CHAPTER 28

Quick Quizzes

1. (b). The circumference of the orbit is 1 times the de Broglie wavelength (27r=ni), so

there are three times as many wavelengths in the n= 3 level as in the n=1level. Also, by
combining Equations 28.4, 28.6 and the defining equation for the de Broglie wavelength
(4=Hh/mv), one can show that the wavelength in the n=3 level is three times as long.

2.  The quantum numbers associated with orbital states are 1, 3 and m,. For a specified value

of n, the allowed values of arange from 0 to n - 1. For each value of g there are (2a+ 1)

possible values of m..

(@) If n=3,thena=0,1, or 2. The number of possible orbital states is then
[2(0)+1]+[2()+1]+[2(2)+1]=1+3+5=9.

(b) If n =4, one additional value of ais allowed (a= 3) so the number of possible orbital
states is now 9+[2(3)+1]=9+7=16.

3. (a) Forn=5, there are 5 allowed values of g namely a=0, 1, 2, 3, and 4.

(b) Since m_ranges from -ato +ain integer steps, the largest allowed value of a(a=4 in
this case) permits the greatest range of values for m,. For n=5, there are 9 possible
values for m_ -4,-3,-2,-1,0, +1, +2, +3, and +4.

4.  (d). Krypton has a closed configuration consisting of filled n=1,n=2,and n=3 shells as
well as filled 4s and 4p subshells. The filled n= 3 shell (the next to outer shell in Krypton)

has a total of 18 electrons, 2 in the 3s subshell, 6 in the 3p subshell and 10 in the 34
subshell.
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CHAPTER

Problem Solutions

28.1

28.2

28.3

28

4( n? )

1 1 1
The Balmer equationis —=R [———) ,0rt A=—1| ——
e A "2 n? R, ey

When n=3,

4
A= 7 -1[
109737 x 10" m 9

When n=4,

When n=5,

1
Start with Balmer’s equation, 1 Ry (

4( n? )

or lzik—nz—d

1

1
2 n?

9 .
1) =656x107 n ~[E86 |

) =486x107 m ~[2m_

4
A= 7 -1[
109737 x 10" m 16—

)= 434x10" m =[@4mn_

4
A= 7 -1[
109737 x 10" m 25-4

~_ (n?-4)

)‘R“LWJ’

Substituting R, =1.0973732x 10" m ™, we obtain

364 5n°

/1_(:~;545x10*7 m )n2
a n’-4

(@) From Coulomb’s law,

n°-4

nm

k|qq (899x10° N -m?/C?)(160x107 C)°

where n=3,4,5,....

=|23x10°8N

=%

(Lox10%m)’
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CHAPTER 28

(b) The electrical potential energy is

kg (899x10° N -m?/C?)(-160x10" C)(160x 10 C)
or 10x10°m

_ 18 lev N

\Y%

284 (a) From Coulomb’s law,

_ koo _(899x10° N -m?/C?)(160x10™ C)
=77 - (1.0><10"15m)2

2

F 23x10°N

(b) The electrical potential energy is

kag (899x10° N-m?/C?)(160x10% C)’
o 10x105 m

1M eV
=23x10" ‘{—] =[+14MeV
% 160x 10" J

\Y

28.5 (a) The electrical force supplies the centripetal acceleration of the electron, so

VY _ke o k€
r r mr

899x10° N -m 2/C?)(160x107° C)*

V= ( =|16x10° m /s
\/ (911x10™* kg)(10x 10" m) /
6
(b) No. v Losm/s =53x107° << 1, so the electron is not relativistic.
c 300x10° m/s
h h
(c) The de Broglie wavelength for the electron is A= —p =
663x10* Js

=46x10° m =| 046 nm

" (911x10% kg)(16x10° m /g

(d) The wavelength and the atom are roughly the same size.
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28.6  Assuming a head-on collision, the a-particle comes to rest momentarily at the point of
closest approach. From conservation of energy,

KE, + PE, =KE, + PE, or 0+ (29799 _ ., k(29)(79¢)

Ie L
With 1, — oo, this gives the distance of closest approach as

iseie_ 158(859<10° N ¥C?)(180x20"
re= KE, B 50M eV (1.60)(10_13 \J/M eV)

=45x10% m =

287 (a) I,=n’g yields ,=4(00529nm)=[0212nm |

(b) With the electrical force supplying the centripetal acceleration,

erZ :I@;r,fez’ giving v, = l%ez and p,=m., = @
Thus,

2:

m k& _\/(9_'I.1>< 10 kg)(899x10° N -m 2/C?)(16x 107 c)2

L 0212x10° m

=995x10 kg-m /s

(h) (663x10% J-s\:

(©) L”:nLZJ_)LQZZL > 211x10* Js

P (995x10% kg-m /9’

1
d) (d) KE,==m 2= = =543x10" J=|340eV
R N (T [340e/]

e

- kicde_ (859410 N Y1010 ]
2= L - (0212><10’9m)
=-109x10"® J=|-680eV

(f) E,=KE,+PE,=340eV -680eV=[-340€V |
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28.8 (a) With the electrical force supplying the centripetal acceleration,

m%:/ﬁ: kerfez , giving Vv, = %

where I, =n’g =n*(00529 nm )

Thus,

99x10° N -m 2/C2)(160x 107 ¢ )’
vl—/"?ez—\/(8 <10° N -m */C*)(16010 ):2.19><106m/s
m.n

(911x10°* kg)(0.0529x10° m

1, k€ (899x10° N .m?/C?)(160x10* C)'
(b) KE,=Z=mVi= 2r 2(00529><10‘9 m)

-218x10°® J=

pE, - ke(-9e_ (899x10° N -m 2/C?)(160x 10 C)°
(0 1 K T (()_()529>< 10°m )

— _435x10°% J=

28.9  Since the electrical force supplies the centripetal acceleration,

mn_ke€ k€

LS N N
nJ
From L, =m_rV,=n],wehave I, = , SO
mevn
&(myv,) &
V§=LL € ”J which reduces to| v, _ke
m, L nJ n]
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28.10

28.11

28.12

(b) From %: Ry {

1( nn2 Y
—_— —J with N;=6 and ny=2

1 (36)(4) -
A= =410x10" m =| 410 nm
109737x 10 m -1{ 36-4 *

_hc (663x10 35(300x10° m /g
A 410x10° m

=485x10" x|303eV

© f=5=—300><10:m/s= 732x10% Hz
2 410x10°m

In the ground state, § =(1)*a,=00529 nm and the Coulomb force has magnitude

ko (899x10° N .m?/C?)(160x10* C)
ro (00529x10° m )’

2

|F|= 822x10° N

The change in the energy of the electron is

(1 1)
AE = Ef— Ei: 136eV L—z——zJ
Ny Ne
., 1 1 )
Transition I: AE=136¢eV 1 %" 286 €V (absorption)
. 11 -
Transition II: AE=136¢eV = 9" —0967 eV (emission)
. 1 1 -
Transition III: AE=136¢eV o 1 0572 €V (emission)
. 1 1 )
Transition IV: AE=136¢eV % 29" 0572 eV (absorption)



CHAPTER 28

hc hc —
(@) Since A= E " TAE’ transiton 1| emits the shortest wavelength photon.
, -

(b) The atom gains the most energy in| ransimon 1|

(c) The atom loses energy in‘ transitons lland 111 ‘

28.13 The energy absorbed by the atom is

1
n?

1)
i)
(@) E,=136eV [é_z_lsj ~[ 0967 eV |

1 1
b) E =l3.66V[———j= 266 eV
( ) 4 25 49 -

(
Ey:Ef—Ei:lSBeVL

28.14 (a) The energy absorbed is

(1 1) 11
AEzEf—Ei=13.6eVLF——2J:13.6eV[1—§j=

i f

(b) Three transitions are possible as the electron returns to the ground state. These
transitions and the emitted photon energies are

1 1
n=3->n,=1: |AE|=135eV[?—?): 121eV

1 1
ni=3—)anZZ |AE|=13.6€V(§—?j= 189 eV

1 1
ni=2—>nf=1: |AE|:13-6€V[F_?): 102 eV

(1

28.15 From %: Ry L_z_in , it is seen that (for a fixed value of N¢) A, occurs when

e N

N;=N¢+1 and A,;, occurs when n;— .
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(@) For the Lyman series (nf = 1) ,

%:(109737“07 m 1)(1—12—2—12) — Ay =122x107 m =[122 nm |

max

and

%:(109737@07 m 1)(1—12—%) > Ay =911x10° m =[911nm |

min

(b) For the Paschen series (nf = 3) ,

i=(109737><107 m -1)[3—32] > A,,=187x10°m =| 187 x 10° nm
A F 4

max

and

%:(109737“07 m 1)(%—%} > Ay =820x107 m =[820 N |

min
28.16 To ionize the atom, it is necessary that Ny — 0. The required energy is then

)
i—iJ=13.6eV[i2—i\=l3ﬁzev

2
N n; oo n;

(
AEzEf—Ei=13.6eVL

(@) If n;=1, the required energy is AE = 13 ']6_26\/ =|136¢eV
(b) 1f n,=3, AE= 13226\/ _[151ev

28.17 The batch of excited atoms must make these six transitions to get back to the ground
state: ';=2—>Ng=1,also ;=3—>Ng=2and N;=3—>N¢=1,and also ;=4—>n=3

and N;=4—ng=2 and N;=4-— ng=1. Thus, the incoming light must have just enough
energy to produce the N;=1— N, =4 transition. It must be the third line of the Lyman

series in the absorption spectrum of hydrogen. The incoming photons must have
wavelength given by

1 (1 1) 15R, 16 16
TR | =—= = r A= = =972 nm
A7 \ET#)T 16 U TR, 15(100737x 10 m )
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28.18 The magnetic force supplies the centripetal acceleration, so

gzqu,or r:%

If angular momentum is quantized according to

n
I

—_

L =mv

n n

r =n],then mv, =

7

and the allowed radii of the path are given by

n]

B

rl'-’l:

Enl
Il
—
212
o
=

28.19 (a) The energy emitted by the atom is

AE=E4—E2=—13.66V[ 1 izj=255ev
2

vy
The wavelength of the photon produced is then

hc hc (663x10™ 35)(300x10° m/s)

"E, AE  (255eV)(160x107° Jev)

/4

—488x107 m =

(b) Since momentum must be conserved, the photon and the atom go in opposite
directions with equal magnitude momenta. Thus, p=m 4, v=h/4 or

h 663x10% J s
M2 (167x107 kg)(438x107 ) =[0814 m/s|

2820 (a) From L,=m_rv, =n] and r, =n’g,, we have

] h
K 2zm g

663x10* Js

- 6
27(911x 10 kg)(00529x10° m ) - 219x10° m /s
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27, 2r7a 27(00529x10°m
v, v 219x10° m/s

(b) At= =1152x10" s

|_AQ _160x10*C

X

©)

28.21 When the centripetal acceleration is supplied by the gravitational force,

mvzzGMm orvzzGM
r r r

(@) With PE=-—GM m/r, the total energy is

M
E:KE+PE:}mV2_GMmZE(GM)_GMm:_G m
2 r 2\ r r 2r

n
(b) Using the Bohr quantization rule, L, =mv,r, =n]l,so V, = ] and

mr,
n
LT (_1 ] _GM
r mr n
n2] 2
which reduces to I, = > =| N’y |with
GMm

]2
rh=
° GMm?

) (663x10* 39
~ 472(667x 10" N -m 2/kg?)(199x 10® kg)(598x 10 kg)’

232x10 % m

<2l
Il

GMm  GMm(GMm?) E,
ot = =|-— |, where

(c) The energy in the n™ orbitis E, =— : 5 217 )= h

G2M °m?3

E =
0 2]2

_4r°(667x10™)" (190 10302)2(598x 10%)° TN
2(663x10*)
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11
(d) r=n’g,so n? L L S Y PRET
I

or n=|253x10™

(e) No, the quantum numbers are too large and the allowed energies are essentially
continuous in this region.

2
28.22 (a) The time for one complete orbitis T = il
\Y%

From Bohr’s quantization postulate, L=m vr=n],

nj . .
we see that v= T Thus, the orbital period becomes:
e

2
T2 27m (an*) _27m a3 n?
nj nj ]

or T =tn> where

2 27(911x 10 kg)(00529x10° m )
_zma 2 g)(34 ) Tmri0%s
] 1055x10 % J s

(b) With n=2, we have T=84,=8(152x 10 §/=121x10 s

Thus, if the electron stays in the Nn= 2 state for 10 us, it will make

-6
100~ }12 S -[823x10° revolitons | of the nucleus
121x10 ™ S'rev

(c) |Yes,or823x 10’ "ekctron years'"

e electron moves so quic that it can never meaningfu e said to be on an
d) Theel quickly that i ingfully be said to b y
particular side of the nucleus.
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28.23 (a) The wavelength emitted in the N;=2— N, =1 transition is

;in( i \= L [(4)(1)j =122x10"m
Ry .Z—an (109737x10" m *)\ 4-1

300x 10°
and the frequency is f= <o x—qm/s =|247x10° Hz
A 12x10"'m

From L, =m ., =n], the speed of the electron is V,, =n]/m.r,

Therefore, with I, = nzae, the orbital frequency is

tm_l_ﬁ_ ni h )1 659x10°Hz
T r 2zm, L47rm aan n®
659x 10" H z

For the n=2 orbit, £, = =/823x10“ Hz

(2

(b) For the n;=10000— ng=9999 transition,

1 (10000 (9999)° ,
= — 5 5 |=456x10" m
(109737 x 10" m *)| (10000)° - (9.999)
8

and §- C_300XI0 M/S_ ooy 10 k2

A 456x10'm
For the n=10000 orbit, &=M= 659x10° Hz

(10000)

For small n, significant differences between classical and quantum results appear.
However, as n becomes large, classical theory and quantum theory approach one
another in their results. (correspondence principle)

28.24 Each atom gives up its kinetic energy in emitting a photon, so

KE:%mvzzh_C:(6.63><10‘34 J5)(300x10° m /s

— =164x107" J
vl 1216x10° m

= 443x10" m/s

V=

2(KE) _ 2(1.64>< 108
167x107 kg
394
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CHAPTER 28

28.25 For minimum initial kinetic energy, KE, =0 after collision. Hence, the two atoms must
have equal and opposite momenta before impact. The atoms then have the same initial

kinetic energy, and that energy is converted into excitation energy of the atom during
the collision. Therefore,

KE o =%mamv2=E2—El:102eV,

= 442x10" m/s

2(102eV) [2(102eV)(160x107* Jev)
or V: =
167 x 10 kg

M atom

2zr
28.26 (a) L=mvr=m [Tj r

27(736x 107 kg)(384x10° m )°
236x10° s

=|289x10* kg-m?/s

L 271 27(289x10* kg-m?/s
N=—= = =

— 274%10%
1 h 663x10* Js

(c) The gravitational force supplies the centripetal acceleration so

mv:  GM cm
—= ,or n2=GM
r r £
n
Then, from L, =mv,r,=n] or V,=——,
mr,
(1) L 12 )
we have r,;Lm—rr_J =GM ¢ which gives la:nZLGM Emz)znzq

Therefore, when n increases by 1, the fractional change in the radius is

Ar -t (n+)’g-r’p 2n+1 2
r r, n’g n? n
ArX 2

xS - -[730x10°

r 274x10
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V
2827 (a) From E,--238&) g (FTB6)_ oy
n
2 1 2 —9
(b) Using r, = % gives I ! )380 = 00529;10 M _[176x10%m
28.28 (a) The energy levels of a hydrogen-like ion
whose charge number is Z are given by n=c
22 n=>5
E,=(-136eV)>, n=4
n n=3
For Helium, Z =2 and the energy levels B
are n=2
£ =24 103, .
n n=1

-2.18 eV
-3.40 eV

—6.04 eV

-13.6 eV

—54.4 eV

(b) For He', Z =2, so we see that the ionization energy (the energy required to take
the electron from the N=1to the n=o state is

t (1
28.29 rzn_z( s \:nzao o o _00529nm
! kaeK‘,ezJ z 177
(@) ForHe", Z=2and r:m

(-136eV)(2)?

SEZL]

o4 _ . 00529nm

(b) For LF", Z=3and r_T_ 00176 nm
3+ _ _ 00529 nm _

(c) For Be”, Z=4and r—T_ 00132 nm

396



CHAPTER 28

Z%(136eV) . . 122 eV
28.30 Weuse E, :—¥ with Z =3 to give: E =———
n

N = oo 0
n=>5 -2.18 eV
n=4 -3.40 eV
n=3 -6.04 eV
n=2 -13.6 eV
n=1 -54.4 eV

28.31 From L=m_.,r,=n] and I,=n%g,

h
27,)n

n
we find that p,=mv, =—=
K

—

—

Thus, the de Broglie wavelength of the electron in the n* orbit is
A=h/p, = (27[60) n. For n=4, this yields

A=87a,=87(00529nm )=/ 133 nm |

28.32 (a) For standing waves in a string fixed at both ends, L= %,

or 1= & According to the de Broglie hypothesis, p= g
n

nh

Combining these expressions gives p=mv= oL

2
(b) Using E= %m V= g—m , with p as found in (a) above:

nh? ) h?
E =———=|nE, whereE,=——
" 41%(2m) ° ° 8mL?
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28.33 In the 3p subshell, N=3 and a=1. The 6 possible quantum states are

n=3 a=1 m_=+1 me==%3
n=3 a=1 m,=0 me=%1
n=3 a=1 m,=-1 me=+3

28.34 In the 3d subshell, N=3 and a=2. The 10 possible quantum states are

n=3 a=2 m,=+2 me=+3
n=3 a=2 m_=+1 Mme==%3
n=3 a=2 m,=0 me==+3
n=3 a=2 m =-1 me=+3
n=3 a=2 m,=-2 me=+3

28.35 The 3d subshell has n=3 and a=2. For p-mesons, we also have S=1. Thus, there are 15
possible quantum states as summarized in the table below.

n 3 3 3 3 3 3
a 2 2 2 2 2 2
m, | +2 +2 +2 +1 +1 +1

m S

SN W
S O N W

+1 0 -1 +1 0 -1 +1

28.36 (a) The electronic configuration for oxygen (Z = 8) is| 15" 25" 2p” |

(b) The quantum numbers for the 8 electrons can be:

Isstates n=1 a=0 m,=0 me=+3
Zsstates =2 a=0 m,=0 mg=+3

m,=0 | m,=t3
2p states n=2 a=1 m,=1 m,=+1

28.37 (a) For Electron #1 and also for Electron #2, n=3 and a=1. The other quantum
numbers for each of the 30 allowed states are listed in the tables below.

m, mg|m, mg|m, mg|m, mg|m, mg|m, mg
Electron#1 | +1 +1 | +1 +3 | +1 +1 | +1 -3 | +1 -1} +1 -3
Electron#2 | +1 -3} 0 +3| -1 3| +1 +1}) 0 1 -1 +1
m, m_|[m, m_[m, m_[m, m_[m, m_[m, m
Electron#1 | 0 +3}| 0 +3| 0 +3 | 0 -1 -11 0 -1
Electron #2 | +1 +1 111 +3 ) +1 =3 +1 -1 3
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CHAPTER 28

ma mS ma mS ma mS ma mS ma mS ma mS

1 1 1 1 _ _1 _ _1

Electron #1 1 +3 1 +5 1+ 1T -3 1 2 1 2
1 1 1 1 1 _ 1

Electron #2 +1 iE 0 iE -1 -5 +1 iE 0 iE 1 + 5

There are | 30 allbw ed states|, since Electron #1 can have any of three possible

values of m for both spin up and spin down, totaling six possible states. For each
of these states, Electron #2 can be in either of the remaining five states.

Were it not for the exclusion principle, there would be @possible states, six

for each electron independently.

For n=1, a=0 and there are 2@2a+ 1) states = 2(1)=| 2| sets of quantum numbers

For n=2,a=0 for 2Qa+ 1) states =20+ 1)=2 sets
and a=1for 2QRa+ 1) states = 2R+ D)= 6 sets
total number of sets =

For n=3,a=0 for 2Qa+ 1) states =20+ 1)=2 sets
and a=1 for 2Qa+ 1) states =2@+ 1)=6 sets
and a=2 for 2QRa+ 1) states = 2@+ 1)=10 sets

total number of sets =

For n=4,a=0 for 2Qa+ 1) states =20+ 1)=2 sets

and a=1 for 2Qa+ 1) states =2@+ 1)=6 sets
and a=2 for 2QRa+ 1) states = 2@+ 1)=10 sets
and a=3 for 2QRa+ 1) states =2+ 1)=14 sets

total number of sets =

For n=5,a=0 for 2Qa+ 1) states =20+ 1)=2 sets

and a=1 for 2QRa+ 1) states =2@+ 1)=6 sets

and a=2 for 2QRa+ 1) states = 2@+ 1)=10 sets
and a=3 for 2QRa+ 1) states = 2@+ 1)= 14 sets
and a=4 for 2QRa+ 1) states = 2@+ 1)=18 sets

total number of sets = @l

For n=1:2n*=2. For n=2:2n*=8.
For n=3:2n>=18. For n=4:2n%=32.
For n=5:2n?=50.
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Thus, the number of sets of quantum states agrees with the 2n? rule.

28.39 (a) Zirconium, with 40 electrons, has 4 electrons outside a closed Krypton core. The
Krypton core, with 36 electrons, has all states up through the 4p subshell filled.
Normally, one would expect the next 4 electrons to go into the 4d subshell.
However, an exception to the rule occurs at this point, and the 5S subshell fills
(with 2 electrons) before the 4d subshell starts filling. The two remaining electrons
in Zirconium are in an incomplete 4d subshell. Thus, | N=4, and a= 2 | for each of

these electrons.

(b) For electrons in the 4d subshell, with a= 2, the possible values of m_ are
‘ m,=0,+1,£2 ‘ and those for m are .

(c) We have 40 electrons, so the electron configuration is:

15 2&° 2p° 3 3p° 3d'° 4 4p° 4d° 55 = [K rl4d® 55

28.40 The photon energy is E, =E_ —E, =-951eV —(-8979 eV )=8028 eV , and the wavelength
is

_hc (663x10™* 35)(300x10° m/s) o
E,  (8028eV)(160x107° Jev) =155x10™ m =[01%5 m |

/4

To produce the K, line, an electron from the K shell must be excited to the L shell or
higher. Thus, a minimum energy of 8028 eV must be given to the atom. A minimum

accelerating voltage of AV =8028V =| 803KV |is required.
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28.41 For nickel, Z =28 and

,136eV
(1)°

Ec~-(Z-1) = —(27)*(136 eV)=-991x 10° eV,

,136 eV
(2

,(136eV)

E ~—(2-3) =-213x10° eV

~~(25)

Thus, E,=E -E=-213keV - (—991 keV) =778 keV
and

_hc_ (663x10* J5)(300x10° m /s) ) o
A=E " 778 keV (160x 107 JkeV) =160x10" m =[0160mm |

/4

28.42 The energies in the K and M shells are

2 136 eV

(3)°

2 136 eV
2

E«~—(Z2-1) and E, ~—(Z-9)

(z-97

Thus, E, =E, —E, ~(136 ev){—

+(z- 1)2} =(136 ev)(gz2 - j

and E _he gives Zzzg 8+L , Or
T2 8 (136eV)2

~
~

\/ 9(663x 10™* J5)(300x 10° m/s( 1ev

8(136eV)(0101x10°m)  \160x107 J] =[320]
The element is | Gem anium |
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28.43 The transitions that produce the three longest En N shell
wavelengths in the K series are shown at the right.
The energy of the K shell is E, =-695keV . Ev M shell
. EL L shell
Thus, the energy of the L shell is
M A2 A3
E =E(+ he ,
Ay Ex A \ . K shell

(663x10°* 35)(300x10° m /s
00215x10° m

=-695keV +925x 107" {L\/%J]
160x 10

=-695keV +578 keV =-117 keV

or E, =-695keV +

Similarly, the energies of the M and N shells are

E, =E« +%
2
(663x10* J5)(300x10° m /)
=-695keV + — — =-100 keV
(00209x10° m )(160x 10 JkeV )
and
E, =E +%
1
(663x10°* J5)(300x10° m /s
=695 keV + =230 keV

(00185x10° m )(160x 107 JkeV)

The ionization energies of the L, M, and N shells are

117 keV ,100keV ,and 230 keV respectively |
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28.44 According to the Bohr model, the radii of the electron orbits in hydrogen are given
by

I, =n’g, with 8 =00529nm =529x10™"" m

Then, if 1, =100 m =100x 10°m , the quantum number is
I 100x10°m
n= |- |—"—  ~|137
\j a V529x10"m

2845 (a) AE=E,-E,=-136eV/@f-(-136eV/Q)) =

(b) The average kinetic energy of the atoms must equal or exceed the needed
excitation energy, or 3T > AE which gives

2(102 eV )(160x10™° Jev
15208 2 )(160x10™ Jev) 788x10° K
3k, 3(138x10™ JK)

2846 (a) L=0(A=(300x10° m/g)(140x10™ 5=420x10°m =[420mm |

(b) N ZEPU_EZE’“_E
E hc'A

/4

(6943x10°m)(3009)
(663x10* J35)(300x10° m/s)

105x 10” photons

B N

© negrm e
Vo L(zd?/4)

4(105x 10” photons)
= (105x10° p )2 =| 882x 10" photons/mm *
(420mm )z(600mm )
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hc (6.63>< 10°% J-s)(SDOX 10° m/s)

2847 (a) E,=E,-——=0- =[-818ev
@ E=E-7 1520x 10 m (160x 10 JeV

Iin it

E2=E1+E:
ﬂ’l
(663x10°* 35)(300x10° m /s
=-818¢eV + =-204eV
2026x 10" m (160x 10* JeV)
E3=E1+LC
12
(663x10™* 3 5)(300x10° m /5
- -818eV + - . =[-0904eV
1709x 107 m (160x10™ JeV)
hc
E4=E1+7

3

663x10* J5)(300x10° m /s)

_ ( -
BN (160x10™ Jev) =[-0st0e/]

(663x10™* 35)(300x10° m /)

A 10 m (160107 Jev) =[-0ssev]

(b) From 4-1c__Tc
E EE,

V4 1

, the longest and shortest wavelengths in the Balmer series for

this atom are

L __he _ (663x10* J5)(300x10° m /3
"0 E,-E, [-0904ev-(-204eV)](160x10" Jev)

=|109x% 10° nm

_ hc (663x10* 39(300x10° m/s)
and faTE T, [0-(-204ev)](160x10™ Jev) gt
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2548 (1) LS hc (6626x 10 J5)(2998x 10° m /s) 1
o a —_— = = = —
a k€& 27k€  27(8987x10° N -m?/C?)(1602x 107 C)°

b a 1’mke 1(1c) | 1
(b) l. hmec 272\k€) |2z«

1R, _47z13c/me|{e“_4”(£\_ 4x
a ke \ké) e

(©)

_hc (663x10* 35)(300x10° m /) 1243 eV -nm
"2 A(160x10% Jev)(10° m/nm) 2

2849 (a) E

For:

A=2537nm , E7=4899ev;
A=1850nm ,E =6719¢€V;
A=1585nm ,E, =7842¢V

Thus, the energies of the first three excited states are:

E,=-1039eV + 4899 eV=[-549¢V |
E,=-1039eV +6719eV=|-367 eV

and E,=-1039eV + 7842 ev=w

Third Excited State — T @+ -255eV
Second Excited State y 2 -3.67eV
First Excited State : ) -5.49eV

158.5 nm
185.0 nm
253.7 nm

?
/ -10.39eV

(b) From A=(1243eV-nm) / (Ei - Ef) , the wavelengths of the emission lines shown are

Ground State

A, =1585nm |, 2,=/428nmm | A,=1110nm |, 1, =/1850nm
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(c) To have an inelastic collision, we must excite the atom from the ground state to the
first excited state, so the incident electron must have a kinetic energy of at least
KE=1039eV -549eV =490¢eV,

2(KE) [2(490eV)(160x107 JeV)
SO V= =
m 911x 10™ kg

e

=|131x10° m /s

hc (6626x10°* 35(2998x10° m/s) 1240V -nm

2850 & =7+ A(1602x 107 Jev)(10° m /nm ) A

For:

A=3100nm , AE=4000 eV
A=4000nm , AE=3100 eV

and 1=1378nm , AE=09000 eV

The ionization energy is 4.100 eV. The energy level diagram having the fewest number
of levels and consistent with these energy differences is shown below.

n=oo 0
Second Excited State 1378 im —0.1000 eV
First Excited State = Y = —-1.000 eV
c c
o o
— o
[90] <t
Ground State y ) -4.100 eV

2851 (a) 1=¥- (AE/aY _ 4300107 J100~10° 5 =|424x 10" W /m 2

A zd/4 7(300x10° m )’

(b) E=IA(AY

=(4.24x 10 W—Zj E(osoox 10° m )2}(1.OO>< 10° §)=|120x 10" J
m
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28.52 (a) Given that the de Broglie wavelength is 4 =2g,, the momentum is p=h/A=h/2a,.
The kinetic energy of this non-relativistic electron is

p2 h2
2m,  8m. &

KE =

(683x10* 39" (1ev/160x10™ J
© 8(911x 10 kg)(00529x10° m )

(b) The kinetic energy of this electron is the magnitude of the ground state
energy of the hydrogen atom which is -13.6 eV.

28.53 In the Bohr model,

_A_E_En_En—l
h h

1 —melée“fi_ 1 \}:47r2mel€e‘[ 1 1}
(

h| 212 \n? (n-27 2 | (n-1% n?

T

which reduces to
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2854 As n—> o, 2n—-1—-2n and n—1— n. In this limit, the result of Problem 28.53 reduces
to

fo 27°m K€ (Zn) | 4x°m Ke*

he a hend

n

Since the electrical force supplies the centripetal acceleration,

r r mr
The classical frequency is then

n’h?

47°m k€&

v 1 |k€

T 27r 27\m P

where r=n?g, =

27rr

6 3 6 42 4
This gives = L. Kez,ez (647[2166@6\= ﬂn;elaée
47rmeL n°h h°n

Thus, the frequency from the Bohr model is the same as the classical frequency in the
limit n—o0.

28.55 (a) The energy levels in this atom are

_ m,Z%K€
n— 2]2n2
273(2° (m e\ 273 ~1485x 10" eV
T2 212 JZ_ n2 [(2)2(13.60€V)]= n2

The energies of the first six levels are:
E,=-1485x10"eV E,=-371x10°eV  E,=-165x10° eV

E,=-928eV E,=-594eV E,=-413eV
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(b) From the Compton shift formula, the emitted wavelength was

2856 (a)

Ao=A"—A¢ (1— a)se) =00899293 nm — (000243 nm )(1— a)s42.68°)
=0089289 nm

The energy radiated by the atom is then

AE:Ei—Ef=%

0
(663x10* J5)(300x10° m /s

- - 4
~ (0089289 10° m )(160x 10 vyev)—lsgleo ev

Since AE >|E,|, the final state must be the ground state E, . The energy of the initial

state was

E,=E,+AE=-1485x10" eV +1392x 10* eV =-928 eV

This is seen to be E,. Thus, the transition made by the pi meson was .

2

Using g, = m]@ , with m u= 207m , gives the Bohr radius for the “muonic atom”
u
as
2
& = 1( ] \: = (00529 nm ) = 256x 10™* nm
207 k m k€ J 207

The energy levels in this atom are

m,Z%e"  207(1)°(mKe') 207 —282x10° eV
n=——" 2@2 - (2) Jéz =-—(136eV)= Xz
21°n n L ] J n n
The energies of the three lowest levels are:
E,=|-282x10° eV E,=|-704eV E,=|—313eV
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28.57 (a) From Newton’s second law, F = ke|qu2| / r* =m_a, and the acceleration is

(899x10° N -m 2/C?)(160x 107 C)° -
_ =[903x 10 s
(911x 10 kg)(00529x 10° m )° <107 m/

ga
) p=-25

2(899x10° N -m /C2)(160x 10 C|*(9.03x 102 m /&)’
3(300x10° m/s)3

©=-463x10° Js=|-463x10° W

(c) With the electrical force supplying the centripetal acceleration,

M:Ig;e2 or mevzzlg;ez and KE=:—LmeV2=g
r r r 2 2r

Thus,

8 2
g ke _(899x10° N.-m?/C?)(160x10C) .
23, 2(00529%10° m )

The time required to radiate all this energy, and the estimated lifetime is

217x10%
At KE X J

=—=————— =469x10 " sor|At~10"s
lp| 463x10° Js
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Answers to Even Numbered Conceptual Questions

10.

12.

14.

16.

Neon signs do not emit a continuous spectrum. They emit many discrete wavelengths as
could be determined by observing the light from the sign through a spectrometer.
However, they do not emit all wavelengths. The specific wavelengths and intensities
account for the color of the sign.

An atom does not have to be ionized to emit light. For example, hydrogen emits light
when a transition carries an electron from a higher state to the n= 2 state.

Classically, the electron can occupy any energy state. That is, all energies would be
allowed. Therefore, if the electron obeyed classical mechanics, its spectrum, which
originates from transitions between states would be continuous rather than discrete.

The de Broglie wavelength of macroscopic objects such as a baseball moving with a typical
speed such as 30 m/s is very small and impossible to measure. Thatis, A=h/mv, is a very

small number for macroscopic objects. We are not able to observe diffraction effects
because the wavelength is much smaller than any aperture through which the object could
pass.

In both cases the answer is yes. Recall that the ionization energy of hydrogen is 13.6 eV.
The electron can absorb a photon of energy less than 13.6 eV by making a transition to
some intermediate state such as one with Nn=2. It can also absorb a photon of energy
greater than 13.6 eV, but in doing so, the electron would be separated from the proton and
have some residual kinetic energy.

It replaced the simple circular orbits in the Bohr theory with electron clouds. More
important, quantum mechanics is consistent with Heisenberg’s uncertainty principle,
which tells us about the limits of accuracy in making measurements. In quantum
mechanics, we talk about the probabilistic nature of the outcome of a measurement of a
system, a concept which is incompatible with the Bohr theory. Finally, the Bohr theory of
the atom contains only one quantum number 1, while quantum mechanics provides the
basis for additional quantum numbers to explain the finer details of atomic structure.

Each of the given atoms has a single electron in an a=0 (org) state outside a fully closed-
shell core, shielded from all but one unit of the nuclear charge. Since they reside in very
similar environments, one would expect these outer electrons to have nearly the same
electrical potential energies and hence nearly the same ionization energies. This is in
agreement with the given data values. Also, since the distance of the outer electron from
the nuclear charge should tend to increase with Z (to allow for greater numbers of
electrons in the core), one would expect the ionization energy to decrease somewhat as
atomic number increases. This is also in agreement with the given data.

The full output of the laser is concentrated in a very narrow beam, and if it enters the eye,
will be focused on a small portion of the retina. Since the beam is nearly parallel, the
intensity of the laser beam diminishes very slowly with distance from the source. The
power of the light bulb is radiated uniformly in all directions and only a very small
portion of it can enter the eye at one time. Also, the intensity of the light from the bulb
decreases rapidly with distance from the source (varies as 1/r*).
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Answers to Even Numbered Problems

4. (@) 23x10°N (b) 1.4 MeV
6. 45fm
8. (a) 219x10° m/s (b) 13.6eV () -272eV
10. (a) 3.03eV (b) 410nm () 732x10%Hz
12. (a) transitionII (b) transitionI (c) transitions II and III
14. (a) 12.1eV (b) 121eV,10.2eV,and 1.89 eV
16. (a) 13.6eV (b) 1.51eV
20. (a) 219x10° m/s (b) 152x107"°s () 1.05mA
22. (a) 152x10%°s (b) 823x10° revolitions

(c) Yes, for 823x10° “electron years”

(d) The electron moves so quickly that it can never meaningfully be said to be on any

particular side of the nucleus.

24. 443x10* m/s

26. (a) 289x10* kg-m?/s (b) 274x10% () 730x10°®
28. (a) E,=-544eV/n? (b) 544eV

30. E,=-122eV/n* forn=1,2,3,...

34. (n=3,a=2,m_=+2,m =%3);(n=3,a=2,m_=+1,m =%3)
(n=3,a=2,m_=0,m =%£3); )
(n=3,a=2,m_=-2,m =+3)

36. (a) 1s252p’

(b) (n=1,a=0,m_=0,m =%3); (N=2,a=0,m_,=0,m =%3)
(n=2,a=1,m_=0,m =%+3);(n=2,a=1,m_=1,m =+3)
38. (a) 2 (b) 8 (©) 18 d) 32 (e)

40. 0.155nm, 8.03 kV

42. Z=32, germanium
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44.

46.

48.

50.

52.

54.

56.

137

(@)
(©

(@)

The simplest diagram has 4 states with energies of -4.100 eV, -1.000 eV, -0.1000 eV, and 0.

(@)
(b)

4.20 mm
882x 10" photons/mm *

137

135 eV

CHAPTER 28

(b)

(b)

105x 10" photons

1/ 27 () 4n/a

~10 times the magnitude of the ground state energy of hydrogen.

when n— o0, F—> = 47°m Ke*/h’n®

(@)

256x10* nm

(b)

—-282x10° eV, -704¢eV ,—313¢eV
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