CHAPTER 8

Quick Quizzes

1. (d).
2. (b).
3. (b). The hollow cylinder has the higher moment of inertial, so it will be given the smaller

acceleration and take longer to stop.
4.  (a). The hollow sphere has the higher moment of inertia.

5.  (a). Nathan is correct. When one of the children curls up inside the tire, the rolling system
closely resembles a solid cylinder or disk. In a race between a solid disk and a ring (or
hollow cylinder), the disk always wins, independent of masses or radii. See the solution to
problem 8.63.

6.  (c). The box. All objects have the same potential energy associated with them before they
are released. As the objects move down the inclines, this potential energy is transformed
to kinetic energy. For the ball and cylinder, the transformation is into both rotational and
translational kinetic energy. The box has only translational kinetic energy. Because the
kinetic energies of the ball and cylinder are split into two types, their translational kinetic
energy is necessarily less than that of the box. Consequently, their translational speeds are
less than that of the box, so the ball and cylinder will lag behind.

7.  (c). Apply conservation of angular momentum to the system (the two disks) before and
after the second disk is added to get the result: l,w, = (1, +1,) ;.

8. (a). The Earth already bulges slightly at the Equator, and is slightly flat at the poles. If
more mass moved towards the Equator, it would essentially move the mass to a greater
distance from the axis of rotation, and increase the moment of inertia. Because
conservation of angular momentum requires that ®,l, =const, an increase in the moment
of inertia would decrease the angular velocity, and slow down the spinning of the Earth.
Thus, the length of each day would increase.
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Problem Solutions

8.1

8.2

8.3

8.4

8.5

To exert a given torque using minimum force, the lever

arm should be as large as possible. In this case, the - 0.300 m
maximum lever arm is used when the force is applied I

Y

at the end of the wrench and perpendicular to the

handle.

Pivot

T 400 N-m
Then, F,, =—— = - [133N]
e d 0.300 m

max

The lever arm is d = (1.20 x107% m )Cos 48.0°=8.03x10° m , and the torque is

7=Fd=(80.0 N)(8.03x10™* m)=| 0.642 N -m counterclockwise |

7, =—[ (100 N)sin 20.0°](0.600 m ) —[ (900 N )sin 15.0°](0.800 m)=[ ~207 N -m |

75 =—(800 N')(0.600 m)—[(900 N)sin 15.0° |(0.800 m )

+[(900 N )c0s15.0°](0.600 m) = ~145 N -m |
7 =—[ (100 N)sin 20.0°](0.600 m)~[ (100 N )c0s20.0°](0.800 m ) = ~95.7 N -m |

In the 0° position, z=(mg)(0)= @

At30°,  7=-(10kg)(9.8 m/s?)[(0.400 m)sin 30°] =
At60°,  7=-(10kg)(9.8 m/s?)[(0.400 m)sin 60°]=
At90°,  r=-(10kg)(9.8 m/s*)(0.400 m)=[ 39N -m |
|7|=F-(lever arm)=(mg)-[Lsin 6]

=(3.0kg)(9.8 m/s*)-[(20 m)sin5.0°]=[5.LN-m |

240

—



8.6

8.7

CHAPTER 8

Resolve the 100-N force into components
parallel to and perpendicular to the rod, as

F i = (100 N ) cos (20.0° + 37.0°) = 54.5 N \ / '

\ Fparallel
\

and
F,, = (100 N)sin (20.0° +37.0°) = 83.9 N

The torque due to the 100-N force is equal to the sum of the torques of its components.

Thus,
7=(545N)(0)~(839N)(2.00m)=[-168 N -m |
\ A \
' 0.080m _ [Fy=F¢ sin12.0° I
1
Fex I 0
B ]
Fix = Ft cos 12.0° Fsy
Pivot Fey 0-290m 415N ! s
Y Y I

Requiring that X7 =0, using the shoulder joint at point O as a pivot, gives

X7=(Fsin12.0°)(0.080 m)—(41.5N)(0.290 m)=0, or F =|724 N

Then F, =0 = —F, +(724 N)sin 12.0°— 41.5 N=0,
yielding Fsy =109 N

XF,=0gives F,—(724 N)c0s12.0°=0, or F, =708 N

Therefore,  F =[R2 +F2 = /(708 N)* +(109 N ) =[ 716 N |
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8.8 If the mass of a hydrogen atom is 1.00 u (i.e., 1 unit), then the mass of the oxygen atom is

16.0 u.
X 16.0 0)+2(1.00 0.100 53.0°
_Imx, _(160u)(0)+2(100 u)[(0100 nm)c0s530°]
° 7 Sm, (16.0+1.00+1.00)
_Zmiyi
T v,

(16.0)(0) +(1.00)[ (0.100)sin 53.0° | +(1.00)[ —(0.100)sin53.0°| u-nm _
(16.0+1.00+1.00) u -]

8.9 Require that X7 =0 about an axis through the elbow and perpendicular to the page. This
gives

Sr=+[(200kg)(9.80 m/s*)](25.0 cm+8.00 cm ) - (F, cos 75.0°)(8.00 cm ) =0

(19.6 N)(33.0cm)
F = =|312N
o ®(8.00 cm )cos 75.0°

810 We assume the boat is in equilibrium. The wind
exerts a forward force on the sail to counterbalance
water friction on the boat.

Require that the sum of the torques be zero about
an axis parallel to the length of the boat and
passing through point A. This gives

Faby 2
+(750 N)(2.50 m)+ (1250 N)[(0.800 N)sin28.0°]  (0.800 m) sin 28.0° |°
+F(0)-F(3.10m)=0, 1250N

or the wind force on the sail is F =| 756 N

811 Let T = the tension force in the back muscles (represented by wire W in the model) and
F = the compression force in the spine. The sketches below represent free-body diagrams
of point P for each of the two positions.
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For Position (a):

2F, =0 = -Fsin20.0°+Tsin 30.0°=0,

or F:(s!n 30.0 jT
sin 20.0°

2F, =0 = Fc0s20.0°-Tcos30.0°~250 N =0, or

Position (a)

sin 30.0°
€0520.0°—-c0s30.0° |T =250 N, giving T =| 492 N |
Ksin 20.0°j } gvIng

For Position (b):

2F, =0 = -Fsin60.0°+Tsin70.0°=0,

or Fz(s!n 70.0 j_l_
sin 60.0°

ZFy =0 = Fc0s60.0°-Tcos70.0°-250 N =0, or

Position (b)

(s!n = jCOS6O.0°—00370.0° T=20N,
sin 60.0°

giving T =1.25x10° N =|1.25 kN

Thus, the tension force in the back muscles is much greater when lifting a load in
position (b) than when lifting the same load in position (a).

8.12 Requiring that X, = % =0 gives

(5.0 kg)(0)+(3.0 kg)(0)+(4.0 kg)(3.0 m)+(8.0 kg )x o
(5.0+3.0+4.0+8.0) kg -

7

or 8.0x+12m =0 which yields x=-1.5m.
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myy,
Also, requiring that y,, = # =0 gives

(5.0 kg)(0)+(3.0kg)(4.0 m)+(4.0kg)(0)+(8.0kg)y
(5.0+3.0+4.0+8.0) kg

7

or 8.0y+12m =0 yielding y=-1.5m.

Thus, the 8.0-kg mass should be placed at coordinates|(-1.5m,-1.5m) |

813  First, evaluate two sums involving the masses of the body parts (remembering that there
are 2 of each leg or arm part). These sums for the 10-year old are

Im, = [ 2(1.00+ 3.50 + 3.80+0.300 + 0.700 + 0.800) + 5.60 + 5.50 + 6.00] kg
=37.3 kg

and

£m,y; =[ 2{(1.00)(3.50) + (3.50)(20.0) + (3.80)(43.0)
+(0.300)(44.0) +(0.700)(58.0) + (0.800)(78.0)} -+ (5.60)(61.0)
+(5.50)(87.0) +(6.00)(110) | kg -cm=2.19x10° kg - cm

The location of the center of gravity is

Tmy, 2.19x10° kg -
ycg = Y, = a g-om =58.6 cm .
zm. 37.3 kg

The displacement of the center of gravity from the midpoint of the body is

118 cm

AY =Y ridot — Yeg =( j— 58.6 cm=0.39 cm , and the percent

deviationis % dev.=| —Y |.10096= (0'39 cm j -100% = 0.33%.
height 118 cm

Thus, the requested shift in the position of the center of gravity of a 10-year old is
0.39 cm below midpoint of the body or 0.33% of the height ‘
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For the 20-year old female, a similar set of calculations yield the following results:

Im, =55.4 kg, =m;y;=4.52x10° kg -cm, y,, =816 cm,

Ay =3.4cm,and % dev.=2.0%.

The requested shift in the position of the center of gravity of a 20-year old is

‘ 3.4 cm below midpoint of the body or 2.0% of the height |.

814 (a) Consider the dashed line through A and D to be the y-axis. For stability, the center
of gravity must lie on this line since it is the line of support. Thus, if M =Zm,, itis
necessary that

Xo =EMX; /zm; =xz(m; /M )x; =0,
or 0.65(0)+0.25[ —(40.0 cm)tan $]+0.10(10.0 cm)=0.
This gives tan #=1.0 cm/10cm =0.10, or g= .
) Vg =22m—y - 2(%jyi —0.65(70.0 cm ) +0.25(140 cm ) +0.10(105 cm)
mi
or Y - PTam]

815 Require that X7 =0 about an axis through the knee 100 N

joint and perpendicular to the page. This gives AT

Sr=F (0)—T(4.00 cm)+ (100 N)(42.0 cm)=0,

or the tension in the muscle is 42.0cm

_ 3N = T
T =1.05x10° N =[1.05 kN ! it om

Then, XF, =—F —100 N +1.05x10° N=0 gives the
compression force as F, =950 N|
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8.16  Require that £z =0 about an axis through point J
and perpendicular to the page. This gives

~F, d, + F,(0)+(350 N )(4.00 cm) =0, or

(350 N')(4.00 cm)

H:
1

_ (350 N)(4.00 cm)
= 711 N
~(3.20 cm )cos 52.0° -

Then, 2F, =0= (711 N)sin 52.0°~(F,) =0, or (F) =560N.

Also, ZF, =0=(711 N)cossz.oo—(ﬁ)y +350 N =0, giving (I:J)y =788 N.

Hence, ;= (F,). +(F). =y/(560 N)* + (788 N)* =[ 966 N |

8.17  We consider the torques about an axis (Fo)y ATy
perpendicular to the page through the base A 112 cm|12 cm; 18cm_ !
. . (Fo) —> >
of the spine, where the compression force —{c)x TE— ! !
F, acts. -
r€&—— 36 cCm——>
| 380 N\V 394 N 60 N

=—(380 N )(36 cm)+(Tsin12°)(48 cm)—(394 N)(60 cm)—(60 N)(78cm)=0

4.2x10* N -cm
or T= =4.2x10° N =|4.2kN |
(48 cm)sin12° §

Then, F, =0=(F) -T,=0, or (F) =Tcos12°=(4.2kN)cos12°=4.1kN

and  ZF =0:>(FC)y +T, —(380+ 394 +60) N=0,

or (R

c

), =834 N —(4.2x10° N)sin12°=—41N .
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Thus, F=(R).+(F); :\/(4.1><103 N) +(-41N)’ =4.1x10° N

(R), ] _tan-t (ﬂj —_057°.

(R), 4.1x10° N

and f=tan [

on

The compression force is, F. =| 4.1x10° N at 0.57° below the horizontal

818 Consider the torques about an axis perpendicular to the page through the left end of the
scaffold.

$7=0=>T,(0)— (700 N)(1.00 m)—(200 N)(L1.50 m)+T,(3.00 m)=0.

From which, T,=|333N |

Then, from ZFy =0, we have

Ty 700 N ToA
<— 1.00 m—» j€&— 2.00 m————>

T, + T, — 700 N-200 N=0, Y

€—— 1.50 m—>

or |
' Y200 N
T, =900 N-T, =900 N-333 N=| 567 N
819 Consider the torques about an axis perpendicular 1 3.50cm
to the page and through the point where the force Fe=50.0 N T R
T acts on the jawbone. < T

" 7.50 cm '|/
57=0=>(50.0 N)(7.50 cm) - R(3.50 cm) =0 )

which yields R = .

Then, XF, =0=-(50.0N)+T -107 N =0,0or T=|157 N |

820 (a) See the diagram below:

700 N T

60.0°

<— 3.00 m—>}<«— 3.00 m—>
200NY 80.0NY
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(b) If x =1.00 m, then

27), ., =0=—(700 N)(1.00m)—(200N)(3.00m) —

(80.0 N')(6.00 m )+ (T sin 60.0°)(6.00 m) =0,

left end

giving  T=

Then, F, =0=>H —T c060.0°=0, or H =(343 N)c0s60.0°=[ 171 N

and %F, =0=V —-980 N+(343 N )sin60.0°=0, or V =| 683 N

(c) When the wire is on the verge of breaking, T'= 900 N and

27) 700 N )Xo —(200 N )(3.00m) —

(80.0N')(6.00 m)+[ (900 N )sin 60.0° |(6.00 m)=0,

which gives X, =

left end =_(

We call the tension in the cord at the left end of the sign, T, and
the tension in the cord near the right end T, . Consider the torques

about an axis perpendicular to the page and through the left end
of the sign.

Sr=-w(050m)+T,(0.75m)=0,s0 T, =| =W

From ZF, =0, T, +T,-w=0,0r T,=w-T, =W—EW= —W |
3

(@) Consider the torques about an axis -
perpendicular to the page and through the H 30.0°
left end of the horizontal beam. —>
Ul d {196 N
Y

£z =+(T sin 30.0°)d - (196 N)d =0,

giving T =
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(b) From XF, =0, H-Tcos30.0°=0,or

H

(392 N)cos30.0°=| 339 N to the right |

From XF =0,V +Tsin30.0°-196 N =0,

or VV =196 N-(392 N)sin 30.0°=[0

Cons1de1“ the torques about an axis th |7OO N -
perpendicular to the page and through 0.500 m 40.0°
the left end of the plank. < | v A R
S720 o E<—1.00m—><—1.00m—>5
=1 glves ! ymg=294N

—(700 N')(0.500 m)— (294 N)(1.00 m )+ (T, sin 40.0°)(2.00 m)=0

Then, XF, =0 gives —T;+T,c0s40.0°=0, or

T,=(501 N )cos40.0°=[ 384 N |

From XF, =0, T,~994 N +T,sin 40.0°=0,
or  T,=994 N —(501N)sin40.0°=[672 N

First, we compute some needed dimensions:

d, =(7.50 m)cos60.0°=3.75m
d, =dcos60.0°=(0.500) d

d3

(15.0 m)sin 60.0°=13.0 m

Using an axis perpendicular to the page and through the
lower end of the ladder, X7=0 gives

—(500 N)d, —(800 N)d, + F; d, =0,

1875 N -m +(800 N)[ (0.500)d |
- 13.0m '

or K
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(@) When d =4.00 m, equation (1) gives F, =267 N to the left .

4

Then, F, =0 gives f-267 N =0, or f=|267 N to the right

and 2F, =0 yields F, —500 N —800 N=0, or F, =| 1.30 kN upward |

(b) When d = 9.00 m, equation (1) gives F, =421 N to the left .
Then, 2F, =0 gives f =421 N to the right, while
IF, =0 yields K =1.30x10° N =1.30 kN as before .

If the ladder is ready to slip under these conditions, then f =(f;)

7

max

() () 421N
= Smax _ 2 S/max _ =|0.324|
and He n F  130x10° N

8.25 The required dimensions are:

d, =(4.00 m)co0s50.0°=2.57 m
d, =dcos50.0°=(0.643) d

d3

(8.00m)sin50.0°=6.13 m
2F, =0 yields F —200 N —800 N=0,

or F =1.00x10° N.

When the ladder is on the verge of slipping,

f=(f)  =un=uF, or f =(0.600)(1.00x10° N )=600 N .
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Then, XF, =0 gives F, =600 N to the left .

Finally, using an axis perpendicular to the page and through the lower end of the
ladder, X7=0 gives

—~(200 N)(2.57 m)— (800 N)(0.643)d + (600 N)(6.13 m) =0,

B (3.68x103 —550) N-m

o d 0.643(800 N ) = when the ladder is ready to slip.

Observe that the cable is perpendicular to the boom. Then, using £z =0 for an axis
perpendicular to the page and through the lower end of the boom gives

~(1.20 kN)(%cosGS"j +T G Lj—(Z.OO kN)(Lcos65°)=Oor T

From IF =0, H =Tc0525°=‘ 1.33 kN to the right L

and ZF, =0 gives,

V =3.20 kN — T sin 25°=| 2.58 kN upward |

First, we resolve all forces into components parallel to
and perpendicular to the tibia, as shown. Note that

w, =(30.0 N)sin40.0°=19.3N,

F =(12.5N)sin40.0°=8.03 N,

and T, =Tsin25.0°.

Using X7 =0 for an axis perpendicular to the page and
through the upper end of the tibia gives

(Tsin 25.00)%—(19.3 N )%—(8.03 N)d=0, or
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8.28 When X =X, , the rod is on the verge of slipping, so :
f=(f) , =un=050n.

From XF =0,

;L
a
=
n

n—-Tcos37°=0, or n=0.80T
Thus, f=050(0.80T)=0.40T
From XF =0, f+Tsin37°-2w=0, or 0.40T +0.60T -2w=0,
giving T =2w.

Using X7=0 for an axis perpendicular to the page and through the left end of the beam
gives —W X, —W(2.0 m)+[(2w)sin 37°](4.0m)=0,

which reduces to Xmin =

8.29  The moment of inertia for rotations about an axis is | ==m.F*, where r. is the distance
mass m; is from that axis.

(a) For rotation about the x-axis,

I, =(3.00 kg )(3.00 m)* +(2.00 kg)(3.00 m)* +

(2.00 kg )(3.00 m)* +(4.00 kg )(3.00m)* =| 99.0 kg-m? |

(b) When rotating about the y-axis,

1, =(3.00 kg)(2.00 m)” +(2.00 kg )(2.00 m)* +

(2.00 kg)(2.00 m)” +(4.00 kg)(2.00 m)* =| 44.0 kg-m? |,

(c) For rotations about an axis perpendicular to the page through point O, the distance

r, for each massis r, =\/(2.00 m)2 +(3.00m)* =4/13.0 m.

Thus, I, =[(3.00+2.00+2.00+4.00) kg | (13.0m?)=| 143 kg-m* |
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The required torque in each caseis 7=la.

Thus, 7,=1,@=(99.0 kg-m”)(150 rad/s?)=| 149N -m |

7, =1,a=(44.0kg-m?)(150 rad/s*)=| 660N -m ],
and 7o =l,a=(143kg-m?)(150 rad/sz):.
() 7=F-r=(0800N)(30.0m)=| 240N m |

Tt 2A0Nm 60356 rad)s?
I mr® (0.750 kg)(30.0 m)

b) a=

(©) a=ra=(30.0m)( 0.0356 rad/s*)=|1.07 m/s?

®; — o, _
L =—[ﬂj since @; =0.
At At

The angular acceleration is o =

l o,
Thus, the torqueis r=la= —(A—t'j . But, the torque is also 7=-fr, so the magnitude of

the required friction force is

o, (12kg-m?)(50 rev/min)(zﬁradj(lminJZZlN

“r(at)  (0.50m)(6.05) lrev )\ 60s
Therefore, the coefficient of friction is L = f_2N_
n 70N

(@) 7 =la=(6.8x10" kg-m?*)(66 rad/s’)=4.5x10" N-m
The torque exerted by the fish is 74y, =F-r, and this also equals
Tish = ot + Ticion = (4.5% 107 +1.3) N -m

(4.5><1sz +1.3) N -m

Tfish
Thus, F= = =[34 N
r 4.0x107% m
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1 1 2 33
b) O=w t+=at?=0+=(66 rad/s?)(0.50 s =(—) rad ,
(b) O=at+Zat’=0+2(66 rad/s’)(0.50s)" =
_ _ -2 33 _ _
S0 s—rH—(4.0x10 m)[I rad =0.33 m =| 33 cm

834 1=MR*=(1.80kg)(0.320m)* =0.184kg-m*

Toat :z'app"ed—rr&isﬁvezla,or Fr-f-R=la

_la+f-R

yielding F ,

(0.184 kg-m?)(4.50 rad/s?)+(120 N )(0.320 m)
@ F- -[e721]

450%x107% m

(0.184 kg -m?)(4.50 rad/s*)+ (120 N)(0.320 m)
(b) F= 280107 m =|140KkN]

1

8.35 I=%MR2=E(1SOkg)(1.50 m)® =169 kg-m?,
—o; (0.500 rev/s-0
and a:a)f a).z( v/ )(Zﬂradjzg rad/52
At 2.00s lrev 2

Thus, r=F-r=Ila gives

| (169 kg-mz)(z rad/szj

Fere 1.50 m =[177N]

r
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The moment of inertia of the reel is

| =% MR? :%(5.00 kg)(0.600 m)* =0.900 kg - m?

Applying Newton’s second law to the falling bucket gives
29.4 N —-T =(3.00 kg)a, 1)

Then, Newton’s second law for the reel gives
r=TR=la= |(3j,
R

la, _(0.900 kg-m?)

=52 = (0600 m Y a=(2.50 kg)a,. 2)

(@) Solving equations (1) and (2) simultaneously gives

a,=|5.35 m/s’ downward

1 1 2
(b) Ayzvit+§att2=0+§(5.35 m/s?)(4.00s)" =[42.8 m|

a, 535m/s®

-t
R 0.600 m

8.91 rad/s’

() a=

255
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The initial angular velocity of the wheel is zero, and the final angular velocity is

o, _v _500mjs =40.0 rad/s
r 125m

Hence, the angular acceleration is

oy —; 400 rad/s-0

=83.3 rad/s’
At 0.480 s

a=

The torque acting on the wheel is 7= f, -1, so 7=la gives

f :|_a:(110 kg-m?)(83.3 rad/s”)

; =7.33x10° N
r 125m
3
Thus, the coefficient of friction is W= fe_ M =|0.524
n 1.40x10" N

The work done on the grindstone is W, =F-s=F-(r8)=(F-r)0=z-6.

Thus, W, =r.e=1|w$ EYp
2 2

i’

27 rad 1
25.0 N -m)(15.0 rev ==(0.130 kg -m?)w? -0
or (250N m)(asorev| 25020130 kg-m? o

rad lrev
This vield ={190 — =[30.3 rev/s|
s yieds o {190 20| L0

1 1 2
(8) Ky =5mv{ =2(100 kg)(10.0 m/s) =[5007]

1 1/ 1 V2
(b) KE,==lo? =—(EmR2)(R—‘2j

1 1
=5 mv; =~ (10.0kg)(100 m/s)’ =[250J]
(C) KEtotaI = KEtrans + KErot :
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8.40 Using W, =KE; —KE =%Ia)? -0,

2(3000J
gives |=2W;et = ( )2 =/0.150 kg -m? |
®; (200 rad/s)

8.41 The moment of inertia of the cylinder is

1=imre=ifWlge_l LNZ (150 m)* =91.8 kg-m?.
2 2\ g 2(9.80 m/s

The angular acceleration is given by

,_7_FR_(500N)150m)
11 918kg-m?

=0.817 rad/s”.

At t =3.00 s, the angular velocity is
® =, +at=0+(0.817 rad/s*)(3.00 s)=2.45 rad/s,

and the kinetic energy is
1 1 2
KE =Ela)2 25(91'8 kg-m?)(2.45 rad/s)" =[ 276 J

8.42 (a) The moment of inertial of the flywheel is

| =%MR2 =%(5oo kg)(2.00 m)* =1.00x 10° kg -m?,

and the angular velocity is

w=(5000 rev j(z” rad )(1 min j —524 rad/s
min )\ lrev 60 s

Therefore, the stored kinetic energy is

KE, 7o =%Ia)2 =%(1.00><103 kg-m?)(524 rad/s)’ =[1.37x10° J
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(b) A 10.0-hp motor supplies energy at the rate of

Mj=7.46x103 ¥s.

¢=(10.0 hp)[ T

The time the flywheel could supply energy at this rate is

KE 1.37x10° J
t = stored =1.84x10" s=(5.10h |
7.46x10° J/s

2

8.43 Using W, =KE; —KE =%Ia)f -0, we have

2W,, \/ZF-s 2(5.57 N))(0.800 m)
- net _ = =|149 rad/s
“ \/ | | J 4.00x10° kg -m?

8.44  Using conservation of mechanical energy,

(KEqs + KE,g + PE, )f = (KEy s + KE o + PE, )

or %va+%lw2+0=0+0+Mg(LsinH).

Since | = %I\/I R? for a solid sphere and V, =R when rolling without slipping, this

becomes %M R?w® +% MR’w* =M g(Lsin 9) and reduces to

10gLsing  [10(9.8 m/s?)(6.0 m)sin 37°
= = =[36 rad/s
“ \  7R? \/ 7(0.20 m)®
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8.45 The angular velocity of the Earth due to spinning on its axis is

o =(2” rad)( 1d }:7.27><10‘5 rad/s,

1d 86400 s

and the angular velocity due to its orbital motion around the Sun is

Oy = Z”rad( Lyr ] Ld 199107 rads.
Lyr )\ 365.24d ) 864005

(@) Treating the Earth as a uniform solid sphere, | = %M ¢RZ and

I-spin spin

= lo =§(5.98x1024 kg)(6.38x10° m)2(7.27x10*5 rad/s),

or L, =|7.08x10% J-s |

(b) Considering the orbital motion, we consider the Earth to be a point mass, so
| =M¢r?, where r is the radius of the orbit. Then, using Table C. 4 from Appendix C

in the textbook,

Lo = |0, =(5.98x10%* kg )(1.496 x 10™ m)2(1.99x10*7 rad/s),

orb T orb

or L, =[266x10% J-s |

8.46  Using conservation of angular momentum, L =L

aphelion perihelion *

Thus, (m ra2 )a)a = (mrp2 )a)p . Since @ =¥ at both aphelion and perihelion, this is

vV, 2 Vp ..
2= (mrp )— , giving
r, I'p

equivalent to (m r? )

| [ S (54 ) <[031 ks

a
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8.47  The initial moment of inertia of the system is
I, =3m;i? =4[ M(LOm)* |=M(4.0m?).
The moment of inertia of the system after the spokes are shortened is
I, =zmrf =4[ M(050m)* |=M(1.0m?).

From conservation of angular momentum, |;o; =@,
l;
or o, =(I_Jwi =(4)(20 rev/s)=|8.0 rev/s |

8.48 From conservation of angular momentum, |;o; =1, @;.

Treating the child as a point mass, this becomes @, = ( L /1 ) o,

2
or Wy = 2250 kg -m - (10.0 rev/min)=|7.14 rev/min
250 kg -m? +(25.0 kg )(2.00 m)

8.49 The moment of inertia of the cylinder before the putty arrives is

|i=%|v| R? :%(10.0 kg)(1.00 m)* =5.00 kg - m?

After the putty sticks to the cylinder, the moment of inertia is
l,=1,+mr?=5.0 kg -m?+(0.250 kg )(0.900 m)* =5.20 kg - m?

Conservation of angular momentum gives |; o; =l,,,

I 5.00 kg -m?
or Wy ZL—JCOi Z[W](7OO rad/S)Z 6.73 rad/S

I
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The total angular momentum of the system is

2 2
ItotaI: Imasses+ Istudent = 2(mr )+ 3.0 kg -m

Initially, r=1.0m, and 1,=2[ (3.0 kg)(L0m)*|+3.0 kg-m?=9.0 kg-m”
Afterward, r=0.30m, so
|f=2[(3.0 kg)(0.30 m)z]+3.o kg-m?=35kg-m?

(@) From conservation of angular momentum, |;@; =l;®;, or
0 =| 21 |, = 22K .75 rags) - [19 radys]
"1, )" (35kg-m?
1 1 2
(b) KEizzlia)f:E(Q.O kg-m?)(0.75 rad/s)" =[25]]
1 1 2
KE, =§Ifa)f =E(3.5 kg-m?)(1.9 rad/s) :

The initial angular velocity of the puckis @; = TI =————=2.00 —.

0.400 m S

v; 0.800 m/s 0 rad

Since the tension in the string does not exert a torque about the axis of revolution, the
angular momentum of the puck is conserved, or |;»; =1, ;.

2 2
Thus, o, =(:—‘Jwi :[mri }a)i :[mj (2.00 rad/s)=5.12 rad/s

; mr; 0.250 m

The net work done on the puck is

W, =KE, —KE, =%|fw$ —%Iia}f =%[(mrf2)a)f —(mrz)wﬂ:%[rfmf—qzwf ],

(0.120 kg)
=

or Wy = (0.250 m )*(5.12 rad/s)" - (0.400 m)* (2.00 rad /5)2}

This yields W, =/5.99x107 J
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The initial angular velocity of the system is

o = (o_zo ﬂj[ 27 rad ) =0.407 rad/s
S lrev

The total moment of inertia is given by
2, 1 2 2, 1 2
=1 + logtinger =M +§MR =(80kg)r +E(25 kg)(2.0m)".

Initially, the man is at r=2.0 m from the axis, and this gives |, =3.7x10> kg -m?. At the

end, when r=1.0 m, the moment of inertia is I, =1.3x 10* kg -m?.

(@) From conservation of angular momentum, |;o; =l;@;, or

i

I 3.7x10% kg - m?
=L |lw = 0.407 rad/s)=1.14x rad/s=| 3.6 rad/s
o[ =B 0 ) -1205

(b) The change in kinetic energy is AKE = %I oh —%I cw?, or

2 2
AKE:l(l.:exlo2 kg-mz)(l.147r @j —1(3.7x102 kg-mz)(OAOﬁ @J )
2 S 2 S

or AKE=|5.4x10° J| The difference is the | work done by the man | as he walks

inward.

(@) The table turns counterclockwise, opposite to the way the woman walks. Its angular
momentum cancels that of the woman so the total angular momentum maintains a
constant value of L, =L, + Liage =0-

Since the final angular momentumis L, =1, ®, + 1,0, =0, we have

R Rt G

(60.0 kg )(2.00 m)
=TT 500 kg m?
g-m

or

}(—1.50 m/s)=0.360 rad/s.

Hence @y, =|0.360 rad/s counterclockwise |
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(b) W, =AKE=KE, -0 =%mvv2v +%Ita)12

W, =%(60.0 kg)(L.50 m/s)’ +%(500 kg -m*)(0.360 rad/s)" =[ 999 J]

2
\'
For one of the crew, XF, =ma_, becomes n = m(—tj =mray; .
r

We require n =mg, so the initial angular velocity must be @, = \/g .
r

. I
From conservation of angular momentum, |;@; =l;®,, or o, = [I_I ;.
f

Thus, the angular velocity of the station during the union meeting is
l; \/E 5.00x 10° kg - m? +150(65.0 kg )(100 m) \/7 112\/7
O =| = ||~
"L )Nr | 5.00x10° kg - m? +50(65.0 kg )(100 m )’

The centripetal acceleration experienced by the managers still on the rim is

8 =ro’ =r(1.12)2%=(1.12)2(9.80 m/s?)=[12.3 m/s’

(@) From conservation of angular momentum, |;o; =@,

2
(b) KE; zllfaﬁ:l(ll—i_IZ) h ;= - [lllwg}: - KE,
2 2 L+, L+1, )2 L+,

or = . Since this is less than 1.0, kinetic energy was lost.
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856 (a) To determine m, we require that F, =0, giving

+19.6 N —(m+0.700 kg+0.100 kg)g =0,

or m=—28N 5709 kg —0.100 kg= |1.20kg|.

~9.80 m/s?

(b) Require that X7=0 for a horizontal axis perpendicular to the meter stick and
passing through the “zero end”. This gives

—[(0.700 kg ) g ](0.0500 m )+ (19.6 N')(0.400 m ) —
[(0.100 kg)g](0.500 m)—[(1.20 kg) g [x =0

or

L__ 1 [(196N)(0.400 m)
“120kg|  9.80 m/s?

—(0.700 kg )(0.0500 m ) - (0.100 kg))(0.500 m)

Xx=0596 m,

or the 1.20-kg mass should be hung at the | 59.6 cm mark |.

T
8.57 PR TP () N N
2 21 21
8.58 (a) Choose an axis perpendicular to the page and passing F=150 N_
through the indicated pivot. Then, £7=0 gives A

+(P-c0s30.0°)(5.00 cm)—(150 N )(30.0 cm)=0

(150 N )(30.0 cm)
P= =/1.04 kN 30.0cm
(5.00 cm )cos 30.0°
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(b) ZF, =0 =n-Pcos30.0°=0, giving
n =Pc0s30.0°=(1.04x10° N )c0s30.0° = 900 N
SF, =0= f+F-Psin30.0°=0, or

f = Psin 30.0° - F=(l.04><103 N )sin 30.0°-150 N =370 N

The resultant force exerted on the hammer at the pivot is

R=/f?+n? = /(370)’ +(900 N)* =973 N

at 6=tant| 2 =tan‘l(M)=67.7°,
f 370N

or R=[973 N at 67.7° above the horizontal to the right |

8.59  Refer to the sketch of the flywheel and pulley. a/—>
R=12M _¢65m, r=0230m T, =135 N
The rotation axis is through the center of the v

flywheel and perpendicular to the page.

Xr=la gives (Tl—TZ)-r:[%MRZ}a,

(80.0 kg )(0.625 m)*

MR?
" TZZTl_( 2r Ja=135 N 20230 m) (167 rad/s?)=[2L5N |

8.60 (a) Consider the free-body diagram of the block given at
the right. If the +x-axis is directed down the incline,
2F =ma, gives

mgsin37.0°~T =ma, or T =m(gsin 37.0°-a)

T =(12.0 kg)[ (9.80 m/s?)sin 37.0°~2.00 m/s’ |
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(b) Now, consider the free-body diagram of the pulley.
Choose an axis perpendicular to the page and passing N
through the center of the pulley,

. 8 T
Tr=la gives T-rzl(—J,or H
r
2 2 \V
|:T r :(46.8 N)(O.lO(sz) _ 0.234kg-m2
a, 2.00 m/s

~ .~ (a), (200m/s® ~
(C) a)—a)i+at—0+(?jt—(m (2005)—

If the ladder is on the verge of slipping, f=(f,) =un at f2 = usn2
both the floor and the wall.

From XF, =0, we find f, —n, =0,
or n2 = Hs nl (1)
Also, ZF, =0 gives n,—wW+xn,=0.

Using equation (1), this becomes

N—W+ 4 (/usnl)zo

Y- Y _0.800w @)

or n,=
Y leud 125

Thus, equation (1) gives n, =0.500(0.800w) = 0.400w 3)
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Choose an axis perpendicular to the page and passing through the lower end of the
ladder. Then, X7 =0yields

—W(%cosej +n,(Lsin @)+ f,(Lcosg)=0.
Making the substitutions n, =0.400w and f, = #n, =0.200w, this becomes

—W(%COSH)+(O.4OOW)(Lsin 6)+(0.200w)(Lcos) =0

and reduces to sin @ =(

Hence, tan & =0.750 and & =

0.500 - 0.200]
——— [cosé¥
0.400

Use an axis perpendicular to the page and AT2 AT1 sin50.0°
passing through the 1(?wer left corner of the : 0.300 m
frame. Then, 27=0 gives T} c0850.0°

—~(10.0 N')(0.150 m ) — (T, c0s50.0°)(0.150 m) ey o100
+(T,in50.0°)(0.300 m) =0, < > l

F
Then, using XF, =0, obtain T, +(11.2 N))sin 50.0°-10.0 N=0,

Finally, F, =0 gives F—T,c0s50.0°=0, or F=(11.2 N)c0s50.0°=|7.23 N |

Y100 N
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Consider the free-body diagram of an object rolling
down the incline. If it rolls without slipping,
a=ra.

From XF, =ma, we obtain

mgsind—-f=ma. (1)

Now, consider an axis perpendicular to the page
and passing through the center of the object. \J

Y7r=Ila becomes f-r=Ila=1 & ,or f= i a .
r r?

Substitute this result into equation (1) and simplify to obtain

ing
a= gsmI
1+—

as the linear acceleration of the center of gravity of the object.

2 sing 1
For a sphere, | ==mr?, so asphe,e=g— . For a disk, | ==mr?, and
5 14 2
gsing | _. ) 5 gsind
a44=——"/ Finally, f , l=mre, Aping= A
W= e inally, for a ring SO 50

Thus, we find = 8> 8™ 84ing » SO the sphere wins and the ring comes in last.

Choose an axis perpendicular to the page and y .
passing through the lower end of the board. Then,
when the support rod is removed, X7 =la gives

the initial angular acceleration of the board as

Sr=la = (mg)(%cosej =(%mL2ja

3gcoséd
a=
2L

or
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3gcosé

The tangential acceleration of the upper end of the board is a,=La = and the

vertical component of this is

3 2
a/ :at Cosgzw

(a) If & >g (the vertical acceleration of the freely-falling ball), the board will get ahead
of the ball. Thus, the criterion is

390570 o or cos?0> 2, which yields 6 <cos™ \E =35.3°|
2 g 3 7 y 3 : .

b) For the ball to land in the cup, the cup must strike the table directly below the initial
p P y
position of the ball. Thus, when starting from the limiting angle, we must have
Lcos’d 2( L j

cosd | 3\ cosd

r,.=Lcosd=

8.65 Let m, be the mass of the pulley, m, be the mass of the sliding block, and m, be the

mass of the counterweight.

(@) The moment of inertia of the pulley is | = %mp R’ and its angular velocity at any

. . \' . . ..
timeis @ = R where v is the linear speed of the other masses. The friction force
p

retarding the sliding block is f, = g4 = g4 (m,g).

Choose PE; =0 at the level of the counterweight when the sliding mass reaches the

second photogate. Then, from the work-kinetic energy theorem,

Wnc = (KE(rans + KErot + PEg )f _(KEtrans + KErot + PEg)
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N

k=1

1 1/1 v
—f, -s=§(m1 +m, v +E(EmpR§)[R—;j+O

1 1(1 A
—=(m, +m, v/ ——(—m sz{—;}—ngs,
2 AVIAY X

1 1 Y, 1 1,
or Z{ My +M, +2m, Ve =2\ My +m, +om, v +m,gs— 4 (M, g)-s.

2(m,— 4, m,; )gs
This reduces to v, = v/ + (m,— M, )g ,

1
My +m, +om,

and yields

2 2(0.208 kg )(9.80 m/s?)(0.700
v :\/(0'820 %) 2 g)(145 kg/s C7m) =[163 m/s]

Vi 163 m/s
b =—="—"_1"—|542rad/s
(b) o R 0.0300m

p

8.66 (a) The center of each wheel moves forward at v =23.35 m/s and each wheel also turns
at angular speed @ =V/R . The total kinetic energy of the bicycle is
KE =KE,,,, + KE,,, or

1 1
KE = E(mframe +2M )v2 +2 ( > L s a)zj
1 , 1 N
- E(m frame T 2 LI )V + E( My el R )[?]
This yields

KE = %(m frame + 3mwheel )V2

=%[8.44 kg +3(0.820 kg)(3.35m/s)’ =
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(b) In this case, the top of each roller moves forward at v =0.335 m/s. The center of
each roller moves forward at v/2=0.168 m/s and each roller also turns at angular

v/2
speed w= % = % . The total kinetic energy is KE =KE,,,, + KE,,, or

2
KE = %mmev2 + ZEmtree [%J } +2 ( % Itreea)zj
1 1 1 v?
:(E Mgione + three jvz + Emtree R2 (W]

This gives KE = %(mstone + % Mo jvz , Or

1 3 2
KE =§[844 kg +(82.0 kg)}(0.335m/s) ~[508]]

8.67  We neglect the weight of the board and assume

w |
that the woman’s feet are directly above the \ " >
point of support by the rightmost scale. Then, the = Y
free-body diagram for the situation is as shown at P le——200m——>{
the right. o %

From X2F, =0, we have F, +F, -w=0, or w=380 N +320 N=700 N .

Choose an axis perpendicular to the page and passing through point P.

Then X7=0 gives w-x—F,(2.00m)=0, or

F,(2.00m) (380 N)(2.00 m)

=W T 70N =[109m]
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We treat each astronaut as a point mass,

m, moving at speed v in a circle of

radius r. Then the total angular

momentum is «

L=lo+l,w= 2{(mr2)(%ﬂ = 2mvr

8

¥

(@) L =2mv;r =2(75.0 kg)(5.00 m/s)(5.00 m)

L, =| 3.75%x10° kg-m?/s

1 1 1
(b) KE =Em1vfi +Em2V§i = Z[Emvf)

KE, =(75.0 kg)(5.00 m/s)’ =1.88x10° J=[1.88 kJ |

(c) Angular momentum is conserved: L; =L; =

3.75x10° kg-m?/s

L, 3.75x10° kg-m?/s
d) v, = = =/10.0 m/s
@ v 2(mr;)  2(75.0kg)(2.50 m)

(€) KE, =2(%mv?j=(75.0 kg)(10.0 m/s)* =[7.50 k]|

) W, =KE, KE (562K

@ L :Z{Mv(%ﬂz Mvd

Lf _ Mvd _
(@ vi= 2(Mr,) 2M(d/4) =[2v]

(e) KE, =2(%Mv§]= M(2v)" =| 4MV?
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(f) W, =KE, —KE, =|3MVv?

8.70  Choose an axis that is perpendicular to the o 750N 500N TR
page and passing through the left end of A 345N 1000N A
the scaffold. Then X7 =0 gives
—(750 N )(1.00 m)— (345N )(1.50 m)

(500 N)(2.00 m)—(1000 N )(2.50 m) <l00m—s | 1
+T,(3.00m)=0, «——1.50 m—> ! 5 i
«———2.00 M———>

or  T,=159x10° N=[150kN | «—250m— |
- 3.00m >

Then, XF, =0=T, =(750 + 345+ 500 + 1000) N —1.59 x 10° N =[1.01kN |,

8.71  First, we define the following symbols:
I, =moment of inertia due to mass of people on the equator

I = moment of inertia of the Earth alone (without people)
o = angular velocity of the Earth (due to rotation on its axis)
T= 27 _ rotational period of the Earth (Ilength of the day)

w
R =radius of the Earth

The initial angular momentum of the system (before people start running) is
L=loo +lco =1, + 1),

When the Earth has angular speed @ , the tangential speed of a point on the equator is
V, =R . Thus, when the people run eastward along the equator at speed v relative to

the surface of the Earth, their tangential speed is vV, =V, +V=Rw+V and their angular

. Vo Vv
speed is wp :E:a)JrE.

The angular momentum of the system after the people begin to run is

v Y
Li=lhao,+lco= Ip(a)+ﬁj+ lew=(1,+ IE)a)+P?.

Since no external torques have acted on the system, angular momentum is conserved
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(Lf =L ) , giving (I, + ¢ )@ +|P?V =(lp + Ig)o, . Thus, the final angular velocity of the

Earthis =0, —IP—Vza)i(l—x),Where XEIP—V .
(I +12)R (Ip +1z)Ro,
2 2 T,
The new length of the day is T =E_ o ~T,(1+X), so the increase in the
o o(l-x) 1-x
. oV . 2r .
length of the day is AT =T -T, # T,x =T,/ ——————— |. Since ®; =—, this may be
(1o + 1 )Ra, T,
2
written as AT zL .
27(1, +1¢)R

To obtain a numeric answer, we compute

I, =m,R? =[(5.5x10°)(70 kg) |(6.38x10° m ) =1.57x10% kg -m?

and
2 2 ’
I :ngRZ =g(5.98><1024 kg)(6.38><106 m) =9.74x10¥ kg-m?.
Thus,
2
T (8.64x10* 5)"(1.57x10% kg-m?)(25 m/s) =|75x10™" s

2;;[(1.57 x10% +9.74x 107 ) kg -m 2](6.38 x10° m)

Choose PEg =0 at the level of the base of the ramp. Then, conservation of mechanical

energy gives

(KEtrans + KErot + PEg )f = (KEtrans + KErot + PEg )i ’

2
0+0+(mg)(ssin®) :%mvi2 +%(mRz)(VEij 10,

V2 R’ (30m)*(3.0 rad/s)’
S= ! = L = = 24 m
T gsing  gsing (9.80 m/s?)sin 20° [24m]
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Choose an axis perpendicular to the page and passing through

the center of the cylinder. Then, applying X7 =la to the
cylinder gives

QT}Rz(%MRﬂa:(%MRﬂﬁg)orT:%Mq.

Now apply ZF, =ma, to the falling objects to obtain

(2m)g-2T =(2m)a, or & =g—%.

(@) Substituting equation (2) into (1) yields

Mm
T :m— ﬂ T, which reducesto T = Mg
4 4m M +4m
(b) From equation (2) above,
__i Mmg __Mg_ 4mg
A0 Mram ) "9 Mram | Mam

Slipping occurs simultaneously at both the bottom and
side contact points. Just before slipping occurs, both
static friction forces must have their maximum values.
When the cylinder is about to slip, f; =N, =0.5n; and

f, = un, =0.5n,. Choose an axis perpendicular to the
page and passing through the center of the cylinder.

Then, ¥7=0 = f,-R+f,-R-F-R=0

or F=1f +f,. 1)

From XF =0, f,=n,=—=21,. )
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Combining equation (2) with equation (1) gives

F=2f,+f,=3f,,0or f, =§ . Then equation (2) yields f, = 2—;

From ZF, =0, w=F+f,+n, =F+ f2+L: F+f,+2f, :F+E+2(Ej,
Hq 3 3

or =%. Solving for the applied force, F=| — |
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Answers to Even Numbered Conceptual Questions

12.

14.

16.

18.

If the bar is, say, seven feet above the ground, a high jumper has to lift his center of gravity
approximately to a height of seven feet in order to clear the bar. A tall person already has
his center of gravity higher than that of a short person. Thus, the taller athlete has to raise
his center of gravity through a smaller distance.

The lever arm of a particular force is found with respect to some reference point. Thus, an
origin for calculating torques must be specified. However, for an object in equilibrium, the
calculation of the torque is independent of the location of the origin.

Drawing her legs up against her chest reduces her moment of inertia. Because angular
momentum is conserved, a decrease in moment of inertia is accompanied by an increase in
angular velocity. Thus, she rotates faster. To come out of the flip, she must increase her
moment of inertia. This can be accomplished by extending her arms and/or legs.

The object of the game in walking a tightrope is to keep the center of gravity of the walker
directly above the rope. If the body becomes slightly overbalanced such as to slip off to the
right, a small movement of the pole to the left will help to restore balance.

After the head crosses the bar, the jumper should arch his back so the head and legs are
lower than the midsection of the body. In this position, the center of gravity may pass
under the bar while the midsection of the body is still above the bar. As the feet approach
the bar, the legs should be straightened to avoid hitting the bar.

(a) Consider two people pushing with equal magnitude forces in opposite directions and
at opposite ends of a table. The net force will be zero, yet the net torque is not zero.

(b) Consider a falling body. The net force acting on it is its weight, yet the net torque
about the center of gravity is zero.

As the cat falls, angular momentum must be conserved. Thus, if the upper half of the body
twists in one direction, something must get an equal angular momentum in the opposite
direction. Rotating the lower half of the body in the opposite direction satisfies the law of
conservation of angular momentum.

The body will remain in the position it is placed, making no attempt to return to the
original position nor to move farther from the original position.
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CHAPTER 8

Answers to Even Numbered Problems

10.

12.

14.

16.

18.

20.

22,

24.

26.

28.

30.

32.

34.

36.

38.

40.

42,

44,

0.642 N m counterclockwise
0,-20Nm, -34 Nm, -39 N m
-168 N m

X g =6.69x107° nm, Yo =0

756 N
(-1.5m,-1.5m)
(@) 5.7° (b) 91cm

F, =711 N, F, =966 N

567 N (left end), 333 N (right end)

(by T=343N,H=171N, V=683 N () 514m
(@) 392N (b) H=2339N (toright), V=0
(@) 267 N (to right), 1.30 kN (upward) (b) u,=0.324

T=1.47 kN, H =1.33 kN (to right), V = 2.58 kN (upward)
28 m

149 N m, 66.0 N m, 215 N m

0.30

@) 872N (b) 140kN

(@) 5.35 m/s’ downward  (b) 428 m ()
30.3 rev/s

0.150 kg - m?

(@) 1.37x10°J (b) 5.10h

36 rad/s
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46.

48.

50.

52.

54.

56.

58.

60.

62.

66.

68.

70.

72.

74.

CHAPTER

0.91 km/s

7.14 rev/min

(@ 1.9 rad/s (b) KE =25J KE;=6.41]

(@) 3.6 rad/s (b) 5.4x10% J, work done by the man as he walks inward
12.3 m/s?

(@) 1.20kg (b) atthe 59.6 cm mark

(@) 1.04 kN (b) 973 N at 67.7° above the horizontal to the right
(@) 468N (b) 0.234 kg-m? (c) 40.0 rad/s
T,=112N,T,=139N,F=7.23N

(@) 61.2] (b) 50.8]

(@) 3.75x10° kg-m?/s (b) 1.88K] (c) 3.75x10° kg-m?/s
(d) 10.0 m/s (e) 7.50K] (f) 5.62k]

Tiige =159 kN, Ty =1.01 kN

24 m

3

—W
8
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