
15
Active Filter Circuits

Assessment Problems

AP 15.1 H(s) =
−(R2/R1)s
s + (1/R1C)

1
R1C

= 1 rad/s; R1 = 1 Ω, ·. . C = 1 F

R2

R1
= 1, ·. . R2 = R1 = 1 Ω

·. . Hprototype(s) =
−s

s + 1

AP 15.2 H(s) =
−(1/R1C)

s + (1/R2C)
=

−20,000
s + 5000

1
R1C

= 20,000; C = 5 µF

·. . R1 =
1

(20,000)(5 × 10−6)
= 10 Ω

1
R2C

= 5000

·. . R2 =
1

(5000)(5 × 10−6)
= 40 Ω

15–1
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AP 15.3 ωc = 2πfc = 2π × 104 = 20,000π rad/s

·. . kf = 20,000π = 62,831.85

C ′ =
C

kfkm

·. . 0.5 × 10−6 =
1

kfkm

·. . km =
1

(0.5 × 10−6)(62,831.85)
= 31.83

AP 15.4 For a 2nd order prototype Butterworth high pass filter

H(s) =
s2

s2 +
√

2s + 1

For the circuit in Fig. 15.25

H(s) =
s2

s2 +
(

2
R2C

)
s +

(
1

R1R2C2

)

Equate the transfer functions. For C = 1F,

2
R2C

=
√

2, ·. . R2 =
√

2 = 1.414 Ω

1
R1R2C2 = 1, ·. . R1 =

1√
2

= 0.707 Ω

AP 15.5 Q = 8, K = 5, ωo = 1000 rad/s, C = 1 µF

For the circuit in Fig 15.26

H(s) =
−
( 1

R1C

)
s

s2 +
( 2

R3C

)
s +

(
R1 + R2

R1R2R3C2

)

=
Kβs

s2 + βs + ω2
o

β =
2

R3C
, ·. . R3 =

2
βC

β =
ωo

Q
=

1000
8

= 125 rad/s
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·. . R3 =
2 × 106

(125)(1)
= 16 kΩ

Kβ =
1

R1C

·. . R1 =
1

KβC
=

1
5(125)(1 × 10−6)

= 1.6 kΩ

ω2
o =

R1 + R2

R1R2R3C2

106 =
(1600 + R2)

(1600)(R2)(16,000)(10−6)2

Solving for R2,

R2 =
(1600 + R2)106

256 × 105 , 246R2 = 16,000, R2 = 65.04 Ω

AP 15.6 ωo = 1000 rad/s; Q = 4;

C = 2 µF

H(s) =
s2 + (1/R2C2)

s2 +
[
4(1 − σ)

RC

]
s +

( 1
R2C2

)

=
s2 + ω2

o

s2 + βs + ω2
o

; ωo =
1

RC
; β =

4(1 − σ)
RC

R =
1

ωoC
=

1
(1000)(2 × 10−6)

= 500 Ω

β =
ωo

Q
=

1000
4

= 250

·. .
4(1 − σ)

RC
= 250

4(1 − σ) = 250RC = 250(500)(2 × 10−6) = 0.25

1 − σ =
0.25
4

= 0.0625; ·. . σ = 0.9375
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Problems

P 15.1 Summing the currents at the inverting input node yields

0 − Vi

Zi

+
0 − Vo

Zf

= 0

·. .
Vo

Zf

= −Vi

Zi

·. . H(s) =
Vo

Vi

= −Zf

Zi

P 15.2 [a] Zf =
R2(1/sC2)

[R2 + (1/sC2)]
=

R2

R2C2s + 1

=
(1/C2)

s + (1/R2C2)
Likewise

Zi =
(1/C1)

s + (1/R1C1)

·. . H(s) =
−(1/C2)[s + (1/R1C1)]
[s + (1/R2C2)](1/C1)

= −C1

C2

[s + (1/R1C1)]
[s + (1/R2C2)]

[b] H(jω) =
−C1

C2

[
jω + (1/R1C1)
jω + (1/R2C2)

]

H(j0) =
−C1

C2

(
R2C2

R1C1

)
=

−R2

R1

[c] H(j∞) = −C1

C2

(
j

j

)
=

−C1

C2

[d] As ω → 0 the two capacitor branches become open and the circuit reduces to a
resistive inverting amplifier having a gain of −R2/R1.
As ω → ∞ the two capacitor branches approach a short circuit and in this case
we encounter an indeterminate situation; namely vn → vi but vn = 0 because
of the ideal op amp. At the same time the gain of the ideal op amp is infinite so
we have the indeterminate form 0 · ∞. Although ω = ∞ is indeterminate we
can reason that for finite large values of ω H(jω) will approach −C1/C2 in
value. In other words, the circuit approaches a purely capacitive inverting
amplifier with a gain of (−1/jωC2)/(1/jωC1) or −C1/C2.
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P 15.3 [a] Zf =
(1/C2)

s + (1/R2C2)

Zi = R1 +
1

sC1
=

R1

s
[s + (1/R1C1)]

H(s) = − (1/C2)
[s + (1/R2C2)]

· s

R1[s + (1/R1C1)]

= − 1
R1C2

s

[s + (1/R1C1)][s + (1/R2C2)]

[b] H(jω) = − 1
R1C2

jω(
jω + 1

R1C1

) (
jω + 1

R2C2

)
H(j0) = 0

[c] H(j∞) = 0
[d] As ω → 0 the capacitor C1 disconnects vi from the circuit. Therefore

vo = vn = 0.
As ω → ∞ the capacitor short circuits the feedback network, thus Zf = 0 and
therefore vo = 0.

P 15.4 [a] K = 10(10/20) = 3.16 =
R2

R1

R2 =
1

ωcC
=

1
(2π)(103)(750 × 10−9)

= 212.21 Ω

R1 =
R2

K
=

212.21
3.16

= 67.11 Ω

[b]

P 15.5 [a] R1 =
1

ωcC
=

1
(2π)(8 × 103)(3.9 × 10−9)

= 5.10 kΩ

K = 10(14/20) = 5.01 =
R2

R1

·. . R2 = 5.01R1 = 25.57 kΩ
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[b]

P 15.6 For the RC circuit

H(s) =
Vo

Vi

=
(1/RC)

s + (1/RC)

R′ = kmR; C ′ =
C

kmkf

·. . R′C ′ = kmR
C

kmkf

=
1
kf

RC =
1
kf

1
R′C ′ = kf

H ′(s) =
(1/R′C ′)

s + (1/R′C ′)
=

kf

s + kf

H ′(s) =
1

(s/kf ) + 1

For the RL circuit

H(s) =
V0

Vi

=
R/L

s + (R/L)

R′ = kmR; L′ =
km

kf

L

R′

L′ =
kmR
km

kf
L

= kf

(
R

L

)
= kf

H ′(s) =
(R′/L′)

s + (R′/L′)
=

kf

s + kf

H ′(s) =
1

(s/kf ) + 1
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P 15.7 For the RC circuit

H(s) =
Vo

Vi

=
s

s + (1/RC)

R′ = kmR; C ′ =
C

kmkf

·. . R′C ′ =
RC

kf

=
1
kf

;
1

R′C ′ = kf

H ′(s) =
s

s + (1/R′C ′)
=

s

s + kf

=
(s/kf )

(s/kf ) + 1

For the RL circuit

H(s) =
s

s + (R/L)

R′ = kmR; L′ =
kmL

kf

R′

L′ = kf

(
R

L

)
= kf

H ′(s) =
s

s + (R′/L′)
=

s

s + kf

=
(s/kf )

(s/kf ) + 1

P 15.8 H(s) =
(R/L)s

s2 + (R/L)s + (1/LC)
=

βs

s2βs + ω2
o

For the prototype circuit ωo = 1 and β = ωo/Q = 1/Q.
For the scaled circuit

H ′(s) =
(R′/L′)s

s2 + (R′/L′)s + (1/L′C ′)

where R′ = kmR; L′ =
km

kf

L; and C ′ =
C

kfkm

·. .
R′

L′ =
kmR
km

kf
L

= kf

(
R

L

)
= kfβ

1
L′C ′ =

kfkm

km

kf
LC

=
k2

f

LC
= k2

f
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Q′ =
ω′

o

β′ =
kfωo

kfβ
= Q

therefore the Q of the scaled circuit is the same as the Q of the unscaled circuit.
Also note β′ = kfβ.

·. . H ′(s) =

(
kf

Q

)
s

s2 +
(

kf

Q

)
s + k2

f

H ′(s) =

(
1
Q

) (
s
kf

)
[(

s
kf

)2
+ 1

Q

(
s
kf

)
+ 1

]

P 15.9 [a] L = 1 H; C = 1 F

R =
1
Q

=
1
20

= 0.05 Ω

[b] kf =
ω′

o

ωo

= 40,000; km =
R′

R
=

5000
0.05

= 100,000

Thus,

R′ = kmR = (0.05)(100,000) = 5 kΩ

L′ =
km

kf

L =
100,000
40,000

(1) = 2.5 H

C ′ =
C

kmkf

=
1

(40,000)(100,000)
= 250 pF

[c]

P 15.10 [a] Since ω2
o = 1/LC and ωo = 1 rad/s,

C =
1
L

=
1
Q

[b] H(s) =
(R/L)s

s2 + (R/L)s + (1/LC)

H(s) =
(1/Q)s

s2 + (1/Q)s + 1



Problems 15–9

[c] In the prototype circuit

R = 1 Ω; L = 16 H; C =
1
L

= 0.0625 F

·. . km =
R′

R
= 10,000; kf =

ω′
o

ωo

= 25,000

Thus

R′ = kmR = 10 kΩ

L′ =
km

kf

L =
10,000
25,000

(16) = 6.4 H

C ′ =
C

kmkf

=
0.0625

(10,000)(25,000)
= 250 pF

[d]

[e] H ′(s) =
1
16

(
s

25,000

)
(

s
25,000

)2
+ 1

16

(
s

25,000

)
+ 1

H ′(s) =
1562.5s

s2 + 1562.5s + 625 × 106

P 15.11 [a] Using the first prototype

ωo = 1 rad/s; C = 1 F; L = 1 H; R = 25 Ω

km =
R′

R
=

40,000
25

= 1600; kf =
ω′

o

ωo

= 50,000

Thus,

R′ = kmR = 40 kΩ; L′ =
km

kf

L =
1600

50,000
(1) = 32 mH;

C ′ =
C

kmkf

=
1

(1600)(50,000)
= 12.5 nF

Using the second prototype

ωo = 1 rad/s; C = 25 F

L =
1
25

= 40 mH; R = 1 Ω
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km =
R′

R
= 40,000; kf =

ω′
o

ωo

= 50,000

Thus,

R′ = kmR = 40 kΩ; L′ =
km

kf

L =
40,000
50,000

(0.04) = 32 mH;

C ′ =
C

kmkf

=
25

(40,000)(50,000)
= 12.5 nF

[b]

P 15.12 For the scaled circuit

H ′(s) =
s2 +

(
1

L′C′

)
s2 +

(
R′
L′

)
s +

(
1

L′C′

)

L′ =
km

kf

L; C ′ =
C

kmkf

·. .
1

L′C ′ =
k2

f

LC
; R′ = kmR

·. .
R′

L′ = kf

(
R

L

)

It follows then that

H ′(s) =
s2 +

(
k2

f

LC

)

s2 +
(

R
L

)
kfs +

k2
f

LC

=

(
s
kf

)2
+
(

1
LC

)
[(

s
kf

)2
+
(

R
L

) (
s
kf

)
+
(

1
LC

)]

= H(s)|s=s/kf

P 15.13 For the circuit in Fig. 15.31

H(s) =
s2 +

(
1

LC

)
s2 + s

RC
+
(

1
LC

)
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It follows that

H ′(s) =
s2 + 1

L′C′

s2 + s
R′C′ + 1

L′C′

where R′ = kmR; L′ =
km

kf

L;

C ′ =
C

kmkf

·. .
1

L′C ′ =
k2

f

LC

1
R′C ′ =

kf

RC

H ′(s) =
s2 +

(
k2

f

LC

)

s2 +
(

kf

RC

)
s +

k2
f

LC

=

(
s
kf

)2
+ 1

LC(
s
kf

)2
+
(

1
RC

) (
s
kf

)
+ 1

LC

= H(s)|s=s/kf

P 15.14 [a] For the circuit in Fig. P15.14(a)

H(s) =
Vo

Vi

=
s +

1
s

1
Q

+ s +
1
s

=
s2 + 1

s2 +
(

1
Q

)
s + 1

For the circuit in Fig. P15.14(b)

H(s) =
Vo

Vi

=
Qs + Q

s

1 + Qs + Q
s

=
Q(s2 + 1)

Qs2 + s + Q

H(s) =
s2 + 1

s2 +
(

1
Q

)
s + 1
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[b] k=
f

ω′
o

ωo

= 104; Q = 8;

Replace s with s/kf .

H ′(s) =

(
s

104

)2
+ 1(

s
104

)2
+ 1

8

(
s

104

)
+ 1

=
s2 + 108

s2 + 1250s + 108

P 15.15 For prototype circuit (a):

H(s) =
Vo

Vi

=
Q

Q + 1
s+ 1

s

=
Q

Q + s
s2+1

H(s) =
Q(s2 + 1)

Q(s2 + 1) + s
=

s2 + 1

s2 +
(

1
Q

)
s + 1

For prototype circuit (b):

H(s) =
Vo

Vi

=
1

1 + (s/Q)
(s2+1)

=
s2 + 1

s2 +
(

1
Q

)
s + 1

P 15.16 From the solution to Problem 14.15, ωo = 100 krad/s and β = 12.5 krad/s. Compute
the two scale factors:

kf =
ω′

o

ωo

=
2π(200 × 103)

100 × 103 = 4π

km =
1
kf

C

C ′ =
1
4π

10 × 10−9

2.5 × 10−9 =
1
π

Thus,

R′ = kmR =
8000

π
= 2546.48 Ω L′ =

km

kf

L =
1/π
4π

(10 × 10−3) = 253.303 µH

Calculate the cutoff frequencies:

ω′
c1 = kfωc1 = 4π(93.95 × 103) = 1180.6 krad/s

ω′
c2 = kfωc2 = 4π(106.45 × 103) = 1337.7 krad/s

To check, calculate the bandwidth:

β′ = ω′
c2 − ω′

c1 = 157.1 krad/s = 4πβ (Checks!)
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P 15.17 From the solution to Problem 14.24, ωo = 106 rad/s and β = 2π(10.61) krad/s.
Calculate the scale factors:

kf =
ω′

o

ωo

=
50 × 103

106 = 0.05

km =
kfL

′

L
=

0.05(200 × 10−6)
50 × 10−6 = 0.2

Thus,

R′ = kmR = (0.2)(750) = 150 Ω C ′ =
C

kmkf

=
20 × 10−9

(0.2)(0.05)
= 2 µF

Calculate the bandwidth:

β′ = kfβ = (0.05)[2π(10.61 × 103)] = 3333 rad/s

To check, calculate the quality factor:

Q =
ωo

β
=

106

2π(10.61 × 103)
= 15

Q′ =
ω′

o

β′ =
50 × 103

3333
= 15 (Checks)

P 15.18 [a] km =
R′

R
=

1000
1

= 1000; kf =
C

kmC ′ =
1

(1000)(200 × 10−9)
= 5000

L′ =
km

kf

(L) =
1000
5000

(1) = 200 mH

[b]
V − 10/s

1000
+

V

0.2s
+

V

1000 + (5 × 106/s)
= 0

V
( 1

1000
+

5
s

+
s

1000s + 5 × 106

)
=

1
100s

V =
10(s + 5000)

2s2 + 10,000s + 25 × 106 =
5(s + 5000)

s2 + 5000s + 12.5 × 106
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Io =
V

0.2s
=

25(s + 5000)
s(s2 + 5000s + 12.5 × 106)

=
K1

s
+

K2

s + 2500 − j2500
+

K∗
2

s + 2500 + j2500

K1 = 0.01; K2 = −0.005

io(t) = 10 − 10e−2500t cos 2500t mA

Since km = 1000 and the source voltage didn’t change, the amplitude of the
current is reduced by a factor of 1000. Since kf = 5000 the coefficients of t are
multiplied by 5000.

P 15.19 km =
R′

R
=

5000
50

= 100; kf =
ω′

o

ωo

= 5000

C ′ =
C

kmkf

=
4 × 10−3

(100)(5000)
= 8 nF

50 Ω → 5 kΩ; 700 Ω → 70 kΩ

L′ =
km

kf

L =
100
5000

(20) = 0.4 H

0.05vφ → 0.05
100

vφ = 5 × 10−4vφ

The original expression for the current:

io(t) = 1728 + 2880e−20t cos(15t + 126.87◦) mA

The frequency components will be multiplied by kf = 5000:

20 → 20(5000) = 105; 15 → 15(5000) = 75,000

The magnitudes will be reduced by km = 100:

1728 → 1728/100 = 17.28; 2880 → 2880/100 = 28.80

The expression for the current in the scaled circuit is thus,

io(t) = 17.28 + 28.80e−105t cos(75,000t + 126.87◦) mA
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P 15.20 [a] From Eq 15.1 we have

H(s) =
−Kωc

s + ωc

where K =
R2

R1
, ωc =

1
R2C

·. . H ′(s) =
−K ′ω′

c

s + ω′
c

where K ′ =
R′

2

R′
1

ω′
c =

1
R′

2C
′

By hypothesis R′
1 = kmR1; R′

2 = kmR2,

and C ′ =
C

kfkm

. It follows that

K ′ = K and ω′
c = kfωc, therefore

H ′(s) =
−Kkfωc

s + kfωc

=
−Kωc(
s
kf

)
+ ωc

[b] H(s) =
−K

(s + 1)

[c] H ′(s) =
−K(
s
kf

)
+ 1

=
−Kkf

s + kf

P 15.21 [a] From Eq. 15.4

H(s) =
−Ks

s + ωc

where K =
R2

R1
and

ωc =
1

R1C

·. . H ′(s) =
−K ′s
s + ω′

c

where K ′ =
R′

2

R′
1

and ω′
c =

1
R′

1C
′

By hypothesis

R′
1 = kmR1; R′

2 = kmR2; C ′ =
C

kmkf

It follows that

K ′ = K and ω′
c = kfωc

·. . H ′(s) =
−Ks

s + kfωc

=
−K(s/kf )(

s
kf

)
+ ωc
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[b] H(s) =
−Ks

(s + 1)

[c] H ′(s) =
−K(s/kf )(

s
kf

+ 1
) =

−Ks

(s + kf )

P 15.22 [a] Hhp =
−s

s + 1
; kf =

ω′
o

ω
=

1000(2π)
1

= 2000π

·. . H ′
hp =

−s

s + 2000π
1

RHCH

= 2000π; ·. . RH =
1

(2000π)(0.1 × 10−6)
= 1.59 kΩ

Hlp =
−1

s + 1
; kf =

ω′
o

ω
=

5000(2π)
1

= 10,000π

·. . H ′
lp =

−10,000π
s + 10,000π

1
RLCL

= 10,000π; ·. . RL =
1

(10,000π)(0.1 × 10−6)
= 318.3 Ω

[b] H ′(s) =
−s

s + 2000π
· −10,000π
s + 10,000π

=
10,000πs

(s + 2000π)(s + 10,000π)

[c] ωo =
√

ωc1ωc1 =
√

(2000π)(10,000π) = 1000π
√

20 rad/s

H ′(jωo) =
(10,000π)(j1000π

√
20)

(2000π + j1000π
√

20)(10,000π + j1000π
√

20)

=
j10

√
20

(2 + j
√

20)(10 + j
√

20)
= 0.8333/0◦
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[d] G = 20 log10(0.8333) = −1.58 dB

[e]

P 15.23 [a] For the high-pass section:

kf =
ω′

o

ω
=

4000(2π)
1

= 8000π

H ′(s) =
−s

s + 8000π

·. .
1

R1(10 × 10−9)
= 8000π; R1 = 3.98 kΩ ·. . R2 = 3.98 kΩ

For the low-pass section:

kf =
ω′

o

ω
=

400(2π)
1

= 800π

H ′(s) =
−800π

s + 800π

·. .
1

R2(10 × 10−9)
= 800π; R2 = 39.8 kΩ ·. . R1 = 39.8 kΩ

0 dB gain corresponds to K = 1. In the summing amplifier we are free to
choose Rf and Ri so long as Rf/Ri = 1. To keep from having many different
resistance values in the circuit we opt for Rf = Ri = 39.8 kΩ.
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[b]

[c] H ′(s) =
s

s + 8000π
+

800π
s + 800π

=
s2 + 1600πs + 64 × 105π2

(s + 800π)(s + 8000π)

[d] ωo =
√

(8000π)(800π) = 800π
√

10

H ′(j800π
√

10) =
−(800π

√
10)2 + 1600π(j800π

√
10) + 64 × 105π2

(800π + j800π
√

10)(8000π + j800π
√

10)

=
j128 × 104

√
10π2

(800π)2(1 + j
√

10)(10 + j
√

10)

=
j2

√
10

(1 + j
√

10)(10 + j
√

10)

= 0.1818/0◦

[e] G = 20 log10 0.1818 = −14.81 dB
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[f]

P 15.24 [a] H(s) =
(1/sC)

R + (1/sC)
=

(1/RC)
s + (1/RC)

H(jω) =
(1/RC)

jω + (1/RC)

|H(jω)| =
(1/RC)√

ω2 + (1/RC)2

|H(jω)|2 =
(1/RC)2

ω2 + (1/RC)2

[b] Let Va be the voltage across the capacitor, positive at the upper terminal. Then

Va − Vi

R1
+ sCVa +

Va

R2 + sL
= 0

Solving for Va yields

Va =
(R2 + sL)Vi

R1LCs2 + (R1R2C + L)s + (R1 + R2)

But

Vo =
sLVa

R2 + sL

Therefore

Vo =
sLVi

R1LCs2 + (L + R1R2C)s + (R1 + R2)

H(s) =
sL

R1LCs2 + (L + R1R2C)s + (R1 + R2)

H(jω) =
jωL

[(R1 + R2) − R1LCω2] + jω(L + R1R2C)
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|H(jω)| =
ωL√

[R1 + R2 − R1LCω2]2 + ω2(L + R1R2C)2

|H(jω)|2 =
ω2L2

(R1 + R2 − R1LCω2)2 + ω2(L + R1R2C)2

=
ω2L2

R2
1L

2C2ω4 + (L2 + R2
1R

2
2C

2 − 2R2
1LC + 2R1R2LC)ω2 + (R1 + R2)2

[c] Let Va be the voltage across R2 positive at the upper terminal. Then

Va − Vi

R1
+

Va

R2
+ VasC + VasC = 0

(0 − Va)sC + (0 − Va)sC +
0 − Vo

R3
= 0

·. . Va =
R2Vi

2R1R2Cs + R1 + R2

and Va = − Vo

2R3Cs

It follows directly that

H(s) =
Vo

Vi

=
−2R2R3Cs

2R1R2Cs + (R1 + R2)

·. . H(jω) =
−2R2R3C(jω)

(R1 + R2) + jω(2R1R2C)

|H(jω)| =
2R2R3Cω√

(R1 + R2)2 + ω24R2
1R

2
2C

2

|H(jω)|2 =
4R2

2R
2
3C

2ω2

(R1 + R2)2 + 4R2
1R

2
2C

2ω2

P 15.25 ωo = 2πfo = 400π rad/s

β = 2π(1000) = 2000π rad/s

·. . ωc2 − ωc1 = 2000π

√
ωc1ωc2 = ωo = 400π

Solve for the cutoff frequencies:

ωc1ωc2 = 16 × 104π2
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ωc2 =
16 × 104π2

ωc1

·. .
16 × 104π2

ωc1

− ωc1 = 2000π

or ω2
c1

+ 2000πωc1 − 16 × 104π2 = 0

ωc1 = −1000π ±
√

106π2 + 0.16 × 106π2

ωc1 = 1000π(−1 ±
√

1.16) = 242.01 rad/s

·. . ωc2 = 2000π + 242.01 = 6525.19 rad/s

Thus, fc1 = 38.52 Hz and fc2 = 1038.52 Hz

Check: β = fc2 − fc1 = 1000Hz

ωc2 =
1

RLCL

= 6525.19

RL =
1

(6525.19)(5 × 10−6)
= 30.65 Ω

ωc1 =
1

RHCH

= 242.01

RH =
1

(242.01)(5 × 10−6)
= 826.43 Ω

P 15.26 ωo = 1000 rad/s; GAIN = 6

β = 4000 rad/s; C = 0.2 µF

β = ωc2 − ωc1 = 4000

ωo =
√

ωc1ωc2 = 1000

Solve for the cutoff frequencies:

·. . ω2
c1

+ 4000ωc1 − 106 = 0

ωc1 = −2000 ± 1000
√

5 = 236.07 rad/s
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ωc2 = 4000 + ωc1 = 4236.07 rad/s

Check: β = ωc2 − ωc1 = 4000 rad/s

ωc1 =
1

RLCL

·. . RL =
1

(0.2 × 10−6)(236.07)
= 21.81 kΩ

1
RHCH

= 4236.07

RH =
1

(0.2 × 10−6)(4236.07)
= 1.18 kΩ

Rf

Ri

= 6

If Ri = 1 kΩ Rf = 6Ri = 6 kΩ

P 15.27 [a] y = 20 log10
1√

1 + ω2n
= −10 log10(1 + ω2n)

From the laws of logarithms we have

y =
(−10

ln 10

)
ln(1 + ω2n)

Thus

dy

dω
=
(−10

ln 10

) 2nω2n−1

(1 + ω2n)

x = log10 ω =
ln ω

ln 10
·. . ln ω = x ln 10

1
ω

dω

dx
= ln 10,

dω

dx
= ω ln 10

dy

dx
=
(

dy

dω

)(
dω

dx

)
=

−20nω2n

1 + ω2n
dB/decade

at ω = ωc = 1 rad/s

dy

dx
= −10n dB/decade.
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[b] y = 20 log10
1

[
√

1 + ω2]n
= −10n log10(1 + ω2)

=
−10n
ln 10

ln(1 + ω2)

dy

dω
=

−10n
ln 10

( 1
1 + ω2

)
2ω =

−20nω

(ln 10)(1 + ω2)

As before

dω

dx
= ω(ln 10); ·. .

dy

dx
=

−20nω2

(1 + ω2)

At the corner ωc =
√

21/n − 1 ·. . ω2
c = 21/n − 1

dy

dx
=

−20n[21/n − 1]
21/n

dB/decade.

[c] For the Butterworth Filter For the cascade of identical sections

n dy/dx (dB/decade) n dy/dx (dB/decade)

1 −10 1 −10

2 −20 2 −11.72

3 −30 3 −12.38

4 −40 4 −12.73

∞ −∞ ∞ −13.86

[d] It is apparent from the calculations in part (c) that as n increases the amplitude
characteristic at the cutoff frequency decreases at a much faster rate for the
Butterworth filter.
Hence the transition region of the Butterworth filter will be much narrower
than that of the cascaded sections.

P 15.28 [a] n ∼= (−0.05)(−30)
log10(7000/2000)

∼= 2.76

·. . n = 3

[b] Gain = 20 log10
1√

1 + (7000/2000)6
= −32.65 dB

P 15.29 [a] For the scaled circuit

H ′(s) =
1/(R′)2C ′

1C
′
2

s2 + 2
R′C′

1
s + 1

(R′)2C′
1C′

2

where

R′ = kmR; C ′
1 = C1/kfkm; C ′

2 = C2/kfkm
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It follows that

1
(R′)2C ′

1C
′
2

=
k2

f

R2C1C2

2
R′C ′

1
=

2kf

RC1

·. . H ′(s) =
k2

f/R
2C1C2

s2 + 2kf

RC1
s +

k2
f

R2C1C2

=
1/R2C1C2(

s
kf

)2
+ 2

RC1

(
s
kf

)
+ 1

R2C1C2

P 15.30 [a] H(s) =
1

(s + 1)(s2 + s + 1)
[b] fc = 2000 Hz; ωc = 4000π rad/s; kf = 4000π

H ′(s) =
1

( s
kf

+ 1)[( s
kf

)2 + s
kf

+ 1]

=
k3

f

(s + kf )(s2 + kfs + k2
f )

=
(4000π)3

(s + 4000π)[s2 + 4000πs + (4000π)2]

[c] H ′(j14,000π) =
64

(4 + j14)(−180 + j56)

= 0.02332/− 236.77◦

Gain = 20 log10(0.02332) = −32.65 dB

P 15.31 [a] In the first-order circuit R = 1 Ω and C = 1 F.

km =
R′

R
=

1000
1

= 1000; kf =
ω′

o

ωo

=
2π(2000)

1
= 4000π

R′ = kmR = 1000 Ω; C ′ =
C

kmkf

=
1

(1000)(4000π)
= 79.58 nF

In the second-order circuit R = 1 Ω, 2/C1 = 1 so C1 = 2 F, and
C2 = 1/C1 = 0.5 F. Therefore in the scaled second-order circuit

R′ = kmR = 1000 Ω; C ′
1 =

C1

kmkf

=
2

(1000)(4000π)
= 159.15 nF

C ′
2 =

C2

kmkf

=
0.5

(1000)(4000π)
= 39.79 nF
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[b]

P 15.32 [a] n =
(−0.05)(−48)

log10(2000/500)
= 3.99 ·. . n = 4

From Table 15.1 the transfer function of the first section is

H1(s) =
s2

s2 + 0.765s + 1
For the prototype circuit

2
R2

= 0.765; R2 = 2.61 Ω; R1 =
1
R2

= 0.383 Ω

The transfer function of the second section is

H2(s) =
s2

s2 + 1.848s + 1
For the prototype circuit

2
R2

= 1.848; R2 = 1.082 Ω; R1 =
1
R2

= 0.9240 Ω

The scaling factors are:

kf =
ω′

o

ωo

=
2π(2000)

1
= 4000π

C ′ =
C

kmkf

·. . 10 × 10−9 =
1

4000πkm

·. . km =
1

4000π(10 × 10−9)
= 7957.75

Therefore in the first section

R′
1 = kmR1 = 3.04 kΩ; R′

2 = kmR2 = 20.80 kΩ

In the second section

R′
1 = kmR1 = 7.35 kΩ; R′

2 = kmR2 = 8.61 kΩ
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[b]

P 15.33 n = 5: 1 + (−1)5s10 = 0; s10 = 1

s10 = 1/0 + 36◦k

k sk+1

0 1/0◦

1 1/36◦

2 1/72◦

3 1/108◦

4 1/144◦

5 1/180◦

6 1/216◦

7 1/252◦

8 1/288◦

9 1/324◦

Group by conjugate pairs to form denominator polynomial.

(s + 1)[s − (cos 108◦ + j sin 108◦)][s − (cos 252◦ + j sin 252◦)]

· [s − (cos 144◦ + j sin 144◦)][s − (cos 216◦ + j sin 216◦)]

= (s + 1)(s + 0.309 − j0.951)(s + 0.309 + j0.951)·

(s + 0.809 − j0.588)(s + 0.809 + j0.588)

which reduces to

(s + 1)(s2 + 0.618s + 1)(s2 + 1.618s + 1)
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n = 6: 1 + (−1)6s12 = 0 s12 = −1

s12 = 1/15◦ + 36◦k

k sk+1

0 1/15◦

1 1/45◦

2 1/75◦

3 1/105◦

4 1/135◦

5 1/165◦

6 1/195◦

7 1/225◦

8 1/255◦

9 1/285◦

10 1/315◦

11 1/345◦

Grouping by conjugate pairs yields

(s + 0.2588 − j0.9659)(s + 0.2588 + j0.9659)×

(s + 0.7071 − j0.7071)(s + 0.7071 + j0.7071)×

(s + 0.9659 − j0.2588)(s + 0.9659 + j0.2588)

or (s2 + 0.518s + 1)(s2 + 1.414s + 1)(s2 + 1.932s + 1)

P 15.34 H ′(s) =
s2

s2 + 2
kmR2(C/kmkf )s + 1

kmR1kmR2(C2/k2
mk2

f
)

H ′(s) =
s2

s2 + 2kf

R2C
s +

k2
f

R1R2C2

=
(s/kf )2

(s/kf )2 + 2
R2C

(
s
kf

)
+ 1

R1R2C2
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P 15.35 [a] n =
(−0.05)(−48)
log10(32/8)

= 3.99 ·. . n = 4

From Table 15.1 the transfer function is

H(s) =
1

(s2 + 0.765s + 1)(s2 + 1.848s + 1)

The capacitor values for the first stage prototype circuit are

2
C1

= 0.765 ·. . C1 = 2.61 F

C2 =
1
C1

= 0.38 F

The values for the second stage prototype circuit are

2
C1

= 1.848 ·. . C1 = 1.08 F

C2 =
1
C1

= 0.92 F

The scaling factors are

km =
R′

R
= 1000; kf =

ω′
o

ωo

= 16,000π

Therefore the scaled values for the components in the first stage are

R1 = R2 = R = 1000 Ω

C1 =
2.61

(16,000π)(1000)
= 52.01 nF

C2 =
0.38

(16,000π)(1000)
= 7.61 nF

The scaled values for the second stage are

R1 = R2 = R = 1000 Ω

C1 =
1.08

(16,000π)(1000)
= 21.53 nF

C2 =
0.92

(16,000π)(1000)
= 18.38 nF
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[b]

P 15.36 [a] The cascade connection is a bandpass filter.

[b] The cutoff frequencies are 2 kHz and 8 kHz.
The center frequency is

√
(2)(8) = 4 kHz.

The Q is 4/(8 − 2) = 2/3 = 0.67

[c] For the high pass section kf = 4000π. The prototype transfer function is

Hhp(s) =
s4

(s2 + 0.765s + 1)(s2 + 1.848s + 1)

·. . H ′
hp(s) =

(s/4000π)4

[(s/4000π)2 + 0.765(s/4000π) + 1]

· 1
[(s/4000π)2 + 1.848(s/4000π) + 1]

=
s4

(s2 + 3060πs + 16 × 106π2)(s2 + 7392πs + 16 × 106π2)

For the low pass section kf = 16,000π

Hlp(s) =
1

(s2 + 0.765s + 1)(s2 + 1.848s + 1)

·. . H ′
lp(s) =

1
[(s/16,000π)2 + 0.765(s/16,000π) + 1]

· 1
[(s/16,000π)2 + 1.848(s/16,000π) + 1]

=
(16,000π)4

([s2 + 12,240πs + (16,000π)2)][s2 + 29,568πs + (16,000π)2]

The cascaded transfer function is

H ′(s) = H ′
hp(s)H

′
lp(s)
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For convenience let

D1 = s2 + 3060πs + 16 × 106π2

D2 = s2 + 7392πs + 16 × 106π2

D3 = s2 + 12,240πs + 256 × 106π2

D4 = s2 + 29,568πs + 256 × 106π2

Then

H ′(s) =
65,536 × 1012π4s4

D1D2D3D4

[d] ωo = 2π(4000) = 8000π rad/s

s = j8000π

s4 = 4096 × 1012π4

D1 = (16 × 106π2 − 64 × 106π2) + j(8000π)(3060π)

= 106π2(−48 + j24.48) = 106π2(53.88/152.98◦)

D2 = (16 × 106π2 − 64 × 106π2) + j(8000π)(7392π)

= 106π2(−48 + j59.136) = 106π2(76.16/129.07◦)

D1 = (256 × 106π2 − 64 × 106π2) + j(8000π)(12,240π)

= 106π2(192 + j97.92) = 106π2(215.53/27.02◦)

D1 = (256 × 106π2 − 64 × 106π2) + j(8000π)(29,568π)

= 106π2(192 + j236.544) = 106π2(304.66/50.93◦)

H ′(jωo) =
(65,536)(4096)π8 × 1024

(π8 × 1024)[(53.88)(76.16)(215.53)(304.66)/360◦]

= 0.996/− 360◦ = 0.996/0◦

P 15.37 [a] From the statement of the problem, K = 10 ( = 20 dB). Therefore for the
prototype bandpass circuit

R1 =
Q

K
=

16
10

= 1.6 Ω

R2 =
Q

2Q2 − K
=

16
502

Ω

R3 = 2Q = 32 Ω
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The scaling factors are

kf =
ω′

o

ωo

= 2π(6400) = 12,800π

km =
C

C ′kf

=
1

(20 × 10−9)(12,800π)
= 1243.40

Therefore,

R′
1 = kmR1 = (1.6)(1243.40) = 1.99 kΩ

R′
2 = kmR2 = (16/502)(1243.40) = 39.63 Ω

R′
3 = kmR3 = 32(1243.40) = 39.79 kΩ

[b]

P 15.38 From Eq 15.58 we can write

H(s) =
−
(

2
R3C

) (
R3C

2

) (
1

R1C

)
s

s2 + 2
R3C

s + R1+R2
R1R2R3C2

or

H(s) =
−
(

R3
2R1

) (
2

R3C
s
)

s2 + 2
R3C

s + R1+R2
R1R2R3C2

Therefore

2
R3C

= β =
ωo

Q
;

R1 + R2

R1R2R3C2 = ω2
o ;

and K =
R3

2R1

By hypothesis C = 1 F and ωo = 1 rad/s

·. .
2
R3

=
1
Q

or R3 = 2Q
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R1 =
R3

2K
=

Q

K

R1 + R2

R1R2R3
= 1

Q

K
+ R2 =

(
Q

K

)
(2Q)R2

·. . R2 =
Q

2Q2 − K

P 15.39 [a] First we will design a unity gain filter and then provide the passband gain with
an inverting amplifier. For the high pass section the cut-off frequency is 500
Hz. The order of the Butterworth is

n =
(−0.05)(−20)
log10(500/200)

= 2.51

·. . n = 3

Hhp(s) =
s3

(s + 1)(s2 + s + 1)

For the prototype first-order section

R1 = R2 = 1 Ω, C = 1 F

For the prototype second-order section

R1 = 0.5 Ω, R2 = 2 Ω, C = 1 F

The scaling factors are

kf =
ω′

o

ωo

= 2π(500) = 1000π

km =
C

C ′kf

=
1

(15 × 10−9)(1000π)
=

106

15π

In the scaled first-order section

R′
1 = R′

2 = kmR1 =
106

15π
(1) = 21.22 kΩ

C ′ = 15 nF

In the scaled second-order section

R′
1 = 0.5km = 10.61 kΩ

R′
2 = 2km = 42.44 kΩ
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C ′ = 15 nF

For the low-pass section the cut-off frequency is 4500 Hz. The order of the
Butterworth filter is

n =
(−0.05)(−20)

log10(11,250/4500)
= 2.51; ·. . n = 3

Hlp(s) =
1

(s + 1)(s2 + s + 1)

For the prototype first-order section

R1 = R2 = 1 Ω, C = 1 F

For the prototype second-order section

R1 = R2 = 1 Ω; C1 = 2 F; C2 = 0.5 F

The low-pass scaling factors are

km =
R′

R
= 104; kf =

ω′
o

ωo

= (4500)(2π) = 9000π

For the scaled first-order section

R′
1 = R′

2 = 10 kΩ; C ′ =
C

kfkm

=
1

(9000π)(104)
= 3.54 nF

For the scaled second-order section

R′
1 = R′

2 = 10 kΩ

C ′
1 =

C1

kfkm

=
2

(9000π)(104)
= 7.07 nF

C ′
2 =

C2

kfkm

=
0.5

(9000π)(104)
= 1.77 nF

GAIN AMPLIFIER

20 log10 K = 20 dB, ·. . K = 10

Since we are using 10 kΩ resistors in the low-pass stage, we will use
Rf = 100 kΩ and Ri = 10 kΩ in the inverting amplifier stage.
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[b]

P 15.40 [a] Unscaled high-pass stage

Hhp(s) =
s3

(s + 1)(s2 + s + 1)

The frequency scaling factor is kf = (ω′
o/ωo) = 1000π. Therefore the scaled

transfer function is

H ′
hp(s) =

(s/1000π)3(
s

1000π
+ 1

) [(
s

1000π

)2
+ s

1000π
+ 1

]

=
s3

(s + 1000π)[s2 + 1000πs + 106π2]

Unscaled low-pass stage

Hlp(s) =
1

(s + 1)(s2 + s + 1)

The frequency scaling factor is kf = (ω′
o/ωo) = 9000π. Therefore the scaled

transfer function is

H ′
lp(s) =

1(
s

9000π
+ 1

) [(
s

9000π

)2
+
(

s
9000π

)
+ 1

]

=
(9000π)3

(s + 9000π)(s2 + 9000πs + 81 × 106π2)

Thus the transfer function for the filter is

H ′(s) = 10H ′
hp(s)H

′
lp(s) =

729 × 1010π3s3

D1D2D3D4
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where

D1 = s + 1000π

D2 = s + 9000π

D3 = s2 + 1000πs + 106π2

D4 = s2 + 9000πs + 81 × 106π2

[b] At f = 200 Hz ω = 400π rad/s

D1(j400π) = 400π(2.5 + j1)

D2(j400π) = 400π(22.5 + j1)

D3(j400π) = 4 × 105π2(2.1 + j1.0)

D4(j400π) = 4 × 105π2(202.1 + j9)

Therefore

D1D2D3D4(j400π) = 256π61014(28,534.82/52.36◦)

H ′(j400π) =
(729π3 × 1010)(64 × 106π3)

256π6 × 1014(28,534.82/52.36◦)

= 0.639/− 52.36◦

·. . 20 log10 |H ′(j400π)| = 20 log10(0.639) = −3.89 dB

At f = 1500 Hz, ω = 3000π rad/s

Then

D1(j3000π) = 1000π(1 + j3)

D2(j3000π) = 3000π(3 + j1)

D3(j3000π) = 106π2(−8 + j3)

D4(j3000π) = 9 × 106π2(8 + j3)

H ′(j3000π) =
(729 × π3 × 1010)(27 × 109π3)

27 × 1018π6(730/270◦ )

= 9.99/90◦

·. . 20 log10 |H ′(j3000π)| = 19.99 dB
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[c] From the transfer function the gain is down 19.99 + 3.89 or 23.88 dB at 200 Hz.
Because the upper cut-off frequency is nine times the lower cut-off frequency
we would expect the high-pass stage of the filter to predict the loss in gain at
200 Hz. For a 3nd order Butterworth

GAIN = 20 log10
1√

1 + (500/200)6
= −23.89 dB.

1500 Hz is in the passband for this bandpass filter, and is in fact the center
frequency. Hence we expect the gain at 1500 Hz to equal, or nearly equal,
20 dB as specified in Problem 15.39. Thus our scaled transfer function
confirms that the filter meets the specifications.

P 15.41 [a] From Table 15.1

Hlp(s) =
1

(s2 + 0.518s + 1)(s2 +
√

2s + 1)(s2 + 1.932s + 1)

Hhp(s) =
1(

1
s2 + 0.518

(
1
s

)
+ 1

) (
1
s2 +

√
2
(

1
s

)
+ 1

) (
1
s2 + 1.932

(
1
s

)
+ 1

)

Hhp(s) =
s6

(s2 + 0.518s + 1)(s2 +
√

2s + 1)(s2 + 1.932s + 1)

P 15.42 [a] kf = 25,000

H ′
hp(s) =

(s/25,000)6

[(s/25,000)2 + 0.518(s/25,000) + 1]

· 1
[(s/25,000)2 + 1.414s/25,000 + 1][(s/25,000)2 + 1.932s/25,000 + 1]

=
s6

(s2 + 12,950s + 625 × 106)(s2 + 35,350s + 625 × 106)

· 1
(s2 + 48,300s + 625 × 106)

[b] H ′(j25,000) =
−(25,000)6

[12,950(j25,000)][35,350(j25,000)][48,300(j25,000)]

=
−(25,000)3

(12,950)(25,350)(48,300)j3

= 0.7067/− 90◦

20 log10 |H ′(j25,000)| = −3.02 dB
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P 15.43 [a] At very low frequencies the two capacitor branches are open and because the op
amp is ideal the current in R3 is zero. Therefore at low frequencies the circuit
behaves as an inverting amplifier with a gain of R2/R1. At very high
frequencies the capacitor branches are short circuits and hence the output
voltage is zero.

[b] Let the node where R1, R2, R3, and C2 join be denoted as a, then

(Va − Vi)G1 + VasC2 + (Va − Vo)G2 + VaG3 = 0

−VaG3 − VosC1 = 0

or

(G1 + G2 + G3 + sC2)Va − G2Vo = G1Vi

Va =
−sC1

G3
Vo

Solving for Vo/Vi yields

H(s) =
−G1G3

(G1 + G2 + G3 + sC2)sC1 + G2G3

=
−G1G3

s2C1C2 + (G1 + G2 + G3)C1s + G2G3

=
−G1G3/C1C2

s2 +
[

(G1+G2+G3)
C2

]
s + G2G3

C1C2

=
−G1G2G3

G2C1C2

s2 +
[

(G1+G2+G3)
C2

]
s + G2G3

C1C2

=
−Kbo

s2 + b1s + bo

where K =
G1

G2
; bo =

G2G3

C1C2

and b1 =
G1 + G2 + G3

C2

[c] Equating coefficients we see that

G1 = KG2

G3 =
boC1C2

G2
=

boC1

G2

since by hypothesis C2 = 1 F

b1 =
G1 + G2 + G3

C2
= G1 + G2 + G3
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·. . b1 = KG2 + G2 +
boC1

G2

b1 = G2(1 + K) +
boC1

G2

Solving this quadratic equation for G2 we get

G2 =
b1

2(1 + K)
±
√

b2
1 − boC14(1 + K)

4(1 + K)2

=
b1 ±

√
b2
1 − 4bo(1 + K)C1

2(1 + K)

For G2 to be realizable

C1 <
b2
1

4bo(1 + K)

[d] 1. Select C2 = 1 F

2. Select C1 such that C1 <
b2
1

4bo(1 + K)

3. Calculate G2 (R2)

4. Calculate G1 (R1); G1 = KG2

5. Calculate G3 (R3); G3 = boC1/G2

P 15.44 [a] In the second order section of a third order Butterworth filter bo = b1 = 1
Therefore,

C1 ≤ b2
1

4bo(1 + K)
=

1
(4)(1)(5)

= 0.05 F

·. . C1 = 0.05 F (limiting value)

[b] G2 =
1

2(1 + 4)
= 0.1 S

G3 =
1

0.1
(0.05) = 0.5 S

G1 = 4(0.1) = 0.4 S

Therefore,

R1 =
1

G1
= 2.5 Ω; R2 =

1
G2

= 10 Ω; R3 =
1

G3
= 2 Ω
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[c] kf =
ω′

o

ωo

= 2π(2500) = 5000π

km =
C2

C ′
2kf

=
1

(10 × 10−9)kf

= 6366.2

C ′
1 =

0.05
kfkm

= 0.5 × 10−9 = 500 pF

R′
1 = (2.5)(6366.2) = 15.92 kΩ

R′
2 = (10)(6366.2) = 63.66 kΩ

R′
3 = (2)(6366.2) = 12.73 kΩ

[d] R′
1 = R′

2 = (6366.2)(1) = 6.37 kΩ

C ′ =
C

kfkm

=
1

108 = 10 nF

[e]

P 15.45 [a] By hypothesis the circuit becomes:

For very small frequencies the capacitors behave as open circuits and therefore
vo is zero. As the frequency increases, the capacitive branch impedances
become small compared to the resistive branches. When this happens the
circuit becomes an inverting amplifier with the capacitor C2 dominating the
feedback path. Hence the gain of the amplifier approaches
(1/jωC2)/(1/jωC1) or C1/C2. Therefore the circuit behaves like a high-pass
filter with a passband gain of C1/C2.
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[b] Summing the currents away from the upper terminal of R2 yields

VaG2 + (Va − Vi)sC1 + (Va − Vo)sC2 + VasC3 = 0

or

Va[G2 + s(C1 + C2 + C3)] − VosC2 = sC1Vi

Summing the currents away from the inverting input terminal gives

(0 − Va)sC3 + (0 − Vo)G1 = 0

or

sC3Va = −G1Vo; Va =
−G1Vo

sC3

Therefore we can write

−G1Vo

sC3
[G2 + s(C1 + C2 + C3)] − sC2Vo = sC1Vi

Solving for Vo/Vi gives

H(s) =
Vo

Vi

=
−C1C3s

2

[C2C3s2 + G1(C1 + C2 + C3)s + G1G2]

=
−C1
C2

s2[
s2 + G1

C2C3
(C1 + C2 + C3)s + G1G2

C2C3

]

=
−Ks2

s2 + b1s + bo

Therefore the circuit implements a second-order high-pass filter with a
passband gain of C1/C2.

[c] C1 = K:

b1 =
G1

(1)(1)
(K + 2) = G1(K + 2)

·. . G1 =
b1

K + 2
; R1 =

(
K + 2

b1

)

bo =
G1G2

(1)(1)
= G1G2

·. . G2 =
bo

G1
=

bo

b1
(K + 2)

·. . R2 =
b1

bo(K + 2)
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[d] From Table 15.1 the transfer function of the second-order section of a
third-order high-pass Butterworth filter is

H(s) =
Ks2

s2 + s + 1

Therefore b1 = bo = 1

Thus

C1 = K = 8 F

R1 =
8 + 2

1
= 10 Ω

R2 =
1

1(8 + 2)
= 0.10 Ω

P 15.46 [a] Low-pass filter:

n =
(−0.05)(−30)

log10(1000/400)
= 3.77; ·. . n = 4

In the first prototype second-order section: b1 = 0.765, bo = 1, C2 = 1 F

C1 ≤ b2
1

4bo(1 + K)
≤ (0.765)2

(4)(2)
≤ 0.0732

choose C1 = 0.03 F

G2 =
0.765 ±

√
(0.765)2 − 4(2)(0.03)

4
=

0.765 ± 0.588
4

Arbitrarily select the larger value for G2, then

G2 = 0.338 S; ·. . R2 =
1

G2
= 2.96 Ω

G1 = KG2 = 0.338 S; ·. . R1 =
1

G1
= 2.96 Ω

G3 =
boC1

G2
=

(1)(0.03)
0.338

= 0.089 ·. . R3 = 1/G3 = 11.3 Ω

Therefore in the first second-order prototype circuit

R1 = R2 = 2.96 Ω; R3 = 11.3 Ω

C1 = 0.03 F; C2 = 1 F

In the second second-order prototype circuit: b1 = 1.848, b0 = 1, C2 = 1 F

·. . C1 ≤ (1.848)2

8
≤ 0.427
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choose C1 = 0.30 F

G2 =
1.848 ±

√
(1.848)2 − 8(0.3)

4
=

1.848 ± 1.008
4

Arbitrarily select the larger value, then

G2 = 0.7139 S; ·. . R2 =
1

G2
= 1.4008 Ω

G1 = KG2 = 0.7139 S; ·. . R1 =
1

G1
= 1.4008 Ω

G3 =
boC1

G2
=

(1)(0.30)
0.7139

= 0.4202 S ·. . R3 = 1/G3 = 2.3796 Ω

In the low-pass section of the filter

kf =
ω′

o

ωo

= 2π(400) = 800π

km =
C

C ′kf

=
1

(10 × 10−9)kf

=
125,000

π

Therefore in the first scaled second-order section

R′
1 = R′

2 = 2.96km = 118 kΩ

R′
3 = 11.3km = 450 kΩ

C ′
1 =

0.03
kfkm

= 300 pF

C ′
2 = 10 nF

In the second scaled second-order section

R′
1 = R′

2 = 1.4008km = 55.74 kΩ

R′
3 = 2.3796km = 94.68 kΩ

C ′
1 =

0.3
kfkm

= 3 nF

C ′
2 = 10 nF

High-pass filter section

n =
(−0.05)(−30)

log10(6400/2560)
= 3.77; n = 4.

In the first prototype second-order section: b1 = 0.765; bo = 1; C2 = C3 = 1 F

C1 = K = 1 F
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R1 =
K + 2

b1
=

3
0.765

= 3.92 Ω

R2 =
b1

bo(K + 2)
=

0.765
3

= 0.255 Ω

In the second prototype second-order section: b1 = 1.848; bo = 1;
C2 = C3 = 1 F

C1 = K = 1 F

R1 =
K + 2

b1
=

3
1.848

= 1.623 Ω

R2 =
b1

bo(K + 2)
=

1.848
3

= 0.616 Ω

In the high-pass section of the filter

kf =
ω′

o

ωo

= 2π(6400) = 12,800π

km =
C

C ′kf

=
1

(10 × 10−9)(12,800π)
=

7812.5
π

In the first scaled second-order section

R′
1 = 3.92km = 9.75 kΩ

R′
2 = 0.255km = 634 Ω

C ′
1 = C ′

2 = C ′
3 = 10 nF

In the second scaled second-order section

R′
1 = 1.623km = 4.04 kΩ

R′
2 = 0.616km = 1.53 kΩ

C ′
1 = C ′

2 = C ′
3 = 10 nF

In the gain section, let Ri = 10 kΩ and Rf = 10 kΩ.
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[b]

P 15.47 [a] The prototype low-pass transfer function is

Hlp(s) =
1

(s2 + 0.765s + 1)(s2 + 1.848s + 1)

The low-pass frequency scaling factor is

kflp
= 2π(400) = 800π

The scaled transfer function for the low-pass filter is

H ′
lp(s) =

1[(
s

800π

)2
+ 0.765s

800π
+ 1

] [(
s

800π

)2
+ 1.848s

800π
+ 1

]

=
4096 × 108π4

[s2 + 612πs + (800π)2] [s2 + 1478.4πs + (800π)2]

The prototype high-pass transfer function is

Hhp(s) =
s4

(s2 + 0.765s + 1)(s2 + 1.848s + 1)

The high-pass frequency scaling factor is

kfhp
= 2π(6400) = 12,800π
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The scaled transfer function for the high-pass filter is

H ′
hp(s) =

(s/12,800π)4[(
s

12,800π

)2
+ 0.765s

12,800π
+ 1

] [(
s

12,800π

)2
+ 1.848s

12,800π
+ 1

]

=
s4

[s2 + 9792πs + (12,800π)2][s2 + 23,654.4πs + (12,800π)2]

The transfer function for the filter is

H ′(s) =
[
H ′

lp(s) + H ′
hp(s)

]

[b] fo =
√

fc1fc2 =
√

(400)(6400) = 1600 Hz

ωo = 2πfo = 3200π rad/s

(jωo)2 = −1024 × 104π2

(jωo)4 = 1,048,576 × 108π4

H ′
lp(jωo) =

4096 × 108π4

[−960 × 104π2 + j612(3200π2)]
×

1
[−960 × 104π2 + j1478.4(3200π2)]

=
40,000

(−3000 + j612)(−3000 + j1478.4)

= 3906.2 × 10−6/37.76◦

H ′
hp(jωo) =

1,048,576 × 108π4

[15,360 × 104π2 + j9792(3200π2)]

1
[15,360 × 104π2 + j23,654.4(3200π2)]

=
10.24 × 106

(48,000 + j9792)(48,000 + j23,654.4)

= 3906.2 × 10−6/− 37.76◦

·. . H ′(jωo) = −3906.2 × 10−6(1/37.76◦ + 1/− 37.76◦)

= −3906.2 × 10−6(1.58/0◦) = −6176.35 × 10−6/0◦

G = 20 log10 |H ′(jωo)| = 20 log10(6176.35 × 10−6) = −44.19 dB

P 15.48 [a] At low frequencies the capacitor branches are open; vo = vi. At high
frequencies the capacitor branches are short circuits and the output voltage is
zero. Hence the circuit behaves like a unity-gain low-pass filter.



15–46 CHAPTER 15. Active Filter Circuits

[b] Let va represent the voltage-to-ground at the right-hand terminal of R1. Observe
this will also be the voltage at the left-hand terminal of R2. The s-domain
equations are

(Va − Vi)G1 + (Va − Vo)sC1 = 0

(Vo − Va)G2 + sC2Vo = 0

or

(G1 + sC1)Va − sC1Vo = G1Vi

−G2Va + (G2 + sC2)Vo = 0

·. . Va =
G2 + sC2Vo

G2

·. .

[
(G1 + sC1)

(G2 + sC2)
G2

− sC1

]
Vo = G1Vi

·. .
Vo

Vi

=
G1G2

(G1 + sC1)(G2 + sC2) − C1G2s

which reduces to

Vo

Vi

=
G1G2/C1C2

s2 + G1
C1

s + G1G2
C1C2

=
bo

s2 + b1s + bo

[c] There are four circuit components and two restraints imposed by H(s);
therefore there are two free choices.

[d] b1 =
G1

C1

·. . G1 = b1C1

bo =
G1G2

C1C2

·. . G2 =
bo

b1
C2

[e] No, all physically realizeable capacitors will yield physically realizeable
resistors.

[f] From Table 15.1 we know the transfer function of the prototype 4th order
Butterworth filter is

H(s) =
1

(s2 + 0.765s + 1)(s2 + 1.848s + 1)

In the first section bo = 1, b1 = 0.765

·. . G1 = (0.765)(1) = 0.765 S

R1 = 1/G1 = 1.307 Ω

G2 =
1

0.765
(1) = 1.307 S
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R2 = 1/G2 = 0.765 Ω

In the second section bo = 1, b1 = 1.848

·. . G1 = 1.848 S

R1 = 1/G1 = 0.541 Ω

G2 =
( 1

1.848

)
(1) = 0.541 S

R2 = 1/G2 = 1.848 Ω

P 15.49 [a] kf =
ω′

o

ωo

= 2π(3000) = 6000π

km =
C

C ′kf

=
1

(4.7 × 10−9)(6000π)
=

106

28.2π

In the first section

R′
1 = 1.307km = 14.75 kΩ

R′
2 = 0.765km = 8.64 kΩ

In the second section

R′
1 = 0.541km = 6.11 kΩ

R′
2 = 1.848km = 20.86 kΩ
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[b]

P 15.50 [a] Interchanging the Rs and Cs yields the following circuit.

At low frequencies the capacitors appear as open circuits and hence the output
voltage is zero. As the frequency increases the capacitor branches approach
short circuits and va = vi = vo. Thus the circuit is a unity-gain, high-pass filter.

[b] The s-domain equations are

(Va − Vi)sC1 + (Va − Vo)G1 = 0

(Vo − Va)sC2 + VoG2 = 0

It follows that

Va(G1 + sC1) − G1Vo = sC1Vi

and Va =
(G2 + sC2)Vo

sC2

Thus{[
(G2 + sC2)

sC2

]
(G1 + sC1) − G1

}
Vo = sC1Vi

Vo{s2C1C2 + sC1G2 + G1G2} = s2C1C2Vi
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H(s) =
Vo

Vi

=
s2(

s2 +
G2

C2
s +

G1G2

C1C2

)

=
Vo

Vi

=
s2

s2 + b1s + bo

[c] There are 4 circuit components: R1, R2, C1 and C2.
There are two transfer function constraints: b1 and bo.
Therefore there are two free choices.

[d] bo =
G1G2

C1C2
; b1 =

G2

C2

·. . G2 = b1C2; R2 =
1

b1C2

G1 =
bo

b1
C1

·. . R1 =
b1

boC1

[e] No, all realizeable capacitors will produce realizeable resistors.

[f] The second-order section in a 3rd-order Butterworth high-pass filter is
s2/(s2 + s + 1). Therefore bo = b1 = 1 and

R1 =
1

(1)(1)
= 1 Ω.

R2 =
1

(1)(1)
= 1 Ω.

P 15.51 [a] kf =
ω′

o

ωo

= 104π

km =
C

C ′kf

=
1

(75 × 10−9)(104π)
=

105

75π

C1 = C2 = 75 nF; R′
1 = R′

2 = kmR = 424.4 Ω

[b] R = 424.4 Ω; C = 75 nF
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[c]

[d] Hhp(s) =
s3

(s + 1)(s2 + s + 1)

H ′
hp(s) =

(s/104π)3

[(s/104π) + 1][(s/104π)2 + (s/104π) + 1]

=
s3

(s + 104π)(s2 + 104πs + 108π2)

[e] H ′
hp(j104π) =

(j104π)3

(j104π + 104π)[(j104π)2 + 104π(j104π) + 108π2]
= 0.7071/135◦

·. . |H ′
hp| = 0.7071 = −3 dB

P 15.52 [a] It follows directly from Eq 15.64 that

H(s) =
s2 + 1

s2 + 4(1 − σ)s + 1

Now note from Eq 15.69 that (1 − σ) equals 1/4Q, hence

H(s) =
s2 + 1

s2 + 1
Q
s + 1

[b] For Example 15.13, ωo = 5000 rad/s and Q = 5. Therefore kf = 5000 and

H ′(s) =
(s/5000)2 + 1

(s/5000)2 +
1
5

(
s

5000

)
+ 1

=
s2 + 25 × 106

s2 + 1000s + 25 × 106

P 15.53 [a] ωo = 2000π rad/s

·. . kf =
ω′

o

ωo

= 2000π
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km =
C

C ′kf

=
1

(15 × 10−9)(2000π)
=

105

3π

R′ = kmR =
105

3π
(1) = 10,610 Ω

R′

2
= 5,305 Ω

σ = 1 − 1
4Q

= 1 − 1
4(20)

= 0.9875

σR′ = 10,478 Ω; (1 − σ)R′ = 133 Ω

C ′ = 15 nF

2C ′ = 30 nF

[b]

[c] kf = 2000π

H(s) =
(s/2000π)2 + 1

(s/2000π)2 + 1
20(s/2000π) + 1

=
s2 + 4 × 106π2

s2 + 100πs + 4 × 106π2

P 15.54 To satisfy the gain specification of 20 dB at ω = 0 and α = 1 requires

R1 + R2

R1
= 10 or R2 = 9R1

Choose a standard resistor of 11.1 kΩ for R1 and a 100 kΩ potentiometer for R2.
Since (R1 + R2)/R1 � 1 the value of C1 is

C1 =
1

2π(40)(105)
= 39.79 nF
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Choose a standard capacitor value of 39 nF. Using the selected values of R1 and R2

the maximum gain for α = 1 is

20 log10

(111.1
11.1

)
α=1

= 20.01 dB

When C1 = 39 nF the frequency 1/R2C1 is

1
R2C1

=
109

105(39)
= 256.41 rad/s = 40.81 Hz

The magnitude of the transfer function at 256.41 rad/s is

|H(j256.41)|α=1 =
|111.1 × 103 + j256.41(11.1)(100)(39)10−3|
|11.1 × 103 + j256.41(11.1)(100)(39)10−3| = 7.11

Therefore the gain at 40.81 Hz is

20 log10(7.11)α=1 = 17.04 dB

P 15.55 20 log10

(
R1 + R2

R1

)
= 13.98

·. .
R1 + R2

R1
= 5; ·. . R2 = 4R1

Choose R1 = 100 kΩ. Then R2 = 400 kΩ

1
R2C1

= 100π rad/s; ·. . C1 =
1

(100π)(400 × 103)
= 7.96 nF

P 15.56 [a] |H(j0)| =
R1 + αR2

R1 + (1 − α)R2
=

11.1 + α(100)
11.1 + (1 − α)100
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P 15.57 [a] Combine the impedances of the capacitors in series in Fig. P15.53(b) to get

Ceq =
1 − α

sC1
+

α

sC1
=

1
sC1

which is identical to the impedance of the capacitor in Fig. P15.53(a).

[b]

Vx =
α/sC1

(1 − α)/sC1 + α/sC1
V = α

Vy =
αR2

(1 − α)R2 + αR2
= α = Vx

[c] Since x and y are both at the same potential, they can be shorted together, and
the circuit in Fig. 15.34 can thus be drawn as shown in Fig. 15.53(c).

[d] The feedback path between Vo and Vs containing the resistance R4 + 2R3 has no
effect on the ratio Vo/Vs, as this feedback path is not involved in the nodal
equation that defines the voltage ratio. Thus, the circuit in Fig. 15.53(c) can be
simplified into the form of Fig. 15.2, where the input impedance is the
equivalent impedance of R1 in series with the parallel combination of
(1 − α)/sC1 and (1 − α)R2, and the feedback impedance is the equivalent
impedance of R1 in series with the parallel combination of α/sC1 and αR2:

Zi = R1 +
(1−α)
sC1

· (1 − α)R2

(1 − α)R2 + (1−α)
sC1

=
R1 + (1 − α)R2 + R1R2C1s

1 + R2C1s

Zf = R1 +
α

sC1
· αR2

αR2 + α
sC1

=
R1 + αR2 + R1R2C1s

1 + R2C1s

P 15.58 As ω → 0

|H(iω)| → 2R3 + R4

2R3 + R4
= 1
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Therefore the circuit would have no effect on low frequency signals. As ω → ∞

|H(jω)| → [(1 − β)R4 + Ro](βR4 + R3)
[(1 − β)R4 + R3](βR4 + Ro)

When β = 1

|H(j∞)|β=1 =
Ro(R4 + R3)
R3(R4 + Ro)

If R4 � Ro

|H(j∞)|β=1
∼= Ro

R3
> 1

Thus, when β = 1 we have amplification or “boost”. When β = 0

|H(j∞)|β=0 =
R3(R4 + R3)
Ro(R4 + Ro)

If R4 � Ro

|H(j∞)|β=0
∼= R3

Ro

< 1

Thus, when β = 0 we have attenuation or “cut”.
Also note that when β = 0.5

|H(jω)|β=0.5 =
(0.5R4 + Ro)(0.5R4 + R3)
(0.5R4 + R3)(0.5R4 + Ro)

= 1

Thus, the transition from amplification to attenuation occurs at β = 0.5. If β > 0.5
we have amplification, and if β < 0.5 we have attenuation.
Also note the amplification an attenuation are symmetric about β = 0.5. i.e.

|H(jω)|β=0.6 =
1

|H(jω)|β=0.4

Yes, the circuit can be used as a treble volume control because

• The circuit has no effect on low frequency signals

• Depending on β the circuit can either amplify (β > 0.5) or attenuate (β < 0.5)
signals in the treble range

• The amplification (boost) and attenuation (cut) are symmetric around β = 0.5.
When β = 0.5 the circuit has no effect on signals in the treble frequency range.
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P 15.59 [a] |H(j∞)|β=1 =
Ro(R4 + R3)
R3(R4 + Ro)

=
(65.9)(505.9)
(5.9)(565.9)

= 9.99

·. . maximum boost = 20 log10 9.99 = 19.99 dB

[b] |H(j∞)|β=0 =
R3(R4 + R3)
Ro(R4 + Ro)

·. . maximum cut = −21.93 dB

[c] R4 = 500 kΩ; Ro = R1 + R3 + 2R5 = 65.9 kΩ

·. . R4 = 7.59Ro

Yes, R4 is significantly greater than Ro.

[d] |H(j/R3C2)|β=1 =

∣∣∣∣∣∣
(2R3 + R4) + j Ro

R3
(R4 + R3)

(2R3 + R4) + j(R4 + Ro)

∣∣∣∣∣∣

=
∣∣∣∣∣511.8 + j 65.9

5.9 (505.9)
511.8 + j565.9

∣∣∣∣∣
= 7.44

20 log10 |H(j/R3C2)|β=1 = 20 log10 7.44 = 17.43 dB

[e] When β = 0

|H(j/R3C2)|β=0 =
(2R3 + R4) + j(R4 + Ro)

(2R3 + R4) + j
Ro

R3
(R4 + R3)

Note this is the reciprocal of |H(j/R3C2)|β=1.

·. . 20 log10 |H(j/R3C2)|β+0 = −17.43 dB

[f] The frequency 1/R3C2 is very nearly where the gain is 3 dB off from its
maximum boost or cut. Therefore for frequencies higher than 1/R3C2 the
circuit designer knows that gain or cut will be within 3 dB of the maximum.
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P 15.60 |H(j∞)| =
[(1 − β)R4 + Ro][βR4 + R3]
[(1 − βR4 + R3][βR4 + Ro]

=
[(1 − β)500 + 65.9][β500 + 5.9]
[(1 − β)500 + 5.9][β500 + 65.9]


