
CHAPTER 26 
Quick Quizzes 

1. (b). Assuming that your on-duty time was kept on Earth, you will be pleasantly surprised 
with a large paycheck. Less time will have passed for you in your frame of reference than 
for your employer back on Earth. 

2. The answers to both of these questions is no. Both your clothing and your sleeping cabin 
are at rest in your reference frame, thus, they will have their proper length. There will be 
no change in measured lengths of objects within your spacecraft. Another observer, on a 
spacecraft traveling at a high speed relative to yours, will measure you as thinner (if your 
body is oriented in a direction perpendicular to the direction of motion relative to him) or 
will claim that you are able to fit into a shorter sleeping cabin (if your body is oriented in a 
direction parallel to your direction of travel relative to the other observer). 

3. (a), (e). The outgoing rocket will appear to have a shorter length and a slower clock. The 
answers are the same for the incoming rocket. Length contraction and time dilation 
depend only on the magnitude of the relative velocity, not on the direction. 

4. (a) False  (b) False (c) True (d) False 

A reflected photon does exert a force on the surface. Although a photon has zero mass, a 
photon does carry momentum. When it reflects from a surface, there is a change in the 
momentum, just like the change in momentum of a ball bouncing off a wall. According to 
the momentum interpretation of Newton’s second law, a change in momentum results in 
a force on the surface. This concept is used in theoretical studies of space sailing. These 
studies propose building nonpowered spacecraft with huge reflective sails oriented 
perpendicularly to the rays from the Sun. The large number of photons from the Sun 
reflecting from the surface of the sail will exert a force which, although small, will provide 
a continuous acceleration. This would allow the spacecraft to travel to other planets 
without fuel. 

5. (a). The downstairs clock runs more slowly because it is closer to the Earth and hence 
experiences a stronger gravitational field than the upstairs clock does. 
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Problem Solutions 

26.1 (a) As the plane flies from O to B along path I, ground air wind= +v v v  gives 
 

 m m
100 20.0 120 

s sgroundv = + =
m
s

, and 

 

 
3200 10  m

120 m sO B
ground

L
t

v
×

= = = 31.67 10  s×  

vground

vwindvair

  For the plane following path II from O to A, ground air wind= +v v v  with 
 perpendicular to each other. The Pythagorean theorem then yields 

 

 

 and ground windv v

2 2
2 2 m m

100 20.0 98.0 
s sground air windv v v ⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

m
s

, 

 

and 
3200 10  m

98.0 m sO A
ground

L
t

v
×

= = = 32.04 10  s×  

vground

vwind

vair

 (b) For the return flight along path I, ground air wind= +v v v  gives 
 

 m m
100 20.0 80.0 

s sgroundv = − =
m
s

, 

 

so  
3200 10  m

80.0 m sBO
ground

L
t

v
×

= = = 32.50 10  s×  

vgroundvwind

vair

  As the plane flies from A to O along path II,  are again 
perpendicular to each other. The Pythagorean theorem gives 
 

 

 and ground windv v

2 2 m
98.0 

sground air windv v v= − = , 

 

and AO
ground

L
t

v
= = 32.04 10  s×  

vground

vwind

vair
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 (c) The total times of flight are 
 
 , 
 
and 

3 3
I 1.67 10  m 2.50 10  m 4.17 10  mO B BOt t t= + = × + × = × 3

( )3 3
II 2 2.04 10  s 4.08 10  sO A AOt t t= + = × = ×  

 
The difference in total flight times is I IIt t t∆ = − = 90 s  

26.2 (a) 
( )( )

( )

242

33 8

2 28 m 3.0 10  m s2

3.0 10  m s
net

Lv
t

c

×
∆ = = = 151.9 10  s−×

×
 

 (b) Since a fringe shift occurs for every half-wavelength change made in the optical 
path length, the number of fringe shifts expected is 
 

 ( )2

2
netnet c td

N
λ λ

∆∆
= =  

 

  
( ) ( )8 15

2.0 fringe shifts
9

2 3.0 10  m s 1.9 10  s

550 10  m

−

−

× ×
= =

×
 

26.3 
( ) ( )2 2

3.0 s

1-0.801

p
p

t
t t

v c
γ

∆
∆ = ∆ = = =

−
5.0 s  

26.4 The contracted length is ( )21pL L v c= − , so 
 

 ( )
2

2 0.500 m
1 1

1.00 mpv c L L c ⎛ ⎞= − = − = 0.866c⎜ ⎟⎝ ⎠  

26.5 If the frequency of a clock is one half its rest frequency, then the period of vibration is 
double the period when at rest, or 2 pt t∆ = ∆ . But, pt tγ∆ = ∆  where 
 

 
( )2
1

1 v c
γ =

−
. Therefore, 2γ =  

 

and 2

1 1
=1 1

4
v c c

γ
= − = −

3
2

c  
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26.6 (a) The time for 70 beats, as measured by the astronaut and any observer at rest with 
respect to the astronaut, is 1.0 m inpt∆ = . The observer in the ship then measures a 
rate of 70 beats m in . 

 (b) The observer on Earth moves at 0.90v c=  relative to the astronaut and measures the 
time for 70 beats as 
 

 
( ) ( )2 2

1.0 m in
2.3 m in

1-0.901

p
p

t
t t

v c
γ

∆
∆ = ∆ = = =

−
 

 

This observer then measures a beat rate of 
70 beats
2.3 m in

= 31 beats m in  

26.7 (a) 
( ) ( )

8

2 2

2.6 10  s

1- 0.981

p
p

t
t t

v c
γ

−∆ ×
∆ = ∆ = = =

−

71.3 10  s−×  

 (b) ( ) ( ) ( )8 70.98 3.0 10  m s 1.3 10  sd v t −⎡ ⎤= ∆ = × × =⎣ ⎦ 38 m  

 (c) ( ) ( ) ( )8 80.98 3.0 10  m s 2.6 10  spd v t −⎡ ⎤= ∆ = × × =′ ⎣ ⎦ 7.6 m  

26.8 (a) As measured by observers in the ship (i.e., at rest relative to the astronaut), the time 
required for 75.0 pulses is 1.00 m inpt∆ = . 
 
The time interval required for 75.0 pulses as measured by the Earth observer is 

( )2
1.00 m in

1 0.500
pt tγ∆ = ∆ =

−
, so the Earth observer measures a pulse rate of 

 

 
( )275.0 1 0.50075.0

1.00 m in
rate

t

−
= = =

∆
65.0 m in  

 (b) If , then 0.990v c=
( )2

1.00 m in

1 0.990
pt tγ∆ = ∆ =

−
, 

 
and the pulse rate observed on Earth is 
 

 
( )275.0 1 0.99075.0

1.00 m in
rate

t

−
= = =

∆
10.6 m in  
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  That is, the life span of the astronaut (reckoned by the total number of his 
heartbeats) is much longer as measured by an Earth clock than by a clock aboard 
the space vehicle. 

26.9 As seen by an Earth based observer, the time for the muon to travel 4.6 km is 
 

 ( )
3

8

4.6 10  m

0.99 3.0 10  m s

d
t

v
×

∆ = =
×

 

 (a) In the rest frame of the muon, this time (the proper lifetime) is 
 

 ( ) ( )
3

2 6
8

4.6 10  m
1 0.99 2.2 10  s

0.99 3.0 10  m s
p

t
t

γ
−

⎡ ⎤∆ ×
∆ = = − = × =⎢ ⎥

×⎢ ⎥⎣ ⎦
2.2 sµ  

 (b) The muon is at rest in “its frame” and thus travels zero distance as measured in this 
frame. However, during this time interval, the muon sees Earth move toward it by a 
distance of 
 
 ( ) ( ) ( )8 60.99 3.0 10  m s 2.2 10  spd v t −⎡ ⎤= ∆ = × ×⎣ ⎦  

 
  26.5 10  m= × = 0.65 km  

26.10 Length contraction occurs only in the dimension parallel to the 
motion. 

Rest Frame
of Box

L3

v = 0.80c

L1

L2

 (a) The sides labeled 2 3  in the figure at the right are 
unaffected, but the side labeled  will appear contracted 
giving the box a 

 and L L

1L
rectangular  shape. 

 (b) The dimensions of the box, as measured by the observer  
moving at 0.80v c=  relative to it, are 
 
 2 2pL L= = 2.0 m , 3 3pL L= = 2.0 m , and 
 

 ( ) ( ) ( )2 2
1 1 1 2.0 m 1 0.80pL L v c= − = − = 1.2 m  
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26.11 The proper length of the faster ship is three times that of the slower ship ( )3pf psL L= , yet 

they both appear to have the same contracted length, L. Thus, 
 

 ( ) ( ) ( )22
1 3 1ps s ps fL L v c L v c= − = − , or ( ) ( )22

1 9 9s fv c v c− = −  

 

This gives 
( ) ( )

2 28 8 0.350

3 3
s

f

c v c
v c

+ +
= = = 0.950c  

26.12  ( )78

0.278 m skm
1000 9.27 10

h 1 km h 3.00 10  m s
c

v c−⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

×  

 
After t∆  has elapsed on the Earth-based clock, the time seen as elapsed on the other 
clock by observers moving with it is 
 

 ( )
2

2 1
1 1

2p

t v
t t v c t

cγ
⎡ ⎤∆ ⎛ ⎞∆ = = ∆ − ≈ ∆ −⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

 

 
Thus, the second clock seems slow by 
 

 
2 21

1 1
2 2p

v t
t t t

c c

⎡ ⎤⎛ ⎞ ∆⎛ ⎞ ⎛ ⎞∆ = ∆ − ∆ ≈ ∆ − − =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

v  

 
Hence, if , 
 

 

1 h 3600 st∆ = =

( ) ( )27 9 1.55 ns
3600 s

9.27 10 1.55 10  s
2

− −∆ = × = × =  

26.13 The trackside observer sees the supertrain length-contracted as 
 

 ( ) ( ) ( )2 21 100 m 1 0.95 31 mpL L v c= − = − =  
 
The supertrain appears to fit in the tunnel  
 
with  50 m 31 m− = 19 m  to spare . 
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26.14 Note: Excess digits are retained in some steps given 
below to more clearly illustrate the method of 
solution. 
 
We are given that , and 2.00 mL= 30.0θ = °  (both 
measured in the observer’s rest frame). The 
components of the rod’s length as measured in the 
observer’s rest frame are 
 
 ( )cos 2.00 m cos30.0 1.732 mxL L θ= = ° = , 
 
and, ( )sin 2.00 m sin30.0 1.00 myL L θ= = ° =  

Observer’s rest frame
rod’s rest frame

v = 0.995 c

θp

Lp

Lpx

LpyLy

Lx

 The component of length parallel to the motion has been contracted, but the component 
perpendicular to the motion is unaltered. Thus, 1.00 mpy yL L= =  and 
 

 
( ) ( )2 2

1.732 m
17.34 m

1 0.9951

x
px

L
L

v c
= = =

−−
 

 (a) The proper length of the rod is then 
 

 ( ) ( )2 22 2 17.34 m 1.00 mp px pyL L L= + = + = 17.4 m  

 (b) The orientation angle in the rod’s rest frame is 
 

 1 1 1.00 m
tan tan

17.34 m
py

p
px

L

L
θ − −

⎛ ⎞ ⎛ ⎞= = = 3.30°⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

26.15 The centripetal acceleration is provided by the gravitational force, so 
 

 
2

2

m v GM m
r r

= , giving Cooper’s speed as 
1/21/2

( )
GM GM

v
r R h

⎡ ⎤⎡ ⎤= = ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦
 

 

or 
( )( )

( )

1
11 2 2 24 2

3
6 6

6.67 10  N m kg 5.98 10  kg
7.82 10  m s

6.37 10 0.160 10  m
v

−⎡ ⎤× ⋅ ×
⎢ ⎥= =

× + ×⎢ ⎥⎣ ⎦
×  

 
Then the time period of one orbit is, 
 

 
( )6

3
3

2 6.53 10  m2 ( )
5.25 10  s

7.82 10  m s

R h
T

v

ππ ×+
= = = ×

×
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 (a) The time difference for 22 orbits is 
 

 ( ) ( )1/22 2( 1) 1 1 22p pt t t v c Tγ
−⎡ ⎤∆ − ∆ = − ∆ = − −⎣ ⎦

 

 

 ( )
2

2

1
1 1 2

2p

v
t t T

c

⎛ ⎞
∆ − ∆ ≈ + −⎜ ⎟⎝ ⎠

2  

 

  ( )
23

3
8

1 7.82 10  m /s
22 5.25 10  s

2 3.00 10  m /s

⎛ ⎞×
= ×⎜ ⎟×⎝ ⎠

= 39.2 sµ  

 (b) For one orbit, 39.2 s
1.78 s

22pt t
µ

µ∆ − ∆ = =  

 
The press report is accurate to one digit  

26.16 (a) 
( ) ( )2 2

15.0 yr

1 0.7001

p
p

t
t t

v c
γ

∆
∆ = ∆ = = =

−−
21.0 yr  

 (b) ( ) ( ) ( ) ( ) ( )0.700 21.0 yr 0.700 1.00 ly yr 21.0 yrd v t c ⎡ ⎤= ∆ = = =⎡ ⎤⎣ ⎦ ⎣ ⎦ 14.7 ly  

 (c) The astronauts see Earth flying out the back window at 0.700c: 
 
 ( ) ( ) ( ) ( ) ( )0.700 15.0 yr 0.700 1.00 ly yr 15.0 yrpd v t c ⎡ ⎤= ∆ = = =⎡ ⎤⎣ ⎦ ⎣ ⎦ 10.5 ly  

 (d) Mission control gets signals for 21.0 yr while the battery is operating, and then for 
14.7 yr after the battery stops powering the transmitter, 14.7 ly away: 
21.0 yr 14.7 yr+ = 35.7 yr  

26.17 The momentum of the electron is 
 

 
( ) ( )

( )
( )

31
30

2

9.11 10  kg 0.90
1.9 10  kg

1 0.90
e e

c
p m vγ

−
−

×
= = = ×

−
c 

 
If the proton has the same momentum, then 
 

 
( )

( )
( )

27
30

2

1.67 10  kg
1.9 10  kg

1
p p

v
p m v

v c
γ

−
−

×
= = = ×

−
c, 
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 which reduces to ( ) ( ) ( )228.9 10 1v c v c× = −  and yields 
 
 ( ) ( ) ( )3 3 81.1 10 1.1 10 3.0 10  m sv c− −= × = × × = 53.3 10  m s×  

26.18 The momentum of the electron is 
( )

( )

31

2

9.11 10  kg

1
e e

v
p m v

v c
γ

−×
= =

−
. 

 (a) When , 
 

 

0.010v c=

( ) ( )( )
( )

31 8

2

9.11 10  kg 0.010 3.0 10  m s

1 0.010
ep

−× ×
= =

−

242.7 10  kg m s−× ⋅  

 (b) If 0.50v c= , ep = 221.6 10  kg m s−× ⋅ , and 

 (c) When 0.90v c= , ep = 225.6 10  kg m s−× ⋅  

26.19 Momentum must be conserved, so the momenta of the two fragments must add to zero. 
Thus, their magnitudes must be equal, or 
 

 
( ) ( )

( )
( )

28
28

2 1 1 1 1 2

2.50 10  kg 0.893
4.96 10  kg

1 0.893

c
p p m v cγ

−
−

×
= = = = ×

−
 

 

For the heavier fragment, 
( )

( )
( )

27
28

2

1.67 10  kg
4.96 10  kg

1

v
c

v c

−
−

×
= ×

−
 

 

which reduces to ( ) ( )23.37 1v c v c= −  and yields v= 0.285c  

26.20 Using the relativistic form, 
( )21

m v
p m v

v c
γ= =

−
, 

 
we find the difference  from the classical momentum, : 
 
 

p∆ m v

( 1)p m v m v m vγ γ∆ = − = −  
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 (a) The difference is 1.00% when ( 1) 0.0100m v m vγ γ− = : 
 

 
( )

( ) (2 2

2

1 1
   1 0.990

0.990 1
v c

v c
γ = = ⇒ − =

−
)  or v= 0.141c  

 (b) The difference is 10.0% when ( 1) 0.100m v m vγ γ− = : 
 

 
( )

( ) (2 2

2

1 1
   1 0.900

0.900 1
v c

v c
γ = = ⇒ − =

−
)  or v= 0.436c  

26.21 Taking toward the right as the positive direction, with pLv =  velocity of proton relative 
to laboratory,  velocity of proton relative to electron, and  velocity of electron 
relative to laboratory, the relativistic velocity addition equation gives 
 

 

pev = eLv =

( )( )
pe eL

pL
pe eL

2 2

0.70 0.90

0.70 0.90
1 1

v v c c
v

v v c c
c c

+ − +
= = = 0.54c

⋅ −
+ +

+  

26.22 Taking toward the right as positive, with LRv =  velocity of L relative to R,  velocity 
of L relative to Earth,  velocity of R relative to Earth, and  velocity of 
Earth relative to R, the relativistic velocity addition equation gives 
 

 

LEv =

REv = ER REv v= − =

( )
( ) ( )

LE ER
LR

LE ER
2 2

0.70 0.70

0.70 0.701 1

c cv v
v

v v c c
c c

− + −+
= = = 0.94c

⋅ − −+ +

−  
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26.23  velocity of Enterprise  
 relative to Observers on  
 Earth. 
 

 velocity of Klingon ship  
 relative to Observers on  
 Earth. 
 

velocity of Observers on Earth relative to Klingon ship 
 
The relativistic velocity addition equation yields 
 

 

EOv =

KOv =

OK KOv v= − =

( )
( ) ( )

EO OK
EK

EO O K
2 2

0.900 0.800

0.900 0.8001 1

c cv v
v

v v c c
c c

+ −+
= = = 0.357c

⋅ −+ +

+  

vEO = 0.900 c
vKO = 0.800 c

26.24 With  velocity of rocket relative to ship, RSv = REv =  velocity of rocket relative to Earth, 
SE  velocity of ship relative to Earth, and ESv = SEv v= − =  velocity of Earth relative to ship, 

the relativistic velocity addition equation gives 
 

 ( )
( ) ( )

RE ES
RS

RE ES
2 2

0.950 0.750

0.950 0.7501 1

c cv v
v

v v c c
c c

+ −+
= = = 0.696c

⋅ −+ +

+  

26.25 Taking toward the right as positive, with BAv =  velocity of B relative to A,  velocity 
of rocket relative to A,  velocity of rocket relative to B, and velocity of 
B relative to rocket, the relativistic velocity addition equation gives 
 

 

RAv =

RBv = BR RBv v= − =

( ) ( )
( ) ( )

BR RA
BA

BR RA
2

2

0.95 0.92

0.95 0.921 1

c cv v
v

v v c c
c c

− − ++
= = = 0.998c

⋅ ⎡ ⎤− −⎣ ⎦+ +

+  
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26.26 First, determine the velocity of the pulsar relative to the rocket. 
 
Taking toward the Earth as positive, with PRv =  velocity of pulsar relative to rocket, 

 velocity of pulsar relative to Earth, REvPEv = =  velocity of rocket relative to Earth, and 
 velocity of Earth relative to rocket, the relativistic velocity addition 

equation gives 
 

 

ER REv v= − =

( )
( ) ( )

PE ER
PR

PE ER
2 2

0.950 0.995
0.99987

0.950 0.9951 1

c cv v
v c

v v c c
c c

⎡ ⎤+ − −+ ⎣ ⎦= = =⋅
+ +

 

 
The period of the pulsar in its own reference frame is 0.100 spt∆ = , and its period in the 
rocket’s frame of reference is 
 

 ( )
( ) ( )2 2

PR

0.100 s
6.20 s

1 0.999871

p
p

t
t t

v c
γ

∆
∆ = ∆ = = =

−−
, 

 

and the frequency in the rocket’s frame is 1 1
6.20 s

f
t

= = =
∆

0.161 H z  

26.27 The instructors measure a proper time of 50 m inpt∆ =  on their clock. 

 (a) First determine the velocity of the students relative to the instructors (and hence 
relative to the official clock). Taking toward the right in Figure P26.27 as the 
positive direction, with SIv =  velocity of students relative to instructors, SEv =  
velocity of students relative to Earth, IEv =  velocity of instructors relative to Earth, 
and  velocity of Earth relative to instructors, we find 
 

 

EI IEv v= − =

( )
( ) ( )

SE EI
SI

SE EI
2 2

0.60 0.28
0.385

0.60 0.281 1

c cv v
v c

v v c c
c c

+ −+
= = =⋅ −+ +

 

 
The elapsed time on the student’s clock is then 
 

 
( ) ( )2 2

SI

50 m in

1- 0.3851

p
p

t
t t

v c
γ

∆
∆ = ∆ = = =

−
54 m in  

 (b) The elapsed time on Earth is 
 

 
( ) ( )2 2

EI

50 m in

1 1 0.28

p
p

t
t t

v c
γ

∆
∆ = ∆ = = =

− − −
52 m in  
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26.28 (a) ( ) ( )22 27 8
-13

1 M eV
1.67 10  kg 3.00 10  m s

1.60 10  JRE m c − ⎛ ⎞
= = × × = 939 M eV⎜ ⎟⎝ ⎠×

 

 (b) 
( )

2

2
1

R
R

E
E m c E

v c
γ γ= = =

−
 

 

 
( )

3

2

939 M eV
3.01 10  M eV

1 0.950
= = × = 3.01 GeV

−
 

 (c) 3 33.01 10  M eV 939 M eV 2.07 10  M eVRKE E E= − = × − = × = 2.07 GeV  

26.29 If , then RKE E= ( )1R RKE E E E Eγ= − = − = R  giving 
( )2
1

2
1 v c

γ = =
−

 

 
Therefore, 21 1 3 4v c cγ= − = = ( )3 2c  

26.30 (a) From ( )22
RE pc E= + 2 , the momentum is 

 

 
( ) ( ) ( )2 222 2 2R R RR KE E E KE KE EE E

p
c c c

+ − +−
= = =  

 

or 
( ) ( ) ( )250.0 GeV 2 50.0 GeV 0.939 GeV

p
c

+
= =

GeV
50.9 

c
 

 (b) R RE E KE Eγ= = + , so 
( )2
1 50.0 GeV

1 1 54.2
0.939 GeV1 R

KE
Ev c

γ = = + = + =
−

 

 

Thus, ( )221 1 1 1 54.2v c cγ= − = − = 0.9998c  

339 



C H A P T E R  2 6  

26.31 The kinetic energy acquired by the electron equals its loss of potential energy, or 
( ) ( )20000 V 20.0 keVKE q V e= ∆ = = . The rest energy of an electron is 

, so 0.511 M eV 511 keVRE = = ( )1R RKE E E Eγ= − = −  gives 
 

 
( )2
1 20.0 keV

1 1 104
511 keV1 R

KE
Ev c

γ = = + = + =
−

. , 

 

and ( )221 1 1 1 1.04v c cγ= − = − = 0.272c  

26.32 The energy input to the electron will be ( )f i f i RW E E Eγ γ= − = − , 

 

or 
( ) ( )2 2

1 1

11
R

if

W E
v cv c

⎛ ⎞
⎜ ⎟= −⎜ ⎟

−⎜ ⎟−⎝ ⎠

 where 0.511 M eVRE =  

 (a) If 0.900fv c=  and , then 
 

 

0.500iv c=

( ) ( )
( )

2 2

1 1
0.511 M ev

1 0.900 1 0.500
W

⎛ ⎞
= − = 0.582 M eV⎜ ⎟
⎜ ⎟− −⎝ ⎠

 

 (b) When 0.990fv c=  and 0.900iv c= , we have 
 

 
( ) ( )

( )
2 2

1 1
0.511 M ev

1 0.990 1 0.900
W

⎛ ⎞
= − = 2.45 M eV⎜ ⎟
⎜ ⎟− −⎝ ⎠

 

26.33 When a cubical box moves at speed v, the dimension parallel to the motion is length 
contracted and other dimensions are unaffected. If all edges of the box had length  
when at rest, the volume of the moving box is 
 

 

pL

( ) ( ) ( ) ( )2 2
1 1p p p pV L L L v c V v c⎛ ⎞= − = −⎝ ⎠  

 
The relativistic density is 
 

 
( ) ( )

2

2 2 3 2

8.00 g

1.00 cm 1 0.900

RE m c m
c V c V V

= = = =
−

318.4 g cm  
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26.34 Let  be the mass of the fragment moving at 1m 1 0.868v c=  and  be the mass moving at 
. 

 
From conservation of mass-energy, 
 

 

2m

2 0.987v c=

( ) ( )

2 2
21 2

2 21 0.868 1 0.987

m c m c
E m= +

− −
c=

2

 

 
giving  (1) 
 
The momenta of the two fragments must add to zero, so the magnitudes must be equal, 
giving  or 

27
1 22.01 6.22 3.34 10  kgm m −+ = ×

1p p= 1 1 1 2 2 2m v m vγ γ= . This yields 
 
 ( ) ( )1 22.01 0.868 6.22 0.987m c m= c 2m, or 1 3.52m =  (2) 
 
Substituting equation (2) into (1) gives 
 
 , or ( ) 27

27.07 6.22 3.34 10  kgm −+ = × 2m = 282.51 10  kg−×  
 
Equation (2) then yields ( )28

1 3.52 2.51 10  kgm −= × = 288.84 10  kg−×  

26.35 The total kinetic energy equals the energy of the original photon minus the total rest 
energy of the pair, or 
 
 ( )2 3.00 M eV 2 0.511 M eVRKE E Eγ= − = − = 1.98 M eV  

26.36 (a) The energy of the original photon must equal the total energy (total kinetic energy 
plus total rest energy) of the pair. 
 
Thus, ( )2 2.50 M eV 2 0.511 M eVtotal RE KE Eγ = + = + = 3.52 M eV  

 (b) 
13

-34

3.52 M eV 1.60 10  J
6.63 10  J s 1 M eV

E
f

h
γ

−⎛ ⎞×⎛ ⎞
= = = 208.50 10  H z×⎜ ⎟ ⎜ ⎟⎝ ⎠× ⋅ ⎝ ⎠
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26.37 To produce minimum energy photons, both members of the proton-antiproton pair 
should be at rest (i.e., have zero kinetic energy) just before annihilation. Then, the total 
momentum is zero both before and after annihilation. This means that the two photons 
must have equal magnitude but oppositely directed momenta, and hence, equal 
energies. 
 
From conservation of energy, ( )2 2 0RE Eγ = +  or 939 M eVRE Eγ = =  for each photon. 
 

 
13

-34

939 M eV 1.60 10  J
6.63 10  J s 1 M eV

E
f

h
γ

−⎛ ⎞×
= = = 232.27 10  H z×⎜ ⎟× ⋅ ⎝ ⎠

 

 

and 
8

15
23

3.00 10  m s
1.32 10  m =

2.27 10  H z
c
f

λ −×
= = = ×

×
1.32 fm . 

26.38 The total momentum is zero both before and after the annihilation. Thus, the momenta 
of the two photons must have equal magnitudes and be oppositely directed. Since 
E p cγ γ= , the photon energies are also equal and conservation of energy gives 
 
 ( )2 2 2R RE KE Eγ Eγ= + = , or RE Eγ γ= . 
 

 
( ) ( )2 2

0.511 M eV

1- 0.601

R
R

E
E E

v c
γ γ= = = = 0.64 M eV

−
 

 

 M ev
0.64 

E
p

c c
γ

γ = =  

 

  
( )( )13

8

0.64 M ev 1.60 10  J1 M eV

3.00 10  m s

−×
= =

×
223.4 10  kg m s−× ⋅  

26.39 , 
 

so 

( )1R RKE E E Eγ= − = −

( )2
1

1
1R

KE
E v c

γ = + =
−

 giving 
( )2

1
1

1 R

v c
KE E

= −
+

 

 (a) When ( ) ( )500 V 500 eVKE q V e= ∆ = = , and 939 M eVRE = , this yields 
 

 
( )

3
26

1
1 1. =03 10

1 500 eV 939 10  eV
v c c−= − = ×

⎡ ⎤+ ×⎣ ⎦

53.10 10  m s×  
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 (b) When ( ) ( )85.00 10  V 500 M eVKE q V e= ∆ = × = , 
 

 
( )2

1
1

1 500 M eV 939 M eV
v c= − = 0.758c

+
 

26.40 From  with ( )22 2
RE pc E= + 5 RE E= , we find that 

24RE
p

c
=  

 (a) For an electron, ( )0.511 M eV 24
p

c
= = 2.50 M eV c  

 (b) For a proton, ( ) 3939 M eV 24 M eV
4.60 10  p

c c
= = × = 4.60 GeV c  

26.41 , so 1.00 M eV 0.511 M eV 1.51 M eVRE KE E= + = + = ( )22 2
RE pc E= +  gives 

 

 
( ) ( )2 22 2 1.51 M eV 0.511 M eVRE E

p
c c

−−
= = = 1.42 M eV c  

26.42 (a) The astronomer on Earth measured both the speed and distance in his frame of 
reference. Thus, the time to impact on his clock is 
 

 
( )20.0 1 yr20.0 ly

0.800 0.800
p cL

t
v c c

⎡ ⎤⎣ ⎦∆ = = = = 25.0 yr  

 (c) The observer on the meteoroid sees the Earth rushing at him at speed 0.800c, but 
sees a length contracted distance of separation given by 
 

 ( ) ( ) ( )2 21 20.0 ly 1 0.800pL L v c= − = − = 12.0 ly  

 (b) The time to impact as computed by the observer on the meteoroid is 
 

 
( )12.0 1 yr12.0 ly

0.800 0.800

cL
t

v c c

⎡ ⎤⎣ ⎦∆ = = = = 15.0 yr  

26.43 (a) Since Ted and Mary are in the same frame of reference, they measure the same 
speed for the ball, namely u= 0.80c . 
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 (b) ( )
12

8

1.8 10  m

0.80 3.00 10  m s
p

p

L
t

u
×

∆ = = =
×

37.5 10  s×  

 (c) The distance of separation, as measured by Jim, is 
 

 ( ) ( ) ( )2 2121 1.8 10  m 1 0.60pL L v c= − = × − = 121.4 10  m×  
 
With  velocity of ball relative to Jim, BJv = BTv =  velocity of ball relative to Ted, and 

 velocity of Ted relative to Jim, the relativistic velocity addition equation gives 
 

 

TJv =

( )( )
BT TJ

BJ
BT TJ

2 2

0.80 0.60
0.38

0.80 0.601 1

v v c c
v c

v v c c
c c

+ − +
= = = −⋅ −+ +

 

 
Thus, according to Jim, the ball moves with a speed of 0.38c  

26.44 The clock, at rest in the ship’s frame of reference, will measure a proper time of 
 before sounding. Observers on Earth move at 10 hpt∆ = 0.75v c=  relative to the clock 

and measure an elapsed time of 
 

 ( )
( ) ( )2 2

10 h
15 h

1- 0.751

p
p

t
t t

v c
γ

∆
∆ = ∆ = = =

−
 

 
 

 The observers on Earth see the clock moving away at 0. , and compute the distance 
traveled before the alarm sounds as 
 

 

75c

( ) ( ) ( )8 3600 s
0.75 3.0 10  m s 15 h

1 h
d v t ⎛ ⎞⎡ ⎤= ∆ = × =⎜ ⎟⎣ ⎦ ⎝ ⎠

131.2 10  m×  

26.45 With  velocity of nucleus relative to laboratory, nLv = eLv =  velocity of electron relative 
to laboratory, en  velocity of electron relative to nucleus, and ne en velocity of 
nucleus relative to electron, the relativistic velocity addition equation gives 
 

 

v = v v= − =

( )( )
ne eL

nL
ne eL

2 2

0.70 0.85

0.70 0.851 1c

c cv v
v

v v c c

c

− ++
= = = 0.37c

⋅ −+ +

+  
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26.46 Taking away from the Earth as positive, with JEv =  velocity of jet of material relative to 
Earth,  velocity of jet relative to quasar, and JQv = QEv =  velocity of quasar relative to 
Earth, the relativistic velocity addition equation gives 
 

 ( ) ( )
JQ QE

JE
JQ QE

2 2

0.550 0.870

0.550 0.8701 1c

v v c c
v

v v c c

c

+ − +
= =⋅ −+ +

= 0.614c+  

26.47 (a) Observers on Earth measure the distance to Andromeda to be 
( )62.00 10  ly 2.00 10  yrd 6 c= × = × . The time for the trip, in the Earth’s frame of 

reference, is 
 

 ( )
( )2

30.0 yr

1
pt t

v c
γ∆ = ∆ =

−
 

 

The required speed is then 
( )

( )

6

2

2.00 10  yr

30.0 yr 1-

cd
v

t v c

×
= =
∆

 

 

which gives ( ) ( )251.50 10 1
v

v c
c

−× = −  

 
Squaring both sides of this equation and solving for v c yields 
 

 
10

10

2.25 101
1

21 2.25 10

v
c

−

−

×
= ≈ − = 101 1.12 10−− ×

+ ×
 

 (b) , and 
 

 

( ) 21KE m cγ= −

( ) ( )
4

2 2 1010

1 1 1
6.68 10

2.24 101 1 1 1.12 10v c
γ

−−
= ≈ = =

×− − − ×
×  

 
Thus, 
 
 ( ) ( ) ( )24 6 86.68 10 1 1.00 10  kg 3.00 10  m sKE = × − × × = 276.01 10  J×  

 (c) c  
 

  

ost KE rate= ×

( ) ( )27
6

1 kW h
6.01 10  J $0.13 kW h

3.60 10  J

⎡ ⎤⎛ ⎞
= × = 20$2.17 10×⎢ ⎥⎜ ⎟⎝ ⎠×⎣ ⎦
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26.48  ( )1 RKE Eγ= − , so 
13

1010  M eV
1 1 1.06 10

939 M eVR

KE
E

γ = + = + = × , or  

 
Thus, 

10~10γ

2 21 1 ~ 1 10v c c cγ −= − − ≈0  

 (b) The diameter of the galaxy, as seen in the proton’s frame of reference, is 
 

 ( )
5

2 5
10

10  ly
1 ~ 1 ly

10
p

p

L
L L v c

γ
−= − = = 0   

 
Since ( ) ( ) ( )7 81 ly 1 yr 3.156 10  s 3.00 10  m s 10  mc= = × × ≈ 16 , 
 

 
16

5
3

10  m 1 km
10  ly ~

1 ly 10  m
L − ⎛ ⎞ ⎛ ⎞≈ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

810  km  

 (a) The proton sees the galaxy rushing by at v c≈ . The time, in the proton’s frame of 
reference for the galaxy to pass is 
 

 
( )55 7

5
10  yr10  ly 3.156 10  s

~ 10  yr 316 s
1 yr

cL
t

v c c

−−
− ⎛ ⎞×

∆ = = = =⎜ ⎟⎝ ⎠
, 

 
or ~t∆ 210  s  

26.49 The length of the space ship, as measured by observers on Earth, is ( )21pL L v c= − . In 
the Earth’s frame of reference, the time required for the ship to pass overhead is 
 

 
( )2

2 2

1 1 1p
p

L v cL
t L

v v v

−
∆ = = = −

c
 

 
Thus, 
 

 
( )

2 26 2
17

22 2 28

1 1 1 0.75 10  s s
1.74 10  

300 m m3.00 10  m sp

t
v c L

−
−

⎛ ⎞ ⎛ ⎞∆ ×
= + = + = ×⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ×

, 

 

or 8
82

17
2

1 m
2.4 10  

s 3.00 10  m ss
1.74 10  

m

c
v

−

⎛ ⎞⎛ ⎞= = ×⎜ ⎟ ⎜ ⎟⎝ ⎠ ×⎝ ⎠
×

= 0.80c  
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26.50 (a) Classically, ( )( )22 31 1
78.0 kg 106 10  m s

2 2
KE m v= = × = 114.38 10  J×  

 (b) 

11
2 22 3 12

7 2
8

106 10  m s
1 1 1 1.25 10

3.00 10  m s
v
c

γ

−−
−−

⎡ ⎤⎡ ⎤ ⎛ ⎞×⎛ ⎞ ⎡ ⎤⎢ ⎥= − = − ×⎢ ⎥⎜ ⎟= − ⎣ ⎦⎜ ⎟⎝ ⎠ ×⎝ ⎠⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 

Using the approximation ( )
1
21 1  for 1

2
x

x x−− ≈ + <<  gives , so 

 
 

81 6.24 10γ −≈ + ×

( ) ( ) ( )( )22 8 81 6.24 10 78.0 kg 3.00 10  m sKE m cγ −= − ≈ × × = 114.38 10  J×  
 
In the limit , the classical and relativistic equations yield the same results. v<< c

26.51 (a) Taking toward the Earth as positive, with LEv =  velocity of lander relative to Earth, 
 velocity of lander relative to ship, and LSv = SEv =  velocity of ship relative to Earth, 

the relativistic velocity addition equation gives 
 

 ( ) ( )
LS SE

LE
LS SE

2 2

0.800 0.600

0.800 0.6001 1c

c cv v
v

v v c c

c

++
= = = 0.946c

⋅
+ +

+  

 (b) The length contracted distance of separation as measured in the ship’s frame of 
reference is 
 

 ( ) ( ) ( )2 21 0.200 ly 1 0.600pL L v c= − = − = 0.160 ly  

 (c) The aliens observe the 0.160-ly distance closing because the probe nibbles into it 
from one end at 0.800c and the Earth reduces it from the other end at 0.600c. Thus, 
 

 
( )0.160 yr0.160 ly

tim e
0.800 0.600 1.40

c

c c c
= = = 0.114 yr

+
 

 (d) ( ) 21KE m cγ= −  
 

  
( )

( )
2

5 8

2

1 m
1 4.00 10  kg 3.00 10  

s1 0.946

⎛ ⎞ ⎛ ⎞= − × × = 227.50 10  J×⎜ ⎟ ⎜ ⎟⎝ ⎠⎜ ⎟−⎝ ⎠
 

26.52 The kinetic energy gained by the electron will equal the loss of potential energy, so 
 
 ( ) ( )1.02 M V 1.02 M eVKE q V e= ∆ = =  
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 (a) If Newtonian mechanics remained valid, then 21
2

KE m v=  and the speed attained 

would be 
 

 
( )( )13

8
-31

2 1.02 M eV 1.60 10  JM eV2 m
5.99 10  

9.11 10  kg s

KE
v

m

−×
= = = × ≈ 2c

×
 

 (b) ( )1 RKE Eγ= − , so 
1.02 M eV

1 1 300
0.511 M eVR

KE
E

γ = + = + = .  

 
The actual speed attained is 
 

 ( )221 1 1 1 3.00v c cγ= − = − = 0.943c  

26.53 (a) When at rest, muons have a mean lifetime of 2.2 spt µ∆ = . In a frame of reference 
where they move at 0.95v c= , the dilated mean lifetime of the muons will be 
 

 ( )
( ) ( )2 2

2.2 s

1 0.951

p
p

t
t

v c

µ
τ γ

∆
= ∆ = = =

−−
7.0 sµ  

 (b) In a frame of reference where the muons travel at 0.95v c= , the time required to 
travel 3.0 km is 
 

 ( )
3

5
8

3.0 10  m
1.05 10  s 10.5 s

0.95 3.00 10  m s

d
t

v
µ−×

= = = × =
×

 

 
If  muons started the 3.0 km trip, the number remaining at the end is 
 
 

4
0 5.0 10N = ×

( ) 10.5 s 7.0 s4
0 5.0 10tN N e eτ µ µ = 41.1 10×− −= = ×  

26.54 (a) An observer at rest relative to the mirror sees the light travel a distance , 
where 

2D d= − x
x vt=  is the distance the ship moves toward the mirror in time t. Since this 

observer agrees that the speed of light is c, the time for it to travel distance D is 
2D d v

t
c c

−
= =

t. Solving for t yields t= 2d
c v+

. 
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 (b) The observer in the rocket sees a length-contracted initial distance to the mirror of 
2

21
v

L d
c

= −  and the mirror moving toward the ship at speed v. Thus, he measures 

the distance the light travels as ( )2D L y= −  where 2y vt=  is the distance the 
mirror moves toward the ship before the light reflects off it. 
 
This observer also measures the speed of light to be c, so the time for it to travel 

distance D is 
2

2

2
1

2
D v

t d
c c c

⎛ ⎞
= = − −⎜ ⎟

⎝ ⎠

vt  

 

Solving for t and simplifying yields t=
2d c v
c c v

−
+

 

26.55 The students are to measure a proper time of 0pt T∆ =  on the clock at rest relative to 
them. The professor will measure a dilated time given by 
 

 ( )pt t Tγ∆ = ∆ = + t, or 
( )
0

2
1

T
T t

v c
= +

−
 (1) 

 
where T is the time she should wait before sending the light signal, and t is the transit 
time for the signal, both measured in the Earth’s frame of reference. 
 
 

 The distance, measured in the Earth’s frame, the signal must travel to reach the receding 
students is  and the transit time is 
 

 

(d v T t= + )

(d v
t T

c c
= = + )t , or 

( )
( )1

v c T
t

v c
=

−
. (2) 

 
Substituting equation (2) into (1) yields 
 

 
( )
0

2
1

1 11

v cT T
T

v c v cv c

⎛ ⎞
= + =⎜ ⎟− −⎝ ⎠−

 

 

Thus, 
( )

( )
( ) ( )

1
2 2

0 02

11

1 11

v cv c
T T T

v c v cv c

⎡ ⎤ ⎡ ⎤−−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ − +⎢ ⎥− ⎣ ⎦⎢ ⎥⎣ ⎦

, or 0

1

1

v c
T T

v c

−
=

+
 

349 



C H A P T E R  2 6  

26.56 The work required equals the increase in the gravitational potential energy, or 
Sun

g

GM m
W

R
= . If this is to equal the rest energy of the mass removed, then 

 

 2 Sun

g

GM m
m c

R
=  or 2

Sun
g

GM
R

c
=  

 

 
( ) ( )

( )
11 2 2 30

3
28

6.67 10  N m kg 1.99 10  kg
1.47 10  m

3.00 10  m s
gR

−× ⋅ ×
= =

×
× = 1.47 km  

26.57 (a) The components of length, measured in the frame moving with the rod, are 
 
 0 cospxL L 0θ=  and 0 0sinpyL L θ= . 
 
The stationary observer will see a length contracted component in the direction 
parallel to the motion, with the other component unaffected. Therefore, 
 

 ( ) ( )2 2

0 01 1x pxL L v c L v c cosθ= − = −  and 0 0siny pyL L L θ= =  
 
The length of the rod, as measured by the stationary observer, is 
 

 ( )22 2 2 2 2
0 0 0cos cos sinx yL L L L v c 0θ θ θ= + = − +  

 

or ( )2 2
0 01 cosL L v c θ= −  

 (b) The orientation angle seen by the stationary observer is given by 
 

 
( )
0 0

2

0 0

sin
tan

1 cos

y

x

L L
L L v c

θ
θ

θ
= =

−
, or 0tan tanθ γ θ=  
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Answers to Even Numbered Conceptual Questions 

 2. From the principle of relativity, all the laws of physics are the same in all inertial frames of 
reference. Therefore, it would be impossible for you to conduct an experiment to 
determine if you were at rest or moving at constant velocity. In both cases, you would be 
in an inertial reference frame and the experiment would yield the same results. If you are 
accelerating, then you are in a non-inertial reference frame and could devise an 
experiment to detect an apparent departure from the normal laws of physics. 

 4. The two observers will agree on the speed of light and on the speed at which they move 
relative to one another. 

 6. The speed of light in a vacuum is the same for all observers regardless the relative motion 
of the observers. Therefore the three observers must agree on the speed of the light pulse 
emitted by the rocket. 

 8. You would see the same thing that you see when looking at a mirror when at rest. The 
theory of relativity tells us that all experiments will give the same results in all inertial 
frames of reference. 

10. The clock in orbit will run more slowly. The extra centripetal acceleration of the orbiting 
clock makes its history fundamentally different from that of the clock on Earth. 

12. The 8 light-years represents the proper length of a rod from Earth to Sirius, measured by 
an observer seeing both the rod and Sirius nearly at rest. The astronaut sees Sirius coming 
toward her at 0.8c, but also sees the distance contracted to 

  ( ) ( ) ( ) ( )2 28 ly 1 8 ly 1 0.8 5 lyd v c= − = − =  

 So, the travel time measured on her clock is 
( )5 yr5 ly

6yr
0.8 0.8

cd
t

v c c
= = = = . 

14. To be strictly correct, the equation should be written as  where 2E m cγ= ( )21 1 v cγ = − . 
When the object is at rest 0 and 1v γ= = , so the equation reverts to the popular form 

. When , and the difference 2E m c= 0v> 2
RE E m c> = ( ) 21RKE E E m cγ= − = −  accurately 

accounts for the kinetic energy of the moving mass. 
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Answers to Even Numbered Problems 

 2. (a)   (b) 2.0 fringe shifts 151.9 10  s−×

 4. 0.866c 

 6. (a) 70 beats m in   (b) 31 beats m in  

 8. (a) 65.0 m in    (b) 10.6 m in  

10. (a) a rectangular box 
(b) sides perpendicular to the motion are 2.0 m long, sides parallel to the motion are  
 1.2 m long 

12. 1.55 ns 

14. (a) 17.4 m   (b) 3.30° with respect to the direction of motion 

16. (a) 21.0 yr  (b) 14.7 ly  (c) 10.5 ly  (d) 35.7 yr 

18. (a) 242.7 10  kg m s−× ⋅  (b) 221.6 10  kg m s−× ⋅  
(c) 225.6 10  kg m s−× ⋅  

20. (a) 0.    (b) 0.141c 436c 

22.  to the left 0.94c

24. 0.696c 

26. 0.161 Hz 

28. (a) 939 MeV   (b) 3.01 GeV   (c) 2.07 GeV 

30. (a) 50.9 GeV c  (b) 0.  9998c

32. (a) 0.582 MeV   (b) 2.45 MeV 

34.  28 282.51 10  kg, 8.84 10  kgfaster slowerm m− −= × = ×

36. (a) 3.52 MeV   (b)  208.50 10  H z×

38. 0.64 MeV, 223.4 10  kg m s−× ⋅  for each photon 

40. (a) 2.50 M eV c  (b) 4.60 GeV c 
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42. (a) 25.0 yr   (b) 15.0 yr   (c) 12.0 ly 

44.  131.2 10  m×

46. 0.614c away from Earth 

48. (a)    (b)  2~10  s 8~10  km

50. (a) 114.38 10  J×   (b) 114.38 10  J×  

52. (b) 0.943c 

54. (a) 2d
t

c v
=

+
   (b) 

2d c v
t

c c v
−

=
+

 

56. 1.47 km
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