
CHAPTER 28 
Quick Quizzes 

1. (b). The circumference of the orbit is n times the de Broglie wavelength ( )2 r nπ λ= , so 
there are three times as many wavelengths in the 3n=  level as in the  level. Also, by 
combining Equations 28.4, 28.6 and the defining equation for the de Broglie wavelength 

1n=

( )h m vλ = , one can show that the wavelength in the 3n=  level is three times as long. 

2. The quantum numbers associated with orbital states are n, �, and m�. For a specified value 

of n, the allowed values of � range from 0 to n – 1. For each value of �, there are (2� + 1) 

possible values of m�. 

 (a) If n = 3, then � = 0, 1, or 2. The number of possible orbital states is then 
( )[ ] ( )[ ] ( )[ ]2 0 1 2 1 1 2 2 1 1 3 5 9+ + + + + = + + = . 

 (b) If n = 4, one additional value of � is allowed (� = 3) so the number of possible orbital 
states is now ( )[ ]9 2 3 1 9 7 16+ + = + = . 

3. (a) For , there are 5 allowed values of �, namely � = 0, 1, 2, 3, and 4. 5n=

 (b) Since m� ranges from –� to +� in integer steps, the largest allowed value of � (� = 4 in 

this case) permits the greatest range of values for m�. For 5n= , there are 9 possible 

values for m�: -4, -3, -2, –1, 0, +1, +2, +3, and +4. 

4. (d). Krypton has a closed configuration consisting of filled  shells as 
well as filled 4s and 4p subshells. The filled 

=1, =2, and =3n n n
3n=  shell (the next to outer shell in Krypton) 

has a total of 18 electrons, 2 in the 3s subshell, 6 in the 3p subshell and 10 in the 3d 
subshell. 
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Problem Solutions 

28.1 The Balmer equation is H 2 2

1 1
2

R
nλ

⎛ ⎞= −⎜ ⎟⎝ ⎠
1 , or 

2

2
H

4
4

n
R n

λ
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 

 
When , 
 

 

3n=

7
7 -1

4 9
6.56 10  m

1.09737 10  m 9 4
λ −⎛ ⎞= = × 656 nm=⎜ ⎟⎝ ⎠× −

 

 
When , 
 

 

4n =

7
7 -1

4 16
4.86 10  m

1.09737 10  m 16 4
λ −⎛ ⎞= = × 486 nm=⎜ ⎟⎝ ⎠× −

 

 
When , 
 

 

5n=

7
7 -1

4 25
4.34 10  m

1.09737 10  m 25 4
λ −⎛ ⎞= = × 434 nm=⎜ ⎟⎝ ⎠× −

 

28.2 Start with Balmer’s equation, 
2

H H2 22

1 1 1
2 4

n
R R

n nλ
⎛ ⎞4−⎛ ⎞= − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

, 

 

or 
2

2
H

4
4

n
R n

λ
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 

 
Substituting 17

H =1.0973732 10  mR −× , we obtain 
 

 
( )7 2

2

3.645 10  m

4

n

n
λ

−×
= =

−

2

2

364.5
nm

4

n

n −
 where 3, 4, 5, . . . .n =  

28.3 (a) From Coulomb’s law, 
 

 
( ) ( )

( )

29 2 2 19
1 2

22 10

8.99 10  N m C 1.60 10  C
=

1.0 10  m

ek q q
F

r

−

−

× ⋅ ×
= =

×
82.3 10  N−×  

384 



C H A P T E R  2 8  

 (b) The electrical potential energy is 
 

 
( ) ( ) ( )9 2 2 19 19

1 2
10

8.99 10  N m C 1.60 10  C 1.60 10  C

1.0 10  m
ek q q

V
r

− −

−

× ⋅ − × ×
= =

×
 

 

  18
-19

1 eV
2.3 10  J

1.60 10  J
− ⎛ ⎞

= − × =⎜ ⎟⎝ ⎠×
14 eV−  

28.4 (a) From Coulomb’s law, 
 

 
( ) ( )

( )

29 2 2 19
1 2

22 15

8.99 10  N m C 1.60 10  C

1.0 10  m
ek q q

F
r

−

−

× ⋅ ×
= = = 22.3 10  N×

×
 

 (b) The electrical potential energy is 
 

 
( ) ( )29 2 2 19

1 2
15

8.99 10  N m C 1.60 10  C

1.0 10  m
ek q q

V
r

−

−

× ⋅ ×
= =

×
 

 

  13
-13

1 M eV
2.3 10  J

1.60 10  J
− ⎛ ⎞

= × = 1.4 M eV⎜ ⎟⎝ ⎠×
+  

28.5 (a) The electrical force supplies the centripetal acceleration of the electron, so 
22

2
ek ev

m
r r

=  or 
2

ek e
v

m r
=  

 

 
( ) ( )

( ) ( )

29 2 2 19

31 10

8.99 10  N m C 1.60 10  C

9.11 10  kg 1.0 10  m
v

−

− −

× ⋅ ×
= =

× ×
61.6 10  m s×  

 (b) N o  .
6

3
8

1.6 10  m s
5.3 10  << 1

3.00 10  m s
v
c

−×
= = ×

×
, so the electron is not relativistic. 

 (c) The de Broglie wavelength for the electron is 
h h
p m v

λ = = , or 

 

 ( ) ( )
34

10
31 6

6.63 10  J s
4.6 10  m

9.11 10  kg 1.6 10  m s
λ

−
−

−

× ⋅
= = × 0.46 nm=

× ×
 

 (d) Yes. The wavelength and the atom are roughly the same size. 
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28.6 Assuming a head-on collision, the α-particle comes to rest momentarily at the point of 
closest approach. From conservation of energy, 
 

 , or f f iKE PE KE PE+ = + i

( ) ( ) ( ) ( )2 79 2 79
0 e e

i
f i

k e e k e e
KE

r r
+ = +  

 
With , this gives the distance of closest approach as 
 

 

ir → ∞

( )( )
( )

29 2 2 192

-13

158 8.99 10  N m C 1.60 10  C158

5.0 M eV 1.60 10  J M eV
e

f
i

k e
r

KE

−× ⋅ ×
= =

×
 

 
  144.5 10  m−= × = 45 fm  

28.7 (a)  yields 2
0nr n a= ( )2 4 0.0529 nmr = = 0.212 nm  

 (b) With the electrical force supplying the centripetal acceleration, 
 

 
2 2

2
e n e

n n

m v k e
r r

= , giving 
2

e
n

e n

k e
v

m r
=  and 

2
e e

n e n
n

m k e
p m v

r
= =  

 
Thus, 
 

 
( ) ( ) ( )231 9 2 2 192

2 9
2

9.11 10  kg 8.99 10  N m C 1.6 10  C

0.212 10  m
e em k e

p
r

− −

−

× × ⋅ ×
= =

×
 

 
  = 259.95 10  kg m s−× ⋅  

 (c) 
34

2

6.63 10  J s
  2

2 2n

h
L n L

π π

−⎛ ⎞ ⎛ ⎞× ⋅
= → = = 342.11 10  J s−

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
× ⋅  

 (d) (d) 
( )

( )

2252
2 12

2 2 31

9.95 10  kg m s1
5.43 10  J

2 2 2 9.11 10  kg
e

e

p
KE m v

m

−
−

−

× ⋅
= = = = × 9

×
= 3.40 eV  

 (e) ( ) ( ) ( )
( )

29 2 2 19

2 9
2

8.99 10  N m C 1.60 10  C

0.212 10  m
ek e e

PE
r

−

−

× ⋅ ×−
= = −

×
 

 
 181.09 10  J−= − × = 6.80 eV−  

 (f) 2 2 2 3.40 eV 6.80 eV=E KE PE= + = − 3.40 eV−  
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28.8 (a) With the electrical force supplying the centripetal acceleration, 
 

 
2 2

2
e n e

n n

m v k e
r r

= , giving 
2

e
n

e n

k e
v

m r
=  

 
where ( )2 2

0 0.0529 nmnr n a n= =  
 
Thus, 
 

 
( ) ( )

( ) ( )

29 2 2 192

1 31 9
1

8.99 10  N m C 1.60 10  C

9.11 10  kg 0.0529 10  m
e

e

k e
v

m r

−

− −

× ⋅ ×
= = =

× ×
62.19 10  m s×  

 (b) 
( ) ( )

( )

29 2 2 192
2

1 1 9
1

8.99 10  N m C 1.60 10  C1
2 2 2 0.0529 10  m

e
e

k e
KE m v

r

−

−

× ⋅ ×
= = =

×
 

 
 182.18 10  J−= × = 13.6 eV  

 (c) ( ) ( ) ( )
( )

29 2 2 19

1 9
1

8.99 10  N m C 1.60 10  C

0.0529 10  m
ek e e

PE
r

−

−

× ⋅ ×−
= = −

×
 

 
 184.35 10  J−= − × = 27.2 eV−  

28.9 Since the electrical force supplies the centripetal acceleration, 
 

 
2 2

2
e n e

n n

m v k e
r r

=  or 
2

2 e
n

e n

k e
v

m r
=  

 

From , we have n e n nL m rv n= = � n
e n

n
r

m v
=

�
, so 

 

 
2

2 e e n
n

e

k e m v
v

m n

⎛ ⎞
= ⎜⎝ � ⎟⎠

 which reduces to 
2

e
n

k e
v

n
=

�
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28.10 (b) From H 2 2

1 1

f i

R
n nλ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

1  , 

 

or 
2 2

2 2
H

1 i f

i f

n n

R n n
λ

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 with 6  and  2i fn n= =  

 

 ( ) ( ) 7
7 -1

36 41
4.10 10  m

1.09737 10  m 36 4
λ −⎡ ⎤

= = × 410 nm=⎢ ⎥× −⎣ ⎦
 

 (a) 
( ) ( )34 8

19
9

6.63 10  J s 3.00 10  m s
4.85 10  J=

410 10  m
hc

E
λ

−
−

−

× ⋅ ×
= = = ×

×
3.03 eV  

 (c) 
8

9

3.00 10  m s

410 10  m
c

f
λ −

×
= = =

×
147.32 10  H z×  

28.11 In the ground state, ( )21 01 0.0529 nmr a= =  and the Coulomb force has magnitude 
 

 
( ) ( )

( )

29 2 2 19
1 2

22 9

8.99 10  N m C 1.60 10  C

0.0529 10  m

ek q q
F

r

−

−

× ⋅ ×
= = = 88.22 10  N−×

×
 

28.12 The change in the energy of the electron is 
 

 2 2

1 1
13.6 eVf i

i f

E E E
n n

⎛ ⎞
∆ = − = −⎜ ⎟

⎝ ⎠
 

 

Transition I: 1 1
13.6 eV 2.86 eV

4 25
E ⎛ ⎞∆ = − =⎜ ⎟⎝ ⎠  (absorption) 

 

Transition II: 1 1
13.6 eV 0.967 eV

25 9
E ⎛ ⎞∆ = − = −⎜ ⎟⎝ ⎠

 (emission) 

 

Transition III: 1 1
13.6 eV 0.572 eV

49 16
E ⎛ ⎞∆ = − = −⎜ ⎟⎝ ⎠

 (emission) 

 

Transition IV: 1 1
13.6 eV 0.572 eV

16 49
E ⎛ ⎞∆ = − =⎜ ⎟⎝ ⎠  (absorption) 
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 (a) Since hc hc
E Eγ

λ = =
− ∆

, transition II  emits the shortest wavelength photon. 

 (b) The atom gains the most energy in transition I . 

 (c) The atom loses energy in transitions II and III . 

28.13 The energy absorbed by the atom is 
 

 2 2

1 1
13.6 eVf i

i f

E E E
n nγ

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
 

 (a) 1 1
13.6 eV

9 25
Eγ

⎛ ⎞= − = 0.967 eV⎜ ⎟⎝ ⎠
 

 (b) 1 1
13.6 eV

25 49
Eγ

⎛ ⎞= − = 0.266 eV⎜ ⎟⎝ ⎠
 

28.14 (a) The energy absorbed is 
 

 2 2

1 1 1 1
13.6 eV 13.6 eV

1 9f i
i f

E E E
n n

⎛ ⎞ ⎛ ⎞∆ = − = − = − =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
12.1 eV  

 (b) Three transitions are possible as the electron returns to the ground state. These 
transitions and the emitted photon energies are 
 

 : 3 1i fn n= → = 2 2

1 1
13.6 eV

1 3
E ⎛ ⎞∆ = − = 12.1 eV⎜ ⎟⎝ ⎠

 

 

 : 3 2i fn n= → = 2 2

1 1
13.6 eV

2 3
E ⎛ ⎞∆ = − = 1.89 eV⎜ ⎟⎝ ⎠

 

 

 : 2 1i fn n= → = 2 2

1 1
13.6 eV

1 2
E ⎛ ⎞∆ = − = 10.2 eV⎜ ⎟⎝ ⎠

 

28.15 From H 2 2

1 1

f i

R
n nλ

⎛ ⎞
= −⎜

⎝ ⎠

1
⎟ , it is seen that (for a fixed value of ) fn m axλ  occurs when 

 and 1i fn n= + m inλ  occurs when in → ∞ . 
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 (a) For the Lyman series ( )1fn = , 

 

 ( )7 -1 7
2 2

1 1 1
1.09737 10  m   1.22 10  m

1 2 m ax
m ax

λ
λ

−⎛ ⎞= × − → = × = 122 nm⎜ ⎟⎝ ⎠  

 
and 
 

 ( )7 -1 8
2

1 1 1
1.09737 10  m   9.11 10  m

1 m in
m in

λ
λ

−⎛ ⎞= × − → = × = 91.1 nm⎜ ⎟⎝ ⎠∞
 

 (b) For the Paschen series ( )3fn = , 

 

 ( )7 -1 6
2 2

1 1 1
1.09737 10  m 1.87 10  m

3 4 m ax
m ax

λ
λ

−⎛ ⎞= × − → = × = 31.87 10  nm×⎜ ⎟⎝ ⎠  

 
and 
 

 ( )7 -1 7
2

1 1 1
1.09737 10  m   8.20 10  m

3 m in
m in

λ
λ

−⎛ ⎞= × − → = × = 820 nm⎜ ⎟⎝ ⎠∞
 

28.16 To ionize the atom, it is necessary that fn → ∞ . The required energy is then 
 

 2 2 2 2

1 1 1 1 13.6 eV
13.6 eV 13.6 eVf i

i f i i

E E E
n n n n

⎛ ⎞ ⎛ ⎞
∆ = − = − = − =⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ∞

 

 (a) If 1, the required energy is in = 2

13.6 eV
1

E∆ = = 13.6 eV  

 (b) If 3 , in = 2

13.6 eV
3

E∆ = = 1.51 eV  

28.17 The batch of excited atoms must make these six transitions to get back to the ground 
state: , also 2 1i fn n= → = 3 2i fn n= → =  and 3i fn n 1= → = , and also  
and  and . Thus, the incoming light must have just enough 
energy to produce the  transition. It must be the third line of the Lyman 
series in the absorption spectrum of hydrogen. The incoming photons must have 
wavelength given by 
 

 

4 3i fn n= → =

4 2i fn n= → = 4i fn n= → =1

41i fn n= → =

H
H 2 2

151 1 1
1 4 16

R
R

λ
⎛ ⎞= − =⎜ ⎟⎝ ⎠

 or ( )7 -1
H

16 16
15 15 1.09737 10  mR

λ = = =
×

97.2 nm  
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28.18 The magnetic force supplies the centripetal acceleration, so 
 

 
2m v

qvB
r

= , or 
m v

r
qB

=  

 
If angular momentum is quantized according to 
 

 , then n n nL m v r n= = � n
n

n
m v

r
=

�
, 

 
and the allowed radii of the path are given by 
 

 1
n

n

n
r

qB r

⎛ ⎞
= ⎜ ⎟⎝ ⎠

�  or n

n
r

qB
=

�
 

28.19 (a) The energy emitted by the atom is 
 

 4 2 2 2

1 1
13.6 eV 2.55 eV

4 2
E E E ⎛ ⎞∆ = − = − − =⎜ ⎟⎝ ⎠

 

 
The wavelength of the photon produced is then 
 

 
( ) ( )

( )( )
34 8

19

6.63 10  J s 3.00 10  m s

2.55 eV 1.60 10  JeV

hc hc
E Eγ

λ
−

−

× ⋅ ×
= = =

∆ ×
 

 
  74.88 10  m−= × = 488 nm  

 (b) Since momentum must be conserved, the photon and the atom go in opposite 
directions with equal magnitude momenta. Thus, atomp m v h λ= =  or 
 

 ( ) ( )
34

27 7

6.63 10  J s

1.67 10  kg 4.88 10  matom

h
v

m λ

−

− −

× ⋅
= = =

× ×
0.814 m s  

28.20 (a) From  and , we have 
 

 

n e n nL m rv n= = � 2
0nr n a=

1
1 02e e

h
v

m r m aπ
= =

�
 

 

  ( ) ( )
34

31 9

6.63 10  J s

2 9.11 10  kg 0.0529 10  mπ

−

− −

× ⋅
= =

× ×
62.19 10  m s×  
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 (b) 
( )9

1 0
6

1 1

2 0.0529 10  m2 2

2.19 10  m s

r a
t

v v

ππ π −×
∆ = = = =

×
161.52 10  s−×  

 (c) 
19

3
16

1.60 10  C
1.05 10  A

1.52 10  s
Q

I
t

−
−

−

∆ ×
= = = × =

∆ ×
 1.05 m A

28.21 When the centripetal acceleration is supplied by the gravitational force, 
 

 
2

2

m v GM m
r r

=  or 2 GM
v

r
=  

 (a) With PE GM m r= − , the total energy is 
 

 21
2 2

GM m m GM GM m
E KE PE m v

r r r
⎛ ⎞= + = − = − =⎜ ⎟⎝ ⎠ 2

GM m
r

−  

 (b) Using the Bohr quantization rule, n n nL m v r n= = �, so n
n

n
v

m r
=

�
 and 

 

 2 GM
v

r
=  becomes 

2

n n

n GM
m r r

⎛ ⎞
=⎜ ⎟⎝ ⎠

�  

 

which reduces to 
2 2

2n

n
r

GM m
= = 2

0n r
�

 with 

 

 ( )
( ) ( ) ( )

2

0 2

234

22 11 2 2 30 24

6.63 10  J s

4 6.67 10  N m kg 1.99 10  kg 5.98 10  kg

r
GM m

π

−

−

=

× ⋅
=

× ⋅ × ×

�

 

 
 0r = 1382.32 10  m−×  

 (c) The energy in the  orbit is thn
2

2 22 2n
n

GM m GM m GM m
E

r n

⎛ ⎞
= − = − =⎜ ⎟⎝ ⎠�

0
2

E
n

− , where 

 

 
2 2 3

0 22
G M m

E =
�

 

 

  
( ) ( ) ( )

( )

2 2 324
1821.71 10  J×

2 11 30

234

4 6.67 10 1.99 10 5.98 10

2 6.63 10

π −

−

× × ×
= =

×
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 (d) , so 2
0nr n r=

11
2 1

-138
0

1.49 10  m
6.42 10

2.32 10  m
nrn

r
×

= = = ×
×

48  

 
or n = 742.53 10×  

 (e) No, the quantum numbers are too large and the allowed energies are essentially 
continuous in this region. 

28.22 (a) The time for one complete orbit is 2 r
T

v

π
= . 

 
From Bohr’s quantization postulate, eL m vr n= = � , 
 

we see that 
e

n
v

m r
=

�
 Thus, the orbital period becomes: 

 

 
( )222 2

0 30
22 2

= =
ee e

m a nm r m a
T n

n n

ππ π
=

� � �
 

 
or  where 
 

 

3
0T tn=

( )( )231 92
0

0 34

2 9.11 10 kg 0.0529 10 m2
= =

1.055 10 J s
em a

t
ππ − −

−

× ×

× ⋅�
= 161.52 10  s−×  

 (b) With , we have 2n= ( )16 15
0=8 =8 1.52 10 s =1.21 10 sT t − −× ×  

 
Thus, if the electron stays in the 2n=  state for 10 sµ , it will make 
 

 
6

15

10.0 10 s
=

1.21 10 srev

−

−

×
×

 98.23 10  revolutions×  of the nucleus 

 (c) 9Yes, for 8.23 10  "electron years"×  

 (d) The electron moves so quickly that it can never meaningfully be said to be on any 
particular side of the nucleus. 

393 



C H A P T E R  2 8  

28.23 (a) The wavelength emitted in the 2i fn n 1= → =  transition is 
 

 ( )
( ) ( )2 2

7
2 2 7 -1

H

4 11 1
1.22 10  m

4 11.09737 10  m
i f

i f

n n

R n n
λ −

⎛ ⎞ ⎛ ⎞
= = = ×⎜ ⎟ ⎜ ⎟⎝ ⎠− −×⎝ ⎠

 

 

and the frequency is 
8

7

3.00 10  m s

1.22 10  m
c

f
λ −

×
= = =

×
152.47 10  H z×  

 
From , the speed of the electron is n e n nL m v r n= = � n ev n m rn= �  
 
Therefore, with , the orbital frequency is 
 

 

2
0nr n a=

15

2 2 2 3 3
0

1 1 59 10  H z
2 4

n
orb

n e n e

nv h
f

T r m r m a n nπ π
⎛ ⎞ ×

= = = = =⎜ ⎟⎝ ⎠
� 6.

 

 

For the  orbit, 2n=
( )

15

3

6.59 10  H z

2
orbf

×
= = 148.23 10  H z×  

 (b) For the  transition, 
 

 

10000 9999i fn n= → =

( )
( ) ( )

( ) ( )

2 2

4
2 27 -1

10000 99991
4.56 10  m

1.09737 10  m 10000 9999
λ

⎡ ⎤
⎢ ⎥= =

× ⎢ ⎥−⎣ ⎦
×  

 

and 
8

4

3.00 10  m s

4.56 10  m
c

f
λ

×
= = =

×
36.59 10  H z×  

 

For the  orbit, 10000n =
( )

15

3

6.59 10  H z

10000
orbf

×
= = 36.59 10  H z×  

 
For small n, significant differences between classical and quantum results appear. 
However, as n becomes large, classical theory and quantum theory approach one 
another in their results. (correspondence principle) 

28.24 Each atom gives up its kinetic energy in emitting a photon, so 
 

 
( ) ( )34 8

2 18
9

6.63 10  J s 3.00 10  m s1
1.64 10  J

2 121.6 10  m
hc

KE m v
λ

−
−

−

× ⋅ ×
= = = = ×

×
 

 

 ( ) ( )18

27

2 1.64 10  J2

1.67 10  kgatom

KE
v

m

−

−

×
= = =

×
44.43 10  m s×  
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28.25 For minimum initial kinetic energy, 0totalKE =  after collision. Hence, the two atoms must 
have equal and opposite momenta before impact. The atoms then have the same initial 
kinetic energy, and that energy is converted into excitation energy of the atom during 
the collision. Therefore, 
 

 2
2 1

1
10.2 eV

2atom atomKE m v E E= = − = , 

 

or ( ) ( )( )19

-27

2 10.2 eV 1.60 10  JeV2 10.2 eV

1.67 10  kgatom

v
m

−×
= = =

×
44.42 10  m s×  

28.26 (a) 
2 r

L m vr m r
T

π⎛ ⎞= = ⎜ ⎟⎝ ⎠
 

 

 
( ) ( )222 8

6

2 7.36 10  kg 3.84 10  m

2.36 10  s

π × ×
= =

×
34 22.89 10  kg m s× ⋅  

 (b) 
( )34 2

34

2 2.89 10  kg m s2

6.63 10  J s

LL
n

h

ππ
−

× ⋅
= = = =

× ⋅�
682.74 10×  

 (c) The gravitational force supplies the centripetal acceleration so 
 

 
2

2
EGM mm v

r r
= , or  

 

Then, from  or 

2
Erv GM=

n n nL m v r n= = � n
n

n
v

m r
=

�
, 

 

we have 
2

n
n

n
r G

m r

⎛ ⎞
=⎜ ⎟⎝ ⎠

�
EM  which gives 

2
2 2

12n
E

r n n r
GM m

⎛ ⎞
= =⎜ ⎟⎝ ⎠

�  

 
Therefore, when n increases by 1, the fractional change in the radius is 
 

 ( )2 2
1 11

2 2
1

1 2 1 2n n

n

n r n rr rr n
r r n r n

+ + −−∆ +
= = =

n
≈  

 

 68

2
2.74 10

r
r

∆
≈ =

×
697.30 10−×  
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28.27 (a) From ( )2

2

13.6 eV
n

Z
E

n
= − , ( ) ( )

( )

2

1 2

3 13.6 eV

1
E = − = 122 eV−  

 (b) Using 
2

0
n

n a
r

Z
=  gives ( )2 9

0
1

1 0.0529 10  m
3 3

a
r

−×
= = = 111.76 10  m−×  

28.28 (a) The energy levels of a hydrogen-like ion 
whose charge number is Z are given by 
 

 ( )
2

213.6 eVn

Z
E

n
= −  

 
For Helium,  and the energy levels 
are 
 

 

2Z =

2

54.4 eV
   1, 2, 3, . . .nE n

n
= − =  

n = ∞ ___________________ 0

n = 5 ___________________ –2.18 eV
n = 4 ___________________ –3.40 eV

n = 3 ___________________ –6.04 eV

n = 2 ___________________ –13.6 eV

n = 1 ___________________ –54.4 eV

 (b) For H e , , so we see that the ionization energy (the energy required to take 
the electron from the  to the n

+ 2Z =
1n= = ∞  state is 

 

 ( ) ( )
( )

2

1 2

13.6 eV 2
0

1
E E E∞

−
= − = − = 54.4 eV  

28.29 
22 2

0
2n

e e

n an
r

Z m k e Z

⎛ ⎞
= =⎜ ⎟⎝ ⎠

� , so 0
1

0.0529 nma
r

Z Z
= =  

 (a) For  and +H e ,    Z = 2 0.0529 nm
2

r= =  0.0265 nm  

 (b) For  and 2+Li ,    Z = 3 0.0529 nm
3

r= =  0.0176 nm  

 (c) For  and 3+Be ,    Z = 4 0.0529 nm
4

r= =  0.0132 nm  
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28.30 We use ( )2

2

13.6 eV
n

Z
E

n
= −  with 3Z =  to give: 2

122 eV
nE

n
= −  

 

    

n = ∞ ___________________ 0

n = 5 ___________________ –2.18 eV
n = 4 ___________________ –3.40 eV

n = 3 ___________________ –6.04 eV

n = 2 ___________________ –13.6 eV

n = 1 ___________________ –54.4 eV

28.31 From  and , 
 

we find that 

e n nL m v r n= = � 2
0nr n a=

( )02n n
n

n h
p m v

r aπ
= = =

�

n
 

 
Thus, the de Broglie wavelength of the electron in the  orbit is thn

( )02nh p a nλ π= = . For , this yields 
 

4n =

( )08 8 0.0529 nmaλ π π= = = 1.33 nm  

28.32 (a) For standing waves in a string fixed at both ends, 
2

n
L

λ
= , 

 

or 2L

n
λ = . According to the de Broglie hypothesis, h

p
λ

= . 

 

Combining these expressions gives p m v= =
2

nh

L
 

 (b) Using 
2

21
2 2

p
E m v

m
= = , with p as found in (a) above: 

 

 
( )
2 2

24 2n

n h
E

L m
= =

2
2

0 0 2   w here 
8

h
n E E

m L
=  
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28.33 In the 3p subshell,  and 3n= 1=� . The 6 possible quantum states are 

3n=  1=�  1m = +�  1
2sm = ±  

3n=  1=�  0m =�  1
2sm = ±  

3n=  1=�  1m = −�  1
2sm = ±  

28.34 In the 3d subshell,  and 3n= 2=� . The 10 possible quantum states are 

3n=  2=�  2m = +�  1
2sm = ±  

3n=  2=�  1m = +�  1
2sm = ±  

3n=  2=�  0m =�  1
2sm = ±  

3n=  2=�  1m = −�  1
2sm = ±  

3n=  2=�  2m = −�  1
2sm = ±  

28.35 The 3d subshell has  and 3n= 2=� . For ρ-mesons, we also have . Thus, there are 15 
possible quantum states as summarized in the table below. 

1s=

n  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
� 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
m �  +2 +2 +2 +1 +1 +1 0 0 0 -1 -1 -1 -2 -2 -2 

sm  +1 0 -1 +1 0 -1 +1 0 -1 +1 0 -1 +1 0 -1 

28.36 (a) The electronic configuration for oxygen ( )8Z =  is 2 2 41 2 2s s p . 

 (b) The quantum numbers for the 8 electrons can be: 

1  statess  1n=  0=�  0m =�  1
2sm = ±  

2  statess  2n=  0=�  0m =�  1
2sm = ±  

 
2  statesp  

 

 
2n=  

 
1=�  

0m =�  
1m =�  

1
2sm = ±  
1
2sm = ±  

28.37 (a) For Electron #1 and also for Electron #2, 3n=  and 1=� . The other quantum 
numbers for each of the 30 allowed states are listed in the tables below. 

 m � sm  m � sm  m � sm  m � sm  m � sm  m � sm  
Electron #1 +1 1

2+  +1 1
2+  +1 1

2+  +1 1
2−  +1 1

2−  +1 1
2−  

Electron #2 +1 1
2−  0 1

2±  -1 1
2±  +1 1

2+  0 1
2±  -1 1

2±  

 
m �  sm  m � sm  m � sm  m � sm  m � sm  m � sm  

Electron #1 0 1
2+  0 1

2+  0 1
2+  0 1

2−  0 1
2−  0 1

2−  
Electron #2 +1 1

2±  0 1
2−  -1 1

2±  +1 1
2±  0 1

2+  -1 1
2±  
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 m � sm  m � sm  m � sm  m � sm   sm  m � sm  m �

Electron #1 -1 1
2+  -1 1

2+  -1 1
2+  -1 1

2−  -1 1
2−  -1 1

2−  
Electron #2 +1 1

2−  +1 1
2±  0 1

2±  -1 1
2+  1

2±  0 1
2±  -1 

  ow ed staThere are 30 all tes , since E tron #1 c have any of three possible 
values of m  for both spin up and spin down, totaling six possible states. For each 

tes, Electron #2 can be in er of the aining f  states. 

 (b) Were it not for the exclusion principle, there would be 

lec an 

�

of these sta eith  rem ive

36 possible states, six 

28.38 (a) 

for each electron independently. 

For 1, 0n = =�  and there are 2(2 1)+�  states 2(1)= = 2  sets of quantum numbers 

 (b) For 2, 0n = =�  for 2(2 1)+�  states 2(0 1) 2= + =  sets 
and 1=�  for 2(2 1)+�  states 2(2 1) 6= + =  sets 
 total number of sets = 8  

 (c)  for For 3, 0n = =� 2(2 1)+�  states 2(0 1) 2= + =  sets 
and  for 1=� 2(2 1)+� 2(2 1) 6= + = states  sets 
and  for 2(2=� 2 1)+� 2(4 1) 10= + = states  sets
total number of sets = 18

 
 

 (d) For  for 4, 0n = =� 2(2 1)+� 2(0 1) 2= + = states  sets 
and  for 2(1=� 2 1)+� 2(2 1) 6= + = states  sets 
and  for 2(2=� 2 1)+� 2(4 1) 10= + = states  sets 
and 3=�  for 2(2 1)+�  states 2(6 1) 14= + =  sets 
 total number of sets = 32  

 (e) For  for 2(5, 0n = =� 2 1)+� 2(0 1) 2= + = states  sets 
and  for 2(1=� 2 1)+� 2(2 1) 6= + =   states sets 
and  for 2(2=� 2 1)+� 2(4 1) 10= + = states  sets 
and 3=�  for 2(2 1)+�  states 2(6 1) 14= + =  sets 
and  for 4=� 2(2 1)+�  states 2(8 1) 18= + =  sets 

n ets = total r of sumbe  50  

1:n = = 22 8

3:n = = 22 32

5:n = =  

 For   2 2n . For n n= = . 
For   2 18n . For n n= = . 
For   2 50n .

2 2:  
2 4:  
2
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 Thus

(a) 

, the number of sets of quantum states agrees with the  rule. 

28.39 Zirconium, with 40 electrons, has 4 electrons outside a closed Krypton core. The 
Krypton core, with 36 electrons, has all states up through the  subshell filled. 

 subshell. 
However, an exception to the rule occurs at this point, and the 

22n

4p

Normally, one would expect the next 4 electrons to go into the 4d
5s subshell fills 

(with 2 electrons) before the 4d  subshell starts filling. The two remaining electrons 
in Zirconium are in an incomplete 4d  subshell. Thus, 4, an  2n d= =�  for each o
these electrons. 

For electrons in the 4d  subshell, with 2

f 

 (b) =� , the possible values of m �  are 
0, 1, 2m = ± ±�  and those for sm  are 1 2sm = ± . 

We have 40 elect (c) rons, so the electron configuration is: 
 
 2 2 6 2 6 10 2 6 2 2 2 21 2 2 3 3 3 4 4 4 5 5s s p s p d s p d s d s = [Kr]4  

2 The photon energy is 8.40 ( )951 eV 8979 eV 80E E Eγ = − = − − − = 28 eVL K , and the wavelength 
is 
 

 
( ) ( )

( )( )
34 8

10
19

6.63 10  J s 3.00 10  m s
1.55 10  m

 eV 1.60 10  JeV

hc
λ

−
−

−

× ⋅ ×
= = = ×

×8028Eγ

= 0.155 nm  

 
To produce the K α  line, an electron from the K shell must be excited to the L shell or 
higher. Thus, a minimum energy of 8028 eV must be given to the atom. A minimum 

ccelerating voltage ofa  8028 VV∆ = = 8.03 kV  is required. 
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28.41 For nickel,  and 
 

 

28Z =

( )
( )

( ) ( )2 2 3
2

13.6 eV
1 27 13.6 eV 9.91 10  eV

1
KE Z≈ − − = − = − × , 

 

 ( )
( )

( ) ( )2 2 3
2

13.6 eV13.6 eV
3 25 2.13 10  eV

42
LE Z≈ − − = − = − ×  

 
Thus, ( )2.13 keV 9.91 keV 7.78 keVL KE E Eγ = − = − − − =  
 
and 
 

 
( ) ( )

( )
34 8

10
16

6.63 10  J s 3.00 10  m s
1.60 10  m

7.78 keV 1.60 10  JkeV

hc
Eγ

λ
−

−
−

× ⋅ ×
= = = × = 0.160 nm

×
 

28.42 The energies in the K and M shells are 
 

 ( )
( )

2
2

13.6 eV
1

1
KE Z≈ − −  and ( )

( )
2

2

13.6 eV
9

3
ME Z≈ − −  

 

Thus, ( ) ( ) ( ) ( )
2

2 29 8
13.6 eV 1 13.6 eV 8

9 9M K

Z
E E E Z Zγ

⎡ ⎤− ⎛ ⎞= − ≈ − + − = −⎢ ⎥ ⎜ ⎟⎝ ⎠⎣ ⎦
 

 

and hc
Eγ λ

=  gives 
( )

2 9
8

8 13.6 eV
hc

Z
λ

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
, or 

 

 
( ) ( )

( )( )
34 8

199

9 6.63 10  J s 3.00 10  m s 1 eV
9

1.60 10  J8 13.6 eV 0.101 10  m
Z

−

−−

× ⋅ × ⎛ ⎞
≈ + = 32.0⎜ ⎟⎝ ⎠××

 

 
The element is Germ anium . 
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28.43 The transitions that produce the three longest  
wavelengths in the K series are shown at the right.  
The energy of the K shell is 69.5 keVKE = − . 
 
Thus, the energy of the L shell is 
 

 
3

L K

hc
E E

λ
= + , 

 

or 
( ) ( )34 8

9

6.63 10  J s 3.00 10  m s
69.5 keV

0.0215 10  mLE
−

−

× ⋅ ×
= − +

×
 

 

  
15

-16

1 keV
69.5 keV 9.25 10  J

1.60 10  J

69.5 keV 57.8 keV 11.7 keV

− ⎛ ⎞
= − + × ⎜ ⎟⎝ ⎠×

= − + = −

 

 
 

N shellEN

λ1 λ2 λ3

M shellEM

L shellEL

K shellEK

 Similarly, the energies of the M and N shells are 
 

 ( ) ( )
( ) ( )

2

34 8

9 16

6.63 10  J s 3.00 10  m s
69.5 keV 10.0 keV

0.0209 10  m 1.60 10  JkeV

M K

hc
E E

λ
−

− −

= +

× ⋅ ×
= − + = −

× ×

 

 
and 
 

 ( ) ( )
( ) ( )

1

34 8

9 16

6.63 10  J s 3.00 10  m s
69.5 keV 2.30 keV

0.0185 10  m 1.60 10  JkeV

N K

hc
E E

λ
−

− −

= +

× ⋅ ×
= − + = −

× ×

 

 
The ionization energies of the L, M, and N shells are 
 
 11.7 keV, 10.0 keV, and 2.30 keV respectively . 
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28.44 According to the Bohr model, the radii of the electron orbits in hydrogen are given 
by 
 
  with  
 
Then, if , the quantum number is 
 

 

2
0nr n a= 11

0 0.0529 nm 5.29 10  ma −= = ×

61.00 m 1.00 10  m  nr µ −≈ = ×

6

11
0

1.00 10  m
5.29 10  m

nrn
a

−

−

×
= = ≈ 137

×
 

28.45 (a) ( )2 2
2 1 13.6 eV (2) 13.6 eV (1)E E E∆ = − = − − − = 10.2 eV  

 (b) The average kinetic energy of the atoms must equal or exceed the needed 
excitation energy, or 3 B2k T E≥ ∆  which gives 
 

 ( ) ( )( )
( )

19

-23
B

2 10.2 eV 1.60 10  JeV2

3 3 1.38 10  JK

E
T

k

−×∆
≥ = = 47.88 10  K×

×
 

28.46 (a) ( ) ( ) ( )8 12 3 = 4.20 m m3.00 10  m s 14.0 10  s 4.20 10  mL c t − −= ∆ = × × = ×  

 (b) pulse pulseE E
N

E hcγ λ
= =  

 

 
( ) ( )

( ) ( )
9

34 8

694.3 10  m 3.00 J

6.63 10  J s 3.00 10  m s

−

−

×
= =

× ⋅ ×
191.05 10  photons×  

 (c) ( )2 4

N N
n

V L dπ
= =  

 

 
( )

( ) ( )

19

2

4 1.05 10  photons

4.20 m m 6.00 m mπ

×
= = 16 38.82 10  photons m m×  
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28.47 (a) 
( ) ( )

( )
34 8

1 10 -19

6.63 10  J s 3.00 10  m s
0

1520 10  m 1.60 10  JeVlim it

hc
E E

λ

−

∞ −

× ⋅ ×
= − = − = 8.18 eV

× ×
−  

 

2 1
1

hc
E E

λ
= +  

 

 
( ) ( )

( )
34 8

10 -19

6.63 10  J s 3.00 10  m s
8.18 eV

2026 10  m 1.60 10  JeV

−

−

× ⋅ ×
= − + =

× ×
2.04 eV−  

 

3 1
2

hc
E E

λ
= +  

 

 
( ) ( )

( )
34 8

10 -19

6.63 10  J s 3.00 10  m s
8.18 eV

1709 10  m 1.60 10  JeV

−

−

× ⋅ ×
= − + =

× ×
0.904 eV−  

 

4 1
3

hc
E E

λ
= +  

 

 
( ) ( )

( )
34 8

10 -19

6.63 10  J s 3.00 10  m s
8.18 eV

1621 10  m 1.60 10  JeV

−

−

× ⋅ ×
= − + =

× ×
0.510 eV−  

 

5 1
4

hc
E E

λ
= +  

 

 
( ) ( )

( )
34 8

10 -19

6.63 10  J s 3.00 10  m s
8.18 eV

1583 10  m 1.60 10  JeV

−

−

× ⋅ ×
= − + =

× ×
0.325 eV−  

 (b) From 
i f

hc hc
E E Eγ

λ = =
−

, the longest and shortest wavelengths in the Balmer series for 

this atom are 
 

 
3 2

long

hc
E E

λ =
−

( ) ( )
( ) ( )

34 8

-19

6.63 10  J s 3.00 10  m s

0.904 eV 2.04 eV 1.60 10  JeV

−× ⋅ ×
= =

⎡ ⎤− − − ×⎣ ⎦

31.09 10  nm×  

 

and 
2

short

hc
E E

λ
∞

=
−

( ) ( )
( ) ( )

34 8

-19

6.63 10  J s 3.00 10  m s

0 2.04 eV 1.60 10  JeV

−× ⋅ ×
= =

⎡ ⎤− − ×⎣ ⎦
609 nm  
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28.48 (a) 
( ) ( )

( ) ( )
34 8

22 2 9 2 2 19

6.626 10  J s 2.998 10  m s1
2 2 8.987 10  N m C 1.602 10  Ce e

c hc
k e k eα π π

−

−

× ⋅ ×
= = = = 137

× ⋅ ×

�  

 (b) 
2 2

0
2

C

1
2

e e

e e

m k ea c
h m c k eλ π

⎛ ⎞
= = =⎜ ⎟⎝ ⎠
� � 1

2π α
 

 (c) 
3 2 4

H
2 2 2

0

1 4
4e e

e e e

R c m k e c
a m k e k e

π
π

⎛ ⎞
= = ⎜ ⎟⎝ ⎠

� �

�
=

4π
α

 

28.49 (a) 
( ) ( )

( ) ( )
34 8

-19 9

6.63 10  J s 3.00 10  m s 1243 eV nm

1.60 10  JeV 10  m nm

hc
Eγ λ λλ

−

−

× ⋅ × ⋅
= = =

×
 

 
For: 
 

253.7 nm ,  4.899 eVEγλ = = ; 
 

185.0 nm ,  6.719 eVEγλ = = ; 
 

158.5 nm ,  7.842 eVEγλ = =  
 
Thus, the energies of the first three excited states are: 
 
  1 10.39 eV 4.899 eV=E =− + 5.49 eV−  
 
  2 10.39 eV 6.719 eV=E =− + 3.67 eV−  
 
and 3 10.39 eV 7.842 eV=E =− + 2.55 eV−  

   

Third Excited State – 2.55 eV

18
5.

0 
nm

25
3.

7 
nm

15
8.

5 
nm

1

5

6
4

3
2

– 10.39 eV

– 5.49 eV

– 3.67 eV

Ground State

First Excited State

Second Excited State

 

 (b) 

405 

From ( ) ( )1243 eV nm i fE Eλ = ⋅ − , the wavelengths of the emission lines shown are 

 
 1λ = 158.5 nm , 2λ = 422.8 nm , 3λ = 1110 nm , 4λ = 185.0 nm , 
 
 5λ = 683.0 nm , and 6λ = 253.7 nm  
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 (c) To have must excite the atom from the ground state to the 
fi

9K
 

so

an inelastic collision, we 
rst excited state, so the incident electron must have a kinetic energy of at least 

 eV 4.90 eVE = − = , 10.39 eV 5.4

 ( ) ( )( )19

-31

2 4.90  J eV 1.60 10 eV2

9.11 10  kge

KE
v

m

−×
= =

×
= 61.31 10  m s×  

( ) ( )
( ) ( )

34 8

19 9

6.626 10  J s 2.998 10  m− s 1240 eV nm

1.602 10  JeV 10  m nm

hc
E Eγ λ λλ − −

× ⋅ × ⋅
= = = = ∆

×
 

 
For: 
 

28.50 

310.0 nmλ = , 4.000 eVE∆ =  
 

400.0 nmλ = , 3.100 eVE∆ =  
 

nd a 1378 nmλ = , 0.9000 eVE∆ =  
 
T

 

 

31
0 

nm

he ionization energy is 4.100 eV. The energy level diagram having the fewest number 
of levels and consistent with these energy differences is shown below. 

–0.1000 eVSecond Excited State
0

–1.000 eV

–4.100 eVGround State

40
0 

nm

 

First Excited State

n = ∞

1378 nm

28.51 (a) ( ) ( )
( )

3 -9

22 -6

4 3.00 10  J 1.00 10  s

4 30.0 10  m

E t
I

A dπ π

−× ×∆ ∆℘
= = = =

×
15 24.24 10  W m×  

 ( )E IA t= ∆  
 

 ( ) ( )215 9 9
2

W
4.24 10  0.600 10  m 1.00 10  s

m 4
π − −⎛ ⎞ ⎡ ⎤= × × × = 121.20 10  J−×⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

 

 (b)
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28.52 (a) Given that the de Broglie wavelength is 02aλ = , the momentum is 02p h h aλ= = . 
The kinetic energy of this non-relativistic electron is 
 

 
2 2

2
02 8e e

p h
KE

m m a
= =  

 

  
( ) ( )

( ) ( )

234 -19

231 9

6.63 10  J s 1 eV 1.60 10  J

8 9.11 10  kg 0.0529 10  m

−

− −

× ⋅ ×
= =

× ×
135 eV  

 (b) The kinetic energy of this electron is 10 tim es≈  the magnitude of the ground state 
energy of the hydrogen atom which is –13.6 eV. 

28.53 In the Bohr model, 
 

 

( ) ( )

1

4 42 2 2

2 22 2 3 2

41 1 1 1
2 21 1

n n

e e e e

E EE
f

h h

m k e m k e
h n hn n

π

−−∆
= =

⎡ ⎤⎛ ⎞ ⎡−
= − =⎢ ⎥

1
n

⎤
−⎢ ⎥⎜ ⎟− −⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦�

 

 

which reduces to 
( )

2 2 4

23 2

2 2 1

1
e em k e n

f
h n n

π ⎛ ⎞−
= ⎜ ⎟−⎝ ⎠
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28.54 As n , . In this limit, the result of Problem 28.53 reduces 
to 
 

 

→ ∞ 2 1 2   and  1n n n− → − → n

2 2 4

3 4

2 2e em k e n
f

h n
π ⎛ ⎞= =⎜ ⎟⎝ ⎠

42 2

3 3

4 e em k e
h n

π
 

 
Since the electrical force supplies the centripetal acceleration, 
 

 
2 2

2
e em v k e
r r

=  or 
2

e

e

k e
v

m r
=  

 
The classical frequency is then 
 

 
2

3

1
2 2

e

e

k ev
f

r mπ π
= =

r
 where 

2 2
2

0 2 24 e e

n h
r n a

m k eπ
= =  

 

This gives 
6 3 3 62

2 6 6

64

2 4
e ee

e

m k ek ev
f

r m n h

π
π π

⎛ ⎞
= = =⎜ ⎟⎝ ⎠

42 2

3 3

4 e em k e
h n

π
 

 
Thus, the frequency from the Bohr model is the same as the classical frequency in the 
limit . n → ∞

28.55 (a) The energy levels in this atom are 
 

 
2 2 4

2 22
e

n

m Z k e
E

n
π= −
�

 

 

  
( ) ( ) ( )

2 2 4
2

2 2 2

273 2 273
2 13.60 eV

2
e em k e

n n

⎛ ⎞ ⎡ ⎤= − = − =⎜ ⎟ ⎣ ⎦⎝ ⎠�

4

2

1.485 10  eV

n

− ×
 

 
The energies of the first six levels are: 
 
    
 
   

4
1 1.485 10  eVE = − × 3

2 3.71 10  eVE = − × 3
3 1.65 10  eVE = − ×

4 928 eVE = − 5 594 eVE = − 6 413 eVE = −  
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 (b) From the Compton shift formula, the emitted wavelength was 
 
 ( ) ( ) ( )0 C 1 cos 0.0899293 nm 0.00243 nm 1 cos42.68λ λ λ θ= − − = − − °′  
 
   
 
The energy radiated by the atom is then 
 

 

0.089289 nm=

( )( )
( ) ( )

0

34 8
4

9 19

6.63 10  J s 3.00 10  m s
1.392 10  eV

0.089289 10  m 1.60 10  JeV

i f

hc
E E E

λ
−

− −

∆ = − =

× ⋅ ×
= =

× ×
×

 

 
Since 2E E∆ > , the final state must be the ground state . The energy of the initial 
state was 
 
  
 
This is seen to be . Thus, the transition made by the pi meson was 

1E

4 41.485 10  eV 1.392 10  eV 928 eVi fE E E= + ∆ = − × + × = −

4E 4 1n n= → = . 

28.56 (a) Using 
2

0 2
e

a
m k eµ

=
� , with 207 em µ m= , gives the Bohr radius for the “muonic atom” 

as 
 

 ( )
2

0 2

1 1
0.0529 nm

207 207e e

a
m k e

⎛ ⎞
= = = 42.56 10  nm−×⎜ ⎟⎝ ⎠

�  

 (b) The energy levels in this atom are 
 

 
( ) ( )

2 2 4 2 32 4

2 2 2 2 2 2

207 1 2.82 10  eV207
13.6 eV

2 2
e e e

n

m Z k e m k e
E

n n n n
µ ⎛ ⎞ − ×

=− = − = − =⎜ ⎟⎝ ⎠� �
 

 
The energies of the three lowest levels are: 
 
 1E = 32.82 10  eV− ×   2E = 704 eV−  3E = 313 eV−  
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28.57 (a) From Newton’s second law, 2
1 2eF k q q r m a= = e  , and the acceleration is 

 

 
2

2
0

e

e e

k eF
a

m m a
= =  

 

  
( ) ( )

( ) ( )

29 2 2 19

231 9

8.99 10  N m C 1.60 10  C

9.11 10  kg 0.0529 10  m

−

− −

× ⋅ ×
= =

× ×
22 29.03 10  m s×  

 (b) 
2 2

3

2

3
ek e a

c
℘= −  

 

 
( ) ( ) ( )

( )

2 29 2 2 19 22 2

38

2 8.99 10  N m C 1.60 10  C 9.03 10  m s

3 3.00 10  m s

−× ⋅ × ×
= −

×
 

 
84.63 10  J s−℘ = − × = 84.63 10  W−− ×  

 (c) With the electrical force supplying the centripetal acceleration, 
 

 
2 2

2
e em v k e
r r

=  or 
2

2 e
e

k e
m v

r
=  and 

2
21

2 2
e

e

k e
KE m v

r
= =  

 
Thus, 
 

 
( ) ( )

( )

29 2 2 192
18

9
0

8.99 10  N m C 1.60 10  C
2.17 10  J

2 2 0.0529 10  m
ek e

KE
a

−
−

−

× ⋅ ×
= = = ×

×
 

 
The time required to radiate all this energy, and the estimated lifetime is 
 

 
18

11
8

2.17 10  J
4.69 10  s

4.63 10  Js
KE

t
−

−
−

×
∆ = = = ×

℘ ×
 or 11~ 10  st −∆  
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Answers to Even Numbered Conceptual Questions 

 2. Neon signs do not emit a continuous spectrum. They emit many discrete wavelengths as 
could be determined by observing the light from the sign through a spectrometer. 
However, they do not emit all wavelengths. The specific wavelengths and intensities 
account for the color of the sign. 

 4. An atom does not have to be ionized to emit light. For example, hydrogen emits light 
when a transition carries an electron from a higher state to the 2n=  state. 

 6. Classically, the electron can occupy any energy state. That is, all energies would be 
allowed. Therefore, if the electron obeyed classical mechanics, its spectrum, which 
originates from transitions between states would be continuous rather than discrete. 

 8. The de Broglie wavelength of macroscopic objects such as a baseball moving with a typical 
speed such as 30 m/s is very small and impossible to measure. That is, h m vλ = , is a very 
small number for macroscopic objects. We are not able to observe diffraction effects 
because the wavelength is much smaller than any aperture through which the object could 
pass. 

10. In both cases the answer is yes. Recall that the ionization energy of hydrogen is 13.6 eV. 
The electron can absorb a photon of energy less than 13.6 eV by making a transition to 
some intermediate state such as one with 2n= . It can also absorb a photon of energy 
greater than 13.6 eV, but in doing so, the electron would be separated from the proton and 
have some residual kinetic energy. 

12. It replaced the simple circular orbits in the Bohr theory with electron clouds. More 
important, quantum mechanics is consistent with Heisenberg’s uncertainty principle, 
which tells us about the limits of accuracy in making measurements. In quantum 
mechanics, we talk about the probabilistic nature of the outcome of a measurement of a 
system, a concept which is incompatible with the Bohr theory. Finally, the Bohr theory of 
the atom contains only one quantum number n, while quantum mechanics provides the 
basis for additional quantum numbers to explain the finer details of atomic structure. 

14. Each of the given atoms has a single electron in an ( )0 or s=�  state outside a fully closed-
shell core, shielded from all but one unit of the nuclear charge. Since they reside in very 
similar environments, one would expect these outer electrons to have nearly the same 
electrical potential energies and hence nearly the same ionization energies. This is in 
agreement with the given data values. Also, since the distance of the outer electron from 
the nuclear charge should tend to increase with Z (to allow for greater numbers of 
electrons in the core), one would expect the ionization energy to decrease somewhat as 
atomic number increases. This is also in agreement with the given data. 

16. The full output of the laser is concentrated in a very narrow beam, and if it enters the eye, 
will be focused on a small portion of the retina. Since the beam is nearly parallel, the 
intensity of the laser beam diminishes very slowly with distance from the source. The 
power of the light bulb is radiated uniformly in all directions and only a very small 
portion of it can enter the eye at one time. Also, the intensity of the light from the bulb 
decreases rapidly with distance from the source (varies as 21 r ). 
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Answers to Even Numbered Problems 

 4. (a)   (b) 1.4 MeV 22.3 10  N×

 6. 45 fm 

 8. (a) 62.19 10  m s×   (b) 13.6 eV   (c) –27.2 eV 

10. (a) 3.03 eV   (b) 410 nm   (c)  147.32 10  H z×

12. (a) transition II  (b) transition I  (c) transitions II and III 

14. (a) 12.1 eV   (b) 12.1 eV, 10.2 eV, and 1.89 eV 

16. (a) 13.6 eV   (b) 1.51 eV 

20. (a) 62.19 10  m s×   (b)   (c) 1.05 mA 161.52 10  s−×

22. (a)   (b)  
(c) Yes, for  
(d) The electron moves so quickly that it can never meaningfully be said to be on any  
 particular side of the nucleus. 

161.52 10  s−× 98.23 10  revolutions×
98.23 10  “electron years”×

24. 44.43 10  m s×  

26. (a) 34 22.89 10  kg m s× ⋅  (b)   (c)  682.74 10× 697.30 10−×

28. (a) 254.4 eVnE = − n   (b)  54.4 eV

30. 2122 eV  for 1,2,3,...nE n n= − =  

34. ( 1
23, 2, 2, sn m m= = = + =±�� ); ( 1

23, 2, 1, sn m m= = = + =�� ± ) 
( 1

23, 2, 0, sn m m= = = =±�� ); ( 1
23, 2, 1, sn m m= = = − =�� ± ) 

( 1
23, 2, 2, sn m m= = = − =±�� ) 

36. (a)  
(b) (

2 2 41 2 2s s p
1
21, 0, 0, sn m m= = = =±�� ); ( 1

22, 0, 0, sn m m= = = =�� ± ) 
 ( 1

22, 1, 0, sn m m= = = =±�� ); ( 1
22, 1, 1, sn m m= = = =�� ±

42. , germanium 

) 

38. (a) 2  (b) 8  (c) 18   (d) 32  (e) 50 

40. 0.155 nm, 8.03 kV 

32Z =
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44. 137 

.20 mm   (b) 46. (a)  4 191.05 10  photons×  
(c) 16 38.82 10  photons m m×  

(a) 48. 137    (b) 1 2πα    (c) 4π α  

50. The simplest diagram has 4 states wi nergies of -4.100 eV, -1.000 eV, -0th e .1000 eV, and 0. 

(b)  times the magnitude of the ground state energy of hydrogen. 

54. when 

52. (a) 135 eV 
10≈

2 2 4 3 3, 4classical e ef f m k e h nπ→ =∞  n →

10  nm−×   (b) 56. (a) 2.56 4 32.82 10  eV, 704 eV, 313 eV− × − −  
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