CHAPTER 6

Quick Quizzes

(d). We are given no information about the masses of the objects. If the masses are the
same, the speeds must be the same (so that they have equal kinetic energies), and then

p1 = p2. If the masses are not the same, the speeds will be different, as will the momenta,

and either p1 < pp, or p1 > p2, depending on which particle has more mass. Without
information about the masses, we cannot choose among these possibilities.

(c). Because the momentum of the system (boy + raft) remains constant with zero
magnitude, the raft moves towards the shore as the boy walks away from the shore.

(c) and (e). Because object 1 has larger mass, its acceleration due to the applied force is
smaller, and it takes a longer time interval At to experience the displacement Ax than does
object 2. Thus, the impulse FAt on object 1 is larger than that on object 2. Consequently,
object 1 will experience a larger change in momentum than object 2, which tells us that (c)
is true. The same force acts on both objects through the same displacement. Thus, the same
work is done on each object, so that each must experience the same change in kinetic
energy, which tells us that (e) is true.

(d)-
(b). You must conclude that the collision is inelastic because some of the kinetic energy is

carried away by mechanical waves--sound. If the collision were elastic, you would not
hear any clicking sound.

(a)-

(a). Perfectly inelastic —the two “particles”, skater and Frisbee, are combined after the
collision; (b) Inelastic —because the Frisbee bounced back with almost no speed, kinetic
energy has been transformed to other forms; (c) Inelastic — the kinetic energy of the Frisbee
is the same before and after the collision. Because momentum of the skater-Frisbee system
is conserved, however, the skater must be moving after the catch and the throw, so that
the final kinetic energy of the system is larger than the initial kinetic energy. This extra
energy comes from the muscles of the skater.

(b). If all of the initial kinetic energy is transformed, then nothing is moving after the
collision. Consequently, the final momentum of the system is necessarily zero. Because
momentum of the system is conserved, the initial momentum of the system must be zero.
Finally, because the objects are identical, they must have been initially moving toward
each other along the same line with the same speed.
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CHAPTER 6

Problem Solutions

6.2

6.3

6.4

Assume the initial direction of the ball in the -x direction, away from the net.

(a) Impulse=Ap=m(v, -v,)=(0.0600 kg)[40.0 m/s—(-50.0 m/s)] giving

Impulse=5.40 kg-m/s=|5.40 N -s | toward the net.

1
(b) Work = AKE = Em(vf —vf)

(0.0600 kg)[ (40.0 m/s)" ~(50.0 m/s)’ |

- 2 =[-27.07]

Usep=mv :

(@) p=(1.67x10" kg})(5.00x10° m/s)=8.35x10* kg-m/s

p

p

p

Since the ball was thrown straight upward, it is at rest momentarily (v = 0) at its

(1.50x 107 kg}(3.00x 10° m/s)=
(75.0kg)(10.0 m/s) =

(5.98x10 kg)(2.98x 10 m/s)=|1.78x 10 kg-m/s

maximum height. Therefore, p = @
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CHAPTER 6

(b) The maximum height is found from v{ =v} +2a, (Ay) with v, =0.

0=vj +2(-g)(ay) _ . Thus, (ay) = ;—é
A 2
We need the velocity at Ay = ( yz)max :Z—'; , thus vZ =v? +2a (Ay) gives

_ é Viy_15 m/S

(0.10 kg)(15 m/s)

00 [ g e apan

Therefore, p = mv, =

6.5 (a) If Poa = Pouttet /

MV (3-00% 10 kg)(150x 10° m/s)

My, 0.145 kg =[31.0 m/s}

(b) The kinetic energy of the bullet is

then v, =

3.00x 10 kg)(1.50 x 10° m/s)’
KEpuet :lmbulletvgullet = ( g)( / ) =3.38x10°J
2 2

0.145 kg)(31.0 m/s)’
while that of the baseball is KE,, = %mba,,v,fa,, = ( g)( / )

=69.7 J.

The | bullet has the larger kinetic energy | by a factor of 48.4.

6.6  From the impulse-momentum theorem, F(At)=Ap=mv, —mv,.

m(v,-v,) (55x10 kg)(2.0 % 10° ft/s - 0)( 1m/s )

(At) 0.0020 5 —0 (3281 fiys) =[17kN]

Thus, F=
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6.8

6.9

CHAPTER 6

If the diver starts from rest and drops vertically into the water, the velocity just before
impact is found from

(KE+PE, | =(KE+PE,|

%mvfmpam +0=0+mgh = V. =/20h

With the diver at rest after an impact time of At, the average force during impact is given

_ MO0—Via)] -my/2gh — my/2gh
by F= ( P t)z g or Fz—g (directed upvvard).
At At At

Assuming a mass of 55 kg and an impact time of ~1.0 s, the magnitude of this average
force is

o (55 kg)/2(9.80 m/s?)(10 m)

|‘| Tos =770 N, or |~10° N |

The speed just before impact is given by (KE +PE, )f = (KE+ PEg) as

2
impact

+0=0+mgh, or v =,/2gh.

1
Emv impact —

Taking downward as positive, the impulse-momentum theorem gives the average force
as

= M M(0—Vipes) -my2gh —(60.0 kg),[2(9.80 m/s?)(10.0 m)
At At At 0.120's '

Thus, F=-7.00x10° N, or F=|7.00x10° N (upward) |

Impulse = F(At) = Ap=m(Av).

Impulse[=m|Av|=(70.0 kg)(5.20 m/s—0)=[364 kg-m/s | and

‘IE‘— Impulse 364 kg-m/s
At 08325

Thus,

=438 kg-m/s?,

or I_Zz‘ 438 N directed forward ‘
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6.10 From the impulse-momentum theorem, F(At)=Ap=mv, —mv,, the average force

required to hold onto the child is

m(v,-v,) (12kg)(0-60 mi/h)( 1m/s )

= —|=—6.4x10° N..
(At) 0.050 s -0 L2.237 ml/hJ

=

Therefore, the magnitude of the needed retarding force is | 6.4 x 10° N |, or 1400 Ibs. A

person cannot exert a force of this magnitude and a safety device should be used.

611 (a) The impulse equals the area under the F versus t graph. This area is the sum of the
area of the rectangle plus the area of the triangle. Thus,

1
Impulse=(2.0 N)(3.0 s)+5(2.0 N)(2.05)=[80N s ]

(b) Impulse= F(At)=Ap= m(vf —vi) :

8.0N-s=(15kg)v, -0, giving v, =.

Impulse

() Impulsezlf(At)zAp:m(vf—vi), S0 Vy=vit—

80N-s
v, =-2.0m/s+ =13.3 m/s|
: [+ 15

6.12 (a) Impulse = area under curve = (two triangular areas of altitude 4.00 N and base
2.00 s) + (one rectangular area of width 1.00 s and height of 4.00 N.)

4,00 N)(2.00s
Thus, Impulse=2|:( l( )}(4.00 N)(1.00s)=[12.0N 5]

(b) Impulse:IE(A'[)zAp:m(\,f _Vi)v S0 Vv, =V, + Imf:lse.

120N -s
V,=0+———=|6.00 m/s
=0t 0kg

Impulse 120N s
V. =V + =-2.00 m/s+———=|4.00 m/s
© vi=vi+—— I+ 00k
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6.13 (a) Theimpulse is the area under the curve between 0 and 3.0 s.

This is:  Impulse = (40N)(3.0s) =[12N s |

(b) The area under the curve between 0 and 5.0 s is:

Impulse = (4.0 N)(3.0's) + (-2.0N)(2.05) =[8.0N -5 |

(c) Impulse=F(At)=Ap=m(v, -v,), so szvi+|ma:ﬂse.

Impulse 12N-s
t3.0s:  Vv,=Vv,+ =0+ =|8.0 m/s
a 5 b m 1.50 kg

Impulse 80N -s
t50s: v.=Vv + =0+ =(5.3 m/s
at5.0s: vy =vi+— 150 kg

ADwe  M(Vi—Vi) (1000 kg)(0-20.0 mys)

614 (a) = = =[-333N
At At 60.0's

- A . .
(0) Fouer =%=—333 N, or [333 N directed opposite to water flow |

(c) From Newton’s third law,

F, F__=+333N, or ‘333 N in direction of water flow |

uilding — — " water

615 (a) a=X -2 2020mM) foeg7s
V Vvi+v; 0+250m/s
_ 1400 kg)(25.0
() FoAP_mav) (1400ko) - /S) 38510 N
AU AL 9.60x107 5

AV 250 m/s 1g )

_ (
© A= =Ge0x107s ~ 200 M/s*=(260 m/5%) o m/s?) =265

6.16  Choose the positive direction to be from the pitcher toward home plate.
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(a) Impulsezlf(At):Apzm(vf —vi)=(0.15 kg)[(-22 m/s)—(20 m/s)]

Impulse = F(At)=-6.3 kg-m/s, or |6.3 kg-m /s toward the pitcher ‘

Impulse 6.3 kg-m/s

T oxlot . = 32xI°N,
U X

(b) F=

or F=|3.2x10% N toward the pitcher

Choose +x in the direction of the initial velocity and +y vertically upward. Consider first
the force components exerted on the water by the roof.

7

(Fu) Ap, m(Av,) (20.0kg)[(40.0 m/s)cos60.0°~40.0 m/s |

At AL 1.00 s
or (Fater ), =—400 N
_Ap,_m(av,) (200 kg)[(40.0 m/s)sin 60.0°~0]
(Fwater)y - At - At 1 00 S 693 N
Thus, g =/F +F =+/(~400 N)? +(693 N)* =800 N
and f=tan k J ( \ ,s0 F,,., =800 N at 120°.

From Newton’s third law, F; =—F,.. =800 N at -60.0°,

or For =| 800 N at 60.0° below the horizontal to the right |
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We shall choose southward as the positive direction.

The mass of the man is m= w 730N

] = W =745 kg . Then, from conservation of

momentum, we find
(mmanvman + mbookvbook)f = (mmanvman + mbookvbook)i or
(74.5 kQ)V py +(L1-2 kg )(-5.0 m/s)=0+0 and v,,, =8.1x107 m/s.

Therefore, the time required to travel the 5.0 m to shore is

t:AX: 50m =.

Vo 8:1x107% m/s

Requiring that total momentum be conserved gives

(mclubvclub + mba||vba||)f = (mclubvclub + M Vi )i

or  (2009)(40 m/s)+(46 g)v,, =(200 g)(55 m/s)+0,
and v, :.

(@) The mass of the rifleis m = v LNZ
g 980 m/s

bullet’s motion to be negative. Then, conservation of momentum gives

=3.1kg . We choose the direction of the

(mriflevrifle + mbulletvbullet)f = (mriflevrifle + Moy butet )i

or (3.1Kg)V,q, +(5.0x10°° kg)(-300 m/s)=0+0 and V,q, =049 m/s].

(b) The mass of the man plus rifle is m = LNZ =745 kg . We use the same
9.80 m/s
(5.0x107 kg )

approach as in (a), to find v =L J(BOO m/s) =12.0x107% m/s|

74.5 kg
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6.21  The velocity of the girl relative to the ice, v
v,, = velocity of girl relative to plank , and

gir 18 Vg =Vg, +V,; where
v,; = Velocity of plank relative to ice . Since we are given that
Vg =150 m/s, this becomes v; =150 m/s+v;. )]

(m

. . _ g
(a) Conservation of momentum gives m,V, +myv; =0, or v; = Lm—J G- (2)

3

([ my)
Then, Equation (1) becomes Ll + —gJ Vi =150 m/s

p

3

150 m/s
or Vg = 115 m/s
- iy =]
L150kg

(45.0 kg](1_15 m/s)=-0.346 m/s

(b) Then, using (2) above, = Vy =~| 7= -

or Vy; :‘ 0.346 m/s directed opposite to the girl’s motion |

6.22  Consider the thrower first, with velocity after the throw of V.. - Applying
conservation of momentum yields

(65.0 K )V proner +(0.0450 kg)(30.0 m/s)=(65.0 kg +0.0450 kg)(2.50 m/s),

or Vthr(wver = '

Now, consider the (catcher + ball), with velocity of V., after the catch. From

momentum conservation,

(60.0 kg +0.0450 g )V, e =(0.0450 kg)(30.0 m/s)+(60.0 kg)(0),

catcher

or Vacher = 2.25x107? m/s|.
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6.23  The ratio of the kinetic energy of the Earth to that of the ball is

KE. 3mevi (mo)(ve) (1)

2 |
KE, Zmyv; Lmb Vp

From conservation of momentum,

m
p; =p, =0, giving meve + myv, =0 or Ve |- |
Vp Mg
2
m
Equation (1) then becomes KE :(%] {_ﬂj ||
KEb my me me
KEg m, 1lkg “10%® |

Using order of magnitude numbers, —==—~—
KE, m. 10” kg

6.24 (a) Find the velocity of the amoeba after 1.0 s (i.e., after it has ejected 1.0x10™° kg of

water). Using conservation of momentum,
(1.0x10™ kg)v, +(10x10™ kg)(-1.0x 10 m/s)=0+0
yielding v,=1.0x10"° m/s.

The acceleration has been,

Vi—V; 1.0x10° m/s—-0

1.0x10° m/s? |
At 10s

a=

(b) The reaction force exerted on the amoeba by the emerging jet is

=ma=(10x10" kg)(1.0x10° m/s’)=1.0x10"" N.

Freaction
If the amoeba is to have constant velocity, the net force acting on it must be zero.

Thus, the water must exert a resistance force with magnitude given by
F -F =0, or

reaction resistance

1.0x10™ N |

=F

reaction

E

resistan ce

182



CHAPTER 6

6.25 From conservation of momentum,
M (Vball )f +mg, (Vpin )f =M (Vball )i +mg, (Vpin )i ,

or (7.00 kg)(1.80 m/s)+(2.00 kg)(3.00 m/s)=(7.00 kg)(Vyy ), +0
which gives (Vball)i =.

6.26  For each skater, the impulse-momentum theorem gives

Fodp_m(av) _(750kg)(500 mjs) oo
A A 01005

Since F <4500 N, there are | no broken bones |

6.27 (a) If Mis the mass of a single car, conservation of momentum gives

(3M)v, =M(3.00 m/s)+(2M)(1.20 m/s), or v =[1.80 m/s]|

(b) The kinetic energy lost is KE,,, = KE; —KE;, or

lost

KE 2—%(3M)(1.80 m/s)’

fost —

%M (3.00 m/s)’ +%(2M)(1.20 m/s)

With M =2.00x10* kg, this yields KE, =|2.16 x 10* J|.

lost
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Let us apply conservation of energy to the block from the time just after the bullet has
passed through until it reaches maximum height in order to find its speed V just after
the collision.

%mvi2 +magy, =%mvf +mgy, becomes %mv2 +0=0+mgy,

or  V=/2gy, =,/2(9.80 m/s?)(0.120 m) =153 m/s

Now use conservation of momentum from before until just after the collision in order to
find the initial speed of the bullet, v.

(7.0x107° kg)v+0=(L5kg)(1.53 m/s)+(7.0x 107 kg)(200 m/s),

from which v=15.3x10? m/s |

Let M = mass of ball, m = mass of bullet, v = velocity of bullet, and V = the initial velocity
of the ball-bullet combination. Then, using conservation of momentum from just before
to just after collision gives

(M+m)V =mv+0 or Vz( il jv.
M+m

Now, we use conservation of mechanical energy from just after the collision until the
ball reaches maximum height to find

2 2
0+(M +m)ghmaX=1(M +m)V?+0 or hmaxzv—zi[ m j V2.
2 29 2g\M+m

With the data values provided, this becomes

2
h - 1 (  0030kg ) (200 m/s)’ = [57m].
2(9.80 m/52)(o.15 kg +0.030 ng
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First, we will find the horizontal speed, v, , of the block and embedded bullet just after
impact. After this instant, the block-bullet combination is a projectile, and we find the

1
time to reach the floor by use of Ay =v,t+ an t?, which becomes

~1.00 m = 0+%(—9.80 m/s*)t*, giving t=0452s.
Thus, v, _Mx_200m 443 m/s.
t 0452s

Now use conservation of momentum for the collision, with v, = speed of incoming
bullet:

(8.00x10° kg )v, +0=(258x10" kg})(4.43 m/s), so
v, = . (about 320 mph)

When Gayle jumps on the sled, conservation of momentum gives

(50.0 kg +5.00 kg )v, =(50.0 kg)(4.00 m/s)+0, or v, =3.64 m/s.

After Gayle and the sled glide down 5.00 m, conservation of mechanical energy gives

%(55.0 kg)v3 +0=%(55.0 kg)(3.64 m/s)"+(55.0 kg)(9.80 m/s?)(5.00m),

SO v, =105 m/s.

After her Brother jumps on, conservation of momentum yields

(55.0 kg +30.0 kg )v, =(55.0 kg)(10.50 m/s)+0, and v, =6.82 m/s.

After all slide an additional 10.0 m down, conservation of mechanical energy gives the
final speed as

%(85.0 kg)v +O=%(85.0 kg)(6.82 m/s)" +(85.0 kg)(9.80 m/s?)(10.0 m)
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6.32 (a) Conservation of momentum gives MV +MV . =M V;r +MV;., or

clic/

_ MeVir +M, (Vic _Vfc)

~ (9000 kg)(20.0 m/s)+(1200 kg)[(25.0-18.0) m/s
- 9000 kg

m=20.9 m/s East |

(b) KE, =KE —KE, = BmcvfC +%mTvi2T}—Emcv§c +%mTv2ﬂ}
=E[mc(vfC v )+mT (v vzﬁ)]
=%[(1200 kg) (625 - 324)(m?/s°) + (9000 kg (400 - 438.2)(m?/s*) |
KE, =| 8.68x10° J, which becomes internal energy |

Note: If 20.9 m/s were used to determine the energy lost instead of 20.9333, the
answer would be very different. We keep extra digits in all intermediate answers
until the problem is complete.

6.33  First, we use conservation of mechanical energy to find the speed of the block and
embedded bullet just after impact:

(KE+PE,), =(KE+PE,). becomes %(m+ M)V ? +0=0+%kx2,

(150 N/m)(0.800 m)*
(0.0120 +0.100) kg

2
and yields V= |- — \/

=29.3 m/s
m+M

Now, employ conservation of momentum to find the speed of the bullet just before
impact: mv+M(0)=(m+ M)V,

(m+M),, [0112kg ) _
or v_[ - ]V L00120ng (293 m/s)=[273 m/s |
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CHAPTER 6

Using conservation of momentum, (Zp)aﬂer = (Zp)before , gives

[(4.0+10+3.0) kg v =(4.0 kg)(5.0 m/s)+(10kg)(3.0 m/s)+(3.0 kg)(-4.0 m/s)

Therefore, v=+22m/s, or‘ 2.2 m/s toward the right ‘

. For example, if the 10-kg and 3.0-kg mass were to stick together first, they
would move with a speed given by solving

(13 kg)v, =(10kg)(3.0 m/s)+(3.0 kg)(-4.0 m/s), or v, =+1.38 m/s.
Then when this 13 kg combined mass collides with the 4.0 kg mass, we have
(17 kg)v =(13 kg)(1.38 m/s)+(4.0 kg)(5.0 m/s), and v=+2.2 m/s
just as in part (a).
From conservation of momentum,
(5.00 g)vy; +(10.0 g)v,; =(5.00 g)(20.0 cm/s)+0 1)

Also for an elastic, head-on, collision, we have v,; +V ; =V, +V,;, which becomes
20.0 cm/s+v,; =V, . )

Solving (1) and (2) simultaneously yields

Vy; =|-6.67 cm/s | and v, =|13.3 cm/s |.

KE, = KE,; + KE,; = %(5.00 %10 kg)(0.200 m/s)* +0=1.00x10* J

KE,, = %mzvgf = %(10.0 x10° kg}(13.3x 107 m /s)2 =8.89x107° J, so

KE,; 889x10°1]
KE  1.00x10™*J
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Using conservation of momentum gives
(10.0 g)v,; +(15.0 g)v,; =(10.0 g)(20.0 cm/s)+(15.0 g)(~30.0 cm/s)
For elastic, head on collisions, v;; +V,; =V, +V,; which becomes

20.0 cm/s +v,; =—30.0 cm/s+v,, .

Solving (1) and (2) simultaneously gives v,; =|—-40.0 cm/s
and v,; ={10.0 cm/s |

Conservation of momentum gives
(25.0 g)vy; +(10.0 g)v,; =(25.0 g)(20.0 cm/s)+(10.0 g)(15.0 cm/s)
For head-on, elastic collisions, we know that v;; +V;; =V, +V,; .

Thus, 20.0 cm/s+v,; =15.0 cm/s+v, .

Solving (1) and (2) simultaneously yields
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6.38 (a) The internal forces exerted by the actor do not change total momentum.

VKGN N N N

2.00 m/s 4.00 m/s
—_— —_—
NN N S N

From conservation of momentum

(4m)v, =(3m)(2.00 m/s)+m(4.00 m/s)

~6.00 m/s+4.00 m/s _
Vv, = 2 =|2.50 m/s

(B) Wo =K, K, =%[(3m)(2.00 m/s)’ +m(4.00 m/s)z]—%(4m)(2.5o m/s)’

2.50x 10" k
W, = w[lz.o +16.0-25.0](m/s)" =| 3.75x 10" J
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We assume equal firing speeds v and equal forces F required for the two bullets to push

wood fibers apart. These forces are directed opposite to the bullets displacements

through the fibers.

When the block is held in the vise, W,, = KE; —KE; gives

F(8.00x 10 m)cos180°=0 —%(7.00 x 107 kg)v?,

or %(7.00 x 107 kg)v* =(8.00x 10" m)F

When a second 7.00-g bullet is fired into the block, now on a frictionless surface,
conservation of momentum yields

§ 7.00% 107
(1.014 kg)v, =(7.00x10" kg)v +0, or v, :(LO%\V

Also, applying the work-kinetic energy theorem to the second impact,
Fdcos180° =3(1 014 kg)Vv; —1(7 00x10°° kg)v?
2 A

Substituting (2) into (3), we obtain

(7.00x10°)" ,
—| Vv

_1 1 3 2
~Fd=—(1.014 kg)k ol 2(7.00 x 107 kg)v?,

7.00x107)

L ) (
or Fd:{E(mOXlO 3 kg)vz}kl 1.014

Finally, substituting (1) into (4) gives

5 (. 7.00x107°) 5
Fd:[(s.ooxlo m)F]Ll—WJ,or d=7.94x10 m=
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First, consider conservation of momentum and write

MVy; +MyVy =MV +MyVo¢
Since m, =m,, this becomes V; +V,; =V,; +V,;.

For an elastic head-on collision, we also have v;; —v,, = —(V1f —V, ) ,

: : Vi +Vy =Vyp +V
which may be written as mo A

Subtracting Equation (2) from (1) gives Vo, =V

Adding Equations (1) and (2) yields Vir =Vyi

Equations (3) and (4) show us that, under the conditions of equal mass objects striking

one another in a head-on elastic collision, the two objects simply exchange velocities.
Thus, we may write the results of the various collisions as

(@ Vi = @ Vog :
o v -0 v, -

(©) Vi =100 m/s| v, =[150 m/s |

Choose the +x-axis to be eastward and the +y-axis northward.

(a) First, we conserve momentum in the x direction to find
90
(185 kg)V cos@=(90 kg)(5.0 m/s), or V cosez(ﬁ) (5.0 m/s)

Conservation of momentum in the y direction gives

. . 95
185 kg )V sin =95 kg)(3.0 ,orV ﬁz(—) 3.0
(185 kg)V sin 6=(95 kg)(3.0 m/s), or V sin 185 (3.0 m/s)
Divide equation (2) by (1) to obtain tan 8= M and 6=
(90)(5.0)’

Then, either (1) or (2) gives V = 2.88 m/s, which rounds to V = .
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(b) KE,, =KE —KE,

lost

%[(90 kg)(5.0 m/s)" +(95 kg)(3.0 m/s)” ~(185 kg)(2.88 m/s)’ |

=|7.9x10% J | converted into internal energy

6.42  Choose the +x-axis to be eastward and the +y-axis northward.

(@) Conserving momentum in the x direction gives
0+(10.0kg)v,, =(8.00kg)(15.0 m/s)+0, or v,, =12.0 m/s.

Momentum conservation in the y direction yields

(8.00 kg)(—4.00 m/s)+(10.0kg)v,, =0+0, or v,, =3.20 m/s.
After collision, Vv, = [V2 +v3, =164 m/s=12.4 m/s

v
and f=tan™ (ﬂ\ =tan™* (ﬁ\ =14.9°. Thus, the final velocity of the 10.0-kg
v, =" 120

mass is v, =[12.4 m/s at 14.9° N of E |

KE —KE KE
(b) KE, _RE g e
KE; KE KE.

e (8.00)(—4.00)2+(1(i.0)(\/ﬁ)2 0070
(8.00)(15.0)° +0

or|7.20% | of the original kinetic energy is lost in the collision.

6.43  Choose the +x-axis to be eastward and the +y-axis northward.

If v, is the initial northward speed of the 3000-kg car, conservation of momentum in the
y direction gives

0+(3000 kg)v, =(5000kg)[ (5.22 m/s)sin 40.0°], or v, =[5.59 m/s |

Observe that knowledge of the initial speed of the 2000-kg car was unnecessary for this
solution.
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We use conservation of momentum for both northward and eastward components.

For the eastward direction: M (13.0 m/ s) =2MV; c0s55.0°
For the northward direction: Mv,, =2MV; sin 55.0°
Divide the northward equation by the eastward equation to find:

v, =(13.0 m/s)tan 55.0°

(2.237 mi/h)

=|(13.0 m/S)LWJ tan 55.0°:

Thus, the driver of the north bound car was untruthful.

Choose the x-axis to be along the original line of motion.

(@) From conservation of momentum in the x direction,

m(5.00 m/s)+0=m(4.33 m/s)cos30.0°+mv, cosé,
or V,; c0s@=125 m/s 1)
Conservation of momentum in the y direction gives

0=m(4.33 m/s)sin30.0°+mv,sin @, or v, sin 6=-2.16 m/s )

-2.1
Dividing (2) by (1) gives tan@ = ?56 =-1.73 and 6=-60.0°.

Then, either (1) or (2) gives v,; =2.50 m/s, so the final velocity of the second ball is
V¢ =|2.50 m/s at -60.0°

(b) KE =%mvfi +O=%m(5.00 m/s)’ =m(12.5 m?/s?)

1 1
KE, =Emvff +Emv§f

1 1
:Em(4.33 m/s)2+zm(2.50 m/s)’ =m(12.5 m?/s?)

Since KE, = KE,, this is an | elastic collision |.
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6.46  The recoil speed of the subject plus pallet after a heartbeat is

V_&_G.OOXlO‘S m

=—= =3.75x10" m/s.
At 0.160's

From conservation of momentum, mv-MV =0+0, so the mass of blood leaving the
heart is

4
m=M (l] ~(54.0 kg)(3'75 <107 MS) ) 0510 kg= 405 .
% k 0.500 m/s J

6.47  Impulse=F(At)=Ap = m(vf —vi)

=(0.400 kg)[ (~22.0 m/s)-15.0 m/s]|=-14.8 kg-m/s

Impulse = | 14.6 kg-m/s in the direction of the final velocity of the ball

6.48  First, we use conservation of mechanical energy to find the speed of m, at B just before

1
collision. This gives Eml vZ+0=0+m,gh,,

or  vi= 2gh =,/2(9.80 m/s*)(5.00m)=9.90 m/s.

Next, we apply conservation of momentum and knowledge of elastic collisions to find
the velocity of m, at B just after collision.

From conservation of momentum, with the second object initially at rest,

m
— __1

we have myv,;; +myVv,, =m;v;; +0, or v, s (vli —vlf). 1)
2

For head-on elastic collisions, Vv ; +V;; =V,; +V,,. Since V,, =0 in this case, this becomes

V,; =V;; +V;; and combining this with (1) above we obtain

(m -m,) (5.00—10.0
Vi=lThn o ann

vy = = 9.90 m/s)=-3.30 m/s.
Yo lm, +m, ) 5.00+10.0)( /°) /
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Finally, use conservation of mechanical energy for m, after the collision to find the

maximum rebound height. This gives 0+m,gh,, = %mlvff +0,

2 2
vii (-3.30 m/s)
or  h,=—=s—— 2 _[0BE6m |
29 2(9.80 m/s?)
Choose the positive direction to be the direction of the truck’s initial velocity.

Apply conservation of momentum to find the velocity of the combined vehicles after
collision:

(4000 kg +800 kg )V =(4000 kg)(+8.00 m/s)+(800 kg)(-8.00 m/s),

which yields V =+5.33 m/s.

Use the impulse-momentum theorem, Impulse = IE(At) =Ap=m (vf - vi) , to find the

magnitude of the average force exerted on each driver during the collision.

Truck Driver:

= m\vf —Vi\tmk _ (80.0kg)[5.33 m/s—8.00 m/s| _

|_| At B 0.120's L78x10° N
Car Driver:
- m\va—tviLar (800 kg)\5.330 T 2/gs—(—s.oo ") e

If the pendulum bob barely swings through a complete circle, it arrives at the top of the
arc (having risen a vertical distance of 21 ) with essentially zero velocity.

From conservation of mechanical energy, we find the minimum velocity of the bob at

= (KE+PE, ,or%MV2=O+M g(21). This

the bottom of the arc as (KE +PE, )b I
op

ottom

gives V =2,/ gl as the needed velocity of the bob just after the collision.

Conserving momentum through the collision then gives the minimum initial velocity of
the bullet as

4M

m(%)+M(21/gl ):mv+0,orv= ? gl
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Note that the initial velocity of the target particle is zero (i.e., v, =0).

From conservation of momentum, m;v,; + m,v,, =m;v;; +0.
For head-on elastic collisions, Vv,; +V;; =V, +0.

Solving (1) and (2) simultaneously yields the final velocities as

($1+mzjvll and v, = {sz;n }Vll

(@ Ifm =209,m,=10g9,and v, =8.0 m/s, then

8 32
vlfzgms andvzfzgms.

(b) If m;=2.09,m, =109, and v;; =8.0 m/s, we find

16 8
Vi =5 m/s |and v,; = 3 m/s |

(c) The final kinetic energy of the 2.0 g particle in each case is:

2
Case (a): KE; :%mlvff :%(Z.Ox 10°° kg)(% m/sj =[7.1x102

1

2
Case (b): KE; =§m1vff :%(2.0><10‘3 kg)[—% m/s) =|2.8x102%

Since the incident kinetic energy is the same in cases (a) and (b), we observe that

| the incident particle loses more kinetic energy in case (a) |
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Use conservation of mechanical energy, (KE +PE, )B = (KE +PE, )A , to find the speed of

the bead at point B just before it collides with the ball. This gives %mvfi +0=0+mgy,,

or vy =20y, =,/2(9.80 m/s?)(150 m) =5.42 m/s.

Conservation of momentum during the collision gives
(0.400 kg)v,; +(0.600 kg)v, =(0.400 kg)(5.42 m/s)+0,

or Ve +1.50v,; =5.42 m/s. 1)

For a head-on elastic collision, we have v, +V, =V,; +V;;, which gives
Vo =V +542 m/s. )
Solving (1) and (2) simultaneously, the velocities just after collision are

Vy; =—1.08 m/s and v,; =4.34 m/s.

Now, we use conservation of the mechanical energy of the ball after collision to find the
maximum height the ball will reach. This gives

V3 (434 mys)

0+Mgy,. :%Mvgf +0,0r Y, _Z—Q:W:
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6.53  We first find the speed of the diver when he reaches the water by using
v? =V} +2a,(Ay). This becomes

v?=0+2(-9.80 m/s’)(-3.0m), and yields v=-+59 m/s

The negative sign indicates the downward direction.

Next, we use the impulse-momentum theorem to find the resistive force exerted by the
water as the diver comes to rest.

Impulse=F,, (At)=Ap= m(vf —vi), or

(Fumer —784 N)(2.0'5) =(80 kg)[O—(—@ m/s)], which gives

(80+/59)
Fraer = 784 N + | JN: 11x10° N (upward) |
2
6.54
at rest |<— 75 m—>| /at rest
12.0 Vi,
.g l) 100 g 11229 | 12.:-. 9
Immediately Before Impact Immediately After Impact At the end

Using the work-kinetic energy theorem from immediately after impact to the end gives:

W =F

wiction SC0S180° =KE,,, — KE,

net after 7

or, ~{ (M +m)g]s=0—%(M +m)V? and V =./2y, gs.

Then, using conservation of momentum from immediately before to immediately after
impact gives mv+0=(M+m)V, or

v=(M+m)v (Mm)m ng]\/z 0.650)(9.80 m/s)(7.5 m)

m
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Using conservation of momentum,

(60.0 kg +120 kg)v, =(60.0 kg)(4.00 m/s)+0,

[
SF, =n—(60.0 kg)(9.80 m/s*)=0 ¢v

so the normal force is n =588 N

and f, = 4N =(0.400)(588 N ) =[ 235 N |

Apply the impulse-momentum theorem to the person:

Impulse=F., (At) = Ap= m(vf —vi)

m(v,-v,) (60.0kg)(1.33 m/s—4.00 m/s)

so Al=—77—"= 235 N =[06815]

APyersn =M(V —V;) =(60.0 kg)(1.33 m/s—4.00 m/s)= 160 N -s

AP =M (v —0) = (120 kg)(1.33 m/s—0) = +160 N -s |

AX =V(At):(vf Zvi](m)

_(1.33 m/s+4.00 m/s

. j(0.681 s)=1.82m

AX e =V (AL) = {Vf 2+ 0} (At)= [Lzm/s) (0.6815) =
AKE oy = 2m(v? —vf)
(60.0 kg)

> (133 m/s)" (400 m/s)’ |=[~427J]

120 k)

AKEmzéM(vf—O)=( | (1.33 m/s)’ ~0]=[107 ]
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Equal friction forces act through different distances on person and cart to do
different amounts of work on them. This is a perfectly inelastic collision in which
the total work on both person and cart together is -320 ], which becomes +320 J of
internal energy.

Let v;; and v,; be the velocities of m; and m, just before the collision. Then
conservation of energy gives:

V==V, =/2gh =/2(9.80 m/s?)(5.00 m) =[9.90 m/s |

From conservation of momentum:

(2.00)v,; +(4.00) v, =(2.00)(9.90 m/s)+(4.00)(-9.90 m/s),
or (2.00)v,; +(4.00) v,, =-19.8 m/s. 1)
For an elastic head-on collision, V,; +V;; =V, +V,;, giving

V;; +9.90 m/s=v,; —9.90 m/s,or v, =Vv,;; +19.8 m/s ()

Solving (1) and (2) simultaneously gives

Applying conservation of energy to each block after the collision gives:

v (165 m/s)’

vZ (330 m/s)’

=g s mis) o]
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Use conservation of mechanical energy to find the speed of m; just before collision.
This gives

vy =\/20h, =,/2(9.80 m/s?)(2.50 m) =7.00 m/s.
Apply conservation of momentum from just before to just after the collision:
(0.500 kg)v,; +(1.00 kg )v,, =(0.500 kg)(7.00 m/s)+0,
or Vi +2V,, =7.00 m/s 1)
For a head-on elastic collision, V,; +V;; =V, +V,;,
which becomes v ; —v,; =-7.00 m/s. ()

Solving (1) and (2) simultaneously yields

Apply conservation of mechanical energy to m, after the collision to find

Vi (233 mys)’

h; = 20 = W = . (rebound height)

From Ay =v; t+ % a,t*, with v;, =0, the time for m, to reach the floor after it flies

horizontally off the table is found to be

t:\/Z(Ay) :\/2(—2.00 M) ess.

a, -9.80 m/s?

The horizontal distance traveled in this time is

AX =V, t=(467 m/s)(0.639s)=2.98m |

After the 0.500 kg mass comes back down the incline, it flies off the table with a
horizontal velocity of 2.33 m/s. The time of the flight to the floor is 0.639 s as found
above and the horizontal distance traveled is

AX=V,t=(2.33 m/s)(0.6395)=[1.49m |

201



6.58

6.59

CHAPTER 6

Use conservation of mechanical energy to find the velocity, v, of Tarzan just as he
reaches Jane. This gives v=./2gh, =\/2(9.80 m/sz)(3.00 m)=7.67 m/s .

Now, use conservation of momentum to find the velocity, V, of Tarzan + Jane just after
the collision. This becomes (M +m)V =Mv +0, or

(80.0 kg
v =(M'\ﬁmj -5 k;N'G? m/s)=4.38 m/s.

Finally, use conservation of mechanical energy from just after he picks her up to the end
of their swing to determine the maximum height, H, reached. This yields

v? (438 m/s)

(@) The momentum of the system is initially zero and remains constant throughout the

motion. Therefore, when m, leaves the wedge, we must have M,V +M;Vye =0,

or

(m,) 0.500
Vwedge :_L%J Vitok = ( 3.00 j(4 00 m/s) .

(b) Using conservation of energy as the block slides down the wedge, we have
(KE+PE, | =(KE+PE,) or

0+m,gh= 1vbIOCk + ;mszedge +0.

Thus, h=— 1 {vbm [ } }
apglin (28} oo}
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6.60 (a) Letm be the mass of each cart. Then, if v, is the initial velocity of the red cart,
applying conservation of momentum to the collision gives

mv, +mv, =mv,+0, or v, +Vv, =V, 1)
where v, and v, are the velocities of the blue and red carts after collision.

In a head-on elastic collision, we have Vv,; +V,, =V,; +V;; which reduces to
V, =V, =V,. 2

Solving (1) and (2) simultaneously gives v, = @, and v, =[3.00 m/s |

(b) Using conservation of mechanical energy for the blue cart-spring system,
(KE+PE;), =(KE+PE,). becomes

O+1kx2=1mv§+0
2 2

_m o 0.250 kg 3
or e [t (300 mys)-[028Zm]

6.61 (a) Use conservation of the component of
momentum in the horizontal direction
from just before to just after the cannon
firing.

(2p,), =(2py), gives

Mspen (VShell cos 4500) + MegnnonVrecoit =0 OF
( Mypen )
V recoil = —L J Vg €05 45.0°
mcannon

= { 5200000kkgg] (125 m/s)cos45.0° =
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(b) Use conservation of mechanical energy for the cannon-spring system from right
after the cannon is fired to the instant when the cannon comes to rest.

(KE+PE, +PE,) =(KE+PE, +PE,)

O+0+%kxﬁqax Z%mcannon vrzecoil +0+0

_ mcannon Vl?ecoil _ (5000 kg)(-354 m/S)Z _
Tma =T _\/ 20010 Njm L2/ ™)

©  [Frae| =KX =(2.00%20° N/m)(1.77 m)=[3.54x10° N

(d) No. The rail exerts a vertical external force (the normal force) on the cannon and
prevents it from recoiling vertically. Momentum is not conserved in the vertical
direction. The spring does not have time to stretch during the cannon firing. Thus,
no external horizontal force is exerted on the system (cannon plus shell) from just
before to just after firing. Momentum is conserved in the horizontal direction

during this interval.

Conservation of the x-component of momentum gives
2
(3m)v,, +0=—mv, +(3m)v,, or V,, =3 1)

Likewise, conservation of the y-component of momentum gives

-mv,, +(3m)v,, =0, and v,, =3v,,. (2)

Since the collision is elastic, (KE), =(KE),, or
1 1 1 1
Emvfy +§(3m)(v§X +v§y) =§mv§ +E(3m)v§ 3)
Substituting (1) and (2) into (3) yields
2

4
vy, + S[EVS +v§y] =4V}, 0r vy, Vo3~
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(@) The particle of mass m has final speed v,, =3 v, =

(b)

Let particle 1 be the neutron and particle 2 be the carbon nucleus. Then, we are given

and the particle of mass 3m moves at

2
Vy = V5, +V, = /%v§+§v§ = Voy3 t

(Vz \ 1
f=tant| =L =tan‘1(—]= -35.3°.
v, 72

that m, =12m, .

(@) From conservation of momentum m,v,; + m\v,; =m,v;; + 0. Since m, =12m,, this

reduces to 12v,; +V; =V;;.
For a head-on elastic collision, V,; +V, =V +Vy;.
Since v,;, = 0, this becomes V,; —V,; =V;;.

Solve (1) and (2) simultaneously to find

11 2
Vir =773 Vair and Vy; =3V

(1)

1
The initial kinetic energy of the neutron is KE;; = Emlvfi , and the final kinetic energy

of the carbon nucleus is

1 1 4 48 (1 48
KE,; ==m,v5, ==(12m (—vz.) :—[—m vz.j =—KE,;.
2 =5 22t 2( 1) 169 & 16982 't 169 U
. o . KE,; 48
The fraction of kinetic energy transferred is =——=10.28|
KE; 169
If KE; =1.6x10™ J, then
48 48
KE, =——KE,; =——(1.6x10™ J)=|45x10™ J|
1 = 169 <E ~ 1gg(10X10™ Y
The remaining energy 1.6x107° J — 45x10™ J=|1.1x107" J

neutron.
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Choose the positive x-axis in the direction of the initial velocity of the cue ball. Let v; be
the initial speed of the cue ball, v, be the final speed of the cue ball, v; be the final
speed of the target, and @ be the angle the target’s final velocity makes with the x-axis.

Conservation of momentum in the x-direction gives

mv; cos@+mv,cos30.0°=0+my;, or v; coséd =V, —v cos30.0° 1)
From conservation of momentum in the y-direction,

mv; sin @-mv, sin 30.0°=0+0, or v; sin #=v,sin 30.0° (2)

Since this is an elastic collision, kinetic energy is conserved, giving
1 1 1
—mvZ +=mvZ==-mv?, or Vi =v? -V’ 3)
2 2 2

(b) To solve, square equations (1) and (2). Then add the results to obtain
vZ =v? —2v,v,c0s30.0°+ V.. Substitute this into equation (3) and simplify to find

V. =V;0530.0°=(4.00 m/s)cos30.0° =.

Then, equation (3) yields v; =/v7 -VZ , or

c

Vs =\/(4.00 m/s)’ —(3.46 m/s)’ =[2.00 m/s |

(@) With the results found above, equation (2) gives

sin 6= (Q sin 30.0° = (%) sin 30.0°=0.866, or 0= 60.0°.
vy :

Thus, the angle between the velocity vectors after collision is

$=60.0°+30.0°=]90.0°]
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m
The deceleration of the incident block is a:—% =—% =—40.

Therefore, v> =Vv? +2a(Ax) gives the speed of the incident block just before collision as
V=4Vi -2 u9d.

Conservation of momentum from just before to just after collision gives
mv, +(2m)v, =mv, or 2v, +Vv, =V. 1)
where v1 and v; are the speeds of the two blocks just after collision.

Since this is a head-on elastic collision, V,; +V, =V,; +V;,

which becomes V, -V, =V. (2)

Adding equations (1) and (2) yields v, = %V =§«/V§ -2 p9d.

Note that the mass canceled in the calculation of the deceleration above. Thus, the
second block will have the same deceleration after collision as the incident block had
before. Then, v =v? +2a(Ax) with v, =0 gives the stopping distance for the second

block as 0=V’ + 2(—,ukg)D, or

DoV _ 2 (v2 -2 ugd) =
219 99 ° “

2vs  4d

9ug 9 |

207



CHAPTER 6

Answers to Even Numbered Conceptual Questions

10.

12,
14.

16.

18.

Only if the collision is perfectly head-on. If the two objects collide even slightly off center,
a glancing collision will occur and the final velocities will be along lines other than that of
the initial motion.

No. Only in a precise head-on collision with equal and opposite momentum can both balls
wind up at rest. Yes. In the second case, assuming equal masses for each ball, if Ball 2,
originally at rest, is struck squarely by Ball 1, then Ball 2 takes off with the velocity of Ball
1. Then Ball 1 is at rest.

The skater gains the most momentum by catching and then throwing the frisbee.

2
Kinetic energy can be written as 2p_ . Thus, even through the particles have the same
m

kinetic energies their momenta may be different due to a difference in mass.

The resulting collision is intermediate between an elastic and a completely inelastic
collision. Some energy of motion is transformed as the pieces buckle, crumple, and heat
up during the collision. Also, a small amount is lost as sound. The most kinetic energy is
lost in a head-on collision, so the expectation of damage to the passengers is greatest.

The less massive object loses the most kinetic energy in the collision.

The superhero is at rest before the toss and the net momentum of the system is zero. When
he tosses the piano, say toward the right, something must get an equal amount of
momentum to the left to keep the momentum at zero. This something recoiling to the left
must be Superman. He cannot stay at rest.

The passenger must undergo a certain momentum change in the collision. This means that
a certain impulse must be exerted on the passenger by the steering wheel, the window, an
air bag, or something. By increasing the time during which this momentum change occurs,
the resulting force on the passenger can be decreased.

A certain impulse is required to stop the egg. But, if the time during which the momentum
change of the egg occurs is increased, the resulting force on the egg is reduced. The time is
increased as the sheet billows out as the egg is brought to a stop. The force is reduced low
enough so that the egg will not break.
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Answers to Even Numbered Problems

10.
12.

14.

16.

18.

20.

22,

24.

26.

28.

30.

32.

34.

36.

38.

(@) 540N's (b) -27.0]
@ 0 (b) 11kg-m/s
1.7 kN

7.00x10° N upward
An average force of 6.4 x 10° N (~1400 Ibs) would be required to hold the child.
(@ 12.0N's (b) 6.00 m/s (c) 4.00 m/s

(@ —-333N (b) 333 N directed opposite to water flow
(c) 333 N in direction of water flow

(@) 6.3 kg-m/s toward the pitcher
(b) 3.2x10° N toward the pitcher

62s
(@) 049 m/s (b) 2.0x10% m/s
Virower = 2-48 M/S, Veye =2.256x107 m/s

(a) 1.0x10° m/s?
(b) 1.0x10" N

F=3.75x10° N, no broken bones

5.3x10* m/s

143 m/s

(@) 20.9 m/s East (b) 8.68x10°J into internal energy
(@) 2.2 m/s toward the right (b) No

—40.0 cm/s (10.0-g object), +10.0 cm/s (15.0-g object)

(@) 2.50 m/s (b) 3.75x10*J
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40.

42,

44.

46.

48.

50.

52.

54.

56.

58.

60.

62.

64.

CHAPTER 6

(@ 0,150 m/s (b)
(c) 1.00 m/s, 1.50 m/s

(@) 12.4 m/s at14.9°Nof E
No, his speed was 41.5 mi/h .

405¢

0.556 m

4M
Vinin = (_j v g I
m
0.960 m above the level of point B
91 m/s

(@ 9.90 m/s, —9.90 m/s
(c) 13.9m,0.556 m

0.980 m

(@) V=0, vy, =300 m/s

(@) Vy=Voy/2, v3m=vo\E

(@) 90.0°

-1.00 m/s, 1.50 m/s

(b) 7.20 %

-16.5 m/s, 3.30 m/s

0.212m

(b) 35.3°

210

3.46 m/s (cueball), 2.00 m/s (target)
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