Chapter One:

Basic Concepts

1.1 If 60 C of charge pass through an electric conductor in 30 seconds, determine the current in the conductor.

I.I
$$Q=60C$$
 $\Delta t=30S$ $I=\frac{Q}{\Delta t}=\frac{60}{30}$ $I=ZA$

1.2 In an electric conductor, a charge of 300 C passes any point in a 5-s interval. Determine the current in the conductor.

1.2
$$Q = 300C$$
 $\Delta t = 5s$ $I = \frac{Q}{\Delta t}$ $I = 60A$

1.3 The current in a conductor is 1.5 A. How many coulombs of charge pass any point in a time interval of 1.5 min?

1.4 Determine the number of coulombs of charge produced by a 12-A battery charger in an hour.

1.4
$$I = 12A$$
 $\Delta t = 1 hoor = 60 min = 3600 S$
 $Q = I(\Delta t) = 12(3600)$ $Q = 43.2 kC$

1.5 A lightning bolt carrying 20,000 A lasts for 70 μs. If the lightning strikes a tractor, determine the charge deposited on the tractor if the tires are assumed to be perfect insulators.

1.5
$$I = z_{0,000} A$$
 $\Delta t = 70 \mu s$ $Q = I(\Delta t) = (z_{0}k)(70\mu)$ $Q = 1.4C$

1.6 If a 12-V battery supplies 10 A, find the amount of energy delivered in 1 hour.

1.6
$$V = 12V$$
 $I = 10A$ $\Delta t = 1 hour = 36005$

$$P = VI = 12(10) = 120W \qquad W = P(\Delta t) = 120(3600)$$

$$W = 432 \text{ kJ}$$

1.7 Determine the energy required to move 240 C through 6 V. CS

1.8 Five coulombs of charge pass through the element in Fig. P1.8 from point *A* to point *B*. If the energy absorbed by the element is 120 J, determine the voltage across the element.

Figure P1.8

1.9 The charge entering an element is shown in Fig. P1.9. Find the current in the element in the time interval $0 \le t \le 0.5$ s. [*Hint:* The equation for q(t) is q(t) = 1 + (1/0.5)t, $t \ge 0$.]

Figure P1.9

$$i(t) = ZA$$

$$i(t) = ZA$$

$$i(t) = ZA$$

- **1.10** Determine the amount of power absorbed or supplied by the element in Fig. P1.10 if
 - (a) $V_1 = 9 \text{ V} \text{ and } I = 2 \text{ A}.$
 - **(b)** $V_1 = 9 \text{ V} \text{ and } I = -3 \text{ A}.$
 - (c) $V_1 = -12 \text{ V} \text{ and } I = 2 \text{ A}.$
 - **(d)** $V_1 = -12 \text{ V} \text{ and } I = -3 \text{ A}.$

Figure P1.10

SOLUTION:

1.10 a)
$$V_1 = 9V, I = 2A$$

For passive sign convention, P=VI is power aborded.

b)
$$V_1 = 9V$$
, $I = -3A$
 $P = 9(-3) = -27W$

d)
$$V_1 = -12V$$
, $I = -3A$
 $P = +36W$

1.11 Determine the magnitude and direction of the voltage across the elements in Fig. P1.11.

Figure P1.11

1.12 Determine the missing quantity in the circuits in Fig. P1.12.

Figure P1.12

1.13 Determine the missing quantity in the circuits in Fig. P1.13.

Figure P1.13

SOLUTION:

1.13 a)

V \in I are defined in passive Sign convention P = VI = -36W

$$P = VI = -36W$$

Since Pis regative, power is actually supplied

P = -36W or 36W Supplied

V & I defined in active sign convention $P = -VI \qquad I = \frac{-P}{V} = \frac{-72}{-18}$

$$P = -VI$$
 $I = \frac{-P}{V} = \frac{-72}{-18}$

1.14 Determine the missing quantity in the circuits in Fig. P1.14.

Figure P1.14

1.14 a)
$$V_{1} = -6V$$

$$V_{2} = -6V$$

$$V_{3} = -6V$$

$$V_{1} = -7V$$

$$V_{2} = -7V$$

$$V_{3} = -7V$$

$$V_{4} = -7V$$

$$V_{5} = -7V$$

$$V_{7} = -7V$$

$$I = -2A$$

$$V_{1} \not\equiv I \text{ defined as active sign convention}$$

$$V_{1} = -V_{1}I \quad V_{1} = -P/I = \left[\frac{-24}{-2}\right] = -12V$$

$$V_{1} = -12V$$

1.15 Two elements are connected in series, as shown in Fig. P1.15. Element 1 supplies 24 W of power. Is element 2 absorbing or supplying power, and how much?

Figure P1.15

SOLUTION:

P₁ = 24W supplied.

+ Using active sign convention for element 1

3V

P = V₁I => I = PV₁ = 8A

(Note I is defined for active sign convention for element 1!) 1.15

In element Z, V & I are defined as passive sign convention. $P_{2} = V_{3}I = (6)(8) = 48W$

1.16 Determine the power supplied to the elements in Fig. P1.16.

Figure P1.16

SOLUTION:

1.16

For element 1, V, and I are defined in passive sign convention. So, power supplied to the element is,

$$P_1 = +V_1I = (2)(6) = 12W$$

$$P_1 = 12W$$

Element 2 has $V_2 $$ I defined in the passive sign convention also.

$$P_2 = V_2 I = (2)(4) = 8W$$
 $P_2 = 8W$

1.17 Determine the power supplied to the elements in Fig. P1.17.

Figure P1.17

SOLUTION:

1.17

For element 1: V, & I are defined in the passive sign convention. So, power supplied to element lis,

$$P_1 = V_1 I = 6(2) = 12W$$

For element 2: V2 & I are defined in the active sign convention Power supplied to element 2 is

$$P_2 = -V_2I = -4(z) = -8W$$

1.18 Determine the power supplied to the elements in Fig. P1.18.

Figure P1.18

SOLUTION:

In both elements, voltages and currents are defined in passive sign convention.

For element 1, power supplied is $P_1 = V_1 I = (-6)(2) = 12W$ $P_1 = 12W$

For element Z.

$$P_2 = V_2 I = 12(2) = 2AW$$

 $P_2 = 24W$ absorbed

In both elements, voltages and currents are defined in action sign convention

For element 1: $V_1 = +18V$ $P_1 = -V_1 I = -(18)(4) = -72W$

$$P_1 = -V_1 I = -(18)(4) = -72W$$
 $P_1 = -72W$ absorbed

For element 2:
$$V_2 = -12V$$

 $P_2 = -V_2I = -(-12)(4) = +48W$
 $P_2 = 48W$ absorbed

- **1.19** (a) In Fig. P1.19(a), $P_1 = 36$ W. Is element 2 absorbing or supplying power, and how much?
 - (b) In Fig. P1.19(b), $P_2 = -48$ W. Is element 1 absorbing or supplying power, and how much?

Figure P1.19

SOLUTION:

1.19a) P1=36W

By default, using passive sign convention. Since P, is positive, I flows as shown on circuit diagram.

$$P_1 = V_1 I = P_1 / V_1 = 36/12 = 3A$$
 I=3A

P₁ = V₁ I = P₁ V₁ = 36/12 = 3 A I=3A

1 12V

For element 2, V₂ & I are defined in passive
2 6V Sign convention,

$$P_2 = V_2 I = 6(3) = 18W$$

$$P_2 = 18W$$

$$absorbed$$

Again, passive sign convention is the default. Since P2 <0, element 2 supplies power and I flows as shown.

For element 1, V, 4 I are defined in passive sign convention. Power absorbed is

$$P_1 = V_1 I = 6(z) = 12W$$

$$P_2 = 12W$$

$$absorbed$$

1.20 Two elements are connected in series, as shown in Fig. P1.20. Element 1 supplies 24 W of power. Is element 2 absorbing or supplying power, and how much?

SOLUTION:

Element 1 Supplies 24W.

For element 1 supplying power, I must flow 28 shown. $I = P_1/_1 = \frac{24}{6} = 4A$ $I = P_2/_1 = \frac{24}{6} = 4A$

$$I = P_{1/2} = \frac{24}{6} = 4A$$

In Element 2, V_2 & I are defined as the passive sign convention power 26 sorbed is $P_2 = V_2 I = 8(4) = 32W$ $P_2 = 32W$ $P_3 = 32W$ $P_4 = 32W$ $P_5 = 32W$

1.21 Two elements are connected in series, as shown in Fig. P1.21. Element 1 supplies 24 W of power. Is element 2 absorbing or supplying power, and how much?

Figure P1.21

SOLUTION:

Element I supplies ZAW. Since supplying power, I must

$$I = P_1/V_1 = 24/3 = 8A$$
 $I = 8A$

I = $P_1/V_1 = 24/3 = 8A$ I = 8AFor element 2, V_2 & I obey passive

Sign convention. Power absorbed is $P_2 = V_2I = 6(8) = 48W$ 2bsorbed

1.22 Two elements are connected in series, as shown in Fig. P1.22. Element 1 absorbs 36 W of power. Is element 2 absorbing or supplying power, and how much?

Figure P1.22

SOLUTION:

Element 126 sorbs 36 W. For absorbing power, I must flow as shown in the diagram.

$$P_1 = V_1 I I = RV_1 = 36/12 I = 3A$$

P₁ = V₁I I = RV₁ = 36/12 I = 3A

$$V_1 = V_1 = V_1 = V_1 = V_2 = V_2 = V_2 = V_2 = V_2 = V_3 = V_2 = V_2 = V_3 = V_2 = V_2 = V_3 = V_2 = V_3 = V_2 = V_3 = V$$

1.23 Determine the power that is absorbed or supplied by the circuit elements in Fig. P1.23.

Figure P1.23

SOLUTION:

Continued on next page.

$$V_1$$
 &I in passive sign convention
$$P_1 = V_1 I = 16(1) = 16W \quad P_2 = 16W \text{ absorbed}$$

Forsourcel, V&I in active sign convention.

For source , V & I are defined in passive sign convention.

CHECK: for power balance, Psupplied = Pabsorbed
$$24 = 8 + 16 = 24 \quad V$$

$$P_{24V} = P_{8V} + P_{1}$$

1.24 Find the power that is absorbed or supplied by the network elements in Fig. P1.24.

Figure P1.24

SOLUTION:

Voltages and currents for element I and for the dependent source are defined in the passive sign convention.

$$P_1 = V_1 T_x = 8(2) = 16W$$
 $P_1 = 16W$ absorbed

$$P_z = V_z I_x = (2I_x) I_x = 4(2) = 8W$$

$$P_z = 8W \text{ absorbed}$$

For the dependent source, VII are defined in the active sign convention.

Continued on next page.

 $P_1 = V_1 I_X = 20(2) = 40W$ $P_1 = 40W 2bsorbed$ $P_2 = V_2 I_X = 12(2) = 24W$ $P_2 = 24W absorbed$ $P_3 = V_3 I_X = 4I_X^2 = 4(2)^2 = 16W$ $P_3 = 16W$ supplied $P_{24V} = 24(I_X) = 24(2) = 48W$ $P_{24V} = 48W$ supplied

V&I are defined in the passive sign convention for elements I and 2; and in the active sign convention in both the dependent and independent source.

1.25 Is the source V_S in the network in Fig. P1.25 absorbing or supplying power, and how much?

Figure P1.25

SOLUTION:

1.25

VI for elements 1,2,3 defined in passive sign convention. $V \neq I$ for elements 1,2,3 defined in passive sign convention. $V \neq V_2$ $V \neq V_3$ $V \neq I$ for elements 1,2,3 defined in passive sign convention. $V \neq V_2$ $V \neq V_3$ $V \neq I$ for elements 1,2,3 defined in passive sign convention. $V \neq V_2$ $V \neq V_3$ $V \neq I$ for elements 1,2,3 defined in passive sign convention. $V \neq V_2$ $V \neq V_3$ $V \neq I$ for elements 1,2,3 defined in passive sign convention. $V \neq V_2$ $V \neq V_3$ $V \neq I$ for elements 1,2,3 defined in passive sign convention. $V \neq V_2$ $V \neq V_3$ $V \neq I$ $V \neq V_3$ $V \neq V_4$ $V \neq V_4$ P3 = V3 I3 = 8(6) = 48W absorbed

Current source V &I defined in active sign convention Pga = 9(16) = 144 W supplied.

Power balance requires power supplied = power absorbed. Assume Vs supplies power.

Since Pus <0, Vs absorbs power Pvs = 48W absorbed

1.26 Find V_x in the network in Fig. P1.26.

Figure P1.26

SOLUTION:

Passive sign convention: Elements 1,2,3 and 9-V source Active sign convention: 24-V and 12-V source.

Power balance:
$$P_{24v} + P_{12v} = P_{qv} + P_1 + P_2 + P_3$$

 $24I + 12I = 9I + 12I + V_XI + 16I$
 $36 = 37 + V_X$
 $V_X = -1V$

1.27 Find V_x in the network in Fig. P1.27.

Figure P1.27

SOLUTION:

1.27

Passive sign convention: Elements 1,2,3,4 and 12-V source.

$$P_3 = V_3 I_3 = 16(z) = 32W$$
 $P_3 = 32W$ 2bs or bed

Power balance requires Psupplied = Patroorbed.

$$P_{4A} = P_{12}V + P_1 + P_2 + P_3 + P_4$$

1.28 Compute the power that is absorbed or supplied by the elements in the network in Fig. P1.28.

Figure P1.28

1.29 Find I_o in the network in Fig. P1.29.

Figure P1.29

Passine sign convention: PS=VSIS=6W absorbed P6 = V6 I6 = 24W 2bsorbed

$$P_{\text{supplied}} = P_{\text{absorbed}}$$

$$P_{\text{24v}} + P_{\text{4Ix}} = P_{1} + P_{2} + P_{3} + P_{4} + P_{5} + P_{6}$$

$$168 = 48 + 40 + 6I_{6} + 32 + 6 + 24$$

$$\boxed{I_{D} = 3A}$$

1.30 Find I_x in the circuit in Fig. P1.30.

Figure P1.30

1.31 Find V_x in the network in Fig. P1.31.

Figure P1.31

1.32 Find I_s such that the power absorbed by the two elements in Fig. P1.32 is 24 W.

Figure P1.32

$$P_1 + P_2 = P_{IS} = 24W$$

$$P_{IS} = 12(I_S) = 24$$

$$I_S = 2A$$