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Chapter 5

Sections 5-1: Forces and Torgues

Problem 5.1 An electron with 2 speed of 4 x 10 m/s is projecte
positive x-direction into 2 medium containing a uniform magnetic
B=(%2-323) T. Given thate=1.6x10""" C and the mass of an
me = 9.1 x 103! kg, determine the initial acceleration vector of the el¢
moment it is projected into the medium).

Solution: The acceleration vector. of a free particle is the net force vecto
Hip i s. Neglecting gravity, and using Eq. (5.3), we have

—e _=16x10"12

=—uxB= 1< 10T (¥4 x 10°%) x (22-23

=—§2.1x10'®  (mys?).

3

Problem 5.2 When a particle with charge g and mass m is introduced into
with 2 uniform field B such that the initial velocity of the particle u i
10 B, as shown in Fig. 5-31 (P5.2), the magnetic force exerted on the particle
to move in a circle of radius a. By equating Fp, to the centripetal force o
determine a in terms of g, 7, u, and B.

Solutiom: The centripetal force acting on the particle is given by Fe

® ¥ 8 ® ®

Figure P5.2: Particle of charge ¢ projected with velocity w into a2 medius
uniform field B perpendicular to @ (Problem 5.2). :
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Equating F. to Fy, given by Eq. (5.4), we have mu? /a = guBsin®. Since the magnetic
field is perpendicular to the particle velocity, sin® = 1. Hence, a = mu/gB.

Problem 5.3 The circuit shown in Fig. 5-32 (P5.3) uses two identical springs o
support a 10-cm-long horizontal wire with a mass of 5 g. In the absence of a2 magnetic
field, the weight of the wire causes the springs to stretch a distance of 0.2 cm each.
When a uniform magnetic field is turned on in the region containing the horizontal
wire, the springs are observed to stretch an additional 0.5 cm. What is the intensity
of the magnetic flux density B?

©@ & @B

@
®
®
®

Figure P5.3: Configuratior of Problem 5.3.

Solution: Springs are characterized by a spring constant k where F = kd is the
force exerted on the spring and 4 is the amount the spring is stretched from its rest
configuration. In this instance, each spring sees half the weight of the wire:
5x1073x9.8
=lmg=k k=2E =22~ 2701225 (N/m).
=K 24~ 2x2x10-3 i
Therefore, when the springs are further stretched by an additional 0.5 cm, this
amounts to an additional force of F = 12.25N/m x (5% 1073 m) = 61.25 mN per
spring, or a total additional force of F = 0.123 N. This force is equal to the force
exerted on the wire by the interaction of the magnetic field and the current as
described by Eq. (5.12): Fr, = I£ X B, where { and B are at right angles. Moreover
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£ x B is in the downward direction, and / = V/R =12 V/4 Q = 3 A_ Therefore,

_ |Fm] 0123

[Pl = IHEIBE, 1Bl == 55

=410 (mT).

Problem 5.4 The rectangular loop shown in Fig. 5-33 (P5.4) consists of 20 closely
wrapped tumns and is hinged along the z-axis. The plane of the loop makes an
angle of 30° with the y-axis, and the curment in the windings is 0.5 A. What
is the magnitude of the torque exerted on the loop in the presence of a uniform
field B = §1.2 T? When viewed from above, is the expected direction of rotation
clockwise or counterclockwise?

/20 furns

Figure P5.4: Hinged rectangular loop of Problem 5.4.

Seolution: The magnetic torque on a loop is given by T = m X B (Eq. (5.20)), where
m = BNIA (Eq. (5.19)). For this problem, itis given that / = 0.5 A, N = 20 turms, and
A=0.2mx0.4 m=0.08 m>. From the figure, fi = ~%cos 30° + §sin30°. Therefore,
m = 0.8 (A-m?) and T = 0.8 (A-m?) x #1.2 T = —20.83 (N-m).. As the torque
is negative, the direction of rotation is clockwise, looking from above.

Problem 5.5 In a cylindrical coordinate system, a 2-m-long straight wire camrying
a current of 5 A in the positive z-direction is located at r =4 cm, ¢ = n/2, and
—-Im<z<1lm

(a) B =70.2cos¢ (T), what is the magnetic force acting on the wire?
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Figure P5.5: Problem 5.5.

(b) How much work is required to rotate the wire once about the z-axis in the
negative ¢-direction (while maintaining r = 4 cm)?
(¢) At what angle ¢ is the force a maximum?

Solution:
(2)
F=IxB
= 522 x [F0.2cosd)
= $2cosd.

Atdo=m/2, & = —2. Hence,
F=—%2cos(n/2)=0.

(®)

2 2z &
W = F-di= j $[2cosd]-(—6)rdd
0

=0

=4 cm

e 2
= —2r] cos¢d¢| = -8 x 107 [sin¢f;" = O.
¢ r=4 cm

The force is in the +-direction, which means that rotating it in the —¢-direction
would require work. However, the force varies as cos¢, which means it is positive
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when —7n/2 < ¢ < /2 and negative over the second half of the circle. Thus,
is provided by the force beiween ¢ = n/2 and ¢ = —w/2 (when rotated
—g-direction), and work is supplied for the second half of the rotation, resulti
net work of zero.
(c) The force F is maximum whencos¢ =1, 0or$=0.

Problem 5.6 A 20-tum rectangular coil withside/ = 15 cm and w = 5 cm is pl.
in the y—z plane as shown in Fig. 5-34 (P5.6).

20-turn coil

\

A w 3
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Figure P5.6: Rectangular loop of Problem 5.6.

(2) If the coil, which carries a current 7 = 10 A, is in the presence of a magneti
fiux density :
B=2x10"2(8+§2) (D),
determine the torque acting on the coil.
(b) At what angle ¢ is the torgue zero?
(c) Atwhat angle ¢ is the torgue maximum? Determine its value.
Selution:
(2) The magnetic field is in direction (% + $2), which makes an angle
do=tan"'2 =63.43°.
The magnetic moment of the loop is

m=AN/A=020x10x (15x5)x 107* =41.5 (A-m?),
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1 ®p = 63-430 ;

Figure P5.6: (a) Direction of B.

where 1 is the surface normal in accordance with the right-hand rule. When the loop
is in the negative-y of the y—z plane, A is equal to %, but when the plane of the loop is
moved to an angle ®, i becomes
= Zcos¢ + Fsing,
T=mxB=f15x2x10"%(2+§2)
= (&coso+ §sind)1.5x 2x 10723(& +$2)
=23 % 107%2cosd —sino] (N-m).
{Ib) The torque is zero when
2cosd—sing = 0,
or
tang = 2, ¢ = 63.43° or —116.57°.
Thus, when 1 is paraliel to B, T = 0. _
(c) The torgue is 2 maximum when fi is perpendicular to B, which occurs at

= 63.43 £90° = —26.57° or +153.43°.

Mathematically, we can obtain the same result by taking the derivative of T and
equating it to zero to find the values of ¢ at which |T| is a maximum. Thus,

9T o

i £(3 x 107%(2cos$ —sing)) = 0
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or
—2sin¢p+cosdp =0,

which gives tang = —3, or

&= —26.57° or 153.43°.

Section 5-2: Biot—-Savart Law

Problem 5.7 An 8 cm X 12 cm rectangular loop of wire is situated in the x-y
plane with the center of the loop at the origin and its long sides parallel to the x-axis.
The loop has a current of 25 A flowing with clockwise direction (when viewed from
above). Determine the magnetic field at the center of the loop.

Solution: The total magnetic field is the vector sum of the individual fields of each
of the four wire segments: B = B; + B, + B3 + Bs. An expression for the magnetic
field from a wire segment is given by Eq. (5.29).

Figure P5.7: Problem 5.7.

For all segments shown in Fig. P5.7, the combination of the direction of the current
and the right-hand rule gives the direction of the magnetic field as —z direction at the
origin. Withr=6cmand/=8cm,

padl
2nr /472 + 2

_ 47 x 1077 x 25 x 0.08
=-Z
27 x 0.06 x +/4 x 0.062 +0.082

B,=-2

=—34.62x 10" (T).
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Forsegment 2, r =4 cmand / = 12 cm,

B, = s ML
P T oA
4nx 1077 x 25 x0.12
= -3 =—-%10.40x 10> .
271 x 0.04 x /4 x 0.042 +0.122 (0
Similarly,

By = —2462x10"° (T). By;=-21040x10"5 (T).

The total field is then B =B, + B2 + B3+ B4 = —£0.30 (mT).

Problem 5.8 Use the approach outlined in Example 5-2 to develop an expression
for the magnetic field H at an arbitrary point P due to the linear conductor defined by
the geometry shown in Fig. 5-35 (P35.8). If the conductor extends between z; =3 m
and z; = 7 m and carries a current / = 5 A, find H at P(2,¢,0).

Z
i
82
Pz(zz)'a
T | \“,\
91 \\\
Pi(zl) :-}__ _ ‘\
I P(r, $,2)

Figure P5.8: Current-carrying linear conductor of Problem 5.8.

Solution: The solution follows Example 5-2 up through Eq. (5.27), but the
expressions for the cosines of the angles should be generalized to read as

Zamtid Z—22
cosB; = ———=——, cosBr =

24 (z—z ) /24 (z—2)
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instead of the expressions in Eq. (5.28), which are specialized to a wire centered at
the origin. Plugging these expressions back into Eq. (5.27), the magnetic field is
given as

For the specific geometry of Fig. P5.8,

+ 5 [0—3 0-7

ICEY \/37-+22_\/72+2z] =$25.8x 1077 (/) =$25.8  (mA/m).

Problem 5.9 The loop shown in Fig. 5-36 (P5.9) consists of radial lines and
segments of circles whose centers are at point P. Determine the magnetic field H
at Pinterms of ¢, b, 6, and I.

b g £

Figure P5.9: Configuration of Problem 5.9.

Solution: From the solution to Example 5-3, if we denote the z-axis as passing out
of the page through point P, the magnetic field pointing out of the page at P due to
the current flowing in the outer arc is Hoyer = —Z/0/47b and the field pointing out
of the page at P due to the current flowing in the inner arc is Hlper = 2/8/4ma. The
other wire segments do not contribute to the magnetic field at P. Therefore, the total
field fiowing directly out of the page at P is

_ (1 1\ __I8(b-a)

Problem 5.1¢ An infinitely long, thin conducting sheet defined over the space
0 <x<wand —e < y < o= is carrying a curmrent with a uniform surface corrent
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P(0,0,2)

RI= 242

A 4

Figure P5.10: Conducting sheet of width w in x—y plane.

density Js = $5 (A/m). Obtain an expression for the magnetic field at point £(0,0,z)
in Cartesian coordinates.

Seolution: The sheet can be considered to be 2 large number of infinitely long but
narrow wires each dx wide lying next to each other, with each carrying a current
I. = J.dx. The wire at a distance x from the origin is at a distance vector R from
point P, with

R=—%x+2z.

Equation (5.30) provides an expression for the magnetic field due to an infinitely long
wire carrying a current { as

g B_ ¥
Ho 2mr

We now need to adapt this expression to the present situation by replacing { with
I = Jydx, replacing r with R = (x2+z%)/2, as shown in Fig. P5.10, and by assigning
the proper direction for the magnetic field. From the Biot—Savart law, the direction
of His governed by 1 X R, where 1 is the direction of current flow. In the present case,
1is in the § direction. Hence, the direction of the field is

IXR  §x(—&x+3z) = Re+ix

IxR] T |Fx(—&x+2z)]  (RB+2)2

i
o
i
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Therefore, the field 4H due to the current I is

$r+3x L (Rze+ax)kdx

dH = s
(R2+2)M/2 2R 2m(x%+22)
and the total field is
Jsdx
0.z)=
H(0,0,7) = f(xz+ e
_ I -
T 2n )[xzo(xz+zx)x2 +z2

_ (ﬁzf“ dx +2/*W xdx )
- 21 x=0x2+22 x=0 x2+22
J’S - 1 -1 b o % -~ 1 w

= iitan‘! ( ) +z,,(ln(w2+zz)—ln(0+z )) forz#0,

2n
. T 5 +2
=x2ﬂtan l(z)_f-z%ln( = ) (A/m) forz#0.

An alternative approach is to employ Eq. (5.24a) directly.

Problem 5.11 An infinitely long wire carrying a 50-A current in the positive
x-direction is placed along the x-axis in the vicinity of a 10-tumn circular loop located
in the x—y plane as shown in Fig. 5-37 (P5.11(a)). If the magnetic field at the center
of the loop is zero, what is the direction and magnitude of the current flowing in the
loop?

:

Figure P5.11: (a) Circular loop next to a linear current (Problem 5.11).

Solution: From Eq. (5.30), the magnetic flux density at the center of the loop due to
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Q.

Figure P5.11: (b) Direction of /.

]

the wire is

Bl =Z§-Tc-a-!]

where £ is out of the page. Since the net field is zero at the center of the loop, J> must
be clockwise, as seen from above, in order to oppose /;. The field due to 1> is, from
Eq. (5.35),

. UoNT:
B=poH = 2= 2.
Equating the magnitudes of the two fields, we obtain the result
NL _ I
2a  2nd’

or
2ah; _ 1x50

=21'cNd_1tx2><10=0'8A'

L

Problem 5.12 Two infinitely long, parallel wires carry 6-A currents in opposite
directions. Determine the rnagnetic flux density at point P in Fig. 5-38 (P5.12).

& Iy =06A Vi =06A

[05m

2m

Figure P5.12: Armrangement for Problem 5.12.

Scluion:

toly + toh
2705 T 2n(15)

N - : ~ 8
B=§ $2(6+2)=6 = .
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Problem 5.13 A long, East-West oriented power cable camrying an unknown
current / is at a height of 8 m above the Earth’s surface. If the magnetic flux density
recorded by 2 magnetic-field meter placed at the surface is 12 ¢T when the current is
flowing through the cable and 20 4T when the current is zero, what is the magnitude
of I?

Solution: The power cable is producing a2 magnetic flux density that opposes Earth’s,
own magnetic field. An East—West cable would produce a field whose direction at
the surface is along North—South. The flux density due to the cable is

B=(20—12) uT = 8uT.

As a magnet, the Earth’s field lines are directed from the South Pole to the North
Pole inside the Earth and the opposite on the surface. Thus the lines at the surface are
from North to South, which means that the field created by the cable is from South
to North. Hence, by the right-hand mle, the curmrent direction is toward the East. Iis
maguitude is obtained from

pol  4mx 10771

=8x%x107°= ==
841 ond . 2nx8

which gives I = 320 A.

Problem 5.14 Two parzallel, circular loops camrying 2 cumrent of 20 A each are
arranged as shown in Fig. 5-39 (P5.14). The first loop is situated in the x—y plane
with its center at the origin and the second loop’s center is at z = 2 m. If the two
loops have the same radius @ = 3 m, determine the magnetic field at:

(@) z=0,

M) z=1m,

(¢) z=2m.
Solution: The magnetic field due to a circular loop is given by (5.34) for a loop in

the x—y plane carrying a current / in the +@¢-direction. Considering that the bottom
loop in Fig. P5.14 is in the x~y plane, but the current direction is along —@,

5 ia?
2a? +22)3/2°
where z is the observation point along the z-axis. For the second loop, whichis at a

height of 2 m, we can use the same expression but z should be replaced with (z —2).
Hence, ’

Ia?
H, = -2 .
2= @t (=2

Hl=_
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o]

X

Figure P5.14: Parallel circular loops of Problem 5.14.

The total field is
Id* 1 1
H=H;+HBE=-%— Afm.,

= —kg [(a2+22)3»"2+[a2+(z—2)2]3f2]
(a) Atz=0,and witha=3mand /=20 A,
20x9 11 1

He g2 | — i | =35 )

i 3 [33+(9+4)312] Z5.25 Afm

(b) At z= 1 m (midway between the loops):

H__220)(9[ 1 i 1
- 2 [(9+1)32 " (9+1)32

(c) At z = 2 m, H should be the same as at z = 0. Thus,

] = —£5.6% A/m.

H=-%5.25 Alm.

Section 5-3: Forces between Currents

Problem 5.15 The long, straight conductor shown in Fig. 5-40 (P5.15) lies in the
plane of the rectangular loop at a distance d = 0.1 m. The loop has dimensions

=1
%
i

o

s iR
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I

b=0.5m

d=0.1m ' a=02m L

Figure P5.15: Current loop next to a conducting wire (Problem 5.15).

a= 0.2 mand b =0.5m, and the currents are /; = 10 A and I, = 15 A. Determine
the net magnetic force acting on the loop.

Solution: The net magnetic force on the loop is due to the magnetic field surrounding
the wire carrying current [;. The magnetic forces on the loop as a whole due to the
current in the loop iiself are canceled out by symmetry. Consider the wire carrying
I to coincide with the z-axis, and the loop to lie in the +x side of the x-z plane.
Assuming the wire and the loop are surrounded by free space or other nonmagnetic
material, Eq. (5.30) gives

~ tol1
B=¢p—.
2nr

In the plane of the loop, this magnetic field is

- Mol
B=§j—.
y211:::
Then, from Eq. (5.12), the force on the side of the loop nearest the wire is
. s Mol _ ol b
Fmi =hEEiXB=5(2)x (yzm) - = -8 e

The force on the side of the loop farthest from the wire is

Lb
§@)| -2 ol Iy
27tx

sztfzfXB=Iz(“§b)X ( | ., m-
x=a+
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The other two sides do not contribute any net forces to the loop because they are
equal in magnitude and opposite in direction. Therefore, the total force on the loop is

F=Fm+Fm
_ _iﬂoflfzb 2 Hol b
21d 2n(a+d)
o Hohhab
=5 =
2nd(a+d)

L4 x 1077 x 10x 15%0.2 x 0.5 »
ol = —%10" = —%0. N).

* 27x0.1x03 X107 () = —20.1 - (mN)

The force is pulling the loop toward the wire.

Problem 5.16 In the arrangement shown in Fig. 5-41 (P5.16), each of the two long,
parallel conductors carries a current /, is supported by 8-cm-long strings, and has a
mass per unit length of 0.3 g/cm. Due to the repulsive force acting on the conductors,
the angle © between the supporting strings is 10°. Determine the magnitude of f and
the relaiive directions of the currents in the two conductors.

)

Figure P5.16: Parallel conductors supported by strings (Problem 5.16).

Solution: While the vertical component of the tension in the strings is counteracting
the force of gravity on the wires, the horizontal component of the tension in the strings
is counteracting the magnetic force, which is pushing the wires apart. According
to Section 5-3, the magnetic force is repulsive when the currents are in opposite
directions.

Figure P5.16(b) shows forces on wire 1 of part (a). The quantity ' is the tension
force per unit length of wire due to the mass per unit length m' = 0.3 gfcm. The

H
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vertical component of F' balances cut the gravitational force,

F,=mg, &)
where g = 9.8 (m/s?). But
F, = F'cos(8/2). (10)
Hence,
'
! meg
= ——— 1
cos(8/2) an

The horizontal component of F' must be equal to the repulsion magnitude force given
by Eg. (5.42):

_FDIZ_ POIZ

B =2nd = atsn(6/2)]"

(12)

where d is the spacing between the wires and { is the length of the string, as shown
in Fig. P5.16(c). From Fig. 5.16(b),

F = F'sin(8/2) = sin(8/2) = m'gtan(8/2). (13)

..
cos(8/2)

Equating Eqs. (12) and (13) and then solving for 7, we have

. | 4nlm'g i \/41: x 0.08 x 0.03x 9.8
I= 2)4 | ———=—==—= =sin5° =424 (A).
#10(9/2) pocos(8/2) R 47t x 10~7 cos5° 424 (&)

Problem 5.17 An infinitely long, thin conducting sheet of width w along the
x-direction lies in the x—y plane and carries a current / in the —y-direction. Determine
(a) the magnetic field at a point P midway between the edges of the sheet and at a
height & above it (Fig. 5-42 (P5.17)), and then (b) determine the force per unit length
exeried on an infinitely long wire passing through point P and parallel to the sheet
if the current through the wire is equal in magnitude but opposite in direction 10 that
carried by the sheet.

Solution:

(2) The sheet can be considered to consist of 2 large number of infinitely long but
narrow wires each dx wide lying next to each other, with each carrying a current
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Figure P5.17: A linear current source above a current sheet (Problem 5.17).

Ir = Idx/w. If we choose the coordinate system shown in Fig. P5.17, the wire at a
distance x from the origin is at a distance vector R from point £, with

R=—%x+2zh.

Equation (5.30) provides an expression for the magnetic field due to an infinitely long
wire carrying a cugrent J as

B .1

= —= ¢ —

Ho 2nr
We now need to adapt this expression to the present situation by replacing !/ with
I = Idx/w, replacing r with R = (x*> + #?)!/2, and by assigning the proper direction
for the magnetic field. From the Biot—Savart law, the direction of H is governed by
1x R, where | is the direction of current flow. In the present case, 1 is out of the page,
which is the —¥ direction. Hence, the direction of the field is

IXR _ —§x(—&x+2h) _ —(fh+x)
xR [-9x(—%xt2h)] @B

Therefore, the field JH due to current [, is

_ —(#h+2x) L —(%h+ax)ldx

= (2+r)V227R ~ 2mw(x2+h2)
and the total field is
w2 Idx
H(0,0,k =J{ —(&h+ ) —————
( ' ) x=—w/2 ( )Zfrw(x2+h3)

— [0 dx
e Rh4 ) —
250w x=—w/2( +zx)x2 + 52

_ . (ih w2 dx +Afw/2 xdx )
T 2mw fi:-w;zxz+h2 . e=—w/2 X% + %

=
AU

SiETH
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- 5 (8 )

P S (i) (A/m).

w2

+2(n (X +4%)) |I__w/,,)

)::‘--W'!-’

At P in Fig. P5.17, the field is pointing to the left. The z-component could have
been assumed zero with a symmetry argument. An alternative solution is to employ
Eq. (5.24a) directly.

(b) From Eq. (5.9), a differential force is of the form dFy = I dl X B or, assuming
dl = 8, d¢, the force per unit length is given by

F o= ag—;’ = I3, xB=I§x (—ﬁ%tzn‘l (%)) = *“ﬂm—l (2}:) ).

The force is repulsive; the wire is experiencing a force pushing it up.

Problem 5.18 Three long, parallel wires are amanged as shown in Fig. 5-43
(P5.18(a)). Determine the force per unit length acting on the wire carrying /3.

T & n=10A

2m

. 2m @ L=10A
2m

= £ I, =10A

Figure P5.18: (a) Three parallel wires of Problem 5.18.

Selution: Since /; and L, are equal in magnitude and opposite in direction, and
equidistant from /3, our intuitive answer might be that the net force on I3 is zero. As
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into the page (7)

5 (Y out of the page (-7)

Figure P5.18: (b) B fields due to /; and J; at location of I5.

S AR
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Figure P5.18: (c) Forces acting on f3.

we will see, that’s not the correct unswer. The field due to /; (which is along §) at
location of 5 is ;
o Hosa
Bi=b

]
i

where B; is the unit vector in the direction of B; shown in the figure, which is
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perpendicular to R;. The force per unit length exeried on /3 is

mhls .. o~ o phl
SR, (Fxb)=-R RR

! —
FBI -

Similarly, the force per unit length excited on J3 by the field due to /> (which is
along —9) is

The two forces have opposite components along £ and equal components along Z.
Hence, with R} = R» = /8 m and 6 = sin~!(2/v/8) = sin™}(1/v/2) = 45°,

s (pohlzs | wpobl .
FE,=E‘§,1+F§2:Z(2ER1 +2+7LRz) sin®

_[4nx 1077 x10x20 1

=z2( 21w x /8 )Xﬁ

=%2x 107> N/m.

Problem 5.19 A square loop placed as shown in Fig. 5-44 (P5.19) has 2-m sides and
cardes a current f; = 5 A. If a straight, long condnctor carrying a current , = 10 A is
introduced and placed just above the midpoints of two of the loop’s sides, determine
the net force acting on the loop.

Figure P5.19: Long wire carrying current [, just above a square loop carrying /)
(Problem 5.19).

Solutiom: Since b is just barely above the loop, we can treat it as if it’s in the same
plane as the loop. For side 1, I; and J; are in the same direction, hence the force on
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side 1 is attractive. That is,
woliloa 4nx 1077 x5x10%x2

3 3 e
- " N.
2n(af2) 21 y2x 10

F=9

I and I, are in opposite directions for side 3. Hence, the force on side 3 1s repulsive,
which means it is also along §. That is, F; = F;.
The net forces on sides 2 and 4 are zero. Total net force on the loop is

F=2F; =§4x107° N.

Section 5-4: Gauss’s Law for Magnetism and Ampere’s Law

Problem 5.20 Current / flows along the positive z-direction in the inner conductor
of a long coaxial cable and returns through the outer conductor. The inner conductor
has radius @, and the inner and outer radii of the outer conductor are b and ¢,
respectively.
(2) Determine the magnetic field in each of the following regions: 0 < r < a,
a<r<b, b<r<c,andr>c.
(b) Plot the magnitude of H as a function of 7 over the range from 7 =0 to
r=10cm, giventhatI =10 A, a=2cm, b=4cm, and c =5 cm.

Solution:
(2) Following the solution to Example 5-5, the magnetic field in the region r < &,
- 7l
H=
¢ 2na?’
and in the regiona < r < b,
g B
T Yomr

The total area of the outer conductor is A = n(¢? — b?) and the fraction of the area
of the outer conductor enclosed by a circular contour centered at 7 = 0 in the region
b<r<cis

w2 —-b?) -

(E—52) E-B

The total current enclosed by 2 contour of radius 7 is therefore

2o\ 2P
Tenclosed = { (1 = Cz_—gf)

2 L

Z-B

]
=
u
.
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and the resulting magnetic field is

H:@demséj (‘f"z).

2nr 2 —b?

For > c, the total enclosed current is zero: the total current flowing on the inmer
conductor is equal to the total current flowing on the outer conductor, but they are
flowing in opposite directions. Therefore, H = 0.

(b) See Fig. P5.20.

08

i

07t

N

06 F
05
04
03

02 |

Magnetic field magnitude H (A/cm)

0.1 F

0.0

6. T 8. 9. 10.

Radial distance r (cm)

Figure P5.20: Problem 5.20(b).

Problem 5.21 A long cylindrical conductor whose axis is coincident with the Z-axis
has a radius a and carries 2 current characterized by 2 current density J = ZJo 1r;
where Jy is 2 constant and r is the radial distance from the cylinder’s axis. Obtain an
expression for the magnetic field Hfor ()0 <r<e and (b) r > a.

Solution: This problem is very similar to Example 5-5.
{(2) For 0 < r; < g, the total current flowing within the contour Ciis

27 1 y{) T
B [[ §-ds= f f (_) (Brdrde) =2 f Jodr = 2mriJo.
¢o=0+r=0 r =0
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Therefore, since I; = 2nr1H;, H; = Jo within the wire and Hy = §J.
{(b) For r > a, the total current flowing within the contour is the total current flowing
within the wire:

In ra fzfo a
r=ﬂj'd5=] f —= -(i}'d?d(l)):zn-[ J’odr=2:r|:a.fg.
6=0Jr=0 r r=0

Therefore, since ] = 2nrHy, H, = Joa/r within the wire and Ha = ¢Jo(a/7).

Preblem 5.22 Repeat Problem 5.21 for a current density J = Z/ge™".

Figure P5.22: Cylindrical current.

Soluton:
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(2) For r € a, Ampere’s law is

%H-dl:f:fj—ds,
c 5

r 2
@H@Zﬂ:r:f J-ds:f 2Jge™ " -22mrdr,
4] 0

r

2nrH = 2rdy f re” ' dr
0
= 2rnfo[—e " (r+ g = 2ndo[l —e " (r 4+ 1))

3 Hence, 5
H=4H=4—

[1—e"(r+1)], forr < a.
() Forr > a,
2nrH = 2ndo[—e(r+ D)5 = 21 — e %(a+ 1)),

B=$H=42 [1-c@+1)], rZa

Problem 5.23 In a certain conducting region, the magnetic field is given in
cylindrical coordinates by
- 4 _2
H= 43-;[] —(1+ 2rke
Find the current density J.
Solution:

.10 4 i
J=VxH=2I—= (r-;[l—(1+2r)e 2’])

1
=& 2 872 (1+2r)— 8e~2] = 216~ Ajm?.

Section 5-5: Magnetic Potential

Problem 524 With reference to Fig. 5-10, () derive an expression for the vector
magnetic potential A 2t a point P located 2t a distance r from the wire in the x—y plane,
and then (b) derive B from A. Show that your resuit is identical with the expression
given by Eq. (5.29), which was derived by applying the Biot-Savart law.
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Solution:
(a) From the text immediately following Eq. (5.65), that equation may take the
form
H I 1 Mo 42 I P
A=—f —dl' = — —3id
4w Jo R AR Jr=—t)2 /72 4 2 e
= ¢
=2 (ifln(z'+\/z'“+?2)) ;
47 F=—if2
_ ol 0244/ (/2 + 7 ‘%
A\ —f24/ (/2R + 7
_2#0-? o L2+ 472
T AT\t R 142 ) ‘é
(b) From Eq. (5.53), %
B=VxA :
ol (+VE 42
=VX|i—h| ——o :
47 —L+ B+ 4 :
_ @#OI d = L+ 2442
T VaAndr \ —g4+/R 142
_ é}.lgf ~L4v/E+4rf\ d L4124 472
T O VAn \ g+ rar? | or \ L+ 14r
ol —L 421452
T TAn \ (4142

§ ((-*H\/m)g’;(mm)-(f+m)§(—z+m))
(~L+VBTary .

YY) ((—Hmy(mm)) 4r

4 \ (LB AR L+VE+4r2) | P +42
N ’
VE+4r2  2mr/2 4472

which is the same as Eq. (5.29). _j_%

Problem $.25 In a given region of space, the vector magnetic potential is given by
A = Z5cosTy + Z(2 + sinmx) (Wb/m).
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(a) Determine B.

(b) Use Eq. (5.60) to calculate the magnetic flux passing through a square loop
with 0.25-m-long edges if the loop is in the x>~y plane, its center is at the origin,
and its edges are parallel to the x- and y-axes.

(c) Calculate @ again using Eg. (5.67).

Sclutiom:
(2) From Eq. (5.53), B=V X A = Z5%tsinmy — §mcosmx.
(b) From Eq. (5.66),

0.125m 0.125m
® = ffB-dg:f J/ (85msinmy — §rcos ) - (2dxdy)
y==0.125mJ/x=-0.125m

0.125
(G

~F (=) -o(F)) =

{c) From Eq.(5.67), ® = jé A-dE, where C is the square loop in the x-y plane with
sides of length 0.25 m centered at the origin. Thus, the integral can be written as

0.125

©= jél%'df = Stront + Sback + Steft + Srights

where Sgronts Sback> Stefr» a0d Sygn; ave the sides of the loop.

0.125

Stront = (&5cosmy + 2(2 + sinmx)) iy:—ﬂ.lZS -(%dx)
x==0.125
0.125

= Scosmy| __ dx
x=—0.125 F=0ED

0.125 5 - 5 7
= ((SICOS?C)’)IJ,:_{}st) |x=-0.1?_'s = cos (—8—) = o8 (§) 3
0.125
Spack = 125 (X5 cosmy + (2 + sinmx))|, g 125 -(—% dx)

x=-0.

0.125
=i ScosTy| dx
Ji:-o.u_s y=0.125

o ((—SxCDSTE)’)ly:u.ms) f:ius = ‘gc"s (g) ’

0.125
Biogss f 1 1pg BSCOSTY+ (24 SI070) e 125(—F )
-
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0.125
= */ Olx=—0.125dy =0,
= 0:125

0.125
- f (8508 + 2(2-+ Sinm) | cg. 125 (1Y)
y=-—0.12

0.125
= 0|x=0_125 dy =0
y=-0.125

Thus,

3 T 5 T
&= %A-df = Stromt + Soack + Siett + Seght = 3 €08 (g) — Zecos (g) F040=0

Problem 5.26 A uniform current density given by
J=2)p (Am?),

gives rise to a vector magnetic potential
A= —z%(xz +y*) (Wb/m).

(2) Apply the vector Poisson’s equation to confirm the above siatement.
{b) Use the expression for A to find H.

(c) Use the expression for J in conjunction with Ampere’s law to find H. Compare
your result with that obtained in part (b).

Solution:
(a)
oA - J
24 o ) a2y s 9 @ L9V 0
VZA=8V?A, +§V?A, +2V Az_z(ax2+a3ﬁ+az2)[ ,uo4{12+};)}
= *-il-foéc_l(z‘f‘z) = —ZuoJo-

Hence, V2A = —poJ is verified.
(b)

CLoan Lo (R ) g (), 3 3]
H-gvXA_E[X(-éy-_a—z)+y(az o) TE e " By

-1 [a% (~a 22 +5)) 95 (-2 (2 +f))]
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A

N

Figure P5.26: Current cylinder of Problem 5.26.

(©
%H-cﬂ:f: fJ-ds,
C 5
$Hy-§2nr = Jo -7,
H=§H¢=$Jg-;—.

We need to convert the expression from cylindrical to Cartesian coordinates. From
Table 3-2,

~ o " =_- y - X
$ = —Zsin¢p+Fcosd x\/xz+y2+y ’—__xQ-{-yz’
r=+/x2+y%.
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Hence
.Y Jo
H=|-%
( Rz x/xz+y2) 2

which 1s identical with the result of part (b).

- Yo
Xty = —k— >

. xJo
+¥ o

Problem 5.27 A thin current element extending between z = —L/2 and z = L/2
carries a current [ along +Z through a circular cross section of radius a.
(a) Find A at a point P located very far from the origin (assurmne R is so much larger
than L that point P may be considered to be at approximately the same distance
from every point along the current element).

(b) Determine the comesponding H.

S
n
Y]
o

—=
—=
@

-L/2 :;3\
Cross-section Ta?

Figare P5.27: Current element of length L observed at distance R > L.

Solution:
{a) Since R > L, we can assume that P is approximately equidistant from all
segments of the curmrent element. Hence, with R treated as constant, (5.65) gives

I wl (L2 . HolL
82— madz = dz= -
J{V 797 = 3% Jy i TR ) ™ Pk

S
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(b)
H= iVXA
Ho
1 [.0A, _OdA;
%[ 3 ‘Yax]
- 3% () [ ()]}
Ho 3y[ wraeae W Vi + R +22
IL —Xy-+§x
4n [(xz +y2+z2)3f’2]

Section 5-6: Magnetic Properties of Materials

Problem 5.28 In the model of the hydrogen atom proposed by Bohr in 1913, the
electron moves around the nuclens at a speed of 2 x 10° m/s in a circular orbit of
radius 5 x 10~ m. What is the magnitude of the magnetic moment generated by the
electron’s motion?

Solution: From Eq. (5.69), the magnitude of the orbital magnetic moment of an
electron is

Imol = | —Leur] = 1 x1.6x 107 x2x 10° x5x 1071 =8 x 107* (A-m?).

Problem 5.29 Iron contains 8.5 x 10%® atoms/m>. At saturation, the alignment
of the electrons’ spin magnetic moments in iron can contribute 1.5 T to the total
magnetic flux density B. If the spin magnetic moment of a single electron is
9.27 x 10~2* (A-m?), how many electrons per atom contribute to the saturated field?

Solution: From the first paragraph of Section 5-6.2, the magnetic flux density of a
magnetized material is By, = oM, where M is the vector sum of the microscopic
magnetic dipoles within the matenial: M = N.ms, where my is the magnitude of the
spin magnetic moment of an electron in the direction of the mean magnetization, and
N, is net number of elecirons per unit volume contributing to the bulk magnetization.
If the number of electrons per atom contributing to the bulk magnetization is e, then
Ne = neNatoms Where Npoms = 8.5 X 1028 atoms/m® is the number density of atoms
for iron. Therefore,

N M B 1.5
Naoms  MsNaoms  oMsNaoms 4T X 10~7 x9.27 x 10-24 x 8.5 x 1028
= 1.5 (electrons/atom).

Ml =
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Section 5-7: Magnetic Boundary Conditions

Problem 5.30 The x—y plane separates two magnetic media with magnetic
permeabilities py and p;, as shown in Fig. 5-45 (P5.30). If there is no surface curmrent
at the interface and the magnetic field in medium 1 is

H; =xH;: + ?HIy + ZHy,,

find:
(a) Hy,
(b} 91 and 92, and
{¢) evaluate Hi, 1, and 8, for Hi, = 3 (A/m), Hy, =0, Hy; = 4 (A/m), 1y = U,
and iy = 4.

. L

—p= x-y plane

Figure P5.30: Adjacent magnetic media (Problem 5.30).

Solutiomn:
(&) From (5.80),
1 H1n = o fon,

and in the absence of surface currents at the interface, (5.85) states
Hi = Hz:-
In this case, Hy; = Hyy, and Hy, and Hj, are tangential fields. Hence,

iy, = paly,
Hlx = HZI:-
Hly - HZ)'?
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and
H, = #Hy + §Hiy + 2 2 Hi.
iz]
(b)
Hy = \/Hf +Hi,,
2 2
tane _ & _ H11+H1}'
b= le le !
[r2 2
taJJBg:—Z[: _‘U]I-___} =‘!£tan81
Hy, S 5
2
(c)
H, = %3+z‘% -4=%34+Z (A/m),
-1 3 o
9;:1:31'1 Z =36.86 N

8, = tan™! G) =71.57°.

Problem 5.31 Given that a current sheet with surface cumrent density Js = &4 (A/m)
exists at y = 0, the interface between two magnetic media, and H; = 28 (A/m) in
medium 1 (y > 0), determine H in medium 2 (y < 0).

Solution:
Js = %4 A/m,
H; =28 A/m.

H; is tangential to the boundary, and therefore Hj is also. With @i; = §, from Eq.
(5.84), we have
fip X (Hy —Hp) = Js,
§x (28 —Hj) = %4,
8 —Fx By = %4,
or
§x Hy = 4,
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}.'

B
©®H ®

oy
f I ©®
e
=l

® B

Figure P5.31: Adjacent magnetic media with Js on boundary.

which implies that H, does not have an x-component. Also, since p Hyy = pofhy and
H,; does not have a y-component, it follows that H, does not have a y-component
either. Consequently, we conclude that

Problem 532 In Fig. 5-46 (P5.32), the plane defined by x—y = 1 separates
medium 1 of permeability 1 from medium 2 of permeability ¢». If no surface current
exists on the boundary and

B, =22+93 (D),

find B, and then evaluate your result for 4y = 5y,. Hint: Start out by deriving the
equation for the unit vector normal to the given plane.

Sclution: We need to find fio. To do so, we start by finding any two Vectors in the
plane x — y = 1, and to do that, we need three non-collinear points in that plane. We
choose (0,—1,0),(1,0,0),and (1,0,1).
Vector A; is from (0,—1,0)to (1,0,0):
Al = il + 3} 1.
Vector A, is from (1,0,0)to (1,0,1):
Ay =71,
Hence, if we take the cross product A, X Aj, we end up in a direction normal to the
given plane, from medium 2 to medivm 1,
Aag X Ay _ ilx(ﬁl-l-j}l) _ F1—%1 _

: ¥
Ay = fram) — _ —_—
27 1A x Ay |A2 X Ay TRl /2

L]
Vv2'
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Medium 1
M

Figure P5.32: Magnetic media separated by the plane x—y = 1 (Problem 5.32).

In medium I, normal component is

. ¥ )4 i 3 2 1
Bi.=fn-B1=| —=—— mis =———=—,
e (ﬁ f) &2+93)= F- 5=

2 § & 1 0§ %
BIBZHZB‘“:(%_T)'"E:%*E'

Tangential component is

§ X
Bi= BI —Bn= (x2+y3) (— - E) = ﬁ2.5+§’2.5.

Boundary conditions:
¥y =
Bihn=258 Bu==—=
in 2n, OF 2n 227
Hyy= Hy, or E-2£= &
Mz M1
Hence,
By = 2By = 22(22.5+§2.5).
Hi Hy
Finally,
¥ %
By =By +Ba= (E_E) —(XZS-E—YZS)
For py = Spa,

B:=§ (M.
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Problem 5.33 The plane boundary defined by z = 0 separates air from a block of
iron. If B; = 84— §6+ 28 inair (z > 0), find B> in iron (z < 0), given that z = 5000x0
for iron.

Solution: From Eq. (5.2),

By 1
Hy = — = —(34—§6+28).
1 Ho A ( 7 )
The z component is the normal component o the boundary at z = 0. Therefore, from
Eq. (5.79), B2, = B1; =8 while, from Eq. (5.85),

1 i
HZxZHlx: —4, H2y= Hl}rz ——0,
Hi H1

or
Iz 2
Boy = poHy = —4,  Bay=nHy= B,
H1 H1
where i /¢ = g = 5000. Therefore,

B, = £20000 — $30000 + 28.

Problem 5.34 Show that if no surface current densities exist at the parallel
interfaces shown in Fig. 5-47 (P5.34), the relationship between ©s and ©; is
independent of u>.

i
F ol
A
L
1

Figure P5.34: Three magnetic media with parallel interfaces (Problem 5.34).
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Solution: P
ta.ne; = i o

Bln

and B
o S
8, = B,

B
But By, = Bin 2nd — = ——. Hence,

‘We note that 8, = 83 and

canBs = 2 tan@; = 22 1an6, = 222 tang; = = 16,
2 H Ho My i
which is independent of 1.

Sections 3-8 and 5-9: Inductance and Magnetic Energy

Problem 5.35 Obtain an expression for the self-inductance per unii length for the
paralle] wire transmission line of Fig. 5-27(z) in terms of a, d, and p, where a is
the radius of the wires, d is the axis-to-axis distance between the wires, and y is the
permeability of the medium in which they reside.

Solution: Let us place the two wires in the x-z plane and orient the current in one
of them to be along the +z-direction and the current in the other one to be along the
— z-direction, as shown in Fig. P5.35. From Eq. (5.30), the magnetic field at point
P(x,0,z) due to wire 1 is

~pl o
Bi=h—=§F—
B S ot

where the permeability has been generalized from free space to any substance with
permeability 4, and it has been recognized that in the x-z plaze, $=9and r=xas
longas x > 0.

Given that the current in wire 2 is opposite that in wire 1, the magnetic field created
by wire 2 at point P(x,0,z) is in the same direction as that created by wire 1, and itis
given by

g

By = .
2= I on(d—x)
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P b
ey

[
\

Figure P5.35: Parallel wire transmission line.
Therefore, the total magnetic field in the region between the wires is

B Cop (1, 1\ _ . pd
B_Bii+32_y2n(x+d—x)#y2:tx(d-—x)'

From Eq. (5.91), the flux crossing the surface area between the wires over a length /
of the wire structure is

2o+l rd—a . Pld .
o= [lma= [ [ (ozmta) 022
pdid (1 x N\
== (z‘“(d-x)) -
-5 (=(5%)-=(%))
21 a d—a

:’ﬂxzm(‘f‘“) =4 n(d_“).
2n a T a

i

shaili i

T R
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Since the number of ‘tums’ in this structure is 1, Eq. (5.93) states that the flux linkage
is the same as magnetic flux: A = @. Then Eq. (5.94) gives a total inductance over
the length [ as

© u d—a

a

Therefore, the inductance per unit length is

I d d
L':—=‘-u—ln( ”) ::Em(—) (H/m),
I = a T a

where the last approximation recognizes that the wires are thin compared to the
separation distance (i.e., that d 3> a). This has been an implied condition from the
beginning of this analysis, where the fiux passing through the wires themselves have
been ignored. This is the thin-wire limit in Table 2-1 for the two wire line.

Problem 536 A solencid with a length of 20 cm and a radius of 5 cm consists
of 400 turns and carries a cument of 12 A. If z = O represents the midpoint of the
solenoid, generate a plot for |H(z)| as a function of z along the axis of the solenoid
for the range —20 cm < z < 20 cm in 1-cm steps.

Solntiom: Let the length of the solenoid be [ = 20 cm. From Eq. (5.88a) and Eq.
(5.88b), z = atan® and 2* + 1* = a*sec® 8, which implies that z/+/z2 + a2 = siné.
Generalizing this to an arbitrary observation point 7 on the axis of the solenoid,

(z—2)/4/(z—2')* + a* = sinb. Using this in Eq. (5.89),

n_B .l
H(0,0,7) = == i (sin8; — sin®;)
_sn 1/2—72 B =
2\Juz-2y+a J(-1/2-2P+2
_ i%f I/2—7 5 1/2+7 (AJo).

V/2=2Y+a  J/2+2) +a

A plot of the magnitude of this function of ' witha = 5 ¢, n = 400 turns /20 cm =
20,000 turns/m, and I = 12 A appears in Fig. P5.36.




CHAPTERS 217

300. i T T T T T T T
g 275. b -
= 250. - o
a 25 - ; -
s 0r . ; ¢
= = : 3 -~
s 175. - ; _ j
T 150 | ) 4
2 s b A
= i . : : |
2 75. - , : -
= - 4
= S o . =
= 8 _ ’ |
E 25‘ ,_. e o oW ] ‘_
0. ! ok 1 1 ¥ ] =
-20. -15. -10. -5. 0. 5: 10. 15. 20.

Position on axis of solenoid z (cm)

Figure P5.36: Problem 5.36.

Problem 537 In terms of the d-c current /, how much magnetic energy is stored in
the insulating medium of a 2-m-long, zir-filled section of a coaxial transmission line,
given that the radius of the inner conductor is 5 cm and the inner radius of the outer
conductor is 10 cm?

Solution: From Eq. (5.99), the inductance per unit length of an air-filled coaxial
cable is given by

e (9> (H/m).
21 a

Cver a length of 2 m, the inductance is

Il =

4 07
2R | ln(£)=277x10'9 (.
2% 5

From Eq. (5.104), Wiy = LI%/2 = 1397* (), where Wi is in nanojoules when [ is in
amperes. Alternatively, we can use Eq. (5.106) to compute Wr:

1
W, = — sz‘V.
m szv‘uo

:

s

S

L

S
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From Bq. (5.97), H = B/uo = I/2xr, and

1 f2m 2@ b g N )
W,= = f _/ Lo (—-—»—) rdrdodz= 1397 (nl).
2 z=0 Jo=0Jr=a 2mr

Problem 538 The rectangular loop shown in Fig. 5-48 (P5.38) is coplanar with
the long, straight wire carrying the current / = 20 A. Determine the magnetic flux
through the loop.

204 30cm

Scm

e 20cm —=-

X

Figure P5.38: Loop and wire arrangement for Problem 5.38.

Solmtion: The field due to the long wire is, from Eq. (5.30),

B=é gl gl

2nr 2nr 2wy’

where in the plane of the loop, & becomes —% and r becomes y.
The flux through the loop is along —%, and the magnitude of the flux is

20 cm
@:ﬂB-ds:%ﬂl}i X . _2(30cmxdy)

cm X
0.2
2n 005 ¥
_03p

02 -6
G XZOXm(m)_l-ﬁﬁxlo (Wh).




