
CHAPTER 13 
Quick Quizzes 

1. (d). 

2. (c). 

3. (b). 

4. (d). 

5. (b) and (c). An accelerating elevator is equivalent to a gravitational field. Thus, if the 
elevator is accelerating upward, this is equivalent to an increased effective gravitational 
field magnitude g, and the period will decrease. Similarly, if the elevator is accelerating 
downward, the effective value of g is reduced and the period increases. If the elevator 
moves with constant velocity, the period of the pendulum is the same as that in the 
stationary elevator. 

6. (a). The clock will run slow. With a longer length, the period of the pendulum will 
increase. Thus, it will take longer to execute each swing, so that each second according to 
the clock will take longer than an actual second. 

7. (b). Greater. The value of g on the Moon is about one-sixth the value of g on Earth, so the 
period of the pendulum on the moon will be greater than the period on Earth. 
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Problem Solutions 

13.1 (a) The force exerted on the block by the spring is 
 
 ( )( )160 N m 0.15 m 24 NsF kx= − = − − = + , 
 
or sF = 24 N directed toward equilibrium position  

 (b) From Newton's second law, the acceleration is 
 

 2

24 N m60 
0.40 kg s

sFa
m

+
= = = + = 2

m60  toward equilibrium position
s

 

13.2 (a) The spring constant is 3
-2

50 N 1.0 10  N m
5.0 10  m

sF mg
k

x x
= = = = ×

×
. 

 
 ( )( )31.0 10  N m 0.11 msF F kx= = = × = 21.1 10  N×  

 (b) The graph will be a  straight line passing through the origin  with a slope equal to 
31.0 10  N mk = × . 

13.3 (a) Since the collision is perfectly elastic, the ball will rebound to the height of 4.00 m 
before coming to rest momentarily. It will then repeat this motion over and over 
again with a regular period. 

 (b) From 21
2yi yy v t a t∆ = + , with 0yiv = , the time required for the ball to reach the 

ground is ( ) ( )
2

2 2 4.00 m
0.904 s

9.80 m sy

y
t

a
∆ −

= = =
−

. This is one-half of the time for a 

complete cycle of the motion. Thus, the period is T = 1.81 s . 

 (c) No . The net force acting on the mass is a constant given by F mg= −  (except when 
it is contact with the ground). This is not in the form of Hooke’s law. 
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13.4 The force the hand exerts on the handle is equal in magnitude and opposite in direction 
to the sum of the forces exerted on the handle by the springs, or 
 
 ( )1 2 3 4 4h = − + + + = −F F F F F 1F . 
 
Thus, ( )14 4hF F kx= =  and if ( )0.800 0.435  m 0.365 mmaxx = − = , then 
 
 ) ( )( )4 65.0 N m 0.365 mh maxF = = 94.9 N  

13.5 Since object A is in equilibrium, the net force acting on it must be zero, giving 
 
  
 

Hence, 

1 2 1 2 80.0 NF F k x k x+ = + =

1 2

80.0 N 80.0 N=
40.0 N cm 25.0 N cm

x
k k

= =
+ +

1.23 cm  

13.6 (a) The sketch at the right is a free-body diagram of the  
upper end of the spring shown in Figure P13.6. This  
point is in equilibrium, so 1 12 sin 32.5 0yF F k xΣ = ° − = . 
 
If 4

1210 N and 5.60 10  N mF k= = × , the elongation  
of the spring is 
 

 ( ) 3
1 4

1

2 210 N sin 32.52 sin 32.5 4.03 10  m
5.60 10  N m

Fx
k

−°°
= = = × = 4.03 mm

×
 

32.5°32.5°

F F

F1 = k1x1

 (b) The rope is now replaced by a pair of identical springs, lying along the original line 
of the rope. If the force constant of each of these springs is k and the elongation of 
each is 12x x= , then  gives 0yFΣ = ( ) 1 12 sin 32.5kx k x° = , or 
 

 
( ) ( )( )

1 1 1 1

12sin 32.5 2sin 32.5 2
k x k xk

x x
= =

° °
 

 

  
45.60 10  N m

4sin 32.5
×

= =
°

42.61 10  N m×  
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13.7 (a) The spring constant of each band is 
 

 3
-2

15 N 1.5 10  N m
1.0 10  m

sFk
x

= = = ×
×

 

 
Thus, when both bands are stretched 0.20 m, the total elastic potential energy is 
 

 ( )( )22 312 1.5 10  N m 0.20 m
2sPE kx⎛ ⎞= = × = 60 J⎜ ⎟

⎝ ⎠
 

 (b) Conservation of mechanical energy gives ( ) ( )s sf iKE PE KE PE+ = + , or 

 

 21 0 0 60 J
2

mv + = + , so ( )
-3

2 60 J
50 10  kg

v = =
×

49 m s  

13.8 (a) 230 N
0.400 m

max

max

Fk
x

= = = 575 N m  

 (b) ( )( )221 1 575 N m 0.400
2 2swork done PE kx= = = = 46.0 J  

13.9 From conservation of mechanical energy, 
 

 ( ) ( )g s g s
210 0 0 0

2f imgh kx+ + = + +
f i

KE PE PE KE PE PE+ + = + +  or , 

 
giving 
 

 
( )( )( )

( )

2

22 2

2 0.100 kg 9.80 m s 0.600 m2

2.00 10  m
f

i

mgh
k

x −
= = =

×
32.94 10  N m×  

13.10 Conservation of mechanical energy, ( ) ( )g s g sf i
KE PE PE KE PE PE+ + = + + , 

 

gives 2 21 10 0 0 0
2 2i fmv kx+ + = + + , 

 

or ( )
6

25.00 10  N m
3.16 10  m

1000 kgi i
kv x
m

−×
= = × = 2.23 m s  
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13.11 At  and conservation of energy gives 
 

 

,  0x A v= =

210
2sE KE PE kA= + = +  or 2 2E

A
k

=  

 (a) At 2x A= , the elastic potential energy is 
 

 
2

2 21
2 2 8 8s

EA k kPE k A
k

⎛ ⎞⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ 4
E

 

 
From the energy conservation equation, the kinetic energy is then 
 

 
4s
EKE E PE E= − = − =

3
4
E

 

 (b) When sKE PE= , conservation of energy yields 2s sE KE PE PE= + =  or 2sPE E= . 
Since we also have 2 2sPE kx= , this yields 
 

 ( ) ( )2 22 22 s
kAEPE Ex

k k k k
= = = = =

2
A  

13.12 (a) From the work-kinetic energy theorem, 
 
 ( ) ( )nc g s g sf i

W KE PE PE KE PE PE= + + − + + , 

 

or 2 21 10
2 2f f fF x mv kx⋅ = + +  

 
This yields 
 

 
22 f

f

F x kx
v

m
⋅ −

=  

 

  ( )( ) ( )22 20.0 N 0.300 m 19.6 N m 0.300 m
1.50 kg

−
= = 2.61 m s  
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(b) The work-kinetic theorem now contains one more nonzero term, giving 
 

( )

( )( ) ( ) ( ) ( )

2

22

2

2 20.0 N 0.200 1.50 kg 9.80 m s 0.300 m 19.6 N m 0.300 m

1.50 kg

k f
f

F mg x kx
v

m
µ− ⋅ −

=

⎡ ⎤− −⎣ ⎦=

 

 
fv = 2.38 m s  

13.13 An unknown quantity of mechanical energy is converted into internal energy during the 
collision. Thus, we apply conservation of momentum from just before to just after the 
collision and obtain ( ) ( )0imv M M m V+ = + , or the speed of the block and embedded 
bullet just after collision is 
 

 ( )
310.0 10  kg

300 m s 1.49 m s
2.01 kgi

mV v
M m

−⎛ ⎞×⎛ ⎞= = =⎜ ⎟⎜ ⎟+⎝ ⎠ ⎝ ⎠
. 

 
Now, we use conservation of mechanical energy from just after collision until the block 

comes to rest. This gives ( )2 21 10
2 2fkx M m V+ = + , or 

 

 ( ) 2.01 kg
1.49 m s

19.6 N mf
M mx V

k
+

= = = 0.478 m  

13.14 (a) In the absence of friction, ( ) ( )g s g sf i
KE PE PE KE PE PE+ + = + +  gives 

 

 2 21 10 0 0 0
2 2f imv kx+ + = + + , 

 

or ( ) 2000 N m
0.30 cm

1.5 kgf i
kv x
m

= = = 11 cm s  
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 (b) When friction is present, ( ) ( )nc g s g sf i
W KE PE PE KE PE PE= + + − + +  gives 

 

 2 21 10 0 0 0
2 2i f if x mv kx⎛ ⎞ ⎛− ⋅ = + + − + +⎜ ⎟ ⎜

⎝ ⎠ ⎝
⎞
⎟
⎠

, 

 
or 
 

 
( )( ) ( )( )

2

23 3

2

2000  N m 3.0 10  m 2 2.0 N 3.0 10  m
1.5 kg

i i
f

kx f x
v

m

− −

− ⋅
=

× − ×
=

 

 
 0.063 m sfv = = 6.3 cm s  

 (c) If , then 0 at 0fv x= = ( ) ( )nc g s g sf i
W KE PE PE KE PE PE= + + − + +  

 

becomes ( ) 210 0 0
2i if x k⎛ ⎞− ⋅ = − + +⎜ ⎟

⎝ ⎠
x , 

 

or 
( )( )32000 N m 3.0 10  m

2 2
ik x

f
−×

= = = 3.0 N  

13.15 From conservation of mechanical energy, 
 
 ( ) ( )g s g sf i

KE PE PE KE PE PE+ + = + + , 

 

we have 2 2 21 1 10 0 0
2 2 2

mv kx kA+ + = + + , or ( )2 2kv A x
m

= −  

 (a) The speed is a maximum at the equilibrium position, x = 0. 
 

 
( )

( ) ( )22 19.6 N m
0.040 m

0.40 kgmax
kv A
m

= = = 0.28 m s  

 (b) When , 
 

 

0.015 mx = −

( )
( ) ( ) ( )2219.6 N m

0.040 m 0.015 m
0.40 kg

v ⎡ ⎤= − −⎣ ⎦ = 0.26 m s  
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 (c) When , 
 

 

0.015 mx = +

( )
( ) ( ) ( )2219.6 N m

0.040 m 0.015 m
0.40 kg

v ⎡ ⎤= − +⎣ ⎦ = 0.26 m s  

 (d) If 1
2 maxv v= , then ( )2 2 1

2
k k 2A x A
m m

− =  

 

This gives 
2

2 2

4
AA x− = , or ( )3 34.0 cm

2 2
x A= = = 3.5 cm  

13.16 (a) 0 at KE x= = A , so 210
2sE KE PE kA= + = + , or the total energy is 

 

 ( )( )221 1 250 N m 0.035 m
2 2

E kA= = = 0.15 J  

 (b) The maximum speed occurs at the equilibrium position where . Thus, 0sPE =

21
2 maxE mv= , or 

 

 ( )2 250 N m
0.035 m

0.50 kgmax
E kv A

m m
= = = = 0.78 m s  

 (c) The acceleration is F kxa
m m
Σ −

= = . Thus, maxa a=  at maxx x A= − = − . 

 

 
( ) ( )250 N m

0.035 m
0.50 kgmax

k A ka A
m m

⎛ ⎞− − ⎛ ⎞= = = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

218 m s  

13.17 The maximum speed occurs at the equilibrium position and is 
 

 max
kv A
m

=  . Thus, ( )( )
( )

22

22

16.0 N m 0.200 m
4.00 kg

0.400 m smax

kAm
v

= = = , and 

 
 ( )( )24.00 kg 9.80 m sgF mg= = = 39.2 N  

13.18 ( ) ( ) ( )2 22 2
-3

10.0 N m
0.250 m 0.125 m

50.0 10  kg
kv A x
m

⎛ ⎞ ⎡ ⎤= − = − = 3.06 m s  ⎜ ⎟ ⎣ ⎦×⎝ ⎠
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13.19 (a) The motion is simple harmonic because the tire is rotating with constant velocity 
and you are looking at the motion of the “bump” projected on a plane 
perpendicular to the tire. 

 (b) Since the car is moving with speed 3.00 m sv = , and its radius is 0.300 m, the 
angular velocity of the tire is 
 

 3.00 m s
10.0 rad s

0.300 m
v
r

ω = = =  

 
Therefore, the period of the motion is 
 

 
2 2

10.0 rad s
T

π π
ω

= = = 0.628 s  

13.20 (a) ( )2 0.200 m2
2.00 s

rv
T

ππ
= = = 0.628 m s  

 (b) 1 1
2.00 s

f
T

= = = 0.500 Hz  

 (c) 2 2
2.00 sT

π πω = = = 3.14 rad s  

13.21 The angle of the crank pin is tθ ω= . Its x-
coordinate is cos cosx A A tθ ω= =  where 
A is the distance from the center of the 
wheel to the crank pin. This is of the 
correct form to describe simple harmonic 
motion. Hence, one must conclude that 
the motion is indeed simple harmonic. 

13.22 (a) From, 2 mT , we have 

 

 

k
π=

( )
( )

22

22

4 0.200 kg4
0.250 s

mk
T

ππ
= = = 126 N m  

A

x = 0

x = 0
x(t)

ω t

x(t)
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 (b) At x A= , the object is momentarily at rest and 
 

 210
2sE KE PE kA= + = +  

 

Thus, the amplitude is ( )2 2.00 J2
0.178 m

126 N m
E

A
k

= = = = 17.8 cm  

13.23 The spring constant is found from 
 

 
( )( )2

-2

0.010 kg 9.80 m s
2.5 N m

3.9 10  m
s mgFk

x x
= = = =

×
. 

 
When the object attached to the spring has mass 25 gm = , the period of oscillation is 
 

 
0.025 kg

2 2
2.5 N m

mT
k

π π= = = 0.63 s  

13.24 The springs compress 0.80 cm when supporting an additional load of . Thus, 
the spring constant is 
 

 

320 kgm =

( )( )2
5

-2

320 kg 9.80 m s
3.9 10  N m

0.80 10  m
mg

k
x

= = = ×
×

 

 
When the empty car, , oscillates on the springs, the frequency will be

 

32.0 10  kgM = ×
5

3

3.9 10  N m1 1 1
2 2 2.0 10  kg

kf
T Mπ π

×
= = = =

×
2.2 Hz  
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13.25 The spring constant of the collagen is found from 1 2 mT
f k

π= =  to be 

 
 ( ) ( )22 2 2 -1 34 4 36.0 s 5.50 10  kg 281 N mk f mπ π −= = × =  

 

From the definition of Young’s modulus, Stress Y Strain= ⋅ , or F LY
A L

∆⎛= ⎜
⎝ ⎠

⎞
⎟ . This may be 

written as ( )F AY L L= ∆ , which is in the form of Hooke’s law with the spring constant 
given by k AY L= . Thus, Young’s modulus for collagen is given by 
 

 
( )( )

( )

2

2-3

281 N m 3.50 10  m

1.00 10  m

k L
Y

A π

−×
= = = 63.14 10  Pa×

×
 

13.26 (a) At , 0t = ( ) ( )0.30 m cos 0x = = 0.30 m , and at 0.60 st = , 
 

 ( ) ( ) ( ) ( )0.30 m cos  rad s 0.60 s 0.30 m cos 0.20  rad
3

x π π⎡ ⎤⎛ ⎞= =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
= 0.24 m  

 (b) ( )( )0.30 m 1maxA x= = = 0.30 m  

 (c) ( )0.30 m cos
3

x tπ⎛= ⎜
⎝ ⎠

⎞
⎟  is of the form ( )cosx A tω=  with an angular frequency of 

 rad s
3
πω = . Thus, 3

2 2
f

πω
π π

= = =
1 Hz
6

 

 (d) The period is 1T
f

= = 6.0 s  

13.27 (a) At , 
 

 

3.50 st =

( ) ( )N rad5.00 3.00 m cos 1.58 3.50 s 11.0 N
m s

F kx ⎡ ⎤⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
, 

 
or F = 11.0 N directed to the left  
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 (b) The angular frequency is 
5.00 N m

1.58 rad s
2.00 kg

k
m

ω = = =  and the period of 

oscillation is 2 2 3.97 s
1.58 rad s

T π π
ω

= = = . Hence the number of oscillations made in 

3.50 s is 3.50 s
3.97 s

tN
T
∆

= = = 0.881  

13.28 (a) -2
7.50 N

3.00 10  m
Fk
x

= = =
×

250 N m  

 (b) 
250 N m
0.500 kg

k
m

ω = = = 22.4 rad s , 
22.4 rad s

2 2
f ω

π π
= = = 3.56 Hz , 

 

and 1 1
3.56 Hz

T
f

= = = 0.281 s  

 (c) At 0t = , , so the total energy of the oscillator is 
 

 

20 and 5.00 10  mv x −= = ×

2 21 1
2 2sE KE PE mv kx= + = +  

 

  ( )( )2210 250 N m 5.00 10  m
2

−= + × = 0.313 J  

 (d) When x A= , 210  so 0
2sv E KE PE k= = + = + A . 

 

Thus, 
2E

A
k

= = 5.00 cm  

 (e) At 0x = , 21
2 maxKE mv= = E , 

 

or ( )2 0.313 J2
0.500 kgmaxv

E
m

= = = 1.12 m s  

 

 
( )( )2250 N m 5.00 10  m

0.500 kg
max

max
k AFa

m m

−×
= = = = 225.0 m s  

 (f) At 0. , 
 
 

500 st =

( ) ( ) ( )( )cos 5.00 cm cos 22.4 rad s 0.500 sx A tω ⎡ ⎤= = = 0.919 cm  ⎣ ⎦
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13.29 From Equation 13.6, ( ) ( )2 2 2 2 2kv A x A
m

ω= ± − = ± − x  

 
Hence, ( ) ( )2 2 2 2cos 1 cosv A A t A tω ω ω ω= ± − = ± − = ( )sinA tω ω±  
 

From Equation 13.2, ( )2 coska x A t
m

ω ω= − = − =⎡ ⎤⎣ ⎦ ( )2 cosA tω ω−  

13.30 (a) The height of the tower is almost the same as the length of the pendulum. From 
2T Lπ= g , we obtain 

 

 
( )( )222

2 2

9.80 m s 15.5 s
4 4
gT

L
π π

= = = 59.6 m  

 (b) On the Moon, where 21.67 m sg = , the period will be 
 

 2
59.6 m2 2

1.67 m s
LT
g

π π= = = 37.5 s  

13.31 The period in Tokyo is 2 T
T

T

LT
g

π=  

 

and the period in Cambridge is 2 C
C

C

LT
g

π= . 

 
We know that , from which, we see that 
 

 

2.000 sT CT T= =

CT

T C

LL
g g

= , or 0.9942
0.9927

C C

T T

g L
g L

= = = 1.0015  

13.32 (a) The lower temperature will cause the pendulum to contract. The shorter length will 
produce a smaller period, so the clock will run faster or  gain time . 
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 (b) The period of the pendulum is 0
0 2 LT

g
π=  at 20°C, 

 

and at –5.0°C it is 2 LT
g

π=  . The ratio of these periods is 0 0T L
T L

= . 

 
From Chapter 10, the length at –5.0°C is ( )0 Al 0L L L Tα= + ∆ , so 
 

 
( ) ( ) [ ]

0
16

Al

1 1 1 1.0006
1 0.99941 24 10  C 5.0 C 20 C

L
L Tα −−

= = = =
+ ∆ ⎡ ⎤+ × ° − ° − °⎣ ⎦

 

 

This gives 0 0 1.0006 1.0003T L
T L

= = = . Thus in one hour (3600 s), the chilled 

pendulum will gain ( )( )1.0003 1 3600 s− = 1.1 s . 

13.33 (a) The period of the pendulum is 2T Lπ= g . Thus, on the Moon where the 
acceleration of gravity is smaller, the period will be longer and the clock will run 
 slow . 

 (b) The ratio of the pendulum’s period on the Moon to that on Earth is 
 

 
2 9.80 2.45

1.632
Moon EarthMoon

Earth MoonEarth

L g gT
T gL g

π
π

= = = =  

 
Hence, the pendulum of the clock on Earth makes 2.45 “ticks” while the clock on the 
Moon is making 1.00 “tick”. After the Earth clock has ticked off 24.0 h and again 

reads 12:00 midnight, the Moon clock will have ticked off 24.0 h 9.79 h
2.45

=  and will 

read 9 : 47 AM . 

13.34 The apparent acceleration of gravity is the vector sum of the actual 
acceleration of gravity and the negative of the elevator’s acceleration. 
To see this, consider an object that is suspended by a string in the 
elevator and that appears to be at rest to the elevator passengers. 
These passengers believe the tension in the string is the negative of 
the object’s weight, or appm= −T g  where appg  is the apparent 
acceleration of gravity in the elevator. 

T

mg
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 An observer located outside the elevator applies Newton’s second law to this object by 
writing  where  is the acceleration of the elevator and all its 
contents. Thus, 

em mΣ = + =F T g a ea

e am m m= − = −T a ppg g , which gives app e= −g g a . 

 (a) When 25.=a  upward, then 00 m se
25.00 m se− =a  downward. Thus, 

( ) 29.80 5.00  m s 14.8 m sapp = + =g 2  downward and the period of the pendulum is 
 

 2
5.00 m2 2

14.8 m sapp

LT
g

π π= = = 3.65 s  

 (b) If 25.e =a  downward, then 00 m s 25.00 m se− =  upward and a

( ) 29.80 5.00  m s 4.80 m sapp = − =g 2  downward. In this case, the period is given by 
 

 2
5.00 m2 2

4.80 m sapp

LT
g

π π= = = 6.41 s  

 (c) If 25.=a  horizontally, the vector sum 00 m se app e= −g g a   
is as shown in the sketch at the right. The magnitude is 
 

 ( ) ( )2 22 25.00 m s 9.80 m s 11.0 m sappg = + = 2 , 

 
and the period of the pendulum is 
 

 2
5.00 m2 2

11.0 m sapp

LT
g

π π= = = 4.24 s  

-ae

g gapp

13.35 (a) From 2T , the length of a pendulum with period T is L gπ=
2

24
gT

L
π

= . 

 

On Earth, with T , 1.0 s=
( )( )22

2

9.80 m s 1.0 s
0.25 m

4
L

π
= = = 25 cm  

 

If T  on Mars, 1.0 s=
( )( )22

2

3.7 m s 1.0 s
0.094 m

4
L

π
= = = 9.4 cm  
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 (b) The period of a mass on a spring is 2T mπ= k , which is independent of the local 
acceleration of gravity. Thus, the same mass will work on Earth and on Mars. This 
mass is 
 

 
( )( )22

2 2

10 N m 1.0 s
4 4
kT

m
π π

= = = 0.25 kg  

13.36 The length of a pendulum with period T is 
2

24
gT

L
π

= . Thus, the ratio of the lengths of the 

two swings is 
2

1 1

2 2

L T
L T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. If the elapsed time was t∆ , the periods are 1 10

tT ∆
=  and 

2 10.5
tT ∆

= , which gives the ratio of lengths as ( )21

2

1.05L
L

= . The percentage difference in 

the lengths is 
 

 
( )

( )
( )

1 21 2

1 2 1 2

1
% diff.= 100% 200%

2 1
L LL L

L L L L
⎡ ⎤⎡ ⎤ −−

⋅ = ⋅⎢ ⎥⎢ ⎥+ +⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 

  ( )
( )

2

2

1.05 1
200%

1.05 1

⎡ ⎤−
= ⋅ = 9.8%⎢ ⎥

+⎢ ⎥⎣ ⎦
 

13.37 (a) The amplitude, A, is the maximum displacement from equilibrium. Thus, from 

Figure P13.37, ( )1 18.0 cm
2

A = = 9.00 cm  

 (b) The wavelength, λ , is the distance between successive crests (or successive 
troughs). From Figure P13.37, ( )2 10.0 cmλ = = 20.0 cm  

 (c) The period is 21 1 4.00 10  s
25.0 Hz

T
f

−= = = × = 40.0 ms  

 (d) The speed of the wave is ( )( )0.200 m 25.0 Hzv fλ= = = 5.00 m s  

13.38 From v fλ= , the wavelength (and size of smallest detectable insect) is 
 

 -3
3

340 m s
5.67 10  m

60.0 10  Hz
v
f

λ = = = × =
×

5.67 mm  
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13.39 (a) 8
6

1 1 1.14 10  s
88.0 10  Hz

T
f

−= = = × =
×

11.4 ns  

 (b) 
8

6

3.00 10  m s
88.0 10  Hz

v
f

λ
×

= = =
×

3.41 m  

13.40 The longest emitted wavelength is 
343 m s

12 m
28 Hzlong

low

v
f

λ = = = , 

 

and the shortest is 343 m s
0.082 m=8.2 cm

4200 Hzshort
high

v
f

λ = = =  

 
Thus, the range of wavelengths produced is 8.2 cm to 12 m  

13.41 The speed of the wave is 425 cm 42.5 cm s
10.0 s

xv
t

∆
= = =

∆
, 

 

and the frequency is 40.0 vib 1.33 Hz
30.0 s

f = =  

 

Thus, 
42.5 cm s
1.33 Hz

v
f

λ = = = 31.9 cm  

13.42 (a) When the boat is at rest in the water, the speed of the wave relative to the boat is the 
same as the speed of the wave relative to the water, 4.0 m sv = . The frequency 
detected in this case is 
 

 4.0 m s
20 m

vf
λ

= = = 0.20 Hz  

 (b) Taking westward as positive, , ,boat water boat wave wave water,= +v v v  gives 
 
 ( ), , , 1.0 m s 4.0 m s 5.0 m sboat wave boat water wave water= − = + − − = +v v v  
 

Thus, , 5.0 m s
20 m

boat wavev
f

λ
= = = 0.25 Hz  
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13.43 The down and back distance is 4.00 m 4.00 m 8.00 m+ = . 
 

The speed is then ( )4 8.00 m
40.0 m s

0.800 s
totaldv F
t

µ= = = =  

 

Now, 20.200 kg
5.00 10  kg m

4.00 m
m
L

µ −= = = × , so 

 
 ( )( )22 25.00 10  kg m 40.0 m sF vµ −= = × = 80.0 N  

13.44 The speed of the wave is 20.0 m 25.0 m s
0.800 s

xv
t

∆
= = =

∆
, and the mass per unit length of the 

rope is 0.350 kg mm
L

µ = = . Thus, from v F µ= , we obtain 

 
 ( ) ( )22 25.0 m s 0.350 kg mF v µ= = = 219 N  

13.45 (a) The mass per unit length is 0.0600 kg
0.0120 kg m

5.00 m
m
L

µ = = =  

 
From v F µ= , the required tension in the string is 
 
 ( ) ( )22 50.0 m s 0.0120 kg mF v µ= = = 30.0 N , 

 (b) 8.00 N
0.0120 kg m

Fv
µ

= = = 25.8 m s  

422 



C H A P T E R  1 3  

13.46 The mass per unit length of the wire is 
 

 
-3

-34.00 10  kg
2.50 10  kg m

1.60 m
m
L

µ
×

= = = × , 

 

and the speed of the pulse is 1.60 m 44.3 m s
0.0361 s

Lv
t

= = =
∆

. 

 
Thus, the tension in the wire is 
 
 ( ) ( )22 -344.3 m s 2.50 10  kg m 4.91 NF v µ= = × =  

 
But, the tension in the wire is the weight of a 3.00-kg object on the Moon. Hence, the 
local acceleration of gravity is 
 

 4.91 N
3.00 kg

Fg
m

= = = 21.64 m s  

13.47 The period of the pendulum is 2 LT
g

π= , so the length of the string is 

 

 
( )( )222

2 2

9.80 m s 2.00 s
0.993 m

4 4
gT

L
π π

= = =  

 
Then mass per unit length of the string is then 
 

 0.0600 kg kg
0.0604 

0.993 m m
m
L

µ = = =  

 
When the pendulum is vertical and stationary, the tension in the string is 
 
 ( )( )25.00 kg 9.80 m s 49.0 NballF M g= = = , 

 
and the speed of transverse waves in it is 
 

 49.0 N
0.0604 kg m

Fv
µ

= = = 28.5 m s  
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13.48 If 1 1m Lµ =  is the mass per unit length for the first string, then 2 2 1 12 2m L m Lµ µ= = =  
is that of the second string. Thus, with 2 1F F F= = , the speed of waves in the second 
string is 
 

 ( )2 1
2 1 1

2
2 2 2 5.00 m s =

FF Fv v
µ µ µ

⎛ ⎞
= = = = =⎜ ⎟⎜ ⎟

⎝ ⎠
7.07 m s  

13.49 (a) The tension in the string is ( )( )23.0 kg 9.80 m s 29 NF mg= = = . Then, from 

v F µ= , the mass per unit length is 
 

 
( )22

29 N
24 m s

F
v

µ = = = 0.051 kg m  

(b) When , the tension is 
 
 

2.00 kgm =

( )( )22.0 kg 9.80 m s 20 NF mg= = =  

 
and the speed of transverse waves in the string is 
 

 20 N
0.051 kg m

Fv
µ

= = = 20 m s  

13.50 If the tension in the wire is F, the tensile stress is Stress F A= , so the speed of transverse 
waves in the wire may be written as 
 

 
( )

F A Stress Stressv
m L m A Lµ
⋅

= = =
⋅

 

 

But, , so  =volumeA L V⋅ = ( ) =densitym A L ρ⋅ = . Thus, Stressv
ρ

= . 

 
When the stress is at its maximum, the speed of waves in the wire is 
 

 
( ) 9

3 3

2.70 10  Pa
7.86 10  kg m

max
max

Stress
v

ρ
×

= = =
×

586 m s  
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13.51 From v F µ= , the tension in the string is 2F v µ= . Thus, the ratio of the new tension to 
the original is 
 

 
2

2
2

1 1

2F v
F v

= , giving ( )
22

2
2 1

1

30.0 m s
6.00 N

20.0 m s
vF F
v

⎛ ⎞⎛ ⎞
= = = 13.5 N⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

13.52 (a) If the end is fixed, there is inversion of the pulse upon reflection. Thus, when they 
meet, they cancel and the amplitude is zero . 

 (b) If the end is free there is no inversion on reflection. When they meet the amplitude 
is ( )2 2 0.15 mA A′ = = = 0.30 m . 

13.53 (a) Constructive interference  produces the maximum amplitude 
 
 1 2maxA A A′ = + = 0.50 m  

 (b) D structive interferencee  produces the minimum amplitude 
 
 min 1 2A A A′ = − = 0.10 m  

13.54 We are given that ( ) ( ) ( )cos 0.25 m cos 0.4x A t tω π= = . 

 (a) By inspection, the amplitude is seen to be A = 0.25 m  

 (b) The angular frequency is 0.4  rad sω π= . But k mω = , so the spring constant is 
 
 ( )( )22 0.30 kg 0.4  rad sk mω π= = = 0.47 N m  

 (c) At 0. , 30 st = ( ) ( )( )0.25 m cos 0.4  rad  s 0.30 sx π⎡ ⎤= =⎣ ⎦ 0.23 m  

 (d) From conservation of mechanical energy, the speed at displacement x is given by 
2 2v A xω= − . Thus, at 0.30 st = , when 0.23 mx = , the speed is 

 

 ( ) ( ) ( )2 20.4  rad s 0.25 m 0.23 mv π= − = 0.12 m s  
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13.55 The maximum acceleration of the oscillating system is 
 
  
 
The friction force exerted between the two blocks must be capable of 
accelerating block B at this rate. When block B is on the verge of 
slipping, 

( )22 2maxa A fω π= = A

( )s s s smax maxf f n mg maµ µ= = = =  and we must have 

( )22max sa f A gπ µ= = . 
 

Thus, 
( )

( )( )
( )

2
2

2 2

0.600 9.80 m s
6.62 10  m

2 2 1.50 Hz
sgA
f

µ
π π

−= = = × = 6.62 cm
⎡ ⎤⎣ ⎦

 

n

fs

mg

13.56 Since the spring is “light”, we neglect any small amount of energy lost in the collision 
with the spring, and apply conservation of mechanical energy from when the block first 
starts until it comes to rest again. This gives 
 

 ( ) ( )g s g s
21 0 0

2 max ikx mgh+ + = + +
f i

KE PE PE KE PE PE+ + = + + , or 0 0  

 

Thus, 
( )( )( )22 0.500 kg 9.80 m s 2.00 m2

20.0 N m
i

max
mgh

x
k

= = = 0.990 m  

13.57 Choosing PE  at the initial height of the block, conservation of mechanical energy 

gives (
0g =

) ( )g s g sf i
KE PE PE KE PE PE+ + = + + , or 

 

 ( )2 21 1 0
2 2

mv mg x kx+ − + = , 

 
where v is the speed of the block after falling distance x. 

 (a) When 0v = , the non-zero solution to the energy equation from above gives 
 

 2
maxkx =

1
2 maxmgx , 

 

or 
( )( )22 3.00 kg 9.80 m s2

0.100 mmax

mg
k

x
= = = 588 N m  
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 (b) When , the energy equation gives 
 

 

5.00 m 0.0500 mx = =

2

2 kxv gx
m

= − , or 

 

 ( )( ) ( )( )2
2 588 N m 0.0500 m

2 9.80 m s 0.0500 m
3.00 kg

v = − = 0.700 m s  

13.58 (a) We apply conservation of mechanical energy from just after the collision until the 
block comes to rest. 
 

 ( ) ( )s sf iKE PE KE PE+ = +  gives 2 21 10 0
2 2fkx MV+ = +  

 
or the speed of the block just after the collision is 
 

 
( )( )22 900 N m 0.0500 m

1.50 m s
1.00 kg

fkx
V

M
= = =  

 
Now, we apply conservation of momentum from just before impact to immediately 
after the collision. This gives 
 
 , 

 

or 

( ) ( )0bullet bulleti fm v m v MV+ = +

( ) ( )bullet bulletf i

Mv v
m

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

V  

 

  ( )-3

1.00 kg
400 m s 1.5 m s

5.00 10  kg
⎛ ⎞

= − =⎜ ⎟×⎝ ⎠
100 m s  

 (b) The mechanical energy converted into internal energy during the collision is 
 

 ( ) ( )2 2 21 1 1
2 2 2i f bullet bulleti fE KE KE m v m v MV∆ = − Σ = − − , 

 
or 
 

 ( ) ( ) ( ) ( )( )2 231 15.00 10  kg 400 m s 100 m s 1.00 kg 1.50 m s
2 2

E − ⎡ ⎤∆ = × − −⎣ ⎦
2  

 
 E∆ = 374 J  
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13.59 Choose  when the blocks start from rest. Then, using conservation of mechanical 
energy from when the blocks are released until the spring returns to its unstretched 
length gives 

0gPE =

( ) ( )g s g sf i
KE PE PE KE PE PE+ + = + + , or 

 

 ( ) ( )2 2
1 2 1 2

1 1sin 40 0 0 0
2 2fm m v m g x m g x k x+ + ° − + = + +  

 

 
( ) ( )( ) ( )

( )( )( ) ( )( )

2 2

22

1 25 30  kg 25 kg 9.80 m s 0.200 m sin 40
2

1                30 kg 9.80 m s 0.200 m 200 N m 0.200 m
2

fv+ + °⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

− =
 

 
yielding fv = 1.1  m s  

13.60 The total time is the sum of the two times. 
 

In each wire L Lt L
v FF

µ
µ

= = = , 

 

where 
( )2 24

4

d L dm
L L

ρ π ρπ
µ

⎡ ⎤⎣ ⎦= = = . Thus, 
2

4
d

t L
F

ρπ
=  

 

For copper, ( )
( ) ( )

( )

23 38920 kg m 1.00 10  m
20.0 m 0.137 s

4 150 N
t

π −×
= =  

 

For steel, ( )
( ) ( )

( )

23 37860 kg m 1.00 10  m
30.0 m 0.192 s

4 150 N
t

π −×
= =  

 
The total time is 0.137 s 0.192 stotalt = + = 0.329 s  

13.61 (a) 
500 N m
2.00 kg

k
m

ω = = = 15.8 rad s  
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 (b) Apply Newton’s second law to the block while the elevator is accelerating: 
 
 y s yF F mg ma= − =Σ  
 
With   and 3s yF kx a g= = , this gives ( )3kx m g g= + , or 
 

 
( )( )

( )

2
24 2.00 kg 9.80 m s4

5.23 10  m
3 3 500 N m
mg

x
k

−= = = × = 5.23 cm  

13.62 (a) When the block is given some small upward displacement, the net restoring force 
exerted on it by the rubber bands is 
 

 2 sinnet yF F F θ= Σ = − , where tan
y
L

θ =  

 

For small displacements, the angle θ  will be very small. Then sin tan
y
L

θ θ≈ = , and 

the net restoring force is 
 

 2net
y

F F
L

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

2F
y

L
⎛ ⎞−⎜ ⎟
⎝ ⎠

 

 (b) The net restoring force found in part (a) is in the form of Hooke’s law F ky= − , with 
2F

k
L

= . Thus, the motion will be simple harmonic, and the angular frequency is 

 

 k
m

ω = =
2F
m L
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13.63 The free-body diagram at the right shows the forces  
acting on the balloon when it is displaced distance  
s Lθ=  along the circular arc it follows. The net force  
tangential to this path is 
 

( )sin sin sinnet xF F B mg B mgθ θ θ= Σ = − + = − −  
 

For small angles, sin s
L

θ θ≈ =  

 
Also,  
 
and the buoyant force is 

( )Hemg V gρ=

( )airB V gρ= . Thus, the net restoring force 
 

acting on the balloon is 
( )Heair

net
Vg

F s
L

ρ ρ−⎡ ⎤
≈ − ⎢ ⎥

⎣ ⎦
 

 
Observe that this is in the form of Hooke’s law, F ks= − , 
 
with ( )Heairk Vρ ρ= − g L  
 
Thus, the motion will be simple harmonic  and the period is given by 
 

 
( )

He He

He He

21 2 2 2
air air

Vm LT
f k Vg L g

π ρ ρπ π π
ω ρ ρ ρ

⎛ ⎞
= = = = = ⎜ ⎟− −⎝ ⎠ρ

 

 

This yields ( )
( )2

3.00 m0.180 2
1.29 0.180 9.80 m s

T π ⎛ ⎞= =⎜ ⎟−⎝ ⎠
1.40 s  

L

T

+y

+x

θ

θ

θ

B

mg

s = Lθ

equilibrium
position

13.64 Observe in the sketch at the right that 
2 2d L D+ = , or 
 

2 2.00 m 1.50 m
0.250 m

2 2
D L

d
− −

= = =  

 
Thus, 
 

1 1 0.250 mcos cos 70.5
4 0.750 m

d
L

θ − −⎛ ⎞ ⎛ ⎞= = = °

L–
4

θθ A B

D

L–
2

m m

dd

⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠
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 Now, consider a free body diagram of point A: 
 
 ( )20  cos 70.5xF F TΣ = ⇒ = ° , 

 
and  ( )20 sin 70.5 19.6 NyF TΣ = ⇒ ° =

 Hence, the tension in the section between A and B is 
 

 
( )

19.6 N 6.93 N
tan 70.5

F = =
°

 

 
The mass per unit length of the string is 
 

 
3

-310.0 10  kg
3.33 10  kg m

3.00 m
µ

−×
= = × , 

 
so the speed of transverse waves in the string between points A and B is 
 

 -3
6.93 N 45.6 m s

3.33 10  kg m
Fv
µ

= = =
×

 

 
The time for the pulse to travel from A to B is 
 

 22 1.50 m 3.29 10  s
45.6 m s

L
t

v
−= = = × = 32.9 ms  

F

T2
y

x

T1 = 19.6 N

θ A

13.65 Newton's law of gravitation is 
 

 3
2

4,   where  
3

GMmF M r
r

ρ π⎛ ⎞= − = ⎜ ⎟
⎝ ⎠

 

 

Thus, 4= - 
3

F Gm rπρ⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

 
which is of Hooke’s law form, , with 
 

 

= -F kr

4 = 
3

k Gπρ m  

F

RE

r

m

M
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13.66 (a) Apply the work-kinetic energy theorem from the instant 
the firefighter starts from rest until just before contact 
with the platform. 
 

( ) ( )nc g gf i
W KE PE KE PE= + − +  gives 

 

( )21 0 0 ,  or 2
2

f
f h mv mgh v g h

m
⎛ ⎞⎛ ⎞− ⋅ = + − + = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 

( )2 300 N2 9.80 m s 5.00 m
60 kg

v
⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

6.93 m s  

s

m

M

h

 (b) Next, apply conservation of momentum to find the speed V of the firefighter and 
platform immediately after the perfectly inelastic collision. This gives 
 
 ( ) ( )0m M V mv M+ = + , 
 

or ( )60.0 6.93 m s 5.20 m s
60.0+20.0

mV v
m M

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
 

 
Finally, apply the work-kinetic energy theorem from just after the collision until the 
firefighter comes to rest. 
 
 ( ) ( )nc g s g sf i

W KE PE PE KE PE PE= + + − + +  gives 

 

 ( ) ( )2 21 10 0 0
2 2

f s ks m M V m M gs⎛ ⎞ ⎛− ⋅ = + + − + + + +⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

, 

 

or ( )2 22 0m Ms m M g f s V
k k

+⎛ ⎞− + − − =⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎝ ⎠
 

 
Using the given data, we obtain ( )2 0.387 m 0.865 m 0s s 2− − = , and the quadratic 
formula gives a positive solution of s = 1.14 m  
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13.67 (a) Using conservation of mechanical energy, ( ) ( )s sf iKE PE KE PE+ = + , from the 

moment of release to the instant of separation gives 
 

 ( ) 2 2
1 2

1 10 0
2 2

m m v kA+ + = + , 

 

or ( )
( )1 2

100 N m
0.20 m

9.0 7.0  kg
kv A

m m
= = =

+ +
0.50 m s  

(b) After the two blocks separate,  oscillates with new amplitude 1m A′  found by 
applying ( ) ( )s sf iKE PE KE PE+ = +  to the 1 springm +  system from the moment of 

separation until the spring is fully stretched the first time. 
 

 2 2
1

1 10
2 2

kA m v′+ =  

 

or ( )1 9.0 kg
0.50 m s 0.15 m

100 N m
mA v
k

′ = = =  

 

The period of this oscillation is 1 9.0 kg
2 2 1

100 N m
mT
k

π π= = = .9 s , 

 

so the spring is full stretched for the first time at 0.47 s
4
Tt = =  after separation. 

During this time,  has moved distance 2m x vt=  from the point of separation. Thus, 
the distance separating the two blocks at this instant is 

 ( )( )0.50 m s 0.47 s 0.15 m 0.086 mD vt A ′= − = − = = 8.6 cm  

13.68 (a) Apply the work-kinetic energy theorem from the instant before the block contacts 
the spring until the instant the block leaves the spring. 
 

 
( )

( ) ( ) ( )

2 2

2 2

1
2

1 8.00 kg 3.00 m s 4.00 m s 28.0 J
2

nc f i f iW KE KE m v v= − = −

⎡ ⎤= −⎣ ⎦ = −
 

 
or the mechanical energy lost is ncW = 28.0 J  
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 (b) The energy spent overcoming the friction force while the block is in contact with the 
spring is ncf s W⋅ = , where 2 maxs x=  with maxx  being the maximum distance the 
spring was compressed. Hence, 
 

 
2 2 2

nc nc nc
max

k k

W W W
x

f n mµ µ
= = =

g
 

 

  
( )( )( )2

28.0 J
2 0.400 8.00 kg 9.80 m s

= = 0.446 m  
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Answers to Even Numbered Conceptual Questions 

 2. Each half-spring will have twice the spring constant of the full spring, as shown by the 
following argument. The force exerted by a spring is proportional to the separation of the 
coils as the spring is extended. Imagine that we extend a spring by a given distance and 
measure the distance between coils. We then cut the spring in half. If one of the half-
springs is now extended by the same distance, the coils will be twice as far apart as they 
were for the complete spring. Thus, it takes twice as much force to stretch the half-spring, 
from which we conclude that the half-spring has a spring constant which is twice that of 
the complete spring. 

 4. To understand how we might have anticipated this similarity in speeds, consider sound as 
a motion of air molecules in a certain direction superimposed on the random, high speed, 
thermal molecular motions predicted by kinetic theory. Individual molecules experience 
billions of collisions per second with their neighbors, and as a result, do not travel very far 
in any appreciable time interval. With this interpretation, the energy of a sound wave is 
carried as kinetic energy of a molecule and transferred to neighboring molecules by 
collision. Thus, the energy transmitted by a sound wave in, say, a compression, travels 
from molecule to molecule at about the rms speed, or actually somewhat less, as observed, 
since multiple collisions slow the process a bit. 

 6. Friction. This includes both air-resistance and damping within the spring. 

 8. No. The period of vibration is 2T Lπ= g   and g is smaller at high altitude. Therefore, the 
period is longer on the mountain top and the clock will run slower. 

10. Shorten the pendulum to decrease the period between ticks. 

12. The speed of the pulses is v F µ= , so increasing the tension F in the hose increases the 
speed of the pulses. Filling the hose with water increases the mass per unit length µ , and 
will decrease the speed of the pulses. 

14. You can attach one end to a wall while holding the other end in your hand. To create a 
longitudinal wave oscillate the spring back and forth along the direction of the stretched 
spring. To create a transverse wave, shake the string perpendicular to the direction in 
which the spring is stretched. 

16. If the tension remains the same, the speed of a wave on the string does not change. This 
means, from v fλ= , that if the frequency is doubled, the wavelength must decrease by a 
factor of two. 

18. The speed of a wave on a string is given by v F µ= . This says the speed is independent 
of the frequency of the wave. Thus, doubling the frequency leaves the speed unaffected. 

20. We assume here for simplicity that the Earth's orbit is circular. The motion is not simple 
harmonic because the resultant force acting on the Earth is not dependent on the 
displacement. Also, the speed of the Earth is a constant with time, not varying with x as in 
simple harmonic motion. 
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Answers to Even Numbered Problems 

 2. (a)  
(b) The graph is a straight line passing through the origin with slope equal to  
 

21.1 10  N×

31.0 10  N mk = × . 

 4. 94.9 N 

 6. (a) 4.03 mm   (b) 42.61 10  N m×  

 8. (a) 575 N m    (b) 46.0 J 

10. 2.23 m s  

12. (a) 2.61 m s    (b) 2.38 m s  

14. (a) 11 cm s    (b) 6.3 cm s    (c) 3.0 N 

16. (a) 0.15 J    (b) 0.78 m s    (c) 218 m s  

18. 3.06 m s  

20. (a) 0.628 m s    (b) 0.500 Hz   (c) 3.14 rad s  

22. (a) 126 N m    (b) 17.8 cm 

24. 2.2 Hz 

26. (a) 0.30 m, 0.24 m  (b) 0.30 m  (c) 1 6 Hz   (d) 6.0 s 

28. (a) 250 N m    (b) 0.281 s, 3.56 Hz, 22.4 rad sT f ω= = =  
(c)  (d) 5.00 cm  (e) 0.313 J 21.12 m s , 25.0 m s  (f) 0.919 cm 

30. (a) 59.6 m (b) 37.5 s 

32. (a) gain time   (b) 1.1 s 

34. (a) 3.65 s   (b) 6.41 s   (c) 4.24 s 

36. 9.8% difference 

38. 5.67 mm 

40. 8.2 cm to 12 m 
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42. (a) 0.20 Hz   (b) 0.25 Hz 

44. 219 N 

46. 21.64 m s  

48. 7.07 m s  

50. 586 m s  

52. (a) 0    (b) 0.30 m 

54. (a) 0.25 m  (b) 0.47 N m   (c) 0.23 m  (d) 0.12 m s  

56. 0.990 m 

58. (a) 100 m s    (b) 374 J 

60. 0.329 s 

64. 32.9 ms 

66. (a) 6.93 m s    (b) 1.14 m 

68. (a) 28.0 J   (b) 0.446 m 
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