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143a-Reminder of Linear Algebra-12 September 2001

7 It is expected that you have learned linear algebra somewhere along the line. Here we
launch into a very simple example using real matrices. The matrices that we will encounter

_ in quantum mechanics are complex. The concepts are the same.

' Consider the coupled pair of equations

Z_?; = 4v—-5Bw,v=8att=0 (1)

dw

— = — JW = = 2

7 2v—-3u, w=5%att=0 (2)
(3)

This initial value problem can be written in matrix form.

SO I O

.
& o Af, =dpatt=0 (5)

If @ in the above equation were a scalar the above equation then the form would be

du
— =au,u=ugatt =10 (6)

di

and the solution would bhe

u(t) = upe™ (7)

With the vector form we will try as a solution

7 = eMT (8)

This results in
AeME = AeME (9)
AT = AF (10)

This last equation is just the fundamental equation for for the eigenvalue A and
eigenvector £. We can find eigenvalues by solving

det(A — M) =0 (11)



In our example, -

461[45" _3‘:]=A2-A—2 (12)
=) -2) (13)

“and
M=, Ay =2 (12)

For
Ay, (A= MD)E= Ej :,j [ZJ - m (15)

This and the similar equation for A; result in

e[l

i =e [i] and @, = e* [f?} (17)

resulting in solutions

4

The differential equation that we are trying to solve is linear and homogeneous so

7= 1M F + e E, (18)

and ¢; and ¢; can be determined by the initial conditions to be ¢; =3 and ¢; = 1,
resulting in a final, complete solution of

(1) = 3¢~ H 4+ B] (19)

The point of this simple exercise is to show that the eigenvalues and eigenvectors are
the “key” to solving the problem. The eigenvectors are the normal modes. The behaviour
of the system is a linear combination of these normal modes.

Each of the following conditions is necessary and sufficient for the number A to be an
eigenvalue of A.

1) There exists a nonzero vector such that 4F = A7
2) The matrix A — Al is singular
3)det(A-AX)=0



. -

An interesting property of eigenvalues is that the trace(A) = LA, Also, suppose that
the n x n matrix A has n linearly independent eigenvectors. Then if these vectors are chosen
to be the columns of the matrix S, it follows that S7'AS is a diagonal matrix A with is
eigenvalues along its diagonal. Another interesting property is that if AB = BA, then A
and B share the same eigenvectors. you can see these easily via the following steps.

Ax = AT,ABX = BAT = BAf = ABT (20)

One last thing to remember, if nonzero eigenvectors ¥, &s,... &) correspond to dif-
ferent eigenvalues Ay, Az,... A, then those eigenvectors are linearly independent.

The Complex Case

The complex space C" contains all vectors & with n complex components.

I
T= 2 Iy =aj + b (21)
In
Working with complex marices and vectors is very similar to working with real ones.
There are, however, important differences. For instance, the length of the vector is

27 = feal + ... Joa 2

Closely connected with the concept of length is inner product. Now the inner product of two

vectors is ET{/‘ where the bar over ¥ means complex conjugate and the T means transpose.
For real vectors this inner product was just #7§. This combination of conjugating plus
transposing is called the Hermitian transpose and the bar and the T are, together, replaced
by a superscript H.

Matrices that are equal to their conjugate transpose are called Hermitian. Here are
some of the important properties of Hermitian matrices.

1) if A = A (A is Hermitian) then for all complex vectors #, ¥ A7 is real.

2) every eigenvalue of a Hermitian matrix is real.

3) the eigenvectors of a Hermitan matrix are orthonormal to each other.

4) for a Hermitian matrix A, there exists a diagonalizing unitary matrix U and

U=YAU = UHAU = A.

A matrix with orthonormal columns is called a unitary matrix and

vlu=1. 1% =0 (23)



Any Hermitian matrix can be decomposed into
A=UAUP =253 + Mme] +.. (24)

In every case an Hermitian matrix 4 can be diagonalized by a unitary U.

Real versus Complex

R <= C” (25)

length :|jz|> = 22 +...2p <= |z’ = | =1* + ... |za]" (26)

transpose :A;rj = Aji <= Hermitiantranspose :Ag = Aj; (27)

(AB)T = BTAT «—= (AB)" = B# A¥ (28)

inner product : Ty=z + ... Zntn = My = T+ ---Tnln (29)
Symmetric matrices :AT = A <=> Hermitian matrices :A” = A (30)

29 Az is real, every eigenvalue is real, andA = UAU™! = UAUY (31)
‘Orthogonal matrices : Q7Q = I <= Unitary matrices : Uy =1 (32)

Exercises

1) Find the eigenvalues and eigenvectors of the matrix

A= {}) "41] . (33)

FA

Verify that the trace equals the sum of the eigenvalues, and that the determinant equals
their product.

2) With the same matrix as in excercise 1, solve the differential equation ‘fi—"‘ = Au.up =

[(();] . What are the two exponential solutions.

3) Find all the eigenvalues and eigenvectors of

111
A={111 (34)
111

and write down two different diagonalizing matrices 5.

4) If A and B share the same eigenvector matrix S, so that 4 = §A;5! and B =
SA,57!, prove that AB = BA.
5) For A, below, compute the eigenvalues, cigenvectors. Find the unitary U that
diagonalizes A and complete the spectral decomposition (into three matrices A;z;zf.
1 -1 0
A=1]-1 2 -1 (35)



PY522 Homework No. |
Solutions

1. (Jackson 6.11)

A transverse plane wave is incident normally in vacuum on a perfectly absorbing flat
screen.

(2) From the law of conservation of linear momentum, show that the pressure (called
radiation pressure) excrted on the screen is equal to the field energy per unit volume in
the wave.

Let our wave travel in the x direction, with E in the y direction and
B in the z direction

From Jackson 6.121 we have

dP,.). _ 3 d(Pss )
0 —;_jd r T ——‘Ldt

=Y [d’rogTy e, ijar3r (ExB)_
B v dt v

The left-hand-side is the force on the screen and we want the
pressure so we will take the force per volume and then integrate in
the x direction

d dP,.,), __ v d(ExB),
Ea:dV dt '%a"T““ ‘"°§ dr

Now evaluate the stress tensor:
1
2 2, .21p2
Tos =eo[EmE,3 +¢?B By~ E(E +c’B )54
T has only diagonal components
£ 2
I, = __20"[E22 + C-Bsz]

15, :%O‘[Ezz —C2B32]

Ty = %[‘ E22 +CzBsz]



The force is only in the x direction because £ and B do not depend
on y or z and the cross product (Poynting vector) 1s also in the x
direction.

d(Pmcch )l — d37" a]T‘“ —go_ij.d:;r (EXB)I
dt v dt v
——jd3 [ Elp2cp, ]+£0d(EzBS):‘
dt
The pressure is
t d(P -
P= Ja’x d d( mech)l =_£—0[E22+02332]+80jdx d(E,B,)
S dVv dt 2 ) o

Now we must take the time average. The last term contributes zero
because its time average 1s zero.
_ 1 —
& E2 — 25’32 =u
2 2,

Pze_;[E2+czB ]

(b) In the neighborhood of the earth the flux of electromagnetic energy from the sun is
approximately 1.4 kW/n?. If an interplanetary "sailplane” had a sail of mass 1 g/ i’ of
area and negligible other weight, what would be its maximum accelcration in meters per
second squared due to the solar radiation pressure? How does this answer compare with
the acceleration due to the solar "wind" (corpuscular radiation)?

S 1.4x10°W/m?’

P=u=== - =~ 5x10™"N/m’
c 3x10°m/s
2
2= PA 5x10 N/n'i ~ 5%107 m/s?
m  107kg/m’

Compare to solar wind:

At http://sec.noaa.gov/ace’MAG SWEPAM 7d.html

I found the following plot of the solar wind for the last 7 days
beginning 9/12/01:
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From this plot we see that the solar wind (in the vicinity of the
earth) is made of protons traveling at

v~ (4-6)x10°m/s
with a density of
p~(10°-10")m®

Thus, the solar wind flux is
N = (5x10°m/sf3x107/m*)= 2x102m 2™

The corresponding acceleration on our sail plane is

~ (2x10‘2m'2s")mpv _(2x107m s Y1.6x10kgf7x10° m/5)~2><10“’m/ 2
107 kg/m’ 107 kg/m’ s

significantly smaller than the acceleration due to radiation.




2. (Jackson 6.16)
(a) Calculate the force in newtons acting on a Dirac monopole of the minimum magnetic
charge located a distance 0.05 nm from and in the median plane of a magnetic dipole

with dipole moment equal to one nuclear magneton (eh/2m,).

The force on monopole in dipole field

F=ghH=%2
Ho
Dipole field,
p="F
2nr
where
2nh
g=——n
e
eh
m=
2m,
This gives

21h eh 1 h eh
F = n T |=—=—n
e 2mp 2nr re 2mp

Numerically (for n = 1)
(1.05%10™1-5)5.0x107 J/T)

(5x10™'m) (1.6x10™°C)

F= =2.6x107"'N

(b) Compare the force in part a with atomic forces such as the direct clectrostatic force
between charges (at the same separation), the spin-orbit force, the hyperfine interaction.
Comment on the question of binding of magnetic monopoles to nuclei with magnetic
moments. Assume the monopole mass is at least that of a proton.

Reference: D. Sivers, Phys. Rev. D2, 2048 (1970).

For the direct electrostatic force

2 -9 -19
szez _(1:44ev-nm)(10° m/nm 1.6 x10 J/ev)z9><1(rf‘1\1

r (5x10™" m)’

The force on the monopole is about 3000 times smaller than the
direct electrostatic force.



The spin orbit force is o’ times smaller than the direct electrostatic
force, putting it about the same order-of-magnitude as the
monopole force. The hyperfine interaction (electron spin with
proton spin) is about 6 orders of magnitude smaller than direct
electrostatic or about 100 times smaller than monopole.



PY522 Homework No. 2
Due Friday, September 21, 2001

1. Consider the problem of a thin spherical shell of charge Q and radius a rotating with
constant angular frequency ® (Jackson 5.13). Take the z-axis to be the rotation axis. The
solution for the static magnetic field is:

Qutside:
W a
out _ Q0 — [2 cos 07 + sin 99]
121 r

Inside:

Mo

m 61[a
Imagme now that @ is not constant but is varying slowly such that B is still given by the
above expressions.

a) Use Faraday’s law to find the induced electric field inside the shell.
Note that in the static case we have

Using Faraday's law,

circutar integration
] path at angle 6

the induced field satisfies

d
§dl-E=—g!da.B

or

2nasin OF = —%—[:n(a sin 0)°
asmbdB- Wn,Osind

E=-—"——"T¢=-

o
2 ot 127 ¢

b) Evaluate the rate that the induced ficld does work on the charge using



e _ [ 1E..3
)

This term represents the rate of change of mechanical energy. The
induced electric field is going to cause a reduction (increase) in
energy if the acceleration is positive (negative).

¥ - Qwsin B(r — a)(Ab
4ma

AU e _ [drE-3 = I g3p[_M@sin 6  \Quwsin 63(r —a)
dt ? 7 127 ) 4ma

1 . .
AU peer _ 27tjdrr2 J-d cosg[ - Le@sin 6 (.D\Qo)sm 08(r —a)
dt ’ 12n )  4ma

. 1 2 .-
I, Yoy M_Q_Glj'dcosgsm?g:_w 4
12n 4ma’ 24n 3

Note we have used:

j[d cos Osin 6} d cosG{l —cos’ 6]= 2-
o |

w | N
w |~

dUmech — _ uoano)(i)

dt 187
This equation says that if we give the sphere a positive
acceleration, it will radiate electromagnetic energy and thus lose
mechanical energy.

¢) Evaluate the rate of change of stored clectromagnetic energy using

dUﬁe]d :ijd%‘ ;E_2_+B_2
dt dts, 2e, 24,

This term represents the rate of change of stored electromagnetic
energy. If the acceleration is positive (negative), there is more
(less) stored energy.




dU 2 2
S d fd3r E + B
dt dty, |2e, 2U,

The induced electric field is time dependent but it contributes to
order (dw/dt)? so neglect it.

AUpus _d 1 (3 po_d 1 (pQ0Y4na _paQ’on
dt dr 21, 5 dt 2u,\ 6ma 3 277

d) Evaluate rate that energy enters the spherical volume by integrating the Poynting
vector over the surface of the shell and demonstrate explicitly that

%[Uﬂe,d LU= —ida- (ExH)

(ExB) F = (E,6xB) £ =—E,B,
_ _(_ HoQOsin CDIMOQOJ sin 0 ): 1,"Qasin’ B

127 121 a 1441%a
21 22 2
1 da-(ExB):—zm Jdcos@uo © coa)251n 0
uo S !‘1‘0 -1 1447'C a

__baQo0d _ paQ’on
2n 3 54w

This is the energy flowing into the spherical volume, which causes
a change in mechanical and/or field energy inside the volume.
Note that the volume we are talking about contains the shell itself
and its interior.

Finally, check that
_ “oanw(b_’_ Ho2Q 0w _ _ HyaQ’ bw
187 27m 54n




2. (Jackson 7.2)

A plane wave is incident upon a layered interface as shown in the figure. The indices of

_ refraction of the three nonpermeable media are n;, na, n3. The thickness of the
intermediate layer is d. Each of the other media is semi-infinite.

(a) Calculate the transmission and reflection coefficients (ratios of transmitted and
reflected Poynting’s flux to the incident flux), and sketch their behavior as a function of
frequency forny =1, m=2,m3=3;my=3,m=2,n3=l;andn, =2.n2=4.n3=1.

The Poynting vector goes as

S~Je E* ~nkE?
where E is the amplitude of the electric field
(Jackson 7.13 with p=1).

Describe the fields in the different regions as
Incident (medium 1),

_ ik] -r—iwt
Reflected (medium 1),

_ —ik r—iwe

E =Ee™
intermediate (medium 2)
_ ik, r—iox —ik, T—iwt
E,=E,.e +E, e

transmitted (medium 3)

_ ik 5 r—it

The boundary conditions are given by Jackson 7.37 (last two
equations). The incident angle is zero and thus, so is the refraction
angle.

0,=6 =0



E ™| g™ "
. . +
incident t . E; transmitted
k; t»
k;

E
reflected Tl f E,.
k k,

"~ -

R ¥ - d

v

At the 1-2 interface (z = 0),
Tangental E condition gives

(E,+E, )xn=E,xn
or
EO +El :E2++E2_ (1)
Tangential H condition gives
(k,XE, +k,XE, )xn = (k,xE, )xn
or

mEy—nE =nFE, —-nkE,

and at the 2-3 interface (z = d),
Tangential £ condition gives

E,xn=E, xn

or

ikd —ikyd _ o ikd

E,e™ +E, e™ =Ee™
Tangential H condition gives
(k,xE,)xn=(k,XE,)xn

or

kyd -ikyd kd

nE, e —nE, e =nE;e"™ 4,

The last two boundary conditions atz =d, (3) and (4) , give



(n +n ) . .
E' — 2 3 ikid —ik,d
2 —____.E3e 3 2

E, = (nz — ”3) E, s ikad
2n,
while the two atz=0, (1) and (2), give
2nE, = (”1 +n, )E2+ + (”1 —hn, )Ez-

or
Eo — (nl +n2)E2++ (nl _n2)E2_
2n, 2nm,
_ (nx + n2) (n’l +”3)E phA-kad | (”\ ‘”’z) (nz—ns) E.g/ksd+kad
2n, 2n, ? 2n, 2n, °

and solving for E3 we get
4e-ik3d

1+ﬁ 1+n_3 -f"zd_'_ l_ﬁ l—ﬁ ikyd
m ny n n

Now solve for £}, again using (1) and (2)

E, = E,

El — (nl —nZ)E2+ + (nl +n2)E2_
2n, 2n,
_ (n, —n,) (n, +1ny) E ek 4 (m +n,) (n, _nB)E3eik3d+ik2d
2n, 2n, 2n, 2n,
or
n, n, \ ( n, Ny | 2ik,d
2+ b+ -2 e
n n n n
EI B nl n2 < ; n1 n2 EO
42 [ 1+2 [+|1-—=2 [1-=2 ¥

n, ny ) k R, i,

The reflection coefficient 1s



Numerically, forn, =1,n,=2,n3=3,

g

M

3

2 }Zikzd

2

2

—ir

)

1

}2ik2d

_5 _3621’1(2(1 2
15+e™%7

The reflection is minimum when
2ik,d
e?? =1
corresponding to

a=2
2

and
2Tc T

W= =
nA 2d

}Zikgd
\ 4

(5, (1) 2ia
(2) \9

The reflection is minimum when
2ikyd

Forn1=3,n2=2,n3=1,
(5

(1

— I+
2/ 6
¢
+

34 52k |

15+ ¢ ‘

=1

e
corresponding to

g
4

and



- 2Mc T
(D - =
nA 4d

Forny=2,n,=4,n5=1,

2
51,(9 )i
- 2ik,d
R= 4)\4 _1=5+9e™
15, (3 o 15 -3¢
4 4

The reflection is minimum when
2ik,d
el =1

corresponding to

a=2
2

and
_2mc  Tc
n,A 4d

((V

The transmission coefficient is
2

E,

E,

.
n

2



Sketches of the solution:
Reflection,ny=1,n,=2,n3=3

HIGZ 01 ' rohdfnote




Reflection, ny=3,n,=2,n5=1

HIGZ 91 & rehlinote




Reflection,n, =2,n,=4,n5=1
HIGZ 61 o mhlfnote

HIGZ 01 & rohlfnote




(b) The medium ) is part of an optical system (e.g.. a lens); medium n3 is air (n3 = 1). It
is desired to put an optical coating (medium n,) on the surface so that there is no reflected
wave for a frequency wo. What thickness 4 and index of refraction n; are necessary?

E;
B
Forn3=1,
/ 2
(-—21 1+—L\+ 1472 [ L |poes
R= { n, n?_} k n, n,
1+ 1+ [+ 1-22 1= e
\ n, nzj \ n, n,

The reflection is minimum when

plikd — 1
or
2k,d=m
or
g _*
2k, 4

To completely eliminate reflection (R = 0), we must also have

L Hi-—Hﬁllano
n n, n, n,

“~

Solve for n, to get






PY522 Fall 2001
Homework No. 3

Read the relevant sections of Jackson, Chapters 7 and 8

1. (Jackson 7.6)

A plane wave of frequency ® is incident normally from vacuum on a semi-infinite slab of
material with a complex index of refraction n(w) [n* (®) = &(®)/&].

(a) Show that the ratio of reflected power to incident power is

1-n(w) :
R=|—"
1+n{w)
while the ratio of transmitted into the medium to the incident power is
4Ren(w)
T=——
,l + n(a)]

Look at the derivation of Jackson 7.39 and see that » may be
complex. Then with

we have

which immediately gives

R=

1+ n(w)
The transmitted power ratio is

5

- Renf(wl—2_| _4Ren(w)
=R (11+n(m)l 1+ n(w)’

(b) Evaluatc Refio(E-D* - B-H*)/2] as a function of (x, y, z). Show that this rate of
change of cnergy per unit volume accounts for the relative transmitted power T.



* A

: |l+n|2 ’

2 2im{n)ux/c

2
Re[ioE-D*~B-H]=Re] i 4r’)
|1+ n|

— 8(!)E02 Re(n)h?(n) e—ZIm(n)mzlc
‘1 + nf
The Poynting vector gives

S, =~ Re[ExH]= 2¢E;’ Mlze‘2'm("mfc
2 [1 + n[

The complex version of Poynting’s theorem is

io [d’r [E-D*-B-H* |+ [@°rE-3%=—~dda- (ExH*)
14 4 S

With no current,

V-S+io[E-D*-B-H* |=0

or
oS ,
z =—z(1)[E~D*—BoH* ]
A
evaluating this derivative, we get
iSZ_ — "80)E02 Re(n)lr?(n)e—ﬂm(n)m:/c
oz |1 +n|

in agreement.

(c) For a conductor, with =1+ i(o/wEp). © real, write out the results of parts aand b in
the limit g5 << ©. Express your answer in terms of & as much as possible. Calculate

Y2 Re(J*-E) and compare with the result of part b. Do both enter the complex form of
Poynting’s theorem?

.o
nt=1+i—
we,

and



&= |—
Lo
For
WE, << C
we have
nt =i
(‘080
This gives
L1t S _(+i) o _(l+i)e wop _ (1+ike
2 | o, 206, ® 2 0d
so that
. 2 2
1+ |2=ll+(1;é)c =(l+é] +(§j
and
. 2 2
ponf - (1] (<)
This gives
2 2
c c ©S
1- hotd
R:ll—nl:( cosj +(m8) o
e ) )
1+ + 1+|1+—
®d ®d c
4 (to
4Ren o c

For



—<<1

we have

R=1-——

Now evaluate

1

2 -2z/% 2 22/8
ERC 2(J- E*)z_;_Re[oiEr?e-Zlm(n)zo)/c]: 40E,"e _ 8wE;e

2‘”"‘2 — 1+[1+@)2

c

Compare with
8(:)E02 Re(n)lm(n)e"m(")“”" 3 8ﬂuE02e‘2”8

1+ H(@T

Ref[ioE-D*-B-H|=

c

These terms are equal and do not enter the complex form of
Poynting’s theorem.

2. Consider a TE;; wave propagating in a rectangular waveguide of dimension a by &.

a) Calculate the power transported by this mode.

The TE,; wave has

E =0
™ T
H, =H, coS — cos —~
a

The transverse fields are given by



where

For the Poynting vector we need

E xH = o;uk (zxV,H,)xV H
E,xH = “;“k[(z VH W H, —z(VH VH)
E xH, = o»uk
Y’

The time-average Poynting vector is

ok, (7Y s Lmy () L,m Ly
S=——X2">12 (—) sin” —cos ——+( j cos’ —cos® =
2y a a b \b a b

We integrate this over the cross section of the guide to get the
power transported. Using the average of sin and cos squared equal

to 1/2, we get:



. 2 2 2 2
P [dx [ SzcoukHO ab|(n L _ WukH,"ab
34 2
a b 8y

b) Estimate the power loss in the walls due to ohmic heating.

dP
dz

To get the power dissipated we need the tangential H field at the

walls. For the wall at y =0,

H =H0{cosmi— zlm in 2§ ]

a yza

The contribution from this wall 1s

( de _H ,x k'mt .,
cos’ —+——sin‘ —
dz ), 208; a v'a’ a

H a1 k*m?
2062 v'a’®

The wall at y = b gives an identical result.

For the wall at x =0,
Ty . kT . -
H,6 = Ho[cos gz — sSin oy J]

The contribution from this wall is

2 b 2.2
( dP) =H° jdy[cosz ny+k T sinzn—y}
b vy

dz



H’b|, k*n?
= St
200 2 v'b

The wall at x = a gives an identical result.

The net result is

_dP_H| kznz(l 1)

a+b+

dz 208 v (a

3. Consider a TM, wave propagating in a circular waveguide of radius a. Find the cutoff

wavelength.

TM modes
H. =0

and the E, vanishes on the wall (p=a)
X .
E = AJO(—Q’— p)em’
a

Xo; 1S the first zero of Jy

Y014 = Xo
The expression for k is

2
X0

2

2 2 2 2
ky~ = EUO" =7, =EHO —

The cutoff frequency is



2
Xo1

cutoff 2

ena

@

The cutoff wavelength is

Ay = — /8“" na _ 2 6l
cutoﬁr \/I.LS '\/ﬁe xO] 2 405




PY522 Fall 2001
Homework No. 4 Solutions

3. Jackson 8.2, parts (a),(b).(c)

A transmission line consisting of two concentric circular cylinders of metal with
‘conductivity ¢ and skin depth 8 is filled with a uniform lossless dielectric (i,€). A TEM
mode is propagated along this line.

(a) Show that the time-averaged power flow along the line is

P= \/Enaleor ln(é)
£ a
where Hj is the peak value of the azimuthal magnetic field at the surface of the inner

conductor.

For the TEM mode
V, XE, =0
V, Epy =0
so our solution is
E., =-V®
Vid=0
We have azimuthal symmetry so our solution cannot depend on ¢
orz:
1 0 0®
pop{ dp
The solution is
®=A4lnp

(where 4 is a constant)



We also have

so the solution is

aA
Hpy =—H,—0
P
H, .
Emy = \E’_p
€ P
The time-averaged energy flow 1s given by
1 * 1 2 uaz;\
S=—E_, xH,, =—HS . |- =1
MM 90 Ve p?

and the power flow along the line 1s

P= daS i=1p? \f jdpznp—_naH \/ﬁmé
2 p- € a

(b) Show that the transmitted power is attenuated along the line as

Ple)=Re"

where



1 1

—_— -
1 Jela b

7_2085 b

Inl 2

a

The power loss is given by (Jackson 8.58)

dz
H
dP 1
& a J|H
e oj;;ﬂ fa or}

2
_ 1] 2bH > 2+ 2maH _TaH, [1+1J
b’ 6d |a b

-

Now write in terms of P:

where



Ba
y=—L¢4 -
Zdvgm—

E a

P=Poe_27"

I

Therefore (integrating),

(Py is the power at z = 0)

() The characteristic impedance Zj of the line is defined as the ratio of the voltage
between the cylinders to the axial current flowing in one of them at any position z. Show

that for this line
z,- Em(é)
2nV¥e |a

The voltage difference between the cylinders is

a b
/ 1 /u b
AV =|dt-E._.. = EH dp—=_|=H In=
2[ TEM e 0! pp e 0 a

The current is given by (Ampere's law around the inner conductor)

I=§de-Hyp, =2naH,
We have



PY522 Fall 2001
Homework No. 5 Solutions

1. Jackson 8.20

- An infinitely long rectangular waveguide has a coaxial line terminating in the short side

of the guide with the thin central conductor forming a semicircular loop of radius R
whose center is a height & above the floor of the guide. The half-loop is in the plane z=0
and its radius R is sufficiently small that the current can be taken as having a constant
value Jp everywhere on the loop.

(a) Prove that to the extent that the current is constant around the half-loop, the TM
modes are not excited. Give a physical explanation of this lack of excitation.

The coefficients for the various modes are given by Jackson 8.146:
Z
4 =-22{dxJ-E,
2 v

The current 1s

/ A o
J =j’[—sm 0% + cos 6y |
which gives
7 +n/2
A4 = ——zi A jd() R [— sin OF , + cos Gny]
-n/2
The field components are given by Jackson 8.135 (TM waves)
21tm mnx \ . ( nmy
E_ = ol sinj ——
xmn ’Ymna /ab a b
2 nm
E =_—%="" &n| 222 nty

yn

Tn sin
Yubab | a b



SO

' +3/2 [ .
4= ?] JdGR _sng_2Fm_ mchosG)sin(nn(h+Rsm6)ﬂ

-nf2 L 'Ymna‘\/a—b_ a b

+x/2 [~ .
‘ﬁlo fdGR cos6— 2™ __ g mmRcos®) nn(h+ Rsin 6)
2 -n/2 L Ymnbm a b
Expand the sine and cosine

-+ /2 .
4 = Z 2nRI, m mth JdB sin 8co mnRcosO sin nmRsin 0
'Ymn-J_b a -2 a b

_Z, 2mRI, n nn:h 72 . ( mnRcos® nnRsin O
———Co fdG cos6sin o
2 'Y va b n/2 a b

Notice that we have a perfect differential,

d| . {maRcos8 ). ( nnRsm 9
—| sin sin
mnRsn ® (mnRcos® ). (nnRsn O, . (mrRcosO \nmRcos® ( nmRsin ©
= cos + s cos
a a b a ) b b

which gives zero:
. B=+mn/2
[. (mchose)S. (nnRsmO)J
smj} ——— Simm} —— =0
a b f=-n/2
SO

for all TM modes.



Let's examine why there can be no TM modes. Since the current is

constant, we have

4 ~|dt-E, ~|da-(VXE,)~[daB,

But B, is zero for TM modes.

(b) Determine the amplitude for the lowest TE mode in the guide and show that its value
is independent of the height A.

The TE field components are (Jackson 8.136) for the 1,0 (lowest)

mode are

?(ﬂ)

+n/2
Ay=-"21, [dBR cos0Y2 i (chosG
-,,,, Jab a

Now for small R, we have

A o J2 7R R*]’ e _ \2z,1,wR
\/_ a _I 4a\/_

This gives

A4, =

(c) Show that the power radiated in either direction in the lowest TE mode is

lojz n:R
16 b

where Z is the impedance of the TE;¢y mode. Here assume R << a,b.




The transverse magnetic field is given by (Jackson 8.31)

H, = Zli XE,
which gives
1
Hx]O == E Ele

Therefore, the time-averaged transmitted power is
pothe’ _ZI R4
27 16a°b




PY522 Fall 2001
Homework No. 6 SOLUTIONS

1. Derive the expression for the electric dipole field (Jackson 9.18)

ikr ikr .y ikr
E-_. {kz(ﬁXp)xﬁe_+[3ﬁ(ﬁ.p)_p{e_B_”“i )}
4ne r r re

0
by direct calculation of

2
E=— VxH=——vx(fixp)
E, We, 4T
= [vrx(axp)+ Vx(axp)]
4me,
where
eikr 1
— 1—
/ r( ikr)
and

ikeikr zeikr 2eikr A
Vf = - +
/ ( r r’ ikr’ }]

The triple cross-product is

nx(fxp)=n(m-p)-p
and

Vx(axp)=h(V-p)+(p-V)a-p(V-h)-(A-V)p
=(p-V)a-p(V-d)

which further simplifies according to

V.h=2
¥



4y

( J Iﬂ[‘l ) :
(le'd)_d— [ 412

AY1 y 4| 3uy
d—(d- 2 __ _
[ ( g)"{i,,,azﬁ,,.,az )"L(dxy)xg 931.1] T

4yt
198 om “xoyya303 s1yy Sumng
A

(0 au—d- =(dxu)x A

1813 OS
A

(d.g)g_dz'v’(A'd)




2. Jackson 9.5
(a) Show that for harmonic time variation at frequency o the electric dipole scalar
potential is

b= ~0-p(l—ikr)

4ne,r
where k = w/c, 0 is a unit vector in the radial direction, p is the dipole moment, and the

time-dependence exp(—ir) is understood. (The vector potential A is given by Jackson
9.16, you do not need to derive this.)

ikr

Y
A() —zmm—r——p
The Lorentz condition is
1 od
V . A + —2‘— - 0
c® ot
SO
od
— =——j0®d=-*V-A
ot
this gives
2 ikr
C e
PR PRI Y
0 4t r
2 .1 _ikr ikr
C [ ike e e
- Ko p-n -—|= n-p(l-ikr)
47 r r 411‘£O

(b) Calculate the electric field from the potenrials and show that it is given by Jackson

9.18,
i R ikr o ikr -k ikr
E-— {k‘(nXp)xne—+[3n(n-p)—p{e—3—l ¢ )}
B

4me, r re

0A
E=-Vo-==
ot



1 eikr (D2 eikr
E=- \Y —ikr 0
47580 ] 2 ( ):] AT 7 P
lk [ A eikr eikr k2 eikr
= Vin- P ——5 {{t p
47!280 i ¥ ikr 471:80 v
So we have
ik kz ikr
E= V[fﬁ 'P] + p
4Te, 4me,
where
ikr
e 1
- 1 —_—
! r [ ikr)
The first term has a part

Vfi-pl=Gp-V)si=Llp—ilp -]+ ilp-2) L

Putting this together, we have

E = k2 eikrp+ ik [ﬁ ﬁ{g‘i—i).}.ip]

4dne, r 4me




3. Jackson 9.3
Two halves of a spherical metallic shell of radius R and infinite conductivity arc
separated by a very small insulating gap. An altenating potential is applied between the
two halves of the sphere so that the potentials are

® =+V cos{wt) .
In the long-wavelength limit, find the radiation fields, the angular distribution of radiated
power, and the total radiated power from the sphere.

For the static case, the potential is given by Jackson 2.27. The
leading term is

3VR?
P =—7 cosO
2r
Since the potential is given by (previous problem)
eikr eikr
O=—"a-pll—ikr)=———h-p
4me v 4re r
we see that
3VR? cosB
5 cosf = \p l >
r 4re,r
or
Ip| = 6me VR?
The direction is the z direction:
p = 6ne JRk
The radiation fields are
2 ikr 2 ikr
ck® . e ck e .
H=—"nxp—=——6ne VR’ —nxKk
4T r 4n ¥

_ 3c/’c2.*‘::20V11’€2 e “in 9(— &))

and



2 2 _ikr
E= Mo pxn= 2R G o(-6)
& 2

¥
The angular distribution of radiated power is

4
gg]—: =(S)-nr’ = ;qitOclp\z sin’ @
= 30;;%06 (6me,VR? ) sin? 6 = 90)4V2§:“°€°2 sin” ©
e ER o,
The total radiated power is
P- 'y (6neR) _ 3nce,V 2 k*R*

127t%¢c



PY522 Fall 2000
Homework No. 7

1. It is impossible for a spherically symmetric distribution of charge oscillating radially to
radiate. Prove this by the following method. Take the current to be

E.0,) = )

where f is a function only of ' and g is the retarded time. Choose an observation point
along the z-axis to calculate A and the corresponding electromagnetic fields.

The radiation part will be the 1/r part correspondmg to

r r-n
C C
and
A(r,t)= Bol Jd3r'J =T a D Orde —12—
4t r C C y
SO

A(r, ) ::(.)trjd3 /rf( ) —iox zkre—zla cos 6

where as usual, 0 is the angle between rand r'.
A(r, ) ZJ'O ta)zjaﬁr rf 1Ia"cose
T

or

oo 1 2n
}l -io.v s 72 ’ ’ . : 4 ’ 7 7\ —ikr'cos6
A = 470[ - fdr r j']’a’cosG B[dtb sin 0" cosd’ r7(r') e

ikr n
_Ho € _,@, ’ ,2 ’ PtV i (L —ikr cosO
Ay_ﬂ - Jdr :l[dcos9 qu) sin @’ sind’ 7’ (+’) e

ik 2n
_Hoe ""”’Jdr’ r'? Jdcos o’ Jd(b' cos® rf(r') e eos®
-1 0

4n r

Now we choose the observation point to be along the z axis, i.e.



~ ~

n=1z
cos0’ = cos
ikr o0 2n 1
A = Ho € o jdr' rf (r')jd¢'cos¢' Jd cos®'sin @ e —
4m r ° ° °
- u eikr oo 2r 1
A =20 i j dr'r £(r') j do’sing’ [ d cos§'sin @’ e 7o
4w r d d ’

so A is only in the z direction (radial). The fields are

HziVxA~Axﬁ=0
Mo
E=—VxH~(AxA)xA =0
we,



~ 2. A charge ¢ has uniform motion in a circle of radius a plane with an angular
frequency w. Using the electric dipole approximation,
(a) Find the fields E and H in the radiation zone, and

p = gr = ga(cosot X+ sin wt y)
which we may write as
p=gaRe|(2+i§)e™]
The two components do not have the same phase. This will effect
the angular distribution.

H=—hxp—

4n P r

2 ikr

E=—* (axp)xn®
4Te

(b) Find the angular distribution of the radiated power.

ixp| = Oy ol - G -p)a-p)]

2P _is)5r7 = S

79 32n’c 321’c
we have
n = sin OcosOX + sin O sin oy + cos Oz
SO
fi -p = gasin 6(cos ¢+ isin ) = gasin Be™
and
AP O'Wy [y 2 2 2 2. 2 w'lyq’a’ .2
= 2g°a’—q a’ sm” Q= 2—sin‘ 0
aQ 32n2c[ 74 | e ( )

(c) Is there magnetic dipole radiation? Why or why not?



The current density is

J(r')=pv
The velocity is
27a - .
v=—r-oO>0=wa
T b ¢

(where T is the period). The charge density is

p = L8(2)lp~a)B(o - o)
because

J‘d(pjdzjdrrp:q
I(r)= g0od(z)8(p — a)5(0 — wt }p

The dipole moment is

Therefore

2
m = l_[cz’3r’r xJ(r) = 9%a
2 2
The magnetic moment does not depend on time (because there is
no phi-dependence to the current density. Therefore, there is no
magnetic dipole radiation.

(d) Is there electric quadrupole radiation? Why or why not?
The quadrupole moment is

0, = fdJr'p(3x,.’x; — 5,.jr'2)
= [ (e, —8,7) g 8(2)8(p — a)(6 — wr)

= q(3x,.xj — BiJ.az)
where
X, = acosot



X, =asin ¢
x,=0
[ 3cos’wr-1 3coswisinwr 0 |
Q, =qa’|3coswtsinax  3sin‘wt-1 0
i 0 0 —1‘_

This depends on time so there is electric quadrupole radiation.




3. Two identical charges scparated by a distance 4 are rotating in the x-y plane with an

angular frequency .
(a) Find the electric dipole radiation fields E and H.

p= Eqr = ga(cos ot X +sin t §)+qga(-cos ot X —sinwr §)=0
(b) Find the angular distribution of the radiated power.

dP

dQ

(c) Calculate the magnetic dipole moment and the corresponding angular distribution of
radiated power.

p="8(2)3(p ~a)j8(0- wr)+ 80— wr+ 7]
J(r')=qud(z)d(p—a )[8( — oot )+ 8(¢p — oot + 1:)]&)

The dipole moment is
1 .
m=- jd"‘r'r)d(r') =qwa’Z
The magnetic dipole is just twice as big as in the previous problem.

There is no time dependence and no magnetic-dipole radiation.

(d) Calculate the electric quadrupole moment and the corresponding angular distribution
of radiated power.

The quadrupole moment 1s
Q, = Id3 r'p(3x,fx;. —Sijr’z)

| = [ a7 (3xx, =8, 2 8(2)8(p - a)8(0 — ot )+ 80 - ot + )]

a

2
_ E: (n) . (n) 2
n=1

1
x," = acosot

where



1 .
xz( ) = asin wt

)]

X, =
2
x]( ) =—acosort
2 .
x,") = —asin wt
@ _

-

[ 6cos’t—2 6cosrsinwt 0
Q, =ga’|6cosaxsinwt  6sinwr-2 0
I 0 0 -2 |

Write as cosine and sine of double angles.
6cos’ ot —2 = 4cos’ ot - 2sin® ot =1+ 3cos 2wt

and

6 cos®?sin ®f = 3sin 20¢
to get

1+3cos2m¢t  3sin 2w 0
3sin 2wt 1+3cos20¢ O
0 0 -2

Note the time-independent part does not effect radiation. So the
relevant part of Q is

2

Qiqua

3 3 0
Q,=qa’e™ |3 3 0
0O 0 O
The angular distribution is

dP  ukc
dQ 11521

|(ﬁ><Q)xﬁ|2



where the vector Q is defined as
3n, +3in,
O, =0;n;=|3in +3n,
0

Note: n,, etc. are components (projections) of the unit vector.
We have

(BxQ)xi* =QQ" - (3 - Q)i - Q)
=9n° + 9ny2 +9n % + 9ny2 - l(3nx2 + 3ny2)2j
=9(1-n2)2-(1-n2)=9sin?6[2 - (1 cos?6)]

= 9sin>6(1 +cos?6)
Finally,

dP ke’

sin 0(1+ cos? )
dQ 128n’°




PY 522 Fall 2001
Homework No. 8

1. Show that you may write the vector potemia] in the radiation zone as

A= - L {p],+ [ <]+ 2|g],

47tc ® 24mcr

The dipole approximation is

A=t 7 oot

Integrate by parts (as done in class)

A(r,t)=—i:—;%fd3r'r"7- (r t——]- Hy 1 fa” 'r'a%p(r t—g]
R

c

4m r ot " c) 4nr(dn |, 4mrlor],
where the last step is valid because

dt, = dt

The next part of the potential is given by looking at

i r-n
Ates)= o o ra=Le 22

Now we break this into components

uo 3.7 —ioft-ric) _ior'nl/c
A d’rJ
°" 4g r'[ ( ) ©

U'O jd3r' J(r t__‘}iwr“ﬁ/c
C4mr : C




and expand the exponential

A Mol d3r'J(r t__IH’“"'"]
4t r C C

_[d3 -2 +ifd3r'J A L
4ﬂ:r c) ot c) c

The first term is the electric dipole as discussed above and the
second term will give the magnetic dipole and electric quadrupole
parts.

Now we integrate by parts (exactly like we did in class) using
J(@'-n)= %[J(r'- n)+r'(n-J)+(r'xJ)xn]
and
n-J+(-n), =V [ a3~ (- a )V J
to get for the second term

Ho O s s ) 0P
Alr)= +—\d’r
) 4ncr8t{mxn Jar et g

v

~ o [xn], + ! il jd3r'3r'(l‘"fl)l3ﬂ‘
41cr * 16 or’

.AIR

Ho o on Ho [¢
= X +
dmer [m n] ‘® 24mcr [Q] ®

where again

¥
th zt—;, and dt, =dt



2. A quadrupole oscillator consists of charges —g, +2¢, and —¢ in a straight line along the

"z direction. The positive charges are stationary at the origin while the negative charges

have oscillating positions given by
ot wt
Z, =acos—, 2z, =—acos—
2 2

a) Write down explicit expressions for the charge and current densities and show that the
electric and magnetic dipole moments are both zero.

p =2g8(x)3(y)8(z)— 98(x)&(y)8(z - z,) - g8(x)8(y oz - z,)

p= Id3r'r'p (r)=0-2z2-2,2=0

J= {— qS(X)5(J')5(Z -2z )21 - q8(x)8(y)8(z 2 )Zz}i

SO

SO
m——J’d3 ' xJ(x)=0
because r' and J are both in the z direction.
b) Determine the components of the vector Q:
Ql' = N4
o= [@rpBa? —r7)= [@rplax? - 37 - 27 )= - [ d’rp2”

where the last step is valid because of the delta functions in x and
y. We have

0, = —Q(— z,” —zzz)= 2ga’ cos’ %t = ga’(1+ coswt)
0, =0, = ga®(1+cos )
Jd3r'p 377 - r'2 = 2Jd3r'pz'2 =-2ga’(1+cos o)
0, =03=0,=0

SO



1+cosot 0 0

Q= ga’ 0 [+coswt 0
0 0 —2-2cosmt
The vector Q 1s
(1+ coswi)n,
- Q=gqa*{ (1+coswt)n,
—2(1+ coswt)n,
¢) Determine the fields E and H.
I . . 1 .. 1 SR
H=— Axf=——0_[§xh), =—[0xi],
U, w.c 24ncr o 24ncr #
n, sin ¢

Q= ga’w’{ n,sin ot

2,3 -
a @ s et
H = [Q2n3 Q3 ’7]1 =1 2 R[n2n3+2n3n2]
247tc SR 24m1cr
_qa w’sin Wi,
- 8mclr s
1 ] qaz(x)3 sin Wz,
) = 2 [ n —0n, ), = 2 [_ 2n,n, —n,n3]
° 24mccr R 247mcr
2.3 .
ga’ W sin Wt ,
- 9 nhn,



a*®’ sin wt
3 24nc [Q,n2 Q7n' ]’R =4 247 r : [nlnz _nZnI]: 0

and

E=p,cHXn
d) Determine the time-averaged angular distribution of radiated power.

The angular distribution (not yet time averaged) is

L o (ExH )b =B = per(H2 4 12
, 2
ga’ oy Sll21 Wt, (n22n32+nlzn32)

=W,C
Ko P

Ltoqza“(x)6 sin® oz,

A R sin? B¢cos® O
e

Now time average:
dP _p,g‘a‘o’
dQ 1287
This is a typical quadrupole angular distribution.

sin?0cos’ 0

¢) Determine the total power radiated.

We can integrate

desinzecosz():?—?

or using Jackson 9.49

_u0k6c3 _ Mg 20
14400 2% 14407: 3<Q”Q'f>




where the bracket denotes time average. Note that the Jackson

formula already has the time average and that the triple time
derivative gives a factor of kK°c".

3.2 4

Ho 2 5 4 .2 Kok°c’g’a
P=———- 1+1+4 tp)=
Taaor o ¢ @ {41+ 4)sin’ ar,) 240m



3. For the ideal antenna discussed in class,

J= 105(x)6(y)9{§ —z}{g +z}in Wrz

194
_%oo

consider the limit

a) Calculate the total power radiated.

Mocly
8’
make change of vanables.

sin’ @ . o Tl cosO
5 sin?| ————
cos” 0 A

P=——

0 27tfd931n9

=29
2

sin® =cos O
cos8’ =sin0O
ja’O'COS 9’ <in? T/sin O

2, sin“0 A

2 w2

p= Moo “‘0 cl,

Now let

nlsin ©’
A

dr = (94 c}cjse o’

1]

VA

Zsz
n2€2

b
cos’ 0 =1-

to get



2 )\’2

_ 2 nf/l 1—
P= Hod sm z
nIZ )
232
C Weely" ngﬁz’z sin” z - 2\
41 z’ e’
Fof the case
1194
—>>1
A

we have

72 .
P~ w,cl, (Id sin® z uocI EJdZZszcosz
z° 4\

wcl, f]';d sin2z  pyel,d
- — z = —_
z 4 2
Notice that the intensity goes as £ but the angular distribution at
n/2 goes as 7. Therefore, as / increases, a larger and larger

fraction of the radiated power 1s concentrated at 7t/2. The antenna
becomes highly directional.

0 4

b) Show that the fraction of radiation emitted in the main lobe is

Foain 1+1+ =09

main — 1 —-

P n® 2

rotal
Hint: You will come across an integral

smx smx smx
jdx . _jdx - jdx -

Expand the last integral in powers of 1/x by mtegzatmg by pans




. 7 2 A/¢ 3 A . ’
p = Mol jde,cos 9, Sinz(nésm(-))
4 A

i Ay Z
w.cl,’f
P 27 2
Pmm: 4\ jdzsmzz__"-dzsmzz=_szsm22
o HoCly €T g 2 5 2 Loy z
gL
27T sinx

%2 I sin x 2jdx§£—l———jdxsmx

tozal

1
Fovan =]1+— jdx—icosx

P x dx

total

Now integrate by parts.

P 2lcosx|” 23 . 1
—man 14— +— dx—zcosx
P, Tl x fy TW5o0X

toral




1 2% . cosx
(I S
by parts again:
P 1 2fsinx|” 4%, sinx
=l-—+—|— +—jdx 3
Ptotal TC2 L X 2% nzn X
P . 1 4 7  sinx
le——2+0+——jdx 3
Rotal n n 2z X
by parts again:
P 1 4fcosx| 1 1
main_ —— 3 =1——+‘—4 +
Botal T n x 2n Tcz 27'5



PY522 Fall 2001
Homework No. 9

1. (Jackson 11.3)
Show explicitly that two successive Lorentz transformations in the same direction are
equivalent to a single Lorentz transformation with a velocity
v, +V
v=—»l12
Vv,

1+2

This is an alternate way to derive the parallel-velocity addition law.

Let
_VY _ ]
B:—, Y=
C 2
Vi
1-—
C
% 1
B'E—z, 'Y'E
C V.2
1-—2-
2
C
The Lorentz transformations are
(v By 0 0) (Y BY 0 0)
O O I A4 7 0
Aol BY oY Aol BY Y 0
0O 0 1 0 0 0 1 0
\0 0 0 l} \0 0 O 1)
SO
(v/(1+BB) wB+p) 0 0
| YB+E) m(+Bg) 0 o
0 0 1 0
L 0 0 0 1}



Let

(Y BY 0 0)
A=an=|PY 700
0 0 1 0
\0 0 O IJ
d Y =y (1+Bp)
B'Y =v/(B+P)
which gives
, B+B
P T 1+BR
and
Y= 1/(1+Bp)= e =
J1-p1-p” \/l_(B+B’ )
1+Bp
_ 1
l_B”2

This is the velocity addition rule.



2. (Jackson 11.4)

A possible clock is shown in the figure. It consists of a flashtube F and a photocell P
shielded so that each views only the mirror M, located a distance 4 away, and mounted
rigidly with respect to the flashtube- photocell assembly. The electronic innards of the box
are such that when the photocell responds to a light flash from the mirror, the flashtube is
triggered with a negligible delay and emits a short flash toward the mirror. The clock thus
“ticks” once every (2d/c) seconds when at rest.

(2) Suppose that the clock moves with a uniform velocity v, perpendicular to the line
from PF to M, relative to an observer. Using the second postulate of relativity, show by
explicit geometrical or algebraic construction that the observer sees the relativistic time
dilation as the clock moves by.

Let K be the frame in which the clock 1s at rest. One tick takes

Atz_%i
C

In frame K’, as the clock moves by, the light beam must travel a
greater distance (each way) in the time A¢". Therefore, the vertical
component of velocity is less than c.

Velocity Vector Diagram

c
c" -v

2d’ _2d 1
Jer =v* ¢ NJer=v?

The time interval is longer in the frame where the clock is moving.

At =

= YAt

(b) Suppose that the clock moves with a velocity v parallel to the line from PFto M.
Verify here, too, the clock is observed to tick more slowly, by the same time dilation
factor.



Along one path, say FM, the light travels a longer path (because
the mirror moves away), but along the other path, say MP, the light
travels a shorter path (because the flasher is approaching).

Let #,” be the time taken for light to arrive at the mirror.

ct, =d’ +vt]
This gives

c—V
Let #;” be the time taken for light to arrive back at the flasher box.

ct,=d —vt]
This gives
, d
L, =——
c+v
The time interval in K’ is
, d 2cd’
A =1+t = =
c+v cC —V
The length d’ is contracted,
2
)%
d,Zd 1——2—
C

which gives

'<
\\ vy N



Again, the time interval is longer in the frame where the clock is
moving.




3. (Jackson 11.6) ,
Assume that a rocket ship leaves the earth in the year 2100. One of a set of twins bom in
2080 remains on earth; the other rides in the rocket. The rocket ship is so constructed that
it has an acceleration g in its own rest frame (this makes the occupants feel at home). It
accelerates in a straight- line path for S years (by its own clocks), decelerates at the same
ratc for 5 more years, turns around, accelerates for 5 years, decelerates for 5 years, and
lands on earth. The twin in the rocket is 40 years old.

(a) What year is it on earth?

O===
< — T8

8

Let K be the earth frame. In this frame the rocket has a speed ().
Let K' be a frame that moves with the rocket. Each segment of the
flight has a duration of 5 years in this frame.

The trick to this problem is that we can do a Lorentz
transformation at each INSTANT.

Consider the time ¢ when the speed of the rocket is v in frame K.
In frame K/,

V(t')=0
Consider an infinitesimal change in speed,
AV = gAt’
In frame K, the new rocket velocity is (by velocity addition)
AV +v , VAV’
Vow = ——_.vAv' = (Av +v)1- Cz
1+—;
C
2 ’
v Ay
=AV+yv———+ ora’er(Av'2 )
C

therefore,



/
View "V=Av=[1-__ A,
c
or
2
v
dv=1-__ |’
c
and
a’v__1 v \dv' v?
dt’ c’ |dy c’
This gives
dv
S~ = gdt’
v
I~
c
Integrate to get
1 1 4 v
t'=~jdv >N =—tanh™'| Z
S P c
2
or
gt’
V= ctanh| 2—
C

of spacecraft time ag it accelerates from rest.

Time measured o earth is related to Spacecraft time by




dt’ dt’

dt = = = ’ =cosh(§—t—}’t'
-2 \/1—tanh2(—gi} ‘

C

t = jdt'cosh(—gi)z gsinh(&)
c % c

Now plug in, for t' = 5 years, we get t = 84 years.

or

For all 4 segments, the amount of time passing on earth is 336
years. The year is 2436.

(b) How far away from the earth did the rocket ship travel?
) , Smh( g_)
X C
;’—— =v=¢ tanh(gt ) C
! C
cosh(g— )
C

SO




which for ¢ = 5 years gives x = 7.95x 10'" m.

The rocket travels twice that distance away from the earth, or
1.59x 10'* m.



PY522 Fall 2001
Homework No. 10

1. Quarks were discovered inside the proton by scattering high energy (E;) clectrons from
a hydrogen target and measuring the energy (E;) and angle (8) of the scattered clectrons.

The process is electron-quark elastic scattering,
e+g—>et+q,

In this process we may neglect the masses of both the quark and the electron. Let the
variable x represent the proton momentum fraction of the quark that scatters, i.e., if p* is

the momenturn of the proton in the electron-quark center of mass system, then the quark
momentum is p* | =xp* .. Derive an expression for x in terms £, E, 6, and the proton

mass (M).

In the center-of-mass system, the electron and quark have
momenta of equal magnitudes and opposite directions. Let 8 and y
correspond to the proton in the center-of-mass frame. The proton
momentum (times c¢) in the center-of-mass frame is given by the
Lorentz transformation

prc= YBMc?

b

where M is the mass of the proton. The quark momentum (times ¢)
is smaller than the proton momentum by the factor x,

prec=prex= YBMc*x

For energetic electrons we may neglect the electron mass. The
electron momentum (times c) in the center-of-mass frame is

pe*c :YEi —’YBE

By definition of the center of mass frame, the electron and the
quark have equal magnitudes of momentum

p.* =p*

Therefore,



YE —YBE =yBMc’ x

Solving for x, we get

X

_E(-P)
BMc*

In the center-of-mass frame the electron energy 1s not changed

after the scatter. The energy of the scattered electron in the center-
of-mass frame is

* — —_
Conservation of energy (neglecting the electron mass) gives

YE —YBE =YE.—PBYE cos©

We may solve this expression for f3,
B _ En — Ef
E—E:.cos0-

Now we substitute this expression for  into our expression for the
proton momentum fraction, to get
L E(1-B) _ EE,(1-cosH)

BMc*  (E.-E,)Mc* -




2. Obtain the general expression for fields of a uniformly moving charge,

V=v1Z
by making a Lorentz transformation on the static Coulomb field,
er
E=—, B=0
3
r
Let the charge be at rest in the frame K'.
( e’ e e
0 PR
£ 0 0 0
F’u\' | F ,
ey
N 0 0 0
£ 0 0 0
\r )
FY(x')= NN F"*(x)
where
('Y 0 0 By)
. |0 10 0
Ap = o 10 01 0
By 0 0 v

so the electric field pieces are
F*° = NoApF'*®® = A F™P

, ny _ Yex'
=YyF" +ByF’"° = v

F2 = A%F"™ = yF'® 4 ByF’3 = Yre,_};




FO = A ABFP = Ao A F7P

4
ez
r

= A% (’YBF’OB " ,YF13B )= 'YB'YBF,(B + YzFrso _
and the magnetic field pieces are
F¥ = N ApF' P (x)=F* =0
FY' = NaNpF™P = Ko F'™
= YBFY 4y = — Bex

r’?

F? = Ko NpF'® = NouF'™®

— YBF'? 4 yF"2 = — Byey

y3

Now transform the coordinates

The fields are

E :FIO — Ye’x

i + 57 49 (z-w) |
Ey — FQD — AOBF'Qﬂ — ,YF’20 +B,YF'23
ey
[x2 +y2 +'yz(z—vt)2]’/

/2

5

i




ey(z - vt)

S EFUEIRIE) £
Byey

B :F32 — _
[ +y? +97(z —w)f”
B == Byex
S



3. (Jackson 11.13)

An infinitely long straight wire of negligible cross-sectional area is at rest and has a
uniform linear charge density gy in the inertial frame K'. The frame K’ (and the wire)
move with a velocity v parallel to the direction of the wire with respect to the laboratory
frame K.

(a) Write down the electric and magnetic fields in cylindrical coordinates in the rest
frame of the wire. Using the Lorentz transformation properties of the ficlds, find the
components of the electric and magnetic fields in the laboratory.

I

In the frame K' (using Gauss's law)
E 2mpL = 4nq,L

;24
E — q,0 p
Y
or
E = 24 cos¢’
,xlz +y/2
2 .
E = 9o sin ¢
y ’” 72
xX‘+y
E =
B =0
In the frame K
y=y

and so



pP=p =~x +Yy
¢ =0
The fields transform as
E_ =vE: 2V, cosd’
x* + y?
2yq ,
E,=YE, =—= L =sin¢
X" +y
E, =0
B, =—ByE, = - 8% ging
x?+y?
B, =ByE, = 284, cos ¢’
x? +y°
B, =
Note that B is in the phi-direction.
’) A
p

(b) What are the charge and current densities associated with the wire in its rest frame? In
the laboratory?

In frame K'



(C‘]o\
JH = 0
0
\ 0 Y,
In frame K
(v 0 0 ByYeq,) ( Yoq0 )
1o 10 0 0
JH = =
0 0 1 0 0
Br 0 0 v L0 ] |Breg, )
or
P =Y,
J =g,V

(¢) From the laboratory charge and current densities, calculate directly the electric and
magnetic fields in the laboratory. Compare with the results of part a.

2Yq, -
F= Yo A
P
and from Ampere's law
2mpB, = —1vq,v
or
2 n

in agreement with part a.



4. (3) Evaluate
. v
F7F,

Use your result to convince your self that if the magnitudes of E and B arc equal in one
- frame, then they are equal in all frames and if one exceeds the other in some frame then it
will do so in all frames.

Note:
FiO :Ei
F, =-£k,
FY :—eijkBk :Ej

F"F,=F"F, +F"F,
=F Fy+F"F,+F Fy+F'F, =-2E* +2B’
This quantity is invariant, thus...

(b) Evaluate
Y
SYE,
where

S“V = %euvaﬂFaB

Use your result to convince your self that if E and B are perpendicular in one frame, then
they perpendicular in all frames.

Note:
3’ =¢,,E,

itk

3% =-B



SHVFpV — SOVFOV +SiVFiv
=3%F,+3%F,, +3"F,+3"F,
=23%F, +(e,,E, \-¢,B,) = —2E,B, - 2B,E,
= —4E,B,

This quantity is invariant, thus...



PY522 Fall 2001
Homework No. 11

1. (Jackson 13.4)
Note: mu meson is the old name for what we now call the muon. (It is actually NOT a
meson as originally assumed!)

(a) Taking /i(®) = 12Z eV in the quantum-mechanical energy-loss formula, calculate
the rate of energy loss (in MeV/cm) in air at NTP, alurninum, copper, and lead for
a proton and a muon, each with kinetic energies of 10, 100, 1000 MeV.

(b) Covert your results to energy loss in units of MeV-(cm’/g) and compare the values
obtained in different materials. Explain why all the energy losses in MeV-(cn/g)
are within a factor of 2 of each other, whereas the values in MeV/cm differ
greatly.

The Jackson formula is

2 2
ik _ (0.30MeV-cm™) ? of 2 vB —B?
dx B4 (12eV)Z
rho dE/dx dE/dx

mass (MeV) T (MeV) E (MeV) beta gamma Z A  (g/cm*™3) (MeV/icm) (cm*2/g)
proton in air

940 10 950 0.145 1011 7 14 0.0012 0.0476 39.69

940 100 1040 0428 1106 7 14 0.0012 0.0076 6.33

940 1000 1840 0875 2064 7 14 0.0012 0.0023 1.93
proton in Al

940 10 950 0.145 1.011 13 27 2.7 91.6556 33.95

940 100 1040 0428 1.106 13 27 2.7 15.1444 5.61

940 1000 1940 0.875 2064 13 27 2.7 4.6907 1.74
proton in Cu

940 10 950 0.145 1.011 29 63.6 8.93 240.2818 26.91

540 100 1040 0428 1.106 29 63.6 8.93 42.0812 4.71

940 1000 1940 0875 2.064 29 63.6 8.93 13.4114 1.50
pion in air

105 10 115 0408 1095 7 14 0.0012 0.0083 6.88

105 100 205 0859 1952 7 14 0.0012 0.0024 1.97

105 1000 1105 0995 10524 7 14 0.0012 0.0024 1.98
pion in Al

105 10 115 0408 1085 13 27 27 16.4330 6.08

105 100 205 0859 1952 13 27 2.7 4.8025 1.78

105 1000 1105 0.995 10.524 13 27 27 49173 1.82
pion in Cu

105 10 115 0.408 1095 29 63.6 8.93 455794 5.10

105 100 205 0859 1952 29 63.6 8.93 13.7437 1.54

105 1000 1105 0.995 10.524 29 63.6 8.93 14.4130

1.61



2. Estimate the range of a 5 MeV alpha particle in air.
The speed of a 5 MeV alpha particle is given by

or

~

v |2E, JlOMeV

¢ Vmet  V3700MeV

The alpha particle is heavily ionizing because of its small speed.
The rate of energy loss by ionization is

—%—(307keV m’/kg)- Zp [ (2’""272[32 )— [32}_

AB? I
The logarithmic factor is
o[ 2me 2me™y'B " (2)0.5MeV )(1)*(0.05)" | 3
1 (16eV)(7)* ’

The density of air is about one kilogram per cubic meter. For air,

Z

—=0.5

p :

The initial rate of 1onization loss 1s

_dE
dx

lkg/m’

(0.05Y

=(30.7 keV -m2/kg 0. 5{ ](3)z 20MeV/m-



The rate of i‘onization loss increases rapidly as the alpha particle
loses energy. Therefore the range of the alpha particle in air is only

a few centimeters.

3. A relativistic muon travels a distance of 1 m water. Make an estimate of the number of
visible photons emitted as Cerenkov radiation. Use your result to show that the energy
loss by Cerenkov radiation (—dE/dx )c is very small compared to the ionization loss
(~dE/dx). (See Figure 7.9 on p. 315 for the frequency dependence of n.)

B~1

cosB, = LI 0.75
n

d’N
dEdx
The visible photon window covers

AE =13eV
so the number of visible photons per cm is

i’dﬁ ~ (160/cm/eV)(1.3eV) =210/ cm
X

~370sin’0_(E)eV'cm™ =160/cm/eV

The average photon energy is 2.3 eV, so
(‘;—E) =(210/cm)2.3eV)= 480eV/cm
X Jc

and for 1 m the energy into radiation is
E. ~(480eV/cm)100cm)= 48keV

We have only counted visible photons. There are more outside this
region (especially UV). However, the Cerenkov radiation is still
much smaller than ionization loss which is measured in MeV/cm.



4. Jackson 13.9

Assuming that Lucite has an index of refraction of 1.50 in the visible region, computc the
angle of emission of Cerenkov radiation for electrons and protons as a function of their
kinetic energies in MeV. Determine how many quanta with wavelengths between 400

and 600 nm are emitted per cm of path in Lucite by a 1 MeV electron, a 500 MceV proton,
and 5 GeV proton.

0 1
n
for B = 1, this corresponds to
0 =48
Since
g2t \/(mc" +K) -(me?)  JK*+2mck
E mc? +K mcl+K
We have
,
me -+ K
cosO, =
VK2 +2mc2K
mc™2 K (MeV) beta cos theta-C  theta-C
0.511 1 0.941079 0.7084067 449
0.511 10 0.998818 0.6674559 48.2
0.511 100 0.999987 0.6666753 48.2
940 500 0.757549 0.8800306 28.4
940 1000 0.874771  0.762104 40.4
940 5000 0.987399 0.6751744 47.6
d*N ) o -
~370sin’ 0, (E)eV'cm™
dEdx
The energy window is 2.1 eV to 3.1 eV, so
dN . 2 _
— =370sin’ 0_(E)cm™
dx
mc*2 K (MeV) beta cos theta-C  theta-C sin thetaC N per cm
0.511 1 0.941079 0.7084067 44.2 0.7058045 184
940 500 0.757543 0.8800306 28.4 0.4749171 83

840 5000 0.987399 0.6751744 47.€ 0.7376581 201



Physics 6346, Electromagnetic Theory 1
Fall 2000
Homework 1 Solutions (Revised 9/5/00)

1. Review of vector calculus. Prove the following identities from vector calculus:

(a) VxVy=0

(b) V-(VxA)=0

() Vx(VxA)=V(V-A)-V2A

(d) V.-(AxB)=B:(VxA)-A-(VxB)

Solution. This is standard material. If you had trouble, please review a textbook on
mathematical methods, such as Arfken or Boas.

2. Curvilinear coordinates. We will often work in coordinate systems other that rect-
angular coordinates—for instance, in cylindrical or spherical coordinates. Explicit
forms of vector operations in these coordinate systems are on the inside back cover of
Jackson. Here we’ll review how this is done. A good discussion can be found in Morse
and Feshbach, §1.3.

We want to go from the rectangular coordinates (z,y, z) to a new set of coordinates
(&1,&2,&3). An infinitesimal displacement dr along the curve r(&;, &, £3) is given by

Or or or .

dr = 3¢, dé + 3€2d§2 + 353‘1{3- (1)

If we vary £ while holding & and &; fixed, then 9r/9¢; is tangent to r along this

curve; likewise for & and £3. If e; is a unit vector along this direction, then we can

write 9r/0¢; = hyey, with hy = |0r/0€,|; similarly, Or/0€; = hpeo, with hy = |0r/8¢,|,

and Or/0¢; = hyez, with hy = |0r/0€s). The quantities (hy, he, hy) are called scale

factors. If (e;. e;, e3) are orthogonal at each point in space, then we have an orthogonal
coordinate system. In this coordinate system an element of arclength ds is given by

ds® = dz* + dy? + d=* = h}d€ + h3de; + h3des, (2)

where the scale factors h, are given by

oz \? dy 2 9z \?
hZ = — .
- (%) * (a&,) *\ae, @
In terms of the scale factors, the volume element in the new coordinate system is
dV = hyhohydg) d&; d&s, (4)



the gradient of a scalar function ¢ is

1 09 1 09 1 0

V= 6 T e T 0

and the Laplacian of ® is

hihohs |06 \ Ry 06 ) 8& \ hy 062) ' 06 \ hy 06

(3)

V2P [6 (h.2h3@)+ 0 (h,ah,l 6<I>>+ ] (h,hg_@)]' (©)

Find dV, V&, and V?® in the following coordinate systems:
(a) Cylindrical: x = pcos¢, y = psing, z = z.
(b) Spherical: z = rsinfcos¢, y = rsinfsing, z = rcosd.

(c) Parabolic cylindrical coordinates: £ = (1/2)(u® — v?), y =uv, z = z.

Solution. The results for cylindrical and spherical coordinates can be found in
textbooks and Jackson. For parabolic cylinder coordinates, we have (&, &2,€3) =
(u,v, z), with the scale factors hy = hy = Vu? + 92, hg = 1, and orthogonal unit
vectors (e, ey, e;). Then dV = (u? + v?)dudv dz, and

1 oo oo od
vé \/ﬁ ('a—ueu -+ %ev) + &-ezg (7)
w1 (0 0\ 50
Ve u2+v2(8u2+3v2 +622' (8)

3. Dirac delta function.

(a) Jackson’s Problem 1.2 gives a possible representation of the Dirac é function,

in terms of a Gaussian. Give at least two other representations (you may have
already encountered the square box, the Lorentzian, and the sinc function, but
you can also be creative). Make sure to normalize your function properly.

Solution. For the Gaussian, we have

1 2 2
5 - —x?/2¢ ,
() = <= (©)

in the limit that ¢ — 0. If you plot this you'll see that the function becomes
narrower and higher as ¢ — 0. You can also try the Lorentzian,

1 €
M) = ————s
(@) == (10)
or the sinc function.
_ 1sin(z/e)
() = =L, (1)

with € — 0 in both cases.



(b) Using the result of Jackson’s 1.2, express the three dimensional § function in
cylindrical and spherical coordinates.

Solution. If you work through Jackson 1.2, you’ll find that in an orthogonal
coordinate system (£),&2,&3), the Dirac delta function can be written as

5@ (x — x') = h—],;Tsa(fl — E)8(E2 — E)6(Es — £)). (12)

In cylindrical coordinates, (&1,£2,&3) = (py9,2), and hy =1, hy = p,and hz = 1,

so that ; N g ,
5(3)(x—x')= (p—p) (¢;¢) (Z_Z).
In spherical coordinates, (£1,62.&) = (r,68,¢), and hy = 1, hy = 7, and hy =

rsin @, so that
_r—r)é0-0)i¢—¢)

(13)

By — x’
7 (x —x) r2sin 6 ) (19)
This is often written in the following form:
59 (x — ') = o(r—ﬂ)é(cosﬁ—cose')é(d)—q))' (15)

r2
See p. 120 in Jackson.

4. Simple applications of Gauss’s law. The following charge distributions are highly
symmetric; the electric fields produced by them are easily calculated using Gauss's law
in integral form. You should be able to do these in your sleep (of course, as a first
year graduate student you're probably not sleeping much). Calculate the electric field
(magnitude and direction) in each case, being careful to spell out all steps.

(a) A point charge q.
Solution. These are all standard exercises, which can be found in any introductory
text, so I'll simply quote the result. If you had difficulty, please review and see

me. For a point charge,
q e

= 471'60.73’
(b) A sphere of radius R with a uniform charge density p (find the field both inside
and outside the sphere).

E(x) (16)

Solution. (or /3e0) 5
_ or/3en)e, r<
B(x) = { (pR3/3¢gr*)e, 7> R. (17)
(¢) An infinite line of charge with charge per unit length A.
Solution.
E(x) =

27!'((]7' (18)



(d)

An infinite cylinder of radius R with a uniform charge density p (find the field
both inside and outside the cylinder).

* Solution.

E(x) = { (pr/2c0)e, T <R (19)

(pR?/[2¢or)e, T > R.

5. Use Gauss's law to prove the following statements about conductors (essentially Jack-
son1.1):

(a)

Any excess charge placed on a conductor must lie entirely on its surface.

Solution. First, recall that in equilibrium the electric field inside a conductor is
zero. Why? Suppose that the field were initially nonzero; any charges in the
interior would then move in response to the field (since this is a conductor). After
some relaxation time this process stops, since the moving charges produce currents
which dissipate energy. The final configuration is one in which the charges have
been arranged so that the field in the interior is zero. Since E = 0 everywhere
inside the conductor, from Gauss’s Law the charge density p = 0 everywhere in
the interior. Therefore any excess charge can only reside on the surface of the
conductor.

A closed, hollow conductor shields its interior from fields due to charges outside,
but does not shield its exterior from the fields due to charges placed within it.

Solution. Let’s start with the second part. Consider a positive charge @ placed
inside a hollow conductor as shown in the figure below. The charge induces a
charge density on the interior surface of the conductor in such a way that the
electric field in the interior of the conductor is zero (the net charge on the interior
surface must be —Q). Assuming that the conductor is charge neutral, this means
that there is an induced charge density on the exterior surface of total charge Q.
If we apply Gauss’s Law to the Gaussian surface G surrounding the conductor,
the total charge enclosed is still @, and there is therefore an electric field outside
the conductor.




(c)

Next, consider some charge exterior to the conductor, which produces an elec-
tric field, as shown sketched in the figure. The electric field in the conductor is
zero, with induced charge densities on the exterior and interior surfaces of the
conductor. Now imagine moving a charge on the interior surface from point A to
point B along path 2 which goes through the conductor itself. Since E = 0 in
the conductor, [, E - dl = 0 along this path. Next, move the same charge from A
to B along path 1, in the interior cavity of the conductor. Since the electrostatic
field is conservative, the line integral [, E - dl = 0 along this path also. In fact,
this must be true for any path which we chose in the interior, so we have quite
generally E = 0 in the interior—the conductor shields its interior from fields due
to charges placed outside. This is the principle behind the Faraday cage.

IR
IR

The electric field at the exterior surface of a charged conductor is normal to
the surface and has a magnitude o(x)/eo, where o(x) is the local surface charge
density.

Solution. First, we note that in equilibrium the field at exterior surface must be
normal to the surface—a component tangent to the surface would cause charges
to move on the surface, until they had arranged themselves so that the tangential
component is zero. Once we've established this result, the magnitude of the field
is derived by using Gauss's Law with a Gaussian “pillbox™ which cuts through
the surface. The electric field is zero on the conducting side of the pillbox, so
$E -nda = FA, with A the area on the surface (note that for a sheet of charge
this becomes 2 A, where the factor of two comes from the two side of the sheet).
Setting this equal to Q/eq, and then dividing by A, we obtain the desired result.

o



"SIX®
Arpwutds a1} st s1xe-z ay3 1eyy os ‘aurfd £ — T 3y} Jo WBLI0 Y} 1B PAISIUAD ST FULI Y],
‘b a81eyp painquuIsip A[ULIOJIUN € $3LLIEd I suiped jo Suu reuoln y -Sulr padrey) ‘g

(jrequinu Hig

B) U1/ A (01 MOQe S| pPEY d111993 3y} Jo apujugew ay) 1ey) puy [ ‘sIdquInu 8g) ul
Suning "y [ & ;-0 9N ‘3[eds JIWOIE dY3 18 PAY J11133[d 3Y1 JO AN[BA Y} EWIISI O,

£ Oup
(c) "io-? ({ + %) - = (1o

‘[eriuajod 9y) ule1qo 0} p[RY JMIS[A 9y jeIdaul uBd M ‘4Q/pQ— = ‘g oulg

4L Z \ Mup
(V) 107 (Z_ + -+ —) — =
I © /0 b
puy am ‘[eidsjul syl UNWLIOID
1g 0 03
‘ | ap Ay | ,_9—Db /—b— =
© [’p‘“ t’(' e’o)* ]t

s
WALy = vpu-g{?{

puy am ‘4
SUIPBI JO 90vLMs Ueissues) [eouayds e 03 patjdde ‘uLroj (B13ajul ut mer s ssues) Jusu £g
494 = (X)d :[BIpel SI P[ay J11109[d Y} 0s ‘oujewmAs A[[eouragds st A1isusp 8318y iy,

L8
(T) '40_351’ — (%) (g9 = (x)d
st £31sUsp A3IBYD
[8303 33 08 (X) )0h JO A3suUdp 88IeYD ® $23NQUIU0D uldLo Y} 18 uojoxd Ay, -uoynjog
&Y 1 Jo ddueisip dtuioge [edld43 oyl 38 7 JO SPUIIUIBUL [EILISUIMU 3T St 1BYM

"(4)@ s, uosyoe( puy pnoys nojp -uotjeidajul 4q (+)d puy wayl
pue ‘me[ sssnex) 3uisn pay 211309[3 Y1 andwod ‘uiduo sy} e b a8reyd jutod e pue

(1) =m_a§b- = (2)d

Ansuop a81eyd uoI1oa|d paderoar sull} syl YHM Ie}s
"9819A31 Ul AUOP G'[ uosyony A[[BlIUassd st s1Y ], ‘uioje usldoipAy ayj} 10j renyusjod °[

SUOIIN{OS Z HIOMIWOY

000¢ 1red
I A109YJ, o130uSeUIoldd[y ‘9FE9 SoIsAqd



(a) Find the electrostatic potential on the z-axis of the ring.
Solution. This is straightforward. The result is

q 1
(b) Find the potential at any point in space. You can express the integral as an elliptic
integral or a hypergeometric function, or as an expansion in Legendre functions
(see Jackson, p. 91).
Solution. Let’s work in cylindrical coordinates (although spherical coordinates
would work fine). The charge density is

8(p — R)8(z)

plx) == " (M
Recalling that in cylindrical coordinates
x — x| = \/p? + 2 — 2pp' cos(¢ — &) + (2 — 2')2, (8)
we have for the potential
1 p(x)
= — [y =7
(x) 47eq / o |x — x|
- 9 1 / ' 1
dmeo2mJo T\ o2+ R2+ 22 — 2Rpcos(¢ — &)
g 1 /2" 1
= 2 _ [Tda
dmeg 2w Jo VPP + RZ+ 7= 2Rpcosa’ %)
where in the last line we've substituted a = ¢ — ¢’ and have shifted the limits of

integration.

At this point we're basically done; the integral can’t be expressed in terms of
elementary functions. However, with a bit more work we can express it in terms
of an elliptic integral, the properties of which are discussed in textbooks on math-
ematical physics. To do this, first notice that the integral can be written as twice
the integral from 0 to 7; then change the integration variable to 8 = (7 — a)/2,
with the result

px) = 12 [ db . (10)
dmegm Jo  /p*+ 22+ R* + 2Rpcos 23
Next, use cos 23 = 1 — 2sin? § to write the integral as
1 =/2
o(x) = 2 e — (1)
Mo flp+ B2+ 2200\ [1 - k2sin? 3
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with AR
K= — P 12
(p+ R)? + 2 12
The integral is now in the standard form; it is the complete elliptic integral of the
first kind, K(k) (see I. S. Gradshteyn and M. Ryzhik, Table of Integrals, Series.
and Products. Fifth Edition, Sec. 8.11), so our potential can be written as

qg 2 1
= K (k).
dmeg w /(p+R)2 + 22 (k) (13)

The results for spherical coordinates can be obtained by substituting p = rsiné,
z = rcosf, into these expressions.

d(x) =

(c) A positive test charge is located at the center of the ring. Is this a position of
stable equilibrium? (Consider displacements both in the plane of the ring and
normal to the plane of the ring.) For stable displacements, find the frequency of
small oscillations of the test charge.

Solution. Let's first consider displacements normal to the plane of the ring. Then
the potential is given by Eq. (6); expand the potential about z = 0:

N B Y P
‘I’(p—O,&)—‘lmuR(l 2R2+"')’ (14)

so we see that z = 0 is an extremal point. If we place a test charge ¢’ near z = 0,
then the potential energy is

, 122
U(p=0,2)=q¢(p=0,3)=—§(1-‘_"'---)7 (15)

so z = 0 is a stable equilibrium point for displacements normal to the plane if
qq < 0, and unstable if g¢’ > 0. The frequency of small oscillations for a particle
of mass m is obtained by setting

1
U(p=0,z)=U(0,0) + §mw222, (16)
so that ,
2_ __ 99
o= dregm PR3’ (17)

Next, we want consider displacements in the plane of the ring. Expanding the
potential near p = 0, we obtain

P T N
(1)([),.'.—0)—471'60[?<1+4H2+...). (18)



The potential energy of a test charge of charge ¢’ is then

g¢ 1 P
Up,z=0)=¢d(p,2=0)= ——={14+—+...].
(p.z2=0)=q®(p,z2=0) 4WCOR(+4R2+ (19)
Therefore there is a stable equilibrium point for in-plane displacements when
g7 > 0, and an unstable equilibrium when ¢¢’ < 0. The frequency of small
oscillations is
2 qq

“ = 8megmR3
Notice that motion which is stable in one direction is unstable in the other, so
that the origin is a saddle point (recall that in a charge-free region of space the
potential cannot have minima or maxima).

(20)

(d) Suppose that the ring is now replaced with an ellipse. How are your results from
part (c) changed?
Solution. The results are essentially unchanged. To see this, consider the expan-
sion of the potential near the origin:

<I>(0)+r-V<D+lz:zz 5o
253 a”h 0z,0z4 r=0+

®(r)

= ¢(O)—r-E(O)—%Zzax5 (gf;) +.... (21)
a,f r=0

For any sufficiently symmetrical charge distribution, the electric field at the origin
will vanish, so this will be a saddle point of the potential. Of course, the frequency
of small oscillations will depend on the details of the charge distribution, but the
existence of the saddle point only depends on the symmetry.

3. Capacitance. Jackson Problem 1.6.

Solution. These are standard, and the results can be found in elementary textbooks.
The capacitance of a parallel plate capacitor is

CQA

C= R (22)
with A the area of the plates and d their separation. The capacitance of two concentric
spheres of radii a, b (b > a) is

ab

b—a
The capacitance of two concentric conducting cylinders of length L large compared to
their radii a, b (b > a) is

C = 47!'6(7)

(23)

_ ?..TFCQL

" In(b/a)’
If the capacitance per unit length for a coaxial cable is 3x 107" F/m, then for o = 1 1nm
1 find that we need b = 6.4 mm.

(24)



4. Force between conductors. Jackson Problem 1.9. You only need to consider the
parallel plate geometry.
Solution. First, let’s assume that the charge on each conductor is held fixed (so that
the conductors are electrically isolated). The energy stored in the capacitor is

_ @ _ Q4

W= = .
2C 2(()A

(25)
The force on one of the conductors is then
121%4 Q?
F=- (W)Q T T2eA’ (26)

We see that the force is attractive, and that the force per unit area is 0%/2¢y (with
o = @/A the charge per unit area). This agrees with the derivation on p. 42 of Jackson.

Now let’s assume that the potential difference between the conductors is held fixed.
This can only be arranged by attaching the conductors to a source of charge (a battery).
In calculating the work done in moving the capacitor, we need to account for the work
done by the battery in moving charge on and off the plates. After accounting for this
(see the lecture notes), we find that

W—QCV——QdV, (27)
and oW AV?
F= ( aa)v 242 (28)

By using @ = CV, we can show that results in Eqs. (26) and (28) are equivalent.
5. Poisson’s equation. In the jellium model of a metal surface, the ionic charge density

can be taken as .
_ ) ifz<0
Pion = { 0 ifz>0 (29)

where the metal occupies the half-space z < 0. A plausible model for the electron

density is
1
Pelectron = — P07 ——= (30)

er/o 1’
(a) What are the physical interpretations of the constants py and a? Plot the total
charge density for several different values of these constants.
Solution. The total charge density is the sum of the ionic and electronic contri-
butions: ,
£ if z <0
plz) = { Permg 7 (31)
L ey oaret if z>0.

-

3



We can write this in the more compact form
sgn(z)
elél/e + 1"
The prefactor pg is the free electron charge density in the bulk of the metal, and

a is the distance over which the electrons “leak™ out of the metal and into the
vacuum. We expect ¢ to be of order 1 A.

p(z) = —po (32)

(b) Solve Poisson’s equation for this model charge density. [Hint: note that since

the charge density only varies in the z-direction, Poisson’s equation is one dimen-
sional. You will need to solve it for z < 0 and z > 0, and match the solutions

appropriately.]
Solution. We need to integrate the one-dimensional Poisson’s equation, which is
d*® z
dz €o
Integrating once, we have
d® _ _apo\ ( jzi/a
E——Eln(e +1), (34)

where the integration constants are chosen to be zero to guarantee that the electric
field vanishes at z &+ occ. We need to integrate this again in order to find the
potential; there will be another integration constant, which we will choose so that
®(—00) = 0 (the potential is chosen to be zero in the bulk of the metal). With
this choice, we have

o(z) = - 220 / ~In (e 1) a2 (35)

€ J-o0
Calculate the quantity ®(o00) — ®(—00). Use this to find the surface dipole density
on the surface. |Hint: you should find that D = —=x%a®py/6.]
Solution. From our solution above, we see that

d(00) — B(—00) = —%’9 In (e71#1/2 + 1) a2’
o J-oo
2% [
= - apo/ ln(e""-&-l)du
€g 0
2a%py [ =
iy o

At length scales larger than a, it appears that the potential is discontinuous upon
crossing the surface. This discontinnity can be attributed to a “double layer,”
with surface dipole moment density D given by [see Jackson, p. 34, Eq. (1.27))

D = &®(00) - ®(—c0)]
o’y

6 (37)



This is the same result which we would have obtained by calculating the dipole
moment density directly:

D = /_O:o 2p(z)dz

= < [ o

7‘_20,2
= = o (38)

Surface dipole layers make an important contribution to the work function of
metal surfaces; for further discussion, see A. Zangwill, Physics at Surfaces (Cam-
bridge University Press 1988), pp. 57-63.
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Physics 6346, Electromagnetic Theory 1
Fall 2000
Homework 3 Solutions (Revised 9/27/00)

1. Jackson 2.1. A point charge ¢ is brought to a position a distance d away from an
infinite plane conductor held at zero potential. Using the method of images, find:

(a) the surface-charge density induced on the plane, and plot it;

(b) the force between the plane and the charge by using Coulomb’s law for the force
between the charge and its image;

(c) the total force acting on the plane by integrating 62/2¢, over the whole plane;
(d) the work necessary to remove the charge g from its position to infinity;

(e) the potential energy between the charge ¢ and its image [compare the answer to
part d and discuss].

(f) Find the answer to part d in electron volts for an electron originally one Angstrom
from the surface.

Solution. All of these results are worked out in some detail in Chapter 4 of the lecture
notes.

2. Two infinite, grounded conducting planes are located at z = —a and £ = a. A point
charge q is placed at a point (2,7, 2’) between the plates.

(a) Find the positions of all point charges needed to satisfied the boundary conditions
on the potential.
Solution. We start by placing image charges of strength —g at positions 2a — =’
and —2a — z’ in an attempt to make the potential vanish at £ = +a. However,
the image charge at 2a — 2’ contributes to the potential at z = —a, so in order to
cancel this contribution we need another image charge of strength +¢q at —4a+x';
likewise, we need +q at 4a + z’ to cancel the contribution at * = a from the
negative image charge at —2a—a’. Of course, these two image charges will require
corrections, in the form of image charges of strength —¢q located at —6a — 2’ and
6a — z’, and so on. So the result is that we require an infinite number of image
charges, with +¢ placed at 4na-+z' (with n an integer: n = 0 is the source charge),
and —q placed at 2(2n + 1)a — . The potential is then

7 | < 1
(z.y,z) = -———[
( dmeo n=z—:oo \/(.7: —z'—4na)® + (y— y')? + (z — 2')?

B Q1
n;oo (z+z—22n+1Na)2+ (y—y)2? + (2= 2')? (1)




You can verify that ®(z = e,y,z) = 0 by changing variables to m = —n in
the second sum; it is then identical to the first sum. Likewise, to show that
®(z = —a,y,2) = 0 change variables to m = —(n + 1) in the second sum, and
show that it is equal to the first sum.

(b) Find the Green’s function G(x,x’) between the plates.
Solution. The Green’s function is the solution of Poisson’s equation for a point
charge of strength ¢/4meq = 1, which satisfies the Dirichlet boundary condition

that G = 0 on z = +a. But we've already solved this problem above—the Green’s
function is just ® in Eq. (1) with ¢/4wes = 1.

3. Jackson 2.2. Using the method of images, discuss the problem of a point charge inside
a hollow, grounded, conducting sphere of inner radius a. Find

(a) the potential inside the sphere;
Solution. The charge ¢ is inside the sphere of radius a, at a position s from the
center (taken to be on the z-axis). The image charge ¢’ is a distance &’ from the
center, as shown in the figure. This essentially identical to the exterior problem;

with s’ = a?/s and ¢’ = —(a/s)g, one can show that the potential

1 ! 1
o = 2 + 2

Ameo \[r2 + 2 + (2 - 5)2  A7eo V2 + g2+ (2~ )7

q [ 1 (a/s) ]

47meg | V1?2 + s2 — 2sr cosf B Vr? + 82 — 2s'rcos 8

is zero on the sphere 22 + y? + z2 = o2
(b) the induced surface-charge density;

Solution. We need to calculate the normal component of the electric field; in this
case we want the inwardly directed normal, so

o) = —cE(r=a,0)

2



_ L[
_€°ar,:a

aa®—s? 1
= -2 (3)

“4Ar a?  [s?+a% — 2sacosO)3/?

By integrating this around the sphere, we find that the total induced charge
density is —q.
(c) the magnitude and direction of the force acting on g.

Solution. The force can be obtained from the force that the image charge exerts
on the source charge,

1 ¢ 1 q*as )
T 4meg(s— 8')2 dmeg (s — a2)?

(d) Is there any change in the solution if the sphere is kept at a fixed potential V'? If
the sphere has a total charge @ on its inner and outer surfaces?

Solution. We can imagine adding total charge @ to the conductor in two steps: we
first ground the conductor and allow the surface charge density to adjust so that
the potential on the surface is zero. We then remove the ground wire and add the
charge; since the existing surface charge is already in equilibrium with the point
charge, the added charge will distribute itself uniformly over the surface. Such
a spherical symmetric charge distribution doesn’t contribute to the electric field
inside the sphere, so the field inside is the same as before. However, we choose
the potential to be zero infinitely far from the sphere, the surface of the sphere
is now at a potential V = (Q — q)/(4mega), so the potential inside the sphere is
shifted by this constant. Likewise, if the sphere is raised to a potential V, the
potential inside the sphere is increased by the constant V, which doesn’t effect
the electric field inside the sphere.

4. Jackson 2.10. A large parallel plate capacitor is made up of two plane conducting
sheets with separation D, one of which has a small hemispherical boss of radius a on
its inner surface (D > a). The conductor with the boss is kept at zero potential,
and the other conductor is at a potential such that far from the boss the electric field
between the plates is Ey.

(a) Calculate the surface-charge densities at an arbitrary point on the plane and on
the boss, and sketch their behavior as a function of the distance (or angle).
Solution. The trick here is to realize that the field between the capacitor plates
is equivalent to that of a grounded conducting sphere placed in a uniform electric
field. The potential is therefore

a3
&(r.0) = —Ey (r - ﬁ) cos B, (5)

3



(c)

for 0 < 6 < /2. We can write this in rectangular coordinates as
Eyadz

‘I)(:v,y,z) =—FEpz + (1132 +y2 - 22)3/2-

(6)

The surface charge density o is obtained from the normal component of the electric
field at the conducting surface. On the hemispherical boss, we have

g(f) = eFEr(r=a0)
0o
- (&),
= 3egEycosb. (7)

On the remaining, flat portion of the conductor, we have for the surface charge
density

o(z,y) = eE:(z,y,2=0)

___ [o®
= T 9z ) _,
3

= fOEO [1 - (TL'ETGZI;W] . (8)

Show that the total charge on the boss has the magnitude 3megEqyal.
Solution. Now we integrate o(8) over the hemisphere:

w/2 9 .
Gindned = /0 o(0)(27a? sin 6)d6
= 3megEya’. (9)

If, instead of the other conducting sheet at a different potential, a point charge ¢
is placed a distance d from its center, show that the charge induced on the boss

i e ] o
= iET e (10

Solution. Referring to the figure below, to take care of the boundary condition
on the boss, we place an image charge at &' = a?/d of strength ¢ = —q(a/d).
Then, to make the potential zero on the z = 0 plane, we place an image charge
of strength —¢' at —d’ and another of strength —¢ at —d.

The potential on the vacuum side is then

q)(.’E,y,Z) = a [ . - !
4mey \/1,2 +12 + (2 — d)? \/mz + 32+ (2 + d)?

_ (d/s) N (d/s) }
Vit i+ (z—d)? o242+ (z+ d)2)

(11)
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S-N

In spherical coordinates this becomes

q 1 _ 1
47r60[\/r2+d2—2d7‘c050 V72 + d? + 2drcosf

@A (e
Vri+d? - 2d'rcos@  Vr?+d? 4+ 2d'rcosf|

Q(T, 6) =

(12)

Next, calculate the induced surface charge density on the boss:

ald) = —e (Z—f)

ga d? - a® 1
4r  a® | (a®+ d? — 2dacos 0)3/2

1
@@+ e+ 2dac050)3/2]' (13)

The induced charge on the boss is

)2
Ghous E o(8) (27 a® sin 0 d)

&? — a?
= —q l—m . (14)

I did the integrals using Maple, but they could be easily performed by changing
variables to u = cos 6.

w



5. Conducting cylinder in a uniform electric field.

(a) Use the method of images to find the potential outside of an infinite conducting
cylinder of radius a placed in a uniform electric field perpendicular to its axis.
[Hint: you'll need to use infinite line charges rather than point charges.]
Solution. Place source line charges £\ at £ = Fx,, and image line charges £A
inside the cylinder at z = +a?/z5. Recall that the potential due to an infinite
line charge located at (zg, yo) is

B(z,y) = ———In [\/(a: )+ (v - yo)"’/R] , (15)

where R is a scale factor with the dimensions of length. The potential due to the
two source line charges is

Pourer(2,) = —%{ln [+ zor + (v = w/A]

wEp

~in [tz 20+ = /] }
A ]n[(m+m0)2+y2]
dweg | (z — To)? + y2

2 In [1 + 2(p/xo) cos ¢ + (P/x0)2J
dmeg |1 —2(p/x0) cosd+ (p/x)? |’

where in the last line we've introduced polar coordinates (p, @) such that r =
pcos @, y = psin@. Now take zg > p, and expand the logarithm:

I

(16)

4

47?60.’170

(I)souroe = < ) p cos ¢ (17)

This is the potential for a uniform electric field E = Ege,, with Ey = 4)\/(dmeoxo).
The potential for the two image line charges is

A

Dimage(T,Yy) = —%{m [\/(z —a?/xg)? + (y — yo)Z/R]

—In [\/(I +a?/z0)? + (y — yo)z/R] }
A [(I — a®/z0)* + y2]
47€q (.’E + 0.2/.’17(])2 + y2

A n [1 — (2a®/zgp) cos ¢ + (a*[x2p?)
dmeg |1+ (2a%/z0p)cos @ + (at/xip?) |

(18)



Now take (a%/zyp) < 1, and expand the logarithm, to obtain

(I)image = ( i )a2cos¢

4Tepxg P

a®cos ¢

= Ey .
p

Adding this to the potential for the sources, we have

0.2
®mw=—&@—;}m¢

which is the sum of a uniform field and a two dimensional point dipole.

(b) Calculate the induced surface charge density on the cylinder.
Solution. The surface charge density is

o(¢) = eoEy(p = a,0) = 2e0Eq cos ¢.

(c) Carefully plot the equipotentials and field lines.

(19)

(20)

(21)

Solution. 1 produced the figure below using the contour plot package in Maple V,
which produced a .eps file, which was then edited using xfig to make it look nice.

Equipotentials

Ficld lines



Physics 6346, Electromagnetic Theory 1
Fall 2000
Homework 4 Solutions

1. Fourier series. Consider the function
f@=zlx-2), O0<zsw "

(a) Periodically extend this function as an even function and calculate the Fourier
cosine series for the function.

Solution. The Fourier series is

flz) =

2

o3

_ i": cos£122n:t). A @)
n=1

(b) Plot the Fourier coefficients as a function of n.

Solution. Straightforward—they decrease as n™2.

(c) Plot the first few terms to see how fast the series converges to the function (you
may want to use Maple or plotting software).

Solution. I've used Maple V to plot f(z), along with the two term and five term
Fourier series below.

v
.
T

(d) By evaluating f(z) at 7 /2, derive a series expression for 72,
Solution. From Eq. (1), we have f(7/2) = 72/4; evaluating the series at the same
point, and equating the two, we find
-5
12

n=1

(_1)n+l

: (3)

[N
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. Fourier transform. The Fourier transform of f(z) is

F(k) = /:: f(z)e=* dz, (4)

and the inverse transform is

fe) = [ PRy . (5

(a) Assuming that f(z) and all of its derivatives vanish at 00, show that the Fourier
transform of df /dz is ikF(k). Generalize to show that the Fourier transform of
d"f/dz" is (ik)"F(k). [Hint: integrate by parts.]

Solution. Using the hint, this is straightforward.
(b) The convolution of two functions f(z) and g(r) is defined by

hz) = [ gle - @) dy,
with h(z) the convolution. Show that

H(k) = F(K)G(k),

with H(k), F(k), and G(k) the Fourier transforms of h(z), f(z), and g(z), re-
spectively. In words, the Fourier transform of a convolution is the product of the
Fourier transforms.

Solution.

H(k) = /_Zdze“‘ﬂh(x)
= /_:dme"'“/_zdyg(m— y)f(y)dy

= /_ ‘:dx / : dy [f@)e] [g(z - ye=-)]

[ aut@e™ [ dngle - e
F(H)GK). (6)

. Fourier transforms and Green’s functions. Fourier transforms are very useful for
solving certain types of differential equations. Consider, for instance. the equation of
motion for the damped, forced harmonic oscillator of mass m:

d*r dr f@)

—_— + = —,

dt? T dt 0 m (7)
where wy is the natural oscillation frequency, vy is a damping constant, and f(t) is some
general forcing function (f(¢t) = Fycos(wt), for instance). We can find the general
steady-state solution of this differential equation as follows:

2



(a)

Defining the Fourier transforms of z(t) and f(t) as

X@g:[:fupﬂﬂm, (8)
Fl)= [ fe™at, (9)

show, using your resuits from Prob. 2, that
X(w) = Fw)G(w). (10)

What is G(w)?
Solution. The Green’s function is

Glw) = !

m(—w? + iy + )

(11)

Now we need to invert the Fourier transform to obtain z(t). Again using your
results from Prob. 2, show that

2(t) = [ gt - 9)f(s)ds, (12)
where g(t) is the inverse Fourier transform of G(w):
20 . dw

MU—[mka = (13)

This gives a particular solution of the differential equation; we can always add a
solution of the homogeneous equation (i.e., with f = 0). However, the particular
solution will generally give us the steady-state behavior. The function g(t) is the
Green’s function for this differential equation.

Solution. Again, a straightforward application of the results from Problem 2.

Bonus. Calculate g(t) explicitly using contour integration.
Solution. Using contour integration, one finds for the underdamped case (wy >

v/2)
o(t) . = in [V = (2] oo, (14)

myJwd — (7/2)?
where 6(t) = 1 for t > 0 and 8(t) = 0 for ¢t < 0. Note that the Green’s function is
causal—there is only a response after the force is applied.
In the critically damped case (wp = v/2)

9(t) = e 2000, (15)

and in the overdamped case (/2 > wy)

g(t) = ! e "/ sinh [\/(')'/2)2 - wgt} 0(t). (16)

N Y




4. Jackson 2.14. A variant of the preceding problem is a long hollow conducting cylinder
that is divided into equal quarters, alternate segments being held at potential +V and
-V.

(a) Solve by means of the series solution (2.71) and show that the potential inside
the cylinder is

4V n+2 gin [(dn + 2)¢)
Yed) = E(b) Tomt1 a7)
Solution. Start by expressing the boundary condition as a Fourier series. We have
V 0<¢p<n/2
)=V nf2<¢d<
(b, ¢) = V 7<¢<3n/2 (18)
-V 3n/2< ¢ <2m.
We can express this as a Fourier series:
sin 1
o(b, ) = 4_7:i sin 20 + ""36¢’ + “'”5 0 (19)

In the interior region p < b, the general solution of Laplace’s equation in polar
coordinates is

8(p,9) = Ao+ 3 p"(Ancosng + Bysinng). (20)
n=1

Evaluating this on the cylinder, and comparing to the boundary condition in Eq.
(19) above, we find that A, = 0 for all n, and

)
== = 2,6,10,.
p— r bﬂn n Y ? 1 ..
Br { " 70 otherwise. (21)
Substituting this back into Eq. (20), we obtain Eq. (17).
(b) Sum the series and show that
v _1 [2p%?*sin2¢
¢ L el il 4 I .
(p, ) = - ( g (22)

Solution. The potential can be written as

N

22+l 1 14z
=55 ) (24)

®(p,¢) =

Now

I|M8



|

21 R 2\ 1 (14 (PP

1 | { [(b4 — p*)? + 4b* p* sin? 2(13]1/2 }
—In

2 b* + p* — 2b%p? cos 2¢
i 2b2p? sin 2¢ i
+3 tan ( ) (25)

Taking the imaginary part, we obtain Eq. (22).
(c) Sketch the field lines and equipotentials.

Solution. The equipotentials, labeled in units of V, are shown plotted below. The
field lines will be orthogonal to the equipotentials.

R

5. Jackson 2.23. A hollow cube has conducting walls defined by six planes z = 0, y = 0,
z=0,and x =a,y=a, z =a The walls at z = 0 and z = a are held at a constant
potential V. The other four sides are at zero potential.

\!

(a) Find the potential ®(z,y, z) at any point inside the cube.
Solution. Let’s start with the simpler problem of wall at z = 0 being held at zero
potential and the wall at =z = a held at potential V. Then the solution is

biop(r,y,2) = Z A sin (?) sin (m;ri/) sinh v, z, (26)

3



with

= () (2

Apn = —-4—/0 dx/adstin (m) sin (M)
a? sinh(ymna) Jo 0 a a

16V
= d
m2mn sinh(Ymna)’ m,n odd, (28)

and

with A, = 0 if either m or n is even. Next, solve the problem with the wall
at z = a held at zero potential and the wall at z = 0 held at potential V. The
solution is the same, with z —» a — z:

Prorom(T,¥.2) = Y. Amnsin (n;ra:) sin (m;ry) sinh Y (e — z), (29)

m,n odd

with A, and 4, the same as before. To find the solution when the potential at
z=0and z = a is V, we simply add these two solutions:

@(z.y,z) = Qtop(xayyz) + q)botmm(x7y7z)
= Z Amn sin (E) sin ('m‘ny)
m,n odd a a
X [sinh Ymnz + sinh yme(a — z)]. (30)

(b) (optional) Evaluate the potential at the center of the cube numerically, accurate
to three significant figures.
Solution. 1 used Maple V to evaluate the series. If I keep 1 term in each sum,
then I find that ®(a/2.a/2,a/2) = .3329577152 V; keeping 10 terms in each sum
gives ®(a/2,a/2,a/2) = .3333333331 V. This looks a little suspicious; if we use
the results of Problem 2.28, we see that the potential in the center should be the
average value over the sides, which is 2V/6 = 0.333 V!

(c) Find the surface-charge density on the surface z = a.

Solution. The surface charge density ¢ = ¢E - n, where n is the unit normal
directed toward the center of the cube. Therefore. we have

odb
o(r,y,a) = ¢ -(E

= ¢ Z A, sin (ﬂ) sin (%) Ymn(cosh Yuna — 1). (31)

m,n odd a



Physics 6346, Electromagnetic Theory 1
Fall 2000
Homework 5 Solutions

1. 'Image Dipoles. A point dipole of dipole moment p is placed a distance L from the
center of a grounded conducting sphere of radius R. For simplicity, assume that the
dipole points away from the center of the sphere.

(a) Use the method of images to find the potential in the region exterior to the sphere.
[Hint: consider the dipole to be two point charges, and then take the limit that
their separation tends to zero.]

Solution. The two source charges g = g and go = —q are located at z = L + ¢
and z = L — ¢, respectively. Their images are ¢; = —gR/(L+¢) at z = R?/(L+e¢)
and g, = qR/(L — ¢€) at z = R?/(L — ¢), as shown in the figure below.

The potential for this arrangement of charges is

s = 7 : - :
dmeo \/;2+y2+(z—L—e)2 \/1:2+y2-:—(z—-L+e)2
B R/(L + ¢€)
VI2+ 12+ [z - RY/(L + )2
R/(L —¢) } 1)
Ve + 2+ [z - RR/(L - o))

We now take the limit € — 0, while keeping the dipole moment p = ¢(2¢) fixed.
The result is (1 used Maple to help with the algebra)

O(z.y.2) = p z—L
vE = d7eg | [22 + y? + (2 — L)?P/?

(R*/L*)(z — R*/L) (/L%
it R/ gt (o R2/L)2]1/?}'(2)

1



The first term is the potential due to the dipole located at z = L, pointing in the
positive z direction, and the second term is the image dipole with dipole moment
P = p(R®/L?) located at z = R?/L, also pointing in the positive z direction. The
third term. which is somewhat unexpected, is an image point charge of charge
pR/L? located at z = R?/L.

(b) Find the force that the sphere exerts upon the dipole.

Solution. Returning to the two point charges shown in the figure. you can just
add the forces that the two images exert on each source charge. [ again used
Maple to help me with the algebra; the result is

__ p* 2LR(2R*+ L% 3)
T 4me (R2-L2)*

so the dipole is attracted to the sphere. If we take the limit R > L (while holding
d = L — R fixed), then this becomes

_aw )
T Amen 844’ (

which is the correct result for a point dipole a distance d from a grounded con-
ducting sheet.

(c) Find the induced surface charge density on the sphere.
Solution. The surface charge density is 0(0) = egE.(r = R, ), where

od L3 —5LR%+ (LR + 3R%) cosd
ERO=-(2) =LA ol )
or)._p 4meg  [R*+ L2 —2RLcosf)/?
2. Two Dimensional Electric Quadrupole (similar to Jackson Problem 2.20). An
electric quadrupole focusing field can be constructed by using four symmetrically placed

line charges with charge per unit length £, as shown in the figure below. We would
like to solve this problem using complex variable methods.

(a) Show that the complex potential w(z) which solves this problem is

B 2A] [(z—ia)(z+ia)]
T 47eg (z—a)(z+a) |

w(z) (6)
Solution. As explained in class, the complex potential for a line charge with charge

per unit length A located at zg is —(A/2meg) In(z — zp). For the arrangement of
charges above, we have
A

A A , A )
w(z) = " men In(z—a)— Py In(z+a)+ e In(z — ia) + e In(z + ia), (7)

which is exactly Eq. (6) above.



(b) Using z = z + iy, separate the complex potential into real and imaginary parts
®(z,y) and ¥(z,y). Use these functions to plot the equipotentials and field lines
(make separate plots). You only need to consider the region inside the circle
7% + y? = a®. Your plot of the field lines should look like the figure on p. 91 of
Jackson.

Solution. Separating the real and imaginary parts, we find

72 + 32)2 — %2 + 16047242
D(z.y) = A Va2 +2) J a*z?y ®
2mcg (22 — y? — a?)? + 4z%y?
A - 4a’zy
=Lt _ 7 |
¥(z,y) S A [04_ @+ 5] (9)

The field lines (lines of constant ¥) are



and the equipotentials (lines of constant ®) are

o)

3. Parallel Plate Capacitor. Consider the analytic function z(w) given by
: a =2mi{uw /iy
z =1a(w/Vy) + o [—1 4 e~ 2mi(w/d )] , (10)

with a and Vj real constants. Here w = ® +1V is the complex potential and z = r+iy:
in this particular case w(z) is defined implicitly through the equation above.



(a) Show that & = 0 on the line y = 0, x > 0, and that ® = V; on the line y = a,
z > 0. What electrostatic problem does this function solve?

Solution. Let’s first separate this into real and imaginary parts

a a
= _Vo\p -5 [1 — Vo cos(27r<I>/V(,)] , (11)
y= T/‘_‘(_)@ - %8%*/"0 sin(27®/Vp). (12)
When ® = nVj,, with n an integer, these equations become
L T T 7,7 -
T = Vﬂ\ll 2”[1 € ], Yy =an. (13)

As we vary ¥ between —oo and oo, T varies between 0 and oc; therefore, we see
that the lines £ > 0, y = na are equipotential surfaces, with potential nV;;,. We
can also show that when & = nV;/2, we have

T - — [1 + ez"‘l’fv"] , y=(a/2)n. (14)

Vo 27
As we vary ¥ from —oo to oo along these equipotentials, x varies between —oo
and oo; we have identified a second set of equipotentials, with —oc < z < oc and
y = (a/2)n, at potentials nV;/2. These are shown in the figure below.

y =
a =V
22 >=vn
=0
X
d=.V/2
-al2
a &=.Vv

We can think of this either as a periodic array of semi-infinite conducting plates at
y = na, held at potentials nV4, or as an infinite parallel plate capacitor, with plates
located at y = +a/2, with a semi-infinite conductor stuck halfway in between.
We'll stick with the former interpretation, and confine attention to values of the
potential between 0 and V; (essentially ignoring the periodicity).

5



(b)

(¢)

Calculate the complex electric field E = E, — iE, = —dw/dz. [Hint: dw/dz =
1/(dz/dw); your field E will depend on w, and therefore on z implicitly through
z(w).] Show that near the point z = y = 0 the electric field takes the approximate
form E(z) ~ Az~'/2?, and find the constant A.

Solution. The complex electric field is

E= dw 1 _ 1
T dz T (dz/dw) a 1—e 2w/’

(15)

Now when z is small, w is also small: expanding z(w) for small w, we obtain

2
TR -—7ra-$—02. (16)
Likewise, expanding Eq. (15), we obtain
V2
E~—2 .
2raw (17)
Combining these expressions, we see that at the edge of the conductor
Vi
E ¢ (18)

~ (—draz)l/?

so that the field behaves as z—!/2

sheet.

, as we would expect near the edge of a conducting

Sketch the field lines and equipotential surfaces for this problem. As an aid, you
might want to consider what an equipotential looks like for & very small; i.e.,
® = eV with ¢ small.

Solution. Here I meant for you to sketch these curves—a freehand drawing is
sufficient. However, 1 went ahead and used Maple to generate the equipotentials
(parallel to the r axis inside the capacitor) and field lines shown in the figure
below. This shows how the field “fringes” at the edge of a parallel plate capacitor.



(d) Bonus. Calculate the charge density on the conducting surfaces. Use your result
to find the induced charge on the conductor (of finite length), and thus the capac-
itance of this arrangement. Compare your result to the “infinite” parallel plate
capacitor and comment on the influence of “fringing” fields on the calculation of
the capacitance.

Solution. This one is tough. Come see me if you want some hints.

~1



Physics 6346, Electromagnetic Theory I
Fall 2000
Homework 6 Solutions (Revised 10/20/00)

1. Legendre polynomials. In this problem you will explore some of the properties of
Legendre polynomials.

(a) Start by carefully plotting the first four Legendre polynomials (you may use Maple
if you like).
Solution. The Legendre polynomials Fi(z) for | = 0,1.2,3 are shown plotted
below.

(b) Starting with the power series for F(r), derive Rodrigues’ formula,

dl

1
Pi(z) = T 2al

(> - 1L (1)

Solution. Recalling that P{1) = 1, we have

L @-1)@-3)--3-1 -1
P(z) = 0 {m’——2(21_1)m' 2
=10 -2)1=3) .y
2-4(2l-1)20-3)° N

(2)

1



Now integrate both sides [ times; the right hand side is then (ignoring all of the
integration constants)

RHS — (21—1)(21—3)---3-1[(1! 2 -1 (1—22)))!'I2,_2+__]

I )7 22-1) (2l -
_ @-1@l-3)---3-1 [mm_lmm—2+l(l_l)xzz—4+ ]
(21)! 2!
_(@-1@=3)---3-1 ,
= @ (z? - 1)
= 2,1"(1 - 1)L (3)

We now differentiate this ! times (the integration constants will drop out), and
we obtain Rodrigues’ formula.

(c) From Rodrigues’ formula, derive the normalization integral for the Legendre poly-

nomials,
M= [ (PP = (4
LTS S
Solution.
1
Moo= [ Pa)de
11 ; i
= /_1 (211!)2?1?( -1 xl(‘” — Dz
(—l)l 1 1 . :
= (—QTIT)_?/ (% - 1) d;p?‘(x 1)'dx (integrate by parts)
—1) !l
= (—(:1231,()'2—2])/ (2 —1)'dz (carry out the differentiation)
! -1
20) 22+ (11)2 .
= ((211,))2 @7 ) (do the integral)
2
= . 5
20 +1 5)
(d) Using Rodrigues’ formula, derive the recurrence formula
dP, dP,_
d‘;‘ - d‘z‘ —@2+1)P=0. (6)
Solution. Follows from a straightforward application of Rodrigues’ formula:
dP4y,  dP 1 d 1 d? )
- -QQ+1)P = D= —(z* - )M
iz~ ar YR = g g™ Y
—2l(a® — 17" = (2 +1)(2 - 1]
= 0. (7



2. Jackson 3.1. Two concentric spheres have radii a, b (b > a) and each is divided into
two hemispheres by the same horizontal plane.” The upper hemisphere of the inner
sphere and the lower hemisphere of the outer sphere are maintained at potential V.
The other hemispheres are at zero potential. Determine the potential in the region
a < r < b as a series in Legendre polynomials. Include terms at least up to I = 4.
Check your solution against known results in the limiting cases b — oo, and a — 0.

Solution. The boundary conditions are

1)
<0) (8)

e A

_ _f 0o o0<b<m/2 (0L
‘I’("‘b"”‘{v s2<f<m (-1

IA &

. [V o0<8<w/2 (0<u<])
‘1’(’—0’9)‘{ 0 =/2<fb<7m (-15u<0) )

where u = cosf. We want to express these as an expansion in Legendre polynomials,
as

®(b,8) = lz:ﬁzP, (cos8), (10)
=0
®(a,0) = Za,P, (cos®), (11)
with the expansion coefficients -
o = -2’—;—1 0“ (a, 6) P,(6) sin 6.df
= 2—12-—1 -11 ®(a. u)P(u) du
_ V(2l+l)/ (w) du. (12)
Likewise, for the §;'s we have
B = 3;—1 0ﬁ¢>(b, 0) Py(6) sin 6 d6
= g’;—l &(b. u) P (u) du
- K@’_*;_)(—_L)I/O Pi(u) du, (13)

where in the last line we've used P(—u) = (—1)'Pi(u). We need to calculate the
integrals; the results are given in Sec. 3.2 of Jackson. We have

. 1 1=0.

/ A du={ 0 I even, # 0. (14)
0 1\U=1/2 ooy ! odd
(-5) ‘ AUTH/ N odd,

3



where we take (—1)!! = 1.

This problem has azimuthal symmetry, so the general expansion is

&(r,0) =Y [A,r' + B,r“(“’”] Py{cos8). (15)
1=0
Applying the boundary condition at r = a, we have
(a,0) = _ [’ + Bia™* ] Pi(cos ) = 3 auPi(cos B), (16)
1=0 1=0

so that
A,a’ + B,a”““) = Q. (17)

Likewise, applying the boundary condition at r = b, we obtain
A+ By~ = g, (18)
Solving for A; and B;, we find
1

A[ = m[—a +]al + bl+161], (19)
ab 14+1
BI = 551—4(‘1—-—)_0'2‘4_—1“)’0:[ - al,B[]. (20)

Combining all of these results, we find that Ay = V/2, By =0, and A; = B; = 0 for |
even and not equal to zero. For [ odd, we have

a't! + P! 1\ D72 (21 + 1) = 2)!
Ar= -V (—5) A (&)n (21)
_ (ab) ' (a' +b')  T\-D2 (2 +1)(1-2
B=V PRA+1 _ q2+1 <_§) 4 (1_;_1)!! (22)
Therefore,
1 1
o(r.0) = v{1 3173 [ (a2 + B)r + a2b a+b);—2] cos 0
1 ] .
+%ib—7— [( + %) — a*bi(a® + b?) ] § 5cos® 8 — 3cos 6)
+...}. (23)
For b — oo, we have
1 3a? 7 a1
=V T cosfh— ——= . 2
&(r,0) =1\ {2 15 cos 8 ]67’42(5005 0 — 3cos0) + } (24)



which agrees with Eq. (2.27) in Jackson (let V — V/2 there and then superimpose
constant V/2 everywhere so that the boundary conditions match). In the limit « — 0,
we have

1 3r 7731
@(T,@)—V{ﬁ—;1-50050+16bd2(0c0€0 3cos0) + }, (25)

which agrees with Jackson 3.36 (let V — —V/2 there and then superimpose constant
V/2 everywhere).

. Charged disc. A thin disc of radius R is located in the x — y plane with its center
at the origin. It has a charge @ which is uniformly distributed on its top and bottom
surfaces.

(a) Find the potential along the z axis for this charge distribution.

Solution. We do this by considering concentric rings of radius p, area 27p dp, and
charge (Q/mR?)2rpdp; the distance from a point on the ring to a point on the
z-axis is v/p? + z2. The potential is then

1 (R Q 2mpdp
®(z) = 47 /o TR? \/p? + z?
- 12 VR =~ 2] (26)

47'50 R?

(b) Find the potential for r < R and 7 > R as an expansion in Legendre polynomials.
Solution. Let’s first consider r > R. Take the potential in Eq. (26) and expand
for small R/z:

1 2Q 2

Rfﬁ[ 1+(R/z)2—1]

4,.150 21?;2 [5 (5)2 B 5'212—' <§)4 N 2331, (5) +} (27)

®(z2)

If we compare this to the general expansion in Eq. (15), then we see that for
r > R the potential is

®(r.0) = _]_Q [5 b (5) Py(cos8) + 3-1 (E)s Py(cos @) +.. }

are R |7 2.2 9231
a1 (20— 3 R\
_ 47303 Z( 1) +l.(2Tn'_ (?) Pon_o(cos ). (28)

We see that the leading term in the expansion is @/(4meyr), which is the potential
of a point charge @ centered at the origin, as expected.



We can perform an analogous expansion for r < R, with the result

o(r.o) = —2¢ [1 - (1) Py(cos8) + % (1)2 Ps(cos )

4neg R R R
1 /r\? 3.1 /7r\6
- (E) Pi(cos0) + S (E) P(;(cos())-l—..]. (29)

4. Jackson 3.6. Two point charges ¢ and —q are located on the z axis at z = a and
z = —a, respectively.

(a) Find the electrostatic potential as an expansion in spherical harmonics and powers
of r for both r > a and r < a.
Solution. Start with the potential along the z-axis, which is

B(z) = (I ! . ) (30)

47eg \ |z — al - |z + a|

For z > a.

q 1 1 )
o ( -
(2) 4reg \z—a z+4a
2ga 1

47egz?1 — (a/2)?
oo

_ 2 Z(g)"’"- (31)

2
dmegz® =y \z

This problem has azimuthal symmetry, so the general expansion for the potential

18
o0

o(r,0) = 3 [Ar' + Bir 1] Bi(cos). (32)

1=0
On the positive z-axis, § = 0, and since P(1) = 1, we have

o
O(r=26=0=3 [A,z‘ + Bz~ (33)
=0
Comparing Eqgs. (31) and (33), we see that A, = 0, and B; = 2¢ad’/47eq (for !
odd). Therefore, for r > a we have

2([ o< a 2n+1 ‘
o(r,60) = 4weor§0(;) Pans1(cos 0). (34)

We can do the same calculation for r < a; simply swap r and a. The two
expressions can be combined as

9 o [ 2n+1
00 = 2 () Pras(cont) (35)

dmeors zo \T>

where rs (r<) is the larger (smaller) of r and a.

6



(b) Keeping the product ga = p/2 constant, take the limit of a — 0 and find the
potential for r = 0. This is by definition a dipole along the z axis and its potential.
Solution. In this limit only the n = 0 term in the sum in Eq. (34) survives, so we

have
. pcosf

4dmegr?’

o(r,0) = (36)

(c) (Optional.) Suppose now that the dipole of part (b) is surrounded by a grounded
spherical shell of radius b concentric with the origin. By linear superposition find
the potential everywhere inside the shell.

Solution. In the limit of a point dipole we see that only the | = 1 Legendre
polynomial enters. In order to make the potential vanish on r = b, we'll need
another | = 1 term; since we're only concerned with the interior problem with
r < b, the term of the for A;7P;(cos6) is acceptable. Choosing A; = —p/(4meph?),

we have 0 3
_ pcos o
®(r,0) = ——47reor2 (1 b3) . (37)

This corresponds to the sum of the potentials due to a point dipole and a uniform
electric field.



Physics 6346, Electromagnetic Theory I
Fall 2000
Homework 7 Solutions (Revised 10/27/00)

. Spherical harmonics. A non-conducting spherical shell of radius a carries a charge
density such that the electrical potential at the surface of the shell is ® = V2 /a.

(a) Express the potential on the surface of the sphere in terms of spherical harmonics

Y0, ¢).

Solution.
®(a,0,¢) = Vo(z/a) (1)
= VWysinfcos¢ (2)
= Vo\/% RAZES (3)

(b) Find the potential at all points inside and outside the sphere, expressing your
result in terms of spherical harmonics.

Solution. From the form of the potential at the surface, we see that only thel = 1,
m = %1 spherical harmonics will enter. Therefore, we have inside the sphere

bur0.0) = V(1) Y00+ v 0.0)

= W (£> sin 8 cos @, 7 (4)
and outside of the sphere
a 2 27f s1 -1
Pou(ri0.8) = Vo(2) /5 [-¥16.0)+ Y7 (0.9) (5)
a2
= W (;) sin @ cos ¢. (6)
(c) Calculate the components of the electric field outside of the shell in spherical
coordinates.
Solution. 50 )
_ out — 7 9‘_ . .
E, = P 2Vy —3 sin @ cos ¢, (7)
10®ou a?
Ey = T a0 - —Vor—3 cos 0 cos ¢. (8)
1 9P a®
= - = Vi
Eq rsind 80 Yo 3o ¢ ©)



(d) Now suppose that the shell is surrounded by and concentric with a grounded

spherical conductor of radins & > a. Assuming that the potential on the inner
sphere is the same as in part (a), what is the potential in the region between the
two spheres?

Solution. In the region between the spheres the potential can be expanded in
spherical harmonics,

o |
¢ = g Z: [Aimr! + Binr =] ¥i(6, 6). (10)

To match the boundary condition on the inner sphere we only need the | = 1,
m = %1 terms. Therefore on r = a we have

(a,0,9) = vo@ -1+ ] (1)

= (Ana+ Bua_z)yll + (Aj-1e+ Bl-la-2)Yl_l. (12)

At r = b, we have
(b.0.¢) = 0 (13)
= (Anb+ Bnb_2))’? + (Aj_b+ B]-lb—z)}'l—l. (14)

Matching coefficients of the ¥,™’s, we we obtain four equations and four unknowns;

solving, we obtain
An
By
A

Bl,-—l

2%  a? _
VOV 3 B - ad (13)
2 a?bd
_VOV 3P _ 3 (16)

2r  a?
-V TP _—3 (17)

2% a2’
Qg (18)

2. Jackson 3.9. A hollow right circular cylinder of radius b has its axis coincident with
the z-axis and its ends at z = 0 and z = L. The potential on the end faces is zero,
while the potential on the cylindrical surface is given as V (¢, z). Using the appropriate
separation of variables in cylindrical coordinates, find a series solution for the potential

anywhere inside the cylinder.

Solution. Assume a separable solution ®(p. ¢, z) = R(p)Q(¢)Z(z), and substitute into

Laplace’s equation. The equation for Z is

a2z

~2
<

+K2Z =0, (19)



where x? is the separation constant. The solution is
Z(z) = Acos kz + Bsinkz, (20)

with A and B constants. The boundary conditions are Z(0) = Z(L) = 0,s0 A =0
and Kk = k, = nw/L, withn =1,2,....

For Q(¢) we have

d?
ddg 12Q = 0. (21)
with 2 a second separation constant. The solution is
Q(¢) = 2. (22)

Since we are allowing for the full range of the azimuthal angle ¢, we have Q(¢ + 27) =
Q(¢), so that v = m, with m an integer.

The radial function R(p) is the solution of

PR 14R ( \ m2)
- K+ —|R=0 23
iZ " odp P (23)
Changing variables to £ = kp, we find
d*R 1dR < m2)
o +-— -1+ = )RrR=0 24
& " 2 24
The solutions are the Bessel functions of imaginary argument:
R(€) = CnKm(§) + Dmlm(8), (25)

with C,, and D,, constants. Since we want the field inside the cylinder, C,, = 0 (since
Kn(€) diverges for small £).

Pulling all of this together, we have
Z Z In(nmp/L)e™® sin(nwz/L). (26)
On the surface of the cylinder the potential is V (¢, z):

0 x
&b, ¢,2) =V(d,z)= 3. 3 Cunlm(nmb/L)e™®sin(nrz/L). (27)
m=—oon=]
To determine the expansion coeflicients Cp,, we multiply both sides by
e "™ ?sin(n'rz/L), and integrate ¢ from 0 to 2% and z from 0 to L, with the result
that

25 L .
Coo = ! s / dze ™ sin(nmz/L) V(9. 2). (28)

nL I.(nwb/L) Jo 0

This completes the solution—any further calculation requires that we specify V(¢. z)

3



3. Jackson 3.10. For the cylinder in Problem 3.9 the cylindrical surface is made of two
equal half-cylinders, one at potential V and the other at potential —V/, so that

V for —-m/2<¢<7/2

Vig.2) = { _V for 7/2<¢<3n/2 (29)

(a) Find the potential inside the cylinder.

Solution. We need to substitute Eq. (29) into (28) and do the integrals: the result
is
8sin(mn /2)
=V
Cran w?mnl,(nwb/L)’ (30)
for m and n odd; C,,,, = 0 if either m or n is even.
(b) Assuming that L >> b, consider the potential at z = L/2 as a function of p and ¢
and compare it with two-dimensional Problem 2.13.

Solution. First, for L > b, we have for I,,(nxb/L) the approximate behavior

In(nmb/L) ~ % (%’Li’) . (31)

In the sum there are also terms involving I,(nmp/L); however, p < b <« L, so we
can also expand these terms using

In(ump/L) ~ — (TE)". (32)

Therefore the potential is approximately

d(p,z) = g > 3 sin(m/2) (g)m cosm@sin(nrz/L).  (33)

T n=135,. m=135,.. mn b

Now set z = L/2:

16V sin(mm /2) sin(nx /2 m
oz =1/2) = _”2—;;.—.1,3,5,... m=13,5,... ( /7’)‘" — (%)) cosmg. (34)
We can perform the sum on n:
z sin(nw/2) i (—1)*
n=135,... n k=0 2k +1
T
=7 (33)
so that .
®(p,z = L)2) = % = %}‘:’/2) (g)mcosmqb. (36)
This is equal to the result in Problem (2.13) after setting Vy = V and Vo = =V

[show this!).



4. Similar to Jackson 3.20. A point charge ¢ is placed at a position z = zy between two
infinite parallel conducting plates which are at z = 0 and z = L. The plates are both
grounded.

(a) Use separation of variables in cylindrical coordinates to show that the potential
between the plates is

q < . (nmz\ . (nw2 nwp
*lp. 'rengsm( L )SIH(L>KO< L) (37)

Solution. Separate variables as usual. In the z-direction we have functions of the
form sin(nwz/L). The problem has azimuthal symmetry, so that Q(¢) = 1 (i.e.,
m = 0). In the radial variable, R(p) = AKo(nrp/L) + Bly(nmp/L), but since
® — 0 as p — oo, we must set B = 0. Therefore, the expansion is

®(p, 2) = g AKo (”—23) sin ("—23) . (38)

How do we determine the expansion coefficients A,,? Note that we are actually
solving Poisson’s equation,

vip = 20X (39)

where the charge density is
ey,
p(x) = g5 —6(z — 2). (40)

Using the completeness of the functions sin(nwz/L), we can represent the delta

function as
_ < nwZg\ . nrz
0(z— 2z) = 251 ( ) n(——L ) (41)

Next, calculate V2d:

p _ 10 (,0), 0
Vi = L (pap NS
ko 10 BK'O(nnp/L)}
= Ay —
,.2 {pap [p p
nw . [(nTz
Also,
p(x) _ o= nmzy\ . (nrz
T e _.rq,L Z ( ) n(L)' (43)



Comparing these two expressions, we see that if we set

Ay = (g/m€oL) sin(nm2o/ L)an, (44)
then 10 | OKy(nmp/L) 2 o(p)
o\nTP _(n7 _ _9p) -
o {p(?p [p dp ] ( L ) KO(W/L)} o (43)
Multiplying both sides by p, and integrating, we find that
. OKo(nmp/L) _
an}’%PT =anp =1, (46)

so that we obtain Eq. (37).

(b) Calculate the induced surface charge density on both the upper and lower plates.
Solution. The charge densities are

gl
aL(p) = —e ( 32)::1.
= wiL Z (nm/LYKo(nmp/L)sin(nwzg/L)(—1 (47)
od
oo(p) = € (82 )::o
—iL S (an/L)Ko(nmp/L) sin(nrzo/L). (48)

(c) By integrating over the area of the plates, and summing the resulting Fourier
series, find the total induced charge on each plate.

Solution. To calculate the total induced charge, integrate over the area of each
plate:

QL = /0 o(p) 27 pdp

x (_1\n -
- e sin (22), (49)
T AT L
w = [ ole)2mpdp
= _?ﬂzlsin("““") (50)
T an L



The sums can be calculated as follows:

f: (1) sin (n;zo) = Im {i __*_(—e"’”"/")n}

(51)

Using the same trick,

=1 . (nx 7
X oo () = 50— L) (52)
The result is that go = —q(20/L), g0 = —¢(1 — 29/L). Note that go+ g, = —q.
Fix zg and let L — oo; what is the total induced charge on the lower plate? Is it
what you expect?

Solution. The total induced charge on the lower plate will be —q, which is what
we would expect from the method of images applied to the infinite grounded
conducting plane.



Physics 6346, Electromagnetic Theory 1
Fall 2000
Homework 8 Solutions (Revised 11/27/00)

1. Jackson 4.5. A localized charge density is placed in an external electrostatic field
described by a potential ®©@(z,y,z). The external potential varies slowly in space
over the region where the charge density is different from zero.

(a) From first principles calculate the total force acting on the charge distribution as
an expansion in multipole moments times derivatives of the electric field, up to
and including the quadrupole moments. Show that the force is

} +.... (1)
0

Compare this to the expansion (4.24) of the energy W. Note that (4.24) is a
number—it is not a function of x that can be differentiated! What is the connec-
tion to F?

Solution. The force on a charge distribution with charge density p(x) placed in
an external field E@ is

aE“”
Z QJ k a Zi )

F = qEQ +{V[p- EV(x)]}o + {

F= /p(x)E(U)(x) d*z, (2)

or in component form,

Fi= [px)EP () &'z 3)

Assume that the field varies slowly in the vicinity of x = 0, and expand the field:

(0) 2 ~(0)
EQ(x) = EQ(0 +Z (8 (Y)) +%Z$;‘Ik (M) oo (4)
Yi y=0 ik y=0

ayj Oy

Now multiply by p(x) and integrate:

(B
F o= EO0 [ p(x)ddz+2(%;(——)) [ zsotad
i /=

1 [0PEP(y) , -
Tﬁ%( Oy Oy y:(,/ Ekpl (3)

The first term is .
EO) [ o)’z = 4£0(0), ©



(b)

with ¢ the total charge. The second term is

8E® (y) _ 9E©
= (200) [t - (20
M 1 y=0 J Yi y=0
= [p -Vy E§0)(y)]y=0 : (7)
Returning to vector notation, this term is
. (0 — .E©®
[(p-VHEO®)] = [V -E))] . (8)

where we've used a vector identity and the fact that V x E(9) = 0 (remember that
p doesn’t depend upon x). The third term is

© ©
- Z (82E (y)) /:rjzkp(x)dsm = 3—% Zk (6E (Y)) /:rj:ckp(x)dax,
y=0 y=0

Oy;0yx Oyk
(9)

where we've used the fact that V x E@ = 0 to write 6E,-(0)/ayj = GEJ(-O)/By;,
In the integrand we can add the term —(1/3)d;xr%p(x), since V - E©® = 0: the
integral is then (1/3)Qjx. Returning to vector notation, we have

1 (0EL(y) OE(y)
5 %": ( ayk )y:O ZQJ ( y=0 . (10)

Ok
Collecting all of these results, we obtain the desired result, Eq. (1).
Note that the force is

Vy

F=-V,W(y), ’ (11)

where the work is

(0)
Wiy) = g©O(y) — p- EO(y ZQ, % ” e 12)

Repeat the calculation of (a) for the total torque. For simplicity evaluate only one
Cartesian component of the torque, say N;. Show that this component is

5
Ny =[p x EQ(0)], + = [Om (EQw (O)) 7% (;QSjE_‘EO))

. (13)

0

Solution. Start with the torque on the charge distribution,

N=/xxV@mm&ﬂfx (14)

and follow the same steps as above.
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Solution. The potential is

_ ! pX)
(I)(X) = E |x — X'I d3$ . (22)

The Coulomb potential can be expanded in spherical harmonics as

00 i 1

7“< sms /
—=Y (g,
Ix — x’| Ly Ls 1 1+1 (¢,8")Y," (0. ¢), (23)
where 'r> (r<) is the larger (smaller) of r = |x| and 7 = |x’|. Substituting Egs.
(23) and (17) into (22), we have

1 < 12 —r
d(x) = 47“01-0 —: / r?dr') rmr?
Y™(,¢) [V4~Y°(0 ¢) - \/ = Y2(,¢) } (24)

Carrying out the angular integrals using the orthogonality of the spherical har-
monics, we find

B(x) = 27:—63 [To(r)Polcos 8) = Ia(r) Pafcos6)] (25)
with
oor’4
I(r) = 24/ e "dr

C L[ e [l

1 1 24 —r
= ;—52( +18T67‘+1‘)
Y
3 g0 T O ), (26)

where I've used Maple to do the integrals and perform the small r expansion in
the last line; likewise,

. — I4 < —rd
L) = 120/ "

= o [f "dr+/ "’dr]

B 1(144¢144+72 o e rs ) .
T 4\ 3 g2 7T T
7.2 7.4
~ LT 97
150~ 336 T O (27)



Substituting Eqs. (26) and (27) into (25), we obtain the advertised result, Eq.
(21).

If there exists at the origin a nucleus with a quadrupole moment Q = 10~% m?2,
determine the magnitude of the interaction energy, assuming that the unit of
charge in p(r) above is the electronic charge and the unit of length is the hydrogen
Bohr radius ag = 4megh?/me* = 0.529 x 107 m. Express your answer as a
frequency by dividing by Planck’s constant h.

The charge.density in this problem is that for the m = %1 state of the 2p level
in hydrogen, while the quadrupole interaction is of the same order as found in
molecules.

Solution. Consider the nucleus as a localized charge distribution in the “external”
potential ®(x) provided by the electron and calculated above. The Cartesian
quadrupole moment tensor for the nucleus is diagonal (due to the cylindrical

symmetry), with @y = Qa2 = —eQ/2, Q33 = eQ (according to Sec. 4.3 of
Jackson, “the quadrupole moment of a nuclear state is defined as the value of

(1/€)Qa3..."). The energy of interaction is then
W= T
- )5

where in the last line we've used V- E = 0.

Next, we need to calculate the field gradient near the nucleus. Using Eq. (21).
we have

1 1
= 1_"p 9)
*X) = G [4 130 (08 }
11 1
— g £ 7 2 _ 1 2_ .2 ] 9
dnes [4 240" -y (29)
so that
(7), = - (5)
82 0 0‘.2 0
1 e
- %4776(,08’ (30)

where in the last line the units have been re-instated. The energy of interaction

is then .
1 e? Q

W .
W= 240 dme 0ty a3

(31)



Expressed as a frequency, this is
W
YT Th
1 e Q
240 4w ephag a?
= 0.982 MHz, (32)

which is a radio frequency signal (in the AM band).
3. Dielectric cylinder. An infinite line charge, with charge per unit length ), is parallel

to and a distance d from the center of an infinite dielectric cylinder of radius a < d
and dielectric constant ¢ (the dielectric constant outside of the cylinder is ¢).

y

o ¢ >

(a) Find the potential inside and outside of the cylinder.
Solution. The boundary conditions at the surface of the cylinder are

—€o (——m)""') = —¢ (——d.q)i") : (33)
odp p=a ap p=a
1 a‘I)om 1 aq)in
- = . 4
(%5 )Fa (5 ),m 34

The potential outside of the cylinder is that of the line charge plus the potential
due to the charge induced in the cvlinder. Write this as

¢out(p~ é) = —27;\_60 In (\/pQ +d? — 2(lp cos (b/l\’o)

a

+AgIn(p/ Ro) + Z A, (’—)) COS NG, (35)
n=|\

6



where Ry is a scale factor needed to make the argument of the logarithm dimen-
sionless. Inside the cylinder we have

Bu(p.¢) = Y Ba (f)" cosng + Bo. (36)
n=1

In order to implement the boundary conditions, we first need to expand the
logarithm:

In (\/p2 + & — 2dpcos ¢/Ro) In(d/Ro) + n /1 + (p/d)? — 2(p/d) cos &

oS l n
= In(d/Ro)- Y~ (3) cos . (37)
—n\d
Applying the boundary condition in Eq. (33), we have
A a! n n
€y (Fﬁo a - ZAn) = 5ZBn7 (38)

and applying the boundary condition in Eq. (34), we have

A1 /a\"
27«’60;(3) + An = B, (39)

along with Ay = 0 and By = —(\/27¢) In(d/Ro). Solving for the expansion
coeflicients, we obtain

_ A 6/60—11 (a n
An = 2regefeg+ 1n d) ’ (40)

A 2 1 /a\"
n_271’€06/€0+1;(2) ' (1)

With these coefficients we can evaluate the sums:

> a\" B A efeg—1& 1 (a®\"
;A" (p) cosng = 21reoc/eo+1§=:ln(dp> cosng
A 6/60—1
2rep efep + 1

In /1 + (a2/dp)? — 2(a?/dp) cos . (42)

Therefore, the potential outside the cylinder is

Ban(p0) = 5o n (i + @ — 2dpcosg/ Ro)

271’6()
A E/Co -1
2mweg €feg + 1

In \/1 + (a?/dp)? — 2(a®/dp)cos ¢.  (43)

7



The potential inside the cylinder is

A 2

(I)in \ = —g
(/) 2 2meg €/€0+1

In /1 + (p/d)? — 2(p/d) cos &. (44)

The same result could be obtained using the method of images in two dimensions.
(b) Find the force per unit length that the line charge exerts upon the cylinder. Is
there a simple interpretation of your result?

Solution. To find the force on the line charge, calculate the radial component of
the electric field outside of the cylinder:

o
“op
A p—dcos¢
2meg p? + d2 — 2pdcos @
X Ja—1 —(d% ) + (/o) cos
2megefeg+ 11+ (d'/p)? — 2(d/p)cos ¢’

E, =

(45)

The first term is the field due to the line charge itself, and the second term is the
field due to the charge induced on the cylinder—this is the field which produces
the force on the line charge. Multiplying this part by A, we obtain the force per
unit length on the line charge as

N eleg-1 a
2meg €/ep + 1 d(d? — a?)’

F/l = (46)

which is always attractive. For large d we see that the force goes as a?/d®; the
induced dipole moment in the cylinder goes as p « a?/d, so the two dimensional
dipole field experienced by the line charge behaves as p/d? ~ a?/d®.

4. Dipoles and dielectrics. A point dipole of dipole moment p is placed a distance d
in front of a semi-infinite dielectric slab, with dielectric constant e. We can choose the
axes such that the dipole is in the £ — z plane, making an angle a with the z-axis as
shown in the figure below; the dielectric occupies the region z < 0.

(a) Use the method of images to find the potential for both z > 0 and z < 0.

Solution. This is completely analogous to the problem of the point charge in front
of the dielectric. For z > 0 we assume that in addition to the dipole at z = d,
there is an image dipole p’ at z = —d; for z < 0, we assume that there is a dipole
p” at z = d. By matching 0¢/0y and ¢09/0z at z = 0, we obtain for z > 0

b = 1 P+ p.(z — d) efco—1 —per+p.(z+d) (47)
T dmeo [P+ 12+ (2 — AP T efep+ 1|22+ + (2 + )P



vacuum

while for z < 0,

_ 1 2/eo  p:z+p.(2—d)
<7 4re €feo + 1[z2 + y? + (2 — d)23/?’

(48)

(b) Find the force on the dipole.

Solution. First find the energy of interaction between the dipole and the field
produced by its image:

1 1 3(p''n)(p-n)—p-p

W= " 247meg |x; — %23 “9
_ 1 6/60 -1 3Pz(P;) - (‘PZ +p§) (50)
dmegefeg + 1 2(2d)?
1 €/ég— 1p*(1 + cos?a) -
T T dmee/o+1  16d (51)

The factor of 1/2 arises from the fact that the field E’ acting on the dipole is
proportional to the dipole moment p; since dU = —E’ - dp, upon integration
U= —(1/2)p - E'. To obtain the force, we differentiate:

ou
F. = ~%d (52)
1 3 €/eg—1p%(1 + cos?a) )
= - = . (33)
47eq 16 6/(0 +1 d?

Since ¢/¢g > 1, the force is always attractive.



(c) Find the torque on the dipole. Assuming that the dipole is free to rotate about
its axis, in what direction does it point in equilibrium?
Solution. The torque is given by

ou -
N = -3 (54)
_ 1 €¢/eg — 1p*sin(2a) (55)

T Armegefeg+1 1643

The torque is zero when a = 0, n/2, 7, 37 /2; however, by examining the energy
we see that only @ = 0 and 7 are stable, so the dipole prefers to align perpendicular
to the dielectric.

(d) Take a suitable limit of your result in (a) to find the potential for z > 0 for a
dipole in front of a grounded conducting slab.

Solution. Take the limit € — oc to obtain the results for the dipole in front of the
grounded conductor: &, = 0, and

o = 1 PzT + Pz(l — d) —PzT + pz(z + d) (56)
> dme 2242+ (2 —d)2P2 T[22+ 42+ (2 + )22 [

5. Debye-Hiickel screening in plasmas (bonus). A plasma is a neutral ionized gas
which is produced at high temperatures. We want to determine the electrostatic poten-
tial in the vicinity of a test charge which is placed in the plasma. The mean density of
electrons of charge —e is ng, and the mean density of ions of charge Ze is Ny: electrical
neutrality implies that ZNy = ny.

(a) 1f the ions and electrons are in thermal equilibrium at a temperature 7', then the
particle densities are given in terms of the Boltzmann weights as

N(x) = Noexp[-Ze®(x)/kpT], n(x) = noexp[e®(x)/kpT],  (57)

where kp is Boltzmann’s constant and ®(x) is the electrostatic potential. Use
these expressions to derive a closed equation for the potential ¢.

Solution. The charge density is

p(x) = ZeN(x)— en(x) (58)
= eny [e-zeé(x)/ksr _ ee¢(x)/kg’1‘] ) (59)

The potential is determined by solving Poisson’s equation,

VQ(I’ = —p/c (60)
= e [e= 700 /ksT _ ged0/kuT] (61)
- :

This equation is nonlinear.

10



(b)

(c)

The equation which you derived in part (a) is nonlinear. and generally difficult
to solve. By assuming that |Ze®/kpT| <« 1, (the high temperature limit), show
that this equation reduces to

V2® = K20, (62)

and determine k in terms of the other parameters. You may assume that the
background dielectric constant is e.

Solution. At high temperatures we can linearize the charge density, by expanding
the exponentials to lowest order in ®. We then obtain the result quoted above,
with .

k2o EMolZ+1)

Now suppose that a test charge g is placed at x = 0 in the plasma. Modify the
linearized equation derived above to account for the test charge, and show that
in three dimensions this equation has the solution

e—r/A

o(x) = C=—, (64)

and determine the constants C and A. The length X is the Debye screening length
and is the length scale over which the potential of the test charge is screened by
the electrons and ions.

Solution. If we add a point charge at the origin, there is an additional term
—g6(x) in the charge density, so that our equation becomes

V20 = k0 — (g/e)d(x). (65)

By substituting in the trial solution suggested above, we see that A = 1/x; close to
the origin the charge density is dominated by the point charge, so that C = g/4re.
Therefore, the potential is

(1 e—K‘I‘

d(x) =

(66)

dwe 1
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Physics 6346, Electromagnetic Theory 1
Fall 2000
Homework 9 Solutions

1. Spherical void in a dielectric. A spherical void of radius R is in an otherwise
homogeneous dielectric medium of permittivity €. At the center of the void is a point
dipole p. Find the electric field inside and outside the void.

Solution. From our previous experience with these types of problems, we expect that
the potential inside the void will be that due to a dipole and the potential of a uniform
field, and outside the void we’ll just have a dipole field. So the potential is

1 pcosf

By =
" dmey 12

— B rcos, (1)

and
1 pancos@

dre 12 7 (2)

with Ej, and pg,, constants to be determined from the boundary conditions. The
boundary conditions are that the tangential component of E is continuous, so that

__l_ 6(I)in __1 aq)oul 3
a\ 00 r=a_ a\ 00 ) _~ (3)

(I)out =




and that the normal component of D is continuous, so that

bein _ 6q)out
(%) (%) g

Applying these two conditions, we obtain the following equations:

172 _p 1 P (5)
47ey a3 T 4me a3’

1 2p 1 2pout
P E,, = — “Fout 6
47 a3 €%in 47 ad (6)

Solving for Ei, and pey, we obtain

1 2(e—c)p
Ep,= ——— =
™ 4rey 2¢+¢p ad (1)
3e
Powt = 5P (8)

. Jackson 4.13. Two long, coaxial, cylindrical conducting surfaces of radii a and b are
lowered vertically into a liquid dielectric. If the liquid rises an average height h between
the electrodes when a potential difference V is established between them, show that
the susceptibility of the liquid is

_ (1 —a*)pgh In(b/a)
Xe = 6()V2 ’ (9)

where p is density of the liquid, g is the acceleration due to gravity, and the suscepti-
bility of air is neglected.

Solution. A cross section of the set up is sketched in the figure below.

b Coaxial cylinders with a
a potential difference V
V between them

\ Fluid with dielectric constant €



We first need to calculate the electric field between the cylinders. We know that
E = -V, and that V-D = 0. Since the liquid is assume to respond linearly to the
electric field between the cylinders, we also have D = €E, so that V2® = 0. Let's
assume that the cylinders are long so that we can ignore fringing effects at the ends of
the cylinders. Then the potential is only a function of the radial distance p from the
axis of the cylinders, so that Laplace’s equation becomes

10 o

-—(p—] =0, 10

pap(pap) (10)
the solution of which is

®(p) = Aln(p/R), (11)

with A and R integration constants which will be determined from the boundary
conditions. We have

®(b) — ®(a) =V = Aln(b/a), (12)
so A = V/In(b/a). The electric field is then
oo
E = —a—pep
- -V &
= e p (13)

between the cylinders, and zero outside. The electric displacement field is D = ¢E for
the region between the cylinders which contains the liquid, and is D = ¢E for the
region between the cylinders above the liquid.

Having determined E and D, we can now calculate the work required to bring the
liquid between the cylinders to a height z above the background (we'll set z = h at the
end of the calculation):

W o= %/E-Dﬁx

_ 1 b _ 2 2 ). { 2 ..
= 5/0 Z.pdp(/_deE (L.+/zeE d;)

wV? d - )
= ———lelz +d)+ell — 2)]. 14
To find the electrostatic force acting upon the liquid, we need to differentiate 1V with
respect to z. The only trick here is to remember that the liquid is moving up in the
presence of a constant potential, so that charge must be supplied from an external
source (a battery, say), and we must account for the work done by the battery in
supplying the charge. This is is discussed in Jackson; the end result is a change in the



sign of the force, with the final result that

F = <6W )
oz J,
_ (e—e)mV? _
= /) (13)
This has the right sign—we see that the electrostatic force is upward. This is balanced

by the weight of the liquid, mg. The mass of liquid which is between the cylinders and
above the background is

m = pr(b* — a®)h, (16)
with p the mass density of the liquid (not to be confused with the coordinate p!). We
then have ( e

b2 — q2)gh = £ STV
pr(b° — a)g nb/a) (17)

The susceptibility is x. = €¢/€p — 1, so we finally have

(b* — a®)pgh In(b/a)
€0V2 ’

Xe = (18)

. Defects in conductors (from the 1999 Comprehensive Exam). A cylindrical conduc-
tor, of conductivity o3, radius b, and length L, contains a spherical defect of radius
a and conductivity g; (see the Figure below). The cylinder and the defect have the
same permeability u and permittivity e. A steady, uniform current density Jg e flows
parallel to the axis of the cylinder far from the defect. For simplicity, assume that
b, L > a, so that you can consider the limit L — oc and & — oo (but with Jy fixed).

X

(a) Write down, with a few sentences of explanation, the equations which will de-
termine the current density J and electric field E in the conductors. Also, write

4



(b)

down the boundary conditions on the electrostatic potential ® at the interface
between the two conductors.

Solution. 1f the current is steady (no time dependence), then V -J = 0. The
electric fields which are established are static fields, so we also know that Vx E =
0, which is satisfied by E = —V®. If we assume that the current transport in each
region is linear, so that Ohm’s Law is satisfied, J = ¢E in each region, with o the
conductivity in that region. Therefore, we see that the potential is the solution
of Laplace’s equation, V2® = 0, both inside and outside the defect.

From the basic differential equations, we can derive the boundary conditions (by
analogy with dielectrics) that the normal component of J is continuous and that
the tangential component of E is continuous. For the problem at hand, this
translates into the following two conditions:

3@1 _ a¢)2
(W)m = (‘a?),; (19)

1 /00, _ 1[8%,
(%)% 0
By solving the boundary value problem, show that the electric field in the cylinder

consists of a uniform field plus a dipole field due to the defect, and calculate the
dipole moment.

Solution. We need to solve Laplace’s equation,
Vi@ =0, (21)

with the boundary conditions above, along with the requirement that the current
density outside of the defect becomes uniform (J = Jye,) far from the defect; in
terms of the potential, this becomes

b, = —ﬁr cosf, asr — oo. (22)
a2

Mathematically, the problem is completely equivalent to the problem of a dielec-

tric sphere placed in a uniform electric field, so I'll just quote the result:
3Jy
;= ————rcost
i e 2amrcos , (23)

() — ag)aJy cosf

Jo
q'). = —-— 6 . 4
2 027"005 + o9(0y + 209) 12 (24)
We see that outside of the defect the electric field consists of a uniform field and

a dipole field, with dipole moment

(o1 — 02)a®Jy

= 47e .
P 02(0'] + 202)

(25)

(S]]



(c) Find the surface charge density £ which has accumulated on the boundary be-
tween the two conductors.
Solution. The surface charge density is equal to the discontinuity of the normal
component of the D field across the boundary. Therefore we have

Y = (Do—Dy)'n
€| Ear(a,0) — Ey +(a,0))]

36(0’1 - 0’2)J0
— = —cos®.
o9(0) + 202) o8 (26)

I}

4. Biot-Savart Law.

(a) Use the Biot-Savart Law to calculate the magnetic field produced by a straight,
infinitely long wire which carries a current 1.

(b) Use the Biot-Savart Law to calculate the magnetic field produced by a circular
current loop of radius a. You only need to find the field along the axis of the loop.
Solutions. Both of these problems are elementary applications of the Biot-Savart
Law, so if you had difficulty with them you need to review an introductory physics
text such as Halliday and Resnick. The result for the infinitely long wire, with
the current in the z-direction, is

tl -
B(p) = —eq. '
(p) = o 5¢ (27)
with p the distance from the wire (the field lines form concentric circles around
the wire). For the current loop, in the z — y plane with the center at the origin,
the field along the z-axis is

B(Z) _ Ko 2(7((12])

= i (22 1 a2 (28)

The quantity ma®] is the magnitude of the magnetic moment of the loop.
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1. Simple applications of Ampere’s Law. Use Ampere’s Law in integral form to find
the magnetic field in the following situations.

(a) A long cylinder of radius a carries a current / which is uniformly distributed
throughout its interior. Find the magnetic field inside and outside the cylinder.
Solution. These are all rather elementary applications, so I'll just quote the

results. Let’s assume that the axis of the cylinder coincides with the z-axis, and
that the current is in the z-direction. Then for p < a, we have

ol p
Blp) = 5 -5 (1)
and for p > a we have
_ ol

(b) A long solenoid of radius a is constructed by by wrapping wire around a cylinder,
with N turns per unit length. If the wire carries a current /, find the magnetic
field inside the solenoid.

Solution. If we let the z-axis coincide with the axis of the solenoid, with the
currents circulating in a counter-clockwise direction in the z — y plane, then the
field inside the solenoid is ‘

B = polNe.. (3)

(c) A thin conducting sheet, of thickness d, carries a current density J = Jye,. Find
the magnetic field just above the sheet.

Solution. If we let the sheet reside in the x — y plane, then the field is

_pold
2

B= sign(z)ey, (4)
so the field is in —y direction above the sheet and in the y direction below the
sheet.

2. Jackson 5.6. A cylindrical conductor of radius a has a a hole of radius b bored parallel
to, and a distance d from, the cylinder axis (d + b < a). The current density is
uniform throughout the remaining metal of the cylinder and is parallel to the axis.
Use Ampere’s law and the principle of linear superposition to find the magnitude and
the direction of the magnetic-flux deusity in the hole.



Solution. First, let’s forget about the hole and calculate the magnetic field produced
by a uniform current density J = Je.:

_ kJ
J
= % (—ye; + ze,). (5)
Next, let’s calculate the magnetic field which would be produced by a current density
J = —Je_ which is flowing in the hole; using the primed coordinates centered on the
hole, we have
J
B = —E;—(—y’ez +Te,). (6)

We now superimpose these two fields; the result is the field inside the hole which is
produced by a current density J flowing outside the hole, with no current inside the
hole:

'] 1 !
B = B+B' = 5[~y ~ )e: + (x ~ ')ey . ™)
From the figure we see that y = ¢ and x — ' = d, so we have
Jd
Bt.ov.al = H'O2 eyv (8)

which is a constant magnetic field inside the hole. The current density J times the
cross sectional area 7(a? — %) is the total current /, so we can also write our result as
ol d

Biota = Emey- (9)

ro



3. Analogies with fluid flow. There are many analogies between problems in elec-
tromagnetism and fluid flow, and this problem is designed to lead you through some
of them. As background reading, I highly recommend Chapters 12 and 40 of The
Feynman Lectures on Physics, Vol. 1.

(a)

(b)

First, consider a fluid with mass density p(x,t); the velocity field of the fluid is
v(x,t). Show that conservation of mass implies that the density and velocity
satisfy the equation of continuity,

op

V. = 0. 10
LV (ov) = (10)
Solution. This is identical to the derivation in class for the equation of continuity
which connects the charge density and the current density; here we have a mass
density p and a mass current J)s = pv (a mass per unit time per unit area).

Incompressible fluid flow occurs in situations where the density of the fluid is
constant (in both space and time). These flows occur when the characteristic
fluid velocity V' is small compared to the speed of sound ¢ in the fluid (so that
the Mach number Ma = V/c <« 1). Under these conditions V - v = 0. In general
a fluid may swirl around; this motion is characterized by the vorticity w = V x v.
As you can see, there is a clear analogy with the equations of magnetostatics,
V-B =0and V x B = yJ. Use this analogy to derive the Biot-Savart law for
fluids; i.e., for a prescribed vorticity w{x) the fluid velocity is

v(x) = l/c.u(x') x id?’x'. - (1Y)

47 |x — x’|3

Solution. We can just use our analogy to come up with the result. We have
v & B and w < peJ. The Biot-Savart law in magnetostatics is

x—x

B(x) = 4—177/d3m'p0;l(x') x (12)

Ix — x'|3
so making the necessary replacements we immediately obtain Eq. (11).

The kinetic energy density of a fluid is (1/2)pv?, so that the total kinetic energy
is

1 ,
Ex = / St d's. (13)
Show that this can be written in terms of the vorticity as
P /d3 [é= ""(x xflxl). (14)

The easiest way to show this is to first realize that V - v = 0 can be enforced by
writing v = VXA, where A is a “vector potential.” Find the relationship between
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A and w (you can use the magnetostatics analogy). Then write v* = v-(V x A),
integrate by parts, and write everything in terms of the vorticity.

Solution. First, writing v = V x A and using our analogy, we have

Alx) = 41,. J & I|: (xai| (1)

Next, a few vector identities:
¥ = vev
= v-(VxA)
= V- (Axv)+A:-(Vxv)
= V- (Axv)+ A -w (16)
We now substitute this into the expression for the energy, Eq. (13); the term
involving the volume integral of V - (A x v) can be converted into a surface

integral (using the divergence theorem), which vanishes as the surface is taken to
infinity. We're left with

Bx = ﬁ’/d%w x)-A(x)

= /ds /ds, x = >u|,)’ a7

where in the last line we've used Eq. (15).

In some cases the vorticity is produced by vortez lines, which can be thought of
as isolated singularities in the fluid velocity. If we integrate the vorticity in the
vortex over the area perpendicular to the vortex, we obtain the circulation in the
vortex:

/Aw-ndS = /A(va)-ndS

= fv-dl
c

= & (18)

where in the second line we've used Stokes’s theorem and s is the circulation in
the vortex. So a vortex is analogous to a current-carrying wire. Show that for a
vortex the results above can be written as

4“/11' = _fld’ (19)

/ / - '| (20)

and



Solution. We only need to make the replacement
w(x')d3z’ — kdl’ (21)
in the results in previous sections to obtain Eqs. (19) and (20).

4. Vortex rings in superfluid helium (extra credit). When cooled to temperatures
below about 2 K liquid *He becomes a superfluid—for all practical purposes it is an
ideal fluid with zero viscosity. As a result, vortices are stable entities (in a normal fluid
the vorticity eventually diffuses away due to viscous effects). Even more amazingly,
it turns out that the circulation of vortices in superfluid helium is quantized in units
of h/m,, where h is Planck’s constant and my is the mass of a *He atom (that the
circulation should be quantized was first predicted by Onsager and independently by
Feynman). This quantization was first convincingly demonstrated by Rayfield and Reif
[Physical Review 136, 1194 (1964)], who produced vortex rings (like smoke rings) in
superfluid helium and measured their velocity and kinetic energy.

(a) Use your results from the previous problem to show that the speed of a vortex
ring of radius r and circulation « is

_ K Clr)
v—47‘_rln( a/’ (22)
and the kinetic energy is \
pKeT Cor
-5 ().
EK 5 n a (23)

where C; and C, are numerical constants of order 1 and a is the size of the “core”
of the vortex. You might want to have a look at Jackson Problem 5.32, which
calculates the self inductance of a current loop.

Solution. Let’s start with the energy of the vortex ring. Let the ring be in the
z — y plane, with radins . Then x = re,, x' = rey, dl = rdgey, dl' = rd¢’ ey ;
we also have e, - e, = cos(¢ — ¢') and ey - ey = cos(¢p — ¢'). The kinetic energy

is then 22 o , 6 &)
PRT , T cos(@ —
Ex = d d . 24
e B = e 0

Changing variables to a = ¢ — ¢, we can perform one of the angular integrals,
with the result

Ex = pK2r (7 o cosa
4 Jen\[2(1 — cosa)
pRET cos

£’
= 2T de—20
2 /o 3 sin(a/2)
PR 712 | cos 20
2 Jo sinf8’

-

)



where in the last line we've changed variables to a = 28. The problem now is
that the integral is divergent, since the integrand goes as #~! for small 8. Let’s
introduce a “cut-off’ € in the integral:

/2 52 -2
45%% (gfg—) +0(&d), (26)

€ sin B

where the result has been expanded for small e. The physical origin of our cut-off
is the fact that our model for the vortex ring breaks down close to the ring—the
vortex ring has a “core” of linear dimension a, which we assume is much smaller
than r. Therefore, we expect that € is of order a/r, so that the kinetic energy is

pr2r

Ex =~ In(Cor/a), (27)
with Cs a constant whose precise value will depend upon the details of the model
of the core.

The motion of the vortex ring is self-induced, with the motion of the ring occurring
in the direction normal to the plane of the ring (the z-direction). The velocity
of the ring will be equal to the fluid velocity in the core of the vortex ring, so as
before we take x = re,, X' = rey, dl = rdgey, d' = rd¢’ey. We use Eq. (19) to
calculate the velocity; we’ll need the following quantities:

dl'x (x —x') = reydd’ x (re, — rey)
= [l — cos(¢ — ¢')) d¢’e., - (28)
Ix — x'|* = P {2[1 - cos(¢ — &)]}*. (29)

The velocity on the vortex ring is then

K /"’ da
_ez —————————————————
8ar = Jow v2(1 — cosa)

K /2 dg
- T‘."rez/u‘" sin 3 (30)

where we've changed variables to a = ¢ — ¢ in the second line and a@ = 28 in
the third. Once again, the integral is divergent, and a cut-off must be introduced.
We then have

v, =

v, R % In(Cyr/a)e., (31)

with C) another numerical constant which depends on the details of the model of
the vortex core.

Ignore the weak logarithmic dependence on the radius, and show that the velocity
of the vortex ring is inversely proportional to the energy of the ring. How could
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you use this relationship to extract the circulation of the vortex ring? Look up
Rayfield and Reif’s paper, and use their data to infer a value of k. How does it
compare to h/m,?

Solution. As suggested, let’s ignore the logs. Then combining our results, we find

pK®
vy

- 8‘/TEK’ (32)

so that the speed of the vortex ring is inversely proportional to its kinetic energy!
The data in Rayfield and Reif agree with this prediction. The constant of pro-
portionality goes as px®, so once the fluid density is known the circulation can
be determined. To obtain precise values of k one needs a model of the core, and
more detailed calculations are required, along the lines of Jackson Problem 5.32.
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1. Jackson 5.13. A sphere of radius a carries a uniform surface-charge distribution ¢. The
sphere is rotated about a diameter with constant angular velocity w. Find the vector
potential and magnetic-flux density both inside and outside the sphere.

Solution. As a result of the rotating surface charge density we have an effective current
density J which is localized on the surface of the sphere; with r = ae, and w = we.,
we have

J(x) = [0d(r—a)jwxr
oawd(r — a)sinf e,
cawd(r — a)sin f[— sin pez + cos P e,). (1)

The vector potential is
_ ko [ IX) s,
Alx) = 41r/|x—x’|d3m

pooadw [ [—sin¢'e; + cos ¢'e)] sin &
47 / a7, (2)

|x — x|

where we've carried out the integration on the radial coordinate v’ using the delta
function. The integral can be calculated by first expressing the terms in the integrand
in terms of spherical harmonics:

e D D S R 3
] ~ 25,2, 01 OO0 2
sinfsin¢g = % 8%(}’,1 +Y,Y), sinfcos¢ = % %(—}'}1 +¥7h). 4)

Substituting into Eq. (2), and using the fact that the spherical harmonics are orthonor-
mal on the unit sphere, we have

m,0a3w T«

A = —?—Esinﬁ[—sin¢em+cos¢ey]
3
o™ wTre |
= — sinf ey, ()
3 2

where 75, (7<) is the larger (smaller) of r and a. Inside the sphere, this is

Ain = “Oguja'r sin 0e¢,, (6)




so that the magnetic flux density is
2
B, = §ugowaez. (7)

Outside the sphere the vector potential is

Lo M X X

Ao = 22522,
where the magnetic dipole moment is
4ma®
m= ga owae,. (g)

The field exterior to the sphere is therefore a dipole field:

_ po3(m-n)n—m

Bout. - E le3

(10)

. Jackson 5.17. A current distribution J(x) exists in a medium of unit relative perme-
ability adjacent to a semi-infinite slab of material having relative permeability u, and
filling the half-space, z < 0.

(a) Show that for z > 0 the magnetic induction can be calculated by replacing the
medium of permeability u, by an image current distribution J*, with components

pr—1 pr —1 pr—1
J(z,y, —2), J(x.y,—z2), -— J. Az, y, —2).
() dtow-a) (B ) hmma) - (A7) den )
(11)
(b) Show that for = < 0 the magnetic induction appears to be due to a current

distribution [2u,/(p- + 1)]J in a medium of unit relative permeability.

Solution. Let’s define the image currents J,, which is zero for z > 0, and Js,
which is zero for z < 0. The magnetic field for z > 0 is then

_ Mo ' ’ (x—xl) ’
B=42 /[J(x)+.1,(x X e Fg (12)
and for z < 0 the field is
_ Ho ] (x— X’) 3 0
B=142 [3x) e 47" (13)

The normal component of B must be continuous at z = 0. We have

(Je + Jiz)(y = &) = (Jy + Jy)(z — 2')
[(.l‘ - ')+ (y — y/)2 -+ zr2]3/2

Bi(ry,z=0") =142 [

X S
i a&’r’, (14)
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vacuum

J(x)

J2m y y! J2y(m -zl) 3 s =
oy Goypeaprts ()

B:(z,y,z =

Taking B,(z,y,z = 0%) = z(r,y,z =0"), we have
, 1
3,..7
e o e
X [(Jz+J1z — o)y = ¥) = (Jy+ Jiy — Jo)(w —¥)] = 0.  (16)

We need to be careful here—J, and J; are non-zero in different regions. However,
we can take 2’ — —2’ in J), without changing the integral, so that J,(z,y.z),
J1z(Z,y, —z), and Joz(Z,y, z) are all non-zero in the same region of space. A
sufficient condition for the integral to vanish is that the integrand vanish. so we
have

Jo(z,y, 2) + Jiz(z, 9y, —2) — Joz(z,y,2) = 0. (17)

Jy(z,y,2) + Jy(z,y, —2) — Joy(z,9,2) = 0. (18)

Next, we need to make sure that the tangential component of H is continuous
across the interface. Using H = B/, we have

Hy(z,y,z = 0%) = - (G r ) - e+ )

3,/
Ar -2+ (y—y)2 + 22 &°r, (19)



H( = 07) = 1 / (z —2')Joz — (—2")Joz
wh,e= T dmpe J (- )2+ (y - y)2 + 2P
with similar expressions for H;. Setting Hy(z = 0%) = H,(z = 07), and taking
z — —z in the integrals involving J;, we find

d*x, (20)

I‘LTJZ(:rv Y, Z) +i"’f']lz(x7y> _2) - J2z($,ya Z) = 0: (21)
prdz (2, Y, 2) — prJ1z(2,y, —2) — Joz(z,9,2) = 0, (22)
brdy (2,9, 2) — pediy(z.y, —2) — Jp(z,9,2) = 0. (23)

Solving Egs. (17), (18), (22), and (23), we find

—1 Uy —
+1Jz($9y7 —Z), le(mrywz) =

1
S hE ), (24)

24, 24y
Jy(zx. .

To find the z-components, we need another equation. The current density J»
must have zero divergence, so that

anx 6J2y 8J2:

oz + dy + 0z

2u, (84  OJ, e,

b+ 1 (03: T By ) + by e he( =)

_ 2u, 0J, 0
e +10z +”’az [+ Jiz(=2)]

= 0, (26)

Jiz(Z,y.2) = £r
Ly

Joo(Z,y,2) = Jo(z,y,2), Joylz,y,2) =

V-3, =

where we've used Eqgs. (21), (24), and (25), along with V-J = 0. Integrating this
last equation, we have

+1
Jz(.’l?,y,Z) = lu'7'2 [‘]z(zvyw Z)+J1z($,y>—z)]- (27)
We can finally solve for the z-components, with the result

-1 2
J;;(:L',y, Z) = _Z: + 1‘]2(‘1:::‘/’ —Z), ‘]22(1'13/7 Z) = ﬂrl_l:]u]z(l: Y. Z). (28)

To summarize,

U —1
J](z,y, Z) = m [Ja,-(f, Y, _Z)ez + Jy(x Y, _‘)ey - Jz(I-1 ’ —3)6_._,] ’ (29)

: 2
Jo = J{z.y, z).
A (r.y.z2) (30)
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3. Superconducting levitation. A now common lecture demonstration involves levi-
tating a permanent magnet above a superconducting disc (usually YBCO, one of the
new high temperature superconductors). We'll idealize the problem by assuming that
(a) B = 0 inside the superconductor; (b) the superconductor is infinite in extent, oc-
cupying the half-space z < 0; (c) the permanent magnet can be approximated by a
point magnetic dipole with dipole moment m, which makes an angle # with the z-axis;
(d) the magnet can be .considered to be a point mass of mass M.

(a) This problem can be solved using the method of images. What image dipole is
needed?

Solution. Using the results of the previous problem, one can show quite generally
that for a linear magnetic material with relative permeability p,, the image dipole

has components
pr —1 ! pr—1
m, = — my, m. = - 1
<nr+1) = T (u,+1)m (31)

For the purposes of this problem we can think of a superconductor as a mate-
rial with p, = 0, so that the image dipole is reflected through the z-axis, as
shown in the figure below. This will insure that B - n = 0 on the surface of the
superconductor.

(b) If the dipole is a distance h above the superconductor, what is the magnetic force
on the dipole?



Solution. The magnetic force on the dipole is the force between the dipole and
its image. This is

F=-VU =V(m-B'), (32)
where B' is the magnetic field produced by the image dipole,

3(m'-e.)e, — m’
B = M (m'-e;)

= 33)
4n (z+h)® (
Therefore,
U o 3(m’ -e;)(m’-e;) —m-m’
4r (z+ h)?
_ ko m?*(1 + cos®6) (34)
T 4n (24 h)P
where we've used m!, = m,, m, = —m,, and m, = mcos 8. The force is then
ou o 3m?(1 + cos? ) )
= — | — = 3
F ( az )gh 4 16A° (35)

(c) What is the torque on the dipole? For fixed h, what 6 is needed for stable
equilibrium?
Solution. The torque N is

N = mxB
2

= 4%82)15 sinfcos fe,,. (36)

The torque is zero when 6 = 0, /2, and 7. By examining the potential energy U
calculated above, we see that 6 = 7/2 is a stable equilibrium point—the dipole is
aligned parallel to the surface of the superconductor.

(d) Calculate the equilibrium height A* of the dipole above the superconductor.

Solution. Setting § = m/2 in the magnetic force, and equating it with the weight
Mg, we find that the equilibrium height is

1/4
. _ [ 3m?
h*=1|— .
1 (47r 161\49) (37)

-4. Induction. A long, straight wire is in the same plane as a circular wire loop of radius
a and resistance R; the straight wire is a distance b > a from the center of the loop.
A current I(t) = Ipcoswt flows in the straight wire. Find the force on the loop.

Solution. Let’s place the loop and the straight wire in the z—y plane, with the center of
the loop at the origin and the straight wire at = = b, as shown in the figure below. The
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changing current I, in the straight wire changes the flux through the loop, inducing a
current I; in the loop. If dI;/dt < 0, then Lenz’s law tells us that the induced current
is counterclockwise, as shown in the figure. With this in mind, the force on the loop is

Fio=1 f dl, x B, (38)

where B is the magnetic field produced by the straight wire. We have dl; = adge,,
and the magnetic field produced by the wire is B = (uy/2/27 R)e., where the distance
from the wire to the loop is R =b— acos¢. Using e, x e; = €, = cos¢e, +singe,,
and putting all of this together, we have

olil; /?7' cos ¢
2r Jo (b/a) —cos¢

E; do (39)

1

The integral for F, vanishes by symmetry, as expected. The force on the loop is in the
positive x direction.

We now need to find the induced current /;. To do this, let’s first find the flux through
the loop due to the current I (see the figure for the area element of width dz and

height 2y = 2v/a? — 22):
(I’lg = B;_. d(l

loop

-~



o [0 el ————2Va? - z?dzx. (41)
—a 27(b—1x)

We can put the integral into a more convenient form by changing variables as z =
acos ¢, so that

Ia? sin? ¢
op = B2 [T

—acosqb
= m,]?b[l—,/l—(a/b ] (42)

where the integral can be found in tables (see Gradshteyn and Ryzhik Eq. 3.644.4, for
instance). As a check, note that when b>> a, the flux is

02) Lols

=~ — 4
L Itolzb<2b2 £k (wa?), (43)

which is the magnetic field a distance & from the loop (ugl2/27b) times the area of the
loop (ma?). We see that the mutual inductance for this arrangement of currents is

M = pob [1 ~ 1o (a/b)z] : (44)

From Faraday’s law, we have for the induced emf £ = —d®/dt = I, R, with ® the total
flux through the loop,

(I)=L11+M]2, (45)

where L is the self-inductance of the loop. We therefore have a simple differential
equation for the current I;,

Ldl, . Mdh

Let’s assume that the self-inductance is negligible (or more precisely, that Lw/R < 1,
with w the frequency). Then

I = —‘%’% [1 —/1- (a/b)2] . (47)

Putting all of this together, the force is

F = /L(,I d]gb 2 —(a/b)®
R (e
— (a/b)? _2}'

v1—(a/b)?

llo](? b

7 sinwt coswt [ (48)



For b > a, this becomes
F,~ - 4122 7 08 2wt. (49)

You should check and make sure that you understand why this behaves as b3, why it
is proportional to a®, and so on.

What happens when the self-inductance is not negligible?

. Eddy currents. A wire loop, of negligible thickness, has a radius R and carries a
counter-clockwise current 1. The loop is centered at the origin of the x — y plane, so
that the z axis passes through the center of the loop.

(a) Find the magnetic field in the z —y plane. Express your result in terms of elliptic
integrals.
Solution. The vector potential for a wire loop of radius R is (in cylindrical coor-
dinates (p, ¢, 2))

pol 4R (2-K)K(k)—2E(k) .
ol = e |G- SN
where
2 _ 4Rp
k? = TR (51)

and where K and FE are the complete elliptic integrals of the first and second kind.
To calculate the magnetic field, we have to take the curl of the vector potential:

10 04

B" pap(pA(i)) BP= 62

2 (52)
In the z —y plane the field will only have a z-component, so we only need to take
the p derivative of A4. This is a little complicated; there are identities which can
be used to simplify the algebra, but I chose to use Maple instead. The result for
the field in the plane is

ol | K(k) | E(k)
Bz &= 0 o | 5
(o )= o [R+p+R—p (33)
with k evaluated at z = 0. For p « R, this can be expanded as
#01 3P 44
B.(p,z= ) -

(b) A small coin, of thickness d, radius a, and conductivity o is placed at the center
of, and coplanar with, the loop. If the current in the loop is 1(t) = Iy cos(wt),



find the time-averaged power loss, assuming that d <« @ <« R and that the loop
is a perfect conductor.

Solution. The changing field will induce eddy currents in the coin. To determine
these currents, we first need to find the flux through a loop of radius p centered on
the coin. Since the radius of the coin is small compared to the radius of the wire
loop, we can assume that the magnetic field is uniform across the coin. Therefore,
we have for the flux

The emf generated in this loop is

£ = -=

However, the emf is

so the induced electric field is

_ hopdl .
Be=—trat (58)

The eddy current is then Jy; = o E,, so that the power dissipated per unit volume
isJ-E= aEg. To find the total power dissipated, we need to integrate this over
the volume of the coin: the volume element is d x 2xpdp, so we have

P = ['(oE)d(2npdp)

7 phoda’ <d1)2

2 m \& (59)

Finally, we need to time average the power over a cycle, with the result that
((dI/dt)?) = I12w?/2. Our final result is then
s
Prverage = &u.gl,f(m'?da“‘}??. (60)

10
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(d)

Assuming that there is negligible heat transfer between the coin and the sur-
rounding medium, find the time rate of change of the temperature of the coin.
You can take the specific heat per unit volume ¢, to be approximately temperature
independent.

Solution. Using Pae = Q = Vc,,T, with V = ma%d the volume of the coin, we

have
_ glgow? o

646,, R? (61)

Put some reasonable numbers into your expression above, and evaluate the efficacy
of this inductive heater.

Solution. From my copy of the Physicist’s Desk Reference, I found that the specific
heat of copper is 0.092 cal/g K, the mass density is 8.96 g/cm?®, and the electrical
conductivity is 6.67 x 10° Q~'cm™'. Putting these numbers together, and taking
a frequency of 1 MHz and a/R = 0.1, I find that T = 2 K/s, which is a fairly
rapid temperature raise. However, it should be noted that at these frequencies the
skin depth for copper is about 10‘5 m, so that the approximations which we’ve
used above don't hold, and a different analysis is needed (we need to solve the
diffusion equation for the magnetic field). At a frequency of 100 Hz the skin depth
is about 1 mm, so our analysis might be applicable. Of course, at this frequency

T ~ 2 x 1078 K/s, so there is a negligible temperature increase (a good thing
given our use of 60 Hz power supply).

Induction “furnaces” are often used in materials processing applications. One can
also purchase kitchen ranges which use induction heating,

11



Physics 6346 Exam I Solutions

1. Short answer (30 points).

(a) Write down the basic differential equations which determine the electrostatic field
E.

Solution.
VxE=0, V-E-=p/e. (1)

(b) Write down an expression for the energy density stored in an electrostatic field E.
Solution. The energy density is u = €|E|?/2.

(c) A hollow conducting sphere of radius R has a charge @) placed on its surface.
What is the electric field inside the sphere? The potential?
Solution. The electric field inside is zero. Assuming that we continue with our
convention that the potential is zero infinitely far from a localized charge distribu-
tion, then the potential at the surface, and at all points within, is ® = @/47egR.

(d) What is the electrostatic potential of a dipole of dipole moment p? What is the
electric field?

Solution. If the dipole is at the origin, the potential is

p-x
B(x) =
(x) 4meg)x|?’ (2)

and the electric field is an( )
_3n(p-n)-p
E(X) - 47{_€0le3 3 (3)

where n is a unit vector directed from the origin to x.

(e) A point charge of charge g > 0 is outside a conducting sphere which carries a total
charge @ > 0. Is the force between the point charge and the sphere attractive,
repulsive, or both? Explain.

Solution. Sufficiently far from the sphere the force will be repulsive. As the charge
is brought closer to the sphere, eventually the force due to the image charge will
dominate, and the net force will become attractive.

2. Fourier series and separation of variables (35 points). A series of thin conducting
strips, each of width L and infinitely long, are held at potentials —V and V (there
are small gaps between the conductors which can be ignored) as shown in the figure

below. The pattern repeats itself along the z-axis; you can ignore the thickness of the
conductors.

(a) On the figure above, sketch the field lines (no calculation required}). You need
only consider the region —L < x < L and y > 0.

1
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(b) Express the potential along the z-axis, ®(z,0), as a Fourier series.

Solution.
_ 4V &sin((2n + V)rz/L]

D

T A0 2n+1

$(z,0) (4)

(c) Use the method of separation of variables in rectangular coordinates to find the
potential ®(z,y). You can leave your result in the form of an infinite series. You
may want to treat y > 0 and y < 0 separately.

Solution. The method is standard. Assume ®(z,y) = X ()Y (y) and substitute
into Laplace’s equation to obtain

d’X d*y

—+kX =0, —5 -kY =0, 5

722 + ™ 0 (3)
where k? is the separation constant. Solving the equation for Y, and requiring
that the potential be bounded for |y| — oc, we find (taking k > 0)

Y(y) = Ce k¥, (6)

The general solutions for X (z) are linear combinations of sin(kr) and cos(kz);
however, comparing with the boundary condition in Eq. (4), we see that the
coefficient of the cos(kr) term must be zero, and that k = (2n + 1)7/L, so that

®(z,y) = 4:/ 3" exp[—(2n + 1)lyl/L] sin [(22 I++137ra:/L]. )
* n=0 i



(d) Sum the series for the potential to obtain a more compact expression. A possibly
useful result is

<] z2n+l 1 (1 ;,‘Z)

Zomr1 2 \1-z ®
Solution. Write the solution as
4V =] 2n+1
®(r.y) = 7Im,§,2n+1’ (9)
where
(= e(i"‘/L)(I"‘iivl)‘ (10)
Using the hint, we find
2
O(z,y) = ?Vlm In (%j—g)
2V _, | sin(mz/L)
= —t —_— .
—— [sinh(vrlyl /L) (11)

The solution is a periodic extension of the conducting “trough” problem in Jack-
son.

3. Method of images (35 points). A point charge ¢ is placed at a position (z',y/, z’),
near a grounded conducting “corner,” which occupies the region z < 0, ¥y < 0, —o0 <
z < 00, as shown in the figure below.

Y

q e(x’,y,z)

N

Grounded conductor



(a)

(b)

()

Find the electrostatic potential ®(x) in the region z >0,y > 0.

Solution. This problem can be solved by introducing three image charges: —¢ at
positions (—2',y,z') and (', —y, %), and +¢q at (—2/,—v/,z). The potential is
then

_ _q !
®&(r,y,2) = dmeg {[(I — )2+ (y— ¥)?2 + (z — 21)2]1/2 (12)

1
’ [(z+2)2+ (+y) + (2 — )%
1

[(:r +2)2 4+ (y— )2+ (z— 2,)2]1/2

1
_ | ,
[(z—2P+@+y)+(z- 21)2]'/2} (13)

You can verify that this is zero on £ = 0 and on y = 0.
What is the Green's function G(z,y,2;7,¥'.Z') in the region z > 0, y > 0, for
these boundary conditions?

Solution. Remember that the Green’s function is the solution for the unit charge
(set (g/4mep) = 1 in the potential):

[ ] — 1
G(z,y,z,2,y,2) = [(1‘ -2+ (y—y)+(z— z’)2]l/2
1
+ 1/2
[(z+2)+ (y+y)+ (2 - 2')?
1
[(@+2)+ (y - )2+ (z — 2}
1

@R+ +y>R (-2 (14)

Suppose that the point charge is replaced by a localized charge distribution in the

region x > 0, y > 0, with charge density p(x). What is the electrostatic potential
now?

Solution. With the Dirichlet boundary conditions, the potential is

1
4 7€

O(x) = / Glx, x')p(x) &, (15)

with the Green’s function given above.

Let’s return to the point charge; assuming that it is located at ' = a, ¥’ = @, and
z' =0, find the net force acting on the charge (magnitude and direction).



Solution. The force is determined by calculating the force between the point
charge and all of its image charges. The resultant is

¢ 4-V2

- T dmey 16a2 (16)
v 47!'60 1642 '

We see that the charge is attracted to the corner.



Physics 6346 Exam II Solutions

1. Short answer (30 points).

(a) Write down the fundamental equations of electrostatics in a dielectric medium.

Solution.
V-D=p, VxE=0. (1)

We also would need a constitutive relation which relates E and D.

(b) If a complex function f(z) = u + iv is analytic, what are the equations satisfied
by u and v?
Solution. If f(z) is analytic, then its real and imaginary parts satisfy the Cauchy-
Riemann equations,

ou_ov ou_ oo o
or 8y’ Hy Oz
We can combine these equations to show that V?u = V2p = 0.

(c) If we expand a function f(8,¢) on the unit sphere in spherical harmonics,

(oo}

t
f6,8) =3 3 AmY"(6,9), 3
I=0m=-1
what are the expansion coefficients?

Solution. Using the fact that the spherical harmonics are orthonormal on the unit
sphere, we have

Aim = [ 10.8)¥7™(6,9) d02 (4)

(d) Of the functions Jy(z), Ni(z), Ki(z), and Ii(z), which oscillate with 27 Which
diverge for small 7 Which diverge for large =7
Solution. Jy(z) and N,(z) oscillate with z, Ny(z) and K,(z) diverge as z — 0,
and I;(z) diverges as £ — oo.

(e) If a localized charge distribution with charge density p(x) (which is localized
around x = 0) is placed in an external potential $(x), what is the electrostatic
energy W in terms of the total charge g, the dipole moment p, and the quadrupole
moment tensor Q;;?

Solution. The expansion is
1 OE;
W = ¢q®(0) - p-E(0) - G ZQi;‘g(O) +... (5)
ig '3

2. Charged ring. (35 points). A charge @ is uniformly distributed on a ring of radius
a: the ring is in the r — y plane with its center at the origin.

1



2 y
X
(a) Find the electrostatic potential along the z-axis.
Solution. The potential is
Q 1
®(2) = ———xe.
(z) dmeg V22 + a2 (6)

(b) Now calculate the potential ®(r, 8, ¢) for r > a and for r < a as an expansion in
Legendre polynomials. You only need to find the first two nonvanishing terms in
the expansion.

Solution. Recall that for a problem with azimuthal symmetry,

®(r,0) = f: [Air' + Bir=¢*D] Py(cos). (7)

1=0
Along the positive z-axis, cos 8 = 1, and using P,(1) = 1, we have

B(r=2,0=0)=3 [z + Bz"*]. (8)

=0

The strategy is to expand our potential obtained in part (a) to determine the
expansion coefficients. Expanding Eq. (6) for z > a, we have

Comparing with Eq. (8), we see that A; = 0, and By = Q/4wey. By = 0, and
B; = —(Q/47ep)(a?/2), so that for 1 > a we have

o(r.0) = -2 [1 - 1“—2P2(cosa) +J . (10)

dreg |7 27

%]



Likewise, for r < a we have

_ Q117 p o
@(T,O)—aﬂ_—eo E—Qaapg(CObo)'i'...]. (11)

(c) Now suppose that the ring is placed inside a grounded, conducting sphere of radius
b > a. Calculate the potential for @ < » < b. You need only find the first two
nonvanishing terms in the series.

A

b
Q
—9_ ,
a
X
Solution. The expansion is now
Q1 ) ‘ 1 Q a? 2 N
(r, 6) = (41r£0r+A0 (pm S+ Art) s+ (12)

We need to impose the boundary condition that ®(b, §) = 0; this determines the
expansion coefficients as Ag = —(Q/4meg)(1/b) and A, = (Q/47ey)(a?/b?), so we
have

Q

a 5
@(T,0)=m[l—l—l—(l—%)PQ(COSO)‘F] (13)

3. Dielectric cylinder in a uniform field (35 points). A long dielectric cylinder of
radius a and dielectric constant € is placed in a uniform electric field Eq = Epe, (see
the figure below).

(a) Working in polar coordinates (p, ¢), write down the equations and boundary con-
ditions which will determine the potential inside and outside the cylinder.
Solution. We have

E=-Ve, V.-D=0. (14)



(b)

Ey —

Since we're considering an isotropic, linear material, D = ¢E, so that V2d =
0 both inside and outside the cylinder. The boundary conditions are that the
tangential components of E are continuous across the interface, so that

(a%) _ (acpm) )
09 /-0 9 ), _,
and that the normal component of D is continuous across the interface, so that
we have . 90
€< ain) =€0( aom) ’ (16)
P/ p=a P/ p=a

We also need the exterior potential to approach that of a uniform field,
b, — —Egpcos¢g  as p — oo. (17)

Solve these equations and find the potential inside and outside the cylinder.

Solution. The potential can only depend on cos ¢, so that the only acceptable
solution inside the cylinder is

®in(p, ¢) = A1pcos @. (18)
Outside the cylinder the solution must be of the form
Pou(p. @) = (Bip+ Crp ) cosd = —Eypeos g+ Cip~' cos ¢ (19)
Applying the two boundary conditions, we find that
2¢q € —

v €0 2
T e VT T e ™ (20)




(c) Use your results to find E, D, and P inside the cylinder.
Solution. The potential inside the cylinder is

2¢
Pin(p, @) = —- +°€0Eopcos¢, (21)
so that the electric field is 0
€
Ey, = Ege,,
in + € ¢€ (22)
the electric displacement is
Dy, = ¢E;, = 2¢qe Ege 23
in = m—‘€+60 zy ( )
and the polarization is
2¢0(€ — €0)
P =D — ¢E = ——— Fye,.
€0 pan Epe (24)



Physics 6346 Final Exam Solutions

1. Point charge outside of a dielectric sphere (25 points). A point charge of charge
g is placed a distance d from the center of a neutral dielectric sphere of radius a and
dielectric constant €. In solving this problem, let the origin of the coordinate system
be at the center of the sphere, and put the point charge on the z-axis. Assume that
the dielectric constant of the surrounding medium is €.

(a) Write down the equations of electrostatics and the boundary conditions which are
needed to solve this problem.

Solution. We need to solve Poisson’s equation,
V2@ = —(q/e0)d(x - d2) (1)

outside of the sphere, and Laplace’s equation V2@ = 0 inside the sphere. The
boundary conditions are that

o\ or r=a+_ ¢ or) .- (2)

_1(ee)y  _ _1(oe
a\d6)_,.~ "a\d8)__ - (3)



(b) Calculate the potential inside and outside of the sphere.

Solution. This was done in some detail in the lecture notes. The result is that
outside the sphere

q - —(1+1) .
= B Pi(cos 0
i S R0 z
while inside the sphere,
® =3 Ar'P(cos ). (5)
1=0
Using the boundary conditions,
q 20+1
A= .
"7 dmeg dHV(efeo + 1)l + 1] (6)
a?+(efeg — 1
p=-L o Ua-1) (7)
4meg d'H[(e/eq + 1)l + 1]

(c) Calculate the force on the point charge.
Solution. The force is due to the electric field produced by the polarization of the

sphere. The result is (see the notes)
P @? X a (efeg—1)I(1+1) ®)
P dmep I dP (efeo+ 1)+

(d) Find the leading term in the force when d > a. Provide a simple explanétion of
your result [you should be able to deduce the leading term from simple consider-
ations even if you couldn’t solve part (c)].

Solution. The leading term is the / = 1 term,

2 2 -1 3
Fo= -2 2deo-la 9)
dmeg €feg+2 d

This is the interaction between the dipole moment induced in the sphere (propor-
tional to 1/d?) and the point charge.

2. Spherical void in a permeable material (25 points). A spherical void of radius R
is in an otherwise homogeneous magnetic material of permeability u. At the center of
the void is a point dipole m.

(a) Suppose that R — oo. What are B and H for the dipole in this case?
Solution. The magnetic flux density for a point dipole is

B:&B(m-n)n—m.

VS 3 (10)

2



With n = e, and m = me., in component form this becomes

Lo 2m cos 6 Lo msin @
p = ————a——, By= ——o.
47 3 T 4r 3 (11)
The magnetic field H = B/uo. If we were to derive H from a potential, we would
have H = —V®,,, with

1 mecos8

Pu = i 12

Write down the fundamental equations for B and H. What are the boundary
conditions on these fields at the surface of the void?

Solution. With J = 0, the equations of magnetostatics are

V-B=0, VxH=0. (13)

(12)

The boundary conditions are that the normal component of B is continuous and
the tangential component of H is continuous.

Now solve the equations and apply the boundary conditions to find B and H both
inside and outside the void. [Hint: you might want to introduce a magnetic scalar
potential @y, such that H = —V®,, ]

Solution. Since V x H = 0, we can write H = —V®,,. In spherical coordinates,
the boundary conditions on ®, are
f5 i3 M a(bM
Ho ( or r=a~ - r r=at ’ (14)



_1(o%m __1(3% 15)
a\00 )__ " "a\08 ) _,. (15

This problem has azimuthal symmetry, so the magnetic scalar potential may be
expanded in Legendre polynomials F,(cos 8); since the dipole itself corresponds to
1 = 1, and the response in the void and in the dielectric is induced, we know on
physical grounds that we only need to keep the I = 1 terms. Therefore, inside the

void (r < a) we have

1 mcosf
Oy = P— + Arcosé, (16)

while inside the void (r > a) we have

1 m'cos@
4 2

M s (17)

with m’ and A constants which are to be determined from the boundary condi-
tions. Applying the two boundary conditions, we obtain

2m A= 2p.m’

dra® T 4mad (18)
m m’
b A= —
i dna®’ (19)
where pr = p/pg. Solving, we obtain
3 =1 m
!
= A = — —_—
20, + T 20y + 12mad (20)

Therefore, for » < a the magnetic field is that of a dipole plus a uniform field,

_i3(m-n)n—m+ -1 m o
" 4r r3 20, +12mad

(21)

and the magnetic flux density is By, = ugH;j,. For r > a the magnetic field is a
dipole field.

3 13m-njn—-m
20, ~ 147 rd ’

Hout = (22)

and Bow = tHou-

3. Induction (25 points). A planar wire loop of arbitrary shape is coplanar with a long,
straight wire which carries a current /(t). The loop has a resistance R, encloses an
area A, and is a fixed distance z away from the straight wire. Assume that r is
much larger than the characteristic size ! of the loop, and assume that the
self-inductance of the loop is negligible.



(a)

(b)

)

Determine the sense of the current induced in the loop (clockwise or counterclock-
wise) and the direction of the force on the loop (left or right) when (i) I > 0 and
I>0,()/>0and ] <0, (i) <O0and I >0, (iv) /] <0and ] <0 (here
I =dl/dt).
Solution.

i. I >0and ] >0: cew, right (repel).

ii. 7>0and <0: cw, left (attract).
iii. ] <0and ] > 0: cw, right (repel).

iv. I <0and I < 0: ccw, left (attract).
Find the flux through the loop due to the field produced by the straight wire, and
therefore find the mutual inductance M.
Solution. The magnitude of the magnetic field is

kol
B=—.

2rx (23)
In the approximation that x > I, we can take B to be constant over the loop, so
the flux is just the field times the area A:

A
¢ =—]
2nz (24)
s0 we see that the mutual inductance is
HoA
M=""—".
! 27z (25)



(c)

(d)

What is the current i, induced in the loop?
Solution. Since we are neglecting the self-inductance, we have

£ = IepR
do
dt
HoAdl

T Tt (20)

Therefore, . 4 d
C e _]
T (27)

What is the magnetic dipole moment of the loop?

Solution. For a planar loop the dipole moment is simply the current in the loop
times its area:

wA? |dl
= = A: —_—
m = |m| = |loopl A = 575 | 5

The direction of m is determined by the sense of Ijoep; it is out of the page when
Ioop is counterclockwise and into the page when I 0p i8 clockwise.

. (28)

Assuming that I(t) = Ipcoswt, find the force on the loop as a function of z, A,
Iy, w, R, and any physical constants. Find the time average of this force.

Solution. The force is F = V(m - B). We have

A

“imRa
2 A2 72
= %sinwtcoswt. (29)

m-B

Therefore, we have )
2A%01,
F,= —%3% sinwt cos wt. (30)

Taking the time average. we find that {(F;) = 0; the force oscillates between being
to the left and to the right.

Finally, suppose that the self-inductance L of the loop is not negligible. Calculate
the time-averaged force acting on the ring. [Hint: Write down a differential
equation for the current I)oop which includes both the self-inductance and the
resistance. For the case in which I({t) = Iycoswt, show that the steady-state
solution of this equation is Jep(t) = I sin(wt — ¢), and find T and ®.]

Solution. The induced current satisfies

L dlgep _ Mdl
Ra T = "Ra
= M low sinwt. (31)
R



(c)

(d)

Let’s assume that magnetic charge is conserved, just like electric charge. If the
current density for magnetic charge is Jps, what is the equation relating J,s and
pm?
Solution. The magnetic charge density and magnetic current density will satisfy
the equation of continuity,

Oem g 3y =0. (38)

at

Show that Faraday’s law is inconsistent in the presence of a magnetic charge
density which changes with time. Modify Faraday’'s law so that it is consistent
with conservation of magnetic charge. [Hint: think about the way that Maxwell
“fixed” Ampére's law.]
Solution. Faraday's law is

0B
VxE= —E. (39)

Take the divergence of both sides:

V-(VxE) = 0
ovV.-B
e
_9pm
ot ’
so the equation of continuity is not satisfied. To fix this, add the magnetic current
density Jas to the right hand side:

(40)

JB
E=-Jy—-—.
V x M~ 5 (41)
Taking the divergence of both sides of this equation, we see that the equation of

continuity is now satisfied.

Finally, to have a complete description of electromagnetic phenomena we need to
know how the fields act upon the magnetic charges. It is possible to show that a
point particle of magnetic charge g and electrical charge ¢ moving with a velocity
v experiences a force

F=¢g(E+vxB)+g(H-vxD). (42)
Use this force law to prove Poynting’s theorem:
d
E(Emech + Efed) = — fis S - nda, (43)
where 1
Eﬁeld=/vud3:r=§/‘;(E-D+B-H) &r. - (44)

8



dEmed1

/(J ‘E+Jy-H) &'z, (45)

and

S=Ex H. (46)
Assume that the medium is linear, with negligible dispersion or losses.
Solution. For a single particle, the time rate of change of the mechanical work
done is v-F = gv - E + gv - H. For a collection of particles we replace qv by J
and gv by Jy, and integrate over the volume, so that

dbmech
dt

(J E+Jy - -H)dr (47)

We now eliminate the sources in favor of the fields, using the fourth Maxwell
equation and our modified Faraday’s law:

dE;tech: V[(va_B—D) ( VxE—a—B) H] dz.  (48)

ot ot
Using
-V (ExH)=E-VxH-H-VXxE, (49)
and the fact that the medium is linear so that
oD aB d 1
S B+ H= ﬁ(ED BH), (50)
we obtain
dEmech  d ( ) 3
met 2, 2ED+BHd3m /VSd (51)

The first term on the right hand side is —dEgaa/dt, and the second term can be
converted into a surface integral using the divergence theorem, so that we obtain

Eq. (43).






