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Chapter 4

Sections 4-2: Charge and Current Distributions

Problem 41 A cube 2 m on a side is located in the first octant in a Cartesian
coordinate system, with one of its comers at the origin. Find the total charge
contained in the cube if the charge density is given by pv = xy?e % (mC/m?>).

Solution: For the cube shown in Fig. P4.1, application of Eq. (4.5) gives

2 2 2
Q=f Pvd’V=}{ f ote Fdxdydz
v x=0Jy=0/z=0

1 2 2 2
- (7 =]

= %(1 —e %) =2.62mC.
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Figure P4.1: Cube of Problem 4.1.

Problem 42 Find the total charge contained in a cylindrical volume defined by
r<2mand0<z<3mifp, = 107z (mC/m3).

Solution: For the cylinder shown in Fig. P4.2, application of Eg. (4.5) gives

3 2 p2
o= f f jf 10rzrdrdddz
z=0J¢=0Jr=0

5 2 2n 3
= <§r3¢z2) = 240x (mC) = 0.754 C.

z=0

r=016=0
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Figure P4.2: Cylinder of Problem 4.2.

Problem 4.3 Find the total charge contained in a cone defined by R<2m and
0 < 8 < /4, given that py = 20R?cos? € (mC/m’).

Solution: For the cone of Fig. P4.3, application of Eq. (4.5) gives

2 prfd 2 5
Q= }[ f 20R?cos? 8 R?sin® R0 d¢
¢=0.06=0 JR=0
4 2
= (%qu:cosﬁ 9)

3
256 7
-3 E. (%) — 173.3 (@C) = 0.173 C.

/4 12n

R=0168=01¢=0
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X

Figure P4.3: Cone of Problem 4.3.

Problem 4.4 If the line charge density is given by p; = 12y? (mC/m), find the total
charge distributed on the y-axis fromy= —5toy=35.

Solution:

5 5 BT
Q=f Pzd)’m/ 12y%dy= _é)’j = 1000 mC =1,
-5 -5 &

Problem 4.5 Find the total charge on a circular disk defined by r < a and z = 0 if:
(a) ps = psosing (C/m?),
®) ps = pso Sil’l?'(b (Clm?),
(€) ps = psoe™” (C/m?),
(d) ps = psoe™"sin® ¢ (C/m?),
where pgp 1S 2 consiant.
Selution:
(a)
2
= 0.

0
N ol A _. 72 2"(1—(:052@))
0= [ | paso rardo=po 7| [ (=552) a0

_ psod® sin2¢)2“
= "

a

cosd
0

a 2% ) e
0= _[Psds=f psosing rdrdd = —pg 5
r=0Jo=0

(®)

.
= TN Ps0-

0
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(c)

a 2n a
o= f psoe” rdrdd = Z‘Eps{}f re” " dr
r=0.J =0 0

- = 21Pso [—re’r — e_"]g

= 2mpso[1 —e™¢(1 + a)l.

(@

a n 5
Q:] f Dspe” sin~ ¢ rdrdd
r=0/¢=0

a 2n
= Psof re"drf sin® 9 do
6=0

r=0

= py[l —e™¢(1+a)]-w=npsp[l —e “(1+a))

Problem 4.6 If J = §2xz (A/m?), find the current [ flowing through a square with
comers at (0,0,0), (2,0,0), (2,0,2), and (0,0,2).

Solution: Using Eq. (4.12), the net current flowing through the square shown in Fig.
P4.6is

1= [yas= [ (20

=0 Jz=0

2

-(§dxdz) = (x;)

y=0

Figure P4.6: Square surface.
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Problem 4.7 If J = R25/R (A/m?), find I through the surface R = 5 m.
Solution: Using Eq. (4.12), we have

= ]J ds—_[¢ f_o( 2”) (RRZsin0d0 do)

T n

= —25Rdcos® =500 = 1,570.8 (A).

0=0

R=516=0

Problem 4.8 An electron beam shaped like a circular cylinder of radius g carries a

charge density given by
_ —00 3

where Qg is a positive constant and the beam’s axis is coincident with the z-axis.
{a) Determine the total charge contained in length L of the beam.
(b) If the electrons are moving in the +z-direction with uniform speed v, determine
the magnitude and direction of the current crossing the z-plane.

Solution:
(a)
" [ pvdw= " [ (22 ) 2wrdra
= vav =
Q j[r=0 4P Jl:—:o/z:o(1+rz) Hegres
L
= —2mpoL dr = —mpolln(l+ r’%)
(b)
_ _ _a_kPo 2
J=pwu= e (A/m?),

=fjof¢i( 3 up(:z) Zrdrde

= —27upg [ e = —mupola(1+75) (A).

Current direction is along —2.
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Section 4-3: Coulomb’s Law

Problem 4.9 A square with sides 2 m each has a charge of 20 pC at each of its four
corners. Determine the electric field at a point 5 m above the center of the square.

P(0,0,5)

R3

Q3(-l 2" 1 "0)

Q02(-1,1,0)

\ /

1(1,1.0)

Q4(1,-1,0)

Figure P4.9: Square with charges at the comers.

Solution: The distance |R| between any of the charges and point P is
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IRl =V1Z+12+52 =/27.

E— 0 [RI R, Rs R4]

e, |IRP T TRE T TRF T IRP

0 [—ﬁ—§r+zs+i—§r+25 —&+§+25 ﬁ+§:+25]

T dmeg | (27)32 (27)3/2 (27)312 (27)3/2
50 . 5x204C 071

27)pPme;  (21)7Pre; | T

=3 % 1078 (V/m) = 225.61 (kV/m).

Problem 4.10 Three point charges, each with ¢ = 3 nC, are located at the corners
of a triangle in the x—y plane, with one corner at the origin, another at (2.cm,0,0),
and the third at (0,2 cm,0). Find the force acting on the charge located at the origin.

Solution: Use Eq. (4.19) to determine the electric field at the origin due to the other
two point charges [Fig. P4.10}:

1 [3aC (—%0.02)] . 3nC(—§0.02) o
E=— ey . .
4me [ (0.02)3 } (0.02)3 7.4(2+9) kKV/m) at 0

Employ Eq. (4.14) to find the force F = gE = —202.2(+ §) (ulN).

¥
T R1=~§£2cm
2cm+ Q Ry=-$2cm
Rz
o B R, Q w
Ql 2cm

Figure P4.10: Locations of charges in Problem 4.10.

Problem 4.11 Charge g; = 4 pC is located at (1cm,1cm,0) and chatge g2
is located at (0,0,4cm). What should g2 be so that E at (0,2 cm,Q) has no
y-componeni?

Solution: For the configuration of Fig. P4.11, use of Eq. (4.19) gives
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Ri=-%+%2-1)=(k+Hcm
R>=($2-%4)cm

Figure P4.11: Locations of charges in Problem 4.11.

. 1 [4uC(—%+9)x 1072 $2 —34) x 10~2
E(R = §20m) = o [ 1C( ¥) (¥ ) ]

ame | (2x10°2)3/2 (20 x 10-2)3/2
1
= —[-%14.14% 1076 + §(14.14 x 1075+ 0.2244,)
—30.447q;] (V/m).

If E, = 0, then ¢ = —14.14 x 107°/0.224 & —63.13 (2C).

Problem 4.12 A Hne of charge with uniform density g; = 4 (uC/m) exisis in air
along the z-axis between z = 0 and z = 5 cm. Find E at (0,10 cm,0).

Solution: Use of Eq. (4.21c¢) for the line of charge shown in Fig. P4.12 gives

1 A1 p;dl'
E=— [ R—,
dmeg Jr R?
R =§01-%
I e (§0-1—2z)
= — 4x 1070 ——
4meg ]Fo ( Toipsapn %
. . 0.05
_4x107% | §10z+2
o | V(0.1P+E] |

= 35.93 x 103[§4.47 —21.06] = $160.7 x 10> —£38.1x 10° (V/m).
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Figure P4.12: Line charge. g

g

Problem 4.13 Electric charge is distributed along an arc located in the x—y plane 2
and defined by r=2cmand 0 < ¢ < r/4. If py = 5 (¢C/m), find E at (0,0,z) and i
then evaluate it at (a) the origin, (b) z=5cm, and (c) z= -5 cm. %

Solution: For the arc of charge shown in Fig. P4.13, dl = rd¢ = 0.024d¢, and
R’ = —£0.02+ Zz. Use of Eq. (4.21c¢) gives

E= ]’ Rdg _ [ ourdl _j["f“ (tr+zor . 2
i) N o 4meo(r?+22)37 @
Since £ = Rcosp+ Fsing ;é
:
E {fﬁm frcosd — ¢d¢+z } 200 %
= —&r rsin |
o 7 * ame (P )T
g L oir
z= {(--smq:o)rxlG +(cos¢)ry|ﬂ +zzz} neg(R 1+ 2)7

V2 . (V2 899 |
- {(——{) (0.02)%+ (~2——1) (0. 02)y+( ) }m

{(a) At the origin, E = —%1.6 — 0.66 MV/m
(b)Atz=5cm, E= —%81.4—§33.748226 kV/m
() Atz=—-5cm, E= —&81.4 - §33.7 - 2226 kV/m

ST A T T
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s ]

R =-10.02+2z
T i) §
P2em=1r002m
/4 e
2cm N
— o
a

Figure P4.13: Line charge along an arc.

Problem 4.14 A line of charge with uniform density p; extends between z= —L/2
and z = L/2 along the z-axis. Apply Coulomb’s law to obtain an expression for the
electric field at any point P(r,6,0) on the x—y plane. Show that your result reduces 10
th: expression given by Eg. (4.33) as the length L is extended to infimity.

Solution: Consider an element of charge of height dz at height z. Call it element 1.
The elecitic field at P due to this element is JE;. Similarly, an element at —z
produces dl;. These two electric fields have equal z-components, but in opposite
directions, and hence they will cancel. Their components along £ will add. Thus, the
net field due to both elements is

2picos@dz  fpjcosBdz
4megR2 2mepR?

where the cos 8 factor provides the components of JE; and dE, along £.
Our integration variable is z, but it will be easier to integrate over the variable ©
from8=0to

dE =dE,+dE, =71

L2

Q= sin™}
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=
-

Figure P4.14: Line charge of length L.

Hence, with R = r/ cos8, and z = rtan® and dz = rsec? 040, we have

L2 8o 8 3
E:f dE:f dEzjf L
=0 8=0 o 2mep 1
.~ D %
=¥ cos8do
2nEer Jo
2z
=§ Pl gingy=f—tt & .
2megr 2megr £/r2 4+ (L/2)?
ForL>r,
L/2

o~

NeE oo
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and
(o]

E=F
E‘TZTCEQr

{infinite line of charge).

Problem 4.15 Repeat Example 4-5 for the circular disk of charge of radius a, but
in the present case assume the surface charge density to vary with r as

Ps = Ps{}fz (C/mz):l
where pgo 15 a constant.

Solutiom: We start with the expression for JE given in Example 4-5 but we replace
ps with pst}?'z =

h

dE = z4nso(r2 TR (2mpgor dr),
a
E=3 Psoht f rdr .
20 Jo (R+I2V
To perform the integration, we use
RE=r+1,
2RdR = 2rdr,
£ — 3 Psof f(a’wz’w” (R*—K?)dR
2gy Ja R?

(a2+2) 12 (@+R)2 2
— 3Pk f AR — jf Lt
28y |Jk h R?

W
ﬁ‘”‘]'

Problem 4.16 Multiple charges at different locations are said to be in equilibrium
if the force acting on any one of them is identical in magnitude and direction to the
force acting on any of the others. Suppose we have two negative charges, one located
at the origin and carrying charge —9e, and the other located on the positive x-axis at
a distance 4 from the first one and camrying charge —36e. Determine the location,
polarity and magnitude of a third charge whose placement would bring the entire
system into equilibrium.

Solutiom: If

F; = force on O,
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Ql = -Q¢ Q3 02 = -36¢

5 ———s -
{“" X ."-‘—E < (d.):‘]_b_!
!-:: d 2

Figure P4.16: Three collinear charges.

F, = force on 05,

F3 = force on 0s,

then equilibrium means that
Fy=F; =F;.

The two original charges are both negative, which mean they would repel each other.
The third charge has to be positive and has to lie somewhere between them in order
to counteract their repulsion force. The forees acting on charges 01, ©>, and O3 are

respectively _
F= 20010 Rn0i0s 342 9
4neoRE; | AneoRE, dmegd? " " dmepx?
& - .
_ Rie0102 | R3030, 2 324e? g 36e0s
4mepR:,  4meoR3, dmeod?  ” 4meg(d —x)2
o R130103 | R230:0; — g 2¢0s . 36eQ5
2 4mepR%;  AmeoR2, dnegx® 4meg(d—x)?
Hence, equilibrium requires that
_324e i 903 324e 3605 _ 905 5 3603
d? 2 T & (d-x2 2 (d=—x)?"
Solution of the above equations yields

F>

Q3=4ea x=

W Ry

Section 4-4: Gauss’s Law

Problem 4.17 Three infinite lines of charge, all parallel to the z-axis, are located at
the three comers of the kite-shaped arrangement shown in Fig. 4-29 (P4.17). If the

S SRR
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a
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i
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two right triangles are symmetrical and of equal corresponding sides, show that the
electric field is zero at the origin.

Y

Figure P4.17: Kite-shaped arrangment of line charges for Problem 4.17.

Solution: The field due to an infinite line of charge is given by Eq. (4.33). In the
present case, the total E at the origin is

E=E;+E+Es.

The components of E; and E, along % cancel and their components along —§ add.
Also, Ej is along § because the line charge on the y-axis is negative. Hence,

_§(2p;coss 7 2p;
2megRy 2megRy

E=

But cos 8 = R; /R,. Hence,

o R1+. or

E=- ot S . S
megR; Ra nEgR2

Problem 4.18 Three infinite lines of charge, oy, = 5 @C/m), pr, = —5 (@C/m), and
p, = 5 (@C/m), are all paralle] to the z-axis. If they pass through the respective points
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P

0.5) ¢

(Ov'b) ¢ le

Figure P4.18: Three parallel line charges.

(0,—b), (0,0), and (0,b) in the x—y plane, find the electric field at (a,0,0). Evaluate
yourresultfora=2cmand b= 1 cm.

Solution:

py =5 @C/m),
pr, =-5 @C/m),

On = Phs
E=E;+E;+Es.

Components of line charges 1 and 3 along y cancel and components along x add.
Hence, using Eqg. (4.33),

E= “—Z’D—I‘-—cose-i-iipi.

==
2nepR; 2nEga

a
with cos® = ——— and R} = Va2 -+ 52,
v a* + b? :
&5 2a i1 -9
[m = E] x 10 (me).
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Forga=2cmand b= 1cm,

E=%270 (kV/m).

Probiem 4.19 A horizontal strip lying in the x-y plane is of width d in the
y-direction and infinitely long in the x-direction. If the strip is in air and has 2
uniform charge distribution ps, use Coulomb’s law to obtain an explicit expression
for the electric field at a point P located at a distance h above the centerline of the
strip. Extend your result to the special case where d is infinite and compare it with
Eq. (4.25).

z

diE» dE,
P(G0R)
\ & y
2 /
\ / Ps
o \/ /
g | - 3 Fi
y 7""}(‘\"\‘\ S A AN AN B 4
d , /2 ‘,/ g X
-y P,/_ AN e ™~ > N i o~ )
i 7
/
74
off
d
v
/

Figure P4.19: Horizontal sirip of charge.

Solution: The strip of charge density ps (C/m?) can be treated as a set of adjacent line
charges each of charge P = Os dy and width dy. At point P, the fields of line charge
at distance y and line charge at distance —y give contributions that cancel each other
along § and add along 2. For each such pair,

. 2psdycos®

dE =% N
2meoR
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With R = h/cos®8, we integrate from y = 0 to d/2, which corresponds t0 6 = 0 to
8o = sin~'[(d/2)/(k*+(d/2)*)!/?]. Thus,

d/2 ps [4?cosB os [Pcos’®  h
E= dE:*_‘f d =*—3f . d
./l; zmeg 0 R & zr::eo 0 h  cos2B ¥

For an infinitely wide sheet, 8o = /2 and E = z%, which is identical with Eq.

(4.25).

Problem 4.20 Given the electric flux density
D= £2(x+y)+§(3x—2y) (C/md),

determine

(a) pv by applying Eq. (4.26),

{b) the total charge O enclosed in a cube 2 m on a side, located in the first octant
with three of its sides coincident with the x-, y-, and z-axes and one of its
cormers at the origin, and

(c) the total charge Q in the cube, obtained by applying Eq. (4.29).

Solution:
(a) By applying Eq. (4.26)

d 0
v=Y-D=—(2x+2 —(3x— =0.
P 5 (2T 2)+=-(32-2y) =0
{b) Iniegrate the charge density over the volume as in Eq. (4.27):

. 2 2 2
me V-de:] f 0dxdydz = 0.
v x=0/y=0Jz=0

{c) Apply Gauss’ law to calculate the total charge from Eq. (4.29)

0= %mm: Fhciir & Foaie b Bigie - Bt By 4+ P

2 2
=0

y=0

-(&dzdy)

x=2

1
dzdy = '(22 (Zy-l- Eyz)
2

2
- J{ . JC ;(ﬁz(pr ) +$(3x—2y))

- ]y:o j;io Ax+y)

=24,

X==
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(—%dzdy)

x=0
2
z=0)

y=0
-(§dzdx)
y=2

dzdx = (z (%xz—él-x) )
y=2 =0

-(—§dzdx)

»=0
2 2
] =-12,
=0 =0

rodzdx =- (z (%xz)

2 2
. [ (R2(x+y)+F(3x~2))
y=0J7=0

2

:

b
&
&
&
2

= -8

b

dzdy = — (zy2
0

2 2
y=0Jz=0

2
Fae= [ [ (2042 +5(3x-2))

L Lo

2 2
Fep= ] (22(x+y) +§(3x—2))
x=0Jz=0

. _fz * (3x-2y)

x=0Jz=0

=

e

2
= -4

2

x=0

-(2dydx)

=2

Fop = f;o j:o(iz(x +y) 4+ §(3x—2y))

2 2
- f 0
x=0.Jz=0

? (2(x-+y)+5(3x—2))

dydx =0,

=2

-(2dydx)

=0

s
4
E]
|

I
v
i

(=}

Thus 0 = jgﬁ-ds=24—8—4—12+0+0 —

Problem4.21 Repeat Problem 4.20 for D = 2z (C/m?).
Solution: 5
(2) From Eq. (4.26), py=V-D = a(xyzf) =¥7:
(b) Total charge Q is given by Eq. (4.27):
Q:f V.Ddv= fl fz f A3 dxdydz = e
v z=0 Jy=0Jx=0 12

? 64
= —C.
3

T T e

2 \2
x=0ly=0iz=0
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(c) Using Gauss’ law we have
%SD -ds = Font + Foack + Fright + Fiert + Frop + Footom-

Note that D = &D;, 50 only Fironr and Fpaex (integration over  surfaces) will contribute
to the integral.

-(dydz)

e [ 17

2 2
= )
L= x=2 =0

e [L [0 csmarm [ [ 2

64 4
This 0 = ?ﬁn-dﬁ S +0+0+0+0+0= 93_c_

T

3.4\ |
dydz = 2(2i>

2

12

}‘:0

dydz = 0.

x=0

x=0

Problem 4.22 Charge Q; is uniformly distributed over a thin spherical shell of
radius @, and charge Q; is uniformly distributed over a second spherical shell of
radius b, with b > a. Apply Gauss’s law to find E in the regions R < @, a < R< b,
and R > b.

Solution: Using symmetry considerations, we know D = RDg. From Table 3.1,
ds = RR?sin6 d8 d¢ for an element of a spherical surface. Using Gauss’s law in
integral form (Eq. (4.29)),

%D'd5=an
S

where Qi is the total charge enclosed in S. For a spherical surface of radius R,

2 W
f f (RDR) - (RR2sin®d0dd) = Crors
8=0

=0
DrR*(21)[— cos8]§ = Qiors
_ Qo
4nR2’
From Eq. (4.15), we know a linear, isotropic material has the constitutive relationship
D = ¢E. Thus, we find E from D.
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(2) In the region R < a,

2 ﬁQtDI

Gt =0, E=REg = AR 0 (Vim).

(b) In the regiona < R< b,

R R
Ow=01, E=REx= 22 (v/m).

= Rl
(¢) In theregion R > b,
i R(O1+C
Qe = C1+ 02, E=RER = (—@'L“Rjgi) (V/m).

Problem 4.23 The electric flux density inside a dielectric sphere of radius a
centered at the origin is given by

D=RpR (C/m?),
where pg is 2 constant. Find the total charge inside the sphere.

Solution:

T 2w
g= jéD-ds=f RpoR - RR?sin8d0 dé
S 8=00=0 R=a

T
= 2mpoa’ f sin8d® = —2mpoa’ cos 8| = 4npoa’®  (C).
0

Problem 4.24 In a certain region of space, the charge density is given i cylindrical
coordinates by the function:

oy = 20re™" (C!m3).

Apply Gauss’s law to find D
Solution:
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&

Figure P4.24: Gaussian surface.

Method 1: Integral Form of Gauss’s Law

Since py varies as a function of r only, so will D. Hence, we construct a cylinder of
radius 7 and length L, coincident with the z-axis. Symmetry suggests that I has the
functional form D = #D. Hence,

jén-ds= 0,
LY
f £D-ds = D(2nrL),

0= ZTI:Lf 20re™ " -rdr
0
=40nL][—Pe " +2(1—e (1 + 7)),

Method 2: Differential Method
V'g:p\’) D:i\—DN
with D, being a function of r.

% %(FD,.) = 20re™",
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% (rD,) = 207%™,
r a r .
fo = (rD;)dr = fo 20727 dr,
D, =20[2(1 =& "(14-7))— 1?1,

2
D=frD, =120 [-;(1 —e(1471)) -re_’] .

Problem 4.25 An infinitely long cylindrical shell exiending between 7 = 1 m and
7= 3 m contains a uniform charge density pvg. Apply Gauss’s law to find D in all
regions.

Selutiom: Forr < 1m, D =0.
For] <r<3m,

jéfp,-ds= 0,
S
D, - 2rrL = pyo-nl(r* — 1%),

S PwrL(-1) _ . ovo(? —1)

D=
2nrl 2r ?

L5

D, =

I<r<3m.
Forr > 3m,

D,-2nrL = pyonL(3? — 17) = 8pyonL,

4pvo
r 3

D=fD.=¢

r>3m.
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&3

Figure P4.25: Cylindrical shell.

Problem 4.26 If the charge density increases linearly with distance from the origin
such that py == 0 at the origin and p, = 10 C/m? at R = 2 m, find the corresponding
variation of .

Solution:

pv(R) =a+bR,
p\"(o) = 07 ‘
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p\r(z) = 217 = 10.

Hence, b= 5.
po(R)=5R (Cm?).

Applying Gauss’s Jaw to a spherical surface of radius R,
%D-ds: J[ 0vd?,
5 v
R . R
Dg-4nR? = f SR-4mR*dR = 20m -,
0
5
Dr= ZRz (C/m?),

D=RDg= ﬁfz%Rz (C/m?).

Section 4-5: Electric Potential

Problem 427 A square in the x—y plane in free space has a point charge of +Q at
corner (a/2,2/2) and the same at comer (a/2,—a/2) and a point charge of —Q at
each of the other two COIners.

(2) Find the electric potential at any point P along the x-axis.

(b) Evaluate V atx= al2.

Solution: R; = Ry and R; = Ra.

o o = = Q 1 1
V'= dmeoR, T ameoR, | AmeoRs | AmEoRs  2meg (E_*R_s
with

e

r=y (e 5) + (3
Atx=a/2,

R1=%=

R3=a\/§
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Figure P4.27: Potential due to four point charges.

V__Q-*(% 2) 0550
" 2mg V3a

Problem 4.28 The circular disk of radius a shown in Fig. 4-7 (P4.28) has uniform
charge density ps across its surface.
{(a) Obtain an expression for the electric potential V at a point P(0,0,z) on the
Z-axis.
(b) Use your result to find E and then evaluate it for z = h. Compare your final
expression with Eq. (4.24), which was obtained on the basis of Coulomb’s law.

Solution:

(a) Consider a tng of charge at a radial distance r. The charge contained in
width dr is

dg = ps(2wrdr) = 2npsrdr.

The potential at P is

dg _ 2mpgrdr
AmegR ~ 4meg(r2 +22)1/2°
The potential due to the entire disk is

rdr sl
V= dev = [ L (24 2)2
28 Jo (P+2)V2 280( ) 0

dv =

.
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Figure P4.28: Circular disk of charge.

(b)
oV 9V 9V | ps z
O, Y L A S S
% yay s Eo[ v’az-i-zz]

The expression for E reduces to Eq. (4.24) whenz = A.

Problem 4.29 A circular ring of charge of radius ¢ lies in the x—y plane and is
centered at the origin. If the ring is in air and carries a uniformn density p;, (2) show
that the electrical potential at (0,0,z) is given by V = pja/[2go(a? + 22)'/?], and (b)
find the corresponding electric field E.

Soluticn:
(@) For the ring of charge shown in Fig. P4.29, using Eq. (3.67) in Eq. (4.48c) gives
1 O L., 1 j/'z’t D1 '
VR)= — [ Ztdl' = — add'.
®) ameg Jr K 4no Jor=0 y/a? + r2 — 2arcos (¢ — ) + 22 ¢

Point (0,0, z) in Cartesian coordinates corresponds to (7,9,z) = (0,9, z) in cylindrical
coordinates. Hence, forr =0,

2% P pia

V009 g oo T = e
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=Ry
A al' = a do'
a
pr
X
Figure P4.29: Ring of charge.
{b) From Eq. (4.51),
~Pia d 2 -1/2 P2 z
E=-VV = -8 —— = fm).
" T “hmarar O

Problem 4.30 Show that the electric potential difference Vi, between two points in
air at radial distances r; and 7; from an infinite line of charge with density p; along
the z-axisis Vi = [p;/2ﬂ;€0) 111(?'2/?‘1 )

Solutiom: From Eq. (4.33), the electric field due to an infinite line of charge is

Pr
2neor

E=fE =¥F

Hence, the potential difference is
T 7 =
V1:>.=-f 'E-dl= ﬂJ[I B gy PE g (f‘i)
” r ATEQY 2mEy ri

Problem 4.31 Find the electric potential V' at a location 2 distance b from the origin
in the x—y plane due to a line charge with charge density p; and of length /. The line
charge is coincident with the z-axis and extends fromz = —[/2toz=1[/2.
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Figure P4.31: Line of charge of length £.

Solutiem: From Eq. (4.48c), we can find the voltage at a distance b away from a line
of charge [Fig. P4.31]:

2 A ] Z
Viby= L [P B d pr ( + VPR +452)_

Ty = X .. SO i %, W
4ne Jp R 4me J_1f2+/722 +B2 4me —l+~/I2 452

Problem 432 For the electric dipole shown in Fig. 4-13, d = 1 cm and E|=2
(mV/m)atR=1mand8=0°.Find E at R = 2 m and 6 = 90°.

Solutionm: For R=1mand 6 = 0°, |E| = 2 mV/m, we can solve for g using Eq. (4.56):

qd . A .
5 5(R2cos8+Osin).

Hence,

!E[:( g4 )2~_~2mv;m a8 =0°
41cgg

_ 103 x4ney 1073 x 4ngy
S N T

Again using Eq. (4.56) to find E at R = 2 m and € = 90°, we have

=0.4ney  (C).

0.4meo x 1072 PR
= 9770 " eaen =6
E dreg x 23 (8(0) +8)

1 (mV/m).

o]
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Problem 4.33 For each of the following distributions of the electric potential V,
sketch the corresponding distribution of E (in all cases, the vertical axis is in volts
and the horizontal axis is in meiers):

Solution:

E
A
104
1 X
g
-10 2
(@ :
v 7

-
>
g

SR e F R B

- /\ /\ /
3 V64 ¢ (12415

-4.20.%

s G R

(®)
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v
8
4
3 6 9 12 15
- =X
-4
E
F
256
6 9, 12 5
+ & g =X
26
(©

Figure P4.33: Electric potential distributions of Problem 4.33.

Problem 4.34 Given the electric field

~ 12
E=R— (Vm)
find the electric potential of point A with respect to point B where A s at +2 m and
B at —4 m, both on the z-axis.

Solwution: "
VAB:VA—VB=‘—f E-dl.
B
o B 12 2 . 12
Along z-direction, R=Zand E=2— forz2 O,and R=—-Zand E = —z? for
z
z < 0. Hence,

2.1 0 12 2 12
VAB=—f R—i%-zdp—U —z—-ﬁdz+f ﬁ—z--idz]:ESV.
4 z - 2 0 z
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A o z=2m

B e z=-4m

Figure P4.34: Potential between B and A.

Problem 4.35 An infinitely long line of charge with uniform density p; = 6 (nC/m)
lies in the x—y plane parallel to the y-axis at x = 2 m. Find the potential V3 at point
A(3 m,0,4 m) in Cartesian coordinates with respect to point B(0,0,0) by applying
the result of Problem 4.30.

Solution: According to Problem 4.30,

2mey 1

where r; and r are the distances of A and B. In this case,
r=4/(3=22+42=+17m,
rp=2m.

Hence,

6x10~° 2
Phise 1 = _78.06V.
4B X 885x10-1Z " (1/17)
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4m

=
A(3,0.4)_ - #

=

mn

n 8 -y

Bl O By OB @ R M

2m

0\\\\\\\\E\\\}?(\\\\\\\\\\\\\\\\O

3m

Figure P4.35: Line of charge parallel to y-axis.

Problem 4.36 The x—y plane contains a uniform sheet of charge with ps, = 0.2
(nC/m?) and a second sheet with pg, = —0.2 (nC/m?) occupies the plane z = 6 m.
Find Vag, Vac, and Ve for A(0,0,6 m), B(0,0,0), and C(0, —2 m, 2 m).

Solution: We start by finding the E field in the region between the plates. For any
point above the x—y plane, E; due to the charge on x—y plane is, from Eqg. (4.25),

' Ps

289

In the region below the top plate, E would point downwards for positive gs, on the
top plate. In this case, ps, = —Qs,. Hence,

Ei=%

~ P51 - Ps -
E=FE4+E=fi———-2—=F—=2Z—.
1+E, =% zz zz z

Since E is along Z, only change in position along z can result in change 1n voltage.

o, |° 6py,  6x0.2x107°

& Bs s
VAB::—f gPu sy Pa |
A

- = _135.59 V.
& o % 385X 10-12 100
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pso=- 0.2 (nC/m?)

S

Ps;= 0.2 (nC/m2)

Figure P4.36: Two parallel planes of charge.

The voltage at C depends only on the z-coordinate of C. Hence, with point A being at
the lowest potential and B at the highest potential,
-2 —135.
Vac = Vap+ Vpe = —135.59+45.20=-90.39 V.

= 4520V,

Section 4.7: Conductors

Problem 437 A cylindrical bar of silicon has a radius of 2 mm and a length of 5 cm.
If a voltage of 5 V is applied between the ends of the bar and g = 0.13 (x?/V-s),
i = 0.05 (m2/V-s), N; = 1.5 x 10® electrons/m?, and Ny, = N, find

{a) the conductivity of silicon,

{b) the current f flowing in the bar,

{¢) the drift velocities B, and uy,

(&) the resistance of the bar, and

{(e) the power dissipated in the bar.

i
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Selution:
(2) Conductivity is given in Eq. (4.65),
© = (Nette + Nupmn)e
= (1.5x 10")(0.13+0.05)(1.6 x 1019 = 432 x 10~* (S/m).

(b) Similarly to Example 4.8, parts b and c,

I=JA=0FA=(432x10"% (35-;%) (r(2x1073)%) =542.9 (nA).

(c) From Egs. (4.62a) and (4.62b),

E

i‘ﬁl (me),

U= —pE= —(0.13)(100)% .
E E
mp = = +(0.05)(100) — = 5-—
(d) To find the resistance, we use what we calculated above,

v 5V
=1~ 5hona =2 MQ).

(m/s).

(e) Power dissipated in the bar is P = JV = (5V)(542.9nA) = 2.7 (uW).

Problem 4.38 Repeat Problem 4.37 for a bar of germanium with g = 0.4 (m2/V-s)
tn = 0.2 (m?/V-s),and N, = N, = 2.4 x 10" electrons or holes/m>.

Solution:
(a) Conductivity is given in Eq. (4.65),

O = (Nepte + Nypw)e = (2.4 X 10'%)(0.44+0.2)(1.6 x 10719) = 2.3 (S/m).

{(b) Similarly to Example 4.8, parts b and ¢,

I=JA=cEA=(23) (%) (m(2x1073)%)=2.89 (mA).

(c) From Eqgs. (4.62a) and (4.62b),

E E
= —E=—(04)(100)— = —40— (m/ 2
Ue = —fte (0.4)( )IEI ] (m/s)
B E
uy = il = (0.2)(100)@ = 20@ (m/s).
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(&) To find the resistance, we use what we calculated above,

Vv 5V
I~ 2.89mA

(€) Power dissipated in the baris P = IV = (5V)(2.89 mA) = 14.5 (mW).

R= =173 &Q).

Problem 4.39 A 100-m-long conductor of uniform cross section has 2 voliage drop
of 2 V between its ends. If the density of the current flowing through it is 7 x 10°
(A/m?), identify the material of the conductor.

Solution: We know that conductivity characterizes a material:

2(V)
100 (m)

J=0cE, 7x10° (Afm?-)=c( ) c=3.5%x107 (S/m).

From Table B-2, we find that aluminum has ¢ = 3.5 x 107 (S/m).

Problem 4.40 A coaxial resistor of length / consists of two concentric cylinders.
The inner cylinder has radius g and is made of a material with conductivity Gy, and
the outer cylinder, extending between r = g and 7 = b, is made of a material with
conductivity c5. If the two ends of the resistor are capped with conducting plates,
show that the resistance between the two ends is R = [/[nt(012% + 02(5% — 2%))].

Solution: Due to the conducting plates, the ends of the coaxial resistor are each
uniform at the same potential. Hence, the electric field everywhere in the resistor
will be parallel to the axis of the resistor, in which case the two cylinders can be
considered to be two separate resistors in parallel. Then, from Eq. (4.70),

1 5 " 1  C1A1 , Cohs _ o1 mat N com(b? — a?)
R Russr Roswee: N L 1 i ’
or

!
= (6102 + G2 (B2 — a?))

(£2).

Problem 4.41 Apply the result of Problem 4.40 to find the resistance of a 10-cm-
long hollow cylinder (Fig. P4.41) made of carbon with ¢ = 3 x 10° (S/m).

Solution: From Problem 4.40, we know that for two concentric cylinders,

{
T n(c1a% + 02 (b2 —a?))

(£2).

T R R

orb b b
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Carbon

e

Figure P4.41: Cross section of hollow cylinder of Problem 4.41.

For air 61 = 0 (S/m), 62 = 3 x 10* (S/m); hence,

0.1

Problem 4.42 A 2 x 10~3-mm-thick square sheet of aluminum has 10 cm X 10cm

faces. Find:
(2) the resistance between opposite edges on a square face, and
(b) theresistance between the two square faces. (See Appendix B for the electrical

constants of materials).

Solution:

(@)
R=—.
oA

Eor aluminum, ¢ = 3.5 x 107 (S/m) [Appendix B].

: ]=10cm, A= 10cmx 2% 10~3 mm =20x10~2x 1076 =2x 107" m?,

10 x 1072

3.5% 107 x2x 10~7 (e

(b) Now, [ =2x 10> mmand A = 10cmx 10em = 102 m?.

2:56107°

- =571 p82.
TR o s
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Section 4-9: Boundary Conditions

Problem 4.43 With reference to Fig. 4-19, find E; if E; =%3 - 92+34 (V/m),
g = 2gg, g; = 18gy, and the boundary has a surface charge density
ps = 7.08 x 10~ ! (C/m®). What angle does E, make with the z-axis?

Solution: We know that E,, = E; for any 2 media. Hence, Ej; = Ey = &3 — 2.

Also, (D — D) - &t = ps (from Table 4.3). Hence, €,(E; - i) — &(E; - 1) = ps, which

gives

Os+E2E2,  7.08x 107! " 18(4) _ 7.08x 107"
£ - 2g 2 T 2x8.85x10-12

Hence, E; = %3 — 72+ 240 (V/m). Finding the angle E; makes with the z-axis:

Ey=

+36 =40 (V/m).

4
E;-2=|Ez|cos8, 4=+9+4+16cosd, 8=cos™! (—) =42°,
2 |Eq| v )=

Problem 4.44 An infinitely long dielectric cylinder with g, = 4 and described by
r < 10 cm is surrounded by a material with g5, = 8. F E; = £/ sin¢ — 3~ cos ¢ + 23
(V/m) in the cylinder region, find E; and [, in the surrounding region. Assume that
no free charges exist along the cylinder’s boundary.

Solution: Using Table 4-3, £y; = £a, and @+ (D — D7) = ps.
Ey=E = —03~cosp+23  (V/m),

E;Eln = EzEzE (Sincc Ds = 0),
- € I 5.
T-Ep=Ey= —IEIn = —r"sing.
€3 2
Thus,

Ea= %%rzsinqy — @3 cosd+ 23,

D, = £,E, = 8¢ (E’%rz sing —$3-° cosb+ 33) (C/m?).

Problem 4.45 A 2-cm dieiAectric: sphere with €;; = 3 is embedded in a medium with
€2, = 9. If E; = R3cos€ —83sind (V/m) in the surrounding region, find E; and Dy
in the sphere.

Solution: Using Table 4.3, E|; = Ex, and - (D — D7) = ps,

p5=01 DR::DRIP
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&2
Epy = —Egy= (—) 3cosB =9cos8,

So

E; = R9cos8—-83sin@ (V/m),
D) = £, E; = 30(RScos & — @3sin8) = go(R27cos8 —E9sin8) (C/m?).

Problem 4.46 If E = R50 (V/m) at the surface of a S-cm conducting sphere
centered at the origin, what is the total charge  on the sphere’s surface?

Solutiom: From Table 4-3, fi- (D) — D2) = ps. B2 inside the sphere is zero, since we
assume it is a perfect conductor. Hence, for a sphere with surface area § = 4ma?,

Dir = Ds, Epr=

Ds
€0
ey

o8 £l

0 = ErSep = (50)4w(0.05) ©.

Problem 4.47 Figure 4-34(a) (P4.47) shows three planar dieleciric slabs of equal
thickness but with different dielectric constants. If Eg in air makes an angle of 45°
with respect to the z-axis, find the angle of E in each of the other layers.

Z
& Eo
45°

Figure P4.47: Dielectric slabs in Problem 4.47.
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Selutior: Labeling the upper air region as region 0 and using Eq. (4.99),
8, =tan™" (%meo) = tan~' (3tan45°) = 71.6°,
-1 & -1 5 o °
82 = tan E—tanﬁl = tan §ta.n71.6 ='78.7°%
)

7
8= tan ™! (—taneo) = tan~! (gtﬂl‘l?&?o) = 81.9°.

In the lower air region, the angle is again 45°.

Sections 4-10 and 4-11: Capacitance and Elecirical Energy

Problem 448 Determine the force of attraction in a parallel-plate capacitor with
A=10cm?, d = 1 cm, and g, = 4 if the voltage across it is 50 V.

Solution: From Eq. (4.131),

2
F=-7 EAIE}

2
5
= —22g0(10x 107%) (6"3?) = —54427x107° (N).

Problem 4.4% Dielectric breakdown occurs in a material whenever the magnitude
of the field E exceeds the dielectric strength anywhere in that material. In the coaxial
capacitor of Example 4-12,
(a) At what value of 7 is |E| maximum?
(b) What is the breakdown voltage if a = 1 cm, b= 2cm, and the dielectric
material is mica with & = 67

Solution:

(2) From Eq. (4.114), E = —fp;/2ner for a < r < b. Thus, it is evident that |E| is
maximum at 7 = a.

(b) The dielectric breaks down when |E| > 200 (MV/m) (see Table 4-2), or

_ b Pr
Bl = >

ner = Zn(Geo)(10-7) - 0 (MVm),

which gives p; = (200 MV/m)(2x)6(8.854 x 10~12)(0.01) = 667.6 (uC/m).
From Eg. (4.115), we can find the voltage corresponding to that charge density,

P1 b (667.6 uC/m)
2ns \a 127(8.854 x 10~12 F/m)

In(2)=1.39 (MV).




164 CHAFPTER 4
: Thus, V = 1.39 (MV) is the breakdown voltage for this capacitor.
Problem 450 An electron with charge Q. = —1.6 x 107 C and mass

me = 9.1 x 10~3! kg is injected at a point adjacent to the negatively charged plate in
the region between the plates of an air-filled parallel-plate capacitor with separation
of 1 cm and rectangular plaies each 10 cm? in area Fig. 4-33 (P4.50). If the voltage
across the capacitor is 10 V, find

(a) the force acting on the electron,

(b) the acceleration of the electron, and

(¢) the time it takes the electron to reach the positively charged plate, assuming

that it starts from rest.

N

=5 i%+
Vo=10V

Figure P4.50: Electron between charged plates of Problem 4.50.

Solution:
(2) The electric force acting on a charge Q. is given by Eq. (4.14) and the electric
field in a capacitor is given by Eq. (4.112). Combining these two relations, we have
10

4
F=Q0.E=0~=-16x10"1°——=_-16x1071 :
e Qe 1.6 % =i 1.6 x D

The force is directed from the negatively charged plate towards the positively charged
plate.
4 ®)
. F 16X 10-18
m~ 9.1x1073!

(¢) The eleciron does not get fast enough at the end of its short trip for relativity to
manifest itself; classical mechanics is adequate to find the transit time. From classical
mechanics, d = dop+ uot + %atz where in the present case the start positionisdp = 0,

a= =1.76 x 10"  (m/s?).
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the total distance traveled is d = 1 cm, the tmitial velocity iy = O, and the acceleration
is given by part (b). Solving for the time 7,

2d 2% 0.01 i
I_J?_ Toeon = 107x107°5=107 (ns).

Problem 4.51 In a dielectric medium with &, = 4, the electric field is given by
E=%x"+2)+97-y+z) (V/m).

Calculate the electrostatic energy stored intheregion —I m<x<1m, 0<y<2m,
and0<z<3m.

Solution: Electrostatic potential energy is given by Eq. (4.124),

= empav=2[ [ [ - P
We = 2~/:VEIE1 dv = 2£=0£=0f__1[(f+2z) +x* + (y+2)*)dxdydz

2 3

_ 4g 2 2,5 4 1 .
=— (Sx5yz+ XY+ 3z31y+ 12(y+z) 2

x=—1 y=0 z=0
- % (%ﬁi) =4.62x10"° ().

Problem 4.52 Figure 4-34a (P4.52(a)) depicts a capacitor consisting of two
parallel], conducting plates separated by a distance d. The space between the plates
contains two adjacent dielectrics, one with permittivity £; and surface area A;
and another with &, and A;. The objective of this problem is to show that the
capacitance C of the configuration shown in Fig. 4-34a (P4.52(a)) is equivalent to
two capacitances in parallel, as illustrated in Fig. 4-34b (P4.52(b)), with

C=C+G, (4.132)
where
6w 2H (4.133)
d
I %. (4.134)

To this end, you are asked to proceed as follows:
{z2) Find the electric fields E; and E; in the two dieleciric layers.
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£ &

s

()

(0)

Figure P4.52: (a) Capacitor with parallel dielectric section, and (b) equivalent circuit.

(b) Calculate the energy stored in each section and use the result to calculate C;
and Cg.

(c) Use the total energy stored in the capacitor to obtain an expression for C. Show
that Eq. (4.132) is indeed a valid result.

Solution:

g1l 2

E* 2 I :

(c)

Figure P4.52: (c) Electric field inside of capacitor.

(a) Within each dielectric section, E will point from the plate with positive voltage
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to the piate with negative voliage, as shown in Fig. P4-52(c). From V = £4,

V
E} = Ez = E -
(b) ,
1 1 Vv 1 A
W. =— 25 V==& —- = - 221 .
e 231E1 281 7 Ad ZEIV 7
But, from Eq. (4.121),
Wel = 1C;V2.

2
A A
Hence ) =g ?‘ . Similarly, C; = & -;;* :
{c) Total energy is
1v2 1
We = We, + We, = 5 — (B141 +8242) = ECVZ-

Hence,
€240

d

14
c:-’d—‘+ =G +GC.

Problem 4.53 Use the result of Problem 4.52 to determine the capacitance for each
of the following configurations:
{(a) conducting plates are on top and bottom faces of rectangular structure in Fig.
4-35(a) (P4.53(a)),
(b) conducting plates are on front and back faces of structure in Fig. 4-35(2)
(P4.53(2)),
(¢) conducting plates are on top and bottom faces of the cylindrical structare in
Fig. 4-35(b) (P4.53(b)).

Solution:
(@) The two capacitors share the same voltage; hence they are in parallel.

C = 51% =2%%:5%x 1072,
Cy= Ez% :4.50(5%?()]%_13—_4 = 30gp x 1072,
C=C;+Cs = (550 +3080) X 1072 = 0.35g9 = 3.1 x 1071 F.
(b)
Ci= 81‘3 = 230M1—0—_i = 0.8g9 X 1072,

d 5x10-2
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?‘1 = 2mm
: rp = 4mm
r3 = 8mm

€1 = 8gp; €2 = 4E0; E3 =28
(b)

Figure P4.53: Dielectric sections for Problems 4.53 and 4.55.
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Ay, (3x2)x107° 24 s
G=gF =4 T = 3 x0T,
C=Ci+G=05x10""2F.
(©)
Ay (“’%} 4meg —3\2 13
Ci=8—= = =0.04 =
1=8 88{]:“(]0_2 10-2(2X10 ) X107 F,
Ay (nr3) 2mey —3y2 —12
= — =4 = 4x1 = U. 9
Cr=gr— = deg 5 —25 = o3 (4x 107 = 0.09x 1077 F,
A3 (rr3)

. _ & Wi —12
Cs“g’d_ZE'DZXIO-Z*IO*Z(SXH] ¥ =0.18x107*“F,
C=C+GC+C =031x10"1?F.

Problem 4.54 The capacitor shown in Fig. 4-36 (P4.54) consists of two parallel
dielectric layers. We wish to use energy considerations to show that the equivalent
capacitance of the overall capacitor, C, is equal to the series combination of the
capacitances of the individual layers, C; and (5, namely

GG
C= —=—, 4.136
G+G ¢ )
where

A A
=5, — Co =8y —.
=g 4’ 2= Ep &

(z) Let V; and V5 be the electric potentials across the upper and lower dielectrics,
respectively. What are the corresponding electric fields E; and £2? By
applying the appropriate boundary condition at the interface between the two
dielectrics, obtain explicit expressions for £; and E; in terms of €;, €5, V, and
the indicated dimensions of the capacitor.

(b) Calculate the energy stored in each of the dielectric layers and then use the sum
to obtain an expression for C.

(¢) Show that C is given by Eq. (4.136).
Solution:

(a) If V1 is the voltage across the top layer and V3 across the bottom layer, then

V=W+W,
and v v
Ey=mry  Eymieds
1 7 2 %

e R
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k=
e
|
1
,'|'|+
<

£y

(@)

(®)

Figure P4.54: (2) Capacitor with parailel dielectric layers, and (b) equivalent circuit
(Problem 4.54).

- il
d a.* E Vi vy

+
foday

Figure P4.54: (c) Electric fields inside of capacitor.

According to boundary conditions, the normal component of D is continuous across
the boundary (in the absence of surface charge). This means that at the interface
between the two dielectric layers,

Din=Dyy
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or
£1E; = 6 F5.
Hence, E
V = Eidy + Exds = Erdy + 3;1 da,
which can be solved for E;: -
E; = 5
di+—d>
5]
Similarly, .
Er= o
da+—d;
€}
(b)
( 7
. & 1 1% j [ e162Ad; ]
W =—gEf Wy =—6 ] ——— | Adj ==V |————|,
€ 2 oo Tl 2 1 \d’l-{-?—ldg 2 (82d1+81d2)2
&
( 2
1 1 14 1 g2e,Ad,
We, = —82E2 - Va =gy | ——— | -Adp==V? [I—] >
WS 2 \dz-l-s—zﬁﬁ 2 (21d2 + £24; )?
&1
1, [a18Ad) +et0Ad,
We=W, +W., ==V~ =
bl [ (142 +€2d1)?
But W. = %CVZ, hence,
= 81%{4@’1 +€71'52Ad2 o (Szdl +g1d2) _ €164

(e2d) +51d5)? (2d1 +81d2)2  &2di+&1dy

{c) Multiplying numerator and denominator of the expression for C by A/d d>, we

have
E1A A

4 4 . GG

= El_é_}_% - C1+C2’
di  dp
where ” 2
G, e 2

T N
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Problem 4.55 Use the expressions given in Problem 4.54 to determine the
capacitance for the configurations in Fig. 4.35(a) (P4.55) when the conducting plates
are placed on the right and left faces of the structure.

1cm o5 oo .

1

2cm

Figure P4.55: Dielectric section for Problem 4.55.

Solutiom:
A (2x5) x 104 -2 -12
=g — = = 20 = 1L7T %1
5] SId; 28 1% 102 20gy x 10 1.77x 107 F,
A (2x5)s10™* —_—
=g — =4gp———m—t——o—=1. 0~F
& Ezdz €0 3% 102 18x 1 5
T7x1.18
c=-8% _LITXLI8 i g71x10-2E:

TG +C 0 1.77+1.18

Section 4-12: Image Method

Problem 4.56 With reference to Fig. 4-37 (P4.56), charge O is located at a
distance d above 2 grounded half-plane located in the x—y plane and at 2 distance
from another grounded half-plane in the x—z plane. Use the image method to
(a) establish the magnitudes, polarities, and locations of the images of charge
with respect to each of the two ground planes (as if each is infinite in extent),
and -
(b) then find the electric potential and electric field at an arbitrary point 2(0,y,z).

Solumfion:

(2) The original charge has magnitude and polarity +Q at location (0,4,d). Since
the negative y-axis is shielded from the region of interest, there might as well be a
conducting half-plane extending in the —y direction as well as the +y direction. This




&

*PQ, 5. 2)

--2000.4.d)

s S

-d ¢
Qo -d= o0

Figure P4.56: (2) Image chazges.

ground plane gives rise to an image charge of magnitude and polarity —Q at location
(0.4, —d). In addition, since charges exist on the conducting half plane in the +2z
direction, an image of this conducting half plane also appears in the —z direction.
* This ground plane in the x-z plane gives rise to the image charges of —C at (0,—d,d)
and +0 at (0,—d,—4d).

(b) Using Eq. (44Tywith N =4,

Vix,».2)= g ( : = .
- 4me \ |&x+F(y—d) +2(z-4d)| [Zx+F(y+d)+Z(z—4d)|

1 1
+ [Zx+ §(y+d)+2(z+4d)] R0 -4) + ﬁ(z+d)[)
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__;Q;_ 1 _ 1
4"8(\/x7+(y—d)’-’+<z*df VR ++d) +(z—d)
1

\/xz+(y+d}2+(z+d)2 \/x2+(y—d)2+(z+d)2

_ 0 1
4me (\/xz+y2—2yd+22—21d+2d2
1
VPP +2yd + 22— 2244242
1

R+ +2yd + 2 +22d +24°

1
= ).
\/x2+y2-2yd+zz+2zd+2d2) ¥
From Eq. (4.51),
E=-VV

g o 1 1

- _v
e\ ey (y-dP+(z-d)f RO+ +(=d)

s S e e et R e

1 1
+v -V
\/x2+(y+d)2+(z+d)2 \/x2+(y—d)2+(2+d)2>
:_%( 2x+§(y-d)+8(z—d)  x+3(+d)+2(z-d)
%\ (2 4 (y—dP+ (-2 (@+O+dP+E=dD"
et §yrd)+2etd)  $x+§y—d)+3z+d) ) —

e

E
-
-

(2+(y+d)P +(e+dD)* 2+ (y—d)P+(z+dD)"”

Problem 4.57 Conducting wires above a conducting plane cairy currents I and
b in the directions shown in Fig. 4-38 (P4.57). Keeping in mind that the direction
of a current is defined in terms of the movement of positive charges, what are the
directions of the image currents corresponding o /; and [?

Soluticn:
(2) In the image current, movement of negative charges downward = movement of

positive charges upward. Hence, image of I is same as /;.
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(a) (b)

Figure P4.57: Currents above a conducting plane (Problem 4.57).

+g @ =1
5

4 & 9

+q @:1=0

e 9 0 9 © 9 @ 0 0 6 9 9 9 0 G

-g @ =0
L 7

L -g @r=r
V q 1

Figure P4.57: (a) Solution for part (a).

(b) In the image current, movement of negative charges to right = movement of
positive charges to left.

—-—-—BNI}
@=0 +qg @ i=n
+q
e— — — o
e — — — o
@t=0 ~g &=y

I\ (image)

Figure P4.57: (b) Solution for part (b). o

Problem 4,58 Use the image method to find the capacitance per unit length of an
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in4initely long conduciing cylinder of radius ¢ situated at a distance d from a parallel
conducting plane, as shown in Fig. 4-39 (P4.58).

Figure P4.58: (a) Cylinder and its image.

Solution: Let us distribute charge p; (C/m) on the conducting cylinder. Its image
cylinder at z = —d will have charge density —p;.

For the line at z = 4, the electric field at any point z (at a distance of d — z from the
center of the cylinder) is, from Eq. (4.33),

A Pi
El=-f0———r
! zz:me@(d—z)
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where —2 is the direction away from the cylinder. Similarly for the image cylinger at
distance (d + z) and carrying charge —py,

s (=p) _ . &
Ez'zzm(d—l-z)- P oneg(d+z)

The potential difference between the cylinders is obtained by integrating the total
electric field fromz= —(d —a)toz = (d —a):

1
vz—/z (E1 +E,)-2dz
d—a
. P 1 1 ) 3
=~ = 4 -2d
_[_(d_a) 2meg (d—z drz) "

o d—a ( 1 1 )
=i —t—d
2nEy J—(d-a) d—z+d+z z
o1 o
= [~ln(d—z) +In(d+2)|% 5,

- % [=1n(a) + In(2d — ) +In(2d — a) — In(a)]

=&ln(2d*a).
TED a

ForalengthL, O = p;L and

(&

_g_ piL
TV (p/meo)In[(2d —a)/a]’

and the capacitance per unit length is

&

C Tigy

=~ Had/a-1

(C/m).
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