CHAPTER 13

Quick Quizzes

1. (d).
2. (o).
3. (b).
4. (d).
5.  (b) and (c). An accelerating elevator is equivalent to a gravitational field. Thus, if the

elevator is accelerating upward, this is equivalent to an increased effective gravitational
field magnitude g, and the period will decrease. Similarly, if the elevator is accelerating
downward, the effective value of g is reduced and the period increases. If the elevator
moves with constant velocity, the period of the pendulum is the same as that in the
stationary elevator.

6. (a). The clock will run slow. With a longer length, the period of the pendulum will
increase. Thus, it will take longer to execute each swing, so that each second according to
the clock will take longer than an actual second.

7.  (b). Greater. The value of g on the Moon is about one-sixth the value of ¢ on Earth, so the
period of the pendulum on the moon will be greater than the period on Earth.
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CHAPTER 13

Problem Solutions

131 (a) The force exerted on the block by the spring is

F, =—kx=—(160 N/m)(-0.15m)=+24 N,

or F =‘ 24 N directed toward equilibrium position

(b) From Newton's second law, the acceleration is

a=

3 |.m

_+2AN — 460 ﬂzz 60 mz toward equilibrium position
0.40 kg S S

E
132 (a) The spring constantis k = | s| _Mg 50 N

— —=—_2=1.0><1O3 N/m.
X X 50x10° m

F=|F|=k«=(L0x10° N/m)(0.11m)=|11x10? N

(b) The graph will be a | straight line passing through the origin | with a slope equal to
k=1.0x10° N/m.

13.3 (a) Since the collision is perfectly elastic, the ball will rebound to the height of 4.00 m
before coming to rest momentarily. It will then repeat this motion over and over
again with a regular period.

(b) From Ay=v,t +%ayt2 , with v; =0, the time required for the ball to reach the

2(A 2(—-4.00
ground is t = (4y) = ( mz) =0.904 s. This is one-half of the time for a
-9.80 m/s

complete cycle of the motion. Thus, the periodis T = .

(c) . The net force acting on the mass is a constant given by F=-mg (except when

it is contact with the ground). This is not in the form of Hooke’s law.
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13.4

13.5

13.6

CHAPTER 13

The force the hand exerts on the handle is equal in magnitude and opposite in direction
to the sum of the forces exerted on the handle by the springs, or

R=-(R+R+F+F)=-4F.

Thus, F, =4F =4(kx) and if X, =(0.800-0.435) m =0.365m , then
Fo)pae =4(65.0 N/m)(0.365 m) = 94.9 N |

Since object A is in equilibrium, the net force acting on it must be zero, giving

F+F =kx+k,x=80.0N

80.0 N 80.0 N
Hence, x= = =123 cm
k, +k, 40.0 N/cm +25.0 N/cm

(@) The sketch at the right is a free-body diagram of the
upper end of the spring shown in Figure P13.6. This
point is in equilibrium, so XF, = 2Fsin 32.5°-kx, =0.

If F=210 N and k, =5.60x10* N/m, the elongation
of the spring is

2Fsin32.5° 2(210 N)sin 32.5° i
X, = = =4.03x107° m =[ 4.03 mm
' K, 5.60x10° N/m

(b) The rope is now replaced by a pair of identical springs, lying along the original line
of the rope. If the force constant of each of these springs is k and the elongation of
eachis x =2x,, then ZF, =0 gives 2(kx)sin32.5°=kx,, or

Ky X, Ky X

(2sin32.5°)x  (2sin 32.5°)(2x,)

_ 5.60x10* N/m _
4sin 32.5°

2.61x10* N/m
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CHAPTER 13

13.7 (a) The spring constant of each band is

kzile\L:l.leo3 N/m
X 1.0x10"m

Thus, when both bands are stretched 0.20 m, the total elastic potential energy is

1
PE, = Z(Ekxzj:(1.5x103 N/m)(0.20 m)* =[60J]

(b) Conservation of mechanical energy gives (KE + PE,), =(KE+PE,),, or

1 ., 2(60J)
=mv-+0=0+60J,s0 v= 9 m/s
> sov= s Sox107 kg~ /s]

Fx 230N
13.8 k= e — ~[575 N/m
@ k== om

max

1

1 2
b) work done = PE ==kx?>==(575 N/m)(0.400)" =| 46.0J

13.9  From conservation of mechanical energy,

(KE+PE, +PE,) =(KE+PE, +PE,) or 0+mgh, +0=O+0+%kxf,

giving

_2mgh,  2(0.100 kg)(9.80 m/s*)(0.600 m)

2

- - =2.94x10° N/m
Xi (2.00x10‘2 m)

13.10 Conservation of mechanical energy, (KE +PE, + PES)f = (KE + PE, + PE; )i ,

gives %mvi2 +O+0=O+O+%kx§,

k 5.00x10° N/m "
V,=,|—X, = 3.16x10° m)=|2.23 m/s
ot ! m " \/ 1000 kg ( x )
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CHAPTER 13

13.11 At x=A, v=0 and conservation of energy gives

E=KE+PE, =0+%kA2 or A? =2—kE

(@) At x=A/2, the elastic potential energy is

2 E
PEs:lk(Aj :EAZZK E ==
2 \2 8 8\ k 4

From the energy conservation equation, the kinetic energy is then

E [3E
KE=E-PE, =E-—=|—
5 4 | 4

(b) When KE = PE, conservation of energy yields E=KE+PE, =2PE; or PE, =E/2.
Since we also have PE = kx?2 / 2, this yields

13.12 (a) From the work-kinetic energy theorem,

Sl >

W, = (KE + PE, +PES)f ~(KE+PE, +PES)i,

or F-x, =%mvf +O+%kx?

This yields

2F-x —kx?
Ve

2(20.0 N)(0.300 m)-19.6 N/m(0.300 m)*
= =-2.61 m/s
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CHAPTER 13

(b) The work-kinetic theorem now contains one more nonzero term, giving

2(F— mg) - x —kx§
Vv, = -

2[20.0 N - (0.200)(1.50 kg )(9.80 m/s*) |(0.300 m)~19.6 N/m (0.300 m )’
1.50 kg

13.13 An unknown quantity of mechanical energy is converted into internal energy during the

collision. Thus, we apply conservation of momentum from just before to just after the
collision and obtain mv; + M(0)=(M +m)V, or the speed of the block and embedded

bullet just after collision is

-3
vz( m jviz 100>x107K9 300 mys)=1.49 mys.
M+m 2.01 kg

Now, we use conservation of mechanical energy from just after collision until the block

comes to rest. This gives 0+%ka :%(M +m)V?, or

M +m 2.01 kg
X, =V ” =(1.49 m/s) 196N/m_0478m

13.14 (a) In the absence of friction, (KE+ PE, + PES)f = (KE+ PE, + PES)i gives

%mv? +O+0:O+0+%kxi2,

k 2000 N/m
Vi =X;,/—=(0.30 cm 11 cm/s
N
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(b) When friction is present, W, =(KE +PE, + PES)f —(KE+PE, +PE, ) gives

—f-x :(lmvf +O+Oj—(0+0+1kxfj,
2 2
or

kx? =2 f - x,
Vim0
m

/(2000 N/m)(3.0x10° m)’ -2(20 N)(3.0x10° m)
- 1.5 kg

v, =0.063 m/s=[63 cm/s |

() If v, =0atx=0, then W,, =(KE+PE, +PE,) —(KE-+PE, +PE,)

becomes —f-X; =(O)—(O+O+%kxfj,

(2000 N/m)(3.0x10°° m)

k i

13.15 From conservation of mechanical energy,

(KE+PE, +PES)f = (KE+PE, +PES)i,

we have 2mvZ +0+ =k =0+0+1kA2, or V= £(A2 —xz)
2 2 2 m

(@) The speed is a maximum at the equilibrium position, x = 0.

kL (19.6 N/m) 2
V. = /EA _\/W(OMO m)° =[028 m/s |

(b) When x=-0.015m,

v =\/%[(0.040 m)’ —(-0015m)’ | =[0:26 m/s |
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() When x=+0.015m,

v =\/(1(?)1)—Nk/g”)')[(o.04o m)’ —(+0015m)" | =[0.26 m/s|

(d) Tfv=2v_, then \/K(AZ_XZ)ZE\/kAz
2 m 2\m

A’ 3 V3
This gives A> —=x*=—, or x=A—=(40cm)-—=|35cm
is gives 7o 5 ( ) 5

1316 (a) KE=0atx=A,so E=KE+PE§=O+%kA2,orthetotalenergyis

1 1 2
E=_kA”=>(250 N/m)(0.035 m) =[0157]

(b) The maximum speed occurs at the equilibrium position where PE; =0. Thus,

Ezimvfnax, or
2

2E k 250 N/m
Vo = /—:A/—:0.0SSm ——+r—=|0.78 m/s
max m m ( ) 0.50 kg

(c) The accelerationis a= %F = % Thus, a=a,, at X=—X,, =—A.

_—k(-A) _(k), (250 N/m _ 7
B = _(EJA_(WJ(O.O% m)=/18 m/s

13.17 The maximum speed occurs at the equilibrium position and is

2 (16.0 N/m)(0.200 m)?
m

2

Vinax (0.400 m/s)’

F, =mg=(4.00 kg )(9.80 m/s*)=[30.2 N |

K 10.0 N/m
13.18 v= E(AZ —XZ) :\/(mj[(0250 m)2 —(0125 m)2:| =
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13.19 (a) The motion is simple harmonic because the tire is rotating with constant velocity
and you are looking at the motion of the “bump” projected on a plane
perpendicular to the tire.

(b) Since the car is moving with speed v =3.00 m/s, and its radius is 0.300 m, the

angular velocity of the tire is

w:lzmzm.o rad/s
r 0.300 m

Therefore, the period of the motion is

2 27
T=—=——=/06285s
o 10.0 rad/s

2zr  27(0.200 m)
13.20 V= = =10.628 m/s
@) V="
1 1
b) f=—= =10.500 Hz
(b) fom=os
27 27
=—= =(3.14 rad/s
O 0T

)

13.21 The angle of the crank pin is 8 = wt. Its x-
coordinate is X = Acos@ = Acoswt where

A is the distance from the center of the
wheel to the crank pin. This is of the
correct form to describe simple harmonic
motion. Hence, one must conclude that
the motion is indeed simple harmonic.

===
IR
e

—>
X(

t)

X
In--
o

13.22 (a) From, T= Zﬂ\/g , we have

4z*m  47°(0.200 kg)
T = omosf Lo N/m]
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13.24

CHAPTER 13

(b) At x=A, the object is momentarily at rest and

E=KE+ PE; =0+%kA2

2(2.00)
Thus, the amplitude is A = / _0178m_178cm
us € amplitu eis ]_26 N/m -

The spring constant is found from

0.010 kg )(9.80 m//s?
F_mg_( 9) i /) 25 N/m .
X X 3.9x10° m

When the object attached to the spring has mass m =25 g, the period of oscillation is
m 0.025 kg
T=2r,]—=27 | ——=|0.63s
"Nk 25 N/m

The springs compress 0.80 cm when supporting an additional load of m =320 kg . Thus,

the spring constant is

320 kg )(9.80 m/s”
(-ma_(320Ka)( - /%) _gx10 N/m
X 0.80x107 m

When the empty car, M =2.0x10° kg , oscillates on the springs, the frequency will be
1 1 [k _ 1 [39x10° N/m

_to 2 K _[2.2Hz
T 2z\M 27\ 2.0x10° kg
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13.25 The spring constant of the collagen is found from T = % =2z \/% to be

13.26

13.27

k=477f2m=472(36.05") (550x10° kg)=281 N/m

From the definition of Young’s modulus, Stress=Y -Strain, or ; =Y (ATL) . This may be

written as F=(AY/L)AL, which is in the form of Hooke’s law with the spring constant

given by k=AY/L . Thus, Young’s modulus for collagen is given by

(@)

g _kL_ (281 N/m)(3.50x107% m)

— =] 3.14x10° Pa
A 7(1.00x10° m)

At t=0, x=(0.30m)cos(0)=|0.30m | and at t=0.60s,
T
x=(0.30m )COSKE rad/sj(0.60 s)} =(0.30 m)cos(0.207 rad):
A =X =(0:30 M)(1)=|0.30 m |

x=(0.30 m )COS(%tj is of the form x = Acos(wt) with an angular frequency of

1
w== rad/s . Thus, f:ﬂzﬂ—/:gz =~ Hz
3 2T 2r 6

l: 6.0s
f

The periodis T =

At t=350s,

F=—kx = —(5.00 ﬁj(s.oo m )cosKl.SS @j(s.so s)} ——110N,
m S

or F:‘ 11.0 N directed to the Ieft‘
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/ .00 N
(b) The angular frequency is @ = K 500 Njm =158 rad/s and the period of
m 2.00 kg
2 2r

oscillationis T = g’ 3.97 s. Hence the number of oscillations made in
o 158 rad/s

At 350s
350sis N =20 = _0.881
SN T T T 307 s

F 750 N

kem=——"" 1250 N/m

@ k= =300x107m
k 250 N/m ® 224 rad/s
b = |—= [/ =224 rad/s , f=—=——"'"=|356 Hz
W o= (k- BN o _24r
1 1
an AT

() Att=0,v=0andx=5.00x107 m, so the total energy of the oscillator is

E=KE+ PE, :%mv2+%kx2

1 )
=0+7(250 N/m)(5.00x10° m) =[03137]

(d) When x=A, v=0 s0 E:KE+PES:0+%kA2.

Thus, A =% ~[s000m]

(e) At x=0, KE:%mvnz1 =E,

ax

2E  [2(0.313))
Voo = —= |22 112 m)s
Of Vi ==\ 0500 kg

250 N/m)(5.00x107% m
a. :a_m:k_A:( /m)(5.00~ ): 25.0 m/s’
m m 0.500 kg

(f) Att=0500s,

x =Acos(wt) =(5.00 cm)cos[ (22.4 rad/s)(0.500 s) | =[ 0.919 cm |

416



CHAPTER 13

13.29 From Equation 13.6, v =1+ %(Az—xz):i o (A? =x?)

Hence, v = ia)\/A2 — A%cos’ (wt) = ia)A\/l—cos2 (wt) =| T wAsIn(at)

From Equation 13.2, a= —Lx =-w’[ Acos(wt)]=| —w”Acos(mt)
m

13.30 (a) The height of the tower is almost the same as the length of the pendulum. From
T =2r./L/g, we obtain

_gT> (980 m/s?)(1555)’

4t 47? :

(b) On the Moon, where g=1.67 m/s”, the period will be
L 59.6 m
T=27 |—=271 |———=|37.5s
7[\/; "\167 m/s?

13.31 The period in Tokyo is T; =2 ;—T
\' g,

L

and the period in Cambridge is T, =27 {i .
9c

We know that T; =T, =2.000 s, from which, we see that

L, Lo gc L. 09942
LR . =[1.0015
L. 0.9927

Or - Oc Or

13.32 (a) Thelower temperature will cause the pendulum to contract. The shorter length will

produce a smaller period, so the clock will run faster or .
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13.33

(b)

(@)

CHAPTER 13

The period of the pendulum is T, =27 \/E at 20°C,
9

and at -5.0°Citis T =27 \/E . The ratio of these periods is -_I;_—O = ,/L—Lo .
9

From Chapter 10, the length at -5.0°C is L=L; +a, L, (AT), so

S L - 10006
L 1+ay(AT) 14]24x10° (°C)™ |[-5.0°C—20°C] 0.9994

This gives % = \/% =+/1.0006 =1.0003. Thus in one hour (3600 s), the chilled
pendulum will gain (1.0003—-1)(3600s)=|1.1s |

The period of the pendulumis T =27,/L/g . Thus, on the Moon where the

acceleration of gravity is smaller, the period will be longer and the clock will run
slow

The ratio of the pendulum’s period on the Moon to that on Earth is

TMoon 2 v L/gMoon gEarth ;9 .80 =245
Tean 277 I—/ Oearn V Imoon 1.63
Hence, the pendulum of the clock on Earth makes 2.45 “ticks” while the clock on the

Moon is making 1.00 “tick”. After the Earth clock has ticked off 24.0 h and again

reads 12:00 midnight, the Moon clock will have ticked off % =9.79 h and will

13.34 The apparent acceleration of gravity is the vector sum of the actual
acceleration of gravity and the negative of the elevator’s acceleration.

To see this, consider an object that is suspended by a string in the

elevator and that appears to be at rest to the elevator passengers. T
These passengers believe the tension in the string is the negative of

the object’s weight, or T=-mg,,, where g, is the apparent

mg

acceleration of gravity in the elevator.
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An observer located outside the elevator applies Newton’s second law to this object by
writing ZF=T+mg=ma, where a, is the acceleration of the elevator and all its

contents. Thus, T=ma, —-mg=-mg,,,, which gives g,, =9 -a,.

(a) When a, =5.00 m/s* upward, then —a, =5.00 m/s’* downward. Thus,
Jap =(9.80+5.00) m/s*=14.8 m/s’ downward and the period of the pendulum is

L 5.00 m
T=2 _2 _[3655
”\/ ”\/14.8 m/s?

gapp

b) If a. =5.00 m/s*> downward, then —a_. =5.00 m/s®> upward and
e e p
Japp =(9.80-5.00) m/s* =4.80 m/s* downward. In this case, the period is given by

L 5.00 m
T=2 =2 =|6.41s
”\/ ”\/4.80 m/s?

gapp

(c) If a,=5.00 m/s* horizontally, the vector sum Oap =92, -8

A

is as shown in the sketch at the right. The magnitude is

9
ap =\/(5.00 m/s?)’ +(9.80 m/s?)’ =110 m/s?, app
and the period of the pendulum is
L 5.00 m
T=2 =2 =|4.24s
”\/gapp ”\/11.0 m/s?
. L
13.35 (a) From T =27./L/g, the length of a pendulum with period T'is L==-—-.
T

(9.80 m/s*)(1.0s)’

On Earth, with T=10s, L= = =0.25m =

(3.7 m/s*)(1.0s)’

If T=10s on Mars, L= = =0.094 m =[9.4 cm |
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(b) The period of a mass on a spring is T =27 ,/m/k , which is independent of the local

acceleration of gravity. Thus, the same mass will work on Earth and on Mars. This
mass is

kT? (10 N/m)(1.0s)*

m= A B A . :

The length of a pendulum with period Tis L= i . Thus, the ratio of the lengths of the
n

2
At
two swings is % = [I—l} . If the elapsed time was At, the periods are T, = o and
2 2

T,= % , which gives the ratio of lengths as % = (1.05)2 . The percentage difference in
* 2

the lengths is

- L, /L
%diﬁ_:{l‘l—l‘z}.loo%:{( /L)

1
- 200%
(L+1,)/2 } °

2)+1
(1.05)° -1

.200% =1 9.8%
| Gt oo

(@) The amplitude, A, is the maximum displacement from equilibrium. Thus, from

: 1 3
Figure P13.37, A= 5(18.0 cm) =

(b) The wavelength, A, is the distance between successive crests (or successive
troughs). From Figure P13.37, 4=2(10.0 cm) =

1 1
Th iodis T=—= =4.00x107? s=[40.0 ms
() e period is TR X
(d) The speed of the wave is v=A4f =(0.200 m)(25.0 Hz) =[ 5.00 m/s

From v =A1f, the wavelength (and size of smallest detectable insect) is

v 340 m/s 3
a=Y oS MS 567410° m=[5.67 mm
f~ 60.0x10° Hz *
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1 1
a) T=—=——"—_ -114x10%s=[114ns
@ f 88.0x10° Hz
v 3.00x10° m/s
b) l=—=——""_"/"-1341lm
®) A== 010" iz

343 m/s
The longest emitted wavelength is 4, = v 343 mjs =12m,
fow 28Hz
343
and the shortest is A, = v _348ms =0.082 m=8.2cm

fugn 4200 Hz

Thus, the range of wavelengths produced is ‘ 82cmtol12m ‘

The speed of the wave is v _Ax_dxdam _ 425 cm/s,
At 100s
and the frequency is f = 400 vib _ 133 Hz
30.0s

v 425 cm/s
Thus, A=—=————"—=|319cm
R FeeyT

(a) When the boat is at rest in the water, the speed of the wave relative to the boat is the
same as the speed of the wave relative to the water, v=4.0 m/s. The frequency

detected in this case is

v 40 m/s
f=—=——7"=|020Hz
7= m
(b) Taking westward as positive, Vi waer = Vi wae T Vwave water S1VES

-V =+1.0 m/s—(-4.0 m/s)=+5.0 m/s

\ boat ,wave =V boat ,water

v 5.0 m/s
Thus, f = Dotwae =|0.25 Hz
us 2 20m

wave, water
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The down and back distance is 4.00m +4.00m =8.00m .

4(8.00
The speed is then v = d‘:‘a‘ = (0800m) =40.0 m/s=,/F/u
.800's

Now, y:mzm
L 4.00m

F=uv®=(5.00x10" kg/m)(40.0 m/s)’ =

=5.00x107 kg/m, so

The speed of the wave is v = A 200 m
At 0.800s

ropeis pu= % =0.350 kg/m . Thus, from v = F/u , we obtain

=25.0 m/s, and the mass per unit length of the

F=v’u=(25.0 m/s) (0.350 kg/m)=[219 N |

. . m 0.0600 kg
a) The mass per unit lengthis y=—=———>=0.0120 kg/m
(@) P B S = T " 500 m 9/

From v =,/F/u, the required tension in the string is

F=v2u=(50.0 m/s)*(0.0120 kg/m)=[30.0 N
F 8.00 N
=== |——=_-[258
®) V== (om0 kg
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13.46 The mass per unit length of the wire is

3
_m_A400x107 kg _, 55,103 kg/m,
L 160m

and the speed of the pulse is Vv _L_160m _ 443 m/s.
At 0.0361s

Thus, the tension in the wire is
F=v’u=(443 m/s)’(250x10° kg/m)=4.91N

But, the tension in the wire is the weight of a 3.00-kg object on the Moon. Hence, the
local acceleration of gravity is

491N

=164 m/s’
3.00 kg

F
g:—:
m

13.47 The period of the pendulumis T =27 \/E , so the length of the string is
g

2 (9.80 m/s?)(2.00s)?
L= iTZ il /4 Z( " _oosm
T /4

Then mass per unit length of the string is then

0.0600 kg —0.0604 kg

_m_
A= 0993 m m

When the pendulum is vertical and stationary, the tension in the string is
F=M,,g=(500Kkg)(9.80 m/s’)=49.0N,

and the speed of transverse waves in it is

F 490N
V= |—= [——— =[285 m/s
2z = 00604 kg m
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13.48 If 4, =m,/L is the mass per unit length for the first string, then z, =m,/L=m, /2L = 1,/2
is that of the second string. Thus, with F, =F =F, the speed of waves in the second
string is

F [2F F
LA ﬁ( /MJ V20, =3(500 mfs)

1349 (a) The tension in the string is F=mg=(3.0 kg )(9.80 m/s? ) =29 N . Then, from

V= F/ 4, the mass per unit length is

F 29N
=—=——-=/0.051 kg/m
e
(b) When m=2.00 kg , the tension is
F=mg=(2.0kg)(9.80 m/s?)=20 N

and the speed of transverse waves in the string is

F 20 N
V7 =\ oot kgm

13.50 1If the tension in the wire is F, the tensile stress is Stress=F/A, so the speed of transverse

waves in the wire may be written as
Ve F _ |A-Stress | Stress
H m/L m/(A-L)
Stress

But, A-L=V =volume, so m/(A-L)= p=density . Thus, v = )
P

When the stress is at its maximum, the speed of waves in the wire is

(Stress) 2.70x10° Pa
Vi = maX — =586 m/s
e \/ 7.86x10° kg/m®

P
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From v =,/F/u, the tension in the string is F= v? . Thus, the ratio of the new tension to
the original is

T |;r|

<|<
Ll S0 [ O N

1

2 2
. v 30.0 m/s
, F=-%2| F=|————| (6.00N)=|135N
sving 1z (v] ' (20.0 m/sJ( )

(@) If the end is fixed, there is inversion of the pulse upon reflection. Thus, when they

meet, they cancel and the amplitude is .

(b) If the end is free there is no inversion on reflection. When they meet the amplitude

is A’=2A=2(015m)=[030 m |

(a) ‘ Constructive interference |produces the maximum amplitude

Ao =A; + A, =[050 m |

(b) |Destructive interference | produces the minimum amplitude

Arlnin =A—A, :

13.54 We are given that x = Acos(wt)=(0.25 m)cos(0.4zt).

(@) By inspection, the amplitude is seen to be A =

(b) The angular frequency is @ =0.47z rad/s. But @ = M , so the spring constant is
k=mew® =(0.30 kg)(0.47 rad/s)’ :

() Att=030s, x=(0.25m)cos| (047 rad/s)(0.30s)]=[0.23m |

(d) From conservation of mechanical energy, the speed at displacement x is given by
v=w+A?-x*.Thus, at t=0.30 s, when x=0.23 m, the speed is

v=(047 rad/s),(0.25m)’ ~(0.23m) =[012 m/s]
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The maximum acceleration of the oscillating system is Tn

B =@ A=(27 ) A
f

accelerating block B at this rate. When block B is on the verge of
slipping, f,=(f,),  =#n=umg=ma, and we must have

8o =(27 1) A=,

The friction force exerted between the two blocks must be capable of l
mg

(0.600)(9.80 m/s?)

49 )
Thus, A=—"> = =6.62x102 m =[6.62 cm
* (2zf)  [272(150Hz)] "

Since the spring is “light”, we neglect any small amount of energy lost in the collision
with the spring, and apply conservation of mechanical energy from when the block first
starts until it comes to rest again. This gives

(KE+PE, +PE,) =(KE+PE, +PE,) , or 0+0+%er2nax =0+0+mgh,

2mgh,  [2(0.500 kg)(9.80 m/s*)(2.00 m)
Thus, = L= =[0.990 m
I \/ 200 N/m

Choosing PE; =0 at the initial height of the block, conservation of mechanical energy

gives (KE+PE, +PE,) =(KE+PE, +PE,), or

1, 1 .,
—mv°+mg(—-x)+—=kx“=0,
5 9(-x)+3

where v is the speed of the block after falling distance x.

(@) When v =0, the non-zero solution to the energy equation from above gives

%w@:mm

max /

_2M0 _ 2(3.00kg)(9.80 m/s?)

X 0.100 m =[588 N/m |

max
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(b) When x =5.00 m =0.0500 m, the energy equation gives

2
v=4/2gx—ki,or
m
(588 N/m)(0.0500 m)?

v=\/2(9.80 m/s*)(0.0500 m ) - 300kg =[0.700 m/s]

(a) We apply conservation of mechanical energy from just after the collision until the

block comes to rest.
1 1
(KE+PE,), =(KE+PE,). gives 0+Ekx$ :EMVZ +0

or the speed of the block just after the collision is

=150 m/s

v z\/kX? :\/(900 N/m )(0.0500 m )’

M 1.00 kg

Now, we apply conservation of momentum from just before impact to immediately
after the collision. This gives

M (Vi )i +0=m(Vpq )f +MV,

o ), =) - s

m

1.00 kg
:400 m/S—(mj(l5 m/S)=

The mechanical energy converted into internal energy during the collision is

1 1 1
AE = KE - ZKE; ZEm(Vbullet ).2 _Em(vbullet )i _EMVZ'

or

AE:%(5.00x103 kg)| (400 m/s)® (100 m/s)z}—%(l.oo kg)(150 m/s)’
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13.59 Choose PE; =0 when the blocks start from rest. Then, using conservation of mechanical
energy from when the blocks are released until the spring returns to its unstretched
length gives (KE+PE, +PE,) =(KE+PE, +PE,) , or

%(mﬁmz)v? +(mygxsin 4O°—ngx)+0=0+0+%kx2

%[(25+30) kg Jv} +(25 kg)(9.80 m/s*)[(0.200 m)sin 40°]

—~(30 kg)(9.80 m/s?)(0.200 m)=%(2oo N/m)(0.200 m)®

yielding Vi =

13.60 The total time is the sum of the two times.

Y7

L.t A
v JFlu F’

2
= p[(”d /4)L] =p7[d2 .Thus, t=L M
L 4 \/ 4F

8920 kg/m*)7(1.00x10° m
(8920 kg/m*)x( I

In each wire t =

where u=

—|3

For copper, t=(20.0 m )\/

=0.137 s
4(150 N
(7860 kg/m®)z(1.00x10° m)’
For steel, t=(30.0m) 4{150 N) =0.192 s

The total time is t,,, =0.137 s+0.192 5=/ 0.329 s

k (500 N/m
13.61 = == |[Z=—L" _[158 rad/s
@ =0\ 200k
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Apply Newton’s second law to the block while the elevator is accelerating:

2F, =F -mg=ma,

With K =kx and a, =g/3, this gives kx=m(g+g/3), or

4mg 4(2.00kg)(9.80 m/s?) 5
=T 3(500 N/m) <eem

When the block is given some small upward displacement, the net restoring force
exerted on it by the rubber bands is

e =ZF, =-2Fsin®, where tang =~

For small displacements, the angle & will be very small. Then sin ~tan @ = % , and

the net restoring force is

A,

The net restoring force found in part (a) is in the form of Hooke’s law F=—ky , with

k= Z—LF . Thus, the motion will be simple harmonic, and the angular frequency is

k_| [2F
m |\\mL

429



13.63

13.64

CHAPTER 13

The free-body diagram at the right shows the forces

acting on the balloon when it is displaced distance .
s=L@ along the circular arc it follows. The net force AN
tangential to this path is

F« = ZF, =—Bsin @+ mgsin @ =—(B—mg)sin @

For small angles, sind ~ 6 =E +x//

Also, mg =(py.V )9

and the buoyant force is B=(p,;V )g. Thus, the net restoring force

(pair ~ Pue )Vg s
L

acting on the balloon is | Fy = —{

Observe that this is in the form of Hooke’s law, F=-ks,

with k= (pair ~ PHe )Vg/l—

Thus, the motion will be ‘ simple harmonic | and the period is given by

T=l=2—”=27[\/ﬁ=2ﬂ'\/ PueY =2z (LJE
f @ k (pair_pHe)Vg/L Pair ~ PHe g

o 0180 \ (300m)
This yields T =2 ~[140s
oY ”\/(1.29—0.180j(9.80 m/s?)

equilibrium
position

Observe in the sketch at the right that < D >
2d+L/2=D, or

L
d=D L/2=2.00m 1.50m=0.250m i

2 2
% \A B/ \0
Thus, <d> L <«d>
m m
o-cos| -9 |=cos (mj =70.5° [ [
L/4 0.750 m
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Now, consider a free body diagram of point A:

2F, =0=F=T,c0s(70.5°),

and  IF, =0=T,sin(70.5°)=19.6 N

T1=196 N
Hence, the tension in the section between A and B is '

= ﬂ =6.93 N
tan (70.5°)
The mass per unit length of the string is

-3
_100x10 7Kg _ 533,193 kg/m,
3.00m

so the speed of transverse waves in the string between points A and B is

V= L 6'9:’;N =456 m/s
U 3.33x10™ kg/m

The time for the pulse to travel from A to B is
L/2 150m 2
t=——=——"=329%x10" s=|32.9ms
VT we ms

13.65 Newton's law of gravitation is

F:—GM—Zm, where M =p(%m’3j
r

<
) T €—e3

Thus, F=- (%ﬂ'mejl’, Re

which is of Hooke’s law form, F=-kr, with

4
k = —7zoGm
3™

431



13.66

(@)

CHAPTER 13

Apply the work-kinetic energy theorem from the instant
the firefighter starts from rest until just before contact
with the platform.

W, =(KE+PE, ) —(KE+PE,) gives

_f .hz(%mv2+0j—(0+mgh), orv= Z(Q—ljh
m

300 N
v=[2/9.80 m/s*——— |(5.00m) =|6.93 m/s
\/ [ / 60kgj( )

Next, apply conservation of momentum to find the speed V of the firefighter and
platform immediately after the perfectly inelastic collision. This gives

(M+M)V =mv+M(0),

or V :( m jv:( 00.0 )(6.93 m/s)=5.20 m/s
m+ M 60.0+20.0

Finally, apply the work-kinetic energy theorem from just after the collision until the
firefighter comes to rest.

W, =(KE +PE, +PE,) —(KE+PE, +PE,) gives

—f .s=(0+0+%kszj—(%(m+ M)V2+(m+M)gs+0J,

or sZ—E[(m+M)g— f]s—(mT(ijzzo

Using the given data, we obtain s* —(0.387 m)s—0.865 m* =0, and the quadratic

formula gives a positive solution of s=
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13.67 (a) Using conservation of mechanical energy, (KE + PE, ), =(KE+ PE,),, from the

moment of release to the instant of separation gives

%(mlerz)v2 +O:0+%kA2,

K 100 N/m
v=A ~(020m) |—2YM _ _[050 m/s
o om0 M) e o) kg

(b) After the two blocks separate, m, oscillates with new amplitude A’ found by
applying (KE+PE,), =(KE+PE,), to the m, +spring system from the moment of

separation until the spring is fully stretched the first time.

O+£kA’2 =£m1v2
2 2

or A'=v.|™ = (050 m/s) |—2K8__q15m
k 100 N/m
/ 0k
The period of this oscillation is T =27 m _ 2 90—g =19s,
k 100 N/m

so the spring is full stretched for the first time at t = % =0.47 s after separation.

During this time, m, has moved distance X =Vt from the point of separation. Thus,
the distance separating the two blocks at this instant is

D =vt-A’=(050 m/s)(0.47 5)~0.15m =0.086 m =[ 8.6 cm |

13.68 (a) Apply the work-kinetic energy theorem from the instant before the block contacts
the spring until the instant the block leaves the spring.

W, =KE, —KE, =%m(vf—vf)

:%(8.00 kg)[(3.00 m/s)’ ~(4.00 m/s)* | =-28.0

or the mechanical energy lost is |Wnc| =
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(b) The energy spent overcoming the friction force while the block is in contact with the
spring is f-s=|W,|, where s=2x_, with X, being the maximum distance the

spring was compressed. Hence,

_ Wl _ W _ W
" 2f 2un 2umg

28.0
= =[0.446
2(0.400)(8.00 kg )(9.80 m/s?)

nc| _ nc|

434



CHAPTER 13

Answers to Even Numbered Conceptual Questions

10.
12.

14.

16.

18.

20.

Each half-spring will have twice the spring constant of the full spring, as shown by the
following argument. The force exerted by a spring is proportional to the separation of the
coils as the spring is extended. Imagine that we extend a spring by a given distance and
measure the distance between coils. We then cut the spring in half. If one of the half-
springs is now extended by the same distance, the coils will be twice as far apart as they
were for the complete spring. Thus, it takes twice as much force to stretch the half-spring,
from which we conclude that the half-spring has a spring constant which is twice that of
the complete spring.

To understand how we might have anticipated this similarity in speeds, consider sound as
a motion of air molecules in a certain direction superimposed on the random, high speed,
thermal molecular motions predicted by kinetic theory. Individual molecules experience
billions of collisions per second with their neighbors, and as a result, do not travel very far
in any appreciable time interval. With this interpretation, the energy of a sound wave is
carried as kinetic energy of a molecule and transferred to neighboring molecules by
collision. Thus, the energy transmitted by a sound wave in, say, a compression, travels
from molecule to molecule at about the rms speed, or actually somewhat less, as observed,
since multiple collisions slow the process a bit.

Friction. This includes both air-resistance and damping within the spring.

No. The period of vibrationis T =27,/L/g and g is smaller at high altitude. Therefore, the
period is longer on the mountain top and the clock will run slower.

Shorten the pendulum to decrease the period between ticks.

The speed of the pulses is v = ,/F/u, so increasing the tension F in the hose increases the
speed of the pulses. Filling the hose with water increases the mass per unit length x, and
will decrease the speed of the pulses.

You can attach one end to a wall while holding the other end in your hand. To create a
longitudinal wave oscillate the spring back and forth along the direction of the stretched

spring. To create a transverse wave, shake the string perpendicular to the direction in
which the spring is stretched.

If the tension remains the same, the speed of a wave on the string does not change. This
means, from V=Af, that if the frequency is doubled, the wavelength must decrease by a
factor of two.

The speed of a wave on a string is given by v =,/F/x . This says the speed is independent
of the frequency of the wave. Thus, doubling the frequency leaves the speed unaffected.
We assume here for simplicity that the Earth's orbit is circular. The motion is not simple
harmonic because the resultant force acting on the Earth is not dependent on the

displacement. Also, the speed of the Earth is a constant with time, not varying with x as in
simple harmonic motion.
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Answers to Even Numbered Problems

10.

12.

14.

16.

18.

20.

22,

24.

26.

28.

30.

32.

34.

36.

38.

40.

(a) 1.1x10° N
(b) The graph is a straight line passing through the origin with slope equal to
k=1.0x10° N/m.

949N

(@) 4.03 mm (b) 2.61x10* N/m

(@) 575 N/m (b) 46.0]

2.23m/s

@) 2.61m/s (b) 2.38m/s

@) 11 cm/s (b) 6.3 cm/s (©) 30N

(@) 0.15] (b) 0.78 m/s (c) 18 m/s?

3.06 m/s

() 0.628 m/s (b) 0.500 Hz (c) 3.14rad/s

(@) 126 N/m (b) 17.8 cm

22Hz

(@) 030m,0.24m (b) 0.30m (€) 1/6 Hz d) 60s
(@) 250 N/m (b) T=028ls,f=356Hz, @=22.4 rad/s

(c) 0.313J (d) 5.00 cm (e) 112 m/s, 250 m/s*>  (f) 0.919cm

(@) 59.6m (b) 37.5s

(@) gain time (b) 1.1s

(@) 3.65s (b) 6.41s (c) 4.24s
9.8% difference

5.67 mm

82cmto12m
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42,

44,

46.

48.

50.

52.

54.

56.

58.

60.

64.

66.

68.

(@) 0.20Hz

219N

CHAPTER

(b) 0.25Hz

(b) 0.30m

(b) 0.47 N/m

(b) 374]

(b) 1.14m

(b) 0.446 m
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3

(©)

0.23 m

(d)

0.12 m/s
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