B along T (see Section 3-1.4) is given by
B-C =12
BcosBpe = ol = % .

{c) From Eg. (3.21),

A-C 6+ 12 18

Bac = cos™! e o e 5 8
AC V/14+/25 514

(d) From Eq. (3.27),
A x C=R(2(—4)—(-3)3) + §((—=3)0— 1(—4)) + 2(1(3) — 0(-3)) = R+ §4 +23.
(e) From Eq. (3.27) and Eq. (3.17),
A-(BxC)=A (R16+$12+29) = 1(16)+2(12) +(-3)9 = 13.

Egq. (3.30) could also have been used in the solution. Also, Eq. (3.29) could be used
in conjunction with the result of part (d).
(f) By repeated application of Eq. (3.27),

Ax(BxC)=Ax(16+§12+59) = 854 — §57 - 220.

Eg. (3.33) could also have been used.




82 CHAFTER 3

() From Eq. (3.27),
2xB=-24.
(h) From Eq. (3.27) and Eq. (3.17),
(AX§)-2=(23+4%)-2=1.

Eq. (3.29) and Eq. (3.25) could also have been used in the solution.

Problem 3.6 Given vectors A=3%2—§+23andB = %3 — 52, find a vector C whose
magnitude is 6 and whose direction is perpendicular to both A and B.

Solution: The cross product of two vectors produces a new vector which is
perpendicular to both of the original vectors. Two vectors exist which have a
magnitude of 6 and are orthogonal to both A and B: one which is 6 units long in
the direction of the unit vector parallel to A x B, and one in the opposite direction.

AxB (R2—-9+23)x (83-22)
C=4+6—-=-=46
|A X B] (22 — 9 +23) x (%3 - 22)]
224+ 913423 2 5 P
= £b—————— ~ +(£0.89 + §5.78 + £1.33).
V22 +132432 ( g )

Problem 3.7 GivenA = %(2x+3y)—§(2y+32) + #(3x—y), determine a unit vector
parallel to A at point P(1,—1,2).

Selution: The unit vector parallel to A = £(2x+ 3y) —¥(2y+3z)+ 2(3x—y) at the
point P(1,~1,2) is

A(L,-1,2)  —R-94434  —g-94134

~ —%0.17 — §0.70 + 20.70.

Problemn 3.8 By expansion in Cartesian coordinates, prove:
(2) the relation for the scalar triple product given by (3.29), and
() the relation for the vector triple product given by (3.33).

Sclution:
() Proof of the scalar triple product given by Eq. (3.29): From Eq. (3.27),

AXB =R(AyB; —A,By) +F(A B, —AB,) + 2(AB,— A,B,),
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B x C = 2(B,C, — B.C)) + §(B.Cx — B:C) + 2(B:Cy — ByGa),
Cx A = 2(CA, — CAy) + F(Cohr — CrA;) + 2(CeAy — CAs).

Employing Eq. (3.17), itis easily shown that

A-(BxC)=A«B,C;, — B,Cy) + Ay (B.C; — B:C.) +A(B:Cy — B,C;),
B-(CxA)=B(CA, — CAy)+ B, (CA; — CAL) + B(CAy - CsAz):
C-(AxB)=C(A,B, —A;B)) +Cy(AB, — AzB,) +C,(ABy—AyBy),
which are all the same.
(b) Proof of the vector triple product given by Eq. (3.33): The evaluation of the left
hand side employs the expression above for B X C with Eg. (3.27):
A x (B x C) = A x (X(B,C; — B,C,) + §(B.C: — B:C;) + #(B:C, — B,y ))
= R(Ay(B:Cy — ByCr) — Ay(B,Cr — B:Cy))
&= ?(Az(ByCz == Bzcy) b=3 Ax(Bny T Bycx))
+ 2(Ax(B,Cx — B;:C,) — Ay(B,C, — B;C,)),
while the right hand side, evaluated with the aid of Eq. (3.17), is
B(A-C)—C(A-B) =B(A:C+AG +A,C) — CABx +AyBy + A.B;)
= R(B(AyCy +A.C;) — Ce(A By +A,B;))
+ 9 (By(ACx+ A,C;) — Cy(ABr + A By))
+ Z(BAAC:+AyCy) — C(AxBx + AyBy)).

By rearranging the expressions for the components, the left hand side is equal to the
right hand side.

Problem 3.9 Find an expression for the unit vector directed toward the origin from
an arbitrary point on the line described by x=1and z = 2.

Solution: An arbitrary point on the given line is (1,y,2). The vector from this point
to (0,0,0) is: '
A=%(0-1)+5(0-y)+2(0-2) = —%—§y—23,

Al =V1+y2 +4=V5+¥,
A —R—g§y-22

A~ e

a=
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Problem 3.10 Find an expression for the unit vector directed toward the point P
located on the z-axis at a height h above the x—y plane from an arbitrary point
Q(x,y.2) in the plane z = 2.

Solution: Point P is at (0,0, 4). Vector A from Q(x,y,2) to P(0,0, k) is:

A=%0-x)+§(0—y)+2(h—2) = —&x—Fy+2(h-2),
Al = [@+y* +(h—-2)1'3,
A —&x—9y+3h-2)

4=—=

Al 7 2422+ (R=27]2

Problem 3.11 Find a unit vector parallel to either direction of the line described by

Solution: First, we find any two points on the given line. Since the line equation
is not a function of y, the given line is in a plane parallel to the x-z plane. For
convenience, we choose the x—z plane with y = 0.

Forx =0, z= —4. Hence, point P is at (0,0,—4).

For z = 0, x = 2. Hence, point Q is at (2,0,0).

Vector A from Pto O is:
A=%(2-0)+§(0-0)+20+4) =%2+124,
ﬁ_i_ﬂ-ﬁ-m

Al V20

Problem 3.12 Two lines in the x—y plane are described by the expressions:

Line 1 x+2y = -6,
Line 2 3x+4y=28.

Use vector algebra to find the smaller angle between the lines at their intersection
point.

Solution: Intersection point is found by solving the two equations simultaneously:

—2x—4y =12,
3x+4y= 8.
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735 30 25 20 15 -10 o

Figure P3.12: Lines 1 and 2.

The sum gives x = 20, which, when used in the first equation, gives y = —13.
Hence, intersection point is (20, —13).
Another point on line 1 is x=0, y = —3. Vector A from (0,~3)t0 (20,—13) is

A =2(20)+§(—13+3) = 20— $10,
|A] = v/202 + 102 = /500.
A pointon line 2is x =0, y = 2. Vector B from (0,2) to (20,—13) is
B = £(20) + §(—13 — 2) = £20— §15,
Bl = v/202 1 152 = v/625.
Angle between A and B is

BAB e COS-I (H) e COS_I (M) — 10_30_
|A]|B] v/500-/625

Problem 3.13 A given line is described by
x+2y=4.

Vector A starts at the origin and ends at point P on the line such that A is orthogonal
to the line. Find an expression for A. '
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Solution: We first plot the given line. Next we find vector B which connects point
P1(0,2) to P»(4,0), both of which are on the line:

B=%(4-0)+¥5(0—2)=%4-92.
Vector A starts at the origin and ends on the line at P. If the x-coordinate of P is x,

y

Fiy

N2

2,(4,0

)
©.0 \"‘

Figure P3.13: Given line and vector A.

then its y-coordinate has to be (4 —x)/2 in order to be on the line. Hence P is at
(x, (4—x)/2). Vector A is

4 —
A=%x+¥ (——2—") i

But A is perpendicular to the line. Hence,
A-B =0,
ooy afd—X -
[xx+y ( > )] -(%4-92)=0,

4x—(4—x)=0, or

4
= —=0.8.
=3

Hence,
4—-038

A=30.8+§‘r( )=i0.8+§f1.6.

Problem 3.14 Show that, given two vectors A and B,




CHAPTER 3 87

(a) the vector C defined as the vector component of B in the direction of A is given
by
. . A(B-A)
C=4B-3)= ———,
A

where 2 18 the unit vector of A, and
(b) the vector D defined as the vector component of B perpendicular to A is given
by
A(B-A)

D=B-—" "
|A]?

Solution:

(a) By definition, B - & is the component of B along Z. The vector component of
(B-2a) along A is

A - A A A(B-A
c=am-0)= g1 (v ) = 25

(b) The figure shows vectors A, B, and C, where C is the projection of B along A.
it is clear from the triangle that

B=C+D,

Qr

A(B-A)
TlaE

D=B-C=B-

Figure P3.14: Relationships between vectors A, B, C, and D.

o nm“xém.ia

SR
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Problem 3.15 A certain plane is described by
2x+3y+4z=16.

Find the unit vector normal to the surface in the direction away from the origin.

Solution: Procedure:

1. Use the equation for the given plane to find three points, P;, P and P on the
plane.

2. Find vector A from P to P and vector B from P; to Ps.

3. Cross product of A and B gives a vector C orthogonal to A and B, and hence
to the plane.

4. Check direction of &.

Steps:
1. Choose the following three points:
Py at (0,0,4),
P, at (8,0,0),
Py at (0,%,0).

2. Vector A from Py to A
A=%(8-0)+5(0-0)+2(0—4)=%28—-34
Vector B from P to P

16
B=ﬁ(0—-0)+s«(—;—o)+ﬁ(0—4)=sr%‘?-z4

C=AxB
=%(A,B; —ABy)+ §(A,Bx —A:B,)+Z(ABy —AyB;)

=% (o-(—4)_(-4)-%§) +§((—4)-0—8-(—4))+% (3-13;6-.0-0)

.64 A 20
_x?+y32+z 3
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Verify that C is orthogonal to A and B

64 128 512 512
A-C=(8-=)+(32- A = B
(8 3)+(20)+(3 (4)) -5 =0

64 16 128 512 512
B-C={0-Z)1(s2 )+ 2 (—g))=22-22=0
o (0 3)+(32 3)+( = 4}) ==

=i %0374 §0.564+20.74.

¢ points away from the origin as Gesired.

Problem 3.16 Given B = %(2z — 3y) + §(2x— 3z) — Z(x+ y), find a unit vector
parallel to B at point P(1,0,-1).

Solution: At P(1,0,—1),

B=%(-2)+5(2+3)-%(1)= - +§5-1,
¢ B _-R495-2 -%02495-2

IB| ©~ 4+25+1 V30

Problem 3.17 When sketching or demonstrating the spatial variation of a vector
field, we often use arrows, as in Fig. 3-25 (P3.17), wherein the length of the arrow
is made to be proportional to the strength of the field and the direction of the arrow
is the same as that of the field’s. The sketch shown in Fig. P3.17, which represents
the vector field E = £r, consists of arrows pointing radially away from the origin and
their lengths increase linearly in proportion to their distance away from the origin.
Using this arrow representation, sketch each of the following vector fields:

(@ E; =%y,

(®) E; = jx,

(€) Ez=2x+9y,

(@) Es =2x+92y,

(@) Es=ér,

() E¢ = sind.
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i
/
i

"

Figure P3.17: Arrow representation for vector field E = fr (Problem 3.17).

Solution:
(@)
y
£
s |- . E
f—— -uu-—-—z-ﬁ--— e
® =X
— :3; iz - 3
|
E il - E
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(@)

(e)

CHAPTER 3

)
"

A
f

P3.17e:Es= &r
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®

e

P3.17f: Eg= rsind

Problem 3.18 Use arrows to sketch each of the following vector fields:
(@) E; =&x—3y,
®) B = -9,
(¢) Bz =73,
{d) E4 = Fcos¢.
Solution:
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(©
Y
=g
5 A A
AE
2 kN
A
x A
$¢%élvv‘rmrw1£ T?%#ﬁbx
?@%él 1!&!1“““““T?%$é
‘F W ;':
L x
EV v x ‘ o
i v % Indicares [El is infimte
P3.18c: E;= y(1/%)
(@)
9
e A5
Sl
~a s
e NG

P3.18d:E,= rcosod




96 CHAPTER 3

Sections 3-2 and 3-3: Coerdinate Systems

Problem 3.19 Convert the coordinates of the following points from Cartesian to
cylindrical and spherical coordinates:

(@) A(1,2,0),

(b) P(0,0,3),

(©) P(1,1,2),

(@ Pu(-3,3,-3).

Solution: Use the “coordinate variables™ column in Table 3-2.
(2) In the cylindrical coordinate system,

P =(v/12422,tan71(2/1),0) = (v/5,1.107 rad, 0) ~ (2.24,63.4°,0).

In the sphericzal coordinaie system,

Py = (V124224 0%, tan"(1/124+22/0),tan"} (2/1))

= (v/5,1/2 rad,1.107 rad) = (2.24,90.0°,63.4°).

Note that in both the cylindrical and spherical coordinates, ¢ is in Quadrani 1.
(b) In the cylindrical coordinate system,

P, = (1/02402,tan*(0/0),3) = (0,0 rad,3) = (0,0°,3).

In the spherical coordinate system,

Py = (/02402 +32,tan~ ! (1/02+02/3),tan"* (0/0))
= (3,07ad,0 rad) = (3,0°,0°).

Note that in both the cylindrical and spherical coordinates, ¢ is arbitrary and may
take any value.
(c) In the cylindrical coordinate system,

Py =(1/12+12,tan"1 (1/1),2) = (V2,1/4 rad,2) = (1.41,45.0°,2).
In the spherical coordinate system,

Py = (V24 12+ 22t~ (v/12 4 12/2), 10~} (1/1))
= (+/6,0.616 rad, /4 rad) ~ (2.45,35.3°,45.0°).

Note that in both the cylindrical and spherical coordinates, ¢ is in Quadrant L.
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cylindrical coordinate system,

Py = (1/(~3)* +3%, a0 (3/ —3),-3)
= (3v2,3n/4rad,—3) = (4.24,135.0°,-3).

cal coordinate systein,

(a3 (-3 (Y (B 3/ - 3),tan”" (3/ - 3))
- (3+/3,2.187 rad, 3n/4 1ad) = (5-20, 125.3°,135.0°).

both the cylindrical and spherical coordinates, ¢ is in Quadrant IL

20 Convert the coordinates of the following points from cylindrical to

. nT_ . T
7)) = Pﬂrcosﬁ;,rsmcp,z) =P (ZCOSZ,ZSIHZ,——B) = P{1.41, 1.41,-3).

Py(x,y,2) = Py(3c0s0,35in0,0) = P5(3,0,0).
Py(x,y,2) = Py(4cosm, 4SinT,2) = P5(—4,0,2).

jem 3.21 Convert the coordinates of the following points from spherical to

rical coordinates:

P(Rsin®, o, Rcos8) = Pi(5sin0, 0,5¢co0s0)

PE(Y,QJ.,Z) =
= P(0,0,5).

) Pa(r,0,2) = Py(55in0,m,5¢080) = Po(0,,3):
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(© Ps(r,9,z)= P3(3sinF,n,3cos%) = P(3,x,0).

Problem 3.22 Use the appropriate expression for the differential surface area ds to
determine the area of each of the following surfaces:

(@ r=3; 0<0<w/3; —2<z<2,

®) 2<r<5 /259 ™ 2=0,

© 2<r<5 0=mn/4; -2<2zL2,

(d) R=2; 0<06</3; 0<p<m,

() D<RL5, 0=n/3; 0<¢<2n
Also sketch the outlines of each of the surfaces.

Solution:

o
e

(b) ©

(4 (e)

Figure P3.22: Surfaces described by Problem 3.22.

(a) Using Eq. (3.432),

A= f 2_2 f:: (T)=3d0dz = ((34;3);?;50) ‘;2 - dn.
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(b) Using Eq. (3.43¢),

A fr:?. -[PZ:tIZ (r)lz=0d¢dr__ I"Q) L’")lq:—::/" - T )

(c) Using Eq. (3 .43b),

A= J[i—z [:_-3 (Dlomr/adrdz= ((FZ)E:_z) E:z -

(&) Using Eq. (3.50b),

/3
= =f3
A= - J{;_o stme)[R ,36d6 = (( —4¢cos8)|gm )L—O
(e) Using Eq. (3.50¢),
5 2T 5
— : _ 2 25\/_31;
A= .[:ofq::o (R51n9]|&;,:!3d¢dR—- (( iR ¢sm3)l¢_0) - 5

9%

Problem 323 Find the volumes described by
(@) 2<r<5 nf/2<0<m 0<2L72,
b) 0K RS 0<8<w/3; 0L ¢<2m
Also sketch the outline of each volume.

Solufion:

Figure P3.23: Volumes described by Problem 3.23 .

(a) From Eq. (3.44),

o oo arir= (o) L5

R T

P e
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(b) From Eq. (3.50e),
2n /3 5 5
V=/ / R2sin@dRdB do
¢=0.J8=0 JR=0
1257

R\
( (—cose?q)) -

"

Problem 3.24 A section of a sphere is described by 0 < R < 2, 0< 6 <90°, and

30° < ¢ < 90°. Find:
(a) the surface area of the spherical section,

{b) the enclosed volume.
Also sketch the outline of the section.

Solution:
<
- ]
Fid ol
& “t
g LS
& %Q
F %%
g
U
: *
B e
¥ £ y
P
&
[ @
] P
8 b
B - ‘pwf
X "
6=300 ¢
i

B
-~

e

Figure P3.24: Qutline of section.




CHAPTER 3 101

/2 wf2
§= f f R2sin0d0 do|res
o=r/6J0=

_al® TN /2 T 4n i
4( )[cose; ] =4xI= @),
/2 /2
_jf f f R%sin8dR A6 do
=0Jo=n/6.J0
RB
E3

T = 8n 8x
(G-5)l-estl=33=5 @
0

Problem 3.25 A vector field is given in cylindrical coordinates by
E = frcos®+rsind -+ 22°.

Point P(4,1,2)is located on the surface of the cylinder described by r = 4. At point P,
find:

(a) the vector component of E perpendicular to the cylinder,
(b) the vector component of E tangential to the cylinder.

Solution:
(@) E, =#(¢-E)=f[f-(frcosd+drsing +222)] = freosé.
At P(4,m,2), E, = fdcost = —14.
®) E =E—E, =§rsin¢+ 22
At P(4,m,2), E, = $4sinn + 222 = 24.

Problem 3.26 At a given point in space, vectors A and B are given in spherical
coordinates by
A=R4+82-¢,
B=—-R2+43.
Find:
(@) the scalar component, or projection, of B in the direction of A,

(b) the vector component of B in the direction of A,
(c) the vector component of B perpendicular to A.

Solution:
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(2) Scalar component of B in direction of A:

i w A s e (RA+02-4)
C=B-a=B. o =(-R2+83) e
T

,\/_ \/_1

(b) Vector component of B in direction of A:

8 B w2
C=3C=A—=(R44+682—-
a IAi ( + ¢) _\/2—1
= —(R2.09+81.05—$0.52).

(¢) Vector component of B perpendicular to A:
D=B_C=(-R2+$3)+(R2.09+81.05-$0.52)
= R0.09+81.05+$2.48.

Problem 3.27 Given vectors

A = #(cosd +3z) — ®(2r +4sind) + 2(r — 22),
B=-—Tsing+Zcosd,
find
(a) 84pat (2,71/2,0),
b) a unit vector perpendicular to both A and B at (2,7/3,1).

Solution: It doesn’t matter whether the vectors are evaluated before vector products
are calculated, or if the vector products are directly calculated and the general results
are evaluated at the specific point in question.

(a) At (2,7/2,0), A = —$8 +22 and B = —£. From Eq. (3.21),

845 = cos™} (%) =cos™} (%) = 90°.

®) At (2,7/3,1), A = £1 — $4(1 + 1/3) and B = —F3v/3+23. Since AX B is
perpendicular to both A and B, a unit vector perpendicular to both A and B is given
by

L AXB L= —4(1+ 33)A) -4(D)(3) - 2401 + 3V3)(3V3)
AXB| 1
* \/(2(1-1— Vo) 2434 203)
~ F(£0.487 +$0.228 +-20.843).
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328 Findthe distance between the following pairs of points:
f;g, 3) and P (—2,-3; 2) in Cartesian coordinates,
/4,2)and Ps(3,7/4,4) 10 cylindrical coordinates,

2.1t/2, 0) and Ps(3.7,0) in spherical coordinates.

_1P+(-3 — 2P+ (23 =025 1)V/2 =+/35=5.92.

(-

4= [R+7 —2nrcos(e — )+ (22— )
T T ,11/2
[9+1-2x3x1xcos (Z’Z) H{a=D) ]

P (10_6+4)‘r’?— =8!/? =283

d= {R%_ + R - 2R Ra[cosB;cos8y +sin®; sin8ycos(P2 — ¢1)]}”2
T . T 1/2
= {9 ph—PRIRZ [cosncos 5 +sin > sinntcos(0 — 0)] }

~ {044-0)}/?=V13=361.

em 329 Determine the distance between the following pairs of poinis:

: "1(11 112) and P2£0121 2}»
P3(2.,TE/3, 1) and P4(4,‘JT./2,0),
P5(3,1L,11:/2) and Ps(4,7/2,T).

rom Eq. (3.66),

4= 1/(0- 1P +@-17+(2-2/ = V2.

) From Eq. (3:67),

d= \/M(4)cos(§—§) +0-1)2=y21-8VF~ 26T,
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(c) From EQ- (3.68).

T —
2 2_Z2(3)4){cos— i s & T
= \/;:'( ) )( 5 Coszr+sm7rsmicos (n:_ 5)) 25

problem 3.30 Transforfm ‘fhe foilm‘ving vectors into cylindrical coordinz
then evaluaie themn at the indicated points:
@ A=2(x+y) aahil,2.3),
() B=%(y—x)+I(F—7) ath(1.0,2),
© C=22/(F+7)= yxf/(rz’-_%yz) +24at Py(1,~1,2),
@ D= Bsind .[-Qic;f_}s e +§>c_os_) P at Pa(2,m/2,m/4),
(e) E= Bcosd +ﬁsm¢+ﬂ)§53n" € at P5(3,ﬁ:/2,n:),

Solution: From Table 3-2:
(@)
A = (Fcosd —§sind)(rcosd-L rsind)
= frcos$(cosd +sind) — rsind(coso + sin ),
Py = (VTP 4221071 (2/1),3) = (V5,63.4°,3),
A(P) = (£0.447 —$0.894)V/5(.447 1 804) = £1.34 _ §2 65
(B)

B = (Fcosd — $sind)(rsing —rcosg) + (deosd+ Fsing)(rcosg
— #r(2sinpcosé—1) +&7(cos® ¢ — sin®¢) = Fr(sin2¢
P = 12+02,tan"" (0/1),2) = (1,0°,2),

— F5ind

—1)+drcos:

B(P) = —F+¢.

(<)
_— 2 sin? N 2
C = (fcosd -—¢sm¢)“_i_%w — ($cos¢+Fsing) r‘c;squ + 34
= Fsin¢pcos¢(sind — cos§) — (sin’ 9+ cos® ¢) -+ 24,
Py = (124 (=1 a7 (=1/1),2) = (vV2,-45°,2),
C(p;) = £0.707 + 24
(@

D= (fsinﬁ—!—ﬁws@) sin@+ (fcos@ — ﬁsirz@)cose.g-@ms?-@ = f_{*éc@sz"@




CHAPTER 3 105

Py = (2sin(n/2),1/4,2cos(n/2)) = (2,45°,0),
D(Ps) = F+$4.

(e)
E = (fsin€+2cos8)cos¢+ (Fcos8 —2sinb) sind + Hsin? 9,
Ps=(3,2,x)
3= 1ot
s B o T s | O (i1 S paad s
E(Ps) = (rsm—2—+zcos§> COSTT+ (rcosi —zsmi) sinT+ G sin 5= F+¢.

Problem 331 Transform the following vectors into spherical coordinates and then
evaluate them at the indicated points:

(@ A=2y"+9xz+34 at Py(1,-1,2),
®) B=§(x*+5" +2) —2(¥ +)?) at P2(-1,0,2),
(&) C=fcosd—Psind+2Zcosdsing at P3(2,7/4,2),and
‘A D=27/(2+y") - 92/(2+y) +24 ar A(1,~-1,2).
Solution: From Table 3-2:
@
A = (RsinBcosd +HcosBcosd —$sing)(RsinOsing)?
+ (RsinBsino + BcosBsing +Hcoso)(RsinBcosd)(RcosB)
+ (Rcos®—8sind)4
= R(R?sin” 8sin¢cos (sin8sind + cos 8) + 4 cos 6)
+@(R?sinBcosBsindcos d(sinBsind + cos 8) —4sind)
+HR?sin6(cosOcos? ¢ — sin Bsin’ 9),

P = (\/12+(——1)z+22,tan“1 ( 12+(—1)2/2) ,tan“(—l/l))
= (v/6,35.3°,-45°),
A(P)) =~ R2.856 —62.888 + $2.123.
Bb)

B= (E'isinﬁsimb-}-@cosﬁsind}-{-@cosd))}?z - (ﬁco&s&-~ési1n@)x‘i’2 sin®
=RR? sin@(sing —sinBcosB) +@R2(cosesin¢+ sin® 8) +®R? coso,

P= (\/(—1)2+02+22,tan"1 ( (—1)2+02/2) ,tan-‘(c}/(—l)))
= (V/5,26.6°,180°),
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B(P,) ~ —R0.896 +80.449 — $5.
(©)
C=(R in8+écose)cos¢—~q3$in¢+(ﬁcose ésin@)costbsintb
= ﬁcosqy(sme+cosesm¢)+9cos¢(cosﬁ— sin@sing) — $sind,
s = (V2 22, (2/2), n/4) = (2v/2,45°,45°),
C(Ps) ~ R0.854+80.146 — $0.707.

(@)
% . R R?%sin®@sin® ¢
D = (RsinBcos®+ B cosBcosd— dsin
( ¢ psing) R2sin® ©sin® ¢+ R2 sin® B cos2 &
R%sin®Qcos?

— (Rsin®sin¢ -+ cosBsing +dcosp)

R2sin® sin” ¢+ R sin® 8 cos? ¢
+(Rcos8—8 sinB)4

= R(sinBcos¢sin® ¢ — sinBsingcos® ¢ + 4cosd)
+8(cosOcospsin ¢ — cos 8sincos® ¢ — 45in0)
~§(cos® 9+ sin> ),

Pi(1,-1,2) = Py 1+1+4,tan'1(\/1+1/2),tan_1(—1/1)]
= P4(V6,35.26°,—45°),

D(Ps) = R(sin35.26° cos 45° sin> 45° — sin 35.26° sin( —45°) cos?45° + 4 c0s 35.26°)
+8(cos35.26° COs 45° Sin245° — cos 35.26° sin(~45°) cos? 45° — 45in35.26°)
—@(cos 45° + sin®45°)
=R3.67-61.73 —$0.707.

Sections 3-4 to 3-7: Gradient, Divergence, and Curl Operators

Problem 3.32 Find the gradient of the following scalar functions:
(@) T=2/(+7),
®) V=072,
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(©) U =zcos/(1+7),
(d) W = e Rsin®,

() S=xPe+y,

() N=r>coso,

(g) M = RcosBsin¢.

Solution:
(a) From Eq. (3.72),
R 4x . 4z
-1 — == =
@+27  (@+2)

(b) From Eq. (3.72),
VV = &2 + §207° + 23072,
(¢) From Eq. (3.82),

. 2rzcos¢ . zsing . COSO®

VU = - -
")y ¢r(1+r2) 2

(d) From Eq. (3.83),
VW = —Re Rsin6 +8(e~®/R) cosb.

{e) From Eq. (3.72),

S=xPe 4y,
oS .95 _adS
S x—ax+y—ay+z—az R2xe  + §2y — 2xPe 2.

(f) From Eqg. (3.82),

N = rzcostp,

LON 10N _oN _ ~ L
VN_rg-{-Q};@&—*I—z@._r2rcos¢~—$rsm¢e.

(g) From Eq. (3.83),

M = Rcos9sing,

~oM ~1oM . 1
VM=R8_+9_8 oM c

M . 1 M o
R 2% 50 " %sme 30

= RcosBsind — ésin@simb-i-@ ——

oS
tan®

107
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Pﬂ'@baem 333 The gradient of a scalar function T is given by

VT =302
iy oA

10atz =g, fing T (2).
Selutiop.

VT = 3e~2

By ChOOSing Pratz=0and P, at any point z, (3.76) becomes

?(z)aT(O):/ZVT-dﬂ’:jﬂ ?ze-li’-(ﬁdx'+§dy’+2dz’)
a

-2 12
= s 4
=/ e_"z‘dz": =

0 2

=(1-
5(1-e
4]

T(z)=T(0)+ %(1 - F)= 10+ %(1 i

4 Follow g procedure similar to that leading t0 Eq. (3.82) t
given by Eq. (3.83) for Vin spherical coordinates.

From the chain rule and Table 3-2,
VT — o7 oT a7

Ee— i &

ax -yay—f-Zg;

=2{3T 3R 373 oT a¢)
s _— e B
(SR R e

eXPFESSion

Saﬁuﬁ@m

o { OT OR o7 28 8T6‘¢)
—f-y(m._ﬁ 9T 38 3T &
RS B %5
= { 9T 3R o7 96 afa¢)
+Z e 9N ., 04 00
af?az+888z+3¢az

~ o /3T 3 T3 =i /a—=,..3T3 _;
-—X.—-_____ Fy2 sl 2 —_——tan
OR g VA ET kel et R

s (9T 3 oT o eT o
-~ f 2 ki ~1 2 ——1tan
y("‘aﬁ?"“a VX2 4324y TRy (Vr +3’2/Z)+a¢aym.
s (O o7 o
& Té‘éfé%vxz+>’2+Z‘Z+%§m“mﬂ+wz>+

s
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=% ol £ LT 5 i 87 =~y

TR R+ BX2+P+E 21y 0 X+

P or y aT y 81" x
R METATE A REP
oT z 3‘1‘ . | ST aT
aR\/;:sz B2+ +72 84)

b

(BT RsinBcos . 0T Rcos® RsinBcosd 490 o7 — Rsm@smd})

oR R a6 R Rsin® 90 R2sin®@
(8?"Rsm@sm¢+aTRcosBRsmﬁsmtb aTRsmecosq})
oR R 08 R? Rsin® o¢ RZsin 2g

. /0T Rcos® dT —Rsin®

(ﬁ R W R’ )

+

ar cosBcosd LT oT — smq})
R 36 Rsin®

foT BT cos9sing dT costb)
+y(ﬁsmﬁs o+ 35 00 R +8¢Rsm6

P a—Tcose oT —sin®
oR 39 R

T
=X (BR sm@cosej)-}-

oT
= (#sinBcos ¢+ §sinsind +2cos8) =

10T

+ (&cosBcosd+ FcosOsinp — zsmB) %

1 T
+ (—Zsin¢ + jcos ¢)Rs = a¢
~9T 107 . 1 oT
=Rk +sxae+¢}asina'é$’

which is Eq. (3.83).

Problem 3.35 For the scalar function V = xy — 7%, determine its directional
derivative along the direction of vector A=(&—¥z) and then evalnate it at
P(1,-1,2).
Solution: The directional derivative is given by Eq. (3.75) as dV [dl = VV - 4;, where
the unit vector in the direction of A is given by Eq. (3.2):

X-§z

Vi’

;=
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and the gradient of V in Cartesian coordinates is given by Eq. (3.72):

VV = 8y+§x—£2z.
Therefore, by Eq. (3.75),

At P(1,—-1,2),

(%) 1(:,-1.2) B 3% )

Problem 336 For the scalar function T = ¢~"/Scos¢, determine its directional
derivative along the radial direction  and then evaluate it at P(2,7/4,3).
Solution:

T =e""Pcosd,
0T .10T _oT e Pcosh e Ssing
VT =f— e A o
£ o +¢ e +Z % F 3 & " s
dar e Pcosg
= PP s e
ar—EE g
dT ~2/5 o5 E
ar L Y
T P 5

Problem 337 For the scalar function U = %sin®6, determine its directional
derivative along the range direction R and then evaluate it at P(4,71t/4,1/2).
Solution:

I
U= —sin?8,
RSH‘!
LU ~19U . 1 U . Sin®6 . 2sinBcos8
VW=Roetb-pp— _ _ -8 .
R °R® +¢Rsin9 o0 R2 R
dau . sin?@
—_— V - = -
dl U-k R2
) 4
au 5 i TR
Al |4 mjans2) 16
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Problem 3.38 Vector field E is characterized by the following properties: (a) E
points along R, (b) the magnitude of E is a function of only the distance from the
origin, (¢) E vanishes at the origin, and (d) V-E = 6, everywhere. Find an expression
for E that satisfies these properties.

Solution: According to properties (a) and (b), E must have the form

E = RER
where Ep 1s a function of R only.
ViE=t 9 e
TRR R
o
= (R*Eg) = 6R?,
R
= (R2Ez)dR = f 6R%d
Jg sx & Er) %
6 3R
RzEklﬂ - R "
0
RPEp = 2R3
Hence,
Er = 2R,
and
E=R2R

Problem 3.39 For the vector field E = %xz — §yz — #xy, verify the divergence
theorem by computing:

(2) the total outward flux flowing through the surface of a cube centered at the
origin and with sides equal to 2 units each and parallel to the Cartesian axes,
and

(b) the integral of V- E over the cube’s volume.

Solution:
(@) For a cube, the closed surface integral has 6 sides:

%E- il 2 B Bt B Fi P et P
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1 3
Ftop=/ L (ﬁxz—fwzz—ﬁxy)[zzl.(ﬁdydx)

=—1Jy=
1 1 - 1 1
== [ xydydx = ((1—);2)| =4,
i e % y=-1 x=—1
1 1
Fhorom =[ 1 . (ﬁxz—f’yzz—ixy”z:_l -(—2dydx)
X=— y=-—
1 1 i 1
= xydydx = (ﬁ)’ -0
x=—1Jy==—1 4 =1 e 5 5
1 1
Fﬁgh(=£=_lj£=*l (ixz—?)’g—iw)lpl '(?dzdx)
1 I 1 1
==ian f szzdxz — é) — :ﬁ
=i 3 =-1/ |=_4 37
1 1
Feg = ):=—1-/2:=*-1 (xxz—Y}’Zz—ixy”F_l-(_j;dzdx)
1 i 1 1
= — szdez —_ 12_3) ” j
=—te= Bl fmy — 3°
1 1 . .
From = If 1 (m—yyzl—ixy) |x=;'(idzdy)
y=- =
1 I 1 i
= f zdzdy = ((ﬁ)’ = i
y==1lJ=-1 2 - —
1 1
F = / ﬁxz_ i —_ A
back s ol ( Iy z:xy)[x:_I (—&dzdy)
1 1 1 1
o ((E‘z)l =0,
y=—1Jz=-1 2 ey -
=i B
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(®)

1 1 1
ff/V-Edv: V.(fxz~ §y2 — 2xy) dzdydx

=—1lJy==1Jr=-1

=f““1fy;_l/_l_l(z~—z2)dzdydx |
(G- ) -3

x=—1

Problem 3.40 For the vector field E = £10e™" —~ 23z, verify the divergence theorem
for the cylindrical region enclosed by 7 = 2, z=0, and z = 4.

Selution:
%E-ds: /z ﬁ: (#1067 —237) - (~2rdrdo))| _,

j[ / ((#10e™" —332)- (Frdodz))| _,
+ [ ]; _ (1077 ~335)-(2rdrav))| _,

2r 4 2 27

=0+ f 103_22d¢dz+f f —12rdrdo
¢=0Jz=0 r=0J¢=0

= 160me™2 — 487 ~ —82.77,

f/fvmru [;J_of (10“’#(1_" 3)rd¢drdz

” 81:/ ((10e77(1=r)=3r)ar

=8n ( 10e™ 4+ 10e™"(147) — g)

=0
= 160me%2 — 48n ~ —82.77.

Problem 3.41 A vector field D = #7° exists in the region between two concentric
cylindrical surfaces defined by » = 1 and r = 2, with both cylinders extending
between z = 0 and z = 5. Verify the dlvergence theorem by evaluating:

(@) jé D-ds,
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(b) [Vv-aarv.

Solution:
(a)

f D.ds= ﬁnm+Foumr+Fboﬁnm+ﬁopa

2T 5
Fanee= [ [ () -(=trde)],

2T 5 "
= —rdzd = —10mx,
fro Lo (22080

2T r5
Foger = fM /FO () (rdzde))| _,

2 5
= ./¢=D fz:() (?A dZd‘b)L‘:Z = 160m,
2 21
Fonon= [ [ ((87)-(~2rdoan)| =0,

-2- 2n
B f,t: ij ((£)-(2rdédr))| s = 0.

Therefore, [fD-ds = 150n.
(b) From the back cover, V- = (1/r)(38/2r)(rr°) = 4r2. Therefore,

J[Jf V-Ddv = f_of f,_lc;rzrdrdq:dz_. (((r ]m1)|¢_0)

Problem 3.42 For the vector field D = R3R?, evaluate both sides of the divergence

theorem for the region enclosed between the spherical shells defined by R = 1 and
R=2

= 150x.

Solutiom: The divergence theorem is given by Eq. (3.98). Evaluating the left hand
side:

J[ V.Ddv= ftnf_ofk—l (RZ = (R2(3R2))) R?sin@dR 6 do
= 2n(—cos8)[5-, (3 )]R=1 = 180m.
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The right hand side evaluates to
2N T - "
%D-ds: (/ / (RBRZ)-(-—RstiandeJ))
5 6=0./8=0

& (f‘:;/e:o (QSRZ)-(Rstinededtb))

T
=-2% 3sin@d6 +21tf’i 48sinBd6 = 180r.
=0 6=0

R=t1

R=2

Problem 343 For the vector field E = &xy — §(x> + 2y?), calculate
(a) %c E-41 around the triangular contour shown in Fig. P3.43(a), and

®) f(V X E)-ds over the area of the triangle.
5

Sclution: In addition to the independent condition that z = 0, the three lines of the
triangle are represented by the equations y = 0,x = 1, and y = x, respectively.

(®)

Figure P3.43: Contours for (a) Problem 3.43 and (b) Problem 3.44.

(@)
%E'ﬂﬂ =L+ 1L+ L3,
L= f(fcxy—ﬁ(xz+2y2))-(idx+§”fdy+£dz)

! 0 0 .
- LO (n’)!y:()'z:odx—fyzo (12+2y2) IFOdy+_f£=0 (O)]y=od1= 0,
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L= f(ﬁxy—s?(xz+2y2))-(idx+gdy+zdz)

0
:f;l (W)tz=od"_£; (2 +2y°) tx=1,z==0d3’+]zzo (0)l =y d2

—o- (++2) ‘H

Is= J[(ixy—j"r(xz +2)2))- (2dx+§dy+24z)

] 0
= [} e o= [ 242y, oyt [ O

v=1

13 g (W) 2
= | = - 0=—-.
(3) - ();)lyzl-i- 3
Therefore,
5 .2
= =O—-— _ = 1.
ngdi 5+3 1

(b) From Eq. (3.105), VXE = -23x, so that
; ¢ X
f VXE-ds = f J[ ((~23x) - (2dydx))|
x=0.Jy=0

1 X 1
=—jf 3xdydx:—j[ 3x(x—0)dx=——(x3)|;=_1_
x=0Jy=0 x=0

Problem 3.44 Repeat Problem 3.43 for the contour shown in Fig. P3.43(b).

Solution: In addition to the independent condition that z = 0, the three lines of the
triangle are represented by the equations y = 0,y = 2 —x, and y = x, respectively.
(@)

$Edi=Li+L+Ls,
Fpes ](m_§(£+ 22)) - (Rdx+§dy+3dz)
2 0 0
= _;;:0 (xy)l."'—'ov"’::odx_ fy:ﬂ (x2 +2y2) lz:ﬂdy+ -/:-=0 (o)|y=0dz = 0:
L= [ -390 +2%)- (Rdx+§dy+2d2)
k 1 2 . 0
= szz ()l ;m0yma_rdx— fpc (2 +25%) |,y mady+ Lu )

- (x?_x;) o (4y—27+y)|,_,+0= _T“

gD
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5 :f(ixy-f(f-rrzf))-(ﬁdx+§rdy+zdz)

= [ O maamoti= [ P42 g [ Ot

-Gl

Therefore,

3,10 2

x=1

2
%E dl = 0-—+§=‘3.

(b) From Eq. (3.105), VXE = —23x, so that

f VxE-ds—J[l (( 23x)-(2dydx))|=o

x=0

" jf jf e ((~232) - (2dydx))) o

1 X 2-x
=- f 3xdydx— f [ 3xdydx
x=0Jy=0 =

:-f 3x(x—0)dx-—f 3x((2—x)—0)dx
=0 x=1
== (@)|y- 32 -2) | =-3.

Problem 3.45 Verify Stokes’s theorem for the vector field B = (frcos¢ +$sin¢)
by evaluating:

(2) % B - 4l over the semicircular contour shown in Fig. P3.46(a), and
.

®) j[ (V x B) - ds over the surface of the semicircle.
s

Soletion:

%B-ﬂ:jf E-dﬂfﬂ-dﬂf B-dl,
L 2 Ly

B-dl = (frcosd+sing)- (£dr+b&rdo+2dz) = rcosddr+ rsingdo,

2 0
o B-di= (fmorcos¢dr) - Z=0+ (f=orsm¢od¢)

= (%"z)li;o‘i'o =2

z=0
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2. L
<> X
-:-2_ L3 0 Ll 2
(a)
Figure P3.46: Contour paths for (2) Problem 3.45 and (b) Problem 3.46.
2 T
B-dl = (f rCOS¢dT) - (J[ rsin¢d¢)
L =2 z=0 $= 5 gy
— 0+ (—20059)lg=0 =4
(0] yid
B-dl = J[ rcos¢dr) “+ (jf rsin¢d¢)
Lz re2 o=n,z=0 o=m =0
0
— (_‘_liiz) |r=2 +0=2,
dB.a=2+4+2=%
(b)

VxB :?x(l"rcos¢+4§5in¢)
ods a "a_ i ) P (i r ..a_
—% (-;éEO— az(smtb) +& Bz( cosd) — ar(})

R )

= §-0+é50'+ ﬁ%(simbﬁ- (rsing)) = Zsing (1 + %) g

ﬂvm-ds = f;of; (isimb (1 + %)) (&rdrdo)

= fﬂojfzosin¢(r+ 1drdg = ((—costb( %72+;-))|§=O) |:_0 o
o=0-r= =

Problem 3.46 Repeat Problem 3.45 for the contour shown in Fig. P3.46(b).

Solutiomn:
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(a)
%B-di:f B-d1+f B-dl-i—/ B-cﬂ+[ B-dl.
L 2 Ls L

B-dl = (frcoso+ §sing) - (Fdr+$rdé +2dz) = rcosodr+rsinddo,

2 ]
B-dl = U rcosq:dr) ” (f rsin¢d¢)
L'i r=] ¢=QY =0 ¢l—‘?—'0

3
= 3= +0=5

2 nf
B-di= i
4 dl (/Ezrcos¢dr) z=0+ (A=Or51n¢d¢)

=0+ (—2cosd)f 5 =2,
=l

1 wf2
B-di= (j rcosq:dr) <+ (jr rsin¢d¢)
=2 o=n/2, z=0 o=n/2 z=0

Ly
. 0
LB.(HZ (fr:l rcos‘pdr) z:-'::0+ (-/¢=th2r51n¢d¢)‘r=l, =0

=0+ (- C05¢)ig=x;2 =-1,

3 5
B-dl==4+24+0—-1=—.
?Q et 2

z=0

r=2, z=0

()

VxB = Vx(frcosd+bsing)
1¢

& 9, . ~ (3 d
=3 (;EO— &(Sﬂ“b)) +¢ (g(?’COS¢) - $0)
+il (i( (sing)) — i(;?'ci:isq:))
F\ar %
= i'0+é0+ﬁ%(sin¢+ (rsing)) = Zsing (1 + é) x
/2 2 -~ 1 .
f VxB-ds= s ](:1 (zsm¢ (1—1— ;)) -(2rdrdd)

72

2
= f sind(r+1)drdo
r=]

o=0
_ ( (—cosp(ir+7)) |;2+:1) |ll;;. = % :
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Problem 3.47 Verify Stokes’s Theorem for the vector field A = RcosB+§sin8 by
evaluating it on the hemisphere of unit radius.

Soluntion:
A = Rcos8+¢sin® = RAg+6Ag + dA,.

Hence, Ag = cos8, Ag =0, Ay = sin®.

L1 o ) =7 @ ~ 1 0Ag
VXA'RW(?@(A"S‘“G))‘ﬁﬁéﬁ(m@)"q’ﬁa_e
a1 3 .4 1 @ ) .10
—Rmafe(sn'l G)-— -ﬁa—R(RSIDB)—¢fR§é(COSB)

. 2cos® .sin@ .sind
=R—%— 0% T3

For the hemispherical surface, ds = RR?sin€48d¢.

2n pwf2
f (Vx A)-ds

¢=0.6=0
2n /2 (R 5 S 5 S R
_ [ f'n (R?_cose B sin8 b smB) -BR?s5in8d8 4o
i R R R R=1
- 2. T/2
— 4R sin”© =T
2 0o
R=1

The contour C is the circle in the x—y plane bounding the hemispherical surface.

2
— = Rsm@fo do — =,
R=1

2“ -~ ~
jé_&-dl= (Rcos©+¢sin@) -§RdY
=0
R=1

Problem 3.48 Determine if each of the following vector fields is solenoidal,
conservative, or both:

(a) A =R2xy— %

(b) B =32 -§7 +222,

(© C=#(sind)/?+&(cost)/r.

(d) D=R/R,

(e) E=#(3- %) +z,

® F=(&y—9)/(F+y).

@ G=3(2+2)+IP+2)+2(*+7)

) H= R(Re_‘?).
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Solution:

(a)
" g d o
VA=V-(E2y-§) =5 —g)?:z}:—zy:o,
VxA = Vx (32— §7)
ol B B Y. sl Vet B gy 9
-K(ayo o y))+y(az(2xy) ax0)+z( (-3 ay(?_xy))
= %0 + §0 — 2(2x).

The field A is solenoidal but not conservative.
®)
VB =V(&2 -$H*+322) = 23 -a;yz+—a—2z =2x—2y+2
- T oox oy oz ke

VxB = Ux (& — §y° +222)
=22 0- 2 )+ (309- 229) +2( 2~ )

= %04 §0+ 20.
The field B is conservative but not solencidal.
(©
sin¢ ~cosd
V-C=V- _
( — — <+ 3 )

R sind 19 cos¢) 0

_;ar(r( rz))+;$( rt +az0
—sing  —sind —2sind

= H= =g

smd} ~COS®

VxC= Vx( Lp— >

cos

-1z
1(0

4+ i— (Br(r(

_ - " cos cos _A~2cos¢
‘“’”’0”?(*( 2 ) (%% )=

The field C is neither solenoidal nor conservative.
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(d)
B 13 /.,(1 1 1 a 1
VD:V'(E)‘ 5_( ( )) Rsi eaa(m‘1 )t e, 2

=1‘1Rsine( (Osin6) — io) +6~ (51:193343( ) R (RO )))

@% (ﬁ(}a(o)) . (%)) — £0+80+§0.

The field D is conservative but not solencidal.

VxD=Vx

=i| A

(e)
E:i—( - )+zz,
1+r
19 13E,  2F,
VE=IFET I 5% T3

_1[3 _2:_+__P2_. +]
i 1+r (1470
rz _ _ 2
=1[3+3 +6r 2.: 2r-+r1] =212+4r-l;3+1?&0,
r (147r) (1+ r)

1 agz 8E¢> 5 (azs, 3E, ( _12E )
Hence, E is conservative, but not solenoidal.

®
?SE‘ e b
VF“(ﬂ+ﬂ)+%(F§?)

G erz)2 (:r2+y2)2

§
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i i R a iy 0 ¥y
vm‘=:a:({)—o)4—3r(t3—0)+z[gr (xz—ﬂz T (x2+y?->]
-t ey e )
TR T E R @)

A(—2+2)

zZ ] 0.

x4y

Hence, ¥ is both solenoidal and conservative.

164)

G=%(2+2)+5P +22)+2(° +2),
d d d
V-G==(2 +z2)+§(y2+x2)+§£(y2 +7)
=2x4+2y4+2z#0,
d 3
vxc=2(2 02+ L074) 43 (2@ +A)- 207+ 2)
+2(%(y2+x2)—%(x2+z2))
=22y+§2z+22x# 0.

Hence, G is neither solenoidal nor conservative.

()

H=R(Re™R),
1 ¢
R? 9R
VxH=0.

v.om— (Re®) = :%EGR::E—R_R%—R):,?—RG_R)#0,

Hence, H is conservative, but not solenoidal.

Problem 3.49 Find the Laplacian of the following scalar functions:
@ V=x'7,
) V=xy+yz+zx,
© V=1/(2+y),
(@) V =3&""cosg,
(e) V =10e Rsin®.

Solution:

(a) From Eq. (3.110), V2(022°) = 2x2° + 6072
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(b) V2 (xy+yz+2zx) = 0.
(¢) From the inside back cover of the book,

1 4
v2{ ) =V3(?)= 44 = :
(7)™ e
(@)
2 —r — 1 1
V2(5¢™" cos¢) = 5S¢ cosd (1— e —*-—;) .
(e)

: 2 29 —sin®
V?’(IOe_RsmB) = 10e7R (sinB (I - E) + ES—RZ—S“-:-EI—B) ;




