
CHAPTER 15 
Quick Quizzes 

1. (d). Object A could possess a net charge whose sign is opposite that of the excess charge 
on B. If object A is neutral, B would also attract it by creating an induced charge on the 
surface of A. This situation is illustrated in Figure 15.5 of the textbook. 

2. (b). By Newton’s third law, the two objects will exert forces having equal magnitudes but 
opposite directions on each other. 

3. (c). The electric field at point P is due to charges other than the test charge. Thus, it is 
unchanged when the test charge is altered. However, the direction of the force this field 
exerts on the test change is reversed when the sign of the test charge is changed. 

4. (b). The magnitude of the upward electrical force must equal the weight of the ball. That 
is: , so qE m g=

( )( )3 2
4

6

5.0 10  kg 9.80 m s
1.2 10  N C

4.0 10  C

m g
E

q

−

−

×
= = = ×

×
 

5. (a). If a test charge is at the center of the ring, the force exerted on the test charge by charge 
on any small segment of the ring will be balanced by the force exerted by charge on the 
diametrically opposite segment of the ring. The net force on the test charge, and hence the 
electric field at this location, must then be zero. 

6. (c) and (d) The electron and the proton have equal magnitude charges of opposite signs. 
The forces exerted on these particles by the electric field have equal magnitude and 
opposite directions. The electron experiences an acceleration of greater magnitude than 
does the proton because the electron’s mass is much smaller than that of the proton. 

7. A, B, and C. The field is greatest at point A because this is where the field lines are closest 
together. The absence of lines at point C indicates that the electric field there is zero. 

8. Statements (b) and (d) are true and follow from Gauss’s law. Statement (a) is not 
necessarily true because Gauss’s law says that the net flux through any closed surface 
equals the net charge inside the surface divided by 0∈ . For example, a positive and a 
negative charge could be inside the surface. Statement (c) is not necessarily true. Although 
the net flux through the surface is zero, the electric field in that region may not be zero. 
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Problem Solutions 

15.1 Since the charges have opposite signs, the force is one of  attraction . 
Its magnitude is 
 

 
( ) ( )

( )

9 92
1 2 9

22 2

4.5 10  C 2.8 10  CN m
8.99 10  

C 3.2 m
ek q q

F
r

− −× ×⎛ ⎞⋅
= = × = 81.1 10  N−×⎜ ⎟⎝ ⎠

 

15.2 (a) The force is 
 

 
( )
( )

2142 2
9

22 2 6

1.60 10  CN m
8.99 10  

C 2.5 10  m
ek q

F
r

−

−

×⎛ ⎞⋅
= = × = (⎜ ⎟⎝ ⎠ ×

)73.7 10  N   repulsion−×  

 (b) With r two times larger,  is four times larger and the force is 2r
reduced to one fourth of its previous value . 

15.3 
( ) ( )

2

2 79ek e e
F

r
=  

 

 
( )( )

( )

2192
9

22 14

158 1.60 10  CN m
8.99 10  

C 2.0 10  m

−

−

×⎛ ⎞⋅
= × =⎜ ⎟⎝ ⎠ ×

( )91 N   repulsion  

15.4 The electrical force is 
2

2
e

e

k e
F

r
= , and the gravitational force is 

2

2g

Gm
F

r
= . Thus, if g eF F= , 

the mass would have to be 
 

 ( )
9 2 2

19
11 2 2

8.99 10  N m C
1.60 10  C

6.67 10  N m k
ek

m e
G g

−
−

× ⋅
= = × = 91.86 10  kg−×

× ⋅
 

 
This result is  times greater than the actual mass of a proton. 181.11 10×

15.5 (a) 
( ) ( )

( )

2194 1.60 10  C2 22 N m98.99 10  
2 2 215C 5.00 10  m

k ee

r
F

⎡ ⎤−×⎢ ⎥⎛ ⎞⋅ ⎣ ⎦= = × =⎜ ⎟
−⎝ ⎠ ×

36.8 N  
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 (b) The mass of an alpha particle is 4.0026 um = , where  is the 
unified mass unit. The acceleration of either alpha particle is then 
 

 

27u 1.66 10  kg−= ×

( )27

36.8 N

4.0026 1.66 10  kg

F
a

m −
= = =

×
27 25.54 10  m s×  

15.6 The attractive force between the charged ends tends to compress the molecule. Its 
magnitude is 
 

 ( ) ( )
( )

2192 2
9 1

22 2 6

1.60 10  C1 N m
8.99 10  4.89 10  N

C 2.17 10  m
ek e

F
r

−
−

−

×⎛ ⎞⋅
= = × = ×⎜ ⎟⎝ ⎠ ×

7 . 

 
The compression of the “spring” is 
 
 ( ) ( )( )6 80.0100 0.0100 2.17 10  m 2.17 10  mx r − −= = × = × , 
 

so the spring constant is 
17

8

4.89 10  N
2.17 10  m

F
k

x

−

−

×
= = =

×
92.25 10  N m−×  

15.7 1.00 g of hydrogen contains Avogadro’s number of atoms, each containing one proton 
and one electron. Thus, each charge has magnitude Aq N e= . The distance separating 
these charges is , where  is the Earth’s radius. Thus, 
 

 

2 Er R= ER

( )
( )

2

2
2

e A

E

k N e
F

R
=  

 

  
( ) ( )

( )

223 192
9

22 6

6.02 10 1.60 10  CN m
8.99 10  

C 4 6.38 10  m

−⎡ ⎤× ×⎛ ⎞⋅ ⎣ ⎦= × = 55.12 10  N×⎜ ⎟⎝ ⎠ ×
 

15.8 The magnitude of the repulsive force between electrons must equal the weight of an 
electron, Thus, 2 2

e ek e r m g=  
 

or 
( ) ( )

( ) ( )

29 2 2 192

31 2

8.99 10  N m C 1.60 10  C

9.11 10  kg 9.80 m s
e

e

k e
r

m g

−

−

× ⋅ ×
= = = 5.08 m

×
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15.9 (a) The spherically symmetric charge distributions behave as if all charge was located 
at the centers of the spheres. Therefore, the magnitude of the  attractive force is 
 

 
( ) ( )

( )

9 92
1 2 9

22 2

12 10  C 18 10  CN m
8.99 10  

C 0.30 m
ek q q

F
r

− −× ×⎛ ⎞⋅
= = × = 52.2 10  N−×⎜ ⎟⎝ ⎠

 

 (b) When the spheres are connected by a conducting wire, the net charge 
 will divide equally between the two identical spheres. 

Thus, the force is now 
 

 

9
1 2 6.0 10  Cnetq q q −= + = − ×

( ) ( )
( )

22 92
9

22 2

6.0 10  C2 N m
8.99 10  

C 4 0.30 m
e netk q

F
r

−− ×⎛ ⎞⋅
= = ×⎜ ⎟⎝ ⎠

 

 
or F = 79.0 10  N  (repulsion)−×  

+6.00 µC

F1 F2

F1

F3 F3

F2+1.50 µC -2.00 µC

3.00 cm  2.00 cm

15.10 The forces are as shown in  
the sketch at the right. 
 
 
 
 

 
( ) ( )

( )
6 62

91 2
1 22 2 -2

12

6.00 10  C 1.50 10  CN m
8.99 10  89.9 N

C 3.00 10  m
ek q q

F
r

− −× ×⎛ ⎞⋅
= = × =⎜ ⎟⎝ ⎠ ×

 

 

 
( ) ( )

( )
6 62

1 3 9
2 22 2 -2

13

6.00 10  C 2.00 10  CN m
8.99 10  43.2 N

C 5.00 10  m

ek q q
F

r

− −× ×⎛ ⎞⋅
= = × =⎜ ⎟⎝ ⎠ ×

 

 

 
( ) ( )

( )
6 62

2 3 9
3 22 2 -2

23

1.50 10  C 2.00 10  CN m
8.99 10  67.4 N

C 2.00 10  m

ek q q
F

r

− −× ×⎛ ⎞⋅
= = × =⎜ ⎟⎝ ⎠ ×

 

 
The net force on the 6 Cµ  charge is 6 1 2F F F= − = 46.7 N  (to the left) . 
 
The net force on the 1.5 Cµ  charge is 1.5 1 3F F F= + = 157 N  (to the right) . 
 
The net force on the 2 Cµ−  charge is 2 2 3F F F− = + = 111 N  (to the left) . 
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15.11 In the sketch at the right,  is the resultant of the  
forces  that are exerted on the charge at  
the origin by the 6.00 nC and the –3.00 nC charges  
respectively. 
 

 

RF

6 and F 3F

( ) ( )
( )

9 92
9

6 22

6

6.00 10  C 5.00 10  CN m
8.99 10  

C 0.300 m

3.00 10  N

F
− −

−

× ×⎛ ⎞⋅
= ×⎜ ⎟⎝ ⎠

= ×

 

 

 
( ) ( )

( )

9 92
9 5

3 22

3.00 10  C 5.00 10  CN m
8.99 10  1.35 10  N

C 0.100 m
F

− −
−

× ×⎛ ⎞⋅
= × = ×⎜ ⎟⎝ ⎠

 

 

The resultant is ( ) ( )2 2 5
6 3 1.38 10  NRF F F −= + = ×  at 1 3

6

tan 77.5
F
F

θ − ⎛ ⎞
= = °⎜ ⎟⎝ ⎠

, 

 
or R =F 51.38 10  N   at  77.5  below   axisx−× ° −  

5.00 nC
F6

FR

θ

6.00 nC

-3.00 nC
F3

 0.300 m
0.100 m
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15.12 Consider the arrangement of charges shown in the sketch at  
the right. The distance r is 
 

 ( ) ( )2 20.500 m 0.500 m 0.707 mr= + =  
 
The forces exerted on the 6.00 nC charge are 
 

 
( ) ( )

( )

9 92
9

2 22

7

6.00 10  C 2.00 10  CN m
8.99 10  

C 0.707 m

2.16 10  N

F
− −

−

× ×⎛ ⎞⋅
= ×⎜ ⎟⎝ ⎠

= ×

 

 

and 
( ) ( )

( )

9 92
9 7

3 22

6.00 10  C 3.00 10  CN m
8.99 10  3.24 10  N

C 0.707 m
F

− −
−

× ×⎛ ⎞⋅
= × = ×⎜ ⎟⎝ ⎠

 

 
Thus, ( ) 7

2 3 cos45.0 3.81 10  NxF F F −Σ = + ° = × , 
 
and ( ) 8

2 3 sin45.0 7.63 10  NyF F F −Σ = − ° = − ×  
 
The resultant force on the 6.00 nC charge is then 
 

 ( ) ( )22 73.89 10  NR x yF F F −= Σ + Σ = ×  at 1tan 11.3y

x

F

F
θ −

Σ⎛ ⎞
= = − °⎜ ⎟Σ⎝ ⎠

 

 
or R =F 73.89 10  N  at 11.3  below  +  axisx−× °  

45.0°

3.00 nC

2.00 nC

6.00 nC

45.0°

F3

F2

0.500 m

0.
50

0 
m

r

r

0.
50

0 
m
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15.13 The forces on the 7.00 µC charge are shown at the right. 
 

 
( ) ( )

( )

6 62
9

1 22

7.00 10  C 2.00 10  CN m
8.99 10  

C 0.500 m

0.503 N

F
− −× ×⎛ ⎞⋅

= ×⎜ ⎟⎝ ⎠

=

 

 

 
( ) ( )

( )

6 62
9

2 22

7.00 10  C 4.00 10  CN m
8.99 10  

C 0.500 m

1.01 N

F
− −× ×⎛ ⎞⋅

= ×⎜ ⎟⎝ ⎠

=

 

 
Thus, ( )1 2 cos60.0 0.755 NxF F FΣ = + ° = , 
 
and  
 
The resultant force on the 7.00 µC charge is 
 

 

( )1 2 sin60.0 0.436 NyF F FΣ = − ° = −

( ) ( )22
0.872 NR x yF F F= Σ + Σ =  at 1tan 30.0y

x

F

F
θ −

Σ⎛ ⎞
= = − °⎜ ⎟Σ⎝ ⎠

, 

 
or R =F 0.872 N    at 30.0  below  the +  axisx°  

60.0°

F1

F2

7.00 µC

-4.00 µC2.00 µC 0.500 m

y

x

+

+ –

15.14 Assume that the third bead has charge Q and is located at 0 x d< < . Then the forces 
exerted on it by the +3q charge and by the +1q charge have magnitudes 
 

 
( )

3 2

3ekQ q
F

x
=  and 

( )
( )1 2

ekQ q
F

d x
=

−
 respectively 

 
These forces are in opposite directions, so charge Q is in equilibrium if . This gives 3F F= 1

( )2 23 d x x− = , and solving for x, the equilibrium position is seen to be 
 

 
1 1 3

d
x= = 0.634d

+
 

 
This is a position of stable equilibrium  if 0Q > . In that case, a small displacement from 
the equilibrium position produces a net force directed so as to move Q back toward the 
equilibrium position. 
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15.15 Consider the free-body diagram of one of the spheres given  
at the right. Here, T is the tension in the string and  is the  
repulsive electrical force exerted by the other sphere. 
 

 , or 

eF

0  cos5.0yF T= ⇒ ° =Σ m g  
cos5.0

m g
T =

°
 

 
  
 
At equilibrium, the distance separating the two spheres is 

0  sin5.0 tan5.0x eF F T m g= ⇒ = ° =Σ °

2 sin5.0r L= ° . 
 

Thus,  becomes  tan5.0eF m g= °
( )

2

2 tan5.0
2 sin5.0

ek q
m g

L
= °

°
 and yields 

 

 ( ) tan5.0
2 sin5.0

e

m g
q L

k

°
= °  

 

  ( ) ( ) ( )3 2

9 2 2

0.20 10  kg 9.80 m s tan5.0
2 0.300 m sin5.0

8.99 10  N m C

−× °
= ° = 7.2 nC⎡ ⎤⎣ ⎦ × ⋅

 

mg

T+y

+x

5.0°

Fe

15.16 The required position is shown in the  
sketch at the right. Note that this places q  
closer to the smaller charge, which will  
allow the two forces to cancel. Requiring  
that 
 
  gives 
 

 

6F F= 3

( )
( )

( )
2 2

6.00 nC 3.00 nC

0.600 m
e ek q k q

xx
=

+
, or 

6.00 nC –3.00 nC

x

q

F6F3

0.600 m

( )22 .600 mx x= +2 0  

 
Solving for x gives the equilibrium position as 
 

 0.600 m

2 1
x= =

−
1.45 m  beyond the -3.00 nC charge  

15.17 Since the proton is positively charged, the direction of the electric field is  
 radial outward from the proton . Its magnitude is 
 

 
( ) ( )

( )
9 2 2 19

22 -10

8.99 10  N m C 1.60 10  C

0.51 10  m

ek q
E

r

−× ⋅ ×
= = =

×
115.5 10  N C×  
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15.18 (a) Taking to the right as  
positive, the resultant  
electric field at point P is  
given by 
 
  
 

  

1 3RE E E E= + − 2

( ) ( ) ( )

1 3 2
2 2 2
1 3 2

62 6
9

2 22

2.00 10  CN m 6.00 10  C 1.50 10  C
8.99 10  

C 0.0200 m 0.0300 m 0.0100 m

e e ek q k q k q

r r r
−− −

= + −

6

2

⎡ ⎤⎛ ⎞ ×⋅ × ×
= × + −⎢ ⎥⎜ ⎟⎝ ⎠ ⎣ ⎦

 

 
This gives 72.00 10  N CRE , 
 
or 

= + ×

R =E 72.00 10  N C  to the right×  

+6.00 µC +1.50 µC –2.00 µC

E1

E3

E2

P

1.00 cm
2.00 cm 3.00 cm

q3q1 q2

 (b) ( ) ( )6 72.00 10  C 2.00 10  N C 40.0 NRq −= = − × × = −F E , 
 
or =F 40.0 N  to the left  

15.19 We shall treat the concentrations as point charges. Then, the resultant field consists of 
two contributions, one due to each concentration. 
 
The contribution due to the positive charge at 3000 m altitude is 
 

 ( )
( )

( )
2

9 5
22 2

40.0 CN m
8.99 10  3.60 10  N C   dow nw ard

C 1000 m
e

q
E k

r+

⎛ ⎞⋅
= = × = ×⎜ ⎟⎝ ⎠

 

 
The contribution due to the negative charge at 1000 m altitude is 
 

 ( )
( )

( )
2

9 5
22 2

40.0 CN m
8.99 10  3.60 10  N C   dow nw ard

C 1000 m
e

q
E k

r−

⎛ ⎞⋅
= = × = ×⎜ ⎟⎝ ⎠

 

 
The resultant field is then 
 
  + −= + =E E E ( )57.20 10  N C dow nw ard×  
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15.20 (a) The magnitude of the force on the electron is F q E eE= = , and the acceleration is 
 

 
( ) ( )19

-31

1.60 10  C 300 N C

9.11 10  kge e

F eE
a

m m

−×
= = = =

×
13 25.27 10  m s×  

 (b) ( ) ( )13 2 80 5.27 10  m s 1.00 10  siv v at −= + = + × × = 55.27 10  m s×  

15.21 If there is zero tension in the string, the electrical force supports the entire weight of the 
foil. Thus, 
 
 F q E m g= = , 
 

so 
( ) ( )2 2

6

5.00 10  kg 9.80 m s

3.00 10  C

m g
E

q

−

−

×
= = =

×
51.63 10  N C×  

15.22 When the electron enters the electric field, it experiences a retarding force of magnitude 
eE=F , and is given an acceleration of 

 

 
( ) ( )19

14 2
-31

1.60 10  C 1000 N C
1.76 10  m s

9.11 10  kge e

eEF
a

m m

−×−
= = = − = − ×

×
 

 
From , the stopping distance is found to be 
 

 

( )2 2 2iv v a x= + ∆

( )
( )

262 2

14 2

0 3.00 10  m s
0.0256 m

2 2 1.76 10  m s
iv v

x
a

− ×−
∆ = = = =

− ×
2.56 cm  

15.23 (a) 
( ) ( )19

-27

1.60 10  C 640 N C

1.673 10  kgp

qEF
a

m m

−×
= = = =

×
10 26.12 10  m s×  

 (b) 
6

5
10 2

1.20 10  m s
1.96 10  s

6.12 10  m s
v

t
a

−×∆
= = = × = 19.6 s

×
µ  

 (c) 
( )
( )

262 2

10 2

1.20 10  m s 0

2 2 6.12 10  m s
f iv v

x
a

× −−
∆ = = =

×
11.8 m  

 (d) ( )( )22 27 61 1
1.673 10  kg 1.20 10  m s

2 2f p fKE m v −= = × × = 151.20 10  J−×  
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15.24 From the geometry of the rectangle, 
 

, 
 
and 
 

 

( ) ( )2 22 2
3 0.600 m 0.200 m 0.400 mr = + =

1 0.200 m
tan 18.4

0.600 m
φ − ⎛ ⎞= =⎜ ⎟⎝ ⎠

°

3

 

 
The resultant field at the vacant corner is 
 
  
 

 

1 2R = + +E E E E

1 3
2 2
1 3

cose e
x x

k q k q
E E

r r
φ= Σ = − −  

 

  
( )

2 9 9
9

22 2

N m 6.00 10  C 5.00 10  C
8.99 10  cos18.4 256 N C

C 0.400 m0.600 m

− −⎡ ⎤⎛ ⎞⋅ × ×
= −  

 

 

× + ° = −⎢ ⎥⎜ ⎟⎝ ⎠ ⎣ ⎦

2 3
2 2
2 3

sine e
y y

k q k q
E E

r r
φ= Σ = +  

 

  
( )

2 9 9
9

22 2

N m 3.00 10  C 5.00 10  C
8.99 10  sin18.4 710 N C

C 0.400 m0.200 m

− −⎡ ⎤⋅ × ×⎛ ⎞
+ ° =⎢ ⎥⎜ ⎟⎝ ⎠ ⎣ ⎦

= ×  

 

Thus, ( ) ( )22
755 N CR x yE E E= + = . With 0 and 0x yE E< > , the resultant field lies in 

the second quadrant. Its angle with the +x axis is 
 

 1 1 710
tan tan 110

256
y

x

E

E
θ − −⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎝ ⎠−⎝ ⎠

° , 

 
so R =E 755 N C   at 110  counterclockw ise from  +  axisx°  

E2
E3

E1
r3

φ
φ r1 = 0.600 m

q2 = 3.00 nC q3 = 5.00 nC

q1 = 6.00 nC

r2 = 0.200 m
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15.25 From the symmetry of the charge distribution, students should recognize that the 
resultant electric field at the center is 
 
 0R =E  
 
If one does not recognize this intuitively, consider: 
 
 , so 
 

 

1 2R = + +E E E E3

1 2 2 2cos30 cos30 0e e
x x x

k q k q
E E E

r r
= − = ° − ° =  

 
and 
 

 1 2 3 2 2sin30 sin30 0e e e
y y y

k q k q k q
E E E E

r r r
= + − = ° + ° − =2  

 
Thus, 2 2 0R x yE E E= + =  

30°

E2

30°

E1

E3

q q

q

15.26 If the resultant field is to be zero, the contributions 
from the two charges must equal in magnitude and 
must have opposite directions. This is only possible 
at a point on the line between the two negative 
charges. 
 
Assume the point of interest is located on the y-axis 
at . Then, for equal magnitudes, 4.0 m 6.0 my− < <

  1 2
2 2
1 2

e ek q k q

r r
=  or 

( ) ( )2 2

9.0 C 8.0 C

6.0 m 4.0 my y

µ µ
=

− +
 

 

Solving for y gives ( )8
4.0 m 6.0 m

9
y y+ = − , or y= 0.85 m+  

E16.0 m

y

+x

E2

r1

r24.0 m

q1 = –9.0 µC

q2 = –8.0 µC
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15.27 If the resultant field is zero, the  
contributions from the two charges must  
be in opposite directions and also have  
equal magnitudes. Choose the line  
connecting the charges as the x-axis, with  
the origin at the –2.5 µC charge. Then, the  
two contributions will have opposite  
directions only in the regions 0x<  and  

. For the magnitudes to be equal, the point must be nearer the smaller charge. 
Thus, the point of zero resultant field is on the x-axis at 

1.0 mx>
0x< . 

 

Requiring equal magnitudes gives 1 2
2 2
1 2

e ek q k q

r r
=  or 

( )22

2.5 C 6.0 C

1.0 md d

µ µ
=

+
. 

 

Thus, ( ) 2.5
1.0 m

6.0
d d+ =  

 
Solving for d yields 
 
 , or 1.8 md= 1.8 m  to the left of the 2.5 C chargeµ−  

E1

+x
1.0 m

q1 = –2.5 µCE2 q2 = 6.0 µC

r1 = d

r2 = 1.0 m + d

+y

15.28 The magnitude of  is three times the magnitude of  because 3 times as many lines 
emerge from  as enter . 

2q 1q

2q 1q 2 13q q=  

 (a) Then, 1 2 1 3q q =−  

 (b) 2 0q >  because lines emerge from it, 
 
 and 1 0q <  because lines terminate on it. 

15.29 Note in the sketches at the right that 
electric field lines originate on 
positive charges and terminate on 
negative charges. The density of 
lines is twice as great for the 2q−  
charge in (b) as it is for the 1q 
charge in (a). 
 

(a)

q > 0

(b)

–2q

15 
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15.30 Rough sketches for these charge configurations are shown below. 
 

(a)

+1 µC

(b)

–2 µC

(c)

+1 µC
–2 µC

 

15.31 (a) The sketch for (a) is shown at 
the right. Note that four times 
as many lines should leave  
as emerge from  although, for 
clarity, this is not shown in this 
sketch. 

1q

2q

q1 = 4q2 q2

 (b) The field pattern looks the same 
here as that shown for (a) with 
the exception that the arrows 
are reversed on the field lines. 

15.32 (a) In the sketch for (a) at 
the right, note that there 
are no lines inside the 
sphere. On the outside 
of the sphere, the field 
lines are uniformly 
spaced and radially 
outward. 

 (b) In the sketch for (b) above,  
note that the lines are  
perpendicular to the surface  
at the points where they emerge. They should also be symmetrical about the 
symmetry axes of the cube. The field is zero inside the cube. 

(a) (b)

15.33 (a)  Zero  net charge on each surface of the sphere. 

 (b) The negative charge lowered into the sphere repels 5 C to the outsideµ−  surface, 
and leaves 5 C on the insideµ+  surface of the sphere. 

16 
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 (c) The negative charge lowered inside the sphere neutralizes the inner surface, leaving 
 zero charge on the inside . This leaves 5 C on the outsideµ−  surface of the sphere. 

 (d) When the object is removed, the sphere is left with 5.00 C on the outsideµ−  
surface and  zero charge on the inside . 

15.34 (a) The dome is a closed conducting surface. Therefore, the electric field is zero  
everywhere inside it. 
 
At the surface and outside of this spherically symmetric charge distribution, the 
field is as if all the charge were concentrated at the center of the sphere. 

 (b) At the surface, 
 

 
( ) ( )

( )

9 2 2 4

22

8.99 10  N m C 2.0 10  C

1.0 m
ek q

E
R

−× ⋅ ×
= = = 61.8 10  N C×  

 (c) Outside the spherical dome, 2
ek q

E
r

= . Thus, at 4.0 mr= , 

 

 
( ) ( )

( )

9 2 2 4

2

8.99 10  N m C 2.0 10  C

4.0 m
E

−× ⋅ ×
= = 51.1 10  N C×  

15.35 For a uniformly charged sphere, the field is strongest at the surface. 
 

Thus, 2
e m ax

m ax

k q
E

R
= , 

 

or 
( ) ( )2 62

9 2 2

2.0 m 3.0 10  N C

8.99 10  N m C
m ax

m ax
e

R E
q

k

×
= = = 31.3 10  C−×

× ⋅
 

15.36 (a) 
( )( )19 6

31

1.60 10  C 3.0 10  N C

9.11 10  N
m ax

e

qEF
a

m m

−

−

× ×
= = = =

×
17 25.3 10  m s×  

 (b) Anticipating that this distance is very small, we assume the field to be uniform and 
the acceleration constant over the distance involved. Then, 
 

 
( )
( )

282 2
4

17 2

0.100 3.00 10  m s 0
8.5 10  m

2 2 5.3 10  m s
f fv v

x
a

−
⎡ ⎤× −− ⎣ ⎦∆ = = = × =

×
0.85 m m  

17 
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15.37 (a) ( )( )19 41.60 10  C 3.0 10  N CF qE −= = × × = 154.8 10  N−×  

 (b) 
15

27

4.8 10  N
1.673 10  kgp

F
a

m

−

−

×
= = =

×
12 22.9 10  m s×  

15.38 The flux through an area is cosE EA θΦ = , where θ is the angle between the direction of 
the field E and the line perpendicular to the area A. 

 (a) ( )( )5 2cos 6.2 10  N C 3.2 m cos0E EA θΦ = = × ° = 6 22.0 10  N m C× ⋅  

 (b) In this case, 90θ = °  and EΦ = 0  

15.39 The area of the rectangular plane is ( ) ( ) 20.350 m 0.700 m 0.245 mA = = . 

 (a) When the plane is parallel to the yz plane, 0θ = ° , and the flux is 
 
 ( )( )3 2cos 3.50 10  N C 0.245 m cos0E EA θΦ = = × ° = 2858 N m C⋅  

 (b) When the plane is parallel to the x-axis, 90θ = °  and EΦ = 0  

 (c) ( )( )3 2cos 3.50 10  N C 0.245 m cos40.0E EA θΦ = = × ° = 2657 N m C⋅  

15.40 In this problem, we consider part (b) first. 

 (b) Since the field is radial everywhere, the charge distribution generating it must be 
spherically sym m etric . Also, since the field is radially inward, the net charge 

inside the sphere is negative charge . 

 (a) Outside a spherically symmetric charge distribution, the field is 2
ekQ

E
r

= . Thus, just 

outside the surface where r R= , the magnitude of the field is 2
eE k Q R= , so 

 

 
( ) ( )22

8
9 2 2

0.750 m 890 N C
5.57 10  C 55.7 nC

8.99 10  N m Ce

R E
Q

k
−= = = × =

× ⋅
 

 
Since we have determined that 0Q < , we now have Q = 55.7 nC−  

18 
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15.41 cosE EA θΦ =  and  when , m axE EΦ =Φ 0θ = °  
 

Thus, 
( )

( )

5 2
, m ax , m ax

22

4 5.2 10  N m C

4 0.40 m
E EE
A dπ π

× ⋅Φ Φ
= = = = 64.1 10  N C×  

15.42 ( )22cos 4 cos0 4e
E e

k q
EA R k q

R
θ π⎛ ⎞Φ = = ° =⎜ ⎟⎝ ⎠

π  

 
( )( )9 2 2 64 8.99 10  N m C 5.00 10  CE π −Φ = × ⋅ × = 5 25.65 10  N m C× ⋅  

15.43 We choose a spherical gaussian surface, concentric with the charged spherical shell and 
of radius r. Then, ( )2 2cos 4 cos0 4EA E r r Eθ π πΣ = ° = . 

 (a) For r  (i.e., outside the shell), the total charge enclosed by the gaussian surface is 
. Thus, Gauss’s law gives 

R>
0Q q q= + − = 24 0,   or   r E Eπ = = 0 . 

 (b) Inside the shell, r , and the enclosed charge is QR< q= + . 
 

Therefore, from Gauss’s law, 2
2

0 0

4 ,   or   
4

q q
r E E

r
π

π
= = =
∈ ∈ 2

ek q

r
 

 

The field for  is r R< 2 directed radially outw ardek q

r
=E . 

15.44 Construct a gaussian surface just barely inside the surface of the conductor, where 0E = . 

Since  inside, Gauss’ law says 0E =
0

= 0
Q
∈

 inside. Thus, any excess charge residing on 

the conductor must be outside our gaussian surface (i.e., on the surface of the 
conductor). 

19 
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15.45  at all points inside the conductor, and co0E = s cos90 0θ = ° =  on the cylindrical surface. 
Thus, the only flux through the gaussian surface is on the outside end cap and Gauss’s 

law reduces to cos cap
o

Q
EA EAθΣ = =

∈
. 

 
The charge enclosed by the gaussian surface is Q Aσ= , where A is the cross-sectional 
area of the cylinder and also the area of the end cap, so Gauss’s law becomes 
 

 
o

A
EA

σ
=
∈

, or E =
o

σ
∈

 

15.46 Choose a very small cylindrical gaussian surface with one end inside the conductor. 
Position the other end parallel to and just outside the surface of the conductor. 
 
Since, in static conditions, 0E =  at all points inside a conductor, there is no flux through 
the inside end cap of the gaussian surface. At all points outside, but very close to, a 
conductor the electric field is perpendicular to the conducting surface. Thus, it is parallel 
to the cylindrical side of the gaussian surface and no flux passes through this cylindrical 
side. The total flux through the gaussian surface is then EAΦ = , where A is the cross-
sectional area of the cylinder as well as the area of the end cap. 
 
 

 The total charge enclosed by the cylindrical gaussian surface is Q Aσ= , where σ  is the 
charge density on the conducting surface. Hence, Gauss’s law gives 
 

 
0

A
EA

σ
=
∈

 or E =
o

σ
∈

 

15.47 
( )( )

( )

29 2 192
1 2

22 2 -15

8.99 10  N m C 1.60 10  C

2.00 10  m

e e
k q q k e

F
r r

−× ⋅ ×
= = = = 57.5 N

×
 

15.48 (a) 
2

1 2
2 2

e e
k q q k e

F
r r

= =  

 

 
( )( )

( )

29 2 2 19

210

8.99 10  N m C 1.60 10  C

0.53 10  m

−

−

× ⋅ ×
= =

×
88.2 10  N−×  
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 (b) ( )2
e c eF m a m v r= = , so 

 

( )( )10 8

-31

0.53 10  m 8.2 10  N

9.11 10  kge

r F
v

m

− −× ×⋅
= = =

×
62.2 10  m s×  

15.49 The three contributions to the resultant  
electric field at the point of interest are  
shown in the sketch at the right. 
 
The magnitude of the resultant field is 
 
  
 

 

1 2RE E E= − + + 3E

1 2 3 1 2
2 2 2 2 2
1 2 3 1 2 3

e e e
R e

k q k q k q q q q
E k

r r r r r r
3
2

⎡ ⎤
= − + + = − + +⎢ ⎥

⎣ ⎦
 

 

 
( ) ( ) ( )

2 9 9
9

2 22

N m 4.0 10  C 5.0 10  C 3.0 10  C
8.99 10  

C 1.2 m2.5 m 2.0 m
RE

− − 9

2

−⎡ ⎤⎛ ⎞⋅ × × ×
⎢ ⎥= × − + +⎜ ⎟⎝ ⎠ ⎢ ⎥⎣ ⎦

 

 
 24 N CRE = + , or R =E 24 N C  in the +  directionx  

–4.0 nC 3.0 nC E1
E2

E3

y

5.0 nC

r1 = 2.5 m
r2 = 2.0 m

r3 = 1.2 m

15.50 Consider the free-body diagram shown at the right. 
 

 0  cos    or   
cosy

m g
F T m g Tθ

θ
Σ = ⇒ = =  

 
 0  sin tanx eF F T m gθ θΣ = ⇒ = =  
 
Since , we have 
 

 

 eF qE=

tanqE m g θ= , or tanm g
q

E

θ
=  

 

 
( ) ( )3 2

6
3

2.00 10  kg 9.80 m s tan15.0
5.25 10  C

1.00 10  N C
q

−
−

× °
= = × 5.25 C=

×
µ  

θ

mg

Fe

T
y

x
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15.51 (a) At a point on the x-axis, the contributions by the two  
charges to the resultant field have equal magnitudes  

given by 1 2 2 ek q
E E

r
= = . 

 
The components of the resultant field are 
 

 1 2 2 2sin sin 0e e
y y y

k q k q
E E E

r r
θ θ⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 

and 
( )

1 2 2 2 2

2
cos cos cosee e

x x x

k qk q k q
E E E

r r r
θ θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞= + = + = ⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦
 

 

Since 
( )3 22 2 3 2 2

cos b r b b
r r r a b

θ
= = =

+
, the resultant field is 

 

 R =E
( )

( )3 22 2

2
  in the +  directionek q b

x
a b+

 

θ
θθ

a
b

q
E1

y

x

r
a

q
r

E2

 (b) Note that the result of part (a) may be written as ( )
( )3 22 2

e
R

k Q b
E

a b
=

+
 where 2Q q=  is 

the total charge in the charge distribution generating the field. 
 
In the case of a uniformly charged circular ring, consider the ring to consist of a 
very large number of pairs of charges uniformly spaced around the ring. Each pair 
consists of two identical charges located diametrically opposite each other on the 
ring. The total charge of pair number i is . At a point on the axis of the ring, this 
pair of charges generates an electric field contribution that is parallel to the axis and 

has magnitude 

iQ

( )3 22 2

e i
i

k bQ
E

a b
=

+
. 

 
The resultant electric field of the ring is the summation of the contributions by all 
pairs of charges, or 
 

 
( ) ( )3 2 3 22 2 2 2

e e
R i i

k b k bQ
E E Q

a b a b

⎡ ⎤
⎢ ⎥= Σ = Σ =
⎢ ⎥+ +⎣ ⎦

, 

 
where  is the total charge on the ring. 
 

 

iQ Q= Σ

R =E
( )3 22 2

  in the +  directionekQ b
x

a b+
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15.52 (a) ( )
( )

( )
( )

22 2
221.0 m s 0

44.1 m s   dow nw ard
2 2 5.00 m
y iy

y

v v
a

y

− −
= = =

∆
 

 
Since , the electrical force must be directed downward, aiding the 
gravitational force in accelerating the bead. Because the bead is positively charged, 
the electrical force acting on it is in the direction of the electric field. Thus, the field 
is directed  downward . 

ya g>

 (b) Taking downward as positive, y yF qE m g m aΣ = + = . 
 
Therefore, 
 

 
( )ym a g

q
E

−
=  

 

  
( ) ( )3 2

6
4

1.00 10  kg 44.1 9.80  m s
3.43 10  C

1.00 10  N C

−
−

⎡ ⎤× −⎣ ⎦= = × 3.43 C=
×

µ  

15.53 Because of the spherical symmetry of the 
charge distribution, any electric field 
present will be radial in direction. If a field 
does exist at distance R from the center, it is 
the same as if the net charge located within 

 were concentrated as a point charge 
at the center of the inner sphere. Charge 
located at  does not contribute to the 
field at . 

r R≤

r R>
r R=

2.00 cm

5.00 cm

4.00 cm

+8.00

–4.00 (a) At 1.r , 00 cm= 0E =  since static 
electric fields cannot exist within 
conducting materials. 

 (b) The net charge located at 3.00 cmr≤  is 8.00 CQ µ= + . 
 
Thus, at r , 
 

 

3.00 cm=

2
ekQ

E
r

=  

 

  
( ) ( )

( )
9 2 2 6

22

8.99 10  N m C 8.00 10  C

3.00 10  m

−

−

× ⋅ ×
= =

×
( )77.99 10  N C  outw ard×  
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 (c) At 4. , 50 cmr= 0E =  since this is located within conducting materials. 

 (d) The net charge located at 7.00 cmr≤  is 4.00 CQ µ= + . 
 
Thus, at , 
 

 

7.00 cmr=

2
ekQ

E
r

=  

 

  
( ) ( )

( )
9 2 2 6

22

8.99 10  N m C 4.00 10  C

7.00 10  m

−

−

× ⋅ ×
= =

×
( )67.34 10  N C  outw ard×  

15.54 The charges on the spheres will be equal in magnitude and opposite in sign. From 
2 2

eF k q r= , this charge must be 
 

 
( ) ( )242

3
9 2 2

1.00 10  N 1.00 m
1.05 10  C

8.99 10  N m Ce

F r
q

k
−

×⋅
= = = ×

× ⋅
 

 
The number of electrons transferred is 
 

 
3

15
19

1.05 10  C
6.59 10

1.60 10  C

q
n

e

−

−

×
= = = ×

×
 

 
The total number of electrons in 100-g of silver is 
 

 ( )23 25electrons atom s 1 m ole
47 6.02 10  100 g 2.62 10

atom m ole 107.87 g
N

⎛ ⎞⎛ ⎞ ⎛ ⎞= × =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
×  

 
Thus, the fraction transferred is 
 

 
15

25

6.59 10
2.62 10

n
N

×
= =

×
102.51 10−×  (i.e., 2.51 out of every 10 billion). 

15.55 cosE EA θΦ =  
 
 ( ) ( ) ( )[ ]42.00 10  N C 6.00 m 3.00 m cos10.0= × ° = 5 23.55 10  N m C× ⋅  
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15.56 (a) The downward electrical force acting on the ball is 
 
 ( ) ( )6 52.00 10  C 1.00 10  N C 0.200 NeF qE −= = × × = . 
 
The total downward force acting on the ball is then 
 
 ( ) ( )-3 20.200 N + 1.00 10  kg 9.80 m s 0.210 NeF F m g= + = × = . 
 
Thus, the ball will behave as if it was in a modified gravitational field where the 
effective acceleration of gravity is 
 

 2
-3

0.210 N
" " 210 m s

1.00 10  kg
F

g
m

= = =
×

 

 
The period of the pendulum will be 
 

 2

0.500 m
2 2

" " 210 m s
L

T
g

π π= = = 0.307 s  

 (b) Yes . The force of gravity is a significant portion of the total downward force acting 
on the ball. Without gravity, the effective acceleration would be 
 

 2
-3

0.200 N
" " 200 m s

1.00 10  kg
eF

g
m

= = =
×

, 

 

giving 2

0.500 m
2 0314 s

200 m s
T π= = . , 

 
a 2.28% difference from the correct value with gravity included. 
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15.57 The sketch at the right gives a free-body diagram of the positively  
charged sphere. Here, 2 2

1 eF k q r=  is the attractive force exerted  
by the negatively charged sphere and 2F qE=  is exerted by the  
electric field. 
 

 0  cos10    or   
cos10y

m g
F T m g TΣ = ⇒ ° = =

°
 

 

 
2

2 1 20  + sin10    or   tan10e
x

k q
F F F T qE m g

r
Σ = ⇒ = ° = + °  

 
At equilibrium, the distance between the two spheres is ( )2 sin10r L= ° . Thus, 
 

 
( )

( ) ( )
( )[ ]

( ) ( )
( )

2

9 2 2 8 3 2

2 8

tan10

4 sin10

8.99 10  N m C 5.0 10  C 2.0 10  kg 9.80 m s tan10
,

5.0 10  C4 0.100 m sin10

ek q m g
E

qL

− −

−

°
= +

°

× ⋅ × ×
= +

×°

°

 

 
or the needed electric field strength is E = 54.4 10  N C× . 

mg

T
10°

y

x
F2F1

15.58 As shown in the sketch, the electric field  
at any point on the x-axis consists of two  
parts, one due to each of the charges in the  
dipole. 
 

 2 2
e ek q k q

E E E
r r+ −
+ −

= − = −  

 

 
( ) ( )

( ) ( )
( ) ( ) ( )

2 2

2 2 2 2 2 2

4e e
e e

k q k q x a x a ax
E k q k q

x a x a x a x a x a
2

⎡ ⎤⎡ ⎤+ − − ⎢ ⎥= − = =⎢ ⎥
⎢ ⎥− + − + −⎣ ⎦ ⎣ ⎦

 

 

Thus, if , this gives 2x a>> 2
4

4
e

ax
E k

E+E–

a a

y

+q

–q

r–

r+

x

3

4 ek qa

x
 q

x
⎡ ⎤≈ =⎢ ⎥⎣ ⎦
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15.59 (a) Consider the free-body diagram for the ball given in the sketch. 
 

 0  sin37.0    or   
sin37.0

x
x x

qE
F T qE TΣ = ⇒ ° = =

°
 

 
and 
 
  
 

Thus, 

0  cos37.0    or   cot37.0y y y xF qE T m g qE qE m gΣ = ⇒ + ° = + ° =

( )( )
( )[ ]

3 2

5

1.00 10  kg 9.80 m s

cot37.0 5.00 3.00 cot37.0 10  N Cy x

m g
q

E E

−×
= =

+ ° + ° ×
 

 
   81.09 10  C−= × = 10.9 nC

mg

T
37.0°

y

x
qEx

qEy

 (b) From , we found that 0xFΣ =
sin37.0

xqE
T =

°
. 

 

Hence, 
( ) ( )8 51.09 10  C 3.00 10  N C

sin37.0
T

−× ×
= =

°
35.44 10  N−×  
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Answers to Even Numbered Conceptual Questions 

 2. To avoid making a spark. Rubber-soled shoes acquire a charge by friction with the floor 
and could discharge with a spark, possibly causing an explosive burning situation, where 
the burning is enhanced by the oxygen. 

 4. Electrons are more mobile than protons and are more easily freed from atoms than are 
protons. 

 6. The tumbling action of the clothes in the dryer causes them to acquire static charges by 
friction effects. The hot, dry air in the dryer is a good insulator, so these static charges are 
not quickly dissipated. 

 8. So the electric field from the test charge does not distort the electric field you are trying to 
measure by moving the charges that create it. 

10. She is not shocked. She becomes part of the dome of the Van de Graaff, and charges flow 
onto her body. They do not jump to her body via a spark, however, so she is not shocked. 

12. An electric field once established by a positive or negative charge extends in all directions 
from the charge. Thus, it can exist in empty space if that is what surrounds the charge. 

14. No. Life would be no different if electrons were positively charged and protons were 
negatively charged. Opposite charges would still attract, and like charges would still 
repel. The designation of charges as positive and negative is merely a definition. 

16. The antenna is similar to a lightning rod and can induce a bolt to strike it. A wire from the 
antenna to the ground provides a pathway for the charges to move away from the house 
in case a lightning strike does occur. 

18. Lightning usually strikes the tallest object in the affected area. If you are under the tree, 
the charges passing though it and the earth can also cause damage to you. 
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Answers to Even Numbered Problems 

 2. (a) ( )73.7 10  N   repulsion−×  
(b) it is reduced to one fourth its previous value 

 4.  91.86 10  kg−×

 6. 92.25 10  N m−×  

 8. 5.08 m 

10. ( )6 46.7 N  leftF = , ( )1.5 157 N  rightF = , ( )2 111 N  leftF− =  

12.  73.89 10  N  at 11.3  below   axisx−× ° +

14. , stable if third bead has positive charge 0.634x = d

16. 1.45 m beyond the –3.00 nC charge 

18. (a) 72.00 10  N C  to the right×  (b) 40.0 N to the left 

20. (a) 13 25.27 10  m s×   (b) 55.27 10  m s×  

22. 2.56 cm 

24. 755 N C  at 110  CCW  from   axisx° +  

26.  at 0.85 my= +

28. (a) 1 2 1 3q q =−   (b)  2 10, 0q q> <

34. (a) zero   (b) 61.8 10  N C×    (c) 51.1 10  N C×  

36. (a) 17 25.3 10  m s×   (b) 0.85 mm 

38. (a) 6 22.0 10  N m C× ⋅   (b) 0 

40. (a) –55.7 nC 
(b) negative, with a spherically symmetric distribution 

42. 5 25.65 10  N m C× ⋅  

48. (a)    (b) 88.2 10  N−× 62.2 10  m s×  

29 



C H A P T E R  1 5  

50. 5.25 Cµ  

52. (a) downward   (b) 3.43 Cµ  

54.  102.51 10−×

56. (a) 0.307 s 
(b) Yes, the absence of gravity produces a 2.28% difference.
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