
CHAPTER 6 
Quick Quizzes 

1. (d). We are given no information about the masses of the objects. If the masses are the 
same, the speeds must be the same (so that they have equal kinetic energies), and then 
p1 = p2. If the masses are not the same, the speeds will be different, as will the momenta, 
and either p1 < p2, or p1 > p2, depending on which particle has more mass. Without 
information about the masses, we cannot choose among these possibilities. 

2. (c). Because the momentum of the system (boy + raft) remains constant with zero 
magnitude, the raft moves towards the shore as the boy walks away from the shore. 

3. (c) and (e). Because object 1 has larger mass, its acceleration due to the applied force is 
smaller, and it takes a longer time interval ∆t to experience the displacement ∆x than does 
object 2. Thus, the impulse F∆t on object 1 is larger than that on object 2. Consequently, 
object 1 will experience a larger change in momentum than object 2, which tells us that (c) 
is true. The same force acts on both objects through the same displacement. Thus, the same 
work is done on each object, so that each must experience the same change in kinetic 
energy, which tells us that (e) is true. 

4. (d). 

5. (b). You must conclude that the collision is inelastic because some of the kinetic energy is 
carried away by mechanical waves––sound. If the collision were elastic, you would not 
hear any clicking sound. 

6. (a). 

7. (a). Perfectly inelastic—the two “particles”, skater and Frisbee, are combined after the 
collision; (b) Inelastic—because the Frisbee bounced back with almost no speed, kinetic 
energy has been transformed to other forms; (c) Inelastic—the kinetic energy of the Frisbee 
is the same before and after the collision. Because momentum of the skater-Frisbee system 
is conserved, however, the skater must be moving after the catch and the throw, so that 
the final kinetic energy of the system is larger than the initial kinetic energy. This extra 
energy comes from the muscles of the skater. 

8. (b). If all of the initial kinetic energy is transformed, then nothing is moving after the 
collision. Consequently, the final momentum of the system is necessarily zero. Because 
momentum of the system is conserved, the initial momentum of the system must be zero. 
Finally, because the objects are identical, they must have been initially moving toward 
each other along the same line with the same speed. 
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Problem Solutions 

6.1 ( )2 2 2
21 1 1

2 2 2 2
p pmv

KE mv
m m

= = = =
m

 

6.2 Assume the initial direction of the ball in the –x direction, away from the net. 

 (a) ( ) ( ) ( )0.0600 kg 40.0 m s 50.0 m sf iImpulse p m v v ⎡ ⎤= ∆ = − = − −⎣ ⎦  giving 

5.40 kg m sImpulse= ⋅ = 5.40 N s⋅  toward the net. 

 (b) ( )2 21
2 f iWork KE m v v= ∆ = −  

 

  
( ) ( ) ( )2 20.0600 kg 40.0 m s 50.0 m s

2

⎡ ⎤−⎣ ⎦= = 27.0 J−  

6.3 Use p mv=  : 

 (a) ( ) ( )27 61.67 10  kg 5.00 10  m sp −= × × =  218.35 10  kg m s−× ⋅  

 (b) ( ) ( )2 21.50 10  kg 3.00 10  m sp −= × × =  4.50 kg m s⋅  

 (c) ( ) ( )75.0 kg 10.0 m sp = =  750 kg m s⋅  

 (d) ( ) ( )24 45.98 10  kg 2.98 10  m sp = × × =  291.78 10  kg m s× ⋅  

6.4 (a) Since the ball was thrown straight upward, it is at rest momentarily (v = 0) at its 
maximum height. Therefore, p =  0 . 
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 (b) The maximum height is found from ( )2 2 2y iy yv v a y= + ∆  with . 
 

 

0yv =

( )( )20 2iy max
v g y= + − ∆ . Thus, ( )

2

2
iy

max

v
y

g
∆ = . 

 

We need the velocity at 
( ) 2

2 4
iymax

y v
y

g
∆

∆ = = , thus ( )2 2 2y iy yv v a y= + ∆  gives 

 

 ( )
2 2

2 2 2
4 2

iy iy
y iy

v v
v v g

g
⎛ ⎞

= + − =⎜ ⎟
⎝ ⎠

, or 15 m s
2 2
iy

y

v
v = = . 

 

Therefore, 
( ) ( )0.10 kg 15 m s

2yp mv= = =  1.1 kg m s⋅  upward. 

6.5 (a) If , 
 

then 

ball bulletp p=

( ) ( )3 33.00 10  kg 1.50 10  m s
0.145 kg

bullet bullet
ball

ball

m v
v

m

−× ×
= = = 31.0 m s . 

 (b) The kinetic energy of the bullet is  
 

 
( ) ( )2-3 3

2 33.00 10  kg 1.50 10  m s1 3.38 10  J
2 2bullet bullet bulletKE m v

× ×
= = = ×  

 

while that of the baseball is ( ) ( )2
2 0.145 kg 31.0 m s1 69.7 J

2 2ball ball ballKE m v= = = . 

 
The  bullet has the larger kinetic energy  by a factor of 48.4. 

6.6 From the impulse-momentum theorem, ( ) f iF t p mv m∆ = ∆ = − v . 
 

Thus, 
( )
( )

( ) ( )-3 255 10  kg 2.0 10 ft s 0 1 m s
0.0020 s 0 3.281 ft s

f im v v
F

t

− × × − ⎛ ⎞
= = = 1.7 kN⎜ ⎟∆ − ⎝ ⎠

. 
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6.7 If the diver starts from rest and drops vertically into the water, the velocity just before 
impact is found from 
 
  

 

 

( ) ( )g gf i
KE PE KE PE+ = +

21 0 0     2
2 impact impactmv mgh v gh+ = + ⇒ =  

 
With the diver at rest after an impact time of ∆t, the average force during impact is given 

by 
( ) ( )0 - 2 2

= =   or     impactm v m gh m gh
F F

t t t

−
=

∆ ∆ ∆
directed upward . 

 
Assuming a mass of 55 kg and an impact time of ~1.0 s, the magnitude of this average 
force is 
 

 
( ) ( ) ( )255 kg 2 9.80 m s 10 m

  =770 N,  or  
1.0 s

F = 3~ 10  N . 

6.8 The speed just before impact is given by ( ) ( )g gf i
KE PE KE PE+ = +  as 

 

 21 0 0
2 impactmv mgh+ = + , or 2impactv gh= . 

 
Taking downward as positive, the impulse-momentum theorem gives the average force 
as 
 

 
( ) ( ) ( ) ( )260.0 kg 2 9.80 m s 10.0 m0 2

0.120 s
impactm v m ghp

F
t t t

−− −∆
= = = =
∆ ∆ ∆

. 

 
Thus, 37.00 10  N,   or   F F= − × = ( )37.00 10  N  upward× . 

6.9 ( ) ( )Impulse F t p m v= ∆ = ∆ = ∆ . 
 
Thus, ( ) ( )70.0 kg 5.20 m s 0Impulse m v= ∆ = − = 364 kg m s⋅ , and 
 

 2364 kg m s
438 kg m s

0.832 s
Impulse

F
t

⋅
= = = ⋅

∆
, 

 
or =F 438 N directed forward . 
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6.10 From the impulse-momentum theorem, ( ) f iF t p mv m∆ = ∆ = − v , the average force 
required to hold onto the child is 
 

 
( )
( )

( ) ( ) 312 kg 0 60 mi h 1 m s
6.4 10  N

0.050 s 0 2.237 mi h
f im v v

F
t

− − ⎛ ⎞
= = =− ×⎜ ⎟∆ − ⎝ ⎠

. 

 
Therefore, the magnitude of the needed retarding force is 36.4 10  N× , or 1400 lbs. A 
person cannot exert a force of this magnitude and a safety device should be used. 

6.11 (a) The impulse equals the area under the F versus t graph. This area is the sum of the 
area of the rectangle plus the area of the triangle. Thus, 
 

 ( ) ( ) ( ) ( )12.0 N 3.0 s 2.0 N 2.0 s
2

Impulse= + = 8.0 N s⋅ . 

 (b) ( ) ( )f iImpulse F t p m v v= ∆ = ∆ = − . 

 
 ( )8.0 N s 1.5 kg 0,   giving   f fv v⋅ = − = 5.3 m s . 

 (c) ( ) ( ) ,  so   f i f i
Impulse

Impulse F t p m v v v v
m

= ∆ = ∆ = − = + . 

 

 8.0 N s 2.0 m s
1.5 kgfv ⋅

= − + = 3.3 m s . 

6.12 (a) Impulse = area under curve = (two triangular areas of altitude 4.00 N and base 
2.00 s) + (one rectangular area of width 1.00 s and height of 4.00 N.) 
 

Thus, 
( ) ( ) ( ) ( ) = 12.0 N s⋅
4.00 N 2.00 s

2 4.00 N 1.00 s
2

Impulse
⎡ ⎤

= +⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 (b) ( ) ( ) ,  so   f i f i
Impulse

Impulse F t p m v v v v
m

= ∆ = ∆ = − = + . 

 

 12.0 N s 0
2.00 kgfv ⋅

= + = 6.00 m s  

 (c) 12.0 N s2.00 m s
2.00 kgf i

Impulse
v v

m
⋅

= + = − + = 4.00 m s  
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6.13 (a) The impulse is the area under the curve between 0 and 3.0 s.  
 
This is: Impulse = (4.0 N)(3.0 s) = 12 N s⋅ . 

 (b) The area under the curve between 0 and 5.0 s is: 
 
Impulse = (4.0 N)(3.0 s) + (-2.0 N)(2.0 s) = 8.0 N s⋅ . 

 (c) ( ) ( ) ,  so   f i f i
Impulse

Impulse F t p m v v v v
m

= ∆ = ∆ = − = + . 

 

at 3.0 s: 12 N s0
1.50 kgf i

Impulse
v v

m
⋅

= + = + = 8.0 m s  

 

at 5.0 s: 8.0 N s0
1.50 kgf i

Impulse
v v

m
⋅

= + = + = 5.3 m s  

6.14 (a) 
( ) ( ) ( )1000 kg 0 20.0 m s

60.0 s
f iwater

m v vp
t t

− −∆
= = = 333 N

∆ ∆
−  

 (b) 333 N ,   or  water
water

p
F

t
∆

= = −
∆

333 N directed opposite to water flow  

 (c) From Newton’s third law, 
 
 333 N ,   or  building waterF F= − = + 333 N in direction of water flow  

6.15 (a) ( ) ( )2 2 1.20 m
0 25.0 m sf i

xxt
v v v

∆∆
∆ = = = =

+ +
29.60 10  s−×  

 (b) ( ) ( ) ( )
2

1400 kg 25.0 m s
9.60 10  s

p m v
F

t t −

∆ ∆
= = = = 53.65 10  N×
∆ ∆ ×

 

 (c) ( )2 2
2 2

25.0 m s 1 
260 m s 260 m s

9.60 10  s 9.80 m s
gva

t −

⎛ ⎞∆
= = = = =⎟ 26.6 ⎜∆ × ⎝ ⎠

g  

6.16 Choose the positive direction to be from the pitcher toward home plate. 
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 (a) ( ) ( ) ( ) ( ) ( )0.15 kg 22 m s 20 m sf iImpulse F t p m v v ⎡ ⎤= ∆ = ∆ = − = − −⎣ ⎦  

 
( ) 6.3 kg m s ,  or   Impulse F t= ∆ = − ⋅ 6.3 kg m s  toward the pitcher⋅  

 (b) 3
3

6.3 kg m s  
3.2 10  N,  

2.0 10  s
Impulse

F
t −

− ⋅
= = = − ×

∆ ×
 

 
or F = 33.2 10  N toward the pitcher×  

6.17 Choose +x in the direction of the initial velocity and +y vertically upward. Consider first 
the force components exerted on the water by the roof. 
 

 ( ) ( ) ( ) ( )20.0 kg 40.0 m s cos 60.0 40.0 m s 
1.00 s

xx
water x

m vp
F

t t

⎡ ⎤° −∆∆ ⎣ ⎦= = =
∆ ∆

, 

 
or ( ) 400 Nwater x

F = −  
 

 ( ) ( ) ( ) ( ) 20.0 kg 40.0 m s sin 60.0 0
693 N

1.00 s
yy

water y

m vp
F

t t

⎡ ⎤∆ °−∆ ⎣ ⎦= = = =
∆ ∆

 

 

Thus, ( ) ( )2 22 2 400 N 693 N 800 Nwater x yF F F= + = − + =  

 

and 1 1 693 Ntan tan 120
- 400 N

y

x

F
F

θ − − ⎛ ⎞⎛ ⎞
= = = °⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

800 N at 120water, so = °F . 

 
From Newton’s third law, 800 N at -60.0roof water= − =F F ° , 
 
or roof =F 800 N at 60.0  below the horizontal to the right° . 
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6.18 We shall choose southward as the positive direction. 
 

The mass of the man is 2
730 N 74.5 kg

9.80 m s
wm
g

= = = . Then, from conservation of 

momentum, we find 
 
 ( ) ( )man man book book man man book bookf i

m v m v m v m v+ = +  or 

 
 ( ) ( ) ( )74.5 kg 1.2 kg 5.0 m s 0 0manv + − = +  and 28.1 10  m smanv −= × . 
 
Therefore, the time required to travel the 5.0 m to shore is 
 

 2
5.0 m

8.1 10  m sman

xt
v −

∆
= =

×
=   62 s . 

6.19 Requiring that total momentum be conserved gives 
 
 ( ) ( )club club ball ball club club ball ballf i

m v m v m v m v+ = +  

 
or ( ) ( ) ( ) ( ) ( )200 g 40 m s 46 g 200 g 55 m s 0ballv+ = + , 
 
and ballv = 65 m s . 

6.20 (a) The mass of the rifle is 2
30 N 3.1 kg

9.80 m s
wm
g

= = = . We choose the direction of the 

bullet’s motion to be negative. Then, conservation of momentum gives 
 
 ( ) ( )rifle rifle bullet bullet rifle rifle bullet bulletf i

m v m v m v m v+ = +  

 
or ( ) ( ) ( )33.1 kg 5.0 10  kg 300 m s 0 0riflev −+ × − = +  and riflev = 0.49 m s . 

 (b) The mass of the man plus rifle is 2
730 N 74.5 kg

9.80 m s
m = = . We use the same 

approach as in (a), to find ( )
35.0 10  kg

300 m s
74.5 kg

v
−⎛ ⎞×

= =⎜ ⎟⎝ ⎠
22.0 10  m s−× . 
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6.21 The velocity of the girl relative to the ice, giv , is gi gp pv iv v= +  where 
, and 

. Since we are given that 
velocity of girl relative to plankgpv =

velocity of plank relative to icepiv =

1.50 m sgpv = , this becomes 1.50 m sgiv piv= + . (1) 

 (a) Conservation of momentum gives 0g gi p pim v m v+ = , or g
pi

p

m
v

m

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
giv . (2) 

 

Then, Equation (1) becomes 1 1.50g
gi

p

m
v

m

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
 m s  

 

or 1.50 m s
45.0 kg

1
150 kg

giv = =
⎛ ⎞

+ ⎜ ⎟⎝ ⎠

1.15 m s . 

 (b) Then, using (2) above, ( )45.0 kg
1.15 m s 0.346 m s

150 kgpiv
⎛ ⎞

= − = −⎜ ⎟⎝ ⎠
 

 
or piv = 0.346 m s  directed opposite to the girl s motion′ . 

6.22 Consider the thrower first, with velocity after the throw of . Applying 
conservation of momentum yields 
 
 

throwerv

( ) ( ) ( ) ( ) ( )65.0 kg 0.0450 kg 30.0 m s 65.0 kg 0.0450 kg 2.50 m sthrowerv + = + , 
 
or throwerv = 2.48 m s . 
 
Now, consider the (catcher + ball), with velocity of  after the catch. From 
momentum conservation, 
 
 

catcherv

( ) ( ) ( ) ( ) ( )60.0 kg 0.0450 kg 0.0450 kg 30.0 m s 60.0 kg 0catcherv+ = + , 
 
or  catcherv = 22.25 10  m s−× . 
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6.23 The ratio of the kinetic energy of the Earth to that of the ball is 
 

 
221

2
21

2

E E E E E

b b b b b

KE m v m v
KE m v m v

⎛ ⎞ ⎛ ⎞
= = ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

, (1) 

 
From conservation of momentum, 
 

 , giving 0f ip p= = 0E E b bm v m v+ =  or E

b

v
v

= b

E

m
m

− . 

 

Equation (1) then becomes 
2

bE E

b b E

mKE m
KE m m

⎛ ⎞ ⎛ ⎞
= − =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

b

E

m
m

. 

 

Using order of magnitude numbers, 25

1 kg
~

10  kg
bE

b E

mKE
KE m

=  25~10− . 

6.24 (a) Find the velocity of the amoeba after 1.0 s (i.e., after it has ejected  of 
water). Using conservation of momentum, 
 
 

131.0 10  kg−×

( ) ( ) ( )12 13 41.0 10  kg 1.0 10  kg 1.0 10  m s 0 0fv− − −× + × − × = +  
 
yielding 51.0 10  m sfv −= × . 
 
The acceleration has been, 
 

 
51.0 10  m s 0

1.0 s
f iv v

a
t

−− × −
= = =

∆
5 21.0 10  m s−× . 

 (b) The reaction force exerted on the amoeba by the emerging jet is 
 
 ( ) ( )12 5 2 171.0 10  kg 1.0 10  m s 1.0 10  NreactionF ma − −= = × × = × − . 
 
If the amoeba is to have constant velocity, the net force acting on it must be zero. 
Thus, the water must exert a resistance force with magnitude given by 

, or 
 
 

0reaction resistanceF F− =

tanresis ce reactionF F= = 171.0 10  N−× . 
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6.25 From conservation of momentum, 
 
 ( ) ( ) ( ) ( )ball ball pin pin ball ball pin pinf if i

m v m v m v m v+ = + , 

 
or ( ) ( ) ( ) ( ) ( ) ( )7.00 kg 1.80 m s 2.00 kg 3.00 m s 7.00 kg 0ball i

v+ = +  
 
which gives ( )ball i

v = 2.66 m s . 

6.26 For each skater, the impulse-momentum theorem gives 
 

 ( ) ( ) ( )75.0 kg 5.00 m s
0.100 s

p m v
F

t t
∆ ∆

= = = =
∆ ∆

33.75 10  N× . 

 
Since 4500 NF < , there are  no broken bones . 

6.27 (a) If M is the mass of a single car, conservation of momentum gives 
 
 ( ) ( ) ( ) ( )3 3.00 m s 2 1.20 m sfM v M M= + , or fv = 1.80 m s  

 (b) The kinetic energy lost is lost i fKE KE KE= − , or 
 

 ( ) ( ) ( ) ( ) ( )2 21 1 13.00 m s 2 1.20 m s 3 1.80 m s
2 2 2lostKE M M M= + −

2  

 
With , this yields 42.00 10  kgM = × lostKE = 42.16 10  J× . 
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6.28 Let us apply conservation of energy to the block from the time just after the bullet has 
passed through until it reaches maximum height in order to find its speed V just after 
the collision. 
 

 2 21 1
2 2i i fmv m fgy mv mgy+ = +  becomes 21 0 0

2 fmV mgy+ = +  

 
or ( ) ( )22 2 9.80 m s 0.120 m 1.53 m sfV g y= = =  

 
Now use conservation of momentum from before until just after the collision in order to 
find the initial speed of the bullet, v. 
 
 ( ) ( ) ( ) ( ) ( )3 37.0 10  kg 0 1.5 kg 1.53 m s 7.0 10  kg 200 m sv− −× + = + × , 
 
from which v = 25.3 10  m s× . 

6.29 Let M = mass of ball, m = mass of bullet, v = velocity of bullet, and V = the initial velocity 
of the ball-bullet combination. Then, using conservation of momentum from just before 
to just after collision gives 
 

 ( ) 0   or   mM m V mv V v
M m

⎛ ⎞+ = + = ⎜ ⎟⎝ ⎠+
. 

 
Now, we use conservation of mechanical energy from just after the collision until the 
ball reaches maximum height to find 
 

 ( ) ( )
22

2 21 10 0  or  
2 2 2max max

V mM m g h M m V h v
g g M m

⎛ ⎞+ + = + + = = ⎜ ⎟⎝ ⎠+
. 

 
With the data values provided, this becomes 
 

 ( ) (
2

2

2

0.030 kg1 200 m s
0.15 kg 0.030 kg2 9.80 m smaxh

⎛ ⎞
= =⎜ ⎟+⎝ ⎠

)   57 m . 
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6.30 First, we will find the horizontal speed, , of the block and embedded bullet just after 
impact. After this instant, the block-bullet combination is a projectile, and we find the 

time to reach the floor by use of 

ixv

21
2iy yy v t a t∆ = + , which becomes 

 
 ( )2 211.00 m 0 9.80 m s

2
t− = + − , giving t = 0.452 s. 

 

Thus, 2.00 m 4.43 m s
0.452 six

xv
t
∆

= = = . 

 
Now use conservation of momentum for the collision, with  = speed of incoming 
bullet: 
 
 

bv

( ) ( ) ( )3 -38.00 10  kg 0 258 10  kg 4.43 m sbv−× + = × , so 
 
 bv = 143 m s .  (about 320 mph) 

6.31 When Gayle jumps on the sled, conservation of momentum gives 
 
 ( ) ( ) ( )250.0 kg 5.00 kg 50.0 kg 4.00 m s 0v+ = + , or 2 3.64 m sv = . 
 
After Gayle and the sled glide down 5.00 m, conservation of mechanical energy gives  
 

 ( ) ( ) ( ) ( ) ( ) ( )22 2
3

1 155.0 kg 0 55.0 kg 3.64 m s 55.0 kg 9.80  m s 5.00 m
2 2

v + = + , 

 
so 3 10.5 m sv = . 
 
After her Brother jumps on, conservation of momentum yields 
 
 ( ) ( ) ( )455.0 kg 30.0 kg 55.0 kg 10.50 m s 0v+ = + , and 4 6.82 m sv = . 
 
After all slide an additional 10.0 m down, conservation of mechanical energy gives the 
final speed as 
 

 ( ) ( ) ( ) ( ) ( ) ( )22 2
5

1 185.0 kg 0 85.0 kg 6.82 m s 85.0 kg 9.80  m s 10.0 m
2 2

v + = +  

 
or 5v = 15.6 m s . 
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6.32 (a) Conservation of momentum gives T fT c fc T iT c icm v m v m v m v+ = + , or 
 

 

( )

( ) ( ) ( ) ( )9000 kg 20.0 m s 1200 kg 25.0 18.0  m s
9000 kg

T iT c ic fc
fT

T

m v m v v
v

m

+ −
=

+ −⎡ ⎤⎣ ⎦=

 

 
 fTv = 20.9 m s   East  

 (b) 2 2 21 1 1 1
2 2 2 2lost i f c ic T iT c fc T fTKE KE KE m v m v m v m v⎡ ⎤ ⎡= − = + − +⎢ ⎥ ⎢⎣ ⎦ ⎣

2 ⎤
⎥⎦

 

 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2

1
2

1= 1200 kg 625 324 m s 9000 kg 400 438.2 m s
2

c ic fc T iT fTm v v m v v⎡ ⎤= − + −⎣ ⎦

⎡ ⎤− + −⎣ ⎦

 

 

lostKE = 38.68 10  J, which becomes internal energy× . 
 
Note: If 20.9 m/s were used to determine the energy lost instead of 20.9333, the 
answer would be very different. We keep extra digits in all intermediate answers 
until the problem is complete. 

6.33 First, we use conservation of mechanical energy to find the speed of the block and 
embedded bullet just after impact: 
 

 ( ) ( ) ( ) 2 21 1 becomes 0 0
2 2s sf i

KE PE KE PE m M V kx+ = + + + = + , 

 

and yields 
( ) ( )
( )

22 150 N m 0.800 m
29.3 m s

0.0120 0.100  kg
kxV

m M
= = =

+ +
 

 
Now, employ conservation of momentum to find the speed of the bullet just before 
impact: , 
 

or 

( ) ( )0mv M m M V+ = +

( )0.112 kg
29.3 m s

0.0120 kg
m Mv V

m
⎛ ⎞+⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

273 m s . 
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6.34 (a) Using conservation of momentum, ( ) ( )after beforeΣ = Σp p , gives 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )4.0 10 3.0  kg 4.0 kg 5.0 m s 10 kg 3.0 m s 3.0 kg 4.0 m sv+ + = + + −⎡ ⎤⎣ ⎦  

 
Therefore, 2.2 m sv =+ , or 2.2 m s  toward the right . 

 (b)  No . For example, if the 10-kg and 3.0-kg mass were to stick together first, they 
would move with a speed given by solving 
 
 ( ) ( ) ( ) ( ) ( )113 kg 10 kg 3.0 m s 3.0 kg 4.0 m sv = + − , or 1 1.38 m sv =+ . 
 
Then when this 13 kg combined mass collides with the 4.0 kg mass, we have 
 
 ( ) ( ) ( ) ( ) ( )17 kg 13 kg 1.38 m s 4.0 kg 5.0 m sv = + , and 2.2 m sv =+  
 
just as in part (a). 

6.35 (a) From conservation of momentum, 
 
 ( ) ( ) ( ) ( )1 25.00 g 10.0 g 5.00 g 20.0 cm s 0f fv v+ = +

f

 (1) 
 
Also for an elastic, head-on, collision, we have 1 1 2 2i f iv v v v+ = + , which becomes 

1 220.0 cm s f fv v+ = . (2) 
 
Solving (1) and (2) simultaneously yields 
 
 1 fv = 6.67 cm s− , and 2 fv = 13.3 cm s . 

 (b) ( ) ( )23 4
1 2

1 5.00 10  kg 0.200 m s 0 1.00 10  J
2i i iKE KE KE − −= + = × + = ×  

 

( ) ( )22 3 -2
2 2 2

1 1 10.0 10  kg 13.3 10  m s 8.89 10  J
2 2f fKE m v − −= = × × = × 5 , so 

 

 
5

2
4

8.89 10  J
1.00 10  J

f

i

KE
KE

−

−

×
= =

×
0.889  
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6.36 Using conservation of momentum gives 
 
 ( ) ( ) ( ) ( ) ( ) ( )1 210.0 g 15.0 g 10.0 g 20.0 cm s 15.0 g 30.0 cm sf fv v+ = + −  (1) 
 
For elastic, head on collisions, 1 1 2 2i f iv v v v f+ = +  which becomes 
 
 120.0 cm s 30.0 cm s+ 2f fv+ =− v . (2) 
 
Solving (1) and (2) simultaneously gives 1 fv = 40.0 cm s− , 
 
and 2 fv = 10.0 cm s . 

6.37 Conservation of momentum gives 
 
 ( ) ( ) ( ) ( ) ( ) ( )1 225.0 g 10.0 g 25.0 g 20.0 cm s 10.0 g 15.0 cm sf fv v+ = +  (1) 
 
For head-on, elastic collisions, we know that 1 1 2 2i f iv v v v f+ = + . 
 
Thus, 120.0 cm s 15.0 cm s+ 2f fv+ = v . (2) 
 
Solving (1) and (2) simultaneously yields 
 
 1 fv = 17.1 cm s , and 2 fv = 22.1 cm s . 
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6.38 (a) The internal forces exerted by the actor do not change total momentum. 
 

m m m

2.00 m/s

m

4.00 m/s

m m m m

vi

 
 
From conservation of momentum 
 
 ( ) ( ) ( ) ( )4 3 2.00 m s + 4.00 m sim v m m=  
 

 
6.00 m s 4.00 m s

=
4iv
+

= 2.50 m s  

 (b) ( ) ( ) ( ) ( ) ( )2 21 13 2.00 m s 4.00 m s 4 2.50 m s
2 2actor f iW K K m m m⎡ ⎤= − = + −⎣ ⎦

2  

 
( ) ( )

4
22.50 10  kg

12.0 16.0 25.0 m s
2actorW
×

= + − = 43.75 10  J×⎡ ⎤⎣ ⎦  
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6.39 We assume equal firing speeds v and equal forces F required for the two bullets to push 
wood fibers apart. These forces are directed opposite to the bullets displacements 
through the fibers. 
 
When the block is held in the vise, net f iW KE KE= −  gives 
 

 ( ) ( )2 318.00 10  m cos180 0 7.00 10  kg
2

2F v− −× ° = − × , 

 

or ( ) ( )3 2 21 7.00 10  kg 8.00 10  m
2

v−× = × F−  (1) 

 
When a second 7.00-g bullet is fired into the block, now on a frictionless surface, 
conservation of momentum yields 
 

 ( ) ( )31.014 kg 7.00 10  kg 0fv v−= × + , or 
37.00 10

1.014fv
−⎛ ⎞×

= ⎜⎝ ⎠
v⎟  (2) 

 
Also, applying the work-kinetic energy theorem to the second impact, 
 

 ( ) ( )2 31 1cos180 1.014 kg 7.00 10  kg
2 2f

2Fd v −° = − × v  (3) 

 
Substituting (2) into (3), we obtain 
 

 ( ) ( )
23

2 31 7.00 10 11.014 kg 7.00 10  kg
2 1.014 2

2Fd v
−

−⎛ ⎞×
− = − ×⎜ ⎟⎝ ⎠

v , 

 

or ( )
3

3 21 77.00 10  kg 1
2 1

Fd v
−

− ⎛ ×⎡ ⎤= × −⎜⎢ ⎥⎝ ⎠⎣ ⎦
.00 10

.014
⎞
⎟  (4) 

 
Finally, substituting (1) into (4) gives 
 

 ( )
3

2 7.00 108.00 10  m 1
1.014

Fd F
−

− ⎛ ⎞×⎡ ⎤= × −⎜ ⎟⎣ ⎦⎝ ⎠
, or 27.94 10  md −= × = 7.94 cm  
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6.40 First, consider conservation of momentum and write 
 
  
 
Since , this becomes 

1 1 2 2 1 1 2 2i i fm v m v m v m v+ = + f

2 f1m m= 1 2 1 2i i fv v v v+ = + .  (1) 
 
For an elastic head-on collision, we also have ( )1 2 1 2i i f fv v v v− = − − , 

 

which may be written as 1 2 1 2i i fv v v v f+ = +  (2) 
 

Subtracting Equation (2) from (1) gives 2 1f iv v=  (3) 
 

Adding Equations (1) and (2) yields 1 2f iv v=  (4) 
 
Equations (3) and (4) show us that, under the conditions of equal mass objects striking 
one another in a head-on elastic collision, the two objects simply exchange velocities. 
Thus, we may write the results of the various collisions as 

 (a)   0 , 1 fv = 2 fv = 1.50 m s  

 (b) 1 fv = 1.00 m s− , 2 fv = 1.50 m s  

 (c) 1 fv = 1.00 m s , 2 fv = 1.50 m s  

6.41 Choose the +x-axis to be eastward and the +y-axis northward. 

 (a) First, we conserve momentum in the x direction to find 
 

 ( ) ( ) ( )185 kg cos 90 kg 5.0 m sV θ = , or (90cos 5.0 m s
185

V θ ⎛ ⎞= ⎜ ⎟⎝ ⎠ )  (1) 

 
Conservation of momentum in the y direction gives 
 

 ( ) ( ) ( )185 kg sin 95 kg 3.0 m sV θ = , or (95sin 3.0 m s
185

V θ ⎛ ⎞= ⎜ ⎟⎝ ⎠ )  (2) 

 

Divide equation (2) by (1) to obtain ( ) ( )
( ) ( )
95 3.0

tan
90 5.0

θ = , and θ = 32°  

 
Then, either (1) or (2) gives V = 2.88 m s , which rounds to V = 2.9 m s . 
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 (b) lost i fKE KE KE= −  
 

 ( ) ( ) ( ) ( ) ( ) ( )2 21 90 kg 5.0 m s 95 kg 3.0 m s 185 kg 2.88 m s
2
⎡ ⎤= + −⎣ ⎦

2  

 
 = 27.9 10  J×  converted into internal energy 

6.42 Choose the +x-axis to be eastward and the +y-axis northward. 

 (a) Conserving momentum in the x direction gives 
 
 ( ) ( ) ( )20 10.0 kg 8.00 kg 15.0 m s 0xv+ = + , or 2 12.0 m sxv = . 
 
Momentum conservation in the y direction yields 
 
 ( ) ( ) ( ) 28.00 kg 4.00 m s 10.0 kg 0 0yv− + = + , or 2 3.20 m syv = . 
 
After collision, 2 2

2 2 2 154 m s 12.4 m sx yv v v= + = =  

 

and 21 1

2

3.20
tan tan 14.9

12.0
y

x

v
v

θ − − ⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

° . Thus, the final velocity of the 10.0-kg 

mass is 2 =v 12.4 m s  at 14.9  N of E° . 

 (b) 1i flost

i i

KE KE KEKE
KE KE KE

−
= = − f

i

 

 

 
( ) ( ) ( ) ( )

( ) ( )

22

2

8.00 4.00 10.0 154
1 0.0720

8.00 15.0 0

⎡ ⎤− +
⎢ ⎥= − =
⎢ ⎥+
⎣ ⎦

 

 
or  7.20%  of the original kinetic energy is lost in the collision. 

6.43 Choose the +x-axis to be eastward and the +y-axis northward. 
 
If  is the initial northward speed of the 3000-kg car, conservation of momentum in the 
y direction gives 
 
 

iv

( ) ( ) ( )0 3000 kg 5000 kg 5.22 m s sin 40.0iv ⎡ ⎤+ = °⎣ ⎦ iv, or = 5.59 m s  
 
Observe that knowledge of the initial speed of the 2000-kg car was unnecessary for this 
solution. 
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6.44 We use conservation of momentum for both northward and eastward components. 
 
For the eastward direction: ( )13.0 m s 2 cos 55.0fM M V= °  
 
For the northward direction: 2 2 sin 55.i fM v M V 0= °  
 
Divide the northward equation by the eastward equation to find: 
 
 ( )2 13.0 m s tan 55.0iv = °  
 

  ( ) 2.237 mi h
13.0 m s tan 55.0

1 m s
⎡ ⎤⎛ ⎞

= °⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
= 41.5 mi h  

 
Thus, the driver of the north bound car was untruthful. 

6.45 Choose the x-axis to be along the original line of motion. 

 (a) From conservation of momentum in the x direction, 
 
 ( ) ( ) 25.00 m s 0 4.33 m s cos 30.0 cosfm m mv θ+ = ° + , 
 
or 2 cos 1.25 m sfv θ =  (1) 
 
Conservation of momentum in the y direction gives 
 
 ( ) 20 4.33 m s sin 30.0 sinfm mv θ= ° + , or 2 sin 2.16 m sfv θ = −  (2) 
 

Dividing (2) by (1) gives θ
−

= = −
2.16

tan 1.73
1.25

 and 60.0θ = − ° . 

 
Then, either (1) or (2) gives 2 2.50 m sfv = , so the final velocity of the second ball is 

2 f =v 2.50 m s  at -60.0° . 

 (b) ( ) ( )22 2
1

1 10 5.00 m s 12.5 m s
2 2i iKE mv m m= + = = 2  

 

( ) ( ) ( )

2 2
1 2

2 2 2 2

1 1
2 2
1 14.33 m s 2.50 m s 12.5 m s
2 2

f f fKE mv mv

m m m

= +

= + =
 

 
Since f iKE KE= , this is an  elastic collision . 
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6.46 The recoil speed of the subject plus pallet after a heartbeat is 
 

 
5

46.00 10  m 3.75 10  m s
0.160 s

xV
t

−
−∆ ×

= = = ×
∆

. 

 
From conservation of momentum, 0 0mv MV− = + , so the mass of blood leaving the 
heart is 
 

 ( )
4

23.75 10  m s
54.0 kg 4.05 10  kg=

0.500 m s
Vm M
v

−
−⎛ ⎞×⎛ ⎞= = = ×⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

40.5 g . 

6.47 ( ) ( )f iImpulse t m= ∆ = ∆ = −F p v v  

 
 ( ) ( )0.400 kg 22.0 m s 15.0 m s 14.8 kg m s⎡ ⎤= − − = −⎣ ⎦ ⋅  
 
Impulse = 14.6 kg m s   in the d irection of the final velocity of the ball⋅  

6.48 First, we use conservation of mechanical energy to find the speed of  at B just before 

collision. This gives 

1m

2
1 1 1

1 0 0
2 im v m gh+ = + , 

 
or ( ) ( )2 2

1 2 2 9.80 m s 5.00 m 9.90 m siv g h= = = . 

 
Next, we apply conservation of momentum and knowledge of elastic collisions to find 
the velocity of  at B just after collision. 
 
From conservation of momentum, with the second object initially at rest, 
 

we have , or 

1m

1 1 2 2 1 1 0f f im v m v m v+ = + ( )1
2 1

2
1f i f

mv v v
m

= − . (1) 

 
For head-on elastic collisions, 1 1 2 2f i fv v v v i+ = + . Since 2 0iv =  in this case, this becomes 

2 1 1f fv v v= + i  and combining this with (1) above we obtain 
 

 ( )1 2
1 1

1 2

5.00 10.0 9.90 m s 3.30 m s
5.00 10.0f i

m mv v
m m

⎛ ⎞− −⎛ ⎞= = =−⎜ ⎟⎜ ⎟ ⎝ ⎠+ +⎝ ⎠
. 
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 Finally, use conservation of mechanical energy for  after the collision to find the 

maximum rebound height. This gives 

1m

2
1 1 1

10 0
2max fm gh m v+ = + , 

 

or 
( )
( )

22
1

2

3.30 m s
2 2 9.80 m s

f
max

v
h

g
−

= = = 0.556 m . 

6.49 Choose the positive direction to be the direction of the truck’s initial velocity. 
 
Apply conservation of momentum to find the velocity of the combined vehicles after 
collision: 
 
 ( ) ( ) ( ) ( ) ( )4000 kg 800 kg 4000 kg 8.00 m s 800 kg 8.00 m sV+ = + + − , 
 
which yields 5.33 m sV =+ . 
 
Use the impulse-momentum theorem, ( ) ( )f iImpulse F t p m v v= ∆ = ∆ = − , to find the 

magnitude of the average force exerted on each driver during the collision. 
 
Truck Driver: 

 
( )80.0 kg 5.33 m s 8.00 m s

0.120 s
f i truck

m v v
F

t

− −
= = = 31.78 10  N×

∆
 

 
Car Driver: 

 
( ) ( )80.0 kg 5.33 m s 8.00 m s

0.120 s
f i car

m v v
F

t

− − −
= = = 38.89 10  N×

∆
 

6.50 If the pendulum bob barely swings through a complete circle, it arrives at the top of the 
arc (having risen a vertical distance of ) with essentially zero velocity. 
 
From conservation of mechanical energy, we find the minimum velocity of the bob at 

the bottom of the arc as 

2l

( ) ( )g gbottom top
KE PE KE PE+ = + , or ( )= + l21 0 2

2
M V M g . This 

gives = l2V g  as the needed velocity of the bob just after the collision. 
 
Conserving momentum through the collision then gives the minimum initial velocity of 
the bullet as 
 

 ( )⎛ ⎞ + =⎜ ⎟
⎝ ⎠

l2 0
2
vm M g mv + , or v = l

4 M
g

m
. 
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6.51 Note that the initial velocity of the target particle is zero (i.e., 2 0iv = ). 
 
From conservation of momentum, 1 1 2 2 1 1 0f f im v m v m v+ = + . (1) 
 
For head-on elastic collisions, 1 1 2 0f i fv v v+ = + . (2) 
 
Solving (1) and (2) simultaneously yields the final velocities as 
 

 1 2
1 1

1 2
f i

m mv v
m m

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

 and 1
2 1

1 2

2
f i

m
v v

m m
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 

 (a) If = = =1 2 12.0 g, 1.0 g, and 8.0 m sim m v , then 
 

 1 fv =
8  m s
3

 and 2 fv =
32 m s
3

. 

 (b) If = = =1 2 12.0 g, 10 g, and 8.0 m sim m v , we find 
 

 1 fv =
16  m s
3

−  and 2 fv =
8 m s
3

. 

 (c) The final kinetic energy of the 2.0 g particle in each case is: 
 

Case (a): ( )
2

2 3
1 1 1

1 1 82.0 10  kg  m s
2 2 3f fKE m v − ⎛ ⎞= = × = 37.1 10  J−×⎜ ⎟⎝ ⎠

 

 

Case (b): ( )
2

2 3
1 1 1

1 1 162.0 10  kg  m s
2 2 3f fKE m v − ⎛ ⎞= = × − = 22.8 10  J−×⎜ ⎟⎝ ⎠

 

 
Since the incident kinetic energy is the same in cases (a) and (b), we observe that 
 the incident particle loses more kinetic energy in case (a)  
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6.52 Use conservation of mechanical energy, ( ) ( )g B A
KE PE KE PE+ = + g , to find the speed of 

the bead at point B just before it collides with the ball. This gives 2
1

1 0 0
2 i Amv m g y+ = + , 

or ( ) ( )2
1 2 2 9.80 m s 1.50 m 5.42 m si Av g y= = = . 

 
Conservation of momentum during the collision gives 
 
 ( ) ( ) ( ) ( )1 20.400 kg 0.600 kg 0.400 kg 5.42 m s 0f fv v+ = + , 
 
or 1 21.50 5.42 m sf fv v+ = . (1) 

 For a head-on elastic collision, we have 2 2 1 1f i fv v v v i+ = + , which gives 
 
 2 1 5.42 m sf fv v= + . (2) 
 
Solving (1) and (2) simultaneously, the velocities just after collision are 
 
 1 1.08 m sfv =−  and 2 4.34 m sfv = . 
 
Now, we use conservation of the mechanical energy of the ball after collision to find the 
maximum height the ball will reach. This gives 
 

 2
2

10 0
2max fM g y M v+ = + , or 

( )
( )

22
2

2

4.34 m s
2 2 9.80 m s

f
max

v
y

g
= = = 0.960 m  
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6.53 We first find the speed of the diver when he reaches the water by using 
( )2 2 2i yv v a y= + ∆ . This becomes 

 
 ( ) ( )2 20 2 9.80 m s 3.0 mv = + − − , and yields 59 m sv = −  
 
The negative sign indicates the downward direction. 
 
Next, we use the impulse-momentum theorem to find the resistive force exerted by the 
water as the diver comes to rest. 
 
 ( ) ( )net f iImpulse F t p m v v= ∆ = ∆ = − , or 

 
 ( ) ( ) ( ) ( )784 N 2.0 s 80 kg 0 59 m swaterF ⎡ ⎤− = − −⎣ ⎦ , which gives 

 

 
80 59

784 N N=
2waterF

⎛ ⎞
= + ⎜ ⎟⎝ ⎠

( )31.1 10  N  upward× . 

80 kg

Fwater

w = 784 N

6.54  

100 g
v12.0 g

at rest

Immediately Before Impact

V

Immediately After Impact

112      g

At the end

at rest

112      g

 7.5 m

 
 
Using the work-kinetic energy theorem from immediately after impact to the end gives: 
 
 , 
 

 or, 

cos180net friction end afterW F s KE KE= ° = −

( ) ( ) 210
2k M m g s M mµ− + = − +⎡ ⎤⎣ ⎦ V  and 2 kV gµ= s . 

 
Then, using conservation of momentum from immediately before to immediately after 
impact gives , or 
 

 

( )0mv M m V+ = +

( ) ( ) ( )2112 g
2 2 0.650 9.80 m s 7.5 m

12.0 gk
M m M mv V gs

m m
µ

⎛ ⎞+ +⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
 v = 91 m s  
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6.55 (a) Using conservation of momentum, 
 
 ( ) ( ) ( )60.0 kg 120 kg 60.0 kg 4.00 m s 0fv+ = + , 
 
 or fv = 1.33 m s  

60.00 kg
4.00 m/s

120 kg
 (b) ( ) ( )260.0 kg 9.80 m s 0yF nΣ = − =  

 
so the normal force is 588 Nn =  
 
and ( ) ( )0.400 588 Nk kf nµ= = = 235 N  

 (c) Apply the impulse-momentum theorem to the person: 
 
 ( ) ( )net f iImpulse F t p m v v= ∆ = ∆ = −  

 

so 
( ) ( ) ( )60.0 kg 1.33 m s 4.00 m s

235 N
f i

k

m v v
t

f

− −
∆ = = =

− −
0.681 s  

 (d) ( ) ( ) ( )60.0 kg 1.33 m s 4.00 m sperson f ip m v v∆ = − = − = 160 N s− ⋅  

 

( ) ( ) ( )0 120 kg 1.33 m s 0cart fp M v∆ = − = − = 160 N s+ ⋅  

 (e) ( ) ( )
2

f i
person

v v
x v t t

+⎛ ⎞
∆ = ∆ = ∆⎜ ⎟⎝ ⎠

 

 

  ( )1.33 m s 4.00 m s
0.681 s

2
+⎛ ⎞= =⎜ ⎟⎝ ⎠

1.82 m  

 (f) ( ) ( ) ( )
0 1.33 m s

0.681 s
2 2

f
cart

v
x v t t

+⎛ ⎞ ⎛ ⎞∆ = ∆ = ∆ = =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
0.454 m  

 (g) ( )2 21
2person f iKE m v v∆ = −  

 

  
( ) ( ) ( )2 260.0 kg

1.33 m s 4.00 m s
2

⎡ ⎤= −⎣ ⎦ = 427 J−  

 (h) ( ) ( ) ( )22 120 kg1 0 1.33 m s 0
2 2cart fKE M v ⎡ ⎤− = − =⎣ ⎦ 107 J  ∆ =
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 (i) Equal friction forces act through different distances on person and cart to do 
different amounts of work on them. This is a perfectly inelastic collision in which 
the total work on both person and cart together is –320 J, which becomes +320 J of 
internal energy. 

6.56 (a) Let  and  be the velocities of  and  just before the collision. Then 
conservation of energy gives: 
 
 

1iv 2iv 1m 2m

( ) ( )2
1 2 2 2 9.80 m s 5.00 mi iv v g h= − = = = 9.90 m s . 

 (b) From conservation of momentum: 
 
 ( ) ( ) ( ) ( ) ( ) ( )1 22.00 4.00 2.00 9.90 m s 4.00 9.90 m sf fv v+ = + − , 
 
or ( ) ( )1 22.00 4.00 19.8 m sf fv v+ = − . (1) 

  For an elastic head-on collision, 1 1 2 2f i fv v v v i+ = + , giving 
 
 1 29.90 m s 9.90 m sf fv v+ = − , or 2 1 19.8 m sf fv v= +  (2) 
 
Solving (1) and (2) simultaneously gives 
 
 1 fv = 16.5 m s− , and 2 fv = 3.30 m s . 

 (c) Applying conservation of energy to each block after the collision gives: 
 

 
( )
( )

22
1

1 2

16.5 m s
2 2 9.80 m s

f
f

v
h

g
−

= = = 13.9 m  

 

and 
( )
( )

22
2

2 2

3.30 m s
2 2 9.80 m s

f
f

v
h

g
= = = 0.556 m  
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6.57 (a) Use conservation of mechanical energy to find the speed of  just before collision. 
This gives 
 
 

1m

( ) ( )2
1 12 2 9.80 m s 2.50 m 7.00 m siv g h= = = . 

 
Apply conservation of momentum from just before to just after the collision: 
 
 ( ) ( ) ( ) ( )1 20.500 kg 1.00 kg 0.500 kg 7.00 m s 0f fv v+ = + , 
 
or  1 22 7.00 mf fv v+ = s

2

 (1) 
 
For a head-on elastic collision, 1 1 2f i fv v v v i+ = + , 
 
which becomes − =−1 2 7.00 m sf fv v . (2) 
 
Solving (1) and (2) simultaneously yields 
 
 1 fv = 2.33 m s− , and 2 fv = 4.67 m s . 

 (b) Apply conservation of mechanical energy to  after the collision to find 
 

 

1m

( )
( )

22
1

1 2

2.33 m s
2 2 9.80 m s

fv
h

g
−

= = = 0.277 m′ . (rebound height) 

 (c) From 21
2iy yy v t a t∆ = + , with 0iyv = , the time for  to reach the floor after it flies 

horizontally off the table is found to be 
 

 

2m

( ) ( )
2

2 2 2.00 m
0.639 s

-9.80 m sy

y
t

a
∆ −

= = = . 

 
The horizontal distance traveled in this time is 
 
 ( ) ( )4.67 m s 0.639 sixx v t∆ = = = 2.98 m . 

 (d) After the 0.500 kg mass comes back down the incline, it flies off the table with a 
horizontal velocity of 2.33 m/s. The time of the flight to the floor is 0.639 s as found 
above and the horizontal distance traveled is 
 
 ( ) ( )2.33 m s 0.639 sixx v t∆ = = = 1.49 m . 
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6.58 Use conservation of mechanical energy to find the velocity, v, of Tarzan just as he 
reaches Jane. This gives ( ) ( )22 2 9.80 m s 3.00 m 7.67 m siv g h= = = . 

 
Now, use conservation of momentum to find the velocity, V, of Tarzan + Jane just after 
the collision. This becomes ( ) 0M m V Mv+ = + , or 
 

 ( )80.0 kg
7.67 m s 4.38 m s

140 kg
MV v

M m
⎛ ⎞⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎝ ⎠+ ⎝ ⎠

. 

 
Finally, use conservation of mechanical energy from just after he picks her up to the end 
of their swing to determine the maximum height, H, reached. This yields 
 

 ( )
( )

= = = 0.980 m
22

2

4.38 m s
2 2 9.80 m s
VH

g
 

6.59 (a) The momentum of the system is initially zero and remains constant throughout the 
motion. Therefore, when  leaves the wedge, we must have , 
or 
 

 

1m 2 1 0wedge blockm v m v+ =

( )1

2

0.500 4.00 m s
3.00wedge block

mv v
m

⎛ ⎞ ⎛ ⎞=− = − =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
0.667 m s− . 

 (b) Using conservation of energy as the block slides down the wedge, we have 

( ) ( )g gi f
KE PE KE PE+ = +  or 

 

 2 2
1 1 2

1 10 0
2 2block wedgem gh m v m v+ = + + . 

 

Thus, 2 22

1

1
2 block wedge

mh v v
g m
⎡ ⎤⎛ ⎞

= +⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦
 

 

  ( ) ( )2 2
2

1 3.004.00 m s 0.667 m s
19.6 m s 0.500

⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
= 0.952 m . 
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6.60 (a) Let m be the mass of each cart. Then, if  is the initial velocity of the red cart, 
applying conservation of momentum to the collision gives 
 
 , or 

0v

0 0b rmv mv mv+ = + 0b rv v v+ =  (1) 
 
where  and  are the velocities of the blue and red carts after collision. 
 
In a head-on elastic collision, we have 

bv rv

2 2 1 1f i fv v v v i+ = +  which reduces to 
 
 . (2) 
 
Solving (1) and (2) simultaneously gives v

0b rv v v− =

r =   0 , and vb = 3.00 m s . 

 (b) Using conservation of mechanical energy for the blue cart-spring system, 
( ) ( )s sf i
KE PE KE PE+ = +  becomes 

 

 2 21 10 0
2 2 bk x mv+ = +  

 

or  ( )0.250 kg
3.00 m s

50.0 N mb
mx v
k

= = = 0.212 m . 

6.61 (a) Use conservation of the component of  
momentum in the horizontal direction  
from just before to just after the cannon  
firing. 
 
 ( ) ( )x xf i

p pΣ = Σ  gives 

 
 ( )cos 45.0 0shell shell cannon recoilm v m v° + = , or 
 

 cos 45.0shell
recoil shell

cannon

m
v v

m
⎛ ⎞

= − °⎜ ⎟⎝ ⎠
 

 

  ( )200 kg
125 m s cos 45.0

5000 kg
⎛ ⎞

= − ° =⎜ ⎟⎝ ⎠
3.54 m s−  

45.0°
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 (b) Use conservation of mechanical energy for the cannon-spring system from right 
after the cannon is fired to the instant when the cannon comes to rest. 
 
 ( ) ( )g s g sf i

KE PE PE KE PE PE+ + = + +  

 

 2 21 10 0 0 0
2 2max cannon recoilkx m v+ + = + +  

 

 ( ) ( )22

4

5000 kg -3.54 m s
2.00 10  N m

cannon recoil
max

m v
x

k
= = = 1.77 m

×
 

 (c) ( ) ( )42.00 10  N m 1.77 mmax maxF k x= = × = 43.54 10  N×  

 (d) No. The rail exerts a vertical external force (the normal force) on the cannon and 
prevents it from recoiling vertically. Momentum is not conserved in the vertical 
direction. The spring does not have time to stretch during the cannon firing. Thus, 
no external horizontal force is exerted on the system (cannon plus shell) from just 
before to just after firing. Momentum is conserved in the horizontal direction 
during this interval. 

6.62 Conservation of the x-component of momentum gives 
 

 ( ) ( )2 0 0 2 0
2
3xv v=3 0 3xm v mv m v+ = − + , or . (1) 

 
Likewise, conservation of the y-component of momentum gives 
 
 ( )1 23 0y ymv m v− + = , and 1 3yv v2y= . (2) 
 
Since the collision is elastic, ( ) ( )=f iKE KE , or 

 

 ( ) ( ) ( )2 2 2 2
1 2 2 0

1 1 1 13
2 2 2 2y x ymv m v v mv m v+ + = + 2

03  (3) 

 
Substituting (1) and (2) into (3) yields 
 

 2 2 2 2
02 0 2

49 3 4
9y yv v v v⎛ ⎞+ + =⎜ ⎟⎝ ⎠

, or 2 0
2

3yv v= . 
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 (a) The particle of mass m has final speed 1 23y yv v= =  0 2v , 
 
and the particle of mass 3m moves at 
 

 2 2 2 2
2 2 2 0 0

4 2
9 9x yv v v v v= + = + = 0

2
3

v . 

 (b) 21 1

2

1tan tan
2

y

x

v
v

θ − −⎛ ⎞ ⎛ ⎞= = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
=   35.3° . 

6.63 Let particle 1 be the neutron and particle 2 be the carbon nucleus. Then, we are given 
that . 2 112m m=

 (a) From conservation of momentum 2 2 1 1 1 1 0f f im v m v m v+ = + . Since , this 
reduces to 

2 12m = 1m

12 112 f f iv v v+ = . (1) 
 
For a head-on elastic collision, 2 2 1 1f i fv v v v i+ = + . 
 
Since , this becomes 2 0iv = 2 1 1f fv v v i− = . (2) 
 
Solve (1) and (2) simultaneously to find 
 

 1 1
11
13f iv v=− , and 2 1

2
13f iv v= . 

  The initial kinetic energy of the neutron is 2
1 1

1
2iKE m v= 1i , and the final kinetic energy 

of the carbon nucleus is 
 

 ( )2 2 2
2 2 2 1 1 1 1

1 1 4 48 1 4812
2 2 169 169 2 169f f i iKE m v m v m v KE⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ 1i . 

 

The fraction of kinetic energy transferred is 2

1

48
169

f

i

KE
KE

= =   0.28 . 

 (b) If , then 
 

 

13
1 1.6 10  JiKE −= ×

( )13
2 1

48 48 1.6 10  J
169 169f iKE KE −= = × = 144.5 10  J−× . 

 
The remaining energy 13 141.6 10  J  4.5 10  J− −× − × = 131.1 10  J−×  stays with the 
neutron. 
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6.64 Choose the positive x-axis in the direction of the initial velocity of the cue ball. Let  be 
the initial speed of the cue ball,  be the final speed of the cue ball,  be the final 
speed of the target, and 

iv

cv Tv
θ  be the angle the target’s final velocity makes with the x-axis. 

 
Conservation of momentum in the x-direction gives 
 
 cos cos 30.0 0T c imv mv mvθ + ° = + , or θ = − °cos cos 30.0T i cv v v  (1) 
 
From conservation of momentum in the y-direction, 
 
 sin sin 30.0 0 0T cmv mvθ − ° = + , or sin sin 30.0T cv vθ = °  (2) 
 
Since this is an elastic collision, kinetic energy is conserved, giving 
 

 2 21 1 1
2 2 2T cmv mv mv+ = 2

i
2
c, or 2 2

T iv v v= −  (3) 

 (b) To solve, square equations (1) and (2). Then add the results to obtain 
. Substitute this into equation (3) and simplify to find 

 
 

2 2 2 cos 30.0T i i cv v v v v= − °+ 2
c

( )cos 30.0 4.00 m s cos 30.0c iv v= ° = ° = 3.46 m s . 
 
Then, equation (3) yields 2 2

T iv v vc= − , or 
 

 ( ) ( )2 24.00 m s 3.46 m sTv = − = 2.00 m s . 

 (a) With the results found above, equation (2) gives 
 

 3.46sin sin 30.0 sin 30.0 0.866
2.00

c

T

v
v

θ
⎛ ⎞ ⎛ ⎞= ° = ° =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

, or 60.0θ = ° . 

 
Thus, the angle between the velocity vectors after collision is 
 
 60.0 30.0φ = °+ ° = 90.0° . 
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6.65 The deceleration of the incident block is 
( )kk

k

mgf
a g

m m
µ

µ=− =− =− . 

 
Therefore, ( )2 2 2iv v a x= + ∆  gives the speed of the incident block just before collision as 

2
0 2 kv v gµ= − d . 

 
Conservation of momentum from just before to just after collision gives 
 
 ( )1 22mv m v mv+ = , or 2 12v v v+ = . (1) 
 
where v1 and v2 are the speeds of the two blocks just after collision. 
 
Since this is a head-on elastic collision, 2 2 1 1f i fv v v v i+ = + , 
 
which becomes . (2) 
 

Adding equations (1) and (2) yields 

2 1v v v− =

2
2 0

2 2 2
3 3 kv v v gdµ= = − . 

 
Note that the mass canceled in the calculation of the deceleration above. Thus, the 
second block will have the same deceleration after collision as the incident block had 
before. Then, ( )2 2 2f iv v a x= + ∆  with 0fv =  gives the stopping distance for the second 

block as ( )2
20 2 kv gµ= + − D , or 

 

 ( )
2

22
0

2 2
2 9 k

k k

vD v gd
g g

µ
µ µ

= = − =
2
02 4

9 9k

v d
gµ
− . 
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Answers to Even Numbered Conceptual Questions 

 2. Only if the collision is perfectly head-on. If the two objects collide even slightly off center, 
a glancing collision will occur and the final velocities will be along lines other than that of 
the initial motion. 

 4. No. Only in a precise head-on collision with equal and opposite momentum can both balls 
wind up at rest. Yes. In the second case, assuming equal masses for each ball, if Ball 2, 
originally at rest, is struck squarely by Ball 1, then Ball 2 takes off with the velocity of Ball 
1. Then Ball 1 is at rest. 

 6. The skater gains the most momentum by catching and then throwing the frisbee. 

 8. Kinetic energy can be written as 
2

2
p
m

. Thus, even through the particles have the same 

kinetic energies their momenta may be different due to a difference in mass. 

10. The resulting collision is intermediate between an elastic and a completely inelastic 
collision. Some energy of motion is transformed as the pieces buckle, crumple, and heat 
up during the collision. Also, a small amount is lost as sound. The most kinetic energy is 
lost in a head-on collision, so the expectation of damage to the passengers is greatest. 

12. The less massive object loses the most kinetic energy in the collision. 

14. The superhero is at rest before the toss and the net momentum of the system is zero. When 
he tosses the piano, say toward the right, something must get an equal amount of 
momentum to the left to keep the momentum at zero. This something recoiling to the left 
must be Superman. He cannot stay at rest. 

16. The passenger must undergo a certain momentum change in the collision. This means that 
a certain impulse must be exerted on the passenger by the steering wheel, the window, an 
air bag, or something. By increasing the time during which this momentum change occurs, 
the resulting force on the passenger can be decreased. 

18. A certain impulse is required to stop the egg. But, if the time during which the momentum 
change of the egg occurs is increased, the resulting force on the egg is reduced. The time is 
increased as the sheet billows out as the egg is brought to a stop. The force is reduced low 
enough so that the egg will not break. 
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Answers to Even Numbered Problems 

 2. (a) 5.40 N·s    (b) –27.0 J 

 4. (a) 0     (b) 1.1 kg m s⋅  

 6.  1.7 kN

 8.  37.00 10  N  upward×

10. An average force of  would be required to hold the child. 36.4 10  N  ( 1400 lbs)× ≈

12. (a) 12.0 N·s    (b) 6.00 m s     (c) 4.00 m s  

14. (a)     (b) 333 N directed opposite to water flow 333 N−
(c) 333 N in direction of water flow 

16. (a) 6.3 kg m s⋅  toward the pitcher 
 (b)  toward the pitcher 33.2 10  N×

18. 62 s 

20. (a) 0.49 m s     (b) -22.0 10  m s×  

22. 2.48 m sthrowerv = , 22.25 10  m scatcherv −= ×  

24. (a) -5 21.0 10  m s×  
(b)  -171.0 10  N×

26. 33.75 10  NF = × , no broken bones 

28. 25.3 10  m s×  

30. 143 m s  

32. (a) 20.9 m s  East    (b)  into internal energy 38.68 10  J×

34. (a) 2.2 m s  toward the right  (b) No 

36. 40.0 cm s−  (10.0-g object), 10.0 cm s+  (15.0-g object) 

38. (a) 2.50 m s     (b)  43.75 10  J×
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40. (a) 0, 1.50 m s    (b) 1.00 m s ,  1.50 m s−  
(c) 1.00 m s ,  1.50 m s  

42. (a) 12.4 m s  at 14.9° N of E  (b) 7.20 % 

44. No, his speed was 41.5 mi h . 

46. 40.5 g 

48. 0.556 m 

50. ⎛ ⎞= ⎜ ⎟
⎝ ⎠

l
4

min
M

v g
m

 

52. 0.960 m above the level of point B 

54. 91 m s  

56. (a) 9.90 m s ,  9.90 m s−   (b) 16.5 m s ,  3.30 m s−  
 (c) 13.9 m, 0.556 m 

58. 0.980 m 

60. (a) 0,  3.00 m sred bluev v= =   (b) 0.212 m 

62. (a) = =0 3 0
22 ,  
3m mv v v v   (b) 35.3° 

64. (a) 90.0°    (b) ( )3.46 m s  cue ball , ( )2.00 m s  target  
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