1.1

Background:
Gauss's Law: | E - da = e

€

Also, a conductor is defined as a material in which the cor(l)ducting electrons move freely if an external
electric field is applied. Thus in static equilibrium, there is no electric field present within a conductor; similarly an
electric field parallel to the surface of the conductor would cause charges to move on the surface, and so this electric
field cannot exist in static equilibrium. We conclude only electric fields perpendicular to the suface of the conductor
can exist.

a) From the above arguments, the excess charge lies completely on the surface.

b) Consider a closed hollow conductor. Now bring up a collection of charges on the outside (bring them
slowly so that static equillibrium alway obtains.) From our above arguments, the electric field lines from the charges
never penetrate the conductor, so the hollow region within is shielded. On the other hand, if charges are placed within
the hollow part of the conductor, electric fields exist throughout the interior because Gauss’s law shows the electric
field is non-zero for any surface within the interior which encloses the charges brought in.

c¢) Consider the Gaussian pillbox

E

Gauss’s Law gives
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In general we take the charge density to be of the form p = f(r)s, where f(r) is determined by
physical constraints, such as j pdx = Q.
a) variables: r,0,¢. d*x = d¢dcosOr2dr
p =1 -R) = f(rNé(r -R) = f(RS(r —R)

| pdx = f(R) [ redrdod(r - R) = 4xf(RR? = Q ~ f(R) =, SRZ

__Q _
p(?) - 47TR2 6(r R)
b) variables: r,¢,z. d*x = d¢dzrdr
p(r) = f()S(r = b) = f(b)s(r — b)

j pd¥x = f(b) j dzdgrdrs(r — b) = 2zf(b)bL = AL — f(b) = <A

27b
_ A _
p(r) = b o(r—Db)

c) variables: r,¢,z d3x = d¢dzrdr Choose the center of the disk at the origin, and the z-axis
perpendicular to the plane of the disk

p(r) = f(NS(20(R-r) = f5(2)0(R-7r)
where O(R—r) is a step function.

[ pdx = £ [ 6@(R - r)dgdzrar = 2nR72f _Qof= ngez

p® = —26@OR-1)

d) variables: r,0,¢. d*x = d¢dcosOr?dr
p(r) = f(5(cosO)O(R-r) = f(r)5(cosf)(R—r)

j‘pd3x = If(r)&(cos@)@(R— ryd¢dcosdr2dr = I:[f(r)r]rdrdqﬁ = 27N I:rdr =7R°N=0Q

where I’ve used the fact that rdrd¢ is an element of area and that the charge density is uniformly
distributed over area.

__Q _
p(r) = nRzrcS(cosG)e(R r




1.4

Gauss’s Law:
[ D
a) Conducting sphere: all of the charge is on the surface o = 42\2

E4nr2 =0,r <a Ednr? = Q >a

= =
E=0,r<a E= Q f, r>Xa

471'80[‘2

~
E e
M.
T
b S
e —

0 a

b) Uniform charge density: p = %ag, r<a p=0rYa
37[

3
E4 r2=Q—r—>E= Qr , r<a
d goal Argqad
Earr2 = L LE-—Q _ (va
d €0 471'80[‘2 Z
K
.
S
M
e
e
————
0 a
c)p=Ar"
Q= 47r_“r2drAr” = 4zAa™3/(N+3) - p = %r”, r<a
p=0 ra
_ (n+3)Q __Q rn3
E47Z'r2 = W4nrm3/(n+3) - E= 47[80r2 an+3 , Fr<a
Q
= ——F, r a
471'80[‘2 Z
l.n=-2
Q r<a

~ Aggera’
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g (1+4

¢(?): 471'80[‘
2 __PpP 2_1 0 (20
v =& V- L E(rE)
2, _ 9 1 020 (€Y | opqar
Ve dreg r2 Gr[r Gr(r +2e )}

V2¢ — q %%[_are—ar +e—arr2% %) _Ol_zrze—ar:|

2 a—ar —ar 2 a—ar 3a-ar
_ Q[_:zze—ar+a(re +a(r92 —47r6(')r—“? L o’e }
_ 1 qe® o
=i ®M - e

_ e A
p() = qo(") — g —e

That is, the charge distribution consists of a positive point charge at the origin, plus an
exponentially decreasing negatively charged cloud.




1.8

Qenc

We will be using Gauss’s law j E.dd=
a) 1) Parallel plate capacitor

From Gauss’s law E = 2 =

Q 2 Acod 2
Wzs_oj'Ezng: SoEzAd _ SO(Az_o) Ad — 1 Q_zd: 1 2112) d= 180A¢%2
2 2 2 2e9 A 2¢€q A 2
2) Spherical capacitor

From Gauss’s law, E = -1 r%, a<r<h.

dreg
b b
_ _ 2 1 Q (b—a) N _ 47rsoba¢12
¢12‘IaEdr‘ =77 e "% “(b-a)

_ 80 [p2q3y - S0 (_Q )? r2dr _ g0 (_Q )? bra)_ 1 Q? (b-a)
W_Z.“EdX_Z(4nso).“a4 r4 _2(47r80)(47r ba )_8807r ba
g (e Gy )" b-a) _ 82,

W= 8oo ba —27rsoba(b_a)

3) Cylindrical conductor
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From Gauss' s law, E2zrL = A—OL -9

€0

¢12=jbEdr: Q jb$_ Q__n()

2reol - 2meol
_ 2o [E2gey — £0 Q)Z "rar _ 1 Q%
w 2 IEdX 2(27rsoL anIa r2 dreg L |
(27r80|-¢12 )2 )
_ 1 In(%) by _ o1
W= 4reg L In( a) = meol InL
b)w= 2E?
& 2 2 .
1) w(r) = TO(A%) -~ %O% 0<r <d, = 0otherwise.
W
r
0 d
€ 2 2 .
2) w(r) = 2 (& r% _ 32;)”2 ?—4, a<r<b, =0, otherwise

W N\
\

e

——

a b r

1 Q?

= %o zzzy — 0 otherwise.

Jwr) = 2(52-)" =

2 \ 2reolr

n(

b
a

)
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1.9

I will be using the principle of virtual work. In the figure below, Fél is the work done by an
external force. If Fis along ol (ie. is positive), then the force between the plates is attractive. This
work goes into increasing the electrostatic energy carried by the electric field and into forcing charge
into the battery holding the plates at constant potential ¢ 5.

&l
Q ¢

oQ

Conservation of energy gives
Fol = OW+ 5Q¢12

or
Qe[ G o
From problem 1.8,
a) Charge fixed.
1) Parallel plate capacitor
dQ
1,0k, 49 o1, (a) d
W= 2eATg 2 = 2o = W= 80A——5— = 7,AQ
2
aa_? 0 F= 56—\1\/ - 2(3 K (attractive)
0

2) Parallel cylinder capacitor

P12 = %'n(g), a= Jaiaz

_1 SFE=OW _ 1 _12Q
W= 5Q¢12 > F =5 Q80 =5 In( ) = 5 goq (atractive)

b) Potential fixed

1) Parallel plate capacitor
Using Gauss’s law, Q = ¢12A50 ¢12A80

|§el=



Qd 2
L. _1 Qﬁ_ ¢éNM__i Qﬁ__l (EK) _ 1 ~2
F = 2 ()A d2 + d2 = 280A d2 = 280A d2 = 280AQ
2) Pardld cylinder capacitor

W= 1Qps, andQ - Eolgr

In(<)
_1e0be%, ow 1 3

A Ee SR E S (T T

aQ‘ P12

O | —goL—¥12

‘ RN (XY
1 ¢% ¢% 1 ¢%

F=—%2¢ol L = fgol—212__

2% (I g)d T (i gyd ~ 2% (in?g)d



1.10 T will base the solution on the application of Green’s theorem, which results in eq. 1.36 from the

textbook: ) @) . 1 96 5 )
- pPT) 3, L 100 O (1 !
9(7) = 4meg /V R ¢+ 47r7§ [R on’ on' (R)] da

Since the volume includes no charge, the first term on the rhs vanishes. For the second term
a¢ = A1 ooal
p Vé-#' =—E -
Note
E-#'dd = / V' Eddr by the divergence theorem
v

Using the fact that
Y
V - E=p&)/eo
then the second term of the first equation also vanishes, since the volume integrated over contains no charge.

Since % (%) =— #, where R is the radius of the sphere, and I’m taking the origin at the center of the sphere,

1
H(T) = sl ]{ (&' )da’ = mean value of the potential over the sphere.
s



More Problems for Chapter 1

Problem 1.5
From Poisson’s equation V2® = —p/e, we have the charge density p = —¢oV2®. Let f = % and g = e (14 %),
then

p= V2 = —%(gvzf +2Vf-Vg+ fV3)

Note that
Vi=—= VI =—1x8(7)
1 S
Vg = —iae*m(l + ow“);, Vig = %e’m(—Q — 2ar + a?r?)

Plug them into the charge density

—_i_ 3 (7 13*047“_ 3 _i3focr
p= 47r( 47r6(7“)—0—2ae ) = qd°(7) 87To¢e

The first term represents a point charge g at the origin and the second term is due to a continuous distributed volume
charge. Note that the total charge is zero:

/ pd3z =0
Problem 1.6

(a) Applying Gauss’s law to the plate with a Gaussian pillbox, one gets the electric field due to a flat surface charge
distribution to be ¢/2¢y, where 0 = Q/A is the surface charge density. The contributions from the two plates add up
in between the two plates and cancel outside. The total electric field in between the two plates is

P2 -9
€0 60A
The potential difference between the two plates
+ . . Qd
V=&, —-® =-— E-dl = —
* /, 60A
The capacitance
Q _ A
C===—
V d

(b) Assuming the inner sphere has charge () and the outer has —Q), applying Gauss’s law with a Gaussian sphere of
radius 7 (o <7 < b):

. Q7
E= —
Ameg 73
The potential difference
t, o Q b—a
v + /7 4meg ab



rock
Text Box



                                                                              More Problems for Chapter 1


The capacitance is therefore

ab
Cz%:éhreob_a.

(¢) Again assuming the inner cylinder has charge @ and the outer has —Q), applying Gauss’s law with a cylindrical
surface as the Gaussian surface:

The potential difference

The capacitance per unit length

Q 27e
C===
V. Int
Problem 1.7
From Gauss’s law, the field due to one conductor is
po9 !
2meg T

where () is the charge per unit length and r is the perpendicular distance from the point of interest to the conductor.
Along the perpendicular line joining the two conductors, the fields due to the two conductors are in the same direction.
Therefore, the total field along the line is:

Q 1 Q1

C 2megry  2megr

where r and r_ are the perpendicular distances to the positively and negatively charged conductors respectively. E
points from +() to —(. The potential difference

d—a d—a
21 t1 d— d—
Q {/ —dr++/ L Q  (d—a)(d—ay)
€0 Ja, ry a r_

2w N 2meg a1a2

+—» —
V:q>+—<I>,:—/ Bl =

The capacitance per unit length

B _ 2
C:Q:2weo/lnm%2weo/ln d

1% a1a2 (\/a1az)?

where a is the geometrical mean of a; and a2: a = \/ajas.

d
= In —
Weo/na

Problem 1.9
(a) Parallel plate capacitor
The negatively charged plate experiences a field of

_o_«Q
_260_260A

due to the positively charged plate, where (Q is the total charge on the plate. Therefore, the attractive force between
the two plates is




Parallel cylinder capacitor
Again, one conductor experiences an electric field of

Q
F =
2meg

=

from the other conductor. Here (Q is the charge per unit length. Therefore, the attractive force per unit length
between them is

_ @1
T 2mep d

F=QF

(b) The force should be the same except that ) should be replaced by CV.
Parallel plate capacitor

60AV2

F==z

Parallel cylinder capacitor

_ megV 2
o 2d1n(b/a)?
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. We will work in cylidrical coordinate, (p, z ¢), with the charge q located at the point
d = dz, and the conducting plane is in the z = 0 plane.

Then we know from class the potential is given by

__1 q 9
oo 4ﬂso[|%—a| |M|]

1 1

EZ:_47?8 % 2 N2 > oN\12
0 ((z-d)?+p?) ((z+d)? +p?)

E, - q z—d _ z+d
areo | ((z-d)2+p?)*"  (@+d)?+p?2)*
a) o = goEz(z=0)

o = o3 —d _ +d ___q 1
ameo | ((d)2+p2)* ((+d)?+p2) ™ 2nd? (12+(£)")*

Plotting —L—- gives

(124r2) 2

0

-0.2 ]

-0.4 ]

-0.6 ]

-0.8 ]

-1

b) Force of charge on plane

2__1 9D, 5 _ 1 9%,
F= 4req (2d)2( 2) = 4 x4neg d z
c)
2
F _w_ofp_o%2__1]|__49 1 _ 1 q°
2 3 3
A 2 2gg 2¢gq 2rd (12+<%)2)2 8eo ﬂ2d4(1+g_j)
_ g2 b p _ g2 143\ _ 1 q_z
F_2n8807f2d4 '[0 (1+P_2)3dp_27r8807r2d4 (4d ) 4 x4dreq d?
d2



d)
I S Fdz ¢
W_Id Faz = Ax4dreo Jg 722 4 x4Aneod

ad _ Q°
2 4;;80 .Z K —%|  2x4meod

Notice parts d) and €) are not equal in magnitude, because in d) the image moves when g moves.

f) 1 Angstrom=10"m, g = e = 1.6 x 107°C.

___« e 0L16x 101 9
W= T ameod ~ ®axdmed ~ Caxion O 10V=36eV




2.2

The system is described by

4 q
T y'

({4

a) Using the method of images
_ 1 q q
0 = o 755 757
withy' = & andq' = -q2

b) o = _80%¢|x=a = +805L?X¢|x=a

o= gL : + :
Areg OX (XZ + y2 _ 2XyCOS}/)1/2 (X2 + y/2 _ 2Xy/ COS}/)UZ

yZ
o1 a-%)
4n (y2 + a2 — 2aycosy)

3/2
Note

2 1
Ginduced = 82 j'ng = _qﬁa&na(l - %) I_l o azd—XZayX)3/2 ;

where X = cosy

2
Clinduced = _%a(az —yz)m =—q
c)
! 2
F| = 99 - _1 9-ay , the force is attractive, to the right.
|F| ‘471‘80()/’ —y)? dreo (@2 —y?) I v 19

d) If the conductor were fixed at a different potential, or equivalently if extra charge were put on
the conductor, then the potential would be

i

__1 g g
¢ 4nso[ﬁ—w+&—w}v

and obviously the electric field in the sphere and induced charge on the inside of the sphere would
remain unchanged.




2.3

The system is described by

¥
A A
—e 2 ®
X
™ 4 o4
3 i

a) Given the potenial for a line charge in the problem, we write down the solution from the figure,
A R? R? R? R?
ot = |:In — —1In = —In = +1In = :|
Aneo (X—Xo)? (X = Ro1)? X—Xa2)? (X —Xa3)?
Looking at the figure wheny = 0, (X—%)* = (X = %o1)?, R—%2)” = (X —%03)>, S0 ¢7ly0 = O
Similarly, when x = 0, (X —Xo)? = (X—%02)%, (X —=Xo1)? = (X—Xo3)%, 50 ¢7lxco = O
On the surface ¢t = 0, so 6¢1 = 0, however,

_ 9t 0 91 _ oL E _
Spr = G =0~ FL -0~ E=0

b) We remember
S | [
o T LX-x)P+yE  (X+X%0)®+Yj
where I’ve applied the symmetries derived in a). Let
A R
T [ X—%0)T+YE  (x+%0)7 +Y3
This is an easy function to plot for various combinations of the position of the original line charge
(Xo, Yo).

c) If we integrate over a strip of width Az, we find, where we use the integral

j-oo 1 _ 1 mE2arctan
0 (XFXo)? +Y3 2 Yo

_ [ L AQ _ =2A tan-1( Xo
AQ—_“O odxAz Az —IO odx = =24 tan YO)

and the total charge induced on the plane is —oo, as expected.
d)
Expanding



In( 2R2 5 ) —In( 2R2 5 ) —In( 2R2 5 ) + In( 2R2
(X=X0)" + (¥ —Yo) (X=X0)” + (¥ +Yo) (X+X0)” + (Y —Yo) (X+Xo)" + (Y +
to lowest non-vanishing order in Xo, Yo gives
Xy
R

42 Xy
EO (2 +y?)

¢ > Pasym = > YoXo

Thisis the quadrupole contribution.
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g’a [~ dy _ g’a
4reg Jr y3(1_§_§)2 8reo(r? —a?)

W= [ Fidy -
r
Let us compare this to disassemble the charges

a 2 2
W =1 g _ _1 aq 1 _ g‘a W
8o ; g% dmeg | T r(l_a_z Areo(r? —a?) g

r2

The reason for this difference is that in the first expression W, the image charge is moving and
changing size, whereas in the second, whereas in the second, they don’t.

b) In this case
- = Qd » (2y*-a%)
w= [ [Flay = — QY _ s "X 22 4
I,l dy 4reg |:.“r y? 9 I, y(yz_az)Z Y

Using standard integrals, this gives

_ 1[ g’a qza_@}

~ Ameo | 2(r2—a?)  2r?
On the other hand
w1 ag®> qQ+2q) |_ 1 ag®  g’a_ 9Q
47[80 (r2_a2) r 47[80 (r2_a2) r2 r

The first two terms are larger than those found in W for the same reason as found in a), whereas the
last term is the same, because Q is fixed on the sphere.



2.6

We are considering two conducting spheres of radii r, and r,, respectively. The charges on

the spheres are Q, and Q.

a) The process is that you start with ga(1) and gn(1) at the centers of the spheres, and sphere a
then is an equipotential from charge ga(1) but not from gn(1) and vice versa. To correct this we use
the method of images for spheres as discussed in class. This gives the iterative equations given in the
text.

b) ga(1) and q,(1) are determined from the two requirements
B B

> (a(j) = Qaand > ob(j) = Qv

=1 =1
As a program equation, we use a do-loop of the form

' o _ —Tadb(—1)
> (o) = 0T

and similar equations for qu(j), Xa(j), Xo(j), da(j),dn(j). The potential outside the spheres is given

I SR () S ()
= > — B > s
$(X) Are (j=1 |Y—xa(j)k| " i1 |Y—db(j)k| )

This potential is constant on the surface of the spheres by construction.
And the force between the spheres is
__1 da(Dab(k)
F= > ,
Aneo 7\ [d—Xa(j) - Xo(K)]?
c) Now we take the special case Qs = Qp, ra = rp = R, d = 2R Then we find, using the iteration
equations

by

Xa(i) = Xo(j) = ()

x(1) = 0, X(2) = RI2, X(3) = 2R/3, or x(j) = (j_j—l)R

da(j) = av() = a()

_1h\Jj+l
ai) = 4 @) = -g/2, q@) = ¢/3, or () = < j)’ q

So,asn- f
B B _1n\j+l
> ai)-a> E——an2-0-q- %
j=1 j=1 J n
The force between the spheres is
E__1 9 (1) _ 1 g (LK
4reg R? ik jk[Z—U‘ji— (k—k1> ]2 4reo R? ik (+k)?

Evaluating the sum numerically



2 2
F= gz (0.0739) = 1 Q1 (0.0739)

Areo 4reo R? (In2)
Comparing this to the force between the charges located at the centers of the spheres
F 1 Q
P T Areo R

Comparing the two results, we see
F=4

(0.0739)F, = 0.615F,

(In 2)2
On the surface of the sphere
B .
__1 ad __gq 1
¢ = 4reg il R-x() 47rsoR> =1
B

H ]+1

Notice 1+ >= (-1

[y

1 9 __1 Q _Q _ _c _ _
0= Zres DR ~ Fmeg 2ZM2R ~ C  dmegr 22— 1.386



2.7

The system is described by

Y

VL T T

a) The Green’s function, which vanishes on the surface is obviously

GRY) = i - -1
X=X K-X|

where
X =xT+y5+2'k X = xT+y5-7'k
b) There is no free charge distribution, so the potential everywhere is determined by the potential
on the surface. From Eq. (1.44)

400 = A pe) 8K 4o
Note that A’ is in the —z direction, so

2GR Xy = —LGEKX)]yo = - 2z
7'=0 az 7'=0 I:(X_Xl)2+(y_y,)2+zz:|3/2

So
Zy a p2r p'dp’dqﬁ'
N [x=x)?+(y-y)?+22]"

where x'=p’cos¢’,y’ = p'sing’.
c) If p = 0, orequivalentlyx =y = 0,

b(2) = VII pdpd¢3lzzzvjan—P

[p? +2 0 [p?+22]%

- ( z- J@%+12?%) )_ ( ; )
6@ =2V| - -V 1-—2
z,/(@%+12?) (@ +12?)

VY p'dp'de’
() = ZEVIOIO [(ﬁ_ﬁ/)2+22]3/2

d)




In the integration choose the x —axis parallel to g, then g - p' = pp’ cos¢’

/d /d¢/
VI IO [p? +pp i) p'+7

I Iz” p'dp'dg’
27[ r3 /2 2?) >/ :|3/2
We expand the denominator up to factors of O(1/r 4), ( and change notation

¢~ 0,p > a,r? - ﬁ)
2r
Z adad@

3/2
r2 i|

3/2
]

Letr? = p?2+7%, s0

where the denominator in this notation is written

1
[1+ B2(a? - 2pacosh)]¥?

or, after expanding,

_z V[ (. 3p2.2 2 15 pa 4 _ 15 pa 3 15 p4 2 2 Ane2
) = £ Oadajo (1 3 p2a? + 3p2pacost + 12 pla* - L3 p4a®peost + L3 p4p2a2 cos 0)do
Integrating over 6 giv&s

d(X) = 27r r3j (27r+ 15ﬁ4a47r 3 a2n+%ﬁ4p2a2n)da
Integrating over « yields
(iﬁ“nae - %a“ﬁzn + %a“ﬁ“pzn + naz)

Va? 3 a? 5( a'+3p2a’
~ Vo 1 41_3_ & oSl *opa
o9 2(pz+22)3'2[ 4 i) 8( (p%+22)°

or



2.8

The system is pictured below

a) Using the known potential for a line charge, the two line charges above give the potential
o(r) = =L 2 rT’ =V, aconstant. Letus define V' = 4rgoV
27

Then the above equation can be written

i

2 ! !
(rT) —erorr?=rert

. o 2\2 .
Writing r'2 = (r - R) , the above can be written

2 !
(? +o—R ) _ _Rer
(e7 - 1) (e —1)?

The equation is that of a circle whose center is at -2—F—, and whose radius is a = —£¢*—
ez -1 (e2-1)
b) The geometry of the system is shown in the fugure.

!

d; R
a o
- A
d
Note that
d=R+d1+d2
with
d=—R— d= &
and

Forming



2 . 2 v 2
d2-a2-p? = (R+ VR + B ) —(—Be\z/_l ) _(—Re 22 )
erl g7t (e -1) (e -1

Rz(evivb + 1)
d2—a2_p? =

@2 - e -1

or

Thus we can write

() e

e 7 + Vh-V -(Va-v)

d2—a2-p2 _ et ie 7 =COSh(V/ Vi
21

2ab B va Vb 2

or

Va—-Vp _ 1 1 d?2—a?-Db?
A - 27eo cosh ( 2ab )

QL 2 2reg

. . _Q _ _ _
Capacitance/unit length = L~ Va-Ve Va-Vo  codr 1( pr az b2 )

C) Suppose a? << d?, andb? << d?, anda’ = yab, then

C _ 2reg _ 2reg
L -1{ d?-a?-h2 _1{ d?(1-(a%+b?)/d2)
o (4525) oot (S )
d?(1- (a® + b?)/d?) 2reol
-1 . 0
cosh ( 2a” =TcC
d?(1- (@2 +b?)ld?) | =& . o 2meol
( o =5t negligible terms if = >»1
or
In d?(1- (a® + b?)/d?) _ 2neolL
a”? C
or
C _ 21e0
L d2(1-(a2+b?)/d?)
In(—a/2 )
Let us defind a? = (a2 + b?)/d?, then
Q _ 271'80 _ €0 4
3 In(d2<1_”2> ) annd—; +27r| 2d/22 a?+ O(a?)
a/2 a a

Thefirst term of this result agree with problem 1.7, and the second term gives the appropriate
correction asked for.
d) Inthis case, we must take the opposite sign for d? — a2 — b?, sincea? + b? Y d?. Thus

C _ 2rgg
L -1( a?+b2-d?
cosh™( 2 2o )

If we use theidentiy, In(x + ¥x? — 1) = cosh™1(x), G.&R., p. 50., thenford = 0



C _ 2reg _ _2ngo

n(5+52-)  In(3)

L
in agreement with problem 1.6.
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The system is pictured below

a) We have treated this probem in class. We found the charge density induced was
o = 3goEqcos6
We also note the radial force/unit area outward from the surface is 62/2¢o. Thus the force on the
right hand hemisphere is, using x = cos@

_ 1 (25,48 _1 20 o2 [Py - 1 20 24 - 9 A
Fo= e [o?2- @ 5e—(380E0) 2R jox x = 51— (3s0E0) 27 R4 = § meoERR

An equal force acting in the opposite direction would be required to keep the hemispheres from
sparating.

b) Now the charge density is

= 3soE0(x+ L)

= 3g9EoCc0sO + Q = 3ggEoX +
o = Stoko A eo=0 127760 EoR2

_ Q
R? 47R?

-1 25 .43 = 1 29 02 ! Q )2
F, = T IG z.dd = T (3e0Eo)*27R on(x+ oo B dx
Thus

_9 op2 . 1 1 A2
Fz— 471'80E0R + 2QE0+ 32807Z'R2Q

An equal force acting in the opposite direction would be required to keep the himispheres from
separating.



2.10

As done in class we simulate the electric field Eq by two charges at

o = 3eggEpcoso

a) This charge distribution simulates the given system for cosé >"0. We have treated this probem
in class. The potential is given by

p(X) = —Eo(l - ‘?—s)rcose
Using
o = —Soi(ﬁlsurface
on
We have the charge density on the plate to be
Oplate = —80i¢| -0 = gobo| 1 - a
plate az Z= p3

For purposes of plotting, consider % = (1 - %)

X

17

0.8

0.6 7]

0.4

0.2

2 4 x 6 8 10

Oboss = 3€0EgCOSO =

i Oboss
For plotting, we use2- = cosd



0.8

0.6

0.4

0.2

b)
1
q= 38()E()27l'a2 -“O xdx = 371'80an2

¢) Now we have

_ .84 _—q| (@-a) (d*-a%)
7ot 4”L|a_a|3 a|§+a|3:|

Qind = 27ra2(;—7?) J';|: (d? - a?) 3 (d? — a?) :|dx

— —13 N —1 3
alg-d|” ald+d|

g @1 1 1 1
m 2 Lelde Jare v Jaed

Gina = g8 d___2 = —q GOl
n 2 d d2_a2 m d a2+d2
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The system is pictured in the following figure:
|

¥
Pt
X
R

a) The potential for a line charge is (see problem 2.3)
__A To
$(r) = 2reg In(-)

Thus for this system

Mo : Mo
o- g ) 7 )

To determine 7’ and R, we need two conditions:

) Asr —» oo, wewant¢ - 0, soz’' = 1.

)¢ =b )=¢r=-b )or

(&) - (k)

(%) - (35%)

This is an equation for R" with the solution

The same condition we found for a sphere.
b)



rz2+ b _orb cos¢
$() = =Y
47rso r +R 2chos¢

asr — oo
1-2b%cos¢/rR7| ¢ 2 o
¢® - 47r80 [1—2Rcos¢/r ]_47;80 '”[1 r® R)COS¢]
Using
In(1 +x) = x— %xz + %x3 +0(x*)
2 2
o) = —5 = R(b —R?)cos ¢
c)

r24+ 2 _ork cos¢
- e O __t 0
o = ~togrflb =~ 5 '”[ r2+R2 2chos¢ J i
r=

il ot
27b | y? +1-2ycos¢
=[1‘—y2},fory=2,4,gives

y2+1-2ycos ¢
1-y?
y2 +1—2ycos¢

where y = Rib. Plotting o/{ 5=

27b

a(y) =

9(2),9(4) = - 5—4?:os¢’ 17—%5cos¢

0.5 1 15 2 25 3

-0.57]

-1

-1.57]

-2

-2.57]

-3~

d) If the line charges are a distance d apart, then the electric field at = from ¢’ is, using Gauss’s law

7:/

- 2reod

The force on 7 is TLE, ie,

_ 'L _ %L ) _
F= Pnecd Precd’ and the force is attractive.
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The system is pictured in the following figure:

V &

a) Notice from the figure, ®(p,—¢) = ®(p, ¢); thus from Eq. (2.71) in the text,

B
O(p,§) = 8 + ) anp" cos(ng)
n=1
3n/2
_[ y ®(b,¢) = 2ray = 7V1 + V2 > @y = Vlzvz
—-rl2
Using
3n/2
I / cosmg cosngdp = &pmr
—nl2

Applying this to @, only odd terms m contribute in the sum and

_2Mi-Vy) o gyma
M mb™ (-1)
Thus
2(V1 - V. impmeimy
(p.g) - Vp¥e  2NZVe) iy 57 02T
modd
Using
XM (1+x) ]
22 X+ = In[(l—x)
modd
and
Im In(A+iB) = tan"}(B/A)
we get
_ 22 cos
a(p,¢) = gz LA ) tanl(—“ i )
(1-%)
as desired.
b)

o= —SO%Q(MM



o - g Vi=V2) o tanl( 2 cos¢ )
T 0 p?
P (1-%) /.
b2 + p2

—2b%p? + p* + 4p2b? cos?¢

V1 Vi -Vs

o = ~2% rbcosé

-V
—=2b(cos¢) b lp-b = —€0




2.22

a) Using the fact that for the interior problem, the normal derivative is
outward, rather than inward, we have the potenial given by the negative of Eq.

(2.21), which takes the form, when § =0 and y = ¢’

\% 2 _ 2 9 1
B(z) = — G 7r/ 1 —_— 1 o | d
4w 0 \ (a?+ 22 — 2azz) (a? + 22 + 2azz)

where I've replaced cos@’ by z in the integral. The integral yields

5(z) = L2 ( _ <¢_T>>
=235 () 5ow)

which agrees with Eq. (2.27) if cos6 = 1.
b) For z > a, we have, using Eq. (2.22)

0 (22 — a?) Va? a?
Ez =—VIl—- —ZL = Ez = — 3 i
0z ( zvVa? + 22 =) (a2 + 22)? < + z2>

For |z| < a,

2

22 (g2 +22)%

oV — 22 %4 2 343 4 g5/42
By 2Val, @-2A))\_p _ V(. a, 3t/
0z z ava? + 22 a
in agreement with the book. Expanding the second form in a Taylor series
exapansion about z = 0 gives

3 21V2_§K4+0(z6)

B.=——vV4+=2
% " 8a° 16w
which shows E,(0) = —2-V, as required. Also, from the second form
1%
E.(a) = —— (-1+v2)

From the first form, on the outside, we get

a

E,(a)



c) First look at a plot of the field lines:

Electvin Feld L et

Next, look at E (z) in the region (-2a, 2a). I will make the plot in units of

B(z) = ﬁ (3 + ;—2>
B(2)

0 18 16 g -l4 12




0.5 7]

-08 -06 -04 -02

02 04206 08

0

B
1 1
E(z) = =3+ =
(14 22)2 22
.
15
N
0.5
0 12 VY 18
057




2.23

The system is pictured in the following figure:

Z

A e

g \\-ya ¥

xﬂ

a) As suggested in the text and in class, we will superpose solutions of the form (2.56) for the two
sides with V(x,y,z) = V.
1) First consider the side V(x,y,a) = z :

®1(xY,2) = i Anmsin(anX) sin(Bmy) sinh(y nm2)

n,m=1
withap = 2, Bm = 2, yom = L4n? + m?. Projecting out Ay using the orthogonality of the
sine functions,

16V
sinh(y nma)nms 2
where both n, and mare odd. (Later we willusen =2p+1, m=2q+1)
2) In order to express @ (X, Y, 2) in a form like the above, we make the coordinate transformation

X =y,y=x27=-z+a

Anm =

So
(I)Z(X!yiz) = (I)l(xl!ylizl) = (Dl(y,X,: Z+a)

DX, y,2) = D1(X,Y,2) + D2(XY,2)
b)

p(a,a ay_16-V - (=P
2'2'2 n? = (2p+1)(29+1)cosh(ym2)
where | have used the identity
. B . Y nm@ Y nm@
sinh(ynma) = Zsmh(T)cosh( )

2
Letf(p,q) =Y. C
P PO (2p+1)(2q+1) cosh( J(2p+D) 7+ (2a+D)” £ )




P9  f(p.a) Error Sum

0,0 0213484 44% .214384

1,0 -0.004641 2.13% 0.20974

0,1 -0.004641 0.013% 0.20510

1,1 0.0002835 0.015% 0.20539
Thefirst three terms give an accuracy of 3 significant figures.

o(2,2,8)- %v = 0.33296V
Oa(3,2,2) - 2v=-033..V
c)
o(X,Y,a) = —80%%:3
o(x,y,a) = — 15‘20 \Y;
- 15‘20 \Y i sin(anx)sin(ﬁmy)[ (CO::&;”‘”:;)_ 1 ]

n,modd

o(x,y,a) = —%V Z sin(anx)sin(ﬁmy)tanh(y”Tma)

n,modd



More Problems for Chapter 2.

Problem 2.2
(a) Let the point charge g at 7, and the image charge ¢; at 7;. The potential for a point " is

B(7) = 1 q 1 G
T 4me |7 — 7| dmweg |7 — 7

On the surface of the sphere, the potential is zero every where, i.e., ®(r = a) = 0. This is only possible if

a a2

G =—q— and Ty = —.
/rO /rO

The potential inside the sphere is therefore

1 q 1 a q
Ameg |F— 7| dmeg 7o |7 — 0?7, /12]

2(7) =

or

a() = = :
7) = -
Ameg " \/r2 +12 —2rrocos B /122 + a* — 2a%r7, cos 3

where § is the angle between 7 and 7,.
(b) The induced inner surface charge density

2

o _q a 1_?_3 _ q a(az—rg)

0=€0—|regq = Sl - _
o Ir=a Ama? r, (1“‘?—;— Ticosﬁ)z*/z Ama? (a? + r2 — 2ar, cos 3)3/2

Note the total charge on the inner surface is

j{ada: —q (a>70)

There is no charge on the outer surface.
(¢) The force on charge ¢

P 1 q-q To—Ti _ ¢ are F_o
dmeg (1o —14)2 |To — T3] 4mwep (@2 —712)2% 71,

(d) If the sphere is kept at a fixed potential V:
(a) The potential inside is raised by a constant V'

(b) No change to the inner surface charge density, but there will be uniformly distributed charge on the outer
surface.

(¢) No change to the force.
If the sphere has a total charge Q):
(a) The potential inside is raised by a constant equal to the potential of the sphere.

(b) No change to the inner surface charge density, but there will be Q) +¢ uniformly distributed on the outer surface.



(¢) No change to the force.

Problem 2.4
(a) The force on the point charge ¢ is

1q2

R3(2d2 — R?) d
Ameq d?

b= d(d? — R?)2 I3

[1
At the point where F' = 0, the force changes from repulsive to attractive. Solving

2 3(942 _ P2
pogo L@y Fee-_R)
dmegy d? d(d? — R?)?

one gets (with the help of the Mathematica)

| —

d=>(1+V5)R

~— DD

Therefore at a distance smaller than d — R = %(\/5 —
sphere.
(b) When the charge is close to the surface d = R+ a ~ R. The force

R ~ 0.618R from the surface, the charge ¢ is attracted to the

R3(2d% — R?) 1 ¢ R® 1

2
F=_11 |~
d(d% — R2)?

T Adrweg &2

1— S —[l— ~— =

[ dmep RZ[ R((R+a)? — RZ)Z} 16mey a?

(¢) The limiting force on the point charge ¢ is determined by itself and its image charge and therefore is independent
of the charge on the conductor. However, the location where the force changes between repulsive and attractive is a
function of the charge on the sphere.

For ) = 2q,
1 ﬁ[ B R3(2d42 —Rz)}
 dmeg d? d(d? — R?)?

=90

Using for example the Mathematica program to solve the above equation, one gets d = 1.4276 R, i.e., the switch point
is a distance 0.4276 R away from the surface.

For Q = 34,
L L a, RBee-R)
dmegy d? d(d? — R?)?

=90

Again, with the help of programs like Mathematica, one gets d = 1.8823R. The switch over is a distance 0.8823R
away from the surface.

Problem 2.5
(a) The electric force on the charge ¢ is

The work done to the charge

o0 . . o0 2 e’} dr! q2a
—— | F.al= F’d’:q“/ -
w /T /T () dr dmeg J. 31 —a?/r?)2  8mwep(r? — a?)

Alternatively, we could consider calculating W from the energy conservation:

Ug+Uy Uy +W=Uy = W=-Upy—=Uy

where U, and Uy are self energies of the point charge g and the induced charge on the sphere and Uy is the interaction
energy between ¢ and the induced charge at 7. The problem with this approach is that Uy is difficult to calculate.



(b) The work done to the charge

L q e , O , ¢’a 1 ¢a  qQ
W=— F.dl=— —dr’ — — __dr']= — S )
/T dreg [ , T2 roa /T r(r'2 — a?)? d 8meo(r? — a?)  Ameg [27“2 TS }

On the approach of energy conservation, see the discussion above.

Problem 2.9
(a) The surface charge density on the sphere is (Eq. 2.15)

o = 3¢gFycos

The electrostatic pressure

o2

P=_—7
260 n
The total electrostatic force on one of the hemisphere
/2 2 0,2 9
F= /Pzda = az/ sin 9d9/ dp— cos 0 = ~mwa’eq 152
0 0 2¢0 4

(b) The surface charge density on the sphere is

Q
4Ama?

o = 3¢ cos +

The total force

1 Q2

32meg a?

5 /2 ) 27 0.2 9 5 ) 1
F= [ Pda=a sin 0d0 dp— cos = —ma“eo B + = FoQ +
0 0 260 4 2



More Problems for Chapter 2

Problem 2.10

The problem is very similar to a grounded conducting sphere in a uniform electric field Ey, the case discussed in
Section 2.5. The region between the two plates is identical to one of the half spaces of the above mentioned problem,
where the half spaces are defined by a plane perpendicular to the field and cut the sphere into two hemispheres.

(a) In a spherical coordinate system centered at the origin of the boss with +z pointing to the other conductor, the
potential between the two plates is given by Eq. (2.14):

o3
B(r,0) = —Fo(r — 7“_2) cos
The surface charge density on the boss:
D

ab(a, 9) = GOErlr:a = —6066—T|T:a = 3¢g i cos b 0<O< g

The density on the plane:
T 100 a®
op(r,0 = 5) =0l |o—r/2 = —€0Folo—r/2 = 60;%|0:w/2 =eplo(l — r_3)

o,/(e,Ep)
r

[EEN
I

4 w2 32

(b) The total charge on the boss

/2 27
Q= / opda = 3eg Eya® / cos ) sin 0df / dp = 3meq Eoa®
0 0

(¢) The boundary condition ® = 0 on the plane and the boss can be meet by placing three image charges, one —ga/d
at 2 = a?/d, one +qa/d at 2 = —a?/d and the third one —q at 2 = —d. The induced charge distribution on the boss
is the sum of those induced by charge pairs (¢, —ga/d) and (—q, qa/d):

o(0) = 01(0) + 02(0)
where 01 and oy are given by Eq. (2.5):

q a(d? — a?)
4ra? (a? + d? — 2ad cos 0)3/2

o1(0) = where 0 <6 < g due to charges (¢, —qga/d)



rock
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                                                                             More Problems for Chapter 2


B q a(d? — a?) T
o2(0) = +47m2 (@ = @ — Zadeos 072 where 5 <8 <7 due to charges (—q,qa/d)

The total induced charge on the boss

(@ — a?)2 2{/ﬂ/2d9 /7T a0} sin 0 a d? — o2 )
a(d® — a*)2ma — = (]l — ——— =
o rs2 (a2 + d? — 2adcos0)3/2 1 dvd? + a?

q = /(01 +o3)da = —

4dma?

Problem 2.11
The electric field and potential due to a line charge are

Blod) = —22 @(p¢)=C—

1
2meg e

where C, 7 and p are, respectively, a constant, the line charge density, and the distance to the line charge. Note that
the potential does not depend on z (along the axis).

(a) The image charge has to be in the plane formed by the cylinder axis and the line charge. Choose a cylindrical
coordinate system with the origin at the axis of the cylinder and the direction from the origin to the line charge as
the = axis. In this case, the line charge is at © = R. Let 7/ and R’ be the image line charge density and the polar
distance to the axis, the potential at a point (p, ¢) is given by

T !
0] =&y ———1Inr— In7’
(p,9) 7 96 nr 2meq nr

®( is another constant. 7 and 7’ are distances from the point to the line charge 7 and the image charge 7':

r=+/p2 + R2 — 2pRcos ¢; 7' = \/p?+ R — 2pR' cos ¢
Therefore

1
®(p,9) = @0 — —{r In(p® + R? — 2Rpcos¢) + 7' In(p* + R — 2R pcos ¢)}
0
At the surface of the cylinder (p = b):
B(b,¢) = By — ﬁ{T In(b? + R? — 2Rbcos ) + 7' In(b? + R"? — 2R'bcos ¢)} = Constant
0

independent of ¢. This is only possible if

!

T = -7
b+ R? = A(b®+ R?)
bR = A(bR)

A is another constant. It is easy to determine R’ from the above equation to be R’ = b?/R. Therefore, the line image
charge is at © = +b?/R with a line charge density —.
(b) Potential at any point (p, ¢):

T { p* + R? —2Rpcos ¢ )
dreo  Lp2 + (b2/R)2 — 2(b2/R)pcos ¢

(I)(pa(b) =dy —

As p — o0, ®(p, ¢) — Po. Since the potential vanishes at infinity, one gets ®g. The potential at a point (p, ¢):

T p? + R? —2Rpcos ¢

(p, ¢) = " e 1n{p2 + (12/R)% — 2(b2/R)pc0s(b}

Note that the potential on the cylinder surface is




For a point far away from the cylinder,

p* +R? —2Rpcos ¢ . 1—=2(R/p)cos ¢ N1+2b2—R2
p? + (12/R)2 — 2(b2/R)pcosd 1 —2(b2/Rp)cose Rp

Cos @

Therefore the asymptotic form of the potential far from the cylinder:

b? — R? 6} T b —R?
CcOs ~ —
2meg  Rp

cos ¢

,
B(p, P) ~ “ e In{1+2

(¢) Since the cylinder has a constant potential, the potential inside the cylinder must be the same constant (see the
next problem for proof). Therefore, the surface charge density on the cylinder

¢ 8_(I)| -_T R? -7
O0p""" T T 2w b(b2 + R? — 2bR cos ¢)

o) = €obplp=p =

Note that the total surface charge per unit length

2
= /0 o(p)bde = —1

-2To/T

(d) The force on the charge per unit length:

72 1 I 72 R 7

ﬁ: E:— - = —
T ameo R—2/Rp  2meq R2— 12 p

where F is the electric field at the line charge due to the image charge. The force is attractive.

The Green function for the Dirichlet condilion
It is interesting to derive the Green function for the Dirichlet condition for the case of cylinder. The Dirichlet condition

®(b,¢) = 0 leads to @9 = ;= In(R?/b?). The potential at (p, ) due to the line charge T at (p', ¢') with the Dirichlet

. N 4meg
boundary condition is:

(007 B/ p)* = 2007 p)pcos(s’ — 9)]
b2[p? + p2 — 2pp' cos(¢/ — ¢)

The Green function is the potential at (p, ¢) due to a line charge with density 7 = 4dmweg at (p', ¢'):

p2p/2 4 bt — 2b2pp/ COS((b, _ ¢)
b2[p2 + p/2 — 2ppl COS((b’ _ (b”

D(p,p) =

4meg

Gp(p,¢,0',¢') = In{ }



Problem 2.13
Integrals and identities useful for the problem:

/2” de _ 2
o a%+b%—2abcos¢ |a—b|(a+b)

/ cospdg  tan '(bsing/vVa? — b?)

a2 —b2cos2¢ bva2 — b2
1
— tan lx =
de T 1422

(a) The cylinder can be viewed as a superposition of two cylinders with the following potentials: We can regard this
problem as a superposition of two problems:

©1(b,0) = (V1 + V2)/2

T T, Vi—V, T r. VoV
¢2(ba—§<¢<§)— 5 ¢2(b7§<¢<7)_ 5
The potential inside the first cylinder (see problem 2.12):
L [V +V v — p? Vi + Vi
(I)l(pa(b):Q_/ . 2 2 2 P ] d(b,: ! 2
T Jo 2 b2+ p? —2bpcos(¢’ — ) 2
The potential inside the second cylinder:
‘I)Z(Pa (b) = (I)Za(pa (b) + (I)Zb(pa (b)
where
Vi-Vp [T b - p? /
Doy (p, &) = d
200 0) = g /ﬂ/z P = Topeos(d —9)
‘/1 _ V2 3n/2 b2 _ p2 ,
D =— d
2(p:9) 4 /77/2 b2 + p? — 2bpcos(¢' — @) ¢
Let ¢" = ¢' — m, then
VimVa [7V7 v —p? ’
D =— d
2(p:9) A /, /2 02+ p? +2bpcos(¢” — o) ¢
Combining ®5, and $yp:
i—-Va, 5 /2 4bp cos(¢' — @) ,
D = b* — d
20 9) = = 0= )/ﬂ/z T+ 2 — P0G — )
(Vi — Va) 9 5 1 1 26p ., ' =7/2
= —bp(b* — p*)—5—<t — "
p p( P )pr(bg — pg) an {b2 — pg Sln((b ¢)}|¢ =—7/2
Vi—Vo . 2bp
= — 1(b2 — Cos o)



Thus the potential inside the original cylinder
i+ Vs . Vi—Va

_ 2bp
®(p, ) = ®1(p; $) + P2(p,¢) = — tan ™ { 75— cos ¢}
T b*—p
(b) Let o be the surface charge density, the electric fields just inside and outside the surface are given by Gauss’s law:
i °P7 p.-oF
in 260 pa out 260 p

Therefore,

. ﬁ o 260(V1—V2)
= 2B Ll iy = —260F, | pmp = 260 | pup = LT V2
o €0 p|/’ b € PlP b €0 ap |P b 7TbCOS(b

Problem 2.21
First of all, the Poisson integral solution is the solution of Problem 2.12, i.e., the potential inside a cylinder:

1 2m ; b — p2 /
(p,¢) = m /0 (0,6 )b2 + p? — 2bpcos(¢’ — @) 4@

Cauchy’s theorem is expressed using complex variable 2 where z = pe‘?. Let 2 be inside the curve C and F(z) = ®(z),

we then have
1 B(2')
®(2)=— ¢ —=d2’
(2) 2mi jq{ 2l —z §
Exploiting the hint, the image point of 2 is (b%/|2])e!® = b2/2* (here 2* is the complex conjugate of z) which lies
outside the curve C'. Therefore
1 B(2')
— ¢ ——d =0
i | o2t — b2/ :
Subtract this zero integral from the ®(z):

B) = o BN

27q I—z

For the Poisson integral problem, the curve C' is circle of radius b, 2’ is on the curve, i.e., 2’2" = b%. Using the identity

b2 /
o = :z/_z/z/*/z* — j_*(z* _z/*)
one gets
1 1 1 AP A A AR 2 A A W S A 72
2 —z 2=z —z 2 —zr |2 — 2|2 2| — 2

Plugging in to the potential ®(z):
1 22— 22 de
P2)= — B T —
(2) 2m’j§ (=) |2 — 22 2
In polar coordinate system, z = pei?, 2/ = bew/, therefore

dz’

22" =p?, =1, 7:id¢’

|2/ — 2| = p? + b% — 2bpcos(¢’ — @)
The potential inside the curve in polar coordinates

1 27 ; b — p2 /
(p,¢) = m /0 (0,6 )b2 + p? — 2bpcos(¢’ — @) 4@
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The system is pictured in the following figure:

Z

| ; P, (X)dx
The problem is symmetric around the z axis so

(r.0) = D _(Ar' +Bir-1)Pi(coso)
|

The A and B, are determined by the conditions
1)
! __2 [ -I-1
_[_1 d(a,x)P (x)dx = o1 (Ala +Bja™ ™)
2)
! __ 2 [ -I-1
I_l ¢(b,x)P;(x)dx = o1 (Alb" + Bjb™ )
Solving these two equations gives

1 1
A = b [ oo b [* go0m o0k

B = al+12|2;1 J‘l ¢(a, X)PI (x)dx—A|a2'+1
-1
Using
1 1
I ¢(a,x)P (x)dx = V j P (x)dx
-1 0

1 0 1
j #(b, )P, (x)dx = V j Pi(x)dx = V(~1)' j Py (X)dx
-1 -1 0
So

1
Al = ety VI - b)) [ Proo

1
B -t 2Ly [ pi(odx— At
0



Note that
1 1 1
_[ P (xX)dx = > _[ Py (x)dx
0 -1
forl even. Forevenl >0, j ; Pi(x)dx = 0. Thus we have

J ; Po(ic = 1; | : Pi(odx = 1, | : Ps(x)dx = —L

8
and
V 3 2 2 7 4 4
A=Y A =—3 v N S
0= M @) V@ ) A = gy Ty V@ D
— Lva_dy,—
By = 2Va 2Va 0
342 3 2, h2\a3 _ 3\va2n2_b+a
By = 3a?V-—3 _V = Sva2p2—Rta
1 4a 1@ -0 (@ +b%)a 7} a‘b S
Y APV | Y SRR v 2V VIS R AR VIV IV LIS -\
B; = 16aV a( 16(a7—b7)v(a +b)) 16Vab b

As b - oo, only the B, terms (and Ap) survive. Thus using the general expression for j ; Py (x)dx
given by (3.26)

6(1,0) = ¥ Po00 + 8Py - ZEPy00 +..... |

Let’s now solve the problem neglecting the outer sphere (since b — o) using the Green’s function
result
(2.19) this integral give, for cosf = 1

- V_,2 1 1
¢(r,0) 5> (1 P)[(l_p) (1+p2)]

with p = a/r. Expanding the above,
_V/ia,3a 1a }
o(r,0) = Z[V +2 7 g +oont.
Comparing with our previous solution with x = 1, we see the Green’s function solution differs by
having a B, term and by not having an Ao term. All the other higher power terms agree in the series.
This difference is due to having a potential at o in the original problem.




3.2 The charge distribution is shown by

o = Q4nR?

/

a) We see the charge distribution is given by
p () = NO(cos a — cos 0)6(r — a)

where N is determined by the requirement [ d3rp (7) = Q, or

_Q
p(F) = s f(cos @ — cos 0)6(r — R)
Expanding 6(cos o — cos §) in terms of Legendre polynomials,

f(cosa — cosf) = Z A P(cosb)
1

or 2l + 1 COS &
A= —— P/(z)dz
2 Ja
Using Mathematica 4, I get
COS &
P11 (cosa) — P_1(cos a)
P(z)dx =
/_ ) () 20+ 1

Notice for [ = 0 in the above, P_;(cosa) = —1.

_ Pi(cosa) — P_q(cos )
B 2

Ay

This problem has azimuthal symmetry, so we can write in general (when
r < R)

o(7) = Z Byt Py(cos )
!



where now 6 is the polar angle of the vector 7. Choosing 7 || 2,
=r#)=> Br'P(1)
!

On the other hand we can write

R)

(7= 12) = 1 Z Pyi(cosa) —

dreg 471'R2 2 |7 — |

1 Q Pi1(cosa) — P_1(cosa) r' R? /
= P (x)Py
Ameg 4 R2 2”; ) RI+1 dz P (z) Py (z)

Using ', dzPi(2) Py (z) = 526w

2l+1

Z Piy1(cosa) — P_y(cosa) !

20+ 1 RAH1

o(F=r2)

471'6 0

Then for general directions of 7,

l

ZPH_l cosa) — P_i(cosa) r
47‘('60 2

20+ 1 g Fi(cosd)

If 7is on the outside, we know that R and r are interchanged in the expansion

Pyii(cosa) — P_q(cosa) R
47r€0 2 Z 20+1 o Fi(cost)

b) By symmetry, at the origin the electric field is along 2.
B(0) = 2 (0)2 =
=3 =

— 3 0 1 Q(Py(cosa)— Py(cos a))z + terms that vanish

Bz 4Ameg 2 3R2
E(0) = _@ (1 — Py(cosa))
127T60R2

c) Consider the case where « is very small. Using our general expression
for ¢(7), we see we need to expand Pj41(cosa) — P,_1(cos ). (I will keep the
leading terms.)

P(eos) = 3 S A@leas (& = 1)" % R + o A@leas(o D)

((x—l):\/1—62—1):—%62—{—0(54)

P,_;(cosa) / dod cos Or'?dr' P(cos 0)§(r' —



where € = sin a.

1d
Pcosa)=1— 553(1)52
e (d d e2(21+1) (1
Pi(cosa) — P_1(cosa) = 5 (Epl_l(l) _ %Pl-u(l)) _ ( : ) P(1)

where I have used Eq. (3.28) and these formulas apply for [ > 0.
So

Q 1 Qe rt Q 1 Qe?
= - Py(cos
) = TreoR  Tneg 4 ZRlH Weost) = 72 R " dmeo 4|R5 — 7

That is, the potential is just that of a uniformly charged sphere plus a point

charge _ Q(solld angle subtended by empty cap) located at the pOlIlt Rs.
The electric field for this pomt charge is 0bv1ous1y given by

—1 Qe? (7 — R2)

E(f) =
=t 4|Rz — i

If the charge were located on a small cap at the bottom of the sphere, ie, if
a — 7w — (3, then clearly in analogy with what we have already done, we can see
that it would act like a point charge = (Q{&olid ansle Sumended by cap)

and located at the point —RZ. Then the potentlal is

1 Qe?
") = fres TRE 7

where now € = sin g.

1 Qe (7+ R2)

E() =
") = Tres 4Rz +7P




3.3 The system is described by

<

a) We will calculate the potential when the field point is along the z— axis,
then generalize to any Z.

1 R _opdp’ odp
T =28)=—2
(,25(:1: zz) 4meg g 0 22 + pl2 250 \/R2 _ p/2 \/22 + p/2
E tan™ (;)

_ c
where I actually mean the absolute value of z here, and where o = T

If 2 =0, then ¢ = V, 50 (}€7) =V, or € = #2¥ Now if 2 > R

2
™ z
Now R . . )
-1 _ 3 5 7

which we generalize
o= WS LU (BYT
o o 2n+1\ 2

But in general

N (%)lHPl(l)

l



Thus [ = 2n, and in general

2V & (=1 R\
¢= — Z o +) - (7> Py, (cos )
n=0

b) Ifr < R,

o(%) = f: AyrtPy(cos 8)

=0

At r = R, the two forms should be equal, so

2V (—1)"
AR ="~ 7
R T 2n+1

with | = 2n, as before.

=2 5 I (2" o

4 R
C=QJV = 60V27r/ _ P 4R
0

TV /R2 — p2



34

Slice the sphere equally by n planes slicing through the z axis, subtending angle A¢ about
this axis with the surface of each slice of the pie alternating as +V.

$(r,0,0) = D Amt'Y(0, )
I,m

SO
Am = - [ dAYT0.9))"9(@.0.9)
Symmetries:
Ai-m = (—1)m(Alm)*
¢(r.0,¢ +2A¢) = ¢(r,0,9)
where
A = %—f‘
Thus
m = +n, and integral multiples thereof
¢(_?) = _¢(?)! n=1
$(-T) = ¢(r), n> 1
Since
PYIm(G!(b) = (_1)IYIm(0!¢)
Then

lisodd forn =1; lisevenforn>1
Thus we only have contributions of | > n. Using

Am = 2 [ dAYT0.9))"9(@.0.9)

The integral over ¢ can be done trivially, since the integrand is just '™ leaving the desired answer
in terms of an integral over cosé.

n = 1 case: | am going to keep only the lowest novanishing terms, involving A;; and Az_;.

¢ = r(AllY% +A1_1Y11) = r(AllY% + (AllY%)*) =2r Re(AllY%)

vl — _‘/g(l _ x2)12gié
Au =% %V[I:(l - xz)l’zdx] UO eibdg — jz e—i¢d¢]



_ 2r | 3 _ 3 Gnoeid | | = 3 venga
0] 2rRe[( a | Br V)( B snfe )} ZaVsneanﬁ

From the figure

) 9,\
s B

we see
sinfsing = coso’
So

_ 3 r_y[3L /
¢ = S-Vcoso v[ 3 LPi(cost) +..... }
The other terms, for | = 2,3, can be obtained in the same way in agreement with the result of
(3.36)



3.6 The system is described by

&

X

o
a \

-

a) From the figure, we can write

o~ q 1
@) = ey Lf—m |f+a|]

And using the familiar expansion of |5£&. , this expression can be written

l
6@ =73 o (52) 1A6) - itn — )
1 >

4deg s

 4meg >

1
6@ ==Y = (—) (1+ (=) A (o)
1 >

This can be written in terms of spherical harmonics using P;(0) = /5757 Y,°(0, ¢).

b) We are given r > a, so

l
6(%) = 2 zi<’“—<) (1+ (=1)"1) A(6)
l

4A7e s \T>

¢ (%) = — Z% (%)l (14 (-1)"*) A(9);a— 0 = 47:_13:7_2 Py(6)

__ pcosf
T dwegr?

¢ (%)



c) The electric dipole is the particular solution, and ¢, is the homogeneous
solution which is a solution to Laplace’s equation: by superposition,

¢(f)=¢p+¢0

_ pcosd
 Amegr?

¢ (2) +ZAH"IPZ(9)
]

The boundary condition we must satisfy is that ¢ (|Z| =b) =0, so

pcosf I
A P(0) =
4megb? +Xl: ' Fi(6) =0
0, 1#1
— A} =
: _47r50b3’ I=1

., _ pcosb l_i
¢(@) = dreg (1‘2 b3>



3.7

a) We first work the problem in the absence of the sphere, using the

superposition principle,

1 2 1

O~ i e

We know . .
r

Frama 2o (52 Ao

where 7., 7« are the larger, smaller of a, r respectively and #-(£2) = £ cos 6.
Since P;(—cos ) = (—1)'P;(cos 6)
= Z < ( )l—@>Pl(cos€)
47r€0 = T

Asa — 0,
@) — 47r€0 Z ( (d)l ‘57an) P, (cos ) — 472353?“3 P, — 27&?07“3 Py(cos9)

b) We can write the general solution as the sum of a particular and

homogeneous part ¢ = ¢, + ¢y, where V2¢p

—p/eo and V¢, = 0. Clearly,

we can take as ¢, the solution of part a) and choose ¢, to satisfy the BC’s.
The non-trivial solution is in the region r < b, where ¢, = >, A7 P(cosf). At

r = b, we must have

(¢p + ¢0) |r=b =0=

47!'60 Z

l even

thus
0
A= g g }
52T 27eq
l1.7>a
N 1(2)’_@
¢(w) 2meg Z (r r T
_leven
2.r<a
5 4 1(1)’_@
9() 2meg Z <a a T
_l even

l odd

>

! even,>0

>

l even,>0

l even, > 0

>_
>_

al

2l

al

B2+

~

~

< (a)l 6l0>F’l(coS9 +ZAlblPl(cos9)

P, (cos9)

P (cosb)



As a — 0, the potential is dominated by the lowest non-vanishing term of
expression 1.:

$(@) = — (a—2 - “—2r2> P (cos )

T 2meg \ 3 B
.__Q r?
= 1—-— | P
(@) 2meqr3 )2 (cos 6)



3.10

This problem is described by

z
// B V
F \—_—/
L
T
+ [ TN
[ y

a) From the class notes
; n )
(p,2.¢) = Y _(Ansinve + Bn, cos\/¢)|v(%) sm( N2z )

nv

where
_2 1 Ay
An = L Iv(n%b .“0 .“0 V(¢’Z)Sm( L )Sln(v¢)d¢dz, 1% ZO
_2 1 (v . nra
Bnv = 7L T, (=2 _[0 _[0 V(¢,2) sin( L ) cos(ve)dedz, v ®0
_L# L p27 . nra -
B = L |, (nzb .“0 -“0 V(¢’Z)Sm( L )d¢dZ, v=20
V( L )
Noting

e

U?’f sinv¢d¢—j‘fnsinv¢d¢} =0

2
we conclude A,, = 0. Similarly, noting

e

[F_ C°5V¢d¢—fcosvrﬁd¢} = g(r;i)rln m=0,12,....

where I’ve recognized that v must be odd, ie, v = 2m+ 1. Also

L
ine NIZ _ 2 _
jo sin(B2)dz = b, 120,12,
where again I’ve recognized that n must be odd, ie, n = 2l + 1. Thus
B _ 16(-1)"V
nv —

2 ome (22) (21 + 1)(2m+ 1)
b) Nowz = L/2, L 33 b, L 33} p. Then from the class notes



Lo (BALIL L [ @+ Drp ]mﬂ

Tm+2) 20
Also
Sn|:(2|++)n:| — (_1)I
SO
D(p,z,¢) = Z 16(-1H"mv (ﬂ) 2m+1 cog(2m+ 1]
PeP T R DemT 1) \b
Using
tan~1® = I ﬁzrll (_1)I
)
. (—1)!
FRARCORDIE
-0
SO

wzo- ¥ T

(£) ™ cosi(2m+ 1)¢ ]

Remembering from problem 2.13 that

S ()™ cosiam+ 1) - %tanl[%g?}
b2

m

we find

Pl
O(p,z,¢) = %tml[m :|

(1-%)

which isthe answer for problem 2.13.



3.12 The system is described by

a) From Eq. (3.106)
D(p,p,2) = i /oo dke™** J, (kp) [Am (K) sinme + By, (k) cosmg)
m=0"0

where from Eq. (3.109),

g:gg} - %/000 dpp/02"d¢v (0, 9) Jm(kp){sinm¢

cos meo

where we use %BO for m =0.
b) Using cylidrical coordinates, with the origin at the center of the disc, then
we have p = 0, and can use the small argument expansion for Jy,(kp)

T () pmo = 1% +O((kp)?) = bmo

1 oo
®(0,¢,2) = 5 / dke™** By (k)
0
And, using Mathematica 4,
Bo(k) = 2kV / dppTo(kp) = 2KV 1y (ka) = 2V ey (ka)
0

Thus, again using Mathematica 4,

o0 Vz24+a?2 -2z ( z )
®(0,6,2) =Va | dke e Jy(ka) =VELIE 2 _y(1- 2 __
0.6:2)=Va [ ke tha) = VT N

c¢) We notice that for this V(p, ¢), which is independent of ¢, that all A, (k)
vanish, and that only By is nonzero. Again

Bo(k) = 2kV / dppTo(kp) = 2KV % Jy(ka) = 2V ey (ka)
0

®(a,¢,2) =Va / b dke™** Jo(ka)J1 (ka)
0



Using Mathematic 4,

/0 "~ dke*% Jo (ka)u (ka) % <1 - %K(k))

where k = \/Zg“w, and the complete elliptic integral of the first kind is
defined by
/2
K(k) = / __de
0 1—k2sin?
Thus

(a, 6, 2) = % <1 _ %K(k))



JACKSON 3.15
SOLUTION - PART A

The Green’s function can be expanded as:

G($7 l'l) = f: f: An,meim(ZS sin <%> R(p)

n=1m=—o0

Inserting this into the differential equation for the Green’s function:

ViG(x,2') = —4mé(x — o)

multiplying each side by e™"™¢ and sin (%) and integrating over z and ¢ gives:

L/1d d 2 252 .y N §(p— o
An m277_ ——P—R - m_ + nr R)= —47T€_Zm¢ sin nre (P P )
’ 2 \pdp" dp p? L? L p

If

then

1d dR m?  n’r? 5(p—p

——p— — — + — R = _M

pdp” dp p L
For p # p', this is the equation for the modified Bessel functions I, ("L—”p> and
Ky, ("L—”p> Ky — 0 as p — oo and I, stays finite as p — 0. Thus if p < p/,
the R « I, (%p) and if p > p/, the R oc Ky, ("L—”p> To maintain the symmetry
between p and p',

nw . /n7w
ot (TF0<) Kon (T o)

The proportionality constant is determined by the condition on the break in the



slope
ar i

dp>

P<,P>=p dp< pP< P>=p P

Using the identities

d

2L 1(2) = Dt + L ()
d
_QEKm(Z) = Km+1(2) + Km—1(2)

é = In-1(2)Kn(2) + In(2) Kim—1(2)

gives

nmw nmw
R=ln (Fo<) Ko (F0>)
LP< g\ LP>

Combining these all together gives the result in Jackson.



More Problems for Chapter 3

Problem 3.1
The problem is azimuth symmetric and therefore the general solution is

> B
o(r,0) = (Awr’ + Tﬁ) Py(cos )
£=0

o T

The coeflicients Ay and By are to be determined by the following boundary conditions:
O(r=10,0) = Vh( 2)

(r = a,0) = V(5 —0);
where h(z) is a step function, i.e., h(x) =1 if > 0 and h(z) =0 if x < 0. Applying boundary condition at r = a

B e
£ £ _
% (Aga” + prs, VPi(cost) =V h(§ —0)

Multiplying both sides with Py (cos 0)sin @ and integrating over 0:

T /2
By ) / Py(cos 0) Py (cos @) sin 0d) = V/ Py (cos 0) sin 0do
0

¢
2 :(AN + pYEST
¢

Note that
P, 0) Py 0) sin 0d = ———dyppr
/0 ¢ (cos ) Py (cos 0) sin 1 20
/2 1., (¢ —2)1
Py(cosf)sinfdf = (— =) —D/2___Z2 (4 = odd
[ pelcosoysinoan = () DRTTES (¢ =00
1 1 “+1
:/ Pg/(.’l})d.’l,‘: 5/ Pg/({L‘)Po({II)d.’L‘:(Sg/O (E’:even)
0 —1
Therefore

for /=0

for other even /¢

-1 9y £—2)!
—%) 2 %i%))! for odd ¢

==l

Cyp =

~

Applying the boundary condition at » = b leads to a similar equation:

B
x‘lgbZ + bé—fl = (—1)ZVCg

41 (_1)Zbé+1 41 (_1)Zaé _ bé
Bg = VCg(ab) 7@2Z+1 — b2é+1

b

Solving for Ay and By:
a
Av=Ver—rr



rock
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                                                                          More Problems for Chapter 3


Therefore

Vv a’ 4+ b2 3. a%+b?
AO - VCO - 57 Al = mVCI == _va
a* +b* 7 a0t + b
Ar=0i As= Ve = Vgt A0
a+b 3 a+b
BO = 0, B1 = —( b)zmvcl 4V(ab)2m, B2 =0
a® + b® a®+ b
BgZ—(ab)4a7_b7V63: 16V( )”‘b7 = By=0
The potential
1 3 a®+0b° a+b 1 7 a*+ bt a®+6% 1
<I>(7“,9) :V{§ — Z{m?‘—(ab)zr }Pl(COSH) 16{m7°3—(ab)4mr—4}P3(C089)+ ......
The limiting case of a — 0:
1 3 7
o(r,0) =V {5 - Z%pl(cos 0) - 1—6(%)3]33((208 0) + }

The limiting case of b — co:

Problem 3.4
Using integrals and identities:

sin(3a) = —4sin® @ + 3sin

This problem is not ¢ symmetric. The general solution is therefore

o0 £
(r,0,6)=> > (Aprt+ ZH)Ym(e ¢)

=0 m=—4¢
Since there is no point charge inside the sphere, the potential has to be finite. Therefore, By, = 0:

[e5S) £

Te(b Z Z Ang‘ }/Zm (b)

=0 m=—4£



However, the potential is invariant under ¢ — ¢ + 27/n transformation, i.e.:
, . m
¢t = mtIn/n) o cos(2—m) =1 =m=kn, (k=+1,%2,..)
n
(a) The coeflicients Agy, are to be determined by the potential at the surface:

®(r =a,0,¢) =V (—1)? for —j<¢< (j+1) where j =0,1,2,...,2n — 1

20+1(0—m)! [* 2n L
Amc%:/cbr:a,o, Y, dQ = —7/ medx/ ®(r = a,0,p)e ™?d
¢ ( 9)Y; \ " an xmy ) () | ( ¢) ¢

Note that
2n | Wl G v o
/ B(r=a,0,¢)c A=V Y / (~Dem0dg = —{e TN 1} Y (eI
0 j—0 Jim/n =0

In order for the above integral to be non-vanishing, m/n must be an odd number. In this case,

2n—1 2 Vn
Z (—e~¥m7/™)7 = 2p;  and / ®(r = a,0,¢)e” "Pdp = —4i—
0 m

=0

Furthermore, the associated Legendre function P}*(x) is even if £ +m =even and odd if £ +m =odd. Consequently,
Agp’s are non-vanishing only if ¢ and m are either both odd or both even numbers. Therefore,

f=even if n=even; £=odd if n=odd
Since m/n is odd, m = (2k + 1)n, k= 0,£1,£2,.... The potential inside the sphere is
1+ (_1)Z+n
®(r,0,9) = Z Z fAZ,(ZkJrl)n}/Z,(ZkJrl)n(ev(b)

E=—o00 £>|(2k+1)|n

The first non-vanishing Ag,,’s are A, ,, and A,, _,:

—4V 2n+1 1 [T! 4iV  [2n 41 H
- [ Pr@de A, =T e [ py
ar dr (2n)! J_4 ' ar 4 1

(b) For n = 1, the non-vanishing As,’s up to £ =3 are A1, A1, 1,431, A3 _1,A33, 43 _3:

v [3 [Tt iV [3m 4v 3 iV 3w
An = 87r/ Pl - ?; A= 27r/ z)de = a V2~ Au
—45v [Tt iV 4zV /84 [t iV
A31 = T 48—7'[' /71 P3( da: = 16 3\/ 217’[’, A37,1 = 47_[_/ 16 3 \/21 A31
A —_@,/L/H Pia)de = Y /35w Ag = @,/@/HP?’@W WV r— 4
87 7 3a3 V28800 ), ® 16a3 BTN T 78 ~ 1643 83

The potential expansion (up to the term £ = 3) becomes:

®(r,0,¢) = r(An Y + A1 1Yy 1) +7r3(As1Ys + Az 1Ys 1+ AszYss + Az 3Ys 3+ ...

=rAn(Yir — Y7)) +7° A1 (Yar — Yay) + 7% Az (Yas — Ya3)



where

3rr [ 3 ; ; 3Vr
_VEY — 94 o T 2 —igp _ ig _ 2V .
rAn (Y11 — Y7 = 2iV4/ 5 a” oy sinf(e e'?) 5 asm@sm(b

. 3 3
T3A31(Y31 -Y) = %\/21%2—33 i—i sin 6(5 cos? 6 — 1)(67“s - ew) = %VZ—g sin 0(5 cos? 6 — 1)sing
3 yeaey WV ﬁl 3D 300 _isg  ispy _ 39 ﬁ-z& :
r°As3(Ys3 —Y"33) = 2 \/357ra3 1\ 2 sin (e e?) = 64Va3 sin” #sin(3¢)

Combining the above three terms, we have

O(r,0,0) =V {g(g) sin 0 sin ¢ + é(£)3{3 sin (5 cos? @ — 1) sin ¢ + 5sin® Hsin(?)(b)}} + ..

=V {g(z) sin sin ¢ + 614(1)3{3sin 0(5cos® @ — 1) — 20sin® O sin® ¢ + 15sin® O sin (b}} + ..
a a

Translating to Cartesian coordinates (z = rsinfl cos ¢, y = rsin@sin ¢, and z = r cos 0):

3y 7 oy 22 r? y> y r2 22
P = — 24+ 03205 — =) —20%L +152 (= — =
(@9,2) V{2a+64{3a(5a2 a2) 0a3 - 5a(a2 a5)}
Rotating coordinates (z — vy, y — 2, and z — x):
3z Tz xr 2 23 z 2 g2
P =V<Ii-—-+ {325 - = —-20= +15—-(—= — =
(@:y,2) {2a+64 a( a? a2 a3 . a(a2 az)}}

Translating back to Spherical coordinates in the rotated system (z = rsinfcos ¢, y = rsinfsin ¢, and z = r cos §):

77

®(r,0,0) =V {gg cosf + 6_45{3 cos B(5sin? @ cos? ¢ — 1) — 20 cos® § + 15 cos (1 — sin® § sin* (b)}}

37 75 . 3
= {§ac089—§${§cos 9—§COSH}}

3r 773
\% {§EP1(COSH) - gﬁpg(cosﬁ) + }

agrees with Eq. (3.36).

Problem 3.7
(a) The problem is ¢—symmetric. The potential for an arbitrary point (r,0,¢) is

o q 1 1 2
®(r,0) = Ameg {r+ +7L B T}

where r; and r_ are distances from the point to the charge at 2 = +a and 2z = —a respectively:

r+:\/r2+a2—2a7“0089; r7:¢r2+a2+2arcos9
Therefore,

q 1 1 2}
D(r,0) = + _z
(r,9) 4meg {\/r2+a2 —2arcos  VrZ+a2+2arcosf T




To find the limiting form of the potential as @ — 0, we expand r; and r_ as:

1 1 1
Py(cosb)
\/T2+a2—2arcos9 7“\/1—2“cos9—0— Z “1

1 1 1 > at
= — — -1 £ P 0
V12 + a2 + 2arcosf T\/1+2%c0s9+(%)2 ;( ) AR ¢ (cos 6)

Using these expansions, the potential can be written as

0 2n

7 )\ 2 q
o {Z{l +(-1)f z+1PZ(COS 0) — ;} ~ e T2n+1p2n(cos 0)
£=0 n=1

(I)(Tv ) =

In the limit of @ — 0 while keeping ga? constant:

O(r,0) =

47‘['60

Q 1
{27“ Py(cos §) +2 P4(c089) } — %ﬁpg(cosﬁ)

(b) With the grounded sphere, the potential at (r,0,¢) are superpositions of those of the three charges and their
imagine charges. Denoting @, ®_ and ®( the potentials of charges at z = +a, —a,0 and of their respective imagine
charges, we have

B (r,0) = — a _ja
T e \/T2+a2—2arcos9 \/7“2 (b2/a)? — 2r(b?/a) cos

o (r,0) 1 q —qgb/a
—(r,0) =
dreg | \/r? + a? + 2ar cos 0 \/7“2 + (b2/a)? + 2r(b?/a) cos 0

. —2q 2gb/ro
o7, 0) = fimy 7,2 2 (2 2
ey ro—0 \/12 + 718 — 2rrg cos 0 \/7“ (b2 /r0)% — 2r(b2/19) cos 0

S B S L
2meo 7 100 by /1 + (rro/b)2 — 2(rro/b%) cos 0

g 1.1 oyl 4 11
_27%0{ + hmngcosﬁ }—27“0{() T}

For r < a, @4 and ®_ can be expanded in terms of r/a or ar/b:

g |1 1 1 1 s alrt
b, = - - - P, 0
+ Ameo {a\/1+(£)2_2(2)cosg b\/1+(‘;—§)2—2(‘;—§)0089} 4#60;{a“1 p2e+1 Z(Cos )

q 1 1 > { : alrt }
e = - — Py(cost
4meg | a \/1 (22 127 cosh b V1+(55)? +2(5) cosd 47r60 ; o1~ et ( Lelcost)

Adding @, , & and ®; together:

8(r,0,60) = L3 {(1+ o oty + L L]
Ameg PASEEN VAT (ke 2meg | b 7

£=0




I D R | a®?
= Iree {Z — —0—7;)7“ {—a2n+1 RRrTESY } Pay, (cos 0)

For r > a, ®, and ®_ have to be expanded in terms of a/r or ar/b:

o ¢ f1 1 1 1 i{ bt }P( 0
= - = — cos
T 4rme \/1 (4)2 —2%cos b \/1 + (%)% — 255 cost 47T60 = P T b [

g |1 1 1 1 i at alrt Py(cost)
— z _ = cos
Ameg | 7 \/1 +(9)2+2%cosf b \/1 + (%)% +2(%) cos O 47'('60 — EST STANN el

The total potential for r > a:

£ ZZ

S 1 1
2(r.8,9) = 47360 Z{(l + =107 {;ﬁ Cpt } Pr(cost) + 27360 {5 B ;}
=0

1 1 2n 277,
- 27'('60 {5 ; Z{T2n+1 o pin+1 }PZn(COS 9)}

_ 4 > o 1 7,,2n P ;
T 2meg Z“ ronil W} 2n (cos )

In the limit of a — 0:

2 5
qaz{i = }Pg(cosﬁ) ! Q{l—%}Pg(cosﬁ)

Imeg 3

Problem 3.9
Useful integrals:

27 27
/ sin(me) sin(ng)de = oy, / cos(me) cos(ng)do = T,y
0 0

L L
/ sin(mmz/L)sin(nrz/L)dz = gém"’ / cos(mmz/ L) cos(mz/L)dz = gém"
0 0

This is a problem of solving Laplace’s equation V2® = 0 with the following boundary conditions:
Dp.dz=0)=0, B(p,¢z=L)=0, B(p=1b62)=V(62)
Assuming the solution has the form:
D(p,6,2) ~ R(P)QS)Z(2)
and plugging into the Laplace’s equation, one gets:
Q&) ~ Acos(vg) + Bsin(vg), Z(z) ~ Ccos(kz)+ Dsin(kz), R(p)~ ELL(kp)+ FK,(kp)
where A, B,C, D, FE, F are constants. Applying generation consideration and boundary conditions:
e Q(¢p+2m)=Q(¢) = v=m, m=0,1,2,...

e Finite potential at p=0 = F =0,



ed=0atz2=0 = C=0;
ed=0atz=L = kL=nm n=0,12,..
Therefore, the complete general solution of the potential is
B(p, ¢, 2) Z Z I, ) sin( ){Amn sin(me) + By, cos(me)}
m=0n=0
The coefficients A,,,, and B,,, are to be determined from the boundary condition at p = b:
>0 >0 n
2) = L. ( —b ) sin(—2) { Ay sin(me) + By cos(m
) 7;;) ) (mg) (me)}

This is a double Fourier transform of V (¢, z). Multiplying sin(m'¢) and integrating over ¢:

2 oo 0o o0
nmw nmw nmw nmw
d = Im —b) sin(— Amn 6m’m = Im’ —b) sin(— Am’n
/0 oV (¢, 2) sin(m'¢) mEZOnEZO ( T ) sin( T 2) (m ) WnEZO ( 7 ) sin( 7 2)
Multiplying sin("i7T z) and integrating over z:
/L d/ 46V (6,2)sin(im'9) sin(2) =7 3 I (T0) Ay + (2 6,00) = 21,0 (U014
sin sin{ — = J— 1y (— 0,7 = T— , oy
Therefore
9 L 27 n
Apn = ——F——— = d d ,2) sl in(—
LI (nmb L) /0 z/o oV (¢, 2) sin(me) sin( 7 2)
Similarly

2 nmw

L 2m )
an = W = /0' dZ/O' d(bV((b,z) COS(m(b) sm(fz)

As usual, By, is to be replaced by By, /2.



More Problems for Chapter 3

Problem 3.10
Useful identifies:

o ( 1)nx2n+1 . o "
> =tan '(z) Y —=In(l-2)
: 2n+1 —n
(a) From the result of Problem 3.9:
= NS (P i (T ~
®(p, ¢, 2) = ;;Im( ) sin(=2) { A sin(me) + B cos(mg)}

with

27
Amn = m/ dz/ d(bv (ba )Sln(m(b) Sln(fﬂ-z)

2 L onm m/2 _ 3m/2 .
= W/o sm(fz)dz {/ﬂ/z(—b—V) sm(m(b)d(b—b—/ﬂ/2 (-V) s1n(m¢)d¢}

B 2 L

= 7L, (nmb/L) T (2D 0=0

27
B = m/ dz/ d(bv (ba )COS(m(b) Sln(fﬂ-z)

2 booonm /2 3m/2

= W/o sm(fz)dz {/ﬂ/z(—b—V) cos(me)de + /ﬁ/2 (-V) cos(m(b)qu}
2 L n Voo . mm . 3mm

= WE{(_D - I}E{?)sm(T) — sm(T)}

B,.n’s are non-vanishing if both m and n are odd numbers. Let m =2k +1 and n = 2¢ + 1:

5 _ 6=V L
2%t 1,2641 = (2k +1)(20 + 1)w2 I, 1 {(2¢ + 1)7b/L}

Therefore, the potential

o )M Ly {20+ D)mp/LY . (20+1)7
®(p.9:2) ZMZ 2k+ )20 + 1)n? ngil{(2£+1)7rb/L} sin{ 7=} cos{(2k + 1)}

(b) L>»b=>mp/L <1 and 7wb/L < 1.

Dp{(2¢+ )mp/ L} 2h+1
12,;{(% Doy P

The potential at z = L/2:

o kHV Pr2k+1 V4
B(p.0:2) =323 %H 2Hmz(b) FH=1)" cos{(2k + 1)6}

k=0 (=
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                                                                              More Problems for Chapter 3


x0

{Z §k+1 37 §)2k+1 cos{(2k +1) (b}} {Z

o0 1Ykt
= % Z (2]{11— ] (%)2’“Jrl cos{(2k + 1)}
k=0

{i 2k+1 1(2k+1)¢}
— 2k+1 b

Note the summation

8
8

¢ (_1)k+1 ms 26+1 _ 2k+1 L. 1—(=1)? p id\p
> k+1(b =312 e G
k=0 =0 p—1
1 f&Lp iy =1 P ity
L {ZW -3 d-iger]
p=1 p=1
— ipet®
L [l
2 1+ipe® /b
Furthermore
1—zpel¢/b 1b+psin¢—ipcos¢
1+zpe“¢5/b nb—psin¢+ipcos¢
_q b2 — p? — 2ibpcos ¢
2 p2 — 2bpsing
= In(Ae™) = In(A) +ia
where
. b2 + p? + 2bpsin ¢ o= _ 71{2prOS¢
b2+ p2 — 2bpsing’
Therefore,
- ; 1 1 2b
{Z o % %Hel(%ﬂ)(ﬁ} = Re {ii{ln(x‘l) +ia}} =—50= 71{ pcosqS
k=0

The potential at z = L/2 for L > b is

B(p, 6) = 2V 71{2bp cos (b

agrees with the result of Problem 2.13(a).



Problem 3.14
(a) The potential inside is given by

(*)_WO/V p(rG(F,7)dr' _—jf a,0',¢) —d’

Since the sphere is grounded, the potential on the surface ®(a,0’,¢’) = 0. The Green function for inside the sphere

= ¢ w7
(7 _) rtr P
T T ; ; 2€ -+ 1 ZJFI o b2£+1 }nm(e 7¢ )}/Zm(e, (b)

As the result of azimuthal symmetry, m = 0, the Green function is simplified:

Pl
Z{ £+1 T gt 1} Py(cos 0) Py(cos §')

To proceed further, one needs to figure out the charge density p(r,0,¢). Since the density is non-zero only along the
z—axis and since it is invariant under 2z <> —z, the charge density must of the form:

p(7) o< 6(cos @ — 1) + 5(cosd + 1)
Furthermore, since the charge density vanishes for 22 > d?,
p(7) o< ©(d — 1)
where ©(z) is a step function, i.e. O(x) =1if x > 0 and ©(x) = 0 if © < 0. Therefore,
p(r,0,0) = f(r)O(d — r){d(cos§ — 1) + d(cos O + 1)}

Since the linear charge density varies as d? — 22 along the z and the total charge is Q, one gets the linear charge
density along the z as:

d
p()=C@ =2, [ pi=Q = C= =)
The charge in a spherical shell of radius (< d) and thickness dr:

2m I
QPz(z)dzlz:T :/0 d¢/0 sin@d@p(?‘,@,(b)(?‘zd?“)

The above equation leads to

3Q d?—7r?
Jr) = 8rd® 12
Therefore, the charge density inside the sphere
3Q & —7r2
p(F) = WTG(d —7){d(cosf — 1) + d(cos 0 + 1)}
The potential inside the sphere
8() = o [ APIGE T
Ameg ’
1 3Q dqz g rt rhplt 9
47T60 r ZPZ(COS 0)-2r - {Pp(1) + P,(—1)} ./0 — M;l — P2
—0



d o TZ< TZT/Z ,
16#6 d3z{1+ }PZ(COSQ)/O ( -r ){@_W}dr

For r > d:

¢ 2 TZ< TZT,Z /
o(7) 167T60d3 Z{1+ }PZ(COSQ)/O ( -r ){@_W}dr

d o e plpt ,
= 167-[-60d3 Z{1+ }PZ(COSH)/O' ( —T ){m—m}dr

P 0 243 1 rt

N 167‘[’6 16meod® Z{l (1} eos )(f—b— D(£+3) {7“”1 pl }
3Q d2n 1 r2n
~ Ineg ZP% (cos6) (2n +1)(2n + 3) {7‘2"+1 B b4n+1}

The integral for the case of r < d is messier and no need to evaluate it.
(b) The surface charge density

d2n

o 3Q — dn +1
g = _GOELlr:b = 605“:1, = —ﬁ Z (—Pgn(COSH)

2n+2
—~ (2n+1)(2n + 3) bt

(¢) In the limit of d — 0:

11 Q 1 1
- (=—7)

47‘['60 r b

This is the field inside a grounded sphere due to a point charge Q) at the origin. The surface charge density
3Q11 B Q
AT 302 4Awb?

The surface charge is uniformly distributed in this case.

Problem 3.22
The Green function G(p, ¢;p’,¢’') is the solution of the following Poisson equation:

—

VEG = —md*(7— ) = =T 5(p = /)60~ 0)

From the results of Problem 2.24, for ¢ # ¢’, the angular solution Q(¢) is of the form Q,,(¢) ~ sin(mm¢/B) and the
functions sin{mm¢/3) are complete:

% Z n(mmg/B)sin(mne’/5)

Therefore,

x0

VG (p, b0, ¢') = Z sin(mme/3) sin(mnd'/3)

m=1

Expanding the Green function in terms of sin(mm¢/3) sin(mn¢’/3):

G(p,d5p,0") =Y gmlp, p') sin(mmg/B) sin(mr g’/ 3)
m=1



and plugging into the above Poisson equation:
10, Ogm 1 mm 5 8m )
(=) 5(—F) =——-0(p—p
pap( 8/)) pz(ﬁ) ﬂp( )

For p # p', the above equation reduces to the radial equation of the Poisson equation in Cylindrical coordinates
without z—dependence, and the two independent solutions are p™™/# and p~""/#:

m

pmﬂ'/,@’

gm(pa p,) = Ampmﬂ-/ﬁ +

For p < p', the boundary condition g, (p — 0,p’) = 0 leads to

B =0,  gunlp,p) = Anl(p)p"™'"

For p > p', the boundary condition g,,(p = a,p’) = 0 leads to

Ap =

By, no_ ! 1 pmﬂ/ﬁ
_a2mﬂ'/,8’ gm(p’p ) - Bm(p) {pmﬂ'/,@’ - a2m71'/,6’

Note that the radial function ¢, (p,p’) is invariant under p <> p’, this is only possible if
mm/
_ m7 /3 1 P>
g = Cmp< { /B a2mw/ﬁ}
P>

where ps. = max(p, p'), p< = min(p, p’) and C,,,’s are constants independent of p and p’. Integrating the above radial

equation:
plte 10, dg 1 mnm } Pire g
dp{ = (p=22) — S (—)? :—/ —8(p—p)d
/’p[6 p{pap(pap) pz(ﬁ) p[7€ ﬂp (p p)p

and letting € — O:

g %, 8T
op "r dp - Bp
Evaluating the above equation:
1 mr [ 1 mm P 8
O, =1 (BB o =T (By2mn/BYy
Crmy AL+ (82710 = € 1 = (B ymn19) = 28

Therefore, C,,, = 4/m and the radial function:
m /3
4 pr 1 p
gn(psp') = —p< 7 {pm/g - m}
>

Combining radial and angular solutions, we get the Green function:

[e5S) mw /3 /
=S A L e T TG TP
G(p,d;p0',0") = Z mp< pZm/ﬁ 2mr /B sin( 3 ) sin( 3 )

m=1



Problem 3.24
Useful integral:

b b b
b b a a b
/ p'Jo(kp")dp' = 2 J1(kD); / p'Io(kp')dp" = £1(kb) — 211 (ka); / p'Ko(kp')dp' = 7 Ki(ka) — 2 K1 (kD)
0 a

a

(a) Using the results of Problem 3.23, we get three forms of expansions of the Green function (m = 0 due to
¢—invariance):

éz Jo( $0nP/a Jo(zonp'/a) Sinh(xonz<)sinh{xﬁ(L —25)}
a a

“— Ton JE(zon) sinh(zo, L/a)

Gl 51,) = 7 3 sin ") psin(T5) LS {1 (MT (M) - Kol M ol ) )

o 8 = sin(kmz/L) sin(kwz' /L) Jo(zonp/a) Jo(zonp' /)
o) = 2 2 2 (w7 + (v £ )

The potential inside the cylinder is given by

1 - - 1 - 0G e
7 7 el P n_-— /:__
®(p,2) = /pc(r VG (7, r')dr 47T/‘I’(T)an,d@ 5 ) 7 = |er=rp'dp’

4meg

e A Jolzonp/a)Jo(wonp'/a) Oy . . Ton .\ . . Ton ,
— |y = — Z 5 {smh(Tz) smh(T(L— z ))} l=1L

0z oz a = xonJ} (xon ) sinh(wo, L/a)

A S Jolwop/a) Jo(wonr'/a)
a? £ J3(x0n) sinh(wo, L/a)

sinh( Ton 2)
a

Jo(zonp/a) sinh(zo,2/a) /b , , ,
Z JE(zon) sinh(zo, L/a) Jo P Jo(xonp’/a)dp

_ ﬁf: o(xonp/a)J1(xonb/a) sinh(xon2/a)
a a ZonJE (o) sinh(zo, L/ a)

8G _7r
az’zf - I2

z:: i nwz)ilz)(?;f;/;)) {Io(nza)KO(mer>) - Ko(nza)lo(mer>)}

For p>b: p.=p' and p. = p:

B(p,2) = v n(—1)" sin(%) {IO(@)KO(mrp) Ko(mm)fo(@)}/o p,IO(mrpf/L)dp,

L? L L L L Iy(nma/L)
=g S (T - o) SR



For p < b, the integration has to be break up from 0 — p and p — b:

2V mrz nmwa nwp nwa, .  NIP P Io(nmp'/L)
ol = I K K I d
(0:2) ==z Z "sin(=) { TR - O(L)O(L)}/Oplo(mm/L) P

T L R [ ) - K

=Sy (1 (T o T o ) — ool )

= ("TOI(T oK () — b () — Ko("T 0n (") — pI ()
L L L L L L L

2V nsin(nmrz/L)
=-7 Z

Iy(nma/ L)
L R T S )
(iii)
8G 8T o ksin(krz/L)Jo(zonp/a)Jo(xonp'/a)
PRI Lzazzz xon/a) + (kn/L)2}J2(z0n)

k=1n=1

_ AnV * sin sz/L)Jo (xonp/a)
®(p,z) = T I2q2 ZZ {( xon/a + (km/L)2}JZ(zon) / P'Jo(wonp'/a)dp

k=1n=1

_ —47TV— Z Z *sin(krz/L)Jo(wonp/a)J1(Tonb/a)

s “"On{ @on/a)? + (km/ L)} (won)

(b) For L = 4b and a = 2b:
(i)

B(p=0,2= - Vf: Ji( l‘on/2 sinh(zop)

{L‘On .’L‘On smh(2x0n)

B(p=0,2==)= % S (-1 nSin :://22)) {Io(nm/2) K (nr/4) + Ko(nm/2) 1 (nm /4)}
(iii)
s1n (km/2)J1 (20, /2
®p=0.2=5)=—r V; 231 xon{4x0n k/w)) },;2(3(:({”))

No need to work out numerical numbers.




4.1

Aim = [ 1Y (0,)p(dx = > qir| Y™ (6,41)

Using

Y™ (0.9) = J(2'4;(1|)£' ST P00 ™ = NPPPOOe ™

From the figure we get
qim = @'N"P™0)q[(1 - (-1)™)(1 —i™)] = 0, formeven,som=2n+1,n=0,1,2,...
dim = 20a'N"P(0)[(1 - (-=1)")]
b) The figure for this system is

Since the sum of the charges equals zero, | > 1.
Qm = qa'[Y™(x = 1,¢) + Y™ (x = -1,4)] = ga'N"[P"(1) + P"(-1)]
From the Rodrigues formula for P"(x), we see P"(¥1) = 0, for m = 0. So
qm = ga'NP[1 + (-1)'1Pi(1)
Thus | iseven, but| = 0



Gim = 20a'NP
¢) Using the fact that N{ = /2= and YP = /2L Py

P(x) _ 2ga
i+l ~ r3

B
O(X) = > (2ga)

=2

P2(x = 0 on x-y plane)

aZ
@(;O = —qr—3
Let us plot ®(X)/(-g/a), ie, ﬁ ==
o
-]
6]
5]
o]
2]
,]
L
005 1 15 5 2 25 3
The exact answer on the x-y plane is
9 2__ 2 | _Z9((1)_3(1Y,.5(1Y _
OX) = 7| % T _a((X) 7 (%) +3(%)
X [1+ v
So let’splot X+, 2 — —2
P X3 X x/l+xi2
03]
0.25 7
0.2
0.15
0.1
0.05
0 2 2 4 5

where the smaller is the exact answer.



4.2

We want to show that we can obtain the potential and potential energy of an elementary
diplole:

- X
O = 471:!-80 pr3
W = —B - E(0)
from the general formulas
IPC )d3
47rso

W = j PRDF) X

using the effective charge density

—

per = —P + V6(X)
where 1’ve chosen the origin to be at Xo.

p Vl&&/)dsxl _ _ 1 A. v 1 NA3 v/
47rso.“ X-X| B 47rsop IV X-X| S(X)d*

Similarly,
W = j PRDF) X = — j B VoR)ORxX = B - j SEVORAX = —p - E(0)



4.6
a) We know that

1 0
5 Z Qu%Ez(O)

The problem is cylindrically symmetric, so Q11 = Q22. Using the fact that
the trace of the quadrupole tensor is zero, we see

Qi1 =Qx2 = —%Qsa

The book defines the quadrupole moment in nucleii to be @ = %Q33. The
electric field in our formula for W refers to the external electric field, so within
the nucleus V- E =0, or

0 0 0
—E,+—FE,=——E,
ox + Oy 0z

Q0 (D, 0p\) _ @D, 1( 0
W= 6 <8ZEZ 2<6$Ez+6yEy>)0_ 6 <6ZEZ 2( 6zE2)>0
_eQ (0 1 0
V=% (azEZ)o<”2) i (a )

() 2 )
9z 7 ), eQ eQ (47”_:0(1 dreoad

Now from the particle data book,

e? ahc
= = — i h = 1 1
o ahic oy with o = 1/137
So
AW A(W/h)2ma  4-107sec™27 (0529 x 10710)° m® 0,085
Q ( e ) B Qac ~ 2x1072m2(1/137) x 3 x 108m/sec
4meoal

0 e
(gEz)o = —0.085 (—47T€0a8)

c) Let us assume the spheroid is gotten by a rotation about the semimajor
axis. The equation for a spheroid is given by
22

2 2

<+

Y +—==1
a

b2




The volume of the spheroid is

27 1 p2/b2 4
V=/ d¢/ pdp/ = T ap?
—a 1 p2 /b2 3
where p? = z2 + 2.
Thus the charge density of the nucleus is

_ 3Ze
pc_47rab2
V1=p2/b2
Q33—p627r/ pdp/ (22° — p?) dz
_a 1 p2/b2
b 272 2.2 272 2 (.2 2
B 2 b2 — p?)\ 2a°b* — 2a%p* — 3p?b B 4ab? (a® — b?)
st—pc27r/0p<§a ( = ) = dp = p2m——
3Ze 4ab? (a2 - 2
— A 2 _ 12
Qa3 (4mb2)27r 15 57¢ (0" =)
So
2., . 4 4
Q=:7(a*~t?) =:Z(a—b)(a+b) /2= =ZR(a~b)
Or

(a=b) _ 5Q _ 5-25x107%w’ _
R 4ZR%*  4.63- (7 x 10-15)* m2 :




4.7

a) Since p does not depend on ¢, we can write it in terms of spherical harmonics with
m = 0. First note
- [5 (3 (1_sin2p) - L
Y9 = /47r (2(2-sin?0) - 1)

in2g = _2 |4x 2
sin?0 = —£ | <2 Y2+J4_3Y°
Thus only the m = 0,1 = 0,2 multipoles contribute.

2% _ 24 3 1
(e )or = 2902 - oL

A . 2 [4x 45 _ L5

o = -5 4 [ttt Jor = -4 [ 48 - SE

1 Y3 YO 1 P P
(I)® = m[4ﬂ'q00T0 +47Tq20 5r23 :| = [quOTO + qZO r32 :|

or

Joo =

4reg
v0) = e -0 ]
b)
IPC )d3
47rso
Using

I ! !
rasTls 4r> m(i—j) Y™ (0, 6)Y](6, )

,weseeonlythel =0,2andm =0 terms of the expansion contribute in the potential. Next take
r'>r.

(YmO.9) [ Y@, ¢')redey 280 PX)

/I+1

__1 1
O = 4reg 47r> 21+ 1)

_ 1 2 1 o /4 )1
O(X) = 4n8047r[Y8«/ 3I (6—r2e )rdr+ = ( L I 6 —=—r2e )rdr)}
_ 1 2.3 .Y 2[4z \ 1
OR) = 7547 [ng 3 321 5r(31/5)647r:|

_ 1 2.3 P2y 1 |1 &_rsz]
®®‘4nso4’{P332 (-5 ) 5 }‘47&80[4 120

—+




4.9

a) The system is described by

2 d
A q

Since there is azimuthal symmetry, choosing the z-axis through g,

- (v £ TR

1) Doyt = (Dinlr=a, or
BI — A|a2l+1
2) Sé\i)rq)in = é%q)OUtlha, or |ett|ng k = %

k[IZwa'-lR + 3 (%)P. J _ |:Z—(I +1)Bia 2P+ 2 (%)P. J

= |:Z—(I +DAAP + %I (%)P. J

or
_ a(l -kl
A @l 1d
g _ _ad-kla

[(L+Kk)l+1]d"?

Remember that P, = /;—”1 Y?, and substitute the above coefficients into the expansion to get the
answer requested by the problem.



4.10

The system is described by

a) Since there is azimutal symmetry,

o(r,0) = Y (Ar' + Bir'"1)P(cos6)
|
Also

D = cR)E = —eX)V(r,0)
Dy = —&(X) D_(IAr't — (I + 1)Bir-2)P(cos0)
|

between the spheres,
_[ D,dQr2 = Q, and is independent of r.

Thus
A =0, Blzo,lmoaor:@%
0 1
IDrerZ - 27rBo(go_[ 1dcos@+sj dcos@) = 27Bo(go +€) = Q
- 0
Q9
271'80(1+ %)
Eo__Q
2reo(l+ & )r?
b)

jD,dA = D/A = 6{A - o1 = Dy = sQE

eQ
= , cos6 >0
71T 2neo(l+ =12




Q

= =, cosf < 0
7T 2@ 22
c)
[ PV = oA = [V -PdV = —PA = 60 = P = —zoycE
= —(eX/epg =1 L
R =2
Notice

Q

m = goE, asexpected
%0

Opol +Of = Otot =



More Problems for Chapter 4

Problem 4.1
(a) The charge density

p(7) = L6(r — a)a(cos 0){5(6) + 6(6 — 3) — 86— ) (6 — =)
The multipole moment

2 +1(—m)! . . ,
o = / Y (0,6 p(r!)dr' = 41 (z +:;))' qa’ P (0){1 + e~ /2 _ gmimm _ gmidma/2)

2+1(4—m)
dr £+ m)!

aa' P () {1 = (~)" {1+ e/

Since Pj"(x) is odd if £ +m =odd, P;"(0) vanishes unless £ +m =even. Furthermore, ¢, vanishes if m is even.
Therefore, for non-vanishing gg,,, both ¢ and m must be odd. Let £ = 2§ +1 and m = 2k + 1:

2+1(—m)!

)k+1

Qe—2j1,m—2k11 = 2{1 +(— iYqa*

= — qa

L—(=1)k , [20+1(—m)! [ attm ey
20 ™ ({+m)! v=0

The first two sets of non-vanishing moments are

~ /3

1,41 = F(1F19) %qa
21

ga,1 = H(1F i)/ {5-40°

_ 35 o3
@3 = F(L£i)y/—— T6r

(b) The charge density:

p(F) = 53 {6(r —a)d(cos§ — 1) + 6(r — a)d(cos§ +1) — 6(r)}
The multipole moment
’ / Y /_i 2£+1(£_m)'/2ﬂ- —ime’ 301 £ pm £ pm
= [ Vi 00" pT)ar' = 5[ e [ e ag P (1) < o B (1) = 2000)
2€+ 1 2€—0— 1
=(q { ZP ( ) + aépg(—l) — 2(5@0}5m0 =(q { ( ( 1)Z) — 2(5@0}5m0

The first two sets of non-vanishing moments are:

/5
92,0 = ;qaz; G2,mz0 =0
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                                                                           More Problems for Chapter 4


9
1,0 = 4/ ;QU#; Gam=0 =0

(¢) The potential

1 4m Yo (0, 0) 7 = {14+ (=1)} — 2500
o(7) = m = 0 py(cos
(") = dmeg £ 20+ 1 T  4meg prd ritl t(cos0)
o 2k
_ 4 a q
= rec 2 T2k+1P2k(cos 0) = o —3(3cos 0—1)+
In the z — y plane, cosd = 0:
2
q a
(r,0=m/2) pr—

(d) The exact potential in the (z — y) plane

agrees with the result of (c).

r/a

The potential (in units of (¢/4mepa)) in o — y plane as functions of r/a. The dotted line is the approximation from
(¢) and the solid line is the exact calculation of (d).

Problem 4.2
The potential at ¥ due to a point dipole p' at 7p:

1 F— 1% 7 — ﬁ 1 1 .
()= —p- = g 53 —*}d’: v _ -{*53 f—*}d’
d ireo! 7= 7o 47T60/ |7 — 7] p (' =ro)ydr 4%60/\/ {|77— '|} SR
1 50% (' — 7%
= /v’- P 1) g p53( _ﬁ))}dT'
dmeo Jv |7 — 77| 47T€0 |7“—7“’|
jf P 3 — rg)da’ + o {—ﬁ-v’af‘(ﬁ_ﬁ))}dﬂ
" e |7 — | dmeo Jyv |7 — 1)



where 7 is inside the volume V. Therefore, the surface integral vanishes:

1 1 -
— P V(T — 7% }dr’
dmeg /v |7 — 7| { b ( )

which is the potential by an effective charge density

2(7) =

pn(F) =~ VO~ %)
The energy of the dipole in an electric field:

W= 7 B = [

P =) {5 B} ar' = [ 9675 v ear
§

_ /V (V' A7R()8* (7 — %)} — BV {70 (7 — %)} dr’

= jf(ﬁ- n") ()8 (r' — 7% )da’ +/ {—17- V'8 (T — ﬁ))} d(ri)dr'

v

Again the surface integral vanishes since g € V. Therefore,

W= / {-5- Vo6 — %) b o(r)ar’
v
which is the energy of a distribution of charge density
pnlF) = 7 V87— 7%)
Problem 4.10

(a) The electric fields in the two regions must be the same (otherwise, it will lead to different potential differences
between the inner and the other spheres in the two regions). Applying Gauss’s law in dielectrics on a Gaussian surface

of radius r (a < 7 < b) and noting Dis along the radial direction by symmetry
j{D_) cfda =Q; = (eF+eb)2mr?=0Q

Therefore, the electric field everywhere between the sphere is

" Q 7
F=— < T
2r(e+€) 13

(b) The free surface charge densities on the inner sphere are:

= Q e

the region without the dielectric

:27ra26+60
B(r = a) Q€ ihe region with the dielectri
oc=cB(r=a) = e region wi e dielectric
+ 2ra? € + ¢ &

(¢) The polarization in the region with the dielectric:

- = Qe—¢ T
P=(c—e)B=-2 i
(¢ = <o) 2me+eg 1

Therefore, the polarization surface charge density

Q ec—¢

= p)-_)ria:—PT = = —
o = AP 7i}— (r=a) 2ma? € + ¢




In the region without the dielectric, the polarization surface charge density oy = 0.

Problem 4.13
At equilibrium, the electrostatic force balances the gravity. For a fixed potential difference V', the electrostatic force
is given by

_ W = 1V2£

T dh 2 dh

where C' is the total capacitance of the section above the liquid surface:
C=C,+Cyyp,

Here C}, is the capacitance of the section with the liquid in between the two electrodes and C_}, is the capacitance of
the section above, £ is the height above the liquid surface. Note for a cylindrical capacitor in vacuum, the capacitance
per unit length is

2mey

Co = In(b/a)

Therefore,

_ 2meo(1+xe)h  2meq(d —h)  2meo
C= =@/ T hja) e Xt

1 ,dC  weoxeV?

- =2 FE,=pr(b®—ad})h
2 T ey fem e -k

(b2 — a?)phgIn(b/a)

Fe=F, = Xe = V2




5.1

The system is described by

5 P
r
f
x Y
djl‘
We want to show
_ _ Mol
fm = Ar Q

Suppose the observation point is moved by a displacement 5X, or equivlently that the loop is
displaced by -oX.
If we are to have B = —V¢,, then

Spm = —0% - B

Using the law of Biot and Savart,

| d’ x ¥ | 6_'><d| | 5_'><d|
5¢m=—§4‘—°n§ﬁ.( S - uo§ ( ) i §r ( )
~pol fEe8A)  pol
6¢m__l£l‘r(7)r r? ——'Z;SQ
Or,
¢m:—'u—OIQ

A



52

a) The system is described by

First consider a point at the axis of the solenoid at point zy. Using the results of problem 5.1,

dpm = Z—;Nldzg

From the figure,

Q:j‘f-dﬂz dAcosezznzj‘R pdp 5 |z 4
r* r* 0 (p?+22)* R+ 7)

bm = %NI IZJ z(—% + %)dz 'u2° NI (—zo + J(R? +23) )

(R2+22

_ 2 2
B = ~LONI-C (-2 + [R+2) ) = L2NI 20+ (R +2)

2 0Zg

In the limitzg - 0

By symmetry, thej loops to the left of z, give the same contribution, so

B =B +B = uoNI

H=NI
By symmetry, B is directed along the z axis, so
Spm=-0p-B=0
if 5p is directed 1 to the zaxis. Thus for a given z, ¢, is independent of p, and consequently
H = NI

everywhere within the solenoid.



If you are on the outside of the solenoid at position zp, by symmetry the magnetic field must bein
the z direction. Thus using the above argument, ¢, must not depend on p.  Set ustake p far away
from the axis of the solenoid, so that we can replace the loops by e ementary dipoles m directed along
the zaxis. Thusfor any point z, we will have a contributions

¢ma(m-r1 N m-rz)

ri r3

wherem 7, = —-m-ry,andr; = ro. Thus

H=0



5.3 The system is described by

o Al s

¥

L

The law of Biot and Savart says
g Idl X 7

dB =
Ar 2

From the figure, for one loop
_ o 2masin®  py 27 sin® 0

. =
4m d? 47 a
As NL — 0o, dN = Ndz,but % = si0 g — _2_ 50 JN = N-24
o IN
Biot = /Bsz = Z—0I27rN sin 0df = %2 [cos B2 — cos (1 — 01)]
/I8 02

Biot = [cos B2 + cos 6]



5.6 We may choose the coordinate system so the currents and hole are aligned as

Fpat
=

L& |

Here, I'm taking the z axis as out of the paper. Then, applying the superposition principle, we can replace
this system by one where a current J fills the whole wire and is in the z direction, while an opposite current J' = J'=—J
flows in a wire the size of the hole and is located where the hole previously was.

From Ampere’s law we can work out the magnitude of the magnetic flux density

/B-dfzuo/j-dﬁzﬂoJWTQ23277'7“—>B:MOTJT
Similarly
B/ — /‘LOJTI
2
Putting in the directions
E _ /J/OJQ X7
2
and .
B’/ _ MOJ(_Z) xr
= s = JZ X (F—7
BtOt:B_'_BI:p’O 2( )

However, from the figure, 7 = d + 7, so

Thus we conclude the magnetic flux density in the hole is a constant, B;,; = ﬂQLd, and it is directed in the y
direction.



5.8

Using the same arguments that lead to Eq. (5.35), we can write

A &"- d3x cos¢'Jy(r',0")
¢ = 4 R_Yll

Choose X in the x — z plane. Then we use the expansion

1 _ 4 rl (0! 4/
R_?ll => 2|_7:1 r|+1Y|m(01¢)Ylm(010)
I,m >

The cos ¢’ factor leads to only an m = 1 contribution in the expansion. Using

Y7'(0,0) = J 2+l E: 123: P["(cos0)

and E:;_B: - ﬁ we have on the inside

Pl(cos0')J,(r',0")

Ay = £ > 1 r'Pﬁ(cosG)Id3x’ T
|

4r [(1+1)

which can be written

A; = —2‘—7‘;>| mr' P} (cos6)

with

1 s PH(c0s0)J,(r',0")
A T(I J e (L

A similar expression can be written on the outside by redefiningr. and r..




5.10

a) From Eq. (5.35)
2dr'dQ'sin@' cos ¢'5(cosO)S(r' — a)

X=X

r
w0 - k]

Using the expansion of 1/[X — X'| given by Eq. (3.149),

B
g = | keoskz-2)) {%Io(kpaKo(kp» + ) cos[m(p - <p’>]lm(kp<>Km(kp>>}

m=1

We orient the coordinate system so ¢ = 0, and because of the cose’ factor, m = 1. Thus,

B .
Ay(r,0) = 2‘—;[;47” jo ok [ r2dr'dcos6 sing'5(cos0)3(r' - a) cos(kz)l 1 (kp )Ki (Kp-)

p
As(r,0) = £2al j  dkeos(k2)l1(kp K (kp-)
where p.(p-) is the smaller (larger) of aand p.

b) From problem 3.16 b),

B
B . i
o7~ 2 ], ke dn(ko)dnko e

B

Note Z = 0, and ¢ = 0, so

B
A; = “OT'a [ * dke 13, (p)Js (ka)



5.13 We may choose the coordinate system so the 7 lies in the  — z plane:

<

r
¥
¥
X
The vector potential is given by
= e [ Jda
A=—
w ) |F—7|
Noting Jd3z' — AIdl’, where
270y
A — % _oa dQ2
T 21 Jw

dl =a |sin @’ | o'

Since

Al

¢ =cos¢d') —sing's

By symmetry, the z-component of A vanishes, so

in ¢’ 'dQY
_ ﬂawa:;/sm cos ¢

T Arx |7 — 7|

Y0, ¢') = -/ si sin @' ™™’
Us

A,y

where I've used



o 1 /87 (Y1 (¢, ¢') +Y'(0, ¢'))de
Ay = growa’ (‘5\/;> / 7= 7]

IF_ T_‘7| = 20+ 1Y2 (9’,(;3’)}/2 (9,0)
I,m

and the fact that ¥;™(6,0) is real, we see only the [ = 1, m = 1 terms
contribute.

Ko 3 87\ dmro 4 B sAmrc .
A, = Ll (— ?> ?EYI (6,0) = i ?ESIHQ

If we take 7 to be in an arbitrary direction 4, — Ag. Also, noting Q = 4ma?,

_ Ho Quwa r< inf

p=RXTS
ar 3 12
Thus on the
inside: 0
Ho GWT .
= ————sinf
¢ 4T 3 a S
outside:

2
_HmQua sin 0

P

Remembering for this case

— = - ]. 8 A ]- a
= =7 — (si T 4. A
B=VxA=+¢ rsin969(81n6A¢)]+0{ rar(T ¢)}
Thus on the
inside: .
_&%ZCOSQ B __@%2s1n9
"T4r 3 a T T3 a
outside:

_ﬂ%(ﬁQCOSO B _@%aﬁsiné
" 4Ar 3 r3 O~ 43 3



5.14 This problem corresponds to J= 0, so we have the equations

— —

V-B=0, andVxH=0
from which it follow that
H=-Vo
where B = ,uﬁ . From the first two equations we have the boundary
conditions at an interface:

Biy = B2y, and Hy = Hy

From the discussion on p. 76 of the text, the potential is independent of z
and can be expanded as

(p,p) = Z [Amp™ + Bmp~™] (Cr sinme + Dy, cos me)

Because the system is odd under reflection through the y axis, which I take
to be along By, there are no cosine terms in the expansion. In the region III,
outside the cylinder, as p — 00, —V® = H = Hyy. Thus ®;;1 — —Hpy =
—Hypsin ¢. Here Hy = By/ 4. The boundary conditions can be satisfied if only
the m = 1 terms are kept in the expansion, and we know that the solution which
satisfies the boundary conditions is unique. Thus we have the expansions

Region I, p < a:

& = Apsing

Region I, a < p < b.
@ =[Cp+ Dp_l] sin ¢
Region III, b < p.
D1 = —Hppsing + Ep_1 sin ¢
Applying the boundary conditions, we have the four conditions

®1lp=a = Pr11lp=a

0 0
Noa_pq)l|p=a = Na_pq>11|p=a

@ir|p=b = Prr1|p=p

0 0
% 9p 11| p=b = Mo ap 111| p=b



These four boundary conditions allow us to solve for A,C, D, and E, with
the result that

- 4H0b2[1,7.
N d
2
C = 2Hob ([llr + 1)
d
D= 2H0(,ulrd— 1)&2b2

_ Hob? [2(p, + 1)b2 4 2(u, — 1)a® + d
N d

A

where

d= az(:ur - 1)2 - b2(:ur + 1)2
and the relative permealbility is

Hzﬁ
" Ho

With these expressions _
B = —pyVo;
Brr = —pVoy;
Brir = —poV®r1r



5.16

a) The system is shown in the figure

I shall use the magnetic potential approach and will call inside the sphere region 1 and outside the
sphere region 2.

1= Poop+ Y_AI'Py
|

$2 = Poop+ »_BIr 1P,
|

where H = —_V'qﬁ, and we have the boundary conditions,

Hy = Hy = ¢1(r = b) = ¢2(r = b)

Ho-L-ga(r = b) = u-L-g(r = b)

We are given that b >> a, so

_ _1 mcos6
¢Ioop— 471' rz

with m = za?l. (From the form of ¢, ONly the | = 1 term contributes.) The boundary
conditions give

A1b1 = Blb_l_1
2uom 2um _
So
A :_Lm (1 — Ho)

4 b3 (2p+ po)



Ontheinside, at the center of the loop
From Eq. (5.40), we are given —_V'¢|oop at the center of the loop, which is directed in the z direction.
H, = 2 (-B0) - As

If u>> uo

and from (5.40), atr = 0



5.18

a) From the results of Problem 5.17, we can replace the problem stated by the system

" I

where 1* is equidistant from the interface and is equal to I* = Z:—jl. The radius of each current
loop is a. Now from Eq. (5.7)

Flonl) = |dex B()

d'xB=d x B, +dl xBy = diB, (-§) +dIB,f

By symmetry, only the z— component survives, so, from the figure

(de E;) - dIBr(#) n dIBg(A)
Jad? + a? Jad? + a?

So
2ral
F,= —=2ral 3B 4 2dBy]
s ra
H H _ 2d _ *
with B, and By given by Egs. (5.48) and (5.49) and cos® = T 1= Jad? +a?, and | - I*.

c) To determine the limiting term, simply let r — 2d and take the lowest non-vanishing term in the
expansion of the magnetic flux density.

F, = ”Ta'[aBr +2dBy]

_ ral pol*a pol*a® (1
Fz= nc? [a( Sld (23)2)+2d(_ 04 ((2d)3))(_%)}

E L _3%Ho a*l x1*
‘ 32

The minus sign shows the force is attractive if | and | * are in the same direction. This same result
can be gotten more directly, using



F, = V,(mB,)
with m = za?l, and (from Eq. (5.64))

_ Ho 2m*)
B, 47r(

withm* = za?l*, andz = 2d

_ MO 5 21k A2 3 __3mpo atl x1*
F,= 47r27ral nal( (2d)4) 3 7

with agrees with out previous result.



5,19

The system is described by

A

PBX

[ PN

The effective volume magnetic cﬂarge density is zero, since M is constant within the cylinder. The
effective surface charge density (f - M from Eq. (5.99)) is My, on the top surface and —M; on the
bottom surface. From the bottom surface the potential is (for z > 0)

Oy = ﬁ(—Mo)Zn_“a pdp)m = —I\go (,/(a2 +2%) —z)

0 (p?+ 2

By symmetry, the potential from the top surface is (on the inside)
M
o = Mo ([@+1-2?) -0-2)

The total magnetic potential is

® = Dy + Dy =—%(m—z) +%(\/(a2+(|_—z)2) —(L—z))

So, on the inside of the cylinder,

e -2 (M (J@ 7 -2) - e (J&E 0 - -2)

Hz=—M0 9 _ z _ L-—z
2 J@+2) J(a2+(L—z)2)

while above the cylinder,




Mo z
H; = - - +
z 2 |: J(a2+22)

with asimilar expression below the cylinder.

—

!

Thusinside the cylinder,

= po(H+M)

z—L :|
J(az +(L-2)%)

—

Mo z
BZ = 2_ -
,U()|: 2 |: J(a2+22)

L—z :|+Mo:|
J(@+(L-2?)

BZ — ,UOQ/IO Z +
J@2+2?)

while above the cylinder,

L—z )
J(a2+(L—z)2)

B _ oMo z 3
L2 2. 52
J@2+2?)

First we plot B, in units of a for L = 5a

z—L :|
J(az +(L-2)?%)

>z ) if z<5

1 A +
2 ( J(+2)

9@ =

J(1+(5-2)?)

92

;( .
2\ [

Z5 if 5<z
J(1+(5-2)?) )

0.8

0.6

0.4

0.2

0 2 4

And smilarly, H; inunitsof afor L = 5a.



N

2— z — >z if z<5
J(@+22) J(1+(5-2)2)

f(z2) =
_1 z z=5 i
2( J@2) * J@62?) ) if5<z
f(2)
0.4 ]
0.2
0 4 ;6 8 10
-0.27]
-0.4 7




5.26

The system is described by

1) ’

Iy
¥
—-
|

Since the wires are nonpermeable, 4 = po. The system is made of parts with cylindrical
symmetry, so we can determine B using Ampere’s law.

VxB = ,uoj, or I%-de ,uoj‘j-da
On the outside of each wire,

- — |
_[B-dl = B27p = pol —»Bout=2“n—°p

On the inside of each wire

2
B.dl = _ s g = Ml poi R
J‘B-dl—BZEp—,uoI?, Bm—??WlthR—aﬂb

From the right-hand rule, the B from each wire is ig the ¢ direction. From the above figure, using
the general expression for the vector potential, we see A is in the £z direction. Since V x A = B,

BZ = _LAZ d AZ = _"‘ Bzdp

op
Thus
—Z_(;! (In % +C) = _54’—?[' (In ’;—z + 1) on the outside
AZ = I 2 . .
-4 on the inside

where I’ve determined C = 1/2, from the requirement that A, be continuous at p = R. Let | be the



length of the wire. Then we know the total potential energy is given by
W = % jﬁ «Ad3x = '5 _[[JaAdaa + JpAday]

Consider the second term '7 j JoAday,. The systemis pictured as

From the figure
Ba=d+8p, p2=d?+ p2 —2dppcos¢

so, sinceJp = —~
% | JoAdas = $—15 [[Aau(pa) +An(py 1podpsdp

| “_lj[lnga+l gg :|pbdpbd¢

| pol 5 °f . d? ph
_ﬂ—?anj‘O(m?—}—l— bg )pbdpb
&)(l+2m

- par e (tran g ) - 5 (52

Thefirst term & [ JaAda, isequal to

Thus

or



5.27

The system is described by

ol

Using Ampere’s law in integral form
J‘ B-d = ,UOIenCI0$d
we get

B='L2l—oli,p<b

T b?

Bz’lé—ol b<p<a

1

T P’
B=0,p>a

Now the energy in the magnetic field is given by (| is the length of the wires)

Wz%_“g-ljld3x=21wj‘82d3x

“ e () [ () o 2e [ (3) o

_ 1 u_o')z 1
_ (27[ |7r(2+2|n

oo
N—r
Il
N|—

N

- h- (3 omg)

If the inner wire is hollow, B = 0, p < b, so

L _ Hopna
[ _27r|nb



5.29

The system is described by

This problem is very much like 5.26, except the wires are superconducting. We know from section
5.13 that the magnetic field within a superconductor is zero. We will be using

w= < [3- Adx - '5 [[aAda, + JpAday)

Using the same arguments as applied in problem 5.26,

| I 2 .
A - —;’—ﬂ(ln%+C) = —Z’—n(ln%+0) on the outside
0, on the inside

Thus if we consider the second term '7 j JpAday,

% | JoAday = 5 —o [[Aax(pa) + An(pn ] pedpsds

~ %#%Zn_“z Ing—ipbdpb = %(%)(ZM%)IZ

The first term - [ JaAda, is equal to
Thus
S0

Now using the methods of problem 1.6, assuming the left wire has charge Q, and the right wire charge
—Q, we find

d-a g d-a g
_ _ 1 1 SO e
¢12 = X Edr = 5 Ib ( =+ )dr ~ In



Thus



More Problems for Chapter 5

Problem 5.6
Using the principle of superposition, the magnetic field at # in the cavity is equal to that of a conductor without the
hole minus that of a smaller conductor filling the hole with the same volume current densities, i.e.:

Bcavity (F) - Bnohole (F) - Bhole (7?)
In the polar coordinate system with the z—axis along the cylinder axis, Enohole can be calculated from Ampere’s law:

_ pol o pomp?J

EHO ole -
note(7) 2mp 2mp

.1 R
¢ = 5HoJpd
where (;AS is the unit vector along the ¢—direction and J is the volume current density. Similarly, we have
P
Bhole(T) = §M0JP (b

where p’ and ¢’ are measured with respect to the axis of the hole. Therefore,

— 1 ~ ~
Bcavity (7?) - §M0J(P¢ - P,(b’)

Let d be the vector from the cylinder axis to the hole axis, we have:
p-p=d
Cross multiplying the above equation with £ (the unit vector along the z—direction) and noting z x p = (;AS, we get:
po—p'¢' =2xd
Consequently, the field inside the cavity:
gcavity (¥) = %MOJ2 xd

The field is uniform and in the direction perpendicular to the line joinning the axes of the cylinder and the hole. In
terms of the current I on the cylinder:

I = /L()I

J=—5—51 = Beavi(?) = (@ =5~ d

Problem 5.13
The rotating surface charges result surface currents. In the spherical coordinate system with the z—axis along the
rotation axis, the surface current density

K(F) = o0(F) = owasin 6

where (;AS is the unit vector along the ¢—direction. Therefore, the vector potential

asy’

. K 1 in0'd
A(F) = @jq{ (T_), da’ = —poowa® | o ?
T J |7 — | Am |7 — 7|

To carry out the above integral, we project ¢§’ along fixed z— and y—directions and expand 1/|7 — 7:7| in spherical
harmonics.

¢ = —sin@'a + cos @'y
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e
22g+1 ;H Y (0,0 Y (0, 0)

where 7~ = min(a, ) and r~ = max(a,r). The vector potential is therefore:

¢
A(R) = uowaaBZ %_‘_ i Zil Yo, (6 /ng (0',¢")(—sin 0’ sin ¢’ + sin @' cos ¢'G)dY’

Note that sin 6’ sin ¢’ and sin 6’ cos ¢’ can be written in terms of Y7 1:

Yi1(0,0) = —4/ 8% sinfe’; = sin®'sing’ = —/ 8?WIWL{YLl(H’,(b’)}; sin @' cos ¢’ = —4/ 8?WRe{YLl(H’,(b’)}

and the integrals can be carried out using the orthogonality properties of spherical harmonics:

Yo (0 /Yém ,¢')sin @’ sin ¢'dQ’ = \/8;Im{ng /Yém (0',0")Y1 1(0',0")dY } = sinf@sin ¢y 10, 1

Yo (0 /Yém (', ¢")sin 6’ cos ¢'dQY = —4/ 8?WRe {ng /Yém (', 9" Y11(6',¢")a } = sin 0 cos ¢z 10, 1

As results of the above, the vector potential is
ff(f) = powoa’ Z ; T—<6g 10, 1 8in 0(—sin ¢F + cos ¢pg) = l/LOWUOL sin 9 (b
£l 2+ 1l 3
Inside the sphere, ro = r and r~ = a:

- 1 1 ~ 1
A(P) = §u0waa(—y§: +zy) = FHowoar sinf¢ = zHo0a OXT

B()=VxA= guowaaé = ghooa &

The field inside the sphere is uniform and point to z—direction. Outside the sphere, 7. = a and r~ = r:

> 2cosf . sinf 5 po 3F(F-m) —m
— — 4 —
B(f) =V x A= S powoa*{—3 0} T 3
This is the field due to a magnetic dipole
4
m= §7m3(0a o)

Problem 5.18
(a) From the result of Prob. 5.17, the magnetic field at the current loop can be calculated by replacing the medium
with an image current of magnitude

= H"Ho,
B o
In a spherical coordinate system with its  — y plane defined by the imagine current loop, its origin at the center of

the loop and its z—axis pointing to the current loop I, the magnetic field due to the imagine current is given by Eq.
(5.48) and (5.49). At the location of the current loop,



Therefore,

a2n+1

1 o (—1)"(2n + 1)
B, = 5#0[’@ Z Sl (o7~ 1B Py 1(cost)
n=0
(=1 (2n+ 1)1 a?ntl

P, 21n+1 (cost)

Be = _i“‘)[,“;) 2(n+ 1) (a2 + 4d2)n+3/2
The force on the current loop:
F= }[fx Bdt = j{ﬂz} x (B,# 4 Byf)dt = j{(IBré — IBy#)dt
Note that both B, and By are constants of the integration and that
jfédz = —sin ozjfdﬁ = —2masin 02, jffdz = cos ozjfdﬁ = 2ma cos 03
The force acting on the loop:

F=1IB, j{ 0d¢ — IB, j{ fdt = —2ral(B, sin 0 + By cos )3

= (=1)"(2n+ 1)1 @t a d .
= —7T/,L0a2[I, Z;) o (az T 4d2)n+2 apgn+1(COS 9) — mPZIn+1(COS 9) z

(¢) For d >>» a, the force is dominated by the n = 0 term:

a 5 {aPy(cos ) — dP}(cos 0)}2

F= _mpga?ll’' — =
THOA S a2 T 1a?)

= —mpoalll’ 5{acost +dsind)}z

a
(a% +4d?)

95 a 2d a N
=— 1I +d
THoa (a2 + 4d?)? {“\/a2+4d2 \/a2+4d2}z

a*d 3 ot — o at

= Brugll — A
MRS 2 Lyt T T RN T g

The force is attractive. Alternatively, for d >> a, both current loops can be approximated as point dipoles with dipole
moments

m=I(ra%)3 m =I'(ra?3

The magnetic field at m due to m's

where 2 = v/a? + 4d? is the separation between the two dipoles. Consequently, the potential energy:

pio 3(2-m)(5-m') — _'-n:;’__@mm’
4T P T2 23

3




and the force

a . 3 w— /Loa
= —Squgll ————— %~ ——qpol?
THo a : THo W+ Lo d4

agrees with the result from (a).

Problem 5.19

There is no free current. Therefore, the scalar potential approach is applicable.

-V. M M-n'

B (7) = =da’
w) T

The effective magnetic volume charge ppy = —V - M =0. In the cylindrical coordinate system with its origin at the
center of the cylinder and its z—axis along the axis of the cylinder in the magnetization direction,

(_,)__ M n’da,_ 1 MO da’ 1 MO ;

7= AT Jup [F— ] AT Joottom [F— 7]

Along the z— axis,

Mo 1 1
‘I’M(z)zﬂ(%)/ i {\/p’2+ (2 — L/2)2 \/p’2+(Z+L/2)2}

:70{\/0#—0— |z——| \ja? +(z 2+|z+—|}

Therefore,

The auxiliary fields along the z—axis:

- P M —L/2 L/2
H(z)= _6 M(z)g —_-0 i / — 2+1L/ + 2% % inside the cylinder
0z Va2 +(z—L/2)2  \/a?+(z+ L/2)?

H(z) = %gz (2)

N)

_ MO z—L)2 — Z+ L2 Z  outside the cylinder
\/az (2 — L/2)? \/062+(Z+L/2)2

The magnetic fields along the z—axis:

—

Bz) = po(F + ) = -+ M{\/

z—L/2 Zr L2 %2 inside the cylinder
R N RN PR TP

_ - 1 —L/2 L/2
B(z) = poH = — = pio M, c / il %2 outside the cylinder
2 Va2 +(z—LJ22 Ja+(z+L/2)7?



More Problems for Chapter 5

Problem 5.10
Useful identities:
8J1(kp) _
op

o1, (kp)
op

0K (kp)
op

{J (kp) — J2(kp) };

= 2 o(ho) + Lo(ko)): = 2 {Kolhp) + Kalho))

o) arm o a
dkk cos(k2)Ky(ka) = ————— dkke ¥4 Ji (ka) = —————
/0 cos(kz) Ky (ka) 2(aZ + 22)3/2’ /0 € 1(ka) (a? + 22)3/2

The vector potential A

- I [ db Ia [* @
Ay = o2 q:“oa/ LAY
w P
where ¢§’ is the unit vector along the ¢’ direction:
¢§’ = —sin¢'% + cos @'
Consequently
/L()Ia ™ _sin¢'# + cos @'Y
im =t | SRsc LAY
0 |7 — 7|

(a) Using the expansion of Eq. (3.148) with 2’ = 0:

1 2 = Can [
T == }Z emieme) /0 dk cos(kz) I, (kp<) Ky (kps)
A7) _ Hola2 i / dk cos(k2) I (kp<) K (kps ) / 27Te””(¢*¢’)( in ¢'@ + cos ¢'f)d¢’
= cos m —sin cos
- P< P> A Y

where p. = min(a, p) and p~. = max(a, p). The integrals

2m 2m
/ @) gin ¢'dg’ = Im {e“W / ei<1m>¢’d¢’} = Im {"?2m0,, 1} = 27 sin ¢d,, 1
0 0

27 27
/ =) cos ¢'de’ = Re {eim¢/ ei(lm)¢/d¢’} = Re {eim¢27r6m,1} = 27 €08 POpn 1
0 0

Noting (— sin ¢Z + cos ¢f) = #, the vector potential is

- uolaQ RN N
A(F) = - Z/ dk cos(k2) I (kp< ) K (kps ) (2m0,m,1)(— sin ¢2 4 cos ¢F)

/L()Ia > ~

= / dk cos(k2)I1 (kp< ) Ky (kps)dké

™ Jo
i.e.
Ia
Ag(p.2) = P2 [ dicoslis) o) K ()
0
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(b) Using the expansion of Prob. 3.16(b) and noting p' = a,2’ =0:

x0

Ly / dke™ =) 1. (kp) Iy (ka)e
0

m—=—0o

oo fe) 27
A = “LIT“ 3 /0 dk T (kp) Jom (ka)e 17! /0 ™) (_sin ¢'s + cos ¢'f))dg’

O ST [ k) (ke (28 ) sin 0+ cost)
4 0

m=—o

— “OTI“/ dkJy (kp)Jy (ka)e *#1¢
0

i.e.,

Ia [
Ag(pr2) = 1 /0 dke 121 1, (ka) Jy (kp)

Expansion of (a):

0A tola
By(p2) = % ==

/ dkksin(k2)I1(kp<)K1(kps)
™ 0

oA 1, _la [ !
Bulp2) = 2 = 2y =P [T akcostha) { 7+ S h 4o (0 )}

On the z—axis (p =0), p. =0 and ps. = a:

B,(0,2) = “‘;I“ /0 dkksin(kz) I (0)Ky (ka) = 0

Ia [ . o 1
B.(0,2) = M‘; a/o dk cos(kz) ;E}I}) {8_p + ;} {Ii(kp)K1(ka)}

= M(;Ia/ dkk cos(kz) K1 (ka)
0

_ uolaﬂ 1 _ uolaz 1
B ) (a2+z2)3/2_ 2 (a2+z2)3/2

Expansion of (b):

_6A¢ o /L()Ia
op 2

oo 0
B,(p,2) = /0 kol(ka)Jl(kp)ae*’“‘Z‘

_ 04y L, pela [T g o1
B(p2) = G = 2ay = P [ e ko) § 2 L (k)



On the z—axis, p = 0:

B,(0,2) = F‘OTI“/O dk,]l(ka),]l(())%efk\z\ —0

pola [ ks . 5] 1
B.(0,2) = T/o dke ! Jl(ka)ph%{a—p+;},]l(kp)

I (o]
- “02“/ dkke 2 1y (ka)
0

_uolaz 1
2 (a2 +22)32

Problem 5.20
Useful identity:

—

/‘/(G‘V)DdTZ—/‘/(V-é)5d7+j§(é.ﬁ)pda

(a) The force on the bound volume and surface currents

—

ﬁ:/(VxM)xgedT+f(Mxﬁ)><Beda
14

Using the product rule:

=
oo

(VX M)x B, =B, x (VxM)=(M-V)B,+ (B, - V)M + M x (V x B,) — V(

Since B, is an external field, we have V x B, =0 in the region of interest. So

— —

(VX M)x B, =(M-V)B.+(B.- V)M — V(M- B.)

Also

The force

Using the identity

on the first two integrals:

F= _/ (V-]\Zf)BldTJrj{(J\Zf-ﬁ)Blda—/(V-Ee)MdT+}1§(§e-ﬁ)Mda—j{(Bl-ﬁ)Mda
14 14



Problem 5.22
Since there is no free current, the magnetic scalar potentlal approach is applicable. Within the infinite permeable

medium, the auxiliary field H vanishes. Since 7 x H is continuous at the surface, H outside the medium must be
perpendlcular to the surface. Consequently, the surface is at equipotential and we can set its potential to be zero.
Therefore, this problem can be treated like the analogous electrostatic problems with a polarized bar against a perfect
conductor at zero potential. We can use the method of image and replace the medium with an image bar magnet
with magnetization —M. From the result of Prob. 5.20, the force on the bar magnet is given by

ﬁ:/ pMEdT+j§0M§da
%

where B is the field due to the image bar magnet. pps, o are the effective volume and surface magnetic charge
densities respectively:

M=-V-M=0, oy=M-7

In a coordinate system with its origin at the joint between the bar and the image and its z—axis along the M direction,
the magnetic field due to the image bar along the z—axis is given by (Prob. 5.19, shifting z—axis by L/2):

s 1 2 2+ L
B(z) = —=poM — 2
(2) gHo {\/a2+z2 JZ (e L) }z

where a is the effective radius of the bar (ra? = A): Assuming the bar is long and narrow, the force is then

F= jf(M -7)Bda ~ AM{B(L) — B(0)}2

1 1
Va2 + 12 Ja? +4L?

= —pgAM?L { } B —%NOAM%

The force points to —2 direction, i.e., the bar is attracted to the medium.

Problem 5.27
From the Ampere’s law, we can calculate the magnetic fields in the three regions:

B(p)zizgp 0 <p<b); B(p)Z% (b<p<a); B(p)=0 (p>a)

where pi. is the permeability of the conductor. The Bis along the (;AS The magnetic energy per unit length

1 10 1 e
W=2LI”= —/ B?pdpde + —/ B?pdpdé
2 2ue Jo 210 Jy

1 > (I 2 1 | pol 2
— .2 dp+ —— -2 il QP
e 7r/0 {27rb2p} pap 20 7T/b {27rp pap

The self-inductance L per unit length



For the case of p. = pyo, it simplifies to:

ko |1 a
L="—=4¢>+In—-
ir {4 T b}
If the inner conductor is a thin hollow tube, there will be no magnetic field inside the hollow tube. Consequently the
self-inductance per unit length would be:

_poy 6
L_47r1nb

Problem 5.29

Inside an ideal conductor, the electric and magnetic fields vanish. Furthermore, all charges and currents are on the
conductor surfaces. In a cylindrical coordinate system with the z—axis along the direction of the two conductors, the
surface charge and current densities are z—independent. Let o1(p, ¢) and o2(p, @) be the surface charge densities on
the two conductors, the surface current densities are then o1(p, ¢)v and o2(p, ¢)v along the z—direction, where v is
the speed of the charges. Consequently, the scalar and vector potentials are:

‘I’(p"b):ﬁ{/ﬁd“ﬁ/ |F( ?|)d“2}

Az(p,¢) = ﬁ {/ |7(7 Zil) da’ﬁ/%daz} = pev®(p, 9)

where [ daf and [ da) integrate over the surfaces of the two conductors. Note that 4, = A4 = 0. Let £¢ be the total
charge per unit length on the two conductors, then we have gv = I. Therefore,

I
Az(pa (b) = /LG;‘I)(p, (b)

The electric and magnetic fields are

- () (2)

o 104,1% (04,2 Al
| | p O op "

The energies in electric and magnetic fields per unit length are:

1 1 1 LI?
Wg==LI?=— | B%dr == 2—/E2d
B 5 2#/ T 2/L6 7 T

Taking the ratio of W and Wg leads to the final result:

LC = pe



PHY 5346
Homework Set 12 Solutions — Kimel

1. 6.8
The physical system is shown as

[

X

We know from Maxwell’s equations that —V-M plays the role of the effective
magnetic charge density. Using the fact that

M:%@xﬂ

and the fact that J = Ppol¥Us Where p,, = 6 (r — a) ope1, Where 0y, is given
by equation (4.58) of the textbook:

Opol = 3€0 <€E;26;0) Epcost =3¢ <;;2€;0 ) FEjysin 6 cos ¢

Using the figure
U B | . R
M= B (9: X J) = Eapolvasm&S (r—a) (—9)

Thus

P = -V-M = Opot¥ €08 06 (r — a) = aw3eq ( £~ %

€+2€0) Egsinfcos ¢ cos6 (r — a)

This can be written

£—go CZAWAZ S
= E —_— _— -_— -
Pm = aw3eg <€+2€0) 0 < 15) ( 5 6(r—a)

Using

Qm = /Y;m*'rlpdsz‘



there are only two moments which survive for this distribution

£—¢€p 8r\ 1
= +4° Ey| —1/— | =
Q2+1 a’w3eg (5+250> 0 ( 15) B

Using (on the outside of the sphere)

1 ym

lm

5 €—¢o 8\ 1 /Yy -V, !
= Byl =/ 22 2 (22—"2
Om aw3€0(6+250> °< 15)5( 2
b = a°w3e TNV E (- 811 Ll_YQ_l 1
m \e¥2e ) °\ " V15)5 2 r3

3/ e—¢p a®
= — E —
Om 5 <€+250)w50 0<r5)mz

Repeat the same steps to get the potential on the inside of the sphere.

Or




PHY 5346
Homework Set 12 Solutions — Kimel

1.6.11
a) Consider the momentum contained in the volume
c At
Ap = AtcAAg
_ Ap _
F= AL = CAAg
- F _
P= AR~ O

where I’m using the time averaged quantities. In class we found
cg=+S= %80|E0|2 —u

Thus

b) We are given
S= 1.4 x 10°W/m?
But we know P = u = 2. From Newton’s second law

FE _ FA Sc 1.4 x 103W/m?

a=-+— = = =
M mA ™A  3x108m/s x 1 x 10-3kg/m?

= 4.66 x 10-3m/s?

In the solar wind, there are approximately 10 x 10* protons/(m? — sec), with average velocity
V=4 x10°m/s.

AA—& — P=10x10%x4x105 x 1.67 x 102" — 6. 68 x 10-L"N/m?
-17 2
a— £ . F/A P 6. 68 x 107*'N/m — 6 68X10_14 m/32

m= mA mA  1x10-°kg/m?



6.21
a) I'm going to represent the dipole as a charge —q at 7y and a charge
q at 7o + . We take the limit .
gl —p
Thus
pP=q {5(5—770—[5—5(5—770)}
Expanding around =0 give
p(@) = qV8(F ~ 7o) - (~1) = —7- V6(F ~ 7o)
As we’ve shown before for a collection of charges with charge density p and
velocity 7

-

J=p7 =3 (5-V) 83 - 7o)
b) The magnetic dipole moment is given by
= %/fx Jdbz = —%/fx ﬁ(ﬁ-ﬁ) 8(Z — 7o)d3z
Integrating by parts
%ﬁ- /6 (Z x 0) 8(% — 7)d’x
Look at the nt" component of the vector - V (Z X )
[ﬁ' V(& x 17)L = PiBiEtmnTiVm = Y EtmnPrvm = [Fx 7,
ilm Im

Thus

m:

/ 5 x (&) 8(F — 7o) dPa =

N =

Similarly
Qij = / (3$z$] - 7‘26ij) p(f)dSZL‘ = / (3.’1,‘11‘] - TQ(Sij) |:—ﬁ 66(5— ’F()):| d3$
Integrating by parts

Qij - Z/plal (33)1.’1;] - Z.’E%6U> 6(5)’— FO)d'BiL'
1 k

Qij = / <3pi-'1;j + 3pjz; — 2 Zpla:léij> 8(% — Fo)d3z

1
Qij = 3pizo; + 3p;Toi — 2P~ Tobij



More Problems for Chapter 6

Problem 6.4
(a) Since the sphere is uniformly magnetized with magnetic moment m = ATR*M /3, the magnetization is therefore
M. The magnetic field inside the sphere is then given by Fq. (5.105):

—

2
B=—-uM
3M0

Given the Ohm’s law in a moving conductor J = U(E + U % E) and the fact that there is no current flowing inside
the conductor, the electric field inside the conductor must be:

—

E=-0xB=—-(@xM)xB=Bx@x7)=(B-7

El

—(B- o)

= ;MOM(TCOSHJ —wf) = ;NOM{zwé —w(Ed +yg+28)} = —;/L()MW(ZL‘{% +y9)

Here we have chosen Spherical and Cartesian coordinates with their origins at the center of the sphere and their
z—axis along the magnetization direction. Therefore, the volume charge density is then given by the Coulomb’s law:

= 4 mw

p=aV-B=—gonMe =50

The total volume charge

4w
Qp = /PdT = 32

Note that rotating electric charges will result in an additional magnetic field. However, this field is suppressed by a
factor of v/c compared with the field from magnetization and therefore ignored. (¢) The surface charge distribution
is ¢—symmetric and therefore can be written as
0) = Z o Py(cos )
£

Since the conductor is uncharged:

1 4 MW Q
9 d d = = — — 3 = = — I
j{(j( ) OH_/VP T=0 = o 47rR2p37TR 3mc2R? AT R?
From £ = -7 x B = —(& x ) x B), we note that the electric field along the z—axis is zero and therefore the scalar

potential is constant along the axis. For a point (r < R) inside the sphere, the potential due to the volume charge is
(can be calculated in a variety of ways such as using Gauss’s law to calculate the field first and then integrate):

®,(r) = (3R2 —r?)

660

On the z—axis:

2,() = L3R %)

660

The potential due to the surface charge for a point on the z—axis:
o)
o 47'['60 |7“ — _?

1 1 1 2£
-5 — — = P 9,
77|  R/I:(2/R)? -2/ R)cost Zg gt Llcost)

Note that
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Consequently

R2 ZZO'g/ ;
D, (2) = — Z Py(cos 0') Py (cosf')dcos ' = Z 57 + T RZ+1

The combined potential along the z—axis:

P

2
B(2) = By(2) + €0() = - BRE— )+ > g T
£

®(z) is independent of z only if

5 5 mw
O'Q—ng——gm, and O'Z—O(E#O,Q)
The surface charge density is then
mw dmw mw 5
o0(0) = 0o + 02Pa(cos0) = 22 G2 Py(cos @) = m(l — §P2(cos 9))

(b) Multipole moments gg,,, have contributions from both volume and surface charge distributions:

dom = / Y7, (0, 0)r* pdr + f Y7, (6, 6)Ro(0)da

4 -1

2£+1 R +1 +1 27 )
= p/o 7““2d7“/1 Pém(cosﬁ)dcosﬁ—b—RZ/ P (cos0)o(0)dcos /0 ™ dg

47 -1

2+ 1 B i i
p/ TZJerT/ PZ(COS H)dcose + RZ/ PZ(COS H)U(H)dCOSQ 27T6m70
0 —1

Since o(f) is even in cos@, the integral over cos @ vanishes for odd ¢ values. Furthermore, the monopole moment
also vanishes as a result of zero net charge on the sphere. Therefore, quadrupole moments are the lowest order non-
vanishing moments. The quadrupole moment tensor has contributions from both the volume and the surface charge
distributions:

Qij = /(?mcia:j — 728;5) pdT + }1{(33&1’3&]' — R%5;5)0(0)da
Due to the symmetry in ¢ and in 2, the only non-vanishing components are Q1,22 and Q33.

Q33 = p/(322 —r?)dr + R? /(?yz2 — R*)o(0)d2

R +1 +1
= 27rp/ r4d7“/ (3cos? 0 — 1)dcos + 27TR4/ (3cos?0 — 1)o(0)dcos
0 -1

-1

mw

dmw R?
dme2R?

_ 4
=47 R 22

+1 5
/ Py(cos0){1 — §P2(C089)}dC089: —
1

The ¢—symmetry of charge distribution and the fact that the tensor is traceless lead to:

2w R2

Qu=Q2 = ——Q33 T 322



(d) The electromotive force

L Lo /29 .
8:/E-d£:—/17><B-d :/ SHoM(Reos 03 — wi) - (Rd00)
0

HoTw
47 R,

2 /2 1
= gquwh? / sin @ cos 0df = gqusz =
0

Additional stuff for my record
The potential due to the surface charge

14

Lo ol0) R ,
() = da' = > [ 0(0') Y~ Pa(cost') Py(cos O)d cos 0’
-(7) dmeo J |7 — 1| @ 260/0( ) d I %(cos ') Py(cos 0)d cos

R200 ri , 5 / '
= Z ﬁpg(cos 0) | Pe(cos®') 41— =Ps(cost') s dcosf
2e0 13 2

2 2 r? 1 72 Py(cosd
_ B0 f2 T b osh) | = B0y, [ L < Balcosh)
2¢¢ |7r> 2 3 s TS 2

The total potential outside the sphere (r« = a and r~ =7):

B . 1 Q, R%0y  a'oy _ w R2 Py(cost) o R?
(1) = (") + 2o (") = dmeg T N cor  2eord Po(cos 6) = C6mc2eg 13 6m o3 Fy(cost)

The electric field outside the sphere:

Foon __@mez 20 1\e . P
EF) =-V&(F) = g {(3(2089 1)T+2$1H9C0899}

The total potential inside the sphere (ro =7 and -~ = a):

2
5 = _ P (3R? _42)4 990 _ 00T
BT) = Dp(7) + Do (7) = g ~(BR" —17) + == — 5

Py(cos §)

mw r’ Ho Mw 72
T 6nc2eR {1 N ﬁ(l - PZ(COS@))} = Ter R {1 - ﬁ(l - Pg(cose))}

Problem 6.8
In an external uniform electric field F, the sphere is uniformly polarized with the polarization given by Eq. (4.57):

€c— € =
0 0
€+ 2¢

P =3
Therefore, the bound volume and surface charge densities are:
pp=-V-P=0, o0,=P-7

where 71 is the normal vector on the sphere surface. Since the sphere is rotating, the bound surface charge results an
effective surface current with density:

Ky =0yt = (P-)(3 X 7)|yeq = a(P - 71)(w x 1)



Comparing with the effective surface current density Ky = M x 7 due to magnetization M, we identify a(ﬁ -11)d as
an effective magnetization. Therefore, the effective magnetic surface charge density

= €— €

om(0,0) = Mug -7t = a(P - 7)(& - 71) = 300 -

(B - 1) (wcos ) = 3¢ €< aw Eqg sin 0 cos § cos ¢
€+ 260

The magnetic scalar potential @57 (7) (Eq. (5.100)):

1 oM da’ 3 € — € 3wE0/sin9’c089’cos¢’

= = — aQ’
At |7 — 7] 47T606+260a

Oy (F) = ——
=71

Using the identity:

sin@' cos @' cos ¢’ = —4 %Re {Y1(0',¢")}

and expanding 1/|7 — 7 | using spherical harmonics, the integral becomes:

sin 0’ cos 0’ cos ¢’ < N
/de \/ Z%Jrl o Yo /Yzm @)Y (0',9")d2

4
= %T—g sin € cos 0 cos ¢
>

where 7~ = min(r,a) and - = max(r, a). Therefore, the scalar potential

1 oM 3 €—¢€ A re |
eu(7) = —-da' = — Swho { ——5 sinfcosd
M(F) 4 |7:’_ T/l a Ar 06+260 w 0{ 5 7“3> sin 6 cos 6 cos ¢
3 _ 3,.2
= 560 :+ 2660 E —72:—5 (rsin @ cos ¢)(r cos 0)

Note

23: 28 = 2.5
T T 7"7">

a®ri  a*rir? aPr?a? B { a }5
The magnetic field H can be determined from @, (7):
3 e—¢ a® 1 a)’®
By (F) = 2 PN B RV - Sl G
() 5606+260w 0{7“>} v 5 w{r>} v

What if the electric field is along the rotational azis?
The effective magnetic surface charge density:

or(0,0) = a(B-7) (@ 7) = 3eo :;2600 aw By cos® 0




1 oM €— € 1 212
Py (7) = — —da’ = Sweg By ¢ — + = =5 Py(cos f)
w(7) Ar |7 — | T e 0{r> +5r‘°; 2(cost)

Problem 6.11
(a) The momentum conservation equation

d 4 .
E(Pﬁelds + Pmech.) = j{ZTijnﬂ'da = —f(—T) - ida
J

implies that the projection of the momentum flow along the direction of 7 is given by —T 7% where T is the Maxwell
stress (momentum) tensor:

1 1
—Ezéij) -+ //LO(HlHJ — §

Ty = co(BiEj — 5

H?6,5)

Physically —T; is the rate at which the i*"-component of the momentum is crossing a unit area in the j** —direction.

In a Cartesian coordinate system with the z—axis along the wave propagation direction and E along the x—direction:
E=FE: H=Hj

The i*" component of the linear momentum flowing into the surface (in the direction 7 = 2) per unit time per unit
cross section is therefore

1 1 1
pi = Z(—Tij)ng’ =T = —eo(Ei B3 — §E25¢,3) — po(HiH3 — §H25¢,3) = §(€0E2 + poH?)d; 3
J

In the chosen coordinate system, the only non-vanishing component is p,. The force exerted on the wave from the
surface per unit area (according to Newton’s second law):

1
F,=Ap, = (0 _pz) = _§(€0E12 +M0H2)
Therefore, the radiation pressure on the surface (Newton’s third law):

P, = —F, = Z(eF? + poH?)

N =

which is the energy density in the electromagnetic wave.

Problem 6.13
(a) Note: only need to work out the first non-zero terms in electric/magnetic fields. To a good approximation, the
conductors are at equipotential and have uniform surface charge distributions. Choose a Cartesian coordinate system
with its origin at the center of the capacitor, the x—axis parallel to the edge a and pointing to the current feed, the
y— axis perpendicular to the two planes. Let Q(t) = Qoe ** be the total charge on the bottom plate, the electric
field in between the plates is therefore
E(F, 1) = ﬂy — l@eﬂ'wt@

€0 €0 ab

The charge on the 2’ < x portion of the bottom plate is:

Q1) = bla + 3)o(t) = %e*wtb(m Y=+ =) Qoe "

The surface current density



Note that K is maximum at z = /2 and zero at © = —a/2 as expected. In between, the conduction current looses
its strength to the displacement current. (b) The electric energy density and energy

I 1 1
= E D" =—¢glF dr
We = ol B = ey ( /W 460 ab

4

The magnetic energy density and energy

12 = 1 Ho Q3 pow?adQ?3
Wy =-B -0 =-—|B) = 222 = = /Wmdzio
4 P =7 (2 a) 2 T 126
The input current
dQ(t .
I(t) = % = —iwQpe ™t
The reactance
4w o [ pow?adQi  Q3d towad d 1
X = — m — e d = — = — = L — =
|7]2 /(W We)dr wng{ 12b 4epab 3b cowab 7T wC

where L = poad/3b and C = egab/d. Therefore, X is equivalent to the reactance of a capacitor C' connecting in series
with an inductor L.



More Problems for Chapter 6

Problem 6.14
(a) The charge on the plate

Qt) = /Ot I(tdt' = i—osinwt

assuming there is no static charge. In a cylindrical coordinate system, the electric field is along the z and the magnetic
field is along the ¢ based on the symmetry of the problem. Let (Fo, 1) and (Bo, B1) be the first two non-zero terms
in the electric and magnetic field expansions:

B(f)=(Eo+E)%  B(R) = (Bo+ Bi)o
The first order of the field is given by

9 _ 0 = L—Osin(wt)

by =—=— 2
€ Taley ey wa

From Ampere-Maxwell’s law, changing in electric field results in magnetic field:

_ OF 10 OF I
VXB:/L()G()— O_M

I
ot = ;a_p(pBO) = /LOEOW = 7'['a2 COS((A)t) = BO = Ea cos(wt)

Note that there is no static magnetic field. The oscillating magnetic field gives rise to additional electric field:

= 0B, oy polp . wolo P
V x El = —W = a—p = —%aw sm(wt) = E1 = —?ﬁw sm(wt)

This additional electric field in turn contributes to the magnetic field according to Ampere-Maxwell’s law:

> oL, 10 polo wp? wolo P> 5
V X B1 = /LOGOW = ;8—p(pB1) = —47[_62 ? COS((A)t) = B1 = — 167‘[‘@2 EW COS((A)t)
Combining two contributions together,
= N 1 In . polo 2 . N 1 Iy . I B
E(F) = (EO -+ El)z = {W_GOW sm(wt) — ?a—zw sm(wt) = W_G()W sm(wt) 1-— Ew Z

Converting the electric and magnetic fields obtained in (a) into complext notation:

2
E() = Re {ZL%{l - p—zwz}ei“’t} z

TEY Wa 4c

27a a 8c?

2 ~
B(f'):Re{MOIOB 1_p_w2}eiwt}¢
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Therefore the total average energies in electric and magnetic fields are:

1 @ 1 1 Iy @ p? 1 Igd a?
dr = Zeo(2nd Bpdp ~ ~mepd{ — =512 | (1 — L=w?)pdp = 01— —u?
/wET 460(7T)/0 | B pdp w2 5meo {mwag}/o( 5z )Pdp yr—— w

1 “ nd [ polo \* [© P a3 Ho 12 a®
ndr = —(2rd Bl?pdp = — 1— = dp= —I12d{1— —
/w T 4/10(7T)/0| Ppdp 2/10{27m2}/0( 802w)p P= 3510 6c2”

The total charge on the plate to the second order:

i IO —iwt “ p2 2 -IO a 2 —iwt
Q:/ada:/eoEda:%reow—eome /0 (1—@44) )pdp:z; 1—8?w e

Therefore
2 2 2 2
LP=w?|QP =B 1 - cmw? b mBil- 0Pt = Ba|LP 1+ om0’
1 0 862 0 462 0 1 462

Plugging into [w.dr and [ w,,dr:

(¢) The reactance

dw pod 1 d
X:W/(wm—we)d’rrvw?——

equivalent to the reactance of an inductor I = pod/8m and a capacitor C = 607m2/d connected in series. The
resonance frequency

1

res — T —= — 2\/—E
“res = VIO a

Problem 7.2
(a) Choose a coordinate system such that the electric field is along the x—axis, the magnetic field along the y—axis
and the wave propogates in z—direction. In medium 7, the incident and reflected waves are described by:

E_w’i _ Eiei(hszt)i,’ Ez — f_iei(klszt)g
1

Er — Erei(fklszt)j’ Er — _Eefi(klszt)y
U1

In medium ngy, there are both forward (denoted as +) and backward (—) propogating waves and are described by:

_ " S B
Bt = E+ez( zszt)i,’ BT = _el( QZ*Wt)g
U2
o . = B .
= Efez(szszt):i,’ B = _Ee*l(kQZ*Wt)g



In medium ng, there is only transmitted wave:

t
E’t — Etei(kngwt)i,’ B’t — Eei(kngwt)g

U3
where k1 = w/vy, k2 = w/vg, and k3 = w/vs are wave numbers in the three media. For nonpermeable media
(11 =2 g =~ p3 & Lig), EH and BH are continuous at each interface (z = 0,d). At « =0, one has:

BB B —E
vre w2

Et+ BFm=E"+E;

At x = d, one has:

+ ikod — 7lk2d t
Eret — B Eeikgd

E+ ’Lkgd_‘_Ef —ikod __ Et ’Lkgd

V2 U3

Let

BeB puze
The four equations are then

F'+E =E"+E; E-F=aF" -E)
Bhethed | g emiked — ptgiksd, Bheiked _ g gmikad — gt gikad
Solving for ETet*2? and F~e~%#2¢ from the last two equations:
1

EJre’L'de — (1 4 ﬁ)Ete’L’kg,d’ E*ef’ikgd — §(1 _ ﬁ)Ete’L’kgd

N =

Add the first two equations to eliminate E":
2EE — (1 +Oé)E+ 4 (1 _ Oé)E7 — §Ete’bk3d {1 +a)(1 +ﬂ)671k2d + (1 _ Oé)(l _ ﬂ)elkzd}

Solving for £ in terms of F':

% = %e““?’d{(l + af) cos(kad) — 2i(a + B) sin(kad)}

Therefore,

1|2 |2 (14 af)? cos?(kad) + (o + B)? sin?(kad) = (1 + aB)? — (1 — a®)(1 — 8%) sin?(kod)

The transmission coeflicient 7
I _ esvs| B2 _ |£|2 4o
It eyu| B2 (1+aB3)?2 — (1 —a?)(1 — 32)sin’(kaod)

T =

4n1n§n3
nZ(ny +n3)? + (n2 — nd)(nZ — n?) sin2(n2dw/c)

It varies between the two extremum values

4nq n%ng 4nqins

Ti=—2>2"> Th=—"2
LT g+ nang)? 27 (g +ng)?



as a function of w for a fixed d or as a function of d for fixed w. From the energy conservation, the reflection coefficient
Ris
R (s — na)? + (03 — n3) (03 — ) sin? (nadw/)

R=1-T=
nZ(ny +ns)?+ (n — nd)(nZ — n?) sin2(n2dw/c)

In the special case of d = 0, the coefficients reduce to the familiar forms of two media.
(b) For ng = 1, the reflection coefficient

B n%(nl — 1)2 + (n% — 1)(n§ — n%) sinz(ngdw/c)

C n2(ng +1)2 + (02 — 1)(n2 — n2) sin®(ngdw/c)

To have zero reflection at w = wg, the following condition must be satisfied:
n3(ny —1)? + (n3 — 1)(n% — n?) sin*(nadwo/c) = 0
Since ny > 1,n2 > 1, this is only possible if ng < ny. One set of possible solutions is given by
sin(nadwo/c) =1, and  n3(ng — 1%+ (3 —1)(n3 —ni) =0
This leads to

1 c
ng =./n1 and d—(€+§)7r e

where ¢ is a non-zero integer.

Problem 7.3

Note: only need to consider the polarization perpendicular to the plane of incidence and assume g = pig in all media.
(a) Assuming the wave incident from left, let Fp and E(;/ be the incident and reflected waves on the left surface, F.
and E/_ be the right and left traveling waves on the left surface in the air gap, 6 be the incident angle, and 6’ be the

refracted angle (nsin@ = sin¢’) in the gap on the left surface, the boundary conditions (parallel components of E
and H continous) on the left surface lead to:

Fo + E(;/ =F, 4+ E_ ncos@(Fo — E(;/) =cosb' (K. — F_)

On the right surface, the incident and reflected waves are F, e'** and E_e~** where £ = d/ cos ¢’ is the path length
between the two surfaces and k = w/c is the wave number in air. Let £j be the transmitted wave, the boundary
conditions on the right surface lead to:

E " L B e = F) cos0'(Ey e — B_e ") = ncosOE)
Defining

ikl _ _ikd/cosf’, _ ncost
=e€ 3 - I
cos 6

the four boundary equations are:

B +EBE_ =FE+E, B —E_ =pFE—-E,)

E_ / E_ ;
E —=F E,——=p3FE
by + — o b= BE,

Solving these equations for E, and F:

4af

E/ o Zlﬂei(;s
P PP -a?(L-pp

(1+P)? — 2o(1— )2

Ey = Eo

P ([t VIR (o [ Gt )

R (e o



where ¢ = kd/ cos ' = wd/(ccos0'). The transmission coefficient

Bl (48)?

P = B = A= = (1=F) — 201 = ) cos(29)

B (4n cos 0 cos 9’)2
~ (ncosf +cosf)* + (ncos — cos0')% — 2(n2 cos? § — cos? §')2 cos(2wd/(c cos 0'))

The reflection coeflicient

_ B 2(1 — )*(1 — cos §)

= P T A8 = (1= A =201 = )% cos(29)

B 4(n2 cos? 0 — cos? 9’)2 sin? (wd/ccosb')
a (ncos® + cos§')* + (ncosf — cosB')* — 2(n? cos? O — cos? 0')2 cos(2wd/(ccos 0'))

It is easy to verify that R +7 = 1.
(b) For § > 0, = sin" *(1/n), cos @’ = \/1 —sin? ¢’ = \/1 —n2sin?6 = i\/n2 sin?@ — 1 = i|cos 0’| is a pure imaginary.
The transmission coefficient

T |43¢i?|? B |41 cos 0 cos 0| 2e2kd/ | cos €]
(14 B)2 —e2ie(1 —3)22  |(ncosf + cos )2 — e2kd/lcos 8] (n cos  — cos §')2|2
Asd— 0,
T |4n cos 0 cos 0']2 1
|(ncosf +cos )2 — (ncos@ — cos0')22
As d — oo,

!
|4n cos 8 cos 9’|26’2kd/‘ cos ¢

T
— (n?cos?6 + | cos 0']2)?

—0

as expected.

Problem 7.4 ;

(a) At normal incidence, the reflected wave £ is given by
E(/)/ _1-n
o 14+n

where n = ¢/v = ¢ /pe is the index of refraction of the medium and Fjy is the incidence wave. For a conductor,

€ & o /w. Therefore,
o ~C [pow ~ C
n=cy /e =cy/t ” ( _H)w” 5 ( +Z)w5

where 6 = /2/(pow) is the skin depth. Therefore,

By 1-n_ 1—(1+i)c/(wd)

= = = re'?
Ey 1+n 1+(141d)c/(wd)

where 7 and ¢ are the amplitude and the phase of the ratio respectively:

- 1+ 4ct/(wté*) o Vwhét +4ct
14 2¢/(wé) +2¢2/(w282)  2¢2 + 2cwd + w22




2¢/(wd) 2cwd
t = — = —
an ¢ 1—2¢2/(w?6?) w22 — 2¢?

For a perfect conductor, 0 — co = § — 0, the amplitude and the phase
r—1 and tan¢g -0 (¢ — )

As expected the reflected wave has a 180° phase change with respect to the incident wave.
(b) The reflection coefficient

whét + 4ct L4 (wd/e)t/4 ) 2w_6

R=r*= ~ ~
(2¢2 + 2cwd + w?§2)? (1 4+wd/c)? ¢




7.1

| shall apply Eqgs.(26), (27), and (28)

Sp +S1 So—$1 - S3
=a =a 0 =02—01 =SIn ( )
1 2 | 2 1 2a1a2
Sp + S3 So — S3 -1 S
=a =a 0c=0_—0, =SIn ( )
2 * 2 - ¢ " 2a,a_

a) So=3, S1=-1, =2, S3=-2

ap =1, a; =42
-2 1
o =sin""| =% | = —=—nxrad
| (2,/5) 4
1 5
a=—= a = |3
J2 2
¢ = sin 2 — 1.1071 rad
1 i
2(H)(F
b)So—25 S1=0, =24, s3=7
a = 22—5,az= 22—5
) =sin‘1( S )zsin‘1 — I | =0.28379rad
I 2a;a; 2(\/? 22_5)

_ s _S _ainl 24 _ 1
0c=0_-6, =Ssin (2(4X3)) 27rrad

To plot the two cases ReEx = X = cosx, ReEy = Y = rcox(x - d,), wherer = ay/a; and X = ot.
Case a) COSX, v2 COS(X+ %)



0.57

Case b) cosx, cos(x — 0.28379)

) /0{ 04 06 08 1




7.2

a) The figure describes the muliple internal reflections which interfere to give the overall
reflection and refraction:

//
//

For the ij interface I shall use the notation

=

[ — E6 . 2n;
UTE, T N+ N
E” . .
1) Eo Ni +N;

Thus from the figure

Eg = EgRyp + r12E0R23r21ei¢ + r12E0R23R21R23r21ei2¢ +....

B
Eo = EoRi2 + r12EoRzsr 21€" Z(R21R23ei¢)n
n=0

£ — B[ R, 4 F12721Ro3
° 0( . (€ — RatRe3)

Similarly

E6 = E0r12r23 + E0r12R23R21r23ei¢ +....



E,=E 12623

1- R21Rx€'?

where the phase shift for the internaly reflected wave is given by

6 = 2r(2d)  wny(2d)
- = - 2
Now for a plane wave
S = 5 [Eal’
Thus
r_ S _ [l
S [|Eof
T-WWS _Nn3 s
V3 S ni s
From the above

R=| R+ 2r 151 21R23R12(C0SP — Ra1R23) + (Rial 21R23)
(1 + (R21R23)2 - 2R>1Rx3 COS¢)

_ N3 (F12r23)°

Y (1 + (R21R23)2 — 2R>1Rx3 COS¢)

|

Since these two equations are smple functions of ¢, which islinearly proportiona to the

frequency, they are smple functions of frequency which you should plot.

b) Sincein part @ we used the convention that the incident wave is from the left, | will rephrase

6 - 27r/gd) g ode

A1
n2

where 1, isthe wavelength in the medium =

this question so that n; isare, n, isthe coating, and n; isglass. In this case, we will have
N1 < Ny < ng, and Ry1R23 < 0. Thusfor T to be a maximum, from the above equation cosp = —1, or

¢ =r.



7.4

We have a nonpermeable conducting material, So 4 = uo, and we have J = oE, where ¢ is
the conductivity. The following figure describes the system:

p A
1

The two boundary conditions that we must satisfy for plane waves are

Eo+E) —E, =0

K(Eo —Ej)—KEj = 0
Or
Eo _ k—K

Eo  k+K

We must take into account the fact that J = oFE. Adding in this term in Maxwell’s equations for a
plane wave, we get

-

k? = epw? (1+iS

Thus we can write

k' = Jeno(a+ip)
with

2

(,M+(&q2+1)”2
a =



2

1+(&)% -1 v
ﬁ:( = )

Thus

E_g_ 1- /efocCa —i [ElipoCh
- 1+ Jemoca +i/Eaoch

Eo
1) For avery poor conductor o isvery small, so keeping only first order in o

1/2
_(,/1+(%)2+1) .
o = 2 ~

p= 2

2) For the case of avery good conductor, -2- >> 1, sO
[ _2
~ o _ pows? _ 1
* %\ 20e 2m¢ ®0 [H0E

~ o _ 1
P~ 20z 3 [HoE

where | have used (5.165) to relate the conductivity to the skin depth.

112
1+(Z)% -1 c
= 2wsg

2
[10&)52

O =

1.0 2
1+Cl+i

ofe
Q

_ £ _j-c
1 3 Im5 _ O
< -
- T &

El/

0 _
- c i c

Eo 1+E+'m5

C|E
R“E—o

§=-1+2@1-i)

2
= (-1+60/c)® + (48)" ~ 1- 250l



More Problems for Chapter 7

Problem 7.12
(a) The Fourier transforms for charge density p(7,t), current density J(7, ) and the electric field F(7,t) are

— 1 = iw = > —iw
p(F,w) = E/p(r,t)e tdt, p(F,t) = E/p(r,w)e tdw

L[ 5 i - 1 .
J(F,w) = E/J(F,t)elwtdt, J(F, t) = —/’J(F’w)ef’bwtdw

. 1 . . . .
E(Ff,w) = — [ E(F,t)e™dt, E(rt :—/E 7 w)e” “dw
() = o= [ F) (7.1 (7,
Taking divergence of the Ohm’s law:

V- J(Fw) =0(w)V - E(Fw),

applying the Fourier transformed Gauss’s law and the continuity equation:

|

V-E(F,w):p(“’), V- J(F,w) = iwp(F,w)

€0

we have
o(w) o . . ~
(7, w) — iwp(F,w) = ie.  (o(w)—iwey)p(F,w) =
€
(b) With
2
o0 €ow,T
ow) = 1 —iwr  1—idwr

we have

2
COW,T Lo
{ T ir zweo} p(F,w) =

To have non-vanishing charge density, we must have:

_q J4,,2-2 _
60“}1[2)7. 1+ 4wp7' 1

£ —iweg=0 = wi=
1 —dwr 27

In the approximation w,7 > 1:

Therefore,
p(F,0) = po (PO —w )+ p (Milw —w)
where p; and p_ are functions determined by initial conditions. The time-dependence of the charge density

= 1 = —dw 1 — T —iw 2\ piw
p(7,t) = E/P(T,w)e fdw = Ee He ){P+(F)e o (Pt}
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Therefore, any initial charge distribution will oscillate with the plasma frequency w, and decay in amplitude with a
decay constant 27.

Prob. 7.13

(a) The index of refraction of the ionosphere is

2
€ w 1
n=,—= 1——2:—,/«)2—%%
€0 w w

The ratios between the amplitudes of reflected and incident wave are given by Egs. (7.39) and (7.41) for the two
polarizations. Note the Egs. (7.41) and (7.39) have different sign conventions for E(;/.

1 .
By cosf — nsin 6’

" cosl Fnemd for B L plane of incidence
o  COS nsin

1 .
By ncos @ — sin 0’

T = noosf £ sn0 for E || plane of incidence
o mcosl+sin

In both cases, the amplitude of the ratio is unity when sin 6’ is imaginary. This corresponds cases that the incidence
angle (0) is greater than the critical angle 6,:

w? — w2
f.=sin ‘n=snt{ X — ~—
w

Therefore, the reflection is partial if § < 6. and is total if 6 > 6. for w > w,,.

(b) For simplicity, treat the ionosphere and the earth as flat surfaces and assume that the amateur can only receive
distant stations when the wave is totally reflected. In this case,

o d L Ve d P
Ve = Vi L & w VIR id T ANV @ an?

where h = 300 km is the effective height of the F' layer, d = 1000 km is the distance between the station and the
receiver and A = 21 m is the wavelength. Plugging in the numbers, we get the plasma frequency

3 x 108 1 % (300)2 .
P = To0 \/(1000)2 i (3002 LOx 107 Hz

which corresponds to an electron density

2
megw,
00 = 6.6 x 10" /m?

n— _=
e2

Note the day-night difference is due to the sunlight.

Prob. 7.28
Since the wave has a finite extent in z and y dimensions, the wave is not a plane wave. Assuming the wave is
dominated by the transverse polarization, but have a small longitudinal part, the wave can be written as

E(m, Y,z t) - {Eo(x, y)(gl + 152) -+ F(x’ y)é’3} ei(szwt)
here €1, €5, and €3 are unit vectors along £—, y— and z—axes. The wave must satisfy Maxwell’s equation

6E0 (.’E, y) + ZaEO (.’E, y)
Oz Oy

V- E_j(a:,y, 2,t)=0= { + F(ﬂc,y)zk} ilkz—wt)



Therefore,

Fz,y) = {8620 :I:iaa—EyO}

The electric field is then given by

B o i o OF aE i(kz—w
Blont) = { Bolo)@ o) + O 10032 | oo

The magnetic field can be derived from the Maxwell’s equation:

B E, B .

—6——V><E V x < Ep(z,y) (€1 £iex) + — {Q iza 015, | githz—wt)

ot By

Since the amplitude modulation is slowly varying, 0Fy/0x and OFy/0y are generally small. Neglecting terms of
0?Eo/0x? and 62 Ey/0y?, we have

B .

__%t =V x {Eo(a:,y)(é’l iié)z)el(szwt)}

Therefore,

R e R P R

. z{ OB, . OB, . 0B 6E1_,}
B=—— ]

0Ey, OEy

= ; {:F@Eo(.’l,‘ y)(ik)er + Fo(x,y)(ik)es + (+i % — ﬁ—y) }

_%(ik) {Eo(a: y)(&1 £iéz) + (% + 83—?) }

k = o
= Fi—F = Fi,/Juekl
w



Chapter 8 Problems

Problem 8.2
(a) In a cylindrical coordinate system with the z—axis along the axes of the two circular cylinders, the TEM mode
has fields that vary as €"(*2=9%)  where k2 = w?/v? = pew?. Therefore, the magnetic field has the form

E — B¢(]A5€i(kZ7wt)

where By is determined from Ampere’s law:
— = . T
Note that
Bylpa
Hy = % = Iy =2maHy

°

Therefore

vecB — Hogei(szwt)qg
p

B= /LHogei(kz*“’t)qAS and H=
p

The electric field in between the two cylinders can be determined from the magnetic field through the Ampere-
Maxwell’s equation:

— —

= OF .  kxB Lo a
B — el E — — _H - ’L(szwt) A
V % pe B = e \/Z ope p

Here k = k2 = w, /li€z is the wave vector. The average Poynting vector

The average power flow along the line (neglecting the wires) is

+ - 1 b 2mpd b
P:/(S>-da: 5\/g|H0|2a2/a L \/g(wa2|H0|2)ln(a)

(b) The average power loss per unit area on the cylinder surfaces is given by FEq. (8.15):

a1

1 |Bgl? 1 a?
- 2_ Lt 1Pl 2
da 200 | Ho

= %0 2~ 200l

_ 1 -
Ren|? = —g =7 > H) " = —5—| M,

The average power loss per unit length along the z—direction

P dP P ra?|Hol2 (11
5 = o le=e(2m0) £ o (2Mh) = - 0 = o

From (a), one has

Plugging into dP/dz:
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where

Integrating the above equation:
P(z) = Pye2?

(¢) The characteristic impedance Zy is the ratio between the voltage and the current.

b b
— — d ) b )
V = / E.-dil = \/EH()G/ _pez(kz—wt) — \/EGHO ln(_)ez(szwt)
a € a P € a

The current is given in (a) to be I = 2raye’*~w, The impedance is therefore

V 1 jp. b
Zo=T =57\ 3

(d) Series resistance per unit length can be calculated from the average power loss per unit length:

1
—Z|IPR =2 = Z
2||R = R a+b

P 24P 1 f1 1
dz |I]?2 dz  2moé

The inductance per unit length can be calculated from the energy per unit length in the magnetic field:

1 1~ - 1| e LY el (R
—L|I|2:/—B-H*da: - / +/ +/ B-H"(2mp)dp
4 4 4 0 @ b

Note that inside the conductors,
ﬁ(g,t) = ﬁ“e*(lfi)é/éefiwt _ H(éef(ki)g/aefmqg

where £ is the distance into the conductor and ﬁH is the tangential component of the field at the surface. Assuming
d < a,

/0 B-H*da= 27T/LC/0 uC|H¢|§:ae*25/6pdp = 27T|H0|2/0 e~ 2=/ pdp = Tpad| Hol?

b b
Lo b
/B-H*da:pr/ |H¢|2pdp:27rua2|H0|2ln(a)

oo o] 2
/ B-H*da = 27r/ pelHgl?_ e~ %/° pdp = Wu05%|H0|2
b b

The inductance per unit length
L= /a+/b+/oo B-frda= — /a+/b+/oo Eﬁ*da—ﬂl(ﬁwm 11
P o a b  4Ar2a?|Hol? ) o @ b ~ o Mg dr la b

Problem 8.5
(a) Since the guide is a single conductor, there can be no TEM modes. To determine TM and TE modes, we choose

a rectangular coordinate system with its origin at the middle of the side v/2a such that the three sides are described
by x = a/2, y = —a/2, and y = z. For TM modes, the ¢» = 0 on the surfaces. The boundary conditions at © = a/2
and y = —a/2 can be met by choosing ¥y, (2, y) to have the form:

mﬂ(xa— a/2) ) Sin(mr(y ;}— a/2)) N Sin(mw(a:;— a/2) ) Sin(mr(y ;}— a/2)

)

¢mn (.’L‘, y) ~ Sin(



The boundary condition at ¥(z,¥)|,—, = 0 can be met by requiring ¢ (z,y) be antisymmetric under the exchange of
T <y, le.,

mw(xo—bb— a/2) ) Sin(mr(y ;}— a/2)) B Sin(mr(a: 2— a/2) ) Sin(mw(y;— a/2)

Y(z,y) ~ sin( )

Thus, the TM waves have the general form

vy =30 D Amn {Sin(m(m D)) (PTG (ML) ) (T 0/2) )}

a a a a

Here A, = 0 for m = n (¢ vanishes if m = n). The corresponding cutoff frequencies are given by Eq. (8.44):

T m2 n?2 7
2

¢ .
——Al =5+ 5 = —Vm?+n? with m#nand mn>0
JVIEN a a a

The dominant mode is m=1,n=2orm=2,n=1:

Wnn =
e
Wiz = w21 = - )

For TE waves, 0¢/0n = 0 on the surfaces. The conditions at @ = /2 and y = —a/2 are met by choosing ¥y (z,y)
to have the form:

mm(x +a/2 nm(y +a/2
Yn (T, Y) ~ cos( ( / ))cos( (v +a/ ))
a a
The boundary condition at y = x is met if 9¢/In
0 o 1.9 0
L= Vi = (5 )

is antisymmetric under exchange x <+ ¥, i.e.;

O R

Thus ¢(x,y) must be symmetric under « <+ y. Therefore, the TE waves have the general form

Y(x,y) = Z Apon {COS(mﬂ-(x;_ a/2))c0s(nﬂ-(y : a/2)) _)_COS(M) COS(M)}

The corresponding cutofl frequencies are

T /m? n? 7 .
Winn = ——=A{| —5 + —5 = —Vm? +n? with and m,n >0
VeV a a a

Though m and n can be equal in this case, however they cannot be both zero. Otherwise, H, = % is a constant,
which leads to vanishing H; and FE,. Consequently there is no wave. The dominant mode is therefore m = 1,n =0
orm=0,n=1:

) )

W10=W01=;

Problem 8.8
(a) Assume h < a, §;,0, < @, the electric and magnetic fields are approximately

=1y

(€ +1) Wﬁ” Py(cos ) ~ _gw + 1)“2(29) Py(cos ) = _%C«/M + Dyug(a) Py(cos )

WeT



N @ dug(r)

wr dr wa dr

lr—a P} (cos ) =0

P} (cosf) ~ uela)

1
" . Py (cos )

where wy = (/£(£ +1)c/a is the resonance frequency and wy(r) is the solution of the radial equation (8.103). The

average energy stored in the fields

1 {2 = = = 1 S
U:Z/(D-E*+B-H*)d7-:Z/(6|E|2+

B

dr
u)

a2

B =

a+h
/ gy / dQ{GZ—ZE(E—O—1)u§(a)[Pg(cos9)}2—b—iu%(a) [Pg(coso)ﬁ}

l 1 COSs 2
L (cost) }

2
4 a2 _%{(a+h)3_a3}/d9 {Gczﬁ(ﬁ—O—l)[Pg(cosH)}z—)—

~ i p %a?’ {1 + 3% - 1} (27) /Oﬂ sin 6df {%E(ﬁ +1)[Py(cos ) + %[PZI(COSH)F}

whuz(a) [T
= —th( )/1 dw {00 + 1)[P(@))? + [P} (@)]?)

Note that

41 +1 m)!
/ [Py(a)2de = %—2“ / [Py (z)2da = %Qﬁgﬁjm;

Plugging into U:

_ 2rhu?(a) £(¢ + 1)

v i 20+1

(Note that the average energies in electric and magnetic fields are equal). The average power loss is given by Eq.

(8.15):

dP 1 5 1 — 1 =
_:—Ke 2:_ — H 2:_H 2
da 206' il 206|n>< H' 206' H'

Now note that

- B we(a
\Hy| =2 =
I

~—
~
—~
Q
@]
W
S~
~—

The average total power loss

dpP apP 2(a) 1 1
Pioss = 2 —da = "5~ — P} (cos 0)|2d92
: /interior da “r /exterior da ¢ 2M2 { O'i(si N 0566 } /[ ¢ (COS )}

_M{L+ 1 }£(£+1)

=

12 0:0; 0O0e | 204+1
Note that
52— 2 N 1 pwed
HwpC od 2



Therefore,

_2mui(a) [pwd;  pwde | mug(a)we L(E+1)
Ploss = E 5 T ([~ 2£+1(6Z+6e)
The Schumann resonance ) value:
U 2rhu(a) L(f+1) p 2+1 1 2h

Q=g = o] w2 (@) W+ 1) 8 8, 3+,

independent of £ and N = 2.

(b) For the lowest Schumann resonance,

3-108

e 1ge = 063 1z

(=12 w=vIi=V2

2 2
e = = =4.9-10?
\/uwlae \/47r 107 x663x01 W Wm

7 5 4
" \/Wlai - \/47r- 07 x663x105 w0 10m

2h 2 x 10°

b +06;  4.9-102(1 + 100) 0

Q

(c) With o; & 1075 (Qm) !, §; & 49 km is not small compared with k & 100 km. However, the fields vary over
distances of order a, at least for £ = 1. Thus, the approximation of Section 8.1 are valid, at least for small ¢ values.
When a/f becomes of order of §;, these approximations won’t be adequate. In this case, it occurs at £ ~ 100.

Problem 8.18
(a) For TM modes, we have

(VZ2+43)F,» =0, and E,\|c=0

where the subscript C denotes boundary contour. Applying Green’s theorem in two dimension:

2 2 0\ das — % _ 00
[ @vie—vvtoia =~ f (oFE - v

where the — on the right side is due to the difference in the normal definition. With ¢ = E, and ¥ = E,,,, we gets

OF, OE
/S (EAViE,, — B, V2E,\)da = — }’,{3 (B, 8n“ - Ewa—n)dﬁ

The line integrals on the right-hand side vanish due to the boundary conditions. Therefore,
0= [ (BaVEEy— B V2BAa = [ {Bo(=9EBe) = B =R Eor)} da = (5 =) [ BoaPyda

For the case vy # 7., the integral must vanish:

/ Bk, ,da =0
S

Same argument applies to H,» and H;,, except in this case, the line integrals vanishes due to boundary conditions

0H,
on

lc=0



(b) Proof for TM modes only
Applying Green’s first identity

0
[@6vt0 V6 Viwyin = § 63 ar
s
with ¢ = E,5 and ¥ = E,, for the TM modes, we get
/ (EANVZE,, +ViF, - ViE,,)da= — }’4 Ez,\ﬁEwdE
s C 67’7/

Again, the line integral on the right vanishes due to the boundary condition. V; [, and VZE, are given by Egs. (8.33,
8.34):

vtzEzA = —’)@\Ezm vtzEzu = _’hZLEzp,

s 7 Y7
V.E.y = —i2F}, Vil = —i—“EH
kx Ky

where E and E_ju are transverse electric fields. The Green’s first identify becomes

B [ = A o[ s A
fyﬁ/Ez,\EwdaJrkkk”/EA.EudaZO = /Ez,\Ewda:—k . /E,\-Euda
s AR Js s ARy Js

Assuming non-degeneracy and from (a), we obtain:
For \ # ; /EA-Eudazo
s
By properly normalizing E}\, we have

/EA - E,da =3y, FEq.(8.131)
S

2 2
/ Bz Bopda = ——- / By Byda=—26,, Fq.(8.134) for TM waves
S k)xku S

Now turn into the relations of magnetic fields. Note that

cw = €W - cw = 1eW
H_—sz_—szEz, H,=—ZxF — 2 x Vb,
A ]C)\ A 7}\ t A m kp, w = 'YEL t m
5 5 (ew)? (ew)? X o (w)?
H)\ . HH =—"3 3 (Z X vth)\) (Z X vthu) = —2—2vthu . {(Z X vth)\) X Z} = B vthu vth)\
’Y)\’Yy, ’Y)\’Yy, )\’Yy,

Using Green’s first identity with ¢ = £, and ¥ = E,,,, we have
4

oF,
/VtEw -V, E,\da = —j{E 2 /EZHVsz,\da = fyi/EzuEz,\da =N 20

FH O k3
Thus,
. (ew)?, 4 (ew)? 1
iy - H,do= o D= s Eq. (8.132
/ A Haa b 7;'73( kg\ ) kg\ Ap Zf Ap q. (8.132)

where Zy = ky/(ew) is the wave impedance.

1 — — 1 k
_/(EA x [,) - sda = 5/{?%% x f—w( vtEw)} tda

2 b
1 [ kyew Lkyew , 7 1
= o [ 2YV,E VB )da = 22 (DG = — Eq. (8.133
3 | o (el Villio = —5 5880 = g0 Ta (8139



8.3

y Vi

(Vi+y5)y =0, v =E(TM)ory = H,(TE)
As in class, we will use cylindrical coordinates, and assume

v(p.¢) = R(p)Q(¢)
We get the two equations

aaT:ZQ(qS) = -m?Q(¢) with solns Q(¢) = ™, m=0,1,2,...

& R + %% + (1 - T—;)R(x) (Bessel eqn.)

dx?
with regular solutions Jn(x), and singular solution (which we reject as nonphysical) Nm(X). Here
X=1vp. _
Solutions:

T™: BC: Jn(Xm) = 0, and

Lowest cutoff frequencies:

O = Ymn  _ _Xm
JH RyR

Using the results of Jackson, p. 114,



Xon = 2.405,5.52,8.654, ...
Xin = 3.832,7.016,10.173,....
Xon = 5.136,8.417,11.620,....
TE: BC: J(Xm) = 0, and
E.p,¢) = Eodn(ymp)e™, m=0,1,2,....;n=1,23,...; ¥m = Xm/R

Lowest cutoff frequencies:

! !
O = Ym  _ _Xmn
JE  RJR

Using the results of Jackson, p. 370,

X, = 3.832,7.016,10.173,...
X, = 1.841,5.331,8.536,....
X, = 3.054,6.706,9.970,....

From the above we see the lowest cutoff frequency is the TE mode
wh; = 1.841K, withK = 1/(R/zn )
The next four lowest cutoff frequencies are:
wo1 = 2.405K = 1.31w),;
0y = 3.054K = 1.66w},

wh; = 3.832K = 2.08w);
w11 = 3.832K = 208(0’11

b) From Eq. (8.63) in the text

1/2
ﬂ”( w) [ (5)7]

2

(0]

For TM modes, n, = 0, and for TE mode, &, + 7, is of order unity. So for comparison purposes,
I’ll take

1/2
ﬁll(TE) = fl(X) = (j) (1+ 1?(12].12 )

X2

1/2
Bor(TM) = fo(X) = (ﬁ)

X2

where I’ve expressed the functions in terms of x = w/K.
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8.4

a) TM:
(VE+y2)y =0; yls =0; E,=y(xy)eee, B, =0

Since we have a node along y = X, then we just take the antisymmetrized version for the square
waveguide, developed in class, ie,

w(Xy) = Eo[sin( MZX.) sin( nny) sin( n”X)sm( = )]
Again
Yin = CaLzz(m2+n2), mn=1,23...., butm=n
TE:

(VE+72)w =0; g—l’éls =0; H,=yxye't E, =0

Now the BC require :“r: |z = 0, but using a 45° rotation of coordinates, we see

0 _ L(_i+i)
on J2 \ ox oy

Thus the combination

w(XYy) = Ho[cos( MZX) cos( nny) + cos( n”X)cos( )]
satisfies the above BC on the diagonal, as you can see by direct substitution.
Y2 = CaLzz(m2+n2), mn=0,1,23....,butm=n=0

b) The lowest cutoff freq. are: TM: w12 Ofr w21.  TE: @1 OF @10. From Eq. (8.63) in the text



Bra(TM) = (L)m

1-wilo?

1/2 COZ
TE) « (@ (1+¢)
ﬂOl( ) (1—60%2/602 ) COZ

For the square wave guide, we don’t have the antisymmetrization, but the formulas for the cutoff
frequencies are the same without the present restrictions on mand n. So for the square guide, the cut
off frequencies are

T™: w11

TE: wo1 (as before)



8.5

For the TM modes, we saw in class the resonance frequencies are
TM:

; — p=0,12,....
Omnp = Ji-_ﬂ )I(?n;+pL72r m=20,1,2,....
n=123,....
TE:
7 — p=123,....
Omp = ,/i_u R’“Z”+|DL72r m=0,12,....
n=123,....
Thus—
®mp Xfm | pm®
T R T2
JEi
Omp _ [ XE | pPm?
1 - R2 + L2
JEi

The lowest four frequencies are (in these units)

wo10 = 2.405
w110 = 3.832

Wiy = {1.8412 + 72 (R)?

w1211 = J30542 +7T2(%)2

2.405,3.832, V/1.8412 + 72x2 , J/3.0542 + 12x2
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02 04 06 08 % 12 14 16 18 2

where x = R/L.

The answer is "No.” @15, and wo1o Cross when

v1.8412% + 12x2 = 2.405

or x = 0.49258. For frequencies smaller than this cross over frequency, w},; is lowest, whereas for
larger frequencies, wo1o is lowest.



More Problems for Chapter 8

Problem 8.2
(a) In a cylindrical coordinate system with the z—axis along the axes of the two circular cylinders, the TEM mode
has fields that vary as €"(*2=9%)  where k2 = w?/v? = pew?. Therefore, the magnetic field has the form

E — B¢(]A5€i(kZ7wt)

where By is determined from Ampere’s law:
— = . T
Note that
Bylpa
Hy = % = Iy =2maHy

°

Therefore

vecB — Hogei(szwt)qg
p

B= /LHogei(kz*“’t)qAS and H=
p

The electric field in between the two cylinders can be determined from the magnetic field through the Ampere-
Maxwell’s equation:

— —

= OF .  kxB Lo a
B — el E — — _H - ’L(szwt) A
V % pe B = e \/Z ope p

Here k = k2 = w, /li€z is the wave vector. The average Poynting vector

The average power flow along the line (neglecting the wires) is

+ - 1 b 2mpd b
P:/(S>-da: 5\/g|H0|2a2/a L \/g(wa2|H0|2)ln(a)

(b) The average power loss per unit area on the cylinder surfaces is given by FEq. (8.15):

a1

1 |Bgl? 1 a?
- 2_ Lt 1Pl 2
da 200 | Ho

= %0 2~ 200l

_ 1 -
Ren|? = —g =7 > H) " = —5—| M,

The average power loss per unit length along the z—direction

P dP P ra?|Hol2 (11
5 = o le=e(2m0) £ o (2Mh) = - 0 = o

From (a), one has

Plugging into dP/dz:



rock
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where

Integrating the above equation:
P(z) = Pye2?

(¢) The characteristic impedance Zy is the ratio between the voltage and the current.

b b
— — d ) b )
V = / E.-dil = \/EH()G/ _pez(kz—wt) — \/EGHO ln(_)ez(szwt)
a € a P € a

The current is given in (a) to be I = 2raye’*~w, The impedance is therefore

V 1 jp. b
Zo=T =57\ 3

(d) Series resistance per unit length can be calculated from the average power loss per unit length:

1
—Z|IPR =2 = Z
2||R = R a+b

P 24P 1 f1 1
dz |I]?2 dz  2moé

The inductance per unit length can be calculated from the energy per unit length in the magnetic field:

1 1~ - 1| e LY el (R
—L|I|2:/—B-H*da: - / +/ +/ B-H"(2mp)dp
4 4 4 0 @ b

Note that inside the conductors,
ﬁ(g,t) = ﬁ“e*(lfi)é/éefiwt _ H(éef(ki)g/aefmqg

where £ is the distance into the conductor and ﬁH is the tangential component of the field at the surface. Assuming
d < a,

/0 B-H*da= 27T/LC/0 uC|H¢|§:ae*25/6pdp = 27T|H0|2/0 e~ 2=/ pdp = Tpad| Hol?

b b
Lo b
/B-H*da:pr/ |H¢|2pdp:27rua2|H0|2ln(a)

oo o] 2
/ B-H*da = 27r/ pelHgl?_ e~ %/° pdp = Wu05%|H0|2
b b

The inductance per unit length
L= /a+/b+/oo B-frda= — /a+/b+/oo Eﬁ*da—ﬂl(ﬁwm 11
P o a b  4Ar2a?|Hol? ) o @ b ~ o Mg dr la b

Problem 8.5
(a) Since the guide is a single conductor, there can be no TEM modes. To determine TM and TE modes, we choose

a rectangular coordinate system with its origin at the middle of the side v/2a such that the three sides are described
by x = a/2, y = —a/2, and y = z. For TM modes, the ¢» = 0 on the surfaces. The boundary conditions at © = a/2
and y = —a/2 can be met by choosing ¥y, (2, y) to have the form:

mﬂ(xa— a/2) ) Sin(mr(y ;}— a/2)) N Sin(mw(a:;— a/2) ) Sin(mr(y ;}— a/2)

)

¢mn (.’L‘, y) ~ Sin(



The boundary condition at ¥(z,¥)|,—, = 0 can be met by requiring ¢ (z,y) be antisymmetric under the exchange of
T <y, le.,

mw(xo—bb— a/2) ) Sin(mr(y ;}— a/2)) B Sin(mr(a: 2— a/2) ) Sin(mw(y;— a/2)

Y(z,y) ~ sin( )

Thus, the TM waves have the general form

vy =30 D Amn {Sin(m(m D)) (PTG (ML) ) (T 0/2) )}

a a a a

Here A, = 0 for m = n (¢ vanishes if m = n). The corresponding cutoff frequencies are given by Eq. (8.44):

T m2 n?2 7
2

¢ .
——Al =5+ 5 = —Vm?+n? with m#nand mn>0
JVIEN a a a

The dominant mode is m=1,n=2orm=2,n=1:

Wnn =
e
Wiz = w21 = - )

For TE waves, 0¢/0n = 0 on the surfaces. The conditions at @ = /2 and y = —a/2 are met by choosing ¥y (z,y)
to have the form:

mm(x +a/2 nm(y +a/2
Yn (T, Y) ~ cos( ( / ))cos( (v +a/ ))
a a
The boundary condition at y = x is met if 9¢/In
0 o 1.9 0
L= Vi = (5 )

is antisymmetric under exchange x <+ ¥, i.e.;

O R

Thus ¢(x,y) must be symmetric under « <+ y. Therefore, the TE waves have the general form

Y(x,y) = Z Apon {COS(mﬂ-(x;_ a/2))c0s(nﬂ-(y : a/2)) _)_COS(M) COS(M)}

The corresponding cutofl frequencies are

T /m? n? 7 .
Winn = ——=A{| —5 + —5 = —Vm? +n? with and m,n >0
VeV a a a

Though m and n can be equal in this case, however they cannot be both zero. Otherwise, H, = % is a constant,
which leads to vanishing H; and FE,. Consequently there is no wave. The dominant mode is therefore m = 1,n =0
orm=0,n=1:

) )

W10=W01=;

Problem 8.8
(a) Assume h < a, §;,0, < @, the electric and magnetic fields are approximately

=1y

(€ +1) Wﬁ” Py(cos ) ~ _gw + 1)“2(29) Py(cos ) = _%C«/M + Dyug(a) Py(cos )

WeT



N @ dug(r)

wr dr wa dr

lr—a P} (cos ) =0

P} (cosf) ~ uela)

1
" . Py (cos )

where wy = (/£(£ +1)c/a is the resonance frequency and wy(r) is the solution of the radial equation (8.103). The

average energy stored in the fields

1 {2 = = = 1 S
U:Z/(D-E*+B-H*)d7-:Z/(6|E|2+

B

dr
u)

a2

B =

a+h
/ gy / dQ{GZ—ZE(E—O—1)u§(a)[Pg(cos9)}2—b—iu%(a) [Pg(coso)ﬁ}

l 1 COSs 2
L (cost) }

2
4 a2 _%{(a+h)3_a3}/d9 {Gczﬁ(ﬁ—O—l)[Pg(cosH)}z—)—

~ i p %a?’ {1 + 3% - 1} (27) /Oﬂ sin 6df {%E(ﬁ +1)[Py(cos ) + %[PZI(COSH)F}

whuz(a) [T
= —th( )/1 dw {00 + 1)[P(@))? + [P} (@)]?)

Note that

41 +1 m)!
/ [Py(a)2de = %—2“ / [Py (z)2da = %Qﬁgﬁjm;

Plugging into U:

_ 2rhu?(a) £(¢ + 1)

v i 20+1

(Note that the average energies in electric and magnetic fields are equal). The average power loss is given by Eq.

(8.15):

dP 1 5 1 — 1 =
_:—Ke 2:_ — H 2:_H 2
da 206' il 206|n>< H' 206' H'

Now note that

- B we(a
\Hy| =2 =
I

~—
~
—~
Q
@]
W
S~
~—

The average total power loss

dpP apP 2(a) 1 1
Pioss = 2 —da = "5~ — P} (cos 0)|2d92
: /interior da “r /exterior da ¢ 2M2 { O'i(si N 0566 } /[ ¢ (COS )}

_M{L+ 1 }£(£+1)

=

12 0:0; 0O0e | 204+1
Note that
52— 2 N 1 pwed
HwpC od 2



Therefore,

_2mui(a) [pwd;  pwde | mug(a)we L(E+1)
Ploss = E 5 T ([~ 2£+1(6Z+6e)
The Schumann resonance ) value:
U 2rhu(a) L(f+1) p 2+1 1 2h

Q=g = o] w2 (@) W+ 1) 8 8, 3+,

independent of £ and N = 2.

(b) For the lowest Schumann resonance,

3-108

e 1ge = 063 1z

(=12 w=vIi=V2

2 2
e = = =4.9-10?
\/uwlae \/47r 107 x663x01 W Wm

7 5 4
" \/Wlai - \/47r- 07 x663x105 w0 10m

2h 2 x 10°

b +06;  4.9-102(1 + 100) 0

Q

(c) With o; & 1075 (Qm) !, §; & 49 km is not small compared with k & 100 km. However, the fields vary over
distances of order a, at least for £ = 1. Thus, the approximation of Section 8.1 are valid, at least for small ¢ values.
When a/f becomes of order of §;, these approximations won’t be adequate. In this case, it occurs at £ ~ 100.

Problem 8.18
(a) For TM modes, we have

(VZ2+43)F,» =0, and E,\|c=0

where the subscript C denotes boundary contour. Applying Green’s theorem in two dimension:

2 2 0\ das — % _ 00
[ @vie—vvtoia =~ f (oFE - v

where the — on the right side is due to the difference in the normal definition. With ¢ = E, and ¥ = E,,,, we gets

OF, OE
/S (EAViE,, — B, V2E,\)da = — }’,{3 (B, 8n“ - Ewa—n)dﬁ

The line integrals on the right-hand side vanish due to the boundary conditions. Therefore,
0= [ (BaVEEy— B V2BAa = [ {Bo(=9EBe) = B =R Eor)} da = (5 =) [ BoaPyda

For the case vy # 7., the integral must vanish:

/ Bk, ,da =0
S

Same argument applies to H,» and H;,, except in this case, the line integrals vanishes due to boundary conditions

0H,
on

lc=0



(b) Proof for TM modes only
Applying Green’s first identity

0
[@6vt0 V6 Viwyin = § 63 ar
s
with ¢ = E,5 and ¥ = E,, for the TM modes, we get
/ (EANVZE,, +ViF, - ViE,,)da= — }’4 Ez,\ﬁEwdE
s C 67’7/

Again, the line integral on the right vanishes due to the boundary condition. V; [, and VZE, are given by Egs. (8.33,
8.34):

vtzEzA = —’)@\Ezm vtzEzu = _’hZLEzp,

s 7 Y7
V.E.y = —i2F}, Vil = —i—“EH
kx Ky

where E and E_ju are transverse electric fields. The Green’s first identify becomes

B [ = A o[ s A
fyﬁ/Ez,\EwdaJrkkk”/EA.EudaZO = /Ez,\Ewda:—k . /E,\-Euda
s AR Js s ARy Js

Assuming non-degeneracy and from (a), we obtain:
For \ # ; /EA-Eudazo
s
By properly normalizing E}\, we have

/EA - E,da =3y, FEq.(8.131)
S

2 2
/ Bz Bopda = ——- / By Byda=—26,, Fq.(8.134) for TM waves
S k)xku S

Now turn into the relations of magnetic fields. Note that

cw = €W - cw = 1eW
H_—sz_—szEz, H,=—ZxF — 2 x Vb,
A ]C)\ A 7}\ t A m kp, w = 'YEL t m
5 5 (ew)? (ew)? X o (w)?
H)\ . HH =—"3 3 (Z X vth)\) (Z X vthu) = —2—2vthu . {(Z X vth)\) X Z} = B vthu vth)\
’Y)\’Yy, ’Y)\’Yy, )\’Yy,

Using Green’s first identity with ¢ = £, and ¥ = E,,,, we have
4

oF,
/VtEw -V, E,\da = —j{E 2 /EZHVsz,\da = fyi/EzuEz,\da =N 20

FH O k3
Thus,
. (ew)?, 4 (ew)? 1
iy - H,do= o D= s Eq. (8.132
/ A Haa b 7;'73( kg\ ) kg\ Ap Zf Ap q. (8.132)

where Zy = ky/(ew) is the wave impedance.

1 — — 1 k
_/(EA x [,) - sda = 5/{?%% x f—w( vtEw)} tda

2 b
1 [ kyew Lkyew , 7 1
= o [ 2YV,E VB )da = 22 (DG = — Eq. (8.133
3 | o (el Villio = —5 5880 = g0 Ta (8139



More Problems for Chapter 8

Problem 8.3
(a) Choose a rectangular coordinate system with z parallel to the strip along the side b, y perpendicular to the strip

and z along the line. Let K(Z, 1) = Koe*2=wt) 2 he the surface current density of the top strip. Thus, the magnetic
field in between the two strips is given by

B = uK# = pKoekz—3, = D Ryeitkzuwt)g

Therefore, Ky = Hy. The electric field can be derived from the Maxwell’s equation:

VxB__FxB_ ko o,

g 6E — —
V x B =pe— = —ipewll = F=——
ipew pew €w

ot

The average Poynting vector

s Lz o L KHo\ ooy KIHo[*,  /FEelHol®
S_QEXH _2{_ ew }yx(HOx)— 2w~ 2

The average power transmitted along the line

- b
P:/S-éda:a—\/E|H0|2
2V e
2P e
Hol? ==, /—
mR =205
P 1

1 =
= Ke 2:__H 2:_
da 206' fl 206' H'

In terms of the power P,

The power loss per unit area

— |H,|?
206' ol

The power loss per unit length along the z:
dpP dpP b 1 €
— =2— =——|Ho* =—-2{ —, /-t P=—-2¢P
dz da 06| ol {a05 \/;} i

1 €
acd \| 1

Thus

P(z)=Pe ?*  with =

The potential difference between the two strips

The wave impedance

gV _V _ka_a jp
I Kb ew b\e
The series resistance per unit length
2 dP 2 b 2
R:__—:—i ——H 2 — —
1112 dz |H0|2b2( ol o) = 75
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                                                                               More Problems for Chapter 8


The inductance per unit length

1
R

1 =
B-H*da = ——— { abu|Hy|* + 2 B
/ |f10|2b2 {a /Ll Ol - /Conductor

-H*da

where the integration of the second term taking into account the magnetic energy stored inside the conductors. Note

that inside the conductors

Thus

Iy (1-16/6—iwt

Ht) =

L. oo 1
[ Befrda—pe [ [HoPe *5(bde) = GpcdltoPh
conductor 0

Thus

_ 1
- |H0|2b2

Alternative as suggested by Mr. Ben

———— (abu|Ho|* +2- —Mc5|H0|2 ) =

Burrington

Taking the results of Prob. 8.2 and making the following substitutions:

where ay,b; and ay,by are a,b’s of Prob. 8.2 and Prob. 8.3 respectively.

geometry. With

27Tb1:>b2, by —a; = as

pa + picd
b

The s

ubstitutions are justified by the

pool2 b
1 27_[_7 1— 9 2
we have
by b 2mag 2mag 1 1 1 1 47
In(—) =1 2n =—In(1— = , and —+ — = + N —
(al) (3—;—@2) ( b2 ) b2 a1 b1 bg/(27‘(’)—a2 bg/(27‘[’) b2
Thus

b
P= \/Emﬂﬂoﬁ In(—
€

12 b2 2 227‘[’&2 agbg 2
) = \/ZW(%) | Ho| b | ol

1 el/ag +1/by 1 e4r by 1 €
T 208\ o In(by/aq1) 2068 by 2may  azod\ p
1 2mas ay [
Zo = — — Ll
7 9r 2#\/? \/:
I S U NV U L
T 2meday by 2wod by odby
b S, 1 1 2 04 0
L=ty B oy LT HeO AT _ p1az + [1cd
2T oy T tay by 21 by 4w by by

(b) For the case b >> h, the electric and magnetic fields are mostly confined in the region between the strip and the
ground plane and are uniform within the region. Therefore, this case is very similar to part (a) with the slab and its
mirror image. However the case b < I is very different from (a). This case can be approximated by a wire above
a grounding plane. The dielectric substrate should have little effect on the quantities calculated in (a) since both
electric and magnetic fields extend mostly in the region without the substrate.



Problem 8.4
(a) The wave equation is

(VZI+~4%)¢ =0 with % = pew?® — k?
Explicitly in polar coordinates, the equation has the form:

19,6 0¢ 1 6%y

—_——(p— _— 2 =

This is the Bessel’s equation and has the following solutions:
W~ Ao (79)€"
For TM modes,
U= =0, = Jn(yR)=0

Let n be the n" root of J,,(x) = 0, then

x 22 k2
Ymn = mn’ = W = ;rm —
R Rpue e
Thus, the cutoff frequencies are
TM Lmn v

Here v = 1/, /pz€e. The four lowest cutoff frequencies are

v v v v v v v v
wi M = Fo01 = 24055, wy M = Fou = 38325, wy M = T2 = 51365, wi M = Fo02 = 55205
For TE modes,
O
— | p—p = 0’ = J’ R == 0
6p|/’ R m(7 )
Let Yyn be the nt’ root of J! (y) = 0, then
_ Y | Y K

Thus the lowest four cutoff frequencies are

v v v v v v v v
wi® = Fyn = L84l wit = Ty = 30547, wi¥ = Tor = 38327, wit = Fys = 4201

Combining TM and TE modes, the mode with the lowest cutoff frequency is TE:

Wo = 1.841%

The other four modes with the lowest frequencies are TMgy, TE21, TEg; and TMy; with the ratios of frequencies
given by

TM TR TE TM
Woi  _ 2.405 _ 13, Wi _ 3.504 ~ 19, Woi  _ 3.832 _a, Wil _ 3.832 _ 91
wo 1.841 wo 1.841 wo 1.841 wo 1.841

Note that the modes TEy; and TMy; are degenerate.
(b) The lowest mode is TFy;. The longitudinal magnetic field of the mode has the form
v

Y(p,P) = AJl(yu%)ews with the cutoff frequency wiy = g



Here A is a constant describing the strength of the field and y;; = 1.841 is the first root of J'(y) = 0. The average
power
I /1 W11 2 7W|A| /1 11 /
da = J d,
2\/—6((4)11 /|¢| wn | ! yll | p p

/0 S (Y )|2pdp:R7(1—z—)|J (Ymn)|?

1 7wulAd 2R2 /
P= ( ) Ml | |J1 y11
y11 Wll

To calculate the power loss, we note

Note the identity

Thus

R R L R - IR EAR L)

Thus the power loss per unit length
dP 1 W 2 1 w%l — 2 w11 2% 2
—— = —(— — (1 - — alt + (— dl
= go5( o 1= ) f i Vvt (227 f o

_wR|AP, w o, 1 w? 1 Wil 9 9
=5 (w_u) 7 (1= =) + () |J1(y11)]

HewTy w11

Thus the attenuation constant

TE 1 aP _ y%l He 1 1 1 w%l 1 Wil .2
1= (- = LY IR IR
2P dz Yy — 1 pR V19— w? /w2 o0 | pewi; w?’ R w
Note that
_ 2 2
V pwo L d?
Thus

TE _ vii Ve o { 1 (_w_%l)i_‘_(ﬂ)z}
11 yi, —1 2R V19— w? Jw? pew?, w2’ R2 w

. ) w? { 1 + Wll wn)z}
2Rv \fu? =2 |y —1 \/ 20 wz—wn Y3 — w

The second lowest mode is TMg;. In this case, the longitudinal component of the electric field is given by

Y(p,¢) = Ado (3(:01%) with the cutofl frequency wp; = 3(:01%

where A is a constant and xg; = 2.405 is the first root of Jo(x). The average power and the power loss per unit length

€ W01 2 7T€|A| W01/ P
= L O [ oPda= e 1- [Jo(aon 2)pp

P 1  w 1 24 _7T|A|2R w 5,0 [N
dz T 200 w01) /ﬂwm fl [“d /ﬂa&ugl(wm) |09J0(x01R)| =R




Applying the following identity equations for Bessel’s functions

B 2 R2 2 d
| 1@ ) Bodp = S dalamn) P and (o™ (@)} = a7 1)
0 X

we get

R
/ ot 2P pdp——|J1<xm>|
0

0 P2 33(%1 2
—Ji = = —\J
{IGphten k) = GginGw)
Thus the attenuation constant

v L, AP /pe af 1 o ady 6(w 9 1

oL~ 2P( dz) e oOR? w1 — w3, /w2 a 2,/@6@ w_ol) w? — w3,

R I
2Rv /2 —F, RV 20\ w?—wj,

Note that for TM modes, 3 is always minimum at w = /3wy, where wq is the cutoff frequency. To facilitate the
comparision, we rewrite the two constants as

6(4)11 w/wn 1 4 1 }
(w/wi1)? yii— 1 (w/wi)?

_ €Wl w/wn
\/ 20 w2 — w01 \/ (w/w11)? = (wo1/y11)?

The two constants in the unit of (1/R)+/(ew11)/(20) are plotted in the figure below as functions of w/wyy.

B

B T™ 01

TE 11

ww,
Problem 8.16(a)
The eigenangle 0, of the p' mode is the solution of Eq. (8.123):
. pT 2A
tan(kasinf, — —) = -1
an(kasin 6, 5 ) oz 0



Note that

k2 1
k,=kcos0, =  sinf,=./1—cos?6 :1/1—]{—;:?/132—1@3
Thus
P 2AK?
tan{a\/kz—kg—?}: m—l
Differentiating the above equation with respect to k:

a 2k — 2k, (dk./dk) _ 1 {(4Ak)(K? — k) — (2AK?)(2k — 2k, (dk. /dk))}/(K? — k2)®

1
cos? {a\/kz—kg—pw/Q} 2 V2 — k2 2 V20K /(K2 —k2) — 1

After some algebra, the above equation can be written as

V2AR2 /(K2 — k2) — 1 a(k 1 dkz)_ Ak Ak? (k—k dkz)
cos? {a\/kz—kz—pw/Q}Q TdkT K-k (K- E2)P2 *dk
We now note
1 sin?
k* — k? = k2 = k?sin®0, and cosz{a\/kz—kg—m}: = P
! 2 1 + tan? {a\/kz—kg—pw/Q} 24
Plugging into the above equation:
2A 2A ka dk A A dk
— —(l—coslp—2)= — — ——— (1L —cosO,——
sin 0, {sin2 0, } g L=l ) = Gng, ~ e, )

Solving for dk,/dk:

dk, 1 cos? Op +kay/2A — sin® O
i coslp 4 pa\[oA —sin?9,

Note that k = njw/c, therefore the axial group velocity

dw _ dw dk _ ccosb, 1+ka\/2A_Sin29p _ccost, 1+fpa
dk, dkdk,  n cos? f, + ka oA — sin? 0,  ng cos?0, + Bpa

where 8, = k4/2A — sin? 8,. The group velocity is greater than the expected ccos#,/nq. This is consistent with

’Ug:

the Goos-Hanchen effect that the right ray is shifted forward after total internal reflection, resulting a greater group
velocity.

Problem 8.20
(a) The field in the waveguide can be written as

B =3 AW B
A

where the coefficients Ag\i) are given by FEq. (8.146):

Zy [ + = Zy [+ =
A(f):——’\/ J-Ef\jF)dT:——’\/I-Ef\jF)dﬁ
2 Jv 2



Choose the bottom-left corner of the guide as the coordinate origin with the z—axis along the edge a and the y—axis
along the edge b.

I = Iy(— sin ¢& + cos ¢f)
Here ¢ is the polar angle with respect to the center-of-the loop. Thus

() Z)\ /2 () 1 /2
A =% / To(—sin 6 + cos 99) - ") (Rdg) = —5 RIoZ /
—m/2

{=sing{B7 ) + coso{ BT}, } do
—m/2

where {ESF)}J; and {ESF)}y are z— and y— components of the eigen-field along the loop.
For TM waves, the electric field components are given by Eq. (8.135):

(B}, = 2rm COS{mW(R cos @) Y sing nm(h + Rsin ¢) )
'ymna\/% a b
(B, = 2mn in{ mm (R cos ¢)  cos nw(h + Rsin ¢) )
" pnbvab a b
Here
m?  n?
77277,77, = 7T2 {a_2 + b_2}
Therefore,
A = _% ; {_%Slwcos(mecos@)Sin(m(h+bRsin¢))+%Cowsin(mwp;cosqa)Cos(m(h+bRsin¢))}d¢
_ _WRIozmn z Li mm R cos ¢ . nmw(h+ Rsin ¢) L . mmnRcos¢ i . nmw(h 4+ Rsin¢)
= 7%””\/% s {WRd¢{Sl ( . )} sin( b )+ o Sln(ia d<;5{Sln(—b )} do
IZmn (% d (. mmRcos¢, . nm(h+ Rsing)
- _%m\/% L {sln( a ) sin( 5 ) ¢ do
I0Zyn . ,mmRcos¢, . nm(h+ Rsing)
= —7 N sin( ) sin(

¢=m/2 _
b )|¢:77'r/2 =0

Therefore, no TM modes are excited. This is because that a circular current in the transverse plane will always result
in a non-vanishing longitudinal component of H, i.e., H, # 0.
(b) For TE waves,

(B}, = 2"

(mecosqS) . (mr(h + Rsin (b))
cos sin
YonnbV/ ab a b

2rm . mmRcos¢ nm(h + Rsin¢)
{EGY, = S sin( - ) cos(

5 )

with the normalization reduced by a factor of V2ifm=0o0rn=0. Thus

/2 . .
ACH = _ mRIyZmn {ﬁ sin(bcos(mWRCOS(b) Sin(mr(h + Rsin (b)) Lm cos¢sin(m7TRCOS¢) Cos(mr(h + Rsin (b))} o
7mn\/% —7/2 b a b a b
The lowest modes (m = 1,n =0):

n TRIgZy o [™/* {
1,0 — —— —
Y1.0V2a3b J—n /2



where 41 g = m/a. Here we have used the integral representation of Bessel functions:
T /2
/ sin Osin(z sin 0)df = / cos ¢sin(x cos ¢)dp = J1(x)
0 —m/2
The amplitude is independent of the height h. For R < a,

3 ZIZ
L IS a7V

a 2a’ ' ¥1.0V8a5b

(¢) The average power radiated in either direction

J1(

1 = P\ 5 1 = -y R 1 . o = 1 |A>\|2
pP= §/(ExH )- 2da = §/{(me) < (> A H)}.zda: §ZAAAH/(E,\ X ) 3= 532
A o v ~
In this case,
1Al 1 » I8 a, 7R,
P: — ! = — ~ — —_ —
2 Zip 2Zl,o| vol” ~ 320 (=0)



9.1

\a)t

p(X,t) = q8(2)S(y — sinwot)d(x — dcos wt)

To illustrate the equivalence of the two methods, I’ll consider the lowest two moments.

n=0:Q({) = j‘p(f(', t)d3x = q = Re(ge-1%t)

n=1:p( = IP(?, HXd3x = qd(icoswt + sinwt) = Re[qd(f+i )e ']

So we identify p = qd(T +i ) as the quantity to be used in Jackson’s formulas.
Arbitrary n: The n’th multipoles will contribute with maximum frequencies of o, = no.

b) The proof that we can write
ﬂ .
p(R,t) = po(X) + Y _ Re[2pn(K)e et
n=1
with
pn(X) = % _“T p(X, t)etdt
0
was presented in lecture and will not be repeated here.
c) We have already calculated the n = 0,1 moments by the method of part a). Now we
compute these moments by the method of part b).

n=20:

po(X) = % I;[qé(z)é(y—sinwot)é(x—dcoswt)]dt

Q = [ poGydx = 4 jo dt [ d*X[5(2)5(y - sinwot)3(x — dcoson)] = g



p1(X) = % I;[qé(z)é(y — dnwot)d(x — d coswt) Je'tdt
B = j dX(2p1(%)) = 24 j O dt j d3XRS(2)5(Y — Sinwoet)5(x — d cosmt)]

= Z%dj‘; dte'!(icoswt) + snwt) = qd(@+i )

as before.



9.2

First consider a rotating charge which is at an angle o at time t = 0.

¥

d
\ &

Compared to the lecture notes for this problem, where we assumed ¢ = 0, we should let
ot - ot + a. Thus using the result developed in class, we can write for this problem

1 i 0
Q.(t) = Re %qd2 i _1 0 [|ei2agrizet
0 0 0
2
g ¢4
a -
d
3 -4 q 4

From the figure

Qtot(t) = Qal (t) + QaZ (t) + Qa3 (t) + Qa4 (t)

1 i 0
= Re %qdz(—e‘i%+e‘i37"—e‘i57"+e‘i77") i -1 0 |ei2t
0 0O
1 i 0
Qtot = %qd2(4i) i =10
0 0O

Thus from the class notes



2 6
gg = ‘1:153:;2 (qu%) 16(1 — cos’0) = CZZ kg?d*(1 — cos’0)

_ C%Zok® 23 27 1,624
P= 360 (d )16—10cqud

And, of course, the frequency of theradiation is 2.



9.3

e

Since the problem has azimuthal symmetry, we can expand V(T t) (in the radiation zone) in terms
of Legendre polynomials:

V(T 1) = > bi(t)r 1Py (cos0)
I

Using the orthogonality of the Legendre polynomials, the leading term of the expansion in the
radiation zone will be the | = 1 term.

1
by(t) = %RZI 1xV(?, t)dx = %VR2 cos wt

So,

—
. .

V(?,t) = (%VRZCOSCOt)/rZ = %COSwt = Re|: przr e—ia)t:|

with g = %VRZZ which should be used in the radiation formulas developed in lecture.

daP _ C220k4

GG = 3002 I sin0

27 14
p_ C°ZoK" 8 L 27kt

3272 3 127

with B = SVR?2,

N
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We are working with small sources in the radiation zone.

} I=acosa,l
} I = - acos wyt

From the notes and Eqs (9.170) and (9.172),

Qm = _[ r'Y[™ pdx

-9

2q 3

-4

_ 1 vy . (P 1) 3
M|m——|+1 IrY| V-(rxJ)dx
a) Electric Dipole Radiation:

Qum = j FYP pd3x
= I ro(x)o(y)[—gqo(z— acoswot) — qé(z+ acoswot) + 2q6(2) YT dxdydz

= —gacosoot[Y*(0,¢) + YI*(7,4)] = —gadm coswot[Y2(0) + Y{(7)] = O
b) Magnetic Dipole Radiation: Since the particles move in an orbit with no area,

c) Electric Quadrupole Radiation:

Qom = Irng‘*pd3X
= —Qdmo[aZ? cos?wotY3(0 = 0) + a2 cos?wotYI(® = )]

= —Qdma?Y3(0)(cos2wot + 1)

where | have used cos?wot = (c0s2wot + 1)/2. Thus the Fourier Series decomposition of this
moment yields terms with frequency 0, and 2w,. The first term does not contribute to radiation, and
the second can be written



Q20(t) = Re[-2qa?Y3(0)e 20! ]

S0 Q20 = —20a2YJ(0) isthe quantity that is used in the radiation formulas of Jackson. Using Eq.
(9.151)

dP A 2|5 |2
40 20) = 55182, 0)F| Xz

and from Eq. (9.169)

a(2,0) = |(5>< 3 /7on = m ( 2qa2)r

where | have used Y9(0) = /-2 . Thus

Ar

la2,0)|> = c2k8q at

(2 0) = 2k2 ( 307 ¢ K0’ a“) ( é5 snzecosze) 321”2 Zok8c?g?a* sin“g cos?9

1
P(2,0) = 3%”2 Zokbc?g?at I_l(l—xz)xzdx = 3%”2 Zokéc?g?a* x 1i5

P(2,0) = 1 S Zok®c?q?a’



9.12

The system is described by

/o

R(0)

and is azimuthally symmetric

R(0) = Ro[1 + B(t)P2(cosh)]; P(t) = Pocoswt; kR << 1

1 R(0)
Q= Iprzdrd¢dcose = 27r_“ X dcosdp _[0 radr

_2r (! ps o _ 4t 3, ,_ _3
-Z pj_lR0(1+3ﬁP1Pz>dcos0+O(ﬁ)— TR~ p = 52-Q

where I’ve used the fact that 1 = Py.  Since the system is azimuthally symmetric, Qim = dmoQio-

1 R(0) 1
Qim = 27pdmo _[_1 dxy? _[0 r+2dr = ZT’iSB”” _[_1 dxRy3[1 + (I + 3)BP,]Y?

Using Y = /2L Py and 1 = Py,

4r

_ 2npSmo [21+1 o3 2
Qim = [+3 4r Ry [26'°+(|+3)ﬁ2l+16'2}

Notice that the | = 0 term is time independent and thus does not contribute to the radiation.
Next consider the | = 2 term.

Quo() = £ /TP BREP = p = 77 QEVTPIEREP = —2—REQB(Y)

Q(t) = Re|: %R%Qﬁoe—imt :|



Qu = Jz% R3QB0
dP(2,0
200 _ Zs ja(2,0) oo
aE(Z’ O) = |(5 X 3) rQZO
|5('20|2 = %sinzecosze
4
dPC(iéO) - ZZkOZ (SCE 3) FQZO X 15 sn%6 cos?6

2
Z 4(_) 2 7 (Ck4)2 _3_ R(Z)Qﬁo
-1l %0 Ik Qo sin%0 cos?6 = 1 0 (J207r )

= in2 2
160 k2 T 160 K2 T sin“6 cos6

= 9 6C2R4Q? 2 2
Z k C () B []

_ 9 62 2 2\y2 9 62 2 4
~ 32001 2ZkCRQﬁOX2”I (1—x%)xedx = 200m > Zok°C?R3Q? 5 x 21 x —+ i

__3 6~2P42 22
P = 20007 20K ¢ RaQAa



9.14

The system is described by

I(t) = locosmt = Re[loe™®!]

Ity = L1)s(r - a)s(coso)p

where | determined the normalization constant < by the condition j J.da =1

—

3(t) = Re I—°6(r —a)d(cosf)pet | - J = I—°6(r —a)6(cos0)o
a a

We use the general expression for H and E in the radiation zone given by Eq.(9.149). Since this
system has no net charge density and there is no intrisic magnetization, the the expansion coefficients in
these equations are given by

ag(l,m) = F_“Wﬂk(r - 3)iikryd®x
_ k2 W FAVEAY
anm = s [YPV - (7 )G

ar - J = 0'in the first equation, so there is no electric multipole radiation. In spherical coordinates
Txd=-alk
Using the formulas for V-.Ain spherical coordinates given in the back of the book,

> cosf 0
Ve (7xd) =~ sme ae(JS'”QJ)‘ YT

The first term does not contribute, because cos® = 0, while the second term can be written, using
the chain rule,



v (FxJ) zsineacgseJ

The problem has azimuthal symmetry, so m = 0. Realizing derivatives of 6 —functions are defined
by integration by parts,

_ _ Smok® o 0 : _ k2 O (cinayoey 17
av(l,m) = |I(nI‘++1)"‘YIO (sneacoseJ)J|(kr)d3x— I(II+1) I[ oo (Sn@YY? )}JJ|(kr)d3x

aM(l,O) — i27k? IO 2] (ka)

m 0 cos

0 (Sn@YO)lcosg 0

an(1,0) = —122K 1082, Gay(1 - ) L v (.o

JId+1)

Since Y?(x) is either an even or odd polynomlal in X then only odd | contribute to ay (1,0). This
determines the expansion coefficients, and thus H and E in the radiation zone are known through
Eqg.(9.149). The power distribution is given by Eq. (9.151)

b) From our previous answers, we see ag(I,m) = 0, and that the lowest magnetic multipole
contribution isay (1, 0).

aw(1,0) = %I oaj1(ka)(1 - xz)”Z%Y(l’(x)h:o

Using
itk ~ K8; Dyepgl o - |3
am(1,0) = |27rk3loa2\/; _ Ik3\/_M|0
Mo - 2T 5
V2 4r

Note that you would get the same answer, if you used Eq. (9.172) directly.
From Eq. (9.151)

2
& - 22k02 (2nk3|:a2/21 ) = s - oz Zoki(loma?)* i

If we compare this result with the one that we get for an elementary magnetic dipole, which is
given by Eq. (9.23)
with the substitution p — nvc,




aP _ 1 AFAR G2
o) 327r220k [m|”sin<6

Thus we may identify
|r?1| = lora?

as would be expected.



More Problems for Chapter 9

Problem 9.1

Note that part (a) is merely the statement that the Fourier decomposition of the multipole moments gives the same
result as the multipole expansion of the Fourier decomposed charge distribution, i.e., it does not matter whether you
expand first and then decompose or decompose first and then expand. This is obvious since the two integrations
commute.

(b) Let T be the period and wg be the characteristic frequency, thus:

p(7,1) = p(7, 1 +T)

Therefore,
T T 1 oo ' -
p(T,t :/ pf’,t’ét—t’ dt,:/ pf”t’ - o —inwo (t— dt'
(7,1) ; (m )0t —t) ; (7,1 Tn;oo
Sl By o
B ’n;oo eilnthT/O p(F7 t,)elnth dt,
1 T e o] ) 1 T ] , ' 1 T ' /
= — p F,t, dt’—)— efznwot_/ p 7;»’ t/ eznwot dt’—)—elnwot—/ p 7;»’ t/ e*lnwot dt/
LN R L[ ey
)+ S5 2R e )
n=1
Here

1 [T o
pu(P) = = / p(F,t)em et !
T Jo

Note that p(7,1) is assumed to be real.
(¢) To facilitate the calculation of multipole moments later, we can write the charge distribution in spherical coordi-
nates as

p(7)t) = %5@ — R)d(cos 0)5(¢ — wot)

Therefore
T T
pn(T) = %/0 p(7,t)e"otdt = —RgT(S(T — R)J(cos 9)/0 oo — wot)ei"“")t—d(zst) = Q:Rz §(r — R)d(cos 0)e™?
Thus

p(7,t) = po(7) + Z Re {2p,(Fe ot} = 27qu2 d(r — R)d(cos ) {1 +2 Z cos(ng — nwot)}

n=1
The £ = 0,1 multiple moments using method (a) (before the Fourier decomposition) are:

Qoo = /YO*Op(F, t)dr = \/% /5(cos 0)6(op — wot)dQ/ %5@ — R)yr*dr =

q
AT



rock
Text Box



                                                                           More Problems for Chapter 9


G0 = /rYpr(F, t)dr = 1/% /cos 05(cos 0)d (¢ — wot)dQ/ %5(7‘ —R)r*dr=0
qu = [ rYip(F,t)dr = —4/ 3 sin 0e'®§(cos 0)3(¢ — wot)d d —5(r — R)r®dr = — /iqReiwot
11 ’ S R2 7
_ Y* (—» t)d [ i R —twot
i-1= [ Tr L p\T,0)aT = —q13 = 4/ 87rq €

Summarizing the £ = 1 moments, the electric dipole moment is

o 4_7T qGi-1—q11 . .Q1—1+qu1 .
V2 V2

3 T—1 g+ qloz} = qR {cos(wot)Z + sin(wot)§} = Re {qR(Z +if)e '}

The multipole moments using method (b) (after the Fourier transformation) are:

Qo0 = / Yoop(7, t)dr = — R)r2dré(cos 0)d(cos 0) {1 +2) " cos(ne — nwot)} dp= —L_

N m/m? Vir

= /p(f’, t)yrdr = L /5(7“ — R)4(cos ) {1 +2 Z cos(ng — nwot)} (rsin 6 cos ¢& + rsin O sin ¢f + r cos 02)dr

n=1

27 o
= % {1 +2 Z cos(ng — nwot)} (cos & + sin ¢f)de = qR {cos(wot)Z + sin(wot)§} = Re {qR(& + if)e *°'}
0

n=1

Here we have used the following two integrals:

27 00 2r o0
/ { Z cos n(b nth)} cos ¢pdo = / Z {elnﬁseflnwot + efzm;seznwot} et tLe —i¢ )d(b

(e*i‘”ot + ei‘”ot) = 27 cos(wot)

SN’
| —

Z n L+ (5n71)67inw0t + ((5”71 + 5n7,1)€inw0t} — (27_[.

l\DI»—

27 o0
Similarly / {1 +2 Z cos(ng — nwot)} sin ¢pd¢ = 2m sin(wot)
0 n=1

Therefore, the two calculations agree with each other. There are high order multipole moments:

Qern ~ /Ténjn(g’(b)p(f” t)dr ~ ﬁ/é(r —R) é+2dr/Yém cosf) {1 + QZCOS ny — nwot)} dQ

n=1

2m o}
~ qR* / P (cos 0)d(cos @) d(cos ) /0 {1 +2 Z cos(ng — nth)} €% d

n=1

Now note

B (cosf) ~ (sin 9)‘"“ (cos H)Zf‘m‘ = / d(cos 0) Py (cos 0)d(cos 8) ~ 0 |



2 ee} A [e%e}
1+2 cos(ne — nwot ezm¢d¢ — / 1+ ei(ner)(;Sefinwot + ei(mfn)éeinwot do = I retmwot
[ oo manferan= [ o5 |

Thus

Qem ~ qRZéé,\m\eimth
Thus multipole moments gg,, is nonvanishing for m = £ or m = —¢ with a frequency dependence of w = fwy.

Problem 9.2
Let the rotational axis be the z—axis and the coordinate origin at the center of the square, properly choose ¢t = 0 such
that ¢ = wt for one of the +¢q charge. In this case, the charge distribution is given by

p(7,t) = g6 (2) {5@; - % coswt)d(y — % sinwt) — 8z + % cos wt)d(y — % sin wt)

+o(x + 2 coswt)d(y + 2 sinwt) — é(x — 2 coswt)d(y + 2 sinwt)}

V2 V2 V2 V2

The quadrupole moments
Now that

/a:zp(f', t)dr = qa® cos(2uwt), /yzp(f', t)dr = —qa® cos(2wt), /zzp(f’, t)dr =0

/a:yp(f’, t)dr = ga® sin(2wt), /a:zp(f’, t)dr =0, /yzp(f', t)dr =0
Therefore,

Qu = /(29@2 —y? — 2%)pdr = 3qa® cos(2wt) = 3qa*Re {e*i(zw”}
Q22 = /(21/2 — 2% — 2%)pdr = —3qa® cos(2wt) = —3qa*Re {e*i(zw”}

Q2 = Q21 = /3xypd7' = 3qa? sin(2wt) = 3qa®Re {ie*i(z“’t)}

All other ();;'s vanish. Therefore, the quadrupole moment tensor is (with the understanding of e’i(z“’t)):

1 40
Qij = 3qa2 i —10
0 00

Evidently, the frequency of the radiation is 2w as expected from the periodicity of the charge distribution p(7, t+17/2) =
p(7,t), here T is the rotation period. Thus k = 2w/c. The electric dipole moment vanishes for this configuration (two
equal dipoles antiparallel to each other). The magnetic dipole moment also vanishes since the rotating square with
net zero charge has zero net current flowing. Thus the radiation is dominated by the electric quadrupole. In the long
wavelength limit, the radiation magnetic field is given by Eq. (9.44):




where 77 = Zsinfcos ¢ + §sinfsin ¢ + Zcos @ and

3
Q7)) = Z(@lei +9Qaim; + 2Q3in;) = 3qa® sin (cos ¢ +isin @) + 3ga’ sin (i cos ¢ —sin @) = 3ga® sin 0e'? (& +i7))
i=1

Therefore, the magnetic field

ick3qa2 eikr )

0=— €' sin O(—id cos 0 + ¢ cos 0 + Zisin 0e'?)

& r

and the electric field is given by
12

E:TVXE:ZOﬁXﬁ

The angular distribution of the radiation is given by Eq. (9.45):

aP 62Z0 = 62Z0
— = kG n n 7|2 =
a0 = Timne” X Q) x A" = 705

K {1G)2 — 1G(R) - 7}

o 62Z0
- 115272

k© {(3qa2 sin 9)2 X 2— (3qa2 sin 9)2(8i112 0 cos? ¢ + sin? 0 sin? (b)}

62Z0

_ CZZOICG 2 4
115272

1982 (¢*a*)(1 — cos*0)

k%(3ga?)?sin? 0(2 — sin ) =

Z()(A)6
2m2ct

(¢%a™)(1 — cos* 0)

Total power of radiation

_ dP _ ZO(A)6 2 4 4 _ 8Z0w6 2 4
P—/dﬁm— 27r2c4(q a )/dQ(l—cos 0) = el AL

Problem 9.3
In the long wavelength limit, we can calculate the multipole moments from the static problem and keep only the
lowest non-vanishing multipoles. From Fq. (3.36), the corresponding potential outside the shell is

&(r,0) =V {g(g)zpl(cos 0) — £(§)4P3(COS 0) + }

The potential is dominated by the dipole term. Compared with the potential of an electric dipole p

B(r,0) = 1 pcosb

dmey 72
we infer the dipole moment of the sphere to be:
7= 6megVR:

Thus, the radiation fields are given by Eq. (9.19):

. ck2 eikr 3 wR .V ei(w/c)r R
o="(r =_2(Z2_ _&ing
47T(n><]5) r 2(c)Z0Sln
- - i(w/e)r
F= zoff x 7= —ov (L2 inp" b




The radiation power per unit solid angle

9 wR ,V?

dP %%, Lo .
3 R = 177 = (551 sin®0

a9~ 32x2 K| x P)

|2_CZ0 4

The total power

wR V2
/—dQ_3 o

Added note
There are charges and currents on the sphere. But the magnetic dipole moment vanishes. From the scalar potential,
we can calculate the surface charge distribution

o® eV

0(9) = GOE’IL|’I“:R = _608_n|r:R = R cos 6

Therefore, the surface current density K = Kb (by symmetry, the current only flows in the € direction) can be
calculated from the continuity equation:

-  Oo 1 0
V- K—O—E 0 = Rsmeae(smﬁK)

Vcos9 = K:%eowVSinH

The magnetic dipole moment

. T 2
m= l/F>< Kda = ﬁeosz;V/ sin? 0d6 ¢dgp =0
2 4 0 0

For the charge distribution of a dipole potential, all elements of the electric quadrupole moment tensors are zero.

Q11 = Q22 = /(3362 — Rz)adecos Ode ~ /sin2 0 cos 9dc089/c082 pdp=0 = Q33=0
Qiz2=Q2n = /(3xy)0R2dcos Odg ~ /sinzﬁcos 9dc089/sin¢cos odep =0

Q13 =031 = Q23 =Q3z = /(3xz)0R2dcos 0deg ~ /sin@cos2 9dc089/cos odep =0

Problem 9.10

(b) The charge distribution given is not the one in usual sense since the total charge is nonvanishing and oscillating
with time, against the teaching that the radiation does not having a monopole term. I guess that is why Jackson
called it ”transitional charge”. Note that in a spherical coordinate system

z=1rcosf = 1/4%7“5/10

Therefore, the charge distribution can be written

2e 3 . V2e .
7o) = re” r/2a0Y Y, efzwot — ze*37“/2aoe*lw0t
pT 1) V6ag 00210 dmad

Therefore, the electric dipole moment only has non-vanishing contribution in the z— direction.

= \/—6 4 —3r/2a0 \/ie 4! 28\/§
Pz :/zp(?“,t)dT— W/ e %/ dT/dQYwYm = 3@3 (3/2&0)5 = 35 €ao




Here we have used the orthogonality condition of the spherical harmonics and

!
> _ n!
e Ydr = ——
0 an+1

The average power is given by Eq. (9.24):

CZO

4 4
p _ |17|2 Zowo 9 9 2.4 a*e
quan. —

o a8 = () o) ()

(c) Let N (2p — 1s) be the transition probability (this Jackson’s probability is not the probability in usual sense, it
is really the number of atoms making the transition from 2p — 2s per unit time to yield the calculated power):

ote

P uan. 2
Pyuan. = hwoN(2p — 1) = N(2p— 1s) = 27 = (5)8a— ~6-10% s
0 0

(d) Let the orbit plane be the # — y plane, the electric dipole moment of the electron can be written as
P = e(a +yJ) = 2eaq {cos(wot)® + sin(wot )} = 2eaqRe { (& + if)e '}
Or in complex form
7= 2eao(d +if)e ot = |p]* = 8e%al
The average power

Aokt _, ate
Pclass. - 197 |_1 (hwo)( ao )

The ratio of two powers

Pauan. _ (2/3)°
Pclass. N (9/26)

~ (.28



More Problems for Chapter 9

Problem 9.12
Since 3 is small and the charge distribution is uniform, we can approximate the charge distribution by

9 __ 39 __ 39 1
PO 4 R33 ™ wnR3(0)  47R (1 + B(6) Pa(cos 0))3

where (&) = Oy coswt. Since the problem is spherical symmetric, all mutipole moments with m # () vanish. Therefore,
the electric multipole moments (here we have ignored any currents on the sphere) are:

o 2 Py(cos O R(9)
o= 0 opwir = g [ ao [ smoan Pt g e [
3 2/
N EQf% \/T/ 0)(1 + B(1)P(0)) d(cos )
3 20 +1
fﬁa \/T/ Py(@){1 +£3(t) Py(x) }dw

_ 3QR§ \/m 2
T2t +3)V ar 2+ 7 (0c0 +£6(8)0r,2)

Thus, the only time-varying non-vanishing moment is the electric dipole moment (£ = 2):

QR3A(1) = QR{Re{Boe™ ™"}

3 3
o= 55

For the long wavelength approximation,

k2 111 13,
apllsm) & cor o\ T g = an(20) = —iggy /o @Hock b

The angular distribution of the radiation

ar

Zo 9¢2 Zg
aQ 2k2 l &

15
2,0))? |X2 | = 32 {54 T0n Q*Réc zksﬂo}{&r sin? 6 cos? 9} WQZR B2k° sin?  cos? 0

The total power

36 ZO

_ E 9 Zo 1o 6 .2 2
P—/dQ — " _Q?RiBEK /sm 0 cos* 0d§) = 125007

a9~ 210472 125007 AR

Problem 9.16

Let the z—axis along the antenna so that the antenna spans between —d/2 < z < d/2. Therefore, the current density
- d
J(7) = 21 sin(kz)d(z)d(y) for |z| < 3

where kd = 27. The vector potential from Eq. (9.8):

— ikr P R I ikr d/2 ny I ikr 0
A(F) = @ € efzkn-r (T’)dT’ _ 2&6 Sin(kz/)efzkz cos Odz/ — 2#0 ' [ m
dmor dr Sy 2mi kr sin“ 6
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Here we have used the following integral

- 9% si
. . isin(ma
sin ze” '**dz = %

a®—1

The magnetic field is given by

I e*" sin(rcosb) »

Lo Ho 2T r sin @
(a) The angular distribution of radiated power is
P — ﬁﬁ (E"’ v ﬁ*) _ ZoI? sinz(.wzcosﬁ) _ ZoI? sin2(7r.cc2)s 6)
2 8 sin” ¢ 8 w2 sin”

which is plotted below (in the unit of ZoI?/8). The § = 0 direction is vertically up.

0.075 ¢
.05}
0.0
0.1 -0 05 0.1
-0.0
.05 ¢
-0.075}
(b) The total power of radiation
ZoI? sin2(7r sin 0) ZoI? [T sin2(7r cos 0) 1.56 9
pP= ds) = d 0) ~ —— ZgI
872 / sin? 0 41 /,1 sin? 0 (c0s6) ar 70
Now note
1, 2P  1.56 1.56
P= §I Rrad = Rrad = I_2 = ?ZO = ? - 377 = 93.6 Ohms

Problem 9.17
The charge distribution can be calculated from the continuity equation:

- 1 - I
V-J+ % =0, = p= EV -J = —iz cos(kz)d(z)o(y) for |z| <d/2

(a) Exact calculations:
The dipole moment

d/2
p= /Fp(f')dT = —ié /(ﬂci‘ + yg + 22)0(x)d(y) cos(kz)dxdydz = —zé/ zcos(kz)dz(3) =0
~d/2

The magnetic dipole moment
1 >
m= 3 /Fx Jdr = /I(a:i‘ +yf + 22) x 26(x)d(y) sin(kz) dedydz =0

The only non-vanishing quadrupole moments are Q11,22 and Q33.

2.2 I 2, Id? 1
Q33 = [ (327 —r*)p(r)dr = —2i— 2% cos(kz)dz = i~ Qi1 = Q= —§Q33

CJ_a/2



Long wavelength limit:
In the long wavelength limit, we have

J(7) = Isin(k2)8(2)d(y) 2 ~ kIz8(x)d(y) 3 p(F) = —ié cos(kz)o(x)o(y) = —iéé(m)é(y)
The dipole moment
I I d/?
p= | Fp(F)dr = —i— /Fé(a:)é(y)dT = —i—/ z2dz2=0
¢ € J-d/2

Fx Jdr = %kl/(xi‘ +yf§ +22) x 2 8(x)d(y) dedydz =0

The electric quadrupole moment
. I 42 Id? 1
Q33 = /(332 - TQ)P(T)dT = _21_/ Pde=—i——, Qi =Qx=—-Qs
cJ_as2 6c 2

Not surprising, the exact calculation and the long wavelength approximation yield very different values for the electric
quadrupole moment tensor in this case. With kd = 2m, the approximation does not work.
(b) The angular power of radiation (of the exact calculation of the quadrupole moments):

dP 62Z0k6 = L=
R {|Q(n)|2 — |- Q(n)|2}

where

3
= 1
Q) = Z {Qui% + QuY + Q3:2} n; = Quunu e + Qaanay + Qz3nsz = —§Q33{sin 6 cos ¢ + sin O'sin ¢y — 2 cos 03}

i=1
Thus
1Q(7)? = 3|Q33|2(sin2 0 cos? ¢ +sin® @sin® ¢ + 4 cos? §) = 3|Q33|2(1 + 3 cos? 0)
17 Q(7))? = 3|Q33|2(sin2 0 cos® ¢ +sin? @sin? ¢ — 2 cos? 0)? = 3|Q33|2(1 — 3cos? 0)?
Therefore,
dP  2Zyk8 (1 9 9 9 2 1 9 . 9 9
70 = 11592 {Z|Q33| } {(1+3cos 0) — (1 — 3cos“0) } = gZOI sin”® # cos” 0

The left plot below shows graphically the angular distribution (in the unit of ZoI?/8) of the quadrupole radiation. The
right plot compares the shape of this distribution (thin line) with that (thick line) of the exact calculation scaled up
by a factor of 157.9/93.6 = 1.69 (see the discussion below). Evidently, apart from an overestimation of the radiation
power, the angular distribution of the quadrupole agrees reasonablly well with that of the exact calculation.
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(¢) The total power of the exact calculation

_ faP o 1 2 .2 2 _ T 2
P—/deQ— 8ZOI /sm 0 cos” 0dS) = 15ZOI

The corresponding radiation resistance:

2m 27
rad — —Z = — == 1 . h

R d 5 0 5 377 57.9 O ms
The total power of the long wavelength approximation:

C Zok 2 CzZOk 2 2

= i —I Zo
P = Thor Z 1@l = Thior |Q33| 540
The corresponding radiation resistance
..
RW — —_ 7, =427.3 Ohms

rad — 270

Obviously the long wavelength approximation does not work in this case. In Problem 9.16, we have R.,q = 93.4 Ohms
from the exact calculation without expansion. There is a puzzle here that the radiation by the electric dipole mode
is greater than the sum of all modes. This is because the leading term in the expansion (electric £ = 2 term or E2) is
not a good approximation whenever the dimensions of the source are comparable to or larger than a wavelength.

Problem 9.22 (Only TE modes are worked out)
The general solutions to the Maxwell equations are given by Fq. (9.122):

= Z {“E(Evm)fé(kr))zém - %OLM(f,m)V X gg(kr))?gm}

£,m

5= 7, Z {%aE(ﬁ,m)V X fé(kr))_Qm + aM(E,m)gg(kr))_Qm}

£m
where ag(¢,m) and ap(£,m) are the electric and magnetic multipoles respectively. fy(kr) and ge(kr) are linear
combinations of spherical Bessel functions jy(kr) and ng(kr). Furthermore, the fields must be finite at r = 0. Thus,
we have fo(kr) = je(kr) and ge(kr) = jo(kr).
The fields of the TE modes are given by Eq. (9.116):
_ - 4 i _
Eém - ZO]Z(kT)an(ea(b)v Hém - _k—Zov X Eém (E ?é 0)

The ¢ = 0 case leads to null fields everywhere inside the cavity. The corresponding components are

(Eém)e =120 Sm@ ad)Yém Je(kr) (Hom)o = k—lr B%Yém ;r (Tjé(k‘T))
(Eem)p = —iZo aeYém Je(kr) (Hem)o = kl_r 51]119 3¢Y4m o (17e(kr))
Similarly the TM fields are given by Eq. (9.118):
Fi = o) LYo (0,6); B = 2% x Hiy (0£0)
with the following components
(Hém)r — 0 (Eém)r — ZO é(é + 1>Y€m jg(/{/’?")
(Him)o = Sm@ 3¢Yém Je(kr) (Bem)s = fzﬁ 389}%@ ar (7"]4(7437"))
(Hem)o = aeYém Je(kr) (Eem)g = ~%r o 3¢Y4m Br (rje(kr))



(a) At r = a, the electric field must be perpendicular to the conducting surface and there must be no normal component

of the magnetic field. Applying this boundary condition to the TE modes leads to jg(ka) = 0. Let xz, be the nt®

root of jz(x), the characteristic frequencies wi ¥ are therefore given by

C
_ TE __
a = Typ = Wy = a.’l}gn

For the TM modes, we have

ol e =0

Let Yz, be the n'" root of &(xj,(x))/Ox, the characteristic frequencies are then given by

TM
“on ™ _ C

a =Y = Won —a

Yen

In both cases, the characteristic frequencies are independent of m (degenerate in m), as result of the ¢p—symmetry.
We proceed with TE modes only.
(b) The four lowest roots of je(x) = 0 (¢ # 0) are 11 = 4.5,221 = 5.8,231 = 6.85 and x12 = 7.64. Thus the

corresponding wavelengths

2w

)‘Zn = —a = )\171 = 1.4&, )\271 = 1.1&, )\371 = 0.9&, )\172 =0.8a
Tin
(c) The lowest TE mode corresponds to £ = 1,n = 1, independent of m. In this case, k1 1 = )\21—”1 = 4.5a. The fields
for m = ( are (apart from normalization constants):
_ _ 3 1 .
(ELO)?“ =0 (Hl,O)r = \/;m]1(4.57"/a) cos 6
_ _ 3 1 12} . .
(El,o)e =0 (Hl,O)e - = EWW(T]1(4'5T/G)) sin 0

(Er0)s = iy/ 2 Zoji(4.57 /a) sin @ (Hig)s =0



10.1

a) Let us first simplify the expression we want to get for the cross section. Using g = 2,
do (2 A Ay — ka6 D _1a A — LA . (5w A2 5. A
4o (€0,No,N) = k*a 1 €0 « N 4|n (zx &))" —2+h

- = |

Orienting the system as

X
F
X
g M
P L
\9
<
y
and using
éo = Olof(-}—ﬁo , with |O{0|2 + |ﬁ0|2 =1
i = cosOz + sin Ok
then

doa s &y 144605 1) 12ein20 _ Lip 12cin2g
dQ(so,no,n)—ka[4 oo |~ sin“6 4|ﬁ0| sin“0 cose}

Using the result for the perfectly conducting sphere Eq. (10.14)

2
44,2, 20, o) = ka®

é*-éo—%@xéo)-(ﬁxé*)

Using &, =

doaa 2 A _ L4ab6 1 2 aeip2(q_ 1 2
dQ(n,sl,so,no)—ka|ﬁo 2ﬁ00050| = k*a®|fo| (1 20050)

Similarly &) = X

do aa A &Y _ 1hab 1% ansy, 2 1y
dQ(n,s”,so,no)—ka|a00050 2a0| = k*a®lao| (cos@ 2)

By definition



g_g(é(h ﬁOl ﬁ) = g_g(ﬁl éJ_l éOl ﬁO) + g_g(ﬁl é”l éOl ﬁO)

— Kk4a6 2(1_1 2 2 1 2:|
= k"a [|ﬁ0| (1 5 cose) + |ao| (cos@ 2)
which simplifiesto
Lo (80, f10,M) = k*a®[ 2 ~ o2 $n%0 — L{Bo[2sin%) - cos |

using |eco|* + |Bof> = 1, and cos?d = 1 — sin4.

b) If &o islinearly polarized making an angle ¢ with respect to the x axis, then
€0 = aoX+ fo = COSPX+SN¢g , SOag = COS¢Y, Bo = SNP
Then from part @)
g—g(éo,ﬁo,ﬁ) = k4a6[% — |eo[?sin?6 - %|ﬁo|zsin20 - cose}
= k4a6[% — cos?psin?6 — % sn?¢sin?g — cose}
Using cos2¢ = cos?¢ — sin’¢, this expression simplifiesto
g—g(éo, Ao, N) = k4aﬁ[%(1 +c0s?0) — %sin2 C0S2¢ — cose}

as desired.



10.2

Orienting the system as

x
x
ol &
\ ?
z
;

Then
7L = cos 02 + sin 0%
Using the result for the perfectly conducting sphere Eq. (10.14) and writing
€0 = apZ + Byg. where |on|2 + |ﬁ0|2 =1,
do

foa o 4.6 | %
0o V4 E5€0, =
dQ(nee fig) = k*a® |&

Using &€, =94

do 2

A 1
m(n, &1,80,M0) = k*a® |8, — 5[30 cosf

4,614 |2 1 :
= k"a”|B| 1—§cos9

Similarly & = 2’
do

2 , 1\ 2
—_ — 4.6 R
70 k*a® || <cos9 )

2

1
o cosf — 5040

(7,8, 80, 70) = k*a"

By definition

99 2o 0, 7) = 92
a0 \Fo e = a0

e , 1 2 , 1\ 2
= k*a® ||yl 1—50039 + |l cos9—§

WA A a do,. . . .
(M, é1,0,70) + m(n,sn,so,no)



which simplifies to

do

NP ) 2. 1,2
E(so,no,n):k‘%f — — |ayp] s1n20—Z],80| sin?§ — cos @

4
using |ao|? +|8,|° = 1, and cos?0 = 1 — sin? 6.

b) If &; is a linear combination of circular polarizations

£o [&' + iy +re"™ (3 —i§)]

1
VI +r2V2

As is stated in problem 10.1, ¢ is measured with respect to the &’ axis. For
orientation, see the figure:

S

A
-~ n

ad

z

In term of the unit vectors in the z and y directions, respectively
2’ = cos ¢z + sin ¢f; § = cos ¢f) — sin pF

corresponding to a rotation about the z axis of ¢.Thus

1 ) )
oy = m [cosqi) (1 + re“") —isin¢ (1 — rew‘)]
1 . ia . i
Bo = m [smgb(1+re ) —i—zcosd)(l —re )]
Notice that
1
lao|? = ETDP [cos? ¢ (1+ 12 + 2rcosa) +sin? ¢(1 + r? — 2r cosa) — 4rsin ¢ cos @ sin ]
T
1
1Bo|% = (D) sin? ¢ (1 + 7% + 2rcosa) + cos? ¢(1 + r? — 2r cos ) + 4rsin ¢ cos sin o]
and

|0é0|2 + |/30|2 =1



Plugging these results into

do

70

5 1
&o, N, 1) = k*a® [Z — |ao|*sin? 6 — 1 18o]% sin? 6 — COSG:|

gives for the terms not linear with r,

d0'1 14 6 5 2
) =k"a [8 (1+cos 0) cos 0

whereas the terms linear in r contribute

dU2 _ 4 6 _§ T -2 _
70 =k"a [ 1 (1+T2>sm 6 cos(2¢ — )

where I have used
cos(2¢ — a) = cos 2¢ cos a + sin 2¢sin

and
cos 2¢ = cos? ¢ — sin? ¢

Adding the two contributions gives

do
dS2

(80, 0,7) = k*a® g (14 cos®6) — cosf — 3 <

2
1 > sin“ 0 cos(2¢ — )

r
1+r2

the desired result.



More Problems for Chapter 10

Problem 10.3
(a) Since A > R, the fields are essentially constant over the size of the sphere. Furthermore the sphere can be treated
as a perfectly conducting sphere since § < R. Therefore, to the 0** order, the problem can be approximated as a

perfect conducting sphere in a static field. Thus the tangential component of the electric field vanishes (EH =0). To
apply considerations of Sec. 8.1 to the power absorbed, we need to know the tangential component of the magnetic

field H, |- Consequently we need to solve the magnetostatic problem in field H = Hye of the plane wave. Note that
we can always project the field of an unpolarized beam into two independent polarizations. In spherical coordinates

with H pointing to the +z axis, the magnetic scalar potential has the form:

—iwt

Py = —Hyrcost + o cos 6
4772

Here we have chosen the center-of-sphere as the coordinate origin. The first term is due to the uniform external field
while the second term is due to the included magnetic dipole moment 7 of the sphere. Note that /m and H are in the

same direction. Thus, the components of the magnetic field H=—-V®,; are:
6(I)M m
H, = 5 = Hycos@ - 53 cos 0
Hy = T = —Hysinf + g sin 0

and Hy = 0. For a perfect conductor, H, =0 on the surface. Then,

H(r=R)=IHycos0+ —" cos0=0 = m=-2rRH, = m=-2rRH,
2mR3

The 0** order magnetic field on the surface is thus
3 .
HH = Hg = —§H0 sin 6
(b) Since 0 < R, the power absorbed per unit area of surface is given by FEq. (8.15):

dBoss R 2 L. 712 9 2 2.2
da 2048 of| 205|n x H' 806' ol sin

The total power absorbed is

2
Pps = / APabs p2 gy = 3L | Ho |2
da lef))

Now note that the incident flux
o 1 - Zo, = 1
i (B x ) = 5 {(ZOH X 7l) x H} = D = 5 Zo|Hof*

the absorption cross section is

o Pabs 67TR2
TUT T 602
Furthermore,
2
5= =  o=6rR,
Lowo 20
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                                                                           More Problems for Chapter 10


Therefore 0,15 is proportional to /w if the conductivity o is independent of frequency.

Problem 10.9(a)
Useful integral

oo 2 o0 J2 2z
/ 3i(2) dz = E/ 3/22( )dz = 1
0 z 2 Jo z 4

Starting with the ‘Born’ approximation formula Eq. (10.31)

FLAD k2 L 1) oo L
¢ Dy =i Tga(er — e - e dr = 7(6 gy )kze* - € /T<a eI dr

Define

1 G- 1 ¢ 2 iqr cos 6 ¢ 2 1 +1 iqr cos 6
I=— [e9dr=— [ rdr [ dQe" = [ ridr- e d(cos )
4 4 0 0 2 1

= /0 r? {M} dr = q% Esinédé = (sm(qa) — gacos(qa)) = a3j1(qa)

qr 0 qa

The differential scattering cross section, averaged over initial polarizations and summed over final polarizations, is

d
dg (ka)4 2|6 1|2|.71 qa Zle*
pol
where the summation is over initial and final state polarizations:
—ZlG* &% = 1+cos 9)
pol.
Now note

0 = K|y — 71|? = k(2 — 27y - 1) = 2k*(1 — cos 0)

For large ka > 1, ga = ka+/2(1 — cos ) can be large compared to unity. Since

pi-of)

for large qa, the scattering is mainly confined to small ga. Small ga and ka > 1 imply 0 < 1, i.e. the differential
cross section is sharply peaked in the forward direction.

dQ = dgd(cos ) = d¢2k2 d(q*) = Wd(qzaz)d(b

Let z = ga, then

1
(ka)?

dQ} = 2zdz)d¢ = zdz

1
2k2q 2(

The total scattering cross section can be written

(ka)*a?|e, — 1)7 (27 Zka jl() 1 9
o [ G P [ b L g

Since § < 1, (1 +cos?0)/2 — 1 and (¢@)max = 2max — 00, then

oo 2
o~ (ka)®le, — 1]%a® x 27 5i?) dz = E(ka)2|6r — 1%a?
0 Z 2



Problem 10.12
(a) The diffracted field due to a plane surface is given by FEq. (10.101):

B = gevx [ [ B}
r)=— X n X r S—aa
27 apertures |7T— T’l

Here 7 is a unit normal. In radiation zone, |¥— /| & r — 7 - /. Thus

eikr ikr

L 1 L g ] - o -
E() ~ -V x { . /apermre(ﬁ x E())e kT da’} 2 %er k x {/apermre(ﬁ x E(7))e T da’}

Choose a rectangular coordinate system with the  — 2z plane as the plane of incidence and its origin at the center of
the aperture, thus 7 = 2 and the incident wave vector kg = k(cos a2 + sinaz). Let (0, ¢) be the spherical angles of
the outgoing wave vector k and (p', 8’,0) be the polar coordinates of 7/, thus

k = k(sin 0 cos ¢@ + sin @sin ¢f + cos02), 11 = p' cos 3 + psin §'9
Consequently
korl = kp'sin 0(cos ¢ cos B’ +sin¢sin 3') = ksin p’ cos(¢ — '), and ko -7 = ksina p'cos 3
Therefore, the field

P i etk o T T
BE(F) = ——Fk x i x § Boe™o gt e T da/
2 7 aperture
1 eik’l“ — . . ’ ’ . . ’ !
— % . k ></ 7% {Eoezksmoz p cos g} efzksme p’ cos(¢p—p5") p,dp,dﬂ,
aperture
i ikr - @ 2 Sy s ’ s ’
— —2—E0 kX% / p/dp// ezkp (sin v cos 3" —sin O cos(p— 3 ))dﬂ,
T 0 0

Now note the exponent of the integrand

sin awcos B — sinf cos(¢ — f) = sinacos § — sin @ cos ¢ cos B — sin Osin ¢ sin G
= —{(sinf cos ¢ — sin &) cos 5 + (sin Osin ¢) sin 5}

sinfsing .

in )

sinf cos ¢ — sin «
¢ os 3 +

= —&(cos B cos By +sin Bsin fFy) = —€ cos(8 — o)

Here
£? = (sinfcos ¢ —sina)? + (sinfsin ¢)? = sin? 0 + sin? @ — 2sin asin @ cos ¢
and
sin @ cos ¢ — sin & ) sin @ sin ¢
cos By = ; osinffp= ——
3 3
Applying the integral
1 2m

+ixsin
— dé = Ji
21 Jo © of@)



we get the electric field

— ZEO e““" - @ 2 ikp’ ’
B =-—— kx & / p’dp’/ ¢ thp'€cos(F=Po) g/
27'[' r 0 0

ikr

=—iky

kx i / p'Jo(kp'€)dp’
0

a2 . .
= —ia*Fy k Fat Ak x &)
Now that
- 1 - -
H:—ZofxE:—;:)fx(kxj:)

The average Poynting vector

_ 1 oo 1k _L“zA_L 2 7w al2a
(S>_2R6{E><H}_2Z0|E|T_QZO|.A| Ik x 227

Note that |lg x &2 = kz(sin2 0 sin? ¢ + cos? ). The time-averaged diffracted power per unit solid angle

dpP - 2 - 1 Ji(k

0= r2(S) -7 = 2;Oc| |-k x & = Ek2a4|E0|2|1]iTZ€)|2(sin2Hsin2¢+cos2 0)

The explicit dependence on ¢ of the differential power is the result of the polarization of the incoming wave. Now
that the incident power F;:

YA

2 2
Ta“ cos &

P = l(Exlef*)ﬁd@’—”—“2|E|2 a = |E*=
i= /3 oda’ = 57~ 1Fol” cos ol =

Thus

P B (ka)® .o, o o 201 (kag)
(E)L— (sm 0 sin“ ¢ + cos 9)|T¢€|

(b) For the polarization in the plane of incidence, the differential diffractive power is given by Fq. (10.114):

dpP ka)? 2J, (k
(E)H = P, cos Oé%(sin2 6 cos? ¢ + cos? 9)|%§£)|2
For normal incidence (o = 0), the L case with ¢ = 0 and || case with ¢ = 7/2 should be identical. Indeed the two
formula are indeed the same. Furthermore for a@ = 0, the diffractive power for an unpolarized beam is

dP 1, dP dpP
99 {(E)L + (m)}

(ka)? 1 9 2J1(ka&) 5
- §(l—b—cos 9) |7l€a£ |

As expected, the diffraction pattern of an unpolarized beam is independent of the azimuthal angle and is determined
by the function .Ji(x)/z, which is plotted below.

cosa 4w

-P,




The vector results above are very similar to

dP P (ka)? (cosa + cos 9)2|2J1(ka£) |2
dQ)  cosa Arm 2 ka&

of the scalar Kirchhofl approximation apart from the angular factor resulting from polarization.

Problem 10.18
(a) In the long wavelength limit, the small circular hole can be viewed as electric and magnetic dipoles with moments

4 - L
Deff. = ?OL Eo; Men. = —§OL3H0

Therefore, the diffracted electric field in the Fraunhofer zone is given by Eq. (10.2):

k2 eikr . . . k2 eikr . meﬂ
(7T X Pegr.) X T — (7 x
Ameg T Admey T c

E(F) = )
where 77 = lg/k Inserting the effective dipole moments, we have

k2 ikr 4 3 o k2 ikr 8
¢ coa (7T x Fo) x 1+ a

B = < o)

dmeg T 3 dmeg 1 30(

k2a3 eikr . 2k2a3 eikr .
= i X F i it X cB
pr— (7i x Ep) x i + e (71 x ¢By)
1203 eikr . .
=LEre {ﬁx(onﬁ)+20ﬁ><Bo}
3m r
With explicit time-dependence, the field can be written as
. eikrfiwt E . E . E
E=-——ka®{2— x By +— x (Eo x —
- a{ckx 0+k><(0><k)}

(b) Choose a coordinate system such that Eo is along the z—axis, Eo is along the x—axis and let k= k(Zsin@cos ¢+
§sinfsin ¢ + Z cos ), the time-averaged radiation power per unit solid angle is
dpP r o
il E|2
aQy 27y

k k
161905 ld
187r2Zk |2c ><B0+k><(E0><k)|

Note that
|2¢7t x By + 7 x (Eo x @1)|? = |2¢7i x By + Ey — (i - Ey)i|?

= 4¢2|7 x Bo[? +4cRe{(ﬁ x Bg) x Eg} + | Eol? — |7t - By

= 4¢?| By|?(sin? @ sin? ¢ 4 cos? 0) — 4esin O sin ¢ Re(ES . go) + | Fo|? sin? 0
Thus, the differential power
ar 1
Q) 1872Z,

The total power transmitted

k*a® {402|Bo|2(sin2 0 sin? ¢ + cos® 0) — dcsin@sin ¢ Re(E_ja‘ . Eo) + |E0|2 sin? 9}

/2 27 . .
/— Q) = 187r2Z kta 6/ sinedo/ de {402|Bo|2(sin29sin2¢+cos2 9)—4cRe(E;;-Bo)sinosin¢+|E0|2sin29}
0 0 0

2

——  k*a8(4cP| Bo|? + |E
= St (4¢*| Bo|* + | Fo|?)



More Problems for Chapter 10

Problem 10.15
From Prob. 8.2, the TEM fields in this case are

vV p

E = — E =
m(@/a)p’

v_¢é
In(b/a) p

In Kirchhoff approximation, the problem can be simplified as a plane wave incident on a conducting plane sheet with
a ring cut out of it. Therefore, the radiated field is given by Eq. (10.109):

= et . P VA ik
E = k 5% E(r! —ikr da' = px 'da

(7) ></z>< (r')e o = e /) ></ —#'da
Let (6, ¢) be the spherical angles of k, ¢' be the polar angle of 7/, then

k= k(sin 0 cos ¢& + sin 0 sin ¢ + cos %), 7= p'(cos ¢'% + sin ¢'))
korl= kp'sin @ cos(¢’ — o), ¢ = —sin¢'s + cos d'§
The electric field
- iethr v

b 2m
)= ey L W) a0 O A g+ eos )
Using the identities

27
/ dpel@eose=me) — omim I (x);  J_ ()
0

the integrals over ¢’ can be carried out:

(=D Im(2);  Jm(=2) = (=1)" Jm(2)

2 2
/ " e*ikp/ sin 6 cos(¢’'— @) sin (b/d(b/ — / " e*ikp/ sin 6 cos ¢’ sin((b + (b,)d(b,
0 0

1 27

: e*ikp’sinecos @’ {ei(¢+¢/) _ 67i(¢+¢/)}
27 0

1 27

— d(b, {eiqﬁei(fkp’ sinfcos ¢’ +¢’) e*iqﬁei(fkp/ sin 6 cos qﬁ’f(;ﬁ’)}
% J,

% {@m)i eI _(=kp'sinf) — 2m)i T e " T (—kp'sin ) }
1

= —2misin ¢.Jy(kp'sin0)
Similarly

27 2m
/ e*ikp/ sin 0 cos(¢’— @) COS (b/d(b/ — / e*ikp/ sin 6 cos ¢’ COS((]S—}—(]S,)d(b,
0 0
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| —

27
/ e*ikp/sinOCosé/ {ei(¢+¢/) + 67i(¢+¢/)}
0

2
/ " d(b/ {eiéei(fkp/ sin 6 cos ¢’ +¢) _‘_efiqﬁei(fkp/ sin9€os¢/7¢/)}
0

| —

{@m)i e J_1(—kp'sin0) + (2m)i T e ¥ Jy(—kp'sin0) }

| —

= —2micos ¢J; (kp' sin0)
Noting that

b
—sing@ +cosdy = p, and / Jy(z)dx = %(Jo(b) — Jo(a))

we get the electric field:

-, iekr v b, ) ' RN N
E(F) = o ln(b/a)k X /a dp'(—2mi)J1(kp' sin 0)(— sin ¢& + cos ¢f)

_£LEX$/bd,J ]{7’9
= 77 Tn(b/a) | dp ik sind)

_ ethr Yy i (ZASJO(kb sin @) — Jo(kasin0)
7 In(b/a) 2sind
Nowthatl%:fandthusI%quzfxqu—é
- e* vV Jo(kbsin) — Jo(kasin9) -
E(ir)y=—— 0
() r In(b/a) 2sind
The average Poynting vector
() = |E|2]% B V2 {Jo(kbsin®) — Jo(kasin0)}? k
272y 8ZyIn*(b/a) sin? ¢ 72
The average distributions of the radiation
dP T2<§> i V2 {Jo(kbsin 0) — Jo(kasin 0)}2
aQ  8ZpIn%(b/a) sin? 0

The distribution for kb = 4 and ka = 1 in the unit of V2/(8Z In? (b/a)) is plotted below. The horizontal axis is the
z—direction. As expected from the functional form, there is no radiation in the forward direction (¢ = 0). For large
b/a values, the distribution has many local maxima and minima as 6 is varied from 0 to 7/2.




The total power

/ TV? /”/2 {Jo(kbsin0) — Jo(kasin0)}*
T 1ZyIn? 12 1n%(b/a) sin

The integral does not have a simple analytical form and has to be carried out numerically.
Note to the grader: the following discussion should not be part of the grading

Long wavelength limit: (kb < 1)

Jo(kbsin0) ~ 1 — i(kbsin@)z; Jo(kasin) ~ 1 — i(kasin@)z

Thus
E N k4v2(b2 _ a2)2

.2
~ 0
a0~ 12820 2 (bja)

The total radiated power is then

4172012 232
dpP o _ KV —a?)

/2 a2z 22
- 5 (2m) / sin? 0d(cos ) =+ (" =)
ds2 128%, In2(b/a) |

Pra .=
d 9620 In2(b/a)

This is to be compared with the power flow along an infinite coaxial line:

2 27 b 2
-Ptrans.:l/(EXH)'édazviz/ d¢/ @: TV
2 2Z0 In (b/a) 0 a P Zo ln(b/a)

Prad. B k4(b2 _ a2)2

Therefore, most of the power is reflected back. The fields inside the coaxial cable is very similar to those of an "open”
transmission line. Note that in this case, the coaxial cable can only operate in its TEM mode. All other modes are
cut off.

Short wavelength limit: (ka > 1)

The radiation can be appreciable and higher modes are excited. The fields in the plane at z = 0 are far from the
simple TEM fields. The Smythe-Kirchhoff approximation has only qualitative validity.
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11.3

Let us just focus on the 0, 1 component transformation, since the 2, 3 components
remain unchanged, if we take the relative velocities between Lorentz frames to be along the x -
direction. We want to relate a single Lorentz transformation to two sequential transformations as
described by

K K’

Vi V2

¥
L

Thus we require
A= AA;

where A is a Lorentz transformation. Rewritten explicitly, the above equation reads
Yy By _ 2 —Pay2 y1 —Pina
By v —Bay2 72 —Biy1 71

_ yov1+ Boayv2Piyr —y2B1y1 — Bayaya
—y2P1y1 — Bayay1  v2y1+ Bay2Biy:

So

Yy =v2y1+ Bay2fiy

By = v2P1y1+ B2yey:

B - By _ yeBiyi+Boyayr _ Bit B
Y

yay1+ Bay2Piyr 1+ PP

Or
Vi + Vo

V= V1Vo
1+

as required.



11.4 The ”clock” is shown in the figure

I | M

a) To the observer the pulse travels the trajectory

[
-

\
—_—

vAt

Thus, if the speed of light is ¢ in both reference frames,

2
cAt =24/d? + (vTAt>

or 0
At = ————= = yAT

cy/1—v2/c?



b) Now let us assume the clock-mirror system is moving away from the
observer with speed v. Assume the fixed and moving frames coincide when a
light pulse is given off. In the moving frame the time required for the light
wave to move to the mirror and then to the phototube detector is given by

LAY
C

In the rest frame, the light hits the mirror in a time determined by
d
cAt; = — +vAt
Y

where 4 comes from the fact that the moving distance d is ”length con-

5
tracted.” Solving for Aty

d
v (c—v)

Similarly the time for the light to travel from the mirror to the detector is
determined by

Aty =

CAtQ = é — ’UAtQ
v

or
_da
v (c+v)

So the total time in the fixed frame is given by

Aty =

d 1 1 2d 2d
A:A A = — et et _— = AI
b=Aah+ak 7<(c+v>+<c—v>) o—wj@) Ve A
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! !

uj = A w4
vu/ b !
1+ —CZ” y(1+ =

and
dt = dt'y(1+ %)

Thus taking the differential of the first equation above and using the second equation for dit,

vu; 3/2
du L+ - u+rvge  (1-%5)7
el I ay = c c _ c a
dt (14 23 1+ Nys
y+— =
Similarly,
o (e
da —

vu/
r’d+—z)°
This is equal to the expression we want to prove,
V2

1_ ¥ .
dcliltJ_ =a, = ( VS/Z (al_*_c_\lzx(alxal))
1+ 2y

since the BAC - CAB theorem shows that

!
Vi vu
v 2T \i
a + ) x @ xu) = (1+ 02" )al—ul o2 af|



11.6

Background:
1

Vv

where dt is measured in the K frame and d7 is the proper time. Using the
Lorentz transformation for acceleration

=8

dt = y(1)dr,

dj| = —%=—dj|, but in this case @' =0
C2
dv dv’ dv’
a= i (1- 1)2/02)3/2E, where ag is acceleration in Ky and a’ = .

dv = (1 —v%/)*d'dt = (1 —v?/c?)d'dr

v dv , T
/o T/ ¢ /o ar

1 1 1 c+v
——cl — —cl =a'r=2= 1
2011(0 v)—|—2cn(c+v) a'r 2cn<c_v>

1.7 1 7

2a’r c+uv esd'T 1 ec?T —eT T a'rt
e ¢ =< )—>v(7')= — =c| — — —ctanh(c)
[+

eza”r + e~ ce'T

dx
i v(t) — dz = v(T)y(T)dT

tanh(‘”’
xlg_/dx—/ dT—C/ dT—C/ tanh cosh(
\/l—tanh2(“"

T2 1 2 /
. c a't
=c sinh —a'7 ) d7 = — cosh(—)|72
" ¢ a c

Let’s work part b) first:
b) The 10—year time frame going out is divided into two parts:

1%t 5 years: 71 =0,72=5yrs,a' =g

o2 = ‘;—2, [cosh(g%) - 1} =c [72 (a,—‘;> <cosh(a'c”') - 1”

)dT



a'ty  9.81-5-365-24-3600

=5.16
c 3 x 108

—¢ {72 (a,’;) (cosh(Lf) _1)] :c-5-yrsﬁ lcosh(5.16) — 1]

= 83.4 light-years

274 5 years: 71 = 5 yrs, 7o = 10 yr8, @’ = —g
By symmetry, this is the same as the first five years, 83.4 light-years.

Total distance after 10 years:
TTotal = (83.4 + 83.4) light-years = 166. 8 light-years

a) Working out the time that elapses in the Ky frame.

155 years:

dt:’ydT—>t:/ 1
0 \/1 — tanh?(a’7/c

dr = / cosh(a'r/c)dr
) 0
c . ., at 1 ., alT
= J smh(T) =T (m) smh(T)
1
— t = byrs - —— sinh(5.16) = 84. 4 yrs

5.16
2nd 5 years:

t = 84.4 yrs by symmetry
By symmetry, the return trip takes as long as the trip out.
— tiot =2+ (84.4+ 84.4) yrs = 337.6 yrs

It is the year 21004337 = 2437 on earth and the twin on earth is 357 yrs old!
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From Eq. (11.149), it is clear that we should take ﬁ | 2, soﬁ \E = ﬁ .B = 0. Then
E' = y(E+ B xB)
B'=y(B-fxE)

The vectors in parentheses should make the same angle wrt the x axis 0’ if they are to be parallel.
This can best be seen from the figure,

¥

-BxE

From the figure

E' = y(Eof - B(2Eq)sindi + B2E c0s0])

B' = y(cos02E,T + sin62Eqj — PEo))

Thus
, _ 2pcos®  2sinf-f
tand” = 1-2Bsind  2cosH
(2cos@) - (2Bcosh) — (1 —2Bsinh) « (2sin6 - p) = 0
or

28%2sin@ — 5B +2sind = 0

This quadratic equation has the solution



B = 7 (5- [(25-16sin%) )

where I’ve chosen the solution which give g = 0if 6 = 0.
If 6 << 1, then 8 - 0, and the original fields are parallel.

Ifo > n/l2then p= £ (5-3)=1/2. y = %

§=0+ow—%n

B =B = y(2E0) - $E0)) = vEo3)

So in these two limits, the fields are parallel to the x and y axes, respectively.



More Problems for Chapter 11

Problem 11.3
Let the frame K’ be moving with velocity v 2 with respect to K, and let K" be moving with velocity v22 with respect

to K'. Then,

/ /

ct' = yi(ct — B1z), 2 =m(z—pict), 2’ ==z, ¥y =y

et =yt — Bo2'), 2" =2 — Bact’), " =2, ¥y =y

with
1

V2
h=—s Mm=—F—; =" m=—F=
c V1-32 c V1-053

"

=y and
2" =mv2 {(z = Bict) — Balct — 12)} = mv2 {(1 + B152) 2 — (B + B2)ct}

Then 2" =z, y

ct” = yiy2 {(ct — B12) — Ba(z — Bict)} = my2 {(1 + B1B2)ct — (B1 + B2)z}
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                                                                             More Problems for Chapter 11


Thus

2" =z —Bet), ct’ =(ct — B2)

with
Yy=nv(l+566), B= %
It is easy to show that v =1/4/1 — %
2_ 2.2 2 _ (1+152)? _{ (B + B2)° }1 _ 1
L N S (- N ERl R (Y S E 2

Thus two successive Lorentz transformations in the same direction are equivalent to a single Lorentz transformation
in that direction with velocity

v=cf = T
T L+ uvwg/e?
Problem 11.5
Begins with Eq. (11.31):
/ S,
I (T _ @
T S Yol + Zuf)
Note that
d 1 d
dt y(1+ ) dt’
Therefore
1 %) up v v 1 :
a) = == ——— a
17y I+ 2y)) | T+ 2y) ¢z (L+uf) v (L+T-a@/c2)
Similarly

. 1 a u v a"‘
1= = = P ——
N2L+T-u'/c2) | (L+T-u/c2) ¢ (1+T-u'/c?)?

1 - T - v
— - 7 1 a4l [
V(L +T-u'/c?)? {OLL( * c2 ) uLac2}

_ L {aﬂ+c—2{(17-u’) L= (T-a) ’L}}

B R

- ! i+ 2 (@ x @)
2l+g-a/2)PE " 2



More Problems for Chapter 11

Problem 11.6

Let v(t) be the instantaneous velocity of the rocket with respect to the earth. At a given time ¢, consider the rocket’s
motion in an inertial frame moving with (constant) velocity v(t) with respect to the earth.

(a) The rocket’s velocity in this frame is v’ = 0, while its acceleration is a"‘ = g and a| = 0. Then by the Problem

11.5, we know that an observer in the earth’s frame would see the rocket to have an acceleration

v(t)?
o =(1-—3 )*2g
such an observer measures the acceleration by using
dv(t) v(t)® 1372
a) = dl :(1— 2 )/g

Therefore v(t) can be solved from the above differential equation. The initial condition for the 1st part of the journey
(the five years of acceleration) is v(0) = 0:

/UL—/t dt = t—; = vz—i
0 (1_102_;)3/2 ) g gt= (1—0v2/c2)1/2 - 1+ g%t2/c?
Thus

1 g2t?
- - 1
7 V31—v?/c? - c?

The relationship between dt in the earth’s frame and dt’ in the instantaneous rest frame is

5
dt:'y(v){dt’—b—v T}

2
But in the instantaneous rest frame, w/ = 0, which leads to dr’ = 0. Therefore dt = ~(v)dt’. Thus
dt dt t t
ﬂ_/__:/___———:fmmHQ% = t=Ssn(%
y(t) Vi+g22/c2 g c g ¢

For the first leg of the journey

3-10% . 3-10°x3-107

t 10 sinh( 0

)R 75 x (3-107) s = 75 years
The total journey takes four times of the first leg:

tiotal ~ 4 X 75 ~ 300 years

Therefore, the year on earth is 2400 when the twin returns to visit his/her sibling’s grave.
(b) The furtherest distance the rocket ship traveled

2 242
c t
—/ 1+ g 85 YOI~ 148 light — years

T5years
gt
[ s [ ot =
0 1+g%t?/c g c

s=2



rock
Text Box



                                                                           More Problems for Chapter 11


Problem 11.8
(a) In frame K’ in which the fluid is at rest, the frequency and wave vector are related by ck’ = n(w’)w’ because only
in this frame can we define the index of refraction. We assume the speed of light in the fluid is

Applying velocity addition formula for parallel velocities, we get

v+, c {1+ﬂn(w’)}

1+ vvy, /c? - n(w’) |1+ 8/n(w’)

vau:

where 0 = v/c. Expanding in powers of 3 and keeping only first order in 3:

u%ﬁJrv{l—%}Jro(ﬂzc)

To find the correction for dispersion, we must relate w’ to the lab frequency w. We now note that both w’/c and ¥’
are the time and space components of a 4-vector (because the phase of a wave is a Lorentz invariant). Thus

! !
%:7(%+ﬁk’), and k:y(k’—b—ﬁ%)

Since ¢k’ = w'n(w’), solving w and ck in terms of w', we get
w=y(1+8n(w)w',  ck=y(nw)+B)w

In passing, we note that the lab phase velocity is

- ()

k nw')
just as we found above from the velocity addition formula. And the index of refraction for the moving fluid can be

defined as

_k n(w)+p
m0w) = e = T Bt

It depends not only on the frequency, but also on the speed of the fluid.
To the first order in 3, we have

Wwrw(l-P0n(w) = W-ws-—Fwn(w)

Taylor expanding n(w') at w’' = w:

() = nw) + T ! — ) + O —w)?)
=n(w) — ﬁwn(w)g—z +O(F%) ~ n(w) {1 - ﬂwg—n}

Thus




@ {1 - dZEJW)}

Similarly the velocity formula for the antiparallel case is

w dn(w)}

= m“’{“nw ") dw

Problem 11.13
(a) In the wire’s rest frame K’, the wire has a constant linear charge density ¢o. In this frame, the electric and
magnetic fields in Gaussian units are given by (in cylindrical coordinates):

g=2P:  F_g
T

Here we used r instead of p to denote the polar radius to avoid confusion (see below). Lorentz-transform along the

=

z—axis using the inverse of Eq. (11.149) to get the fields in the lab frame (5 = %2):

2
_, _, . o AR _ 2vqo .
E=~(E — B — BN =A~F =
YWE —§x B) 1+7ﬁ(ﬁ )=~ —
2
- = - o Al - o 2v8qo 4
B =~(B’ B — -B) = B =—
VB + B x BY) = =88 B') =8 x i

Note that the radial (r) and angular (¢) lengths (coordinates) are the same in both frames since the relative motion
is in the z—direction.
(b) In the rest frame K’, the current and charge densities are:

7 — 1 9o
'] _07 p - 27TT6(T)

Note that it is easy to verify that the charge per unit length is gg. Since (¢p/, J! ) transform as a four-vector, we have
in the lab frame:

‘= 2B5(r)

cp=7(cp' +BJ)=ncp' = p=np = 5y

i.e., the line charge density in the lab frame is vqg, consistent with the Lorentz contraction of the wire in z—direction.

Jo = (I + Bep) =Bep’ = JT= %5(7“)2 = pvi = pif
This is the current density of a line current ygyv.
(¢) An observer in the laboratory frame sees a line charge of density vgo and a line current ygov. Therefore, the
electric and magnetic fields can be readily calculated from Gauss’s and Ampere’s laws to be:

_ 2v8qo ,
7 v =—
r c 2mr r

in agreement with those of (a).

Problem 11.16
(a) Since the equation

1 o
a_ - By — Z B
J CQ(UB'] W c Us

is a covariant equation, it is valid in all inertial {frames if it is valid in one of them. In the rest frame of the conducting
medium, U® = (c,0), so that in this frame we have

1
a=0: cp—c—z(c-cp)c:%FOO-c = cp—cp=0



. i 1 O 10 i i
a=1: J—c—2(c-cp)-0:EF ¢ = J'=o0FE

The equation gives Ohm’s law in the rest frame and therefore valid in all frames.
(b) If the medium has a velocity @ = ¢@, then U® = ~¢(1, ) and the equation becomes to:

c - O o e - e
a=0: Cp—(vcg) (Cp—ﬁ-J)ZEFOlUizwﬁ-E = Yep-B-J)=cp—roB-E

2 —

a=it 1= O (e D)5 = T (e = Y Fed) = T (ep—F- DV =0l B+ 5 x B)

2

Here we have used the following identity:

—

Y FYE = FY¥3 + F¥3% = —B.3, + Byf. = —(F x B),
J

and similar ones for Zj F% 37 and Zj E3337, Therefore

- =

T =~0(E+ 3 x B)+7*(cp— 3

(¢) Since (cp, j) is a four-vector,

s)
=
U
&)
<
|
=
~
U
A
<y
I
e
oy
=

0=rcp' =~(cp—
Thus Ohm’s law generalizes to:

- - -

T=no{B+FxB-B@-B)}+FF-7) = T-3(F D)=~

]
—
esf]
|
=
oy
B
+
@y
X
ooy
H/_I



More Problems for Chapter 11

Problem 11.23
(a) Let P and P’ be 4-vectors in lab and CM frame respectively, then we have

Pr = (E1,pLas);, P2 = (m2,0); P, = (B, p'), Py=(Fy—7)
From the energy and momentum conservation in the lab frame, we have
Pr+Po=Ps+Py
The total center-of-mass energy W:
W2 = (B + B3)° = (B + 5)° = (¢, +p'5)* = (Py + P5)°

Now note (P} +P5)? is Lorentz invariant, we have

W2 = (P +P})? = (Pi + P2)? =P} + Ps + 2P, - P = mi +mj + 2ma

To find p’, we consider (Py - P2)? and (P] - P4)2:

(PL-P,)° = 5

(m2B1)* = m3(pi +mi) = m3pj +mim;

(P1-Ps)? = (By By + %) = EPER + 2B Eyp' 4 p™*

= (p"? +m?)(p'? + m3) + 2E, Eyp'? 4+ p™

="+ (m? + m%)p’2 + 2B EYp" 4+ m2m3

=p*(2p” +mi +mj + 2B, B3) +mimj

= p(EP? + 2B\ E}) + EF) + mimj = p*W? + mim;
From Lorentz invariance, we have

(PL-P)2=(P,-P3)? = mipl=p"W? =p =

mo
W 2
Since pj and ];’ are in the same direction (the Lorentz boost is along 7 ), therefore we have

—

p,_mz_,

WZH

(b) We can also obtain ];’ from Lorentz transformation of p} (and —];’ from p3):

p, - ’ch(Pl - ﬁcmEl); (_p,) = ’ch(_ﬁcmmZ)
Thus
P1 3 D1
(611 i ——— = cm — T o
ﬁ mo + Fy ﬁ mo + Fy
Nem = 1 . mo + . mo + _m2+E1
N VI=Bn Vet B)?—pF /m3 - 2ma B+ R - W
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(¢) In the non-relativistic limit,

therefore,

2
mo ma P1
Wzmmz—b—mz—b—Qm m+p—1 =(my+m 2+—2:m+m 2 l1+—

1 2 2(ma 2m1) (m 2) mlpl (m 2) (my +m2)? my

2 2 2
ma P1 ma P1 ma P1
W= (m +m2)\/ + (i + ma2) my (mq +mg) { + (1 & ma)? 2my } my +mso + P
Similarly

2 2 p
ﬁcm = ! !

These are the familiar Galilean relativity results.




12.1

a)
L = —%muau“ - %uaA" (invariant Lagrangian)
Show this Lagrangian gives the correct eqn. of motion, ie, Eq. (12.2)
= meF

The Action is A = j” L dr.
71

0A = 0 yields the Lagrange equations of motion

dooL oL _y
dr du, OX,

d oL _ _pd e  90A" dx*

dr ou, dr C ox# dr

aTLa = —%UpaaAﬂ

So 4= — L = 0 yields
m&ur = Qugornr - doAru = Fup@eas - a0a)
or

d%u" = %F“ﬂuﬂ



12.2

(@)
L' =L+ dz(t*)

SIIZ(L’ —L)dt = [6(A(t2,X) — A(t1,X)] = 0 » L and L' yield the same Euler-Lagrange Egs. of Mot.
1

where the last equality follows from the fact that variation at the end points is zero since the end
points are held fixed.

(b) For simplicity of notation in this part, I’m going to set ¢ = 1.
L =-mJ1—u? +6l-A—epwith A" = (¢,A)
If A > A% + 0%A, then
¢ - ¢+ 0°A
A 3-VA
where the minus sign in the second equation should be noticed. Thus
L—>-m/l-u? +€li-A—ep—6l-VA-ed’A
Now
A(t”) 5 A(t”)ax“ = OALVA-T
Or
Lo>-myl-u? +et-A- ep — e A(t”)

By the argument of part (a), this Lagrangian gives the same equations of motion as the original
Lagrangian.



12.3

a) Take E, along z, Vo along y

¥

Generally

2
m.

B _ (e LxB) -

Since B-— 0, and E- Eoz

dp;

G~ o
dpy _
&

The initial condition p(0) = mvy  and the above equations show the subsequent motion is in the
y — zplane. Consistent with this initial condition, we have

py(t) = mvo; p(t) = eEot

Et) = JP2(t)c? + m?c* = Jm2v3c? + m2c* + (ceEqt)? = Jwd + (CeEot)?
Using

v= E

p=my=—73V

S = 2D mvec”

E/c® Jwd + (ceEot)?

2
y(t) = VST [*__dt . MVOC Gty

ceky 0 /p2+t2 - ek

where p = &= So



y(t) = L3S ginp-2( 10 Eq. (1)

(0]
0 0

Similarly
pz(t) . eE()tC2
Vzt = =
© Et/c? JoF + (CeEot)?
Thus

eE 2 pt
Z(t) = Ce(I)ECo . ‘/% = c( /(p2+t2) _p) Eq.(2)

b) From Eq. (1)

)

ceE

— sin(F2k) = pSinh(ky), withk = 13:9%

t =
Then from Eq.(2)

z- Cp(,/s'nhz(ky) T1- 1) Eq.(3)
Let us plot (,/sinhz(x) +1- 1)

207

1 2 X 3 4 5

Forsmalt: t/p << 1, andky << 1. Thuswe can taylor expand Eq.(3) and get
z = cpk?y?/2
which isquadratic iny giving a parabolic shape.

For larget : t/p >> 1, and we see the sinh term dominates in Eq.(3) and we get

cpe
2

~

which is an exponential shape.



12.4 The velocity selector and coordinate system are described as

X

Ax

Y

A

L

We begin with the Lorentz force

di I S
—=¢q(E+-xB
dt q( +cx )

With the choice of directions of the field, the requirement that ‘;—f =0 so
that the particle is undeflected yields from the above that

E’+3x§=0
c
or from the figure .
E=Ez
B =Bj

Or, taking the z component of the above equation

dpa(t) _ q&
C

dt

where I’'ve dropped the minus sign since the sign of the deflection of the

particle is unimportant.
dx(t A

(1) = my—2L — =Bt
Pz (1) my— = =4~



Thus

2 2 2mycd E2
A= 82— g 2T 7, 2ICIT
gBt qB (L8) q

Let us assume that L, u, and E are given. In term of these variables, using

B=E¢
Av = Ax—2m703E2 = g myc? (2)2 U
q (Eﬁ):st . \gEL c

For a numerical example let us take an electron with, u = ¢/2, v = 2/v/3,L =
2m, E =3x10V/m, Az = 0.5x1073m, m = 9.1 x 10~3'kg, ¢ = 1.6 x 10~°C.

_ 05x1078 (9.1 x 10731 - (2/V/3) - (3 x 108)2> (l) u

A
v 2 1.6 x 10-19 -3 % 106 - 2 4

Av =62 x 1075



12.5

a) The system is described by

Z

Backgg)und: yarticleﬂhaving m,e. Chgoseg 1 to Band E. We want E’l —0=y(E+dx §).
Thus 4 x B = —E; now B x (G X B) = CE x B. Using BAC - CAB on the Ihs of the equation gives

—

u= CEBX—Zg. Thus from the figure,

Then, using Eq. (11.149)

Bj-0; E.=0 Bj=0 B, -3B-|1-(4)"B
So

Now from the class notes,

!
d_?’ = U x &g, Where dg = % where in this case E' is the energy of the particle.

I’ll choose the same boundary conditions as in class, decribed in the figure.



U, = wga[cos(wgt)és — Sn(wgt)é:]
where U’ (t = 0) = wga (ie, the BC determine a).
X'(t') = ujt'é2 + a€zsinwgt' + &1 cosogt’)

Consider the inverse Lorentz transformation between the frames,

ct y By 00 ct’
z | By vy 00O VA
X 0O 0 10 X'
y 0O 0 01 y'
or
t = (yt' + Byz)lc = (yt' + Byasinogt')lc = f(t') » t' = (1)
So

z(t) = Bycf1(t) + yasnwg (1)
X(t) = acoswg f1(t)

y() = upf(®

b) If |E| > |B|, one can transform to aframe where the field isa static E field done. Then the
solution is as we found in section 12.3 of the text, with the above transformation taking you to the
unprimed frame.



12.14

a) We are given

_ 1 apf_ L3 pc
L = —5-0Ag0 A — LA

which can be rewritten

L = —=L-0pA“0PA, — LI,A"

81
Using the Euler-Lagrange equations of motion,
aﬂ oL _ oL =0
0(8PA,)  OA,
Noting
oL —_1 5 pc
0(0PA,)  dn”
oL _ 15
0A, cJ

The Euler-Lagrange equations of motion are
0P (0pA") = 0p(0PA") = AT 3o
or
Op(0PA* — 0°AP + 0°AP) = 0pFP* + 00" AP = 4T”J"
If we assume the Lorentz gauge, 03A° = 0, then the above reduces to
opFPe = AT 3o

Maxwell’s equations, given by Eq. (11.141).
b) Eq. (12.85) gives

_ 1 apy_ 13 pe
Tor (FopF) — 5IA
The term in parentheses can be written
FupF? = 20,Ap0°AP — 20,(As0PA%) + 2A50P 0, A”

The last term vanishes if we choose the Lorentz gauge, and the second term is of the form of a
4-divergence. Thus the Lagrangian of this problem differs from the usual one, of Eq. (12.85) by a
4-divergence 0, (As0PA%).

The 4-divergence does not change the euations of motion since the fields vanish at the limits of
integration given by the action. Using the generalized Gauss’s theorem or by integrating by parts, we



see the 4-divergence gives zero contribution to the action.



More Problems for Chapter 12

Problem 12.2
(a) Let the Lagrangian L be replaced by

d
L, = L -+ Eg(wa),
with €2 a given function of the coordinates x,. The action is

to ty ty A0
A:/ Ldt, = A :/ Ldt+/ —rdi = A+ Q) I
t t1 t1

The variation of the action
A =0A+6 {Q(xa) ’éf} =30A

since, under the variation of the paths z4(), the end points remain fixed. Thus L and I/ yield the same Euler-Lagrange
equations.

(b)

The Lagrangian is

then
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N PRI N S S RS _ g _edh
= —mc“4/1 62+CuA ed c{6t+u V}A—L i

Since ' and L differ by a total time derivative, the two Lagrangians yield the same equations of motion.

Problem 12.3
(a) The motion of the particle is governed by Eq. (11.144):

dU« e
- — _ RaBry
dr me A

Rewriting it in terms of familiar particle velocity ¥ and electric field E, we get

3

dye) _vep - d00) _reg
dr me dr m

Let n = el//me, v)| and v be the parallel and perpendicular components of the velocity defined by the direction of
E, we then have the following three equations:
d(ve) el d(yv)  eB d(yvy)

= (o) = nlvo)); (ve) = n(ye); o

= — = 0
dr me dr me

Integrating the last equation, yv, = constant = «, thus v; = /. From the remaining equations, we get
d? 9

ﬁ('yv“) =n"(yv;) = v = Asinh(nr) + B cosh(n7)

d2

W(fyc) = n%(ve) =  vc= Acosh(nr) + Bsinh(nr)

where A and B are the same constants due to d(~yv)/dr = n(7yc). The three constants (o, A, B) are determined by
the initial condition:

At7=0: v, =0, vi=1 = a = vy, A =r"9c, B=0
where 9 = 1/4/1 — v3/c2. Thus
vo

¥ =r"ocosh(nr); v =ctanh(nr); v, = m

These results are expressed in terms of proper time. To rewrite them as functions of laboratory time, we use df = vdr:
T T ’YO
t= / ~ydT = / ~o cosh(nT)dr = — sinh(nT)
0 0 n

Thus

. nt 3 nt 1
sinh(nT) = —; cosh(nT) = /1 +n%t2/4%; tanh(nT)= ——n=—"u—
(n7) o () = /L +7*t* /75 (n7) o VT

Therefore,

n%t2 net Vg
Y=/l + 53 Y E——e——, V| = —————
V' % T VIR V3I+n* /v

In the coordinate system defined by E = F2 and v) = vo&, and assuming the particle is at the origin initially, the the
position of the particle is given by

t t
dt it
@ :/ v dt = Y0 = 270 ginn (1)
0

o VI+722/2 1 Yo




t t
tdt 2¢2
Z:/det:/L:m 1+77_2_1
0 0 Yo 1+n*2/ng 0
We could also get this result by starging from the Lorentz force equations (11.124):
dp _
d_ft’ =eE=els = p=po+ebt:
In perpendicular and parallel components:
p| =ymy =elt, pL =ymvL = ymug
Then
ek
YU = —t=mnct, YvL =Yoo
m

SO

2,2 22,2
2 2 2 2 22,2 2 _ Yovy +ncet /2 | 252
e = VA + c“t = VPV = ————F— Or == + t
Y YoVo TN 2+ P Y Yo T
(b) To determine the trajectory, we need to eliminate the time-dependence. From the equation for z, we get

4
" _ sinh( e )
0 n ~Yovo

Pluggint it into the equation for z:

For t < ~vo/n (i.e. © < 1/ (vov0)):

1
cosh(PE) o1+ L2 )2
YoVo 2 vovo
2.2
Yo, N°x 1 ne
PR (5 m) = 5o

It is a parabola. In terms of ¢, we have

For t > ~o/n:

Eliminating t:
c
Z R ﬂe"""")/ovo
2n
The particle moves along the z—direction with a speed close to ¢ with a gradual motion in z—direction.

Problem 12.6(b)

Choose the z—axis along the E and B direction, we have

F®=_p, F*?=_B, F?' = B, F*° = [, and the rest F** =0



The equation:

auve
& pas
dr  me Us
becomes
dauye ekl dut eB duy? eB du? ekl
=, =m0, =0, =0
dr me dr me dr me dr me

Use U* = dx®/dr, the above four equations become to:

d?(ct) eFd: d?x eBdy d%y eBdx  d*2  eE d(ct)

dr2 ~ medr’ dr2 medr’ dr?  medr’ dr? me dr
Integrating over proper time,

d(et) el dx eB dy eB dz elF

= — _ = — _ = —— — = —(ct
dr me” dr me? dr me?  dr mc(c)

Let w = eB/mc and 1 = eF//mec, the second and the third equations are coupled and can be solved

% = —w?z, % =Wy = x ~sin(wr), y ~ cos(wr) (by an appropriate choice of axes)
Note that
xz—f —o—y;l—i =0 = 2?-+y?=constant = A’R?
Therefore,

x=ARsin¢, y=ARcos¢ with ¢ =wr

Also
d? d?(ct
d—z =12, % =n*(ct) =  ze~cosh(nr), ct~sinh(nr)
T T
Note that
d d 2 _ 242 2
cta(ct) —zaz:0 =  2° —c“t* = constant = B
Therefore,

E
z = Beosh(pp), ct = Bsinh(pp) with pp=n7 (p= g = E)
Thus the position and velocity 4-vectors are

% = (ct,x,y, z) = (Bsinh(pg), AR sin ¢, AR cos ¢, B cosh(pg))

U® = (nz,wy, —wz,n{ct)) = (Bncosh(pd), AwR cos ¢, —Aw R sin ¢, By sinh(p¢))
From U*U, = ¢2, we get
B%1? cosh?(pg) — A%w?R? cos? g — A2W2R?sin? ¢ — B ?sinh?(pg) = 2 =  B2p? —w2AZR? = 2

which leads to

2
\/c2+w2A2R2 24— :§\/1+A2

Therefore we have

xr=ARsin¢, y=ARcos¢, 2= %\/ 1+ A2 cosh(pg), ct= %\/ 1+ A2 sinh(pg)



More Problems for Chapter 12

Problem 12.5
(a) For |E| < |B|, we can also find a {rame K’ in which F’ = 0. In this {frame, the particle is moving in a uniform

magnetic field B'. Let E pointing to +z and B pointing to +y direction, the velocity of frame K’ in frame K can be
obtained from Eq. 12.43 to be

Thus,

—

- S 15 B
E'=0, B'=-B=+B>- 2=

~y B

In frame K’ with a Cartesian coordinate system, the motion will be helix, i.e., an uniform motion along B’ and
gyration in the transverse plane. With a properly chosen origin, the position of the particle can be written as

' =acos(wpt'); Yy =wvt’; 2 =asin(wpt’)

where a is the gyration radius determined by particle’s transverse momentum (cp; = eB’a) and v"‘ is the velocity

component along the B’ in frame K’, wg = eB'/(v'mc) and 7' is the Lorentz boost factor of the particle in frame K’.
Translating back to frame K:

= z' = acos(wpt’)
y=y =yt
2= (& +ut’) = p{asinwst’) +ut’y = —E Jasin(wst’) + £(c)}

These are explicit parametric equations for the particle’s trajectory in terms of parameter ¢'. (b) For the case of
|E| > |B|, the magnetic field B’ vanishes in the frame K’ moving with a velocity

ExB
F2

N

=c

In this frame, the particle moves in a uniform electric field £

= E — /E2 BZE
04 E
Thus
d_];, =q i
dt’

which leads to

d d d
%(7,777’”;;) = qE,v %(7,777’”3,/) =0, %(’y’mv;) =0

The differential equations for the most general case of initial velocities are difficult to integrate. Assuming the particle
is at rest for simplicity, integrating the above equations

, da! at’
= — =

v —_— v, =
z dt! V1 + o2t’?’ Y
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Here o = qF' /mec. Integrating the above equations (with a properly chosen origin):
c
z'(t') = E{\/l—b—azt’z—l}; y'(t'h)=0; 2'(t)=0
Translating back to frame K, the parametric equations for the particle’s trajectory are
r=2a' =% {\/1—0—04%’2 - 1}
y=y'=0 B
z= (2 +ut') = yut' = L (ct)

Problem 12.9
(a) Let z—axis points from south to north, in this case, M = —M 2. The vector potential of the earth’s magnetic
dipole moment

- Mx7 Msin@ N
A(f'): = — T2 ¢EA¢¢

Thus the magnetic field B:

2M cos 0 ; Msin0 -

B =VxA=— 0

3 3
Let ds be the small displacement

d3 = fdr + Ord0 + érsin 0de
and let ds point to the direction of the magnetic field, we get
dr  rdf dr _ 2cosf

_ o
B, By 1 =m0

Integrating the above equation yields the equation for a line magnetic force to be:
r=rysin®0

The magnetic field as a function of 6

M M1 20
B=/B}+Bj =— 4c0829+sin29:—3ﬂ
T

T4 sin® 0

(b) The gradient drift velocity is given by Eq. (12.55):

_ a =
VszBa- @BXVLB
where B is the field at the equator:
- M . M -
B = —T—3|T:R9 = —ﬁe

and B is its magnitude. Since the problem is azimuthal symmetric, we have

B M
v.B=28 =3
or

T
Thus




Now note that

To=Réd, = Ro=—12
G — 3 - IR wB
Integrating the above equation of motion,
3a?
8(0) = 60 — ool ~10)
(¢) Let 6 = m/2 4 «, the magnetic field along the line of the force is then given by

M /1+3sin’ o

Bla) = R®  cosba
For small o values,
M +1+3a? M 9 ,
Note that from Eq. (12.72), we have
B(z 9 9
(@) =v2(0) o ()2 = 02(0) 2 0)(1 + 30%) = 1} 0) - 5u2 (0)e?

Note that v, (0) = wpa and vﬁ () = (R&)%. Plugging these into the above equation, we get

) 9w]23a2 az o ’Uﬁ(o)
2R? R

This is the “energy equation” of a harmonic oscillator with the corresponding frequency given by

_3a
= AR B
The change in azimuth in one period of oscillation is
3 a 21v2 R a
A = === 2 —_—) = 2 —
o= 5(g)fws x5 ~(5) = Vg

independent of M.
(d) For R =3 x 10° cm (~ 5Rearth), M = 8.1 x 10%° gauss-cm?, we have

8.1 x 10% 5
B:BQZW:?)XIO gauss
B B 103 . 10*
wp = 2 2 176 %107 s 'gauss ! 3 x 10" 7 gauss = 5.3 > 10 st
yme  me vy vy

and @ = v/wp. The time to drift once around the earth (in azimuth) is

2R?
T¢ =27 &)—Baz

and the time for one oscillation in latitude is

T 21 2m2R _ 27V2R
"7 T 3wga 3 w

For a 10 MeV electron, we have

E  10+0.511

g < 90. s —9 3 -1 _ _ _o
m 0.511 205, wme, wp=25Tx10s"", a=117Tkm, T,=107s, Tp=0.30s

’)/:



For a 10 keV electron, we have

B 0.511 40.010

— = ~ l. ~ U. = J. g1 = 1. = J. 4 = 1.
= —— 1.02, wvm02, wp=52x10"s"', a=12km, T;=55x10's, Ty;=15s

’)/:

Problem 12.11
(a) The Thomas precession formula is

(d§) 1(d§) S X F
7 /Jlab — — {5 Jres W S
P v dr t r
& given by Eq. (11.119):
2 - N
- Y axU
YT v o
From the Lorentz force and Newton’s second law, we have
g e —»
L _Zy«B
at ol x

where P’ is muon momentum and e is the muon charge. Since the magnetic field does not do any work, 7 is a constant
of the motion. Therefore, the above equation can be written as

dv e ~ e =
— =—4UxXxB=9q———B/ xXU=dg x¥
dt  yme

yme
Here &g = —(eé) /(yme) is the orbital gyration frequency. Therefore the acceleration
dv —
G=" =Gpxi=—ixB
dt yme
Therefore
2 1 . 2 2 _1eB
Gr=-"—"t GxByxi=t SV p=0""%
1 +~vc2yme 1+~ yme ¢2 Y me

The precession in the rest frame is given by Eq. (11.101):

ds - ge
res fix B =-—&8x5B
(d ) 1 /’LX 9 CSX
where
9 -~ B
— — ~ v U v¥-B —
B'=~(B - - — — =~B
7 R A B
Then
ds 1, ge _ 7—1e§ . e (v—1 gl 5 - =
Nab = —(=2=—3) x (vB L T Yx§=—({.1— —ZVBx5=Wx
(dt)lb 7(2mcs (vB) = ( ~y mc) s mc{ ~y 2 s s
where the spin precession frequency is
. 1 .
W=1-2_-2°
2 v 'me

The difference between the spin precession and the orbital gyration frequencies is

S 1. eB eB B2-
G=W-op=01-2_-)2 22 22279

= :QE = Q=
2 ~v'me yme me 2 B



(b) Newton’s first law on the centripetal motion,

L dp e _ v?  evB
F=—=-vxB = - =—
dt cv m R c
Thus, the muon momentum
eRB

p=ymv=——=128-10° MeV/c
Cc

The Lorentz boost factor

B sy R—
7:_2:L+27nc:12'1
mc mc

The number of periods of precession per observed laboratory mean lifetime is

yTo 102 eBayro  eBaymg

= = =712
T 27 2me (2m)%me 7
()
B B
Q:Q, ande:e—, = Q:awa:ﬂwB
me yme 27

(i) E=300 MeV, m = m,, = 106 MeV,

E

83
(%)WB = 0.0033w 5
(i) E=300 MeV, m = m, = 0.511 MeV,
_FE oy _
Y= =58, Q= (3w = 0.6820p
(iii) E=5 GeV, m = m. = 0.511 GeV,

E 3 ay
v = 2 =9.78 - 10°, Q= (%)WB =1l.4wp

Problem 12.14

1 1
= —— o« AP — — o
L 87r6°‘A’36 A CJQA

oL 1
aap = o

. 0L o 1 _ 1 ~
0 6(6QA,3) =0 (_8_7_[.)(2804‘4,3) = _47_[_8048 Aﬁ

Thus, the Euler-Lagrange equations are
4
0, 0" AP = =T JB
c

These are Maxwell’s equations in the Lorentz gauge:

poLo0

0, A% =0, i.e. V-A—O—Eat—O



(b) From Eq. (12.85), we have

1

L =——\1
16w

1
wpFoP — 2, A%
C
then
1

1 1 1
L — L= ~Ton np P 4 S—WaaAﬁaaAﬁ = —1g=(Oads — OpAa) (0% AP — 8P A%) + S—WaaAﬁaaAﬁ

1 (04 1 (04 (04
= 8—WaaAﬁaﬁA = 8—W{aa(AﬁaﬁA ) — AgD,0° A}

The second term vanishes in the Lorentz gauge, and the 1st term is the divergence of a four-vector:

1
L —L=0,A% with A®= 8—7TA565A“
The two actions differ by
A —A= /(E’ — L)d*z = /aaAo‘d4x = / A*dPx
s

where the surface integral is over the surface in four-dimension. Now note that since A is not varied on the surface,
we have

5(A'— A) = 5/ A*d3 =0
S

Thus the equations of motion are unchanged.



Chapter 13 Problems

Problem 13.1

(a) Let ¥ = vZ be the velocity of the incident particle (of mass M). Since electron is much light (m < M), ¥ is also
the velocity of the center-of-mass frame. In this frame, the electron moves at a velocity —t" before the scattering and
therefore its 4-momentum is given by P&,, = (yme; —ymwv,0,0). After the scattering, the electron energy remains
the same, but the momentum is deflected by a scattering angle 6. Thus, the 4-momentum after the scattering is
P(];M = (yme; —ymu cosf,ymusin 6,0), here we have chosen the  — y plane as the scattering plane. The invariant
4-momentum transfer squared is

(0P)? = (PLy; — Pis)? = —(—ymw cos 6 + ymw)? — (ymw sin 0)? = —2(ymw)?(1 — cos 0)

(6P)? can also be calculated in the laboratory frame. In this regard, the electron 4-momenta before and after the
scattering are given respectively by

i - B
Prag = (me; 0); P£AB = (?ﬁ)

where I/ and p are electron’s energy and momentum after the scattering. The 4-momentum transfer squared calculated
using the laboratory variables is

; E
(0P)? = (P£AB —Piap)’ = (? —me)? — p* = —2m(E — mc?)

Equating the two 4-momentum transfer squared, we get the energy transfer

oP)? 0
Th)=F—mc® = —% = y*mv?(1 — cos0) = 2v*mv? sin? 3
The angle factor can be calculated from the relationship between b and 6,
2e? 0 0 1 2€? 1
b=——=cot= = in? - = = 2
e 2 T IL (ymv2b)2 /(z€2)? ('ymvz) b2 +0v2,.

where by, = 2€2 / 'ymvz. Thus the energy transfer is

6 227t 1
_ 2 2 2 _
Ty =2ymetsin® s = 2 e,

(b) The transverse electric field is

~vzeb

EL=E= (02 + 4 20212)32

The transverse momentum impulse

oo dt 2z¢?
— = = 2 =
Ap = /FLdt— G/ELdt— yze b/ioo (b2 +y20212)3/2 o

The energy transfer

(Ap)* _ 22%¢* 1
2m  mw? b2

T~
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Withe the exception of the cutoff b,,;, in the exact classical calculation, the two results are the same. Note that the
energy transfer diverges without the cutoff b,,;,. This is because the two particles can get infinitely close to each
other with the assumption we made in (b). In practice, this cannot be the case.

Problem 13.11

Fields of a magnetic monopole g are the same as for a charge ¢, with the exchanges E— B), B — —F and q—g.
For a magnetic particle moving in the x direction, there is only an electric field in the z direction (if the observation
point is on the y—axis). Following Eqgs. (11.152) we have,

¥(Bg)b
(b2 + y20212)3/2

gryvt vgb

Bj=—— /7 . po=__ 7 .
1 (0% + y20212)3/2’ 2 (6% + y202t)3/72

Ey=—0FBy =—
Since a magnetic field does no work and therefore does not cause energy transfer, the energy loss is mainly caused

by the action of the electric field of the passing particle on the atomic electrons. The momentum transfer can be
calculated in exactly the same way as in Prob. 13.1(b) with the following replacement for the electric field:

Y(Bg)b
(b2 + y20212)3/2

_ ~vzeb _
EL= (b2 + 7 20212)3/2 = BEiL=

Therefore, the momentum and energy transfer can be obtained with the replacement ze — (Gg:

_ 2e(Bg) 2y _26%(Bg)* _ 2¢%¢° 1
APy = bu  be’ To(0) = mv2 e b2

Since the limits on by and by, are essentially the same, having to do with the electrons binding frequency and the
electron’s Compton wavelength, the whole calculation proceeds as before. The Bethe formula thus has the following
analog for energy loss by a magnetic monopole:

e? 2v2me? g2e? 24232 mc? ge? 2me?

We have omitted the v? / ¢? term, because its presence in the monopole situation is not clear. It comes in part from
close collisions of the electrons with nuclei and involves the electron’s spin. Evidently, the loss is linear in In(y3). At
high energies, the dF/dx energy loss by a monopole is identical to that of a charged particle. The difference is at low
energies where df//dx is more or less flat for monoples. However it should be noted that the formula above is not
valid for an extremely slow monopole.

(b) Dirac quantization condition is

2
@ N47TNZg
dx m

ge n N
- — e _
he 2 g

Thus the losses in the two cases can be written as

dE 22et 272 32me? et 22 272 32me?
(oo = N2 { 2 = vz {5 {25 |

dE. g2e? 2v23%me? et 13702 272 32me?
(%)g _47TNZm02ﬁ2 ln{ h<w> _47TNZW T In W

For 3 ~ 1, the charged particle will lose energy at the same rate as a monopole provided z = 137n/2. For n = 1,
z = 68.5. For n = 2, 2 = 137. A Dirac monopole is thus expected to ionize and lose energy like a relativistic heavy
nucleus. At low energies, the log-term In(2mc? /h{w)) dominates and therefore the loss is more or less constant.



14.2

Background. In the nonrelativistic approximaion the Lienard-Wiechert potenials are

—

(]5(?,11) = %lret, R(?,t) = %lret

Let us assume that we observe the radiation close enough to source so R/c << 1andt' = t. Then
in the radiation zone

>l
I

—)_—b _'_Ai _Aa —bzeﬁxﬁ
B—VXA—naRx ncat,xA R

I
Wl
X
>

E

dPM) _ ¢ [pRIZ_ €% (hoal2_ €2 ji2ein?
10 = 2o [RB| = g |Bxn|® = ;S5 sin’e

where 6 is the angle between fi and 3 (assuming here the particle is moving linearly)
_ 2e?%,
P(t) = @Mz
Let the time-average be defined by
d)y =+ fodt

Then

() - oo

2 .
(PO) = 25 ()
a) Suppose X(t) = 2acoswot. Thenv = gTZZZ — —aw3 coswot
NPy = (acoé)z% IT cos?motdt = (awd)?/2
0

So

P(t 2 :
(i) = oz eod)"sin'o

PO) = L5 (a0f)’

b) Suppose X(t) = R(icoswot + sinwot). Then



V(t) = —Rw3(Tcosmot + Sinwot)
i k
AxV=| sdnfdcosp  sndsing cosh
—Rw3coswot —Rosnwot 0

dP®) _ _e?

dQ 4rcs

(Rw3)?[ cos?0 (sinfwot + cos?wot) + sin0(sin®(wot + ¢)) ]

dP(t) \ @2 ,.2 (1+cos?0)
() ~ 2 Rod) =

_ _¢€? 242 L A+x?) o 2e2 242
(PO) = 727 (Rwd)*2r |, 5= 2 (Roj)



14.4 Background. In the nonrelativistic approximation the Lienard-
Wiechert potenials are

. e _ e
¢($,t) = E|reta A(l‘,t) = EIB ret

Let us assume that we observe the radiation close enough to source so
R/c << 1 and t' 2¢t. Then in the radiation zone

S s o 0 - 0 - e,BXn
B: A:A— A:—A— A:
V x n@ X nth’ R
E=Bxn
dP(t) ¢ |, 32 € |, .2 € 2.,
— ) _ ~ |\RB| = =— - =
dQ A ‘R ‘ 4dre ‘ﬁxn 4med [ sin”0

where 0 is the angle between 7 and ﬂ (assuming here the particle is moving
linearly)
2e? . o
Hﬂzgﬂﬂ

Let the time-average be defined by

twy=1 [ s

Then 4P() 5

t [ .. 2 .12

< dQ >: drcs 9<'”| >
2e? /.
(P)) = 55 (lol*)
a) Suppose Z(t) = 2a coswgt. Then © = % = —aw? coswot
1 T
<|v|2> = (au.)g)2 ;/0 cos? wotdt = (awg)z/Z

So

dP(t e? 2 .
(%0) = s (s

(P(t) = 55 (aw])’

b) Suppose Z(t) = R(icoswot + jsinwpt). Then

0(t) = —Rw? (i coswot + jsinwot)



nXv= sin @ cos ¢ sinfsin¢g  cosf

i j
—Rw3coswot —Rwsinwgt 0

dP(t) i

dQ = e (ng)z [(:OS2 0 (Sin2 wot + 0082 (-Uot) + sin2 0 (Sin2 (th n ¢))]

<dP(t) > e? (Ru)? (14 cos?0)

dQ /| 4med V0 2

2 1(1+m%d _ 2¢?

(PO) = gz (Re)" 27 [ S0 = 35 (Ra)?




14.5 This is a one-dimensional problem in dimension 7.
a) Let ¢ = ze. We know that nonrelativistically, we can use Larmor’s

formula 9 9
2@ (@) _2 & (av
T 3m23 \dt)  3m2c \ dr

where I've used Newton’s second law,

dp av

dt —  dr

The total energy radiated is

AW:/ Pdt:2/ Pdt
—o00 0

dt = mQ%J %5

and from conservation of energy

Using the fact that

Bm _ v*(r)m
BT = R V() = Vi)

u(r) = \/E\/V(rmin) —V(r)

AW =2- 3 m2c3 \/7/Tmm ( > (rmi; = V(r)

b) If V(r) = 2Ze?/r, we can most easily do the integral by changing
variables from r to V (r)

v (r) 2dV
d = = Z -
" aviny/ar] T2 v
av\® (2Z€2)? v
dr) ot (2Ze2)?

0 2 2
/ Vo gy dle) jm 1 )16,
Vo Vi =V 3m2c3\ 2 \zZe? ) 15

4(ze)® [m 1
A /22
W= 3m2e3\ 2 <ZZ62>

where Vi, = V(Tmin) = 52

70

2
Avv_é(ze)2 m( 1 \16 (muv] 5/2_§zmv8
C3m2A3\ 2 \2Ze?) 15 \ 2 45 Zcd




14.7 The system is described by the figure

vyt

(1)

a) From Larmor’s formula

p_2 @ (@) _2. ¢ (V' _2 ¢ (228
 3m2c3 \dt) 3m2c3 \dr )]  3m2c \ r(t)?
©° S 2 oo 1
AW:/ Pdt:2/ Pdt—2.2 ‘123(2:23)2/ S S—"
~ : 3mc o 2+ (i)

2)2 iy 1724728 1

dvob® 3 m2c3uy b3

b) Using the result for 7;, from problem 14.5 for b,

2 (ze)?
AW =2. e (2Ze

AW = 172'Z%5 1 - m zmug
3 m2c3yy (22262> 24 Zc3

T2

m'vo

5
which compares to AW = £Z722 for a head-on collision.
c) Following the book we define the radiation cross-section x as

—ombdb = ——2 = . Zp

1wzt Z%e8 /°° 1 1724728 2
b b3 3 m2cvy  bm

"3 m2c3y,

m

Using the uncertainty relation to estimate b, as

b P
muvg

1724 2%e% 2mmuy (27r2) P <Ze2) ztet

X= 3 m2c3uyg "Th 3
Compare this to eq (15.30)/N.

Eq.(15.30)/N == -2 <_> Zhet



14.11 (a)
a) Using Eq.

(14.24) for the relativistic power radiated and letting
e — ze,

2t

2
P__§m203 dr dT)’ dr = dt/y

And from Eq. (11.125)

dp ze S o
d—T—?(U0E+U><B)
dpo 2€2 =
dr ¢ E
where
U = (ye,70) = p*/m
Or




14.2

a) From Jackson, Eq (14.38)

e (< [(-B)xp]}
dQ  4nc (1_ﬁ,ﬁ)5

Using azimuthal symmetry, we can choose f in the x-z plane.

b

N
-

From the figure

i = cosfz+ sin X

Bt = _%wosinwot’z = —Bsinwot'z

2

. awn . R
B(t') = ——L coswot'2 = —wofcoswot'2

Using Bx B =0
{ﬁx [(ﬁ—ﬁ) xﬁ]}z = (ﬁxﬁ)z
and
Ax B = woBsindcoswot’
So

e’cp*®  sin®0coslwot’
4ra* (1 + Bcoshsinmot’)’

aP ¢y =
o ®

Defining ¢ = wot/,



e’cp* 1 J‘Zﬂ sin%0 cos?¢

dP ¢y = 1
Caa®) 4ra? 27 Jo (1+ Bcosfsing)

5 ¢

Or, doing the integral,

P e’cp* 4+ B%cos?d

dP \ _ in2
<dQ> 327[3.2 (1—ﬂ2C0520)7/2 sin“0

4+.052 cos?6 in2
) (1-.052 cos?0) 2 sn“f

0.5 1 15 2 25 3

4+.952 cos?6

: 2
—2 WY gn“h
(1-.952 cos?0) "2

300 7]

250 1

200 1

150 1]

100 1]

50

0.5 1 15 2 25 3




14.14
a) We can start with the result derived in problem 14.13. For simplicity
of notation, I’'m going to use w, rather than wy, for the fundamental frequency

2

P 2 4.2 27 Jw
Py _ cwm / v(t) x aeime (t=254) gy
0

dQ (2mc)

I will choose the coordinate system so that the particle moves in the 2 di-
rection and azimuthal symmetry allows me to choose 7 in the x - z plane, so
-2 = cosf. Also I'm going to choose the zero of time by requiring that the
particle be at the origin at ¢ = 0. Thus

Z(t) = Zasinwt

o(t)

27 Jw P
/ o(t) x P G B
0

where z = wt and a = 2% cosf) = (3 cos . Note the identity

- Z(t) = 2a cosfsinwt
X . = —wasin 0 cos wty

2
= wasinf— / cos xe'MmrTImasnI gy
0

27 . i . 271_
/ cos petmETIme S‘”dx‘ = —Jn(ma).
0 a

Then

2ma

27 fw ) e
/ u(t) x feime(t= 252 gy = N tan 0.J,,(ma).
0

So
dPn  e*w'm? < 2ma
aQ (2me)® \ B

Since w = ¢f/a, the above can be written

2
) tan? 0.J2, (m cos 0)

P,  ecf
dd_Q = 62 652 m? tan? §.J2 (mf cos )
s
b) We remember that

If £ = mBcos 6, then only the lowest m (m = 1) will dominate as # — 0. So

R
d(t)t = d_Ql = 627:52 tan? 0JZ (8 cos )




Or

Using

Letting g = &

c

noting that

then

Bz

Ji(Bz) = (7

Ptot 6201822_77- 2é

2ma? 4 3
2e%w* 1
P il
tot 363 9

1 T 1
a’ = fa2/0 sin? wtdt = Eaz
2¢e2w? _g

3c3



More Problems for Chapter 14

Problem 14.4
(a) The instantaneous power radiated per unit solid angle for 5 < 1 is given by Eq. (14.20):

ar €2

A~ = 2
— = —|Aax(Ax
aQ  dme (2 x )
5 1 2
7(t) = acos(wot)z, [ =—-F=—a— cos(wol)Z
c
Therefore
dP 2 52 .4 2 52 .4
o ﬁac# cos? (wot) R x (A x 2)? = ﬁ acc;JO cos?(wot) sin? 0
The average power per unit solid angle
dpP e? a’wi e? a’wi

sin? 9((:082 (wot)) =

(0 = e & Sre @

The total average power

dp 1oap 2
P = /<m>d9 = 27'['/ <m>d(€0$9) = @azwg

-1

The average power in the unit of (e2a?w3)/(8mc?) is plotted below. The positive vertical axis defines § = 0.

0.4¢

0.5

> 1 wigR
¢

7(t) = Rcos(wot)® + Rsin(wot)g, f=-F=— {cos(wot)& + sin(wot)§}

The problem is azimuthal symmetric and therefore, the differential power radiated is independent of ¢. Without
loosing generality, we can choose 7t in the x — 2z plane. In this case, i = cos 8% + sin 62 and

. . . 2
| x (A x B)| = |p(n-8) — 8] = WOTR| — cos? 6 cos(wot )& — sin(wot)§ + sin 6 cos 6 cos(wot ) 2|

—
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                                                                             More Problems for Chapter 14


. 4 p2
x (x B)? = O

{C082 6 cos® (wot) + sin® (wot) }

o2
The differential potential
dP 2 4 D2
- ﬁ WOC§ {C082 9cosz(w0t) + sinz(wot)}
and the average
dp e w¢R? (1, 1 e? wiR?
—)=— - 0+-p=—=22 1 29
<dQ> dwe ¢ {QCOS +2} 8mc 2 (L +cos™0)

The total power

dpP e? WiR? i 5 2e? 4 5
P:/(mﬂﬁz P (2%)/71 (1 +cos® @)d(cos ) = 3?(4)0]{

Alternate approach

Ft) = R@ +ig)e ™!, §=—"(@+if)
The average power
L 2
(%>_S%TZRe{ExB*}—%MX(nxﬁ)F
: Ly tEo Lo : L R?
o ¢ B = (it ) - 3} {aa- 7 = 57} = 5.5 = 0 ia- 5 = 0= o

The (dP/dQ) (in (e?wqiR?)/(8mc?) unit) vs @ is plotted below, again § = 0 is defined by the upper vertical axis.

Problem 14.5
a) For a non-relativistic particle with charge ze, the power radiated is
F lativisti ticle with ch th diated 1

where v is the acceleration, given by

[N}



Assuming the amount of energy radiated is small, we have approximately

%mv2 + V()= Lot = V(rmin), = v= \/%\/ V(rmin) —V(r)

Note that the particle has zero velocity at the position of the closest approach. The total energy radiated is the time
integral of power radiated

0 0 2 e8] 2
AW:/ Pdt:2/ pﬂ:é(zs)w/ﬂ/ AL
—o0 Tmin v 3mAc 2 Tmin V V(Tmin) - V(T)

(b) For a Coulomb potential,

the energy radiated is

4(ze)? [m o3 o 1 dr  4(ze)? [m 16, 1
AW = = (a7 232 = TN g Y3220 )52
3m2e3\ 2 (22¢7) /rmm V1 Pin — 1/7 rt 3Im2e3\ 2 (22¢7) 15(rmm)
In terms of vy, we have
I _ z2Ze? O
§mv0 =V(rmin) = Tonin = Tonin 22262
Therefore,
4(ze)? [m 9v3/2 16 mud 8 2muj
AW — = M 7e2y3/2220 ¢ W0 52 _ S 0
W 3m2c? 2(z <) 15(2ZZ€2) 45 Zc®
Problem 14.12
(a)
. . 2
7(t) = sacos(wot'), B =7(t) = _“’%“ sin(wot')2, = _“%“ cos(wot')2

The differential power in particle’s own time is given by Eq. (14.38):

dP(t’) _ e2 |fl><{(ﬁ—ﬁ)><ﬁ}|2 B e2 |E|2Sin29

ds} 4me (1—n-8)° _47rc(1_ﬁ.ﬁ)5
e2a’w sin? § cos?(wot') e?cBt  sin® 6 cos?(wot')

amed {1+ 2% cosOsin(wot’)}?  4ma® (1 + Bp cos fsin(wot’))?

where Oy = awg/c. Here I used Gy instead of § for the constant to avoid confusions.
(b) The average power

<£> _wo /27T/wo dP(t') el — eZCﬂ(A)L 2 9/2ﬂ/w0 cosz(wot’) d(th/)
a’  2r Jg ds} 8m2a? 0 (1 + o cos O sin(wot'))®
ey sin? 0/27T cos? ¢ 46 — e?c34 2ol 4+ 32 cos® 0
T 8m2qg2 o (1+Bycosfsing)® = 8mw2a? 4 (1 — 32 cos?0)7/2

Thus

dP 2 .24 4 2 29
o € 6/60 +/60 COS Sin2 9

<E>  32ma? (1 — BZcos20)7/2




c) For non-relativistic case, 8y < 1, therefore
(c) ; ;

dp e?cfy
<E> - 8ma?

sin? 6

In the relativistic case, 8y — 1,

<£> R e?cy 4+cos?0
dQ 32ma? (1 — cos? 0)7/2

sin’ @

As fy approaches 1, (dP/dQ?) develops peaks close to 8 = 0, 7. The (dP/dQ) distribution for the non-relativistic case
(Bo = 0) is the same as Prob. 14.4(a). For fy = 0.9, {(dP/dS?) is plotted below:

As [y increases, the four lobeds become narrower. The upper two are increasing clustered together, forming a strong
peak in the forward direction. Similarly, the lower two lobeds form a strong peak in the backward direction.

Problem 14.13
From Eq. (14.67), we have

d?I _ 62w2|
dwdQ) ~ 4m2c

/ 7 x (78 x (1))t T/ g2

If the charge is in periodic motion with period 7', the integrand almost repeat itself (except for a phase factor) each
period. We can thus break the integral over time into a sum of terms, times a common integral over one cycle. If the
charge has actually been in periodic motion always, the total radiated energy is infinite. To keep track of things and
to avoid square of delta functions, we make the integral from —NT to +NT where N is a large integer, thus

N-1 (n+1)T L .
Av= > / dt 7 x (7t x Gt/
N nT

n——

Changing variables to t' = ¢ — n" and using the factor that #(¢t) and E(t) are periodic, we have
N T '
Any = Z emwTAO(w), where Ap(w) = / dt' 7 x (7t x ﬂ(t/))ezw(t —A-F(t')/c)
n=—N 0

The sum of the phase factor

N-1 T N—-1 T N—-1 ( we 1_einT Tl_efinT

_ inwl __ inw —i(n+ DT __ —iw
Sy = Ze —Ze +Ze = 1 _ger ¢ [ ¢ Tl
n=—N n=0 n=0



Therefore,

d21 e2w?
Tod( = 120 |Sn (W) Ao (w)[?

Multiplying both sides of Sy by ¢“T/2, we get
iNwWT

. 1—e
wl'/2 _ sz/Z
Sye T et + c.c.

where c.c. is a short-hand for complex conjugate. This is a standard diffraction pattern function that peaks up strongly
at w = (2n/T)m if N is large. Here m is an integer. Let wl = 2mm + 2 and assume x < 1, then

) ) ) 1— eiZﬂ'NmeiNm 1— eiN:z:
T/2 _ /2 oy (— B
Sne't e =M™ [ cmmgi +eem(—1)" 0 + c.c.
iNz/2 _ ,—iNx/2 :
— (_1)meiNm/2 e ' e " +ee = 2(_1)meiNm/281n(Nx/2) + cc.
T T

= (-1)™ sin(]\acx/Q) % 2(eiNm/2 _‘_efiNm/Z) _ 2(_1)msin(i\fx)

Thus for frequencies near w = m(27/T) = mwy, the frequency spectrum is sharply peaked. Evidently as N — oo the
frequency spectrum becomes a series of lines at w = mwy. The integral over frequency of |Sy|? near w = muwy is

o sinz(Na: 8N/ sm t

3 = 20N = 20N

4
[ iRl & flomen? | .

— o0

The radiated energy in each line is proportional to N. Since the total time interval is 2NT" = 47N /wyg, the power
radiated in each harmonic is

dP,,  e2wim? W e2wd
7 - TogclAO(mWO)lz X 2wo N X 47:;\[ = 87T3(;mz|Ao(77Wo)|2

or

dpm 2 .4 27T/w0 L
o _ e(w m |/ dt 7t (n x ’U(t)) imuwo(t— nr(t)/c)|2

2 4,02  p2r/w
_ lugm / ° a7 x T(t) emewot=rT()/<)|2

Alternate Approach
The energy distribution is given by Eq. (14.70):

deQ 47T2 |/ « (7 x F)e =T/ g2

Expanding the integrand in Fourier series

i (7,—7: % 5) —if-7(t) /e — Z A e~ tmwot

m=—o

Then we have

dZI 2 . gl '
0 _ Z (‘2) ZZ/ dt/ dt/ A* ( ) zwtefzmwotefzwt etm wot
& T



47r2 ZZ/ dt A (w) Al (w)e" @m0 f275(w — m'wo)}

The above equation shows that the frequency spectrum is discrete. Integrating over w, the total energy radiated per
unit solid angle is

% = / dd dIQ 2 ZZ m'wo)? Ay (m/wo) AZ (m'wg) / ellm'=mwot gy
w e

— o0

To facilitate the power calculation, we replace the time interval (—co,00) with (—N7T, NT) where N is a large integer
and T = 27 /wy is the period. In this case, the energy radiated per unit solid angle in the time interval 2N7T is

dl NTo
NT,NT) m'wo)? A (m'wo) A, (m'wo / ghm’—mwot gy
AT = £ ity [

The average power per unit solid angle is therefore

ar_ 1 dI( NT,NT) ZZ m'wo)? Ay (m/wo) AZ (m'wg) L w gitm’—m)wot gy
dQ ~ 2NT dQ 2 TC o) O \EEO Y AONT | np
Note that
1 NT A
i(m’—m)wot df = — i(m 7m)w0tdt =48,
INT / ¢ T /0 ¢ mm
Thus
2
arl” * / R 2 2
27rc Z Z m'wo)2 Ay, (m/wo) A% (m/wo) {8mm } = Sra ;(mwo) | A (o)
This is the total power for all harmonics. For m*® harmonics, we have
dP m2e?wd 9
(A =T, ()
A (w) given by reverse Fourier integration:
27
A (W) = ﬂ/ ° i x (7 x ﬂﬁ)e*i‘”ﬁ'ﬁ/‘:eimwot dt
27 0
Therefore
dpP m2e2wi 2T/ wo

_ — — =\ _imuwo(t—"n-7/c 2
<E>mth = Wl A n X (n X v)e o /) dtl

2,2 4

2
_ 77(’l2€ ‘)UO |/ /o AxT eimwo(tfﬁ-a?/c) dtlz
we 0



More Problems for Chapter 14

Problem 14.14
(a)

F=acos(wot)s, §= _ 2o sin(wot)2
¢
- A - awg . A PP
-7 = acostcos(wpt), 7 x (N xF)=——sin(wet)ft x (72 X 2)
¢

Plugging into the result of Prob. (14.13):

27
A (w) = _a%ﬁ X (R 2);}_7(;/0 ® dt sin(wgt)emote 4 cos O cos(wot)

27
o o 3 d — 43¢0 cos 8 cos 1 i(m i(m—
:—ﬂonx(nxz)/o %e Po cos § éﬂ {e( +1)$ _ i 1)¢}

where Gy = awp/c.

Bo g g ;
Am(mwo) — i % (ﬁ, % 2)/ wy {ez(fmﬁo cos @ cos p+(m+1)¢) _ ez(fmﬁo cosOcosqSJr(mfl)(;ﬁ)}
2 o 2w

Let ¢’ = m — ¢ and using the identity

1 27 d .
Jm(a:) — _/0 _¢ez(mcos¢fm¢)

i 2w
we have

27 do . 0 2 d(b’ ) 0 / ’
/ _ez(fm,Bo cos O cos p+(m—+1)¢) _ (_1)m+1/ _ez(mﬁo cosfcos @' —(m+1)¢’) _ (_Z-)erlJerl(mﬂO COS 9)
o 2m o 2

o d(b i(—mfBo cos O cos p+(m—1)p) _ m—1 o d(b, i(mfBo cos 6 cos ¢’ —(m—1)¢’) _ m—1
e =(-1) e = (—9)"" " Jm—1(mpBo cos )
o 2m 0 27

Consequently, we get

A (mwp) = i%ﬁ X (fv X ) {(—1)m+1Jm+1(mﬂ0 cos ) — (—i)mfl,]m,l(mﬁo cos 9)}

- (—i)m%ﬁ (7o % 2) {1 (g cos 0) + Jyn1 (mfy cos 0)} = (—i)m%%(mﬁo cosf)
Here we have used a Bessel identity:
2m
J1(@) + T (@) = )
Then
s Jax (Ax2))? _sin?0
| Ay (mawo)|* = By Jz (mBocost) = gy eJm(mﬂo cosf)
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Therefore, the average power for the m** harmonics:

dpP m2e?wd e2cf2

ally 24 72 _ 2, 2972
<dQ>m S tan” 0., (mBo cos ) a2 tan” 0., (mfo cos0)

Here we used Gy = wopa/c instead of 8 to avoid confusions.
(b) The total power radiated in the m!* harmonic is

apP ezﬁgc 2 H 2972
P, —/<m>dﬁ— g2 ™ (2%)/71 d(cos 0) tan” 0.J; (m G cos 0)

In the non-relativistic limit, 89 < 1, the contribution from large m will be negligible since

1 mpBycosb

2 ~ 2m
Jz (mBo cos ) = )2 ( 5 )
The radiation is dominated by m = 1 harmonic:
e?BFe [t ol o 2B eratwdt 262 ,—
P = 2 /71 d(cos 6) tan Hzﬁo cos” f = 5.2 = 38 = §C—3w0a2

where

— 1
a? = (a? cos?(wpt)) = §a2

Problem 14.26
(a) The radius of the orbit can be calculated using the numerical form Eq. (12.42):

p (MeV/c) _ 103 .10

- — 14
P 30x 107 Blgauss) 30x10-%-3x10-% 1.1 x 107" em

The natural frequency of the motion

wo= S =927x10ts !
p

and the critical frequency

3 3 3 E 3~y 18 -1
We = 5(&)0’)/ = 5(&)0(@) ~3-10 S

hwe 6.6 x 102> MeV s-3 x 10" s = 2 keV
(b) The average observable power is given by

1dl  wodl

Plw, B)= 2L 0%
@ B) =750 = e

At low frequencies (w < we), dI /dw is given by Eq. (14.89). Therefore the average power spectrum has the form

E (PN ()
Pw, B) ~wo—(—)"" ~ (wwp)
Cc Wy
At high frequencies (w > w.), dI/dw is given by Eq. (14.90). Thus
o 1/2 —w/we 1 1/2 —w/we
Plw, E) ~ 'ywo(w—) e ~ ?(wwc) e

C

Note that

=—~F wcz§73w0~E2



The average power

W

P(w,B) ~ (15) P forw < w.  and  P(w,B) ~ (%)I/Qe*w/wc for w > w,

It can be written in the form
w

P(w, E) = const (ﬁ)1/3f(wic)

where f(z) =1 for x < 1 and f(z) ~ 2"/5e for x> 1.
(¢) Now with

N(E)YdE ~ E~"dE
we have
fooo P(E,w)N(E)dE 1/3
fooo N(E)dE

W

P(w) = = const / P(E,w)N(E)dE = const / ~

T/ (BB

We

Approximate | as a step function such that f(z) = 1 for # < 1 and f(z) = 0 for z > 1. Given that w, ~ E? = §F?
(here ¢ is a constant, see below), the non-vanishing contribution to the integral is therefore from F > (/w/é.

o0 —(n—1/3)
P(w) = const w1/3/ E- 23 4E = const w!/? {1 / f}
N w/6 é

o173

= const a6 = const w " V/2 = const w™
/2=

(04

where oo = (n—1)/2.

(d) The critical frequency w, of the radiation is related to electron energies through

3oy 3.0 3 gccB 3 qecB 3 ,cB 3 cB

WeT gl o= ;_27 cp 37 E T2 mc_§m3c5E2(:6E2)
Thus
E= 'ymcz = mc? gwc%é
Taking the cutoff frequency 10'® Hz as the critical frequency and note that e/me = 1.76 x 107 s~ ! gauss !, we have
E= mc2\/2 ot w 107me 5.7 x 1012 oV
3 1.76 x 107 3 x 10-*

consistent with the electron energy (and therefore all other numbers) of part (a). In this frequency region, we have
n=2a+1=170.
(e) The half-life is given by

3mPc®1 3 me ., 1 me? me?

t = = -
2= apEy — 3l ) gr e g
Again note that

e2

- 1.76 x 107 s ! gauss™!; —5 = 2.82 X 10713 em
me me

Therefore, the half-life can be expressed in terms of B in milli-gauss and F in GeV as

6 -3 11
3 1 10 1 0511x 1073 o 263x 101

g = — - L.
V279 (176 x 107)2 B2 2.82x 1013 E EB?




For the numbers in part

=2.92 x 10® s ~ 9.3 years

The Crab nebula was observed in year 1054, more than 900 years ago. Therefore, initial energetic electrons are
probably long gone. However, my astrophysics colleagues told me that there is not much trouble making energetic
electrons from the pulsar at the center. Electrons and positrons can be pair produced from the energetic photons
from the pulsar and they are accelerated by the rapidly rotating magnetic field associated with the neutron star. It
is interesting to note that earlier editions of Jackson had F = 102 eV and B = 10~* gauss, which results a half-life
about 834 years. Presumably the change is due to recent progresses made in this area.




16.1

It’s useful to apply in this case the Virial Theorem, familiar from classical mechanics:

(M = 59

IfV=ar", then
- n
() = 2<V>
Inour case V = +kr?, with k = mo§, son = 2 and
(M =«V)
Or,
avy _ E
( dr ) =T
We are given

This can be rewritten

(o S
dt mE
So
E = Eoe ™K = Ege ™t = Epe ™
Similarly,
dl _ 1dv.p
ar ~ Mgt

But +4 = mwj, so



16.2

V=-q=-e
dE _ _z ,(dV)?
a m<( dr ) )
If V = ar™, then the Virial theorem tells us

- n
(M) = DV)
In the present case, n = -1, so

E=(M+(V) = 2w = -2

av _ Ze?
dr r2
Now
dE _ _z ,(dVv)?
at m<( dr ) )
gives
d 1 _ 27e%
drr(t)  mré)
or

r2dr = —2Ze?rdt/m

Butt = %% S0

r2dr = —BZ(CT)3%
Integrating both sides gives
r3() = r3 —9z(cr)’ L

b) At this point, for simplicity of notation, I’m going to take ¢ = # = 1. Then from problem
14.21,

1 _ 22702y4 M
T 3e(Ze) 5

We are given

nzao

r=-z

Where ag = — = Bohr radius, and z = e



_On ___Z d __Z 3
dt 2apn dt 2aon 2ZT

in agreement with the result of problem 14.21.
c) From part b)

t— rg—ri
9772

2
Butr(t) = M2 ry = N2

Inour presentcaseZ = 1, s0

3 né_nb
_l( 1 ) (2e2 f2 _ 4]r.ne—1o(n6 ng)

In these units, (from the particle data book) MeV 1 =
m = 207 x.511MeV.

1x6.6x10%*s

= né —nd) = 7.53 x 107 4(nf — né)s
4 x 207 ><.511(1/137)5( F ) * (07 =n%)

For the cases desired,

t; = 7.53 x 10714(106 — 4%)s=7. 5 x 1085

t, = 7.53 x 1074(10° - 1%)s=7.5300 x 108s

Just as a check on working with these units, notice

_28 _2

2
Z Z 2
2apn 3( agh? ) Z( 3

22 24
3m—3—511 13766><1O S=6.29x 10“*s

in agreement with what we found before.

= 6.6x10%s. €2 = ¢ = 1/137, and
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