CHAPTER 9

Quick Quizzes

(@)

(c). The blood pressure measured at the calf would be larger than that measured at the
arm. If we imagine the vascular system of the body to be a vessel containing a liquid
(blood), the pressure in the liquid will increase with depth. The blood at the calf is deeper
in the liquid than that at the arm and is at a higher pressure.

Blood pressures are normally taken at the arm because that is approximately the same
height as the heart. If blood pressures at the calf were used as a standard, adjustments
would need to be made for the height of the person, and the blood pressure would be
different if the person were lying down.

(c). The level of the ice is unaffected by the motion. The acceleration of the elevator is
equivalent to a change in the gravitational field. If the elevator accelerates downward, you
might be tempted to say that the effect is the same as if gravity decreases—the weight of
the ice cube decreases, causing it to float higher in the liquid. Recall, however, that the
magnitude of the buoyant force is equal to the weight of the liquid displaced by the ice
cube. The weight of the liquid also decreases with the effectively decreased gravity.
Because both the weight of the ice cube and the buoyant force decrease by the same factor,
the level of the ice cube in the liquid is unaffected.

(c). The level of floating of a ship is unaffected by the atmospheric pressure. The buoyant
force results from the pressure differential in the fluid. On a high-pressure day, the
pressure at all points in the water is higher than on a low-pressure day. Because water is
almost incompressible, however, the rate of change of pressure with depth is the same,
resulting in no change in the buoyant force.

(b). The level of the pond falls. This is because the anchor displaces more water while in
the boat. A floating object displaces a volume of water whose weight is equal to the
weight of the object. A submerged object displaces a volume of water equal to the volume
of the object. Because the density of the anchor is greater than that of water, a volume of
water that weighs the same as the anchor will be greater than the volume of the anchor.

(0).
(@)-
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CHAPTER 9

Problem Solutions

9.1 If wires of diameter 1 mm are wrapped together so that all support nearly equal stress,
the number if wires in the cable should be

N = 20.0 kN 100
0.200 kN

The approximate cross-sectional area of the cable is then

1 ?
A =100A, = 100{%} ~0.785cm?,

' ' ' . 4A  |4(0.785¢cm?)
and its approximate diameter is d =, |— =4/ —— = =1.00cm .
4 r

Diameter

92 (a) F:A-stress:[ﬁ(5.00><10’3 m)z}(4.00x108 N/m?)=|3.14x10* N

(b) The area over which the shear occurs is equal to
the circumference of the hole times the thickness
of the plate. Thus,

A=(2zr)t

-%
1

=[27(5.00x10° m)] (5.00x10°* m)

=157x10" m?

So, F=A-stress=(157x10"* m?)(4.00x10° N/m?)=|6.28x10* N

9.3 Stress = ; , where F=0.30(weight) and A =7r?

Thus, Stress= 030(480 N) =|1.8x10° Pa

7(5.0x10° m)’

280



9.4

9.5

9.6

9.7

CHAPTER 9

Consider the pressure change required to squeeze ice back into the volume it occupied
as liquid water.

AP = —B{f/—vj = —(2.oox 10° lzJ(—0.0QOO) ~[1.80x10° Pa |~ 1800 atm
m

2

FL
Using Y = °— with A= ﬂj

A(AL)

and F=mg, we get

. 4[ (90 kg)(9.80 m/s*)[(50 m) T

#(10x10% m)’(L6m)

the tension needed to stretch the wire

From Y = Flo ,
A(AL)

by 0.10 mm is

YA(AL) Y (7d?)(AL)
B 1L,

(18x101° Pa)ﬁ(o.zzxm*3 m)2(0.10x10’3 m)
4(3.1x10'2 m)

The tension in the wire exerts a force of magnitude F on the tooth in each direction along
the length of the wire as shown in the above sketch. The resultant force exerted on the
tooth has an x-component of R, =XF, =-Fcos30°+ Fcos30°=0, and a y-component of

Ry :ZFy =-Fsin30°-Fsin30°=-F=-22 N .

Thus, the resultant force is

R =‘ 22 N directed down the page in the diagram |.

From Y = (gj (ﬁj = (stress) [ﬁj , the maximum compression the femur can withstand

is

(stress)(L,) (160x10° Pa)(0.50 m) 73
AL= = =4.4x10° m=|44mm |
Y 18x10° Pa x=om

281



CHAPTER 9

shear stress  stress

9.8 The shear modulus is given by S = — = .
shear strain  (Ax/h)

Hence, the stress is

stress=$;(&j=(1.5x1010 Pa)(S'O—TJz 7.5%x10° Pa
h 10x10° m

9.9 From the defining equation for the shear modulus, we find the displacement, AX, as

AX

_h(F/A) h-F_ (5.0x10° m)(20N) {104 szj
S _s-A_(3.0x106Pa)(14cm2) 1m?

—2.4x10°m =

910 (a) When at rest, the tension in the cable equals the weight of the 800-kg mass,
7.84x10° N . Thus, from Y =

F
, the initial elongation of the cable is
A(AL)

) 7.48x10° N )(25.0 m
A FL J(250m)

_ ) L
A-Y  (400x10°* m?)(20x10* Pa)_2'45><10 m

(b) When the load is accelerating upward, Newton’s second law gives

F-mg=ma,, or F=m(g+a,) 1)
If m=800 kg and a, =+3.0 m /s?, the elongation of the cable will be

. 800 kg )(9.80 + 3.0 2](25.0
aL=Fb _[ (800 kg)(9.80+3.0) m/s* |(25.0 m) ~32x10° m=3.2mm
A-Y (4.00><10-4 mz)(20x101° Pa)

Thus, the increase in the elongation has been

increase = (AL) - (AL), ,;, =3.20 mm —2.45 mm = 0.75 mm |
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(c) From the definition of the tensile stress, stress=F/A , the maximum tension the

cable can withstand is

Foo = A-(stress)  =(4.00x10"" m?)(2.2x10° Pa)=8.8x10" N

Then, equation (1) above gives the mass of the maximum load as

_ Fa  88x10°N

= = =|6.9x10° kg |
"™ g+a (9.8+3.0) m/s? J

m

F/A

911 From the equation for shear modulus, S= F/h , the deformation is

F-h (300 N)(0.20x10° m )

AX = - ~3.6x108 m=

(7r?)-S [ﬂ(0.25><10'2 m)z}(8.4><101° Pa)

912  Choosing an axis perpendicular to
the page and passing through point
O [see Fig (a)], Z7=0 gives

Point O

—F(5.0 cm)+(800 N)(19 cm) =0,

or F=3.04x10° N

From Fig. (b), the cross-sectional
area of the material in the tibia is

Azﬂ(Rz—rz)

3
(a) stress = 3.04x10° N = 9.0x10° Pa

A ;z[(lleo*3 m) ~(60x10° m)z}

6
stress  9.0x10° Pa 5.0x10

b) strain = = =
®) Y 1.80x 10" Pa

(c) strain :i—L:AL: L, - (strain)
0

AL=(0.36 m)(5.0x10* )=1.8x10" m =[0.18 mm |

283



9.13

9.14

9.15

9.16

CHAPTER 9

Applying Newton’s second law to the dancer gives F
F-mg=ma, or F=m(g+a)

where F is the normal force exerted on the dancer by the floor, and a is
the upward acceleration (if any) the dancer is given. mg

(@) When a=0, then F=mg=(50.0kg)(9.80m/s’)=490 N, and the pressure is

L'\A'Z: 1.88x10° Pa
26.0x10* m

F
A

(b) When a=+4.00 m/s”, the normal force is

690 N

2 =|2.65x10° Pa |,
26.0x10* m

F=(50.0 kg)(13.8m/s*)=690 N and P=

W
Let the weight of the car be IV. Then, each tire supports T

F_W
A 4A°

and the gauge pressure is P=

Thus, W =4AP=4(0.024 mz)(2.0x105 Pa): 1.9x10* N

133 1k ®em?
The density is pzm: 93( 39 10 CT =[1.33x10° kg/m?®
V 100 cm LlO g Im

The total downward force is the combined weight of the man and chair. This force is
distributed over an area equal to 2 times the cross-sectional area of a leg. Hence, the
pressure is

(mman +mchair)g _ (75 kg )(980 m/SZ) — 12X106 Pa

F
A 2xr?) 27(1.0x102 m)’

P:
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The volume of concrete in a pillar of height / and cross-sectional area A is V =Ah, and

its weight is F, =(Ah)(5.0x10" N/m?). The pressure at the base of the pillar is then

4 3
iz(Ah)(S.Oxlo N/m )=h(5.ox104 N/m?)
A A

Thus, if the maximum acceptable pressure is, P, =1.7x10" Pa, the maximum allowable
height is

7
Pra L7x10" Pa_ [ o

h = = =
"™ 50x10° N/m® 5.0x10* N/m?

The needed gauge pressure is

P..=P—P, = pgh

gauge

m? s 3.281 ft

=(1o3 k—gj(g.so mzj(lzoo ft)( Lm j: 358x10° Pa

The density of the solution is p =1.02 p, 4, =1.02x10° kg/m®. The gauge pressure of the
fluid at the level of the needle must equal the gauge pressure in the vein, so
P...=pgh=133x10" Pa, and

gauge

_ Prage 1.33x10" Pa B
h= P9 (1.02x10° kg/m*)(9.80 m/sz)_

(@) Suppose the “vacuum cleaner” functions as a high-vacuum pump and produces
“zero” pressure inside the hose. The air below the brick will then exert a net
upward force of

F=PA=P(1%,)=(L013x10° Pa)[ﬂ'(l.43x 102 m )ZJ ~[651N]
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(b) The octopus can pull the bottom away from the top shell with a force that could be
no larger than

F=PA=(P,+ pgh)A

{1.013x105 Pa+(1 030 k—gsj(g.so ﬂzj(32.3 m):||:71'(1.43><102 m) |
m S

9.21 The excess water pressure (over air pressure) acting on the wall is

=1.18x10* Pa

Prge = P00 = (10° kg/m*)(9.80 m/g)(%)

Hence, the net inward, horizontal force exerted on the wall by the water is

F =P =(1.18x10° Pa)[(9.60 m)(2.40 m)]=2.71x10° N =

9.22  If we assume a vacuum exists inside the tube above the wine column, the pressure at the
base of the tube (i.e., at the level of the wine in the open container) is
P,.. =0+ ogh= pgh. Thus,

atmo
 Pamo 1.013x10° Pa _
h= pg (984 kg/m*)(9.80 m/sz)_

Some alcohol and water will evaporate, degrading the vacuum above the column.

9.23  We first find the absolute pressure at the interface between oil and water.

P, =P+ pg gh

oil

=1.013x10° Pa+(700 kg/m*)(9.80 m/s?)(0.300 m)=1.03x10° Pa

This is the pressure at the top of the water. To find the absolute pressure at the bottom,
we use P2 = Pl + pwater g hwaler 4 or

P, =1.03x10° Pa+(10° kg/m?®)(9.80 m/s*)(0.200 m)=|1.05x10° Pa
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First, use Pascal’s principle, F /A, =F,/A,, to find the 2.0 0in F
force piston 1 will exert on the handle when a 500-1b ALK Y
force pushes downward on piston 2. H "rv ¥
2 2 F1
- A, E_ zd? /4 E_ d; E
1= A_2 2 = 7rd§/4 2~ d_§ 2 Free-Body Diagram of Handle
0.25in)’
_(O2510)" 500 1) =14 1b
(1.5in)

Now, consider an axis perpendicular to the page, passing through the left end of the jack
handle. 27 =0 yields

+(141b)(2.0in)-F-(12in)=0,0r F=[2.31b |

Pascal’s principle, F /A, =F,/A,, gives

Abrake linder 1.8 Cm2
Frae =| 2= | =| 5507 (44 N)=12.4N.
e (Amaster cylinder Pl 64 cm 2 ( )

This is the normal force exerted on the brake shoe. The frictional force is

f=un=050(124N)=6.2N,
and the torque is 7= f -, =(6.2 N)(0.34 m)=

Since the frog floats, the buoyant force must equal the weight of the frog. Then, from
Archimedes’ principle, the weight of the displaced fluid equals the weight of the frog.

Hence, (pfluidv )g = mfl’OQ g , OF

g | 1( 47(6.00 cm)’
Mirog = Privia V 2(1-35 om? ){E[ 3 =6119=|0.611kg
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The boat sinks until the weight of the additional water displaced equals the weight of
the truck. Thus,

Wtruck = I:pwater (AV ):I g

:(103 %) [(4.00 m)(6.00 m)(4.00x10° m)](g.so Ln—zj

or W, =9.41x10° N =| 9.41 kN

When the iceberg floats, the weight of the displaced water must equal the weight of the
ice. Thus,

V. )
(IDWaterVWater)g = (,DioeVice)g , Or —2aer = P

ice p water

The volume of the displaced water equals the volume of ice submerged, so the volume

of ice exposed is Ve =Viee = Viutmerges = Viee ~ Vwarer and the fraction of the ice exposed is
Y Vv . 920 kg/m?®
exposed water ploe g
=1- =1- =1- =0.107, or | 10.7%
Vice Vice Puwater 1030 kg/m3

The difference between the weight in air and the apparent weight when submerged is
the buoyancy force (weight of the displaced water). Since the kidney is fully submerged,
the volume of water displaced equals the volume of the kidney. Thus,

B= (pwatervkidney)g :Winair _Wsubmerged =57N-16N=41N.

41N

kidney —

This yields V

water g

The mass of the kidney is My, _Wiar STN and its density is
9 9
_ mkidney _ 57N pwaterg)_(Sjj
pkldney Vkidney [ g j( 41N 4.1 pwaler

. re . . ™ . pkidney 5.7
The specific gravity is: specific gravity = =" _114
1% g ty p g y o 41 -
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9.30 Note: We deliberately violate the rules of significant figures in this problem to illustrate
a point.
(@) The absolute pressure at the level of the top of the block is
Ptop = PO + pwater g htop
—~1.0130x10° Pa + [103 k—gsj(g.so mzj(s.oox 102 m)
m S
=1.0179x10° Pa

and that at the level of the bottom of the block is

Pbottom = I30 + pwaler g hbottom

=1.0130x10° Pa+[103 k—gs)(g.so mzj(ﬂ.oxlo2 m)
m S

=1.0297 x10° Pa

Thus, the downward force exerted on the top by the water is

Fep = Pup A = (1.0179x10° Pa )(0.100 m )’ :

and the upward force the water exerts on the bottom of the block is

Froe = Po A =(1.0297 x 10° Pa)(0.100 m )’ =

(b) The scale reading equals the tension, T, in the cord supporting the block. Since the
block is in equilibrium, XF, =T + kK, —F,,—-mg=0, or

T =(10.0 kg)(9.80 m/s?)—(1029.7-1017.9) N =[86.2 N |

(c) From Archimedes’s principle, the buoyant force on the block equals the weight of
the displaced water. Thus,

B= (pwaler Vblock )g

= (10° kg/m*)[ (0100 m)*(0.120 m) |(9.80 m/s*) <[ 1L8 N |

From part (a), Ry, —F,, =(1029.7-1017.9) N=11.8 N, which is the same as the

buoyant force found above.
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Constant velocity means that the submersible is in equilibrium under the gravitational
force, the upward buoyant force, and the upward resistance force:

2F, =ma, =0
~(1.20x10" Kg +M )9+ Py yater @V +1100 N =0

where m is the mass of the added sea water and V is the sphere’s volume.

Thus, m:(1.03><103 k—%J (4—”j(1.50 m)’ +%N2—1.20x104 kg
m 3 9.80 m/s

or m =| 2.67 x10° kg

By Archimedes’s principle, the weight of the fifty planes is equal to the weight of a
horizontal slice of water 11.0 cm thick and circumscribed by the water line, or

50(Myime ) = AB= py 0 G(AV ) = (1030 k/m*)g(11.0x107% m)A

Thus, A= 50(29000 kg)g =[1.28x10* m?
(1030 k/m*®)g(11.0x10% m)

Note that the acceleration of gravity cancels in this calculation and does not affect the
answer.

The balloon is in equilibrium under the action of three forces. These are the buoyant
force, B, the total weight, IV, of the balloon and the helium, and the tension T in the
string. Hence,

ZFY = B_(mballoon + mhelium)g —T=0,0orT= B_(mballoon F Migtium )g

The buoyant force is

Arr®

B= (pair Vballoon )g and mhelium = Phelium Vballoon s where Vballoon = T
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3

r
Thus, T= (pajr ~ Phelium ) g(?] ~ Meaiion 9

=[(1.29-0.181) kg/m*(9.80 m/sz)(%”J(o.soo m)’

~(0.0120 kg )(9.80 m/s?)

9.34  Atequilibrium, XF, =B-FK

spring mg = 0 so the Spring force is

Fspring =B- mg = I:(pwatervblock ) - m]g
m 5.00 kg

=550 kg/m’ =7.69x10° m®.
Puood

where V, =

Thus, Fype = (10° kg/m®)(7.69x10° m*)-5.00 kg |(9.80 m/s*)=26.4 N

The elongation of the spring is then

=

i 26.4 N
Ax =10 =0.165m =|16.5 cm
=160 Nm

9.35 (a) The buoyant force is the difference between the weight in air and the apparent
weight when immersed in the alcohol, or B=300 N —200 N =100 N . But, from
Archimedes’s principle, this is also the weight of the displaced alcohol, so
B =(PuconaV )9 - Since the sample is fully submerged, the volume of the displaced

alcohol is the same as the volume of the sample. This volume is

__B _ 100 N
* Paca @ (700 kg/m?)(9.80 m/s?)

Vv =1.46x102 m?

weightin air 300 N

(b) The mass of the sample is m= . =980 m/s? =30.6 kg,
. o m 30.6 kg 3 3
d its densit =—=————+ —=12.10x10° kg/m
and its density is p=1r=-"—" o3 g/
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9.36  The difference between the weight in air and the apparent weight when immersed is the
buoyant force exerted on the object by the fluid.

weightin air 300 N

g - 9.80 m/s?
when immersed in water is the weight of a volume of water equal to the volume of
the object, or B, =(p,V )g. Thus, the volume of the object is

(@) The mass of the objectis m= =30.6 kg . The buoyant force

B, _ 300 N - 265 N _357x107 m®,

" pu9 (10° kg/m®)(9.80 m/s?)

m 30.6 kg 3 3
S ™Y _1857x10° kg/m
V 357x10° m? 9/

and its density is Pvject =

(b) The buoyant force when immersed in oil is equal to the weight of a volume
V =357x10"° m?® of oil. Hence, By =(p,V )g, or the density of the oil is

By, 300 N - 275 N :
PV g " (357x107 m?)(9.80 m/s?) 9o/

4 o 4_7[(0.200m

3
9.37  The volume of the shell is V = ?r =3 j =4.19x10"° m?, so the mass of

alcohol filling the shell is

a

m, = p,V =(806 kg/m°)(4.19x10° m*)=338 kg,
and the mass of the filled shell is

m =my,, +m, =(0.400+3.38) kg =3.78 kg
The buoyant force exerted on the shell by the water is

B=(Puaer’V )9 =(10° kg/m*)(4.19x10° m*)(9.80 m/s*)=411N,,

and the upward acceleration is

SF, B-
a =B M_B 4N g6 m/s?=[107 m/s?
m m m 3.78 kg
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9.38  When the mattress is fully submerged, the buoyant force exerted by the water (and
hence the total weight that can be supported) is

B:(pwalerv)g
=(10° kg/m?®) [ (2.0 m)(0.50 m)(0.080 m)](9.80 m/s?)=7.8x10* N

Thus, the total mass that can be supported is

B 7.8x10° N

“d g 9.80 m/s? J

The addition mass that can be placed on the mattress is then
Maggitional = Miotal — Minartress = 80 K —2.0 kg = 78 kg

9.39 The volume of the iron block is

_ My _ 2.00 kg
P 1-86x10° kg/m?

=2.54x10" m?,

and the buoyant force exerted on the iron by the oil is
B=(puV)g=(916 kg/m*)(2.54x10™* m?)(9.80 m/s’)=2.28 N

Applying 2F, =0 to the iron block gives the support force exerted by the upper scale

(and hence the reading on that scale) as

Fpr =My §—B=19.6 N -2.28 N =[17.3 N

From Newton'’s third law, the iron exerts force B downward on the oil (and hence the
beaker). Applying ZF, =0 to the system consisting of the beaker and the oil gives

F

lower

- B_(moil + mbeaker)g =0

The support force exerted by the lower scale (and the lower scale reading) is then

Fower = B+ (Mg + My, )0 =2.28 N +[(2.00+1.00) kg |(9.80 m/s?)=[3L7 N |
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2
9.40 The cross-sectional area of the hose is A = % , and the flow rate is

sz[%(Z,Oxloz m)z}(l.S m/s)=4.7x10" m?/s.

The time required to fill the trough is

volume (1.5m)(0.60 m)(0.40 m) 2 (1 minj .
t= = =7.6x10° s| —— |=|13 min
flow rate 4.7x10™* m?3/s 60 s

941 (a) The volume flow rate is Av, and the mass flow rate is

pAv=(1.0 g/ecm?)(2.0 cm?)(40 cm/s):

(b) From the equation of continuity, the speed in the capillaries is

A 2.0 cm?
Voo = arta_ly = ———— |(40 cm/s),
capiliaries (A J aorta [30)(103 szj( / )

capillaries

OF V giaries = 2.7 %1072 cm/s = 0.27 mm/s

942 (a) From the equation of continuity, the flow speed in the second pipe is

A 10.0 cm?
v, :(A—i]vl = (WJ(NS m/s)=

(b) Using Bernoulli's equation and choosing y =0 along the centerline of the pipes

gives

P,=P +%p(vf -v3)

=1.20x10° Pa+%(l.65><103 kg/m?) (2.75 m/s)’ ~(11.0 m/s)’ |

or P,=[2.64x10* Pa
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From Bernoulli’s equation, choosing y =0 at the level of the syringe and needle,

1 1
P2 +§pV§ =P1 +§pr,

: = e 2(P=P)
so the flow speed in the needle is v, =, |v; + ——=
P
In this situation,
F 2.00N

P-P,=P, -P, =—=——""——~=800x10" Pa

= P =
mo (1)gauge A, 250x10° m

. | i ; 2(8.00x10* Pa) 126 m/s
, ng v, =U, Vo = * ) :
us, assuming V, 2 1.00x10° kg/m3

We apply Bernoulli’s equation, ignoring the very small change in vertical position, to

obtain P, - P, =%p(v§ —Vf):%p[(zvl)z _vﬂzgpvf, or

AP=§(1.29 kg/m®)(15x 107 m/s)2 =|4.4%x107 Pa

First, consider the path from the viewpoint of projectile motion to find the speed at

1
which the water emerges from the tank. From Ay =v; t+ Ea/tz with v, =0, we find the

time of flight as

o 2(Ay) _ [2(-1.00m) 0452 s
a,  \-9.80 m/s’

From the horizontal motion, the speed of the water coming out the hole is

AXx 0.600 m
V2 =V.. =—=

Tt 0452s

=133 m/s
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We now use Bernoulli’s equation, with point 1 at the top of the tank and point 2 at the
level of the hole. With P, =P, =P, and v, =0, this gives

atmo

1
P9y, =§pV§ +pgY,, or
v2 (133 mjs)’ ,
h=y, -y,=—2=——""_-900x102 m =[9.00 cm
e =5, 2(9.80 m/s?) e

9.46 (a) Apply Bernoulli’s equation with point 1 at the open top of the tank and point 2 at
the opening of the hole. Then, P, =P, =P, , and we assume v, ~0. This gives

1
ZpV; + pgy, = pgy,, or

2
v, =\29(y; -y,) =,/2(9.80 m/s?)(16.0 m) =[17.7 m/s |

(b) The area of the hole is found from

A _ flow rate 2.50x10 m3/min(1min

) j=2.35><10‘6 m?
v, 17.7 m/s 60 s

The diameter is then

-6 2
o - 55 :\/4(2.35><10 ™) e n [T mm]

T T

9.47  First, determine the flow speed inside the larger portions from

_ flow rate  1.80x10 m?®/s
A x(250x102m)’ /4

=0.367 m/s

1

The absolute pressure inside the large section on the leftis P, =P, + pgh, , where h, is the
height of the water in the leftmost standpipe. The absolute pressure in the constriction is
P, =R, + pgh,, so

P,—P,=pg(h,—h,)= pg(5.00 cm)
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The flow speed inside the constriction is found from Bernoulli’s equation with y, =y, .

This gives V5 =V? +£(P1—P2)=Vf +2g(h,—h,), or
P

v, = /(0367 m/s)’ +2(9.80 m/s)(5.00x10 m)=1.06 m/s
The cross-sectional area of the constriction is then

_ flow rate1.80x10 m?/s
v, 1.06 m/s

A, =1.71x10* m2,

and the diameter is

-4 2
d, = 4:2 =\/4(1'71xi0 ™) 1475107 m =[L47 cm |

948 (a) For minimum pressure, we assume the flow is very slow. Then, Bernoulli’s equation
gives

1 1
(P+§pvz +pgyJ | =(P+§pvz +pgy) |

rnm

(Priver )min +0=1atm+0+ pg(yrim - yriver)

k
)., =1.013x10° Pa+(103 —gj(g.so 32)(2096 m-564m).
S

m3

or, (P,

river

(Piver ) = (1.013x10° + 1.50x 10 ) Pa=1.51x10" Pa=|15.1 MPa

2
(b) The volume flow rate is flow rate= sz(%}v . Thus, the velocity in

. 4(flowrate) 4(4500 m°/d)( 14
€ pipels v 7d? ”(0.150 m )2 86400 s
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(c) We imagine the pressure being applied to stationary water at river level, so
Bernoulli’s equation becomes

I:)river +0= I:l atm + pg(yrim ~ Yriver )] + %pvl?im s OF

1 1 kg m)’
0 _(p —(P) +1(10° K9 205 ™
river ( river )mm 3 2 ,OVnm ( river )mm * 2( m3j( S j

(P ), +4:34 kP

river

The additional pressure required to achieve the desired flow rate is

949 (a) For upward flight of a water-drop projectile from geyser vent to fountain-top,
Vi =Vi +2a,(Ay) gives

 =J0-2a,(Ay) =/-2(-9.8 m/s*)(40.0m) =[28.0 m/s |

(b) Because of the low density of air and the small change in altitude, atmospheric
pressure at the fountain top will be considered equal to that at the geyser vent.
Bernoulli’s equation, with Vigp = 0, then gives

Epv\fent =0+ pg(ytop ~ Yvent ) , OT

Vyent =\/Zg(ytop ~Yyent) =\/2(9.80 m/s*)(40.0 m) =

(c) Between the chamber and the geyser vent, Bernoulli’s equation with v

~0

chamber

yields

1
(P+0+09Y) per = Pam +E,0V5em T OF

1
P- Patm = ,0|: 2 vent g(yvem Y chamber )}

[103 :}9 ){M{g.eo 2’7)(175 m)} =[211MPa |

or P.,.=P-P

gauge atmo

= 20.8 atmospheres
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9.50 The assumption of incompressibility is surely unrealistic, but allows an estimate of the

speed. From P, +%,0V12 +p0y, =P, +%pvg +pgY,, with y, =y, =0 and V=0 inside the

passenger compartment, we have

0.287 atm +%(1.20 kg/m*)v; +0=1.00 atm+0+0,

2(1.00 atm —0.287 atm )( 1.013x10° N/m?
v, = =347 m/s
o 2 \/ 1.20 kg/m*® ( 1 atm

951 (a) Choosing point 1 at the top of the tank and point 2 at the exit from the tube,
Bernoulli’s equation with v, =0 gives

1
EPVS Z(Pl_P2)+Pg(y1_YZ)

BU‘t’ Pl =|:)2 =1atm /and yl_yz =h. Thus, V2 =4/ Zgh

(b) Use Bernoulli’s equation with point 1 at the top of the tank and point 2 at the
highest point in the tube. This gives

1
PQ(Y2 _yl) = (Pyn _P2)+§/7(Vf _Vg)

When the siphon ceases to work, the fluid will be at rest at point 2,

soV,=V,=0and Y, -Y, =Y, - Thus, Py, =P, + 00, -

Since the minimum value of P, is 0, | Yo =——=——

9.52  Because there are two edges (the inside and outside of the ring) we have,

_ F _ F
L 2(circumference)

I

2
_ F _ 161x10 2N _[732-107 Njm
Ay 47[(1.75><10' m)
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From ZF, =T -mg—-F, =0, the balance reading is found to be T =mg+F, where F, is the

vertical component of the surface tension force. Since this is a two-sided surface, the
surface tension force is F = 7(2 L) and its vertical component is F, = 7/(2 L)COS¢ where ¢

is the contact angle. Thus, T =mg+2yLcosg.
T=040N when ¢=0"= mg+2yL=0.40 N 1)
T=0.39N when ¢=180°= mg—-2yL=0.39 N ()

Subtracting equation (2) from (1) gives

y=0.4ON—O.39N :O.40N—0.39N _[83x102 N/m |

4L 4(3.ox10*2 m)

The height the blood can rise is given by

_2ycosg 2(0.058 N/m)cos0° 56
"= par _(1050 kg/mz)(9.80 m/sz)(2,0x10*5 m)‘

2yC0S
From h= 7/—(,75, the surface tension is
par
hpgr
y= P9
2C0S ¢
2.1x107 m (1080 kg/m?*)(9.80 m/s?)(5.0x10™ m
2c0s0°
2yC0S
From h=2~ ar ¢ , the radius of the capillary tube is
ol
2(0.088 N/m)cos0°
= 270089 _ ( /m cos ~347x10% m

pgh (1035 kg/m*®)(9.80 m/s*)(5.00x 10 m)

The diameter is then

d=2r=2(3.47x10" m)=6.94x10"* m:
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FL
From the definition of the coefficient of viscosity, 7= Y the required force is
Y

nAv_(L79x10°° N-s/m?)[(0.800 m)(1.20 m)](0.50 m/s)

L 0.10x10° m =[88N]

FL
From the definition of the coefficient of viscosity, 7= N the required force is

F_TAV _ (1500x10° N -s/m?)[(0.010 m)(0.040 m)](0.30 m/s)

L 15x10° m -

(P, - P2)7rR4

Poiseuille’s law gives flow rate=
8nL

,and P, =P, in this case. Thus, the

desired gauge pressure is

5 p _ 87L( flow rate) 8(0.12 N -s/m?)(50 m)(8.6x10° m®/s)
LRt 7(050x10° m)’ '

or P, —P,, =2.1x10° Pa=| 2.1 MPa

From Poiseuille’s law, the flow rate in the artery is

1 400 Pa)z(2.6x10° m)’
flow ratez(AP)”R = ( a)”( - m) =3.2x10° m®/s
87L  8(2.7x10° N-s/m?)(8.4x107% m)

-5 3
Thus, the flow speed is V= fIOV\’/A\rate _32x10" m / 32 =

ﬂ(2.6><10'3 m)
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9.61 If a particle is still in suspension after 1 hour, its terminal velocity must be less than

(v,) =(5.0 ﬂ)( 1h j( Lm j:1.4><105 m/s.
max h J/\.3600s /\ 100 cm

r’g

Thus, from v, = 9—( 0= P ), we find the maximum radius of the particle:
n

r — 977(Vt)max
" \29(p-p)
_\/9(1.00><103 N-s/m?)(1.4x10° m/s)

_ -6
2(9.80 m/s®)[ (1800-1000) kg/m®] =28x10% m =[28 um

9.62 The flow rate needed is:

H 3
flow raIez(O'SO_L )(1m|nj 1T =2.1x107 m?/s
40 min 60s /| 10° L

Then, assuming the pressure inside the veinis P, = P,

atm 7

Poiseuille’s law gives the
needed gauge pressure at the entrance to the needle as

8nL( flow rate)
P Pun ==

-3 . 2 -2 -7 3
_8(27x107 N -s/m?)(3.5x10 m4)(2.1><10 i /S)=6.2><103 Pa
7(0.30x10°° m)

When the surface of the blood in the bag is height i above the entrance to the needle, the
gauge pressure as the blood enters the needle is P, —P,,, = pgh. The needed height is

then

_P P _ 6.2x10° Pa ~ ~
" pg (1050 kg/m®)(9.80 m/SZ)_O'60 m =[60cm |
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9.63 The flow rate needed is:

H 3
flow rate:( 050L j(l min )( Lm J:2.1><10'7 m®/s

40 min \ 60s )\ 10° L

Then, assuming the pressure inside the veinis P, = P,

«m » Poiseuille’s law gives the

needed gauge pressure at the entrance to the needle as

_ 87L( flow rate)

Pl_PaIm - 7Z'R4

) 8(2.25><10_3 N -S/mz)(3.0><10_2 r~r31)(2.1><10‘7 m3/S) _92x10° Pa
7(0.25x10°° m)

When the surface of the glucose in the bag is height & above the entrance to the needle,
the gauge pressure as the glucose enters the needle is P, —P,,, = pgh. Thus, the needed

height is

_P-P,, 9.2x10° Pa _ B
"= P9 (1040 kg/m*)(9.80 m/sz)_O.QOm =[90em|

9.64 Poiseuille’s law gives the flow rate through a tube with circular cross-section and radius
R as:

(AP)zR*

= flow rate=
Q 8nL

If the radius is changed to R" with all other factors unchanged, the ratio of the new flow
rate to the original one is

o ) (R,

(@) If the diameter (and hence the radius) of an artery is reduced by 10%, then
R'=0.90R and % =(0.90)" =0.66. Thus, the flow rate through the reduced artery is

only 66% of the original rate, or there has been a|34% reduction |in the flow.
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(b) With a 20% reduction in the diameter of the artery, R'=0.80R and we find

Q. (0.80)* =0.41. The new flow rate is 41% of the original rate, or a 20% reduction

in artery diameter causes a |59% reduction | in the flow.

The Reynolds number is

pvd (1050 kg/m*®)(0.55 m/s)(2.0x10 m)
- n - 2.7x10°° N-S/m2

In this region (RN > 3000), the flow is .

RN = 4.3x10°

From the definition of the Reynolds number, the maximum flow speed for streamlined
(or laminar) flow in this pipe is

_7(RN),,,  (10x107° N-s/m?*)(2000)

Vi = (1000 kg /m|(25x107 m) ~ 0080 ™5 =80 em/s|

pd

8.0x10™ kg

15s
difference in concentration levels is found to be

The observed diffusion rate is =5.3x10"" kg/s . Then, from Fick’s law, the

(Diffusion rate) L
C:mCi= DA

5.3x10™" kg/s)(0.10 m) -
:(S.CExlom mZ/S)(G?Oxlo“ mz): 180" Ko/’

Diffusion rate

, where AC/L is the
A-(AC/L)

Fick’s law gives the diffusion coefficient as D =

concentration gradient.

5.7x107" kg/s ST
Thus, D= ~[9.5x10
" P T 20x10% m?)(30%107 kg/m') o fs
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Stokes’s law gives the viscosity of the air as

F 3.0x10" N

__F _ . S
"7 6rrv 62(25x10° m)(45x10° m/s) L4x10° N -s/m

2rg ) . v, )
S ( £ — P ), the density of the droplet is found to be p = p; + g Thus, if
n

Using v, =

r= g =0.500x10"° m and v, =1.10x10? m/s when falling through 20 °C water

(77 =1.00x10"° N -s/m? ) , the density of the oil is

9(1.00x107° N - 2)(1.10x 107
p» =1000 k—gs+ ( - s/m )( - m/s): 1.02x10° kg/m*®

m 2(5.00x10 m)’(9.80 m/s?)

The pressure at depth /1 below a reference level, where the pressure is Py, in a fluid of
density p is given by P =P, + pgh. Thus, choosing the reference level at the surface of
the ocean, where Py =P, , the pressure at a depth of 3000 feet is

kg m 1m
P=1.013x10° Pa+| 1024 — | 9.80 — |(3000 ft =|9.28 MPa
10° pae 1024 29 | 080 T (a0 e 3

(a) Starting with P =P, + pgh, we choose the reference level at the level of the heart, so
P, =P, . The pressure at the feet, a depth h,, below the reference level in the pool of
blood in the body is P- =R, + pgh, . The pressure difference between feet and heart

is then| P- —P, = pgh, |

(b) Using the result of part (a),

P- —P, =(1.06x10° kg/m®)(9.80 m/s*)(1.20 m)=|1.25x10" Pa

The cross-sectional area of the aorta is A, = zd? /4 and that of a single capillary is
A, =7d; /4. If the circulatory system has N such capillaries, the total cross-sectional area

carrying blood from the aorta is

_ Nrzd;

A, =NA,
4
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From the equation of continuity,

2 2
Az zﬂﬁjAl, or N7Z'd2 =[£\ﬂ'dl ’
, 4 v, ) 4

which gives
2 - 2
N o[V d ) _ 1.0 m/s 0.50x10" m | _ 2 5x10"
v, \ d, 1.0x107% m/s | 10x10° m

9.74  From Pascal’s principle, the increase in pressure exerted on the large piston is the same
as the increase in pressure at the small piston. Thus, the force exerted on the large piston

iS I:2 = (Aplarge)AZl

5

where AP, —
Al

AI:)small =

arge —

A 3.00 cm?
Therefore, F= [A_j = (WJ(E.OX 10° N ) =|225N
9.75 (a) P=160 mm of H,0 = p,, ,9(160 mm)

=(1o3 k—gsj(g.so ﬂzj(o.lao m)=[157 kPa
m S

1.55x 1072 atm

P=(L57x10° Pa)( 1 atm j:

1.013x10° Pa

The pressure is P = p, o gh,, o = pyy hy,, SO

3 3
ey =| 20y = 2 KOM g4 mm)=/1L8 mm of Hg
Pug )2 (13.6x10° kg/m

(b) The fluid level in the tap should rise.

(c) Blockage of flow of the cerebrospinal fluid.
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When the rod floats, the weight of the displaced fluid equals the weight of the rod, or
Pt WVigpiacss = Po V.o - But, assuming a cylindrical rod, V,, =7 r’L . The volume of fluid

displaced is the same as the volume of the rod that is submerged, or Vg uceq = zr¥(L-h).

L
Thus, 2(L=h)|= L |, which red t = (—j
us pfg[ﬂr ( )} pog[ﬂr ] which reduces to p; = p5| - —

When the balloon floats, the weight of the displaced air equals the combined weights of
the filled balloon and its load. Thus,

Pair WV aon = Miaitoon 9+ Pretium IViatoon + Micag 97

_ Miaioon T Migeg _ 600kg +4000kg 7 =" 5

or Valioon = = =
P o = Praium (1.29-0.179) kg/m?

When the balloon comes into equilibrium, the weight of the displaced air equals the
weight of the filled balloon plus the weight of string that is above ground level. If m,

and L are the total mass and length of the string, the mass of string that is above ground

level is (%) m,. Thus,

h
Pair MV aon = Meaitoon I Lretium IViatoon + (E) m.g,

o R \V/ —
which reduces to h= |:(pa1r Phenum) baltoon — Mhaltoon }L ‘

m

This yields

(1.29 kg/m*-0.179 kg/m*) 47(0.40 m)*/3]-0.25 kg

"= 0.050 kg (20m)=[19m]
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First, we use vj = vfi +2a,(Ay) to find the speed of the sphere when it reaches the

surface of the water. Taking downward as positive, this gives

v, =\/0+ 2(9.80 m/s?)(10 m) =14 m/s
We neglect energy loss due to water resistance and impact with the surface. The density

of the sphere is p =0.60 p, ., so the buoyant force acting on the sphere while
submerged is

\Y
Bz(pwater g)V :(p_)g = T, 9

0.60 0.60

where m, is the mass of the sphere. Continuing to take downward as positive, the
acceleration of the sphere once it enters the water is

F, m.g-B 1
:—y: S = 1—
% m m, ( O-GOJg

Thus, Vi = vii +2a,(Ay) gives the distance the sphere sinks through the water before

coming to rest momentarily as

Ay:VS—Vji: 0—(14 m/3)2 :
23, 2(1—()2())(9.80 m/s?)
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9.80

shield

(b) (©)

(a) Consider the pressure at points A and B in part (b) of the figure by applying
P =P, + p;gh. Looking at the left tube gives P, =P, + o, 9(L—h), and looking at
the tube on the right, P, =P, + p;dL.

Pascal’s principle says that P, = P, . Therefore,

F)aIm + Pl gL = Patm + Puwater g( L- h) ’ gIVIHg

(. P 750 kg/m
h= -/ [L=| 1- 5.00cm)= 1250m
2o {1 s 0am) - [Tz

p water

(b) Consider part (c) of the diagram showing the situation when the air flow over the
left tube equalizes the fluid levels in the two tubes. First, apply Bernoulli’s equation
to points A and B. This gives

1 1
Pa +EpairVA2\ +Par 9Ya = Ps +Epairvé +Peir 3Ys

Since Y, =Yg, V4 =V, and v; =0, this reduces to

1
Fs —Pa :Epajrvz @

309



9.81

CHAPTER 9

Now use P =P, + p;gh to find the pressure at points C and D, both at the level of
the oil-water interface in the right tube. From the left tube, P. =P, + o4 9L, and
from the right tube, P, =P; + p; 9L.

Pascal’s principle says that P, = P., and equating these two gives

PB + Pl gl—: PA + Pwater gL/ or I:)B - I:)A = (pwater — Pail )gL

Combining equations (1) and (2) yields

V= \/z(pwater =~ Pil )gL
pair

_\/2(1000—750)(9.80 m/s?)(5.00x10% m)

1.29 =[138 m/s]

Consider the diagram and apply
Bernoulli’s equation to points A and B,
taking y =0 at the level of point B, and

recognizing that v, = 0. This gives

P, +0+pwg(h—Lsin9) Valve

=P, +%pwv§+0

Recognize that P, =P, =P,,, since both
points are open to the atmosphere. Thus, we obtain

Vg =4/29(h—Lsin o) =\/2(9.80 m/s?)[10.0 m —(2.00 m)sin 30.0°| =13.3 m/s

Now the problem reduces to one of projectile motion with

V,; =Vgsin 30.0°=6.64 m/s
At the top of the arc, v, =0, andy =y, .

Then, v2=v2 +2a (Ay) gives 0=(6.64 m/s)’ +2(-9.80 m/s?)(y... —0),
y yi ay g / max

or Yae =| 2:25 m above the level of point B
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9.82  The increase in pressure as the ball sinks is AP = p,, gh, where  is the depth at the ocean

bottom.

From the definition of bulk modulus, B =—A—P , the change in volume will be

(V)

AV =—(AP)V,/B=—(p, gh)V, /B. Since the volume of a sphere is V = %rg, this result

h
may be written as 4—ﬂ(rf3 -r’)=- (pu0h) 4z r’, which reduces to r} =r’ 1——('0‘”gh) ,
3 B 3 B

Thus, the final diameter is

B

and the decrease in the diameter has been

|AD|=D, - D, =D, {1{1—@?}

1030 kg/m*)(9.80 m/s*)(10.0x10° m)] v
14x10" Pa

~(3.00m) 1—[1—[(

ol {07z

9.83  While the ball is submerged, the buoyant force acting on itis B=(p,V )g. The upward
acceleration of the ball while under water is

XK, B-mg |[p (47[ j
=—t=— S
3 m m [m 3 J

[(1000 kg/m?®) /4

1.0 kg

( j(o 10my’ —1} (9.80 m/s?)=31 m/s’
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Thus, when the ball reaches the surface, the square of its speed is
vZ=v}+2a(Ay)=0+2(31 m/s?)(2.0 m)=125 m?/s?

When the ball leaves the water, it becomes a projectile with initial upward speed of
v=+125 m/s and acceleration of 8, =—g=-9.80 m/s’. Then, v’ =v/ +2a,(Ay) gives the

maximum height above the surface as
y _0—125 m2/52 _
" 2(-9.80 m/s?) L

(@) The gauge pressure on the surface of one of the hemispheres is the same at all
points, and the inward force exerted on each small element of surface is directed
along the radius of the hemisphere. To separate the hemispheres, the force applied
along the axis must overcome the vector sum of all these small elements of force.
This sum is equal to the force the gauge pressure exerts on a circular area, A = zR?,
which is the projection of the hemispherical surface onto a plane perpendicular the
axis. Therefore, the required force is

-

A =(P,-P)zR?

Pgauge

If P=0.10P, and R=0.30 m, the necessary force is

F=(P,-0.10R,)zR?

=0.90(1.013x10° Pa)7(0.30 m)* =2.6x10° N=[ 26 kN |

The weight of the soap bar is equal to the Bonf TBwater
buoyant force when it floats in water alone, | | A
or oil X
Soap Bar
W, :pW[A.(1_5 Cm)]g, water | _ _2_.0 cm —Xx

lear

where A is the surface area of either the top
or bottom of the rectangular bar.
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When both oil and water are present, the weight of the floating bar equals the total
buoyant force, B, =B + B,y - Thus,

pu[A-(15cm)]g=pu[A-x]g+p,[A-(20cm-x)]g,

which reduces to X = [LJ(Z.O cm—1.5cm)
Pu = Pi

1
Si i =0.60 p, , this gives x = 20cm-15cm)=|1.3cm
ince py P, , this gives (1—0.60j( )

9.86 Let s=20.0 mm be the length of one edge of the ice cube. air A ice
Then, the area of one face of the cube is s° and its S o
volume is s*. We shall ignore any buoyant force exerted ) ¢xa

by the air in comparison to those exerted by the more
dense fluids in all cases.

water

(@) Since the ice cube is floating, the weight of the displaced water must equal the
weight of the cube. Thus, p, (s°-X,)g = p,s°g, or

3
SVt R REE

(b) Here, the sum of the buoyant forces exerted by the _ 5.00 mm
alcohol and the water must equal the weight of the @ | A ice
floating ice cube. This gives S alcohol

iXb T

pa[52(5-00 mm)]ngpw[Sz 'Xb]g=,0ice539/ water -

Pice - S— Pa(5.00 mm)
Pw

(917)(20.0 mm)—(806)(5.00 mm )
- =143 mm

or X, =
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(c) Again the sum of the buoyant forces exerted by the alcohol and the water must
equal the weight of the floating ice cube, so

a8 X |9+ P[P (5%) |9 = P59 -

This gives X, =['DW _piwj8=(1ggg_2é;j(20.0 mm):

Pw ~ Pa

A water droplet emerging from one of the holes ®
becomes a projectile with v;, =0and v, =v . The A

time for this droplet to fall distance & to the @
floor is found from Ay =v,t +%ayt2 to be

- [
g’ ho ®

The horizontal range is R=vt=v 2—h . Y *
\ 9

A
Yo

R1=R>
If the two streams hit the floor at the same spot,
it is necessary that R, =R,, or

J 2, [
g g

With h; =5.00 cm and h, =12.0 cm, this reduces to

/hz [12.0 cm
vV,=V, |2 =V, |——— ,or VvV, =V,,/2.40 1
1=V h, 205,00 em Oor Vy =V; (1)

Apply Bernoulli’s equation to points 1 (the lower hole) and 3 (the surface of the water).
The pressure is atmospheric pressure at both points and, if the tank is large in
comparison to the size of the holes, v, = 0. Thus, we obtain

1
Pam +Epvf + pgh, =P, +0+ pgh,, or v =2g(h, —h,). (2)
Similarly, applying Bernoulli’s equation to point 2 (the upper hole) and point 3 gives
1
P +§pV§ + pgh, =P, +0+ pgh,, or v; =2g(h, —h,). 3)
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Square equation (1) and substitute from equations (2) and (3) to obtain
29(hy—h;)=2.40[ 2g(h, —h,)]
Solving for h, yields

_2.40h,-h; 2.40(12.0 cm)-5.00 cm
S 140 1.40

=17.0cm,

so the surface of the water in the tank is | 17.0 cm above floor level |

Since the block is floating, the total buoyant force
must equal the weight of the block. Thus,

Pt A(4.00 cm —X) g+ paer[A - X]9
= Pucca| A(4.00 cm) g

water

where A is the surface area of the top or bottom
of the rectangular block.

Solving for the distance x gives

Puood ~ Pl 960 —930 j
X =| —¥ed 7ol 1(4.00 ¢ 4.00 cm _17lcm
( j< m) [ 2222 J(4.00 om)~[L7Lem ]

Puwater — Pil

In order for the object to float fully submerged in the fluid, its average density must be
the same as that of the fluid. Therefore, we must add ethanol to the water until the
density of the mixture is 900 kg/m?®=0.900 g/cm? . The mass of the mixture will be

M=pV = (0.900 g / cm? )V , where V is the total volume of the mixture.
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The mass of water in the mixture is
m, = p,V, =(1.00 g/cm®)(500 cm*®)=500 g,
and the mass of ethanol added is
m, = pV, =(0.806 g/cm®)V,
where V, is the volume of ethanol added.
The total mass is
M =m,, +m, =500 g+(0.806 g/cm?)V,
and the total volume is V =V,, +V, =500 cm®+V,
Substituting these into M = (0.900 g/cm? )V from above gives
500 g+(0.806 g/cm®)V, =(0.900 g/cm*)(500 cm*+V,)

Solving for the volume of the added ethanol yields

500 g —(0.900 *)(500 cm?®
e = . ( g/cm )( all )= 532 cm?
(0.900-0.806) g/cm®
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Answers to Even Numbered Conceptual Questions

10.

12,

14.

16.

Because of the altitude, the density of the air is lower in Denver than at the location of
other major league ballparks. Thus, a fly ball leaving the bat with a given speed
experiences less air resistance and travels farther in Denver than it would in other
locations, making the park a favorite for homerun hitters. Curveball pitchers give the ball
a significant rotation rate and rely on the Bernoulli effect to make the ball curve. The
deflecting force produced by the Bernoulli effect is smaller in Denver than it would be in
ballparks where the air is more dense. Hence, a curveball does not “break” as well in
Denver as it does elsewhere.

Both must have the same strength. The force on the back of each dam is the average
pressure of the water times the area of the dam. If both reservoirs are equally deep, the
force is the same.

The external pressure exerted on the chest by the water makes it difficult to expand the
chest cavity and take a breath while under water. Thus, a snorkel will not work in deep
water.

A fan driven by the motor removes air and hence decreases the pressure inside the
cleaner. The greater air pressure outside the cleaner pushes air in through the nozzle
toward this region of lower pressure. This inward rush of air pushes or carries the dirt
along with it.

The larger the density of a fluid, the higher does an object float in it. Thus, an object will
float lower in low density alcohol.

The water level on the side of the glass stays the same. The floating ice cube displaces its
own weight of liquid water, and so does the liquid water into which it melts.

A breeze from any direction speeds up to go over the mound, and the air pressure drops
at this opening. Air then flows through the burrow from the lower to the upper entrance.

No. The somewhat lighter barge will float higher in the water.
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Answers to Even Numbered Problems

2. (a) 3.14x10*N (b) 6.28x10* N
4. 1.80x10° Pa

6. 22 N directed down the page in the figure

8. 7.5x10° Pa
10. (a) 2.5mm (b) 0.75mm (c) 6.9x10° kg
12. (a) 9.0x10° Pa (b) 50x10™" () 0.18 mm

14. 19x10*N

16. 1.2x10° Pa

18. 3.58x10° Pa

20. (@) 651N (b) 275N

22.  10.5 m; no, some alcohol and water evaporate.

24. 231b

26. 0.611 kg

28.  10.7% of the volume is exposed

30. (a) 10179 N, 1029.7 N (b) 862N (c) 11.8 N for both

32. 1.28x10" m?

34. 165cm

36. (a) 8.57x10° kg/m? (b) 714 kg/m?®
38. 78kg

40. 13 min

42. (a) 11.0m/s (b) 2.64x10" Pa

44. 4.4x107% Pa
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46.

48.

50.

52.

54.

56.

58.

60.

62.

64.

66.

68.

70.

72.

74.

78.

80.

82.

84.

86.

88.

(@ 17.7 m/s
(@) 15.1 MPa
347 m/s
7.32x107 N/m
5.6m

0.694 mm

0.12N

1.5 m/s

60 cm
(@) 34% reduction in flow

8.0 cm/s
9.5%x107™ m?/s
1.02x 10° kg/m?

1.25x 10* Pa
225N
1.9m

(@) 1.25cm

0.72 mm
(b) 26 kN
(@) 183 mm

1.71 cm

CHAPTER 9

(b)

(b)

(b)

1.73 mm

2.95 m/s

59% reduction in flow

138 m/s

14.3 mm
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4.34 kPa

8.56 mm



