
1. An excellent discussion and equation development related to this problem is given in 
Sample Problem 6-3. We merely quote (and apply) their main result (Eq. 6-13) 

θ µ= = ≈ °− −tan tan . .1 1 0 04 2s



2. The free-body diagram for the player is shown next. NF  is the normal force of the 

ground on the player, mg  is the force of gravity, and f  is the force of friction. The force 

of friction is related to the normal force by f = µkFN. We use Newton’s second law 
applied to the vertical axis to find the normal force. The vertical component of the 
acceleration is zero, so we obtain FN – mg = 0; thus, FN = mg. Consequently, 
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3. We do not consider the possibility that the bureau might tip, and treat this as a purely 
horizontal motion problem (with the person’s push F  in the +x direction). Applying 
Newton’s second law to the x and y axes, we obtain 
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respectively. The second equation yields the normal force FN = mg, whereupon the 
maximum static friction is found to be (from Eq. 6-1) f mgs s,max = µ . Thus, the first 

equation becomes 

F mg mas− = =µ 0

where we have set a = 0 to be consistent with the fact that the static friction is still (just 
barely) able to prevent the bureau from moving. 

(a) With µ s = 0 45.  and m = 45 kg, the equation above leads to F = 198 N. To bring the 
bureau into a state of motion, the person should push with any force greater than this 
value. Rounding to two significant figures, we can therefore say the minimum required 
push is F = 2.0 × 102 N. 

(b) Replacing m = 45 kg with m = 28 kg, the reasoning above leads to roughly 
21.2 10  NF = × .



4. To maintain the stone’s motion, a horizontal force (in the +x direction) is needed that 
cancels the retarding effect due to kinetic friction. Applying Newton’s second to the x
and y axes, we obtain 
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respectively. The second equation yields the normal force FN = mg, so that (using Eq. 6-2) 
the kinetic friction becomes fk = µk mg. Thus, the first equation becomes 

F mg mak− = =µ 0

where we have set a = 0 to be consistent with the idea that the horizontal velocity of the 
stone should remain constant. With m = 20 kg and µk = 0.80, we find F = 1.6 × 102 N. 



5. We denote F  as the horizontal force of the person exerted on the crate (in the +x

direction), f k  is the force of kinetic friction (in the –x direction), NF  is the vertical 

normal force exerted by the floor (in the +y direction), and mg  is the force of gravity. 

The magnitude of the force of friction is given by fk = µkFN (Eq. 6-2). Applying Newton’s 
second law to the x and y axes, we obtain 
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respectively. 

(a) The second equation yields the normal force FN = mg, so that the friction is 

f mgk k= = = ×µ 0 35 55 9 8 19 102 2. . . .b g b g c hkg m / s N

(b) The first equation becomes 

F mg mak− =µ

which (with F = 220 N) we solve to find 

a
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m
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6. The greatest deceleration (of magnitude a) is provided by the maximum friction force 
(Eq. 6-1, with FN = mg in this case).  Using Newton’s second law, we find  

a = fs,max /m = µsg.

Eq. 2-16 then gives the shortest distance to stop: |∆x| = v2/2a = 36 m.  In this calculation, 
it is important to first convert v to 13 m/s. 



7. We choose +x horizontally rightwards and +y upwards and observe that the 15 N force 
has components Fx = F cos θ and Fy = – F sin θ.

(a) We apply Newton’s second law to the y axis: 

sin 0 (15) sin 40 (3.5) (9.8) 44 N.N NF F mg Fθ− − = = ° + =

With µk = 0.25, Eq. 6-2 leads to fk = 11 N. 

(b) We apply Newton’s second law to the x axis: 
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Since the result is positive-valued, then the block is accelerating in the +x (rightward) 
direction.



8. We first analyze the forces on the pig of mass m. The incline angle is θ.

The +x direction is “downhill.’’  

Application of Newton’s second law to the x- and y-axes leads to 

sin

cos 0.
k

N

mg f ma

F mg

θ
θ

− =
− =

Solving these along with Eq. 6-2 (fk = µkFN) produces the following result for the pig’s 
downhill acceleration: 

a g k= −sin cos .θ µ θb g

To compute the time to slide from rest through a downhill distance , we use Eq. 2-15: 

= + =v t at t
a0

21

2

2
.

We denote the frictionless (µk = 0) case with a prime and set up a ratio: 
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which leads us to conclude that if t/t' = 2 then a' = 4a. Putting in what we found out 
above about the accelerations, we have 

g g ksin sin cos .θ θ µ θ= −4 b g

Using θ = 35°, we obtain µk = 0.53. 



9. Applying Newton’s second law to the horizontal motion, we have F − µk m g = ma,
where we have used Eq. 6-2, assuming that FN = mg (which is equivalent to assuming 
that the vertical force from the broom is negligible). Eq. 2-16 relates the distance traveled 
and the final speed to the acceleration: v2 = 2a∆x.  This gives a = 1.4 m/s2. Returning to 
the force equation, we find (with F = 25 N and m = 3.5 kg) that µk = 0.58. 



10. In addition to the forces already shown in Fig. 6-22, a free-body diagram would 

include an upward normal force NF  exerted by the floor on the block, a downward mg

representing the gravitational pull exerted by Earth, and an assumed-leftward f  for the 
kinetic or static friction. We choose +x rightwards and +y upwards. We apply Newton’s 
second law to these axes: 
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where F = 6.0 N and m = 2.5 kg is the mass of the block. 

(a) In this case, P = 8.0 N leads to FN = (2.5)(9.8) – 8.0 = 16.5 N. Using Eq. 6-1, this 
implies ,max 6.6 Ns s Nf Fµ= = , which is larger than the 6.0 N rightward force – so the 

block (which was initially at rest) does not move. Putting a = 0 into the first of our 
equations above yields a static friction force of  f = P = 6.0 N.

(b) In this case, P = 10 N, the normal force is FN = (2.5)(9.8) – 10 = 14.5 N. Using Eq. 6-
1, this implies ,max 5.8 Ns s Nf Fµ= = , which is less than the 6.0 N rightward force – so the 

block does move. Hence, we are dealing not with static but with kinetic friction, which 
Eq. 6-2 reveals to be 3.6 Nk k Nf Fµ= = .

(c) In this last case, P = 12 N leads to FN = 12.5 N and thus to ,max 5.0 Ns s Nf Fµ= = ,

which (as expected) is less than the 6.0 N rightward force – so the block moves. The 
kinetic friction force, then, is 3.1 Nk k Nf Fµ= = .



11. We denote the magnitude of 110 N force exerted by the worker on the crate as F. The 
magnitude of the static frictional force can vary between zero and ,maxs s Nf Fµ= .

(a) In this case, application of Newton’s second law in the vertical direction yields 

NF mg= . Thus, 

( ) ( ) 2 2
, max 0.37 35kg (9.8m / s ) 1.3 10 Ns s N sf F mgµ µ= = = = ×

which is greater than F.

(b) The block, which is initially at rest, stays at rest since F < fs, max. Thus, it does not 
move.

(c) By applying Newton’s second law to the horizontal direction, that the magnitude of 
the frictional force exerted on the crate is 21.1 10  Nsf = × .

(d) Denoting the upward force exerted by the second worker as F2, then application of 
Newton’s second law in the vertical direction yields FN = mg – F2, which leads to  

,max 2( )s s N sf F mg Fµ µ= = − .

In order to move the crate, F must satisfy the condition F > fs,max  = µs (mg − F2) 

or

( ) 2
2110 N > 0.37 (35 kg)(9.8 m/s ) .F−

The minimum value of F2 that satisfies this inequality is a value slightly bigger than 
45.7 N , so we express our answer as F2, min = 46 N. 

(e) In this final case, moving the crate requires a greater horizontal push from the worker 
than static friction (as computed in part (a)) can resist. Thus, Newton’s law in the 
horizontal direction leads to 
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which leads (after appropriate rounding) to F2, min = 17 N. 



12. There is no acceleration, so the (upward) static friction forces (there are four of them, 
one for each thumb and one for each set of opposing fingers) equals the magnitude of the 
(downward) pull of gravity. Using Eq. 6-1, we have 

24 (79 kg)(9.8 m/s )s NF mgµ = =

which, with µs = 0.70, yields FN = 2.8 × 102 N. 



13. (a) The free-body diagram for the crate is shown below. T  is the tension force of the 

rope on the crate, NF  is the normal force of the floor on the crate, mg  is the force of 

gravity, and f  is the force of friction. We take the +x direction to be horizontal to the 
right and the +y direction to be up. We assume the crate is motionless. The equations for 
the x and the y components of the force according to Newton’s second law are: 

          T cos θ – f = 0 
sin 0NT F mgθ + − =

where θ = 15° is the angle between the rope and the horizontal. The first equation gives f
= T cos θ and the second gives FN = mg – T sin θ. If the crate is to remain at rest, f must 
be less than µs FN, or T cos θ < µs (mg – T sinθ). When the tension force is sufficient to 
just start the crate moving, we must have  

T cos θ = µs (mg – T sin θ).

We solve for the tension: 
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(b) The second law equations for the moving crate are  

             T cos θ – f = ma
FN + T sin θ – mg = 0. 

Now f =µkFN, and the second equation gives FN = mg – Tsinθ, which yields 
( sin )kf mg Tµ θ= − . This expression is substituted for f in the first equation to obtain  

T cos θ – µk (mg – T sin θ) = ma,

so the acceleration is 
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Numerically, it is given by 
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14. (a) Although details in Fig. 6-24 might suggest otherwise, we assume (as the problem 
states) that only static friction holds block B in place. An excellent discussion and 
equation development related to this topic is given in Sample Problem 6-3. We merely 
quote (and apply) their main result (Eq. 6-13) for the maximum angle for which static 
friction applies (in the absence of additional forces such as the F  of part (b) of this 
problem).

θ µmax tan tan . .= = ≈ °− −1 1 0 63 32s

This is greater than the dip angle in the problem, so the block does not slide. 

(b) We analyze forces in a manner similar to that shown in Sample Problem 6-3, but with 
the addition of a downhill force F.
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cos 0.

s

N

F mg f ma
F mg

θ
θ

+ − = =
− =

Along with Eq. 6-1 (fs, max = µsFN) we have enough information to solve for F. With 
24θ = ° and m = 1.8 × 107 kg, we find 

F mg s= − = ×µ θ θcos sin .b g 30 107 N.



15. (a) The free-body diagram for the block is 

shown below. F is the applied force, NF  is the 

normal force of the wall on the block, f is the 
force of friction, and mg  is the force of gravity. 
To determine if the block falls, we find the 
magnitude f of the force of friction required to 
hold it without accelerating and also find the 
normal force of the wall on the block. 
We compare f and µsFN. If f < µsFN, the block does not slide on the wall but if f > µsFN,
the block does slide. The horizontal component of Newton’s second law is F –FN = 0, so 
FN = F = 12 N and µsFN = (0.60)(12 N) = 7.2 N. The vertical component is f – mg = 0, so 
f = mg = 5.0 N. Since f < µsFN the block does not slide. 

(b) Since the block does not move f = 5.0 N and FN = 12 N. The force of the wall on the 
block is 

( ) ( )ˆ ˆ ˆ ˆi j 12N i 5.0N jw NF F f= − + = − +

where the axes are as shown on Fig. 6-25 of the text. 



16. We find the acceleration from the slope of the graph (recall Eq. 2-11): a = 4.5 m/s2.
The forces are similar to what is discussed in Sample Problem 6-2 but with the angle φ
equal to 0 (the applied force is horizontal), and in this problem the horizontal acceleration 
is not zero.  Thus, Newton’s second law leads to  

F – µk mg = ma,

where F = 40.0 N is the constant horizontal force applied. With m = 4.1 kg, we arrive at 
µk =0.54.



17. Fig. 6-4 in the textbook shows a similar situation (using φ  for the unknown angle) 
along with a free-body diagram. We use the same coordinate system as in that figure. 

(a) Thus, Newton’s second law leads to 
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Setting a = 0 and f = fs,max = µsFN, we solve for the mass of the box-and-sand (as a 
function of angle): 
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which we will solve with calculus techniques (to find the angle φ m  corresponding to the 
maximum mass that can be pulled). 
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This leads to tan φ µm s=  which (for µ s = 0 35. ) yields φ m = °19 .

(b) Plugging our value for φ m  into the equation we found for the mass of the box-and-

sand yields m = 340 kg. This corresponds to a weight of mg = 3.3 × 103 N. 



18. (a) Refer to the figure in the textbook accompanying Sample Problem 6-3 (Fig. 6-5).  
Replace fs with fk in Fig. 6-5(b) and set θ = 12.0º, we apply Newton’s second law to the 
“downhill” direction:   

mg sinθ – f = ma,

where, using Eq. 6-12,  
f = fk = µkFN = µk mg cosθ .

Thus, with µk = 0.600, we have  

a = gsinθ – µk cosθ = –3.72 m/s2

which means, since we have chosen the positive direction in the direction of motion 
[down the slope] then the acceleration vector points “uphill”; it is decelerating.  With 

0 18.0 m/sv = and ∆x = d = 24.0 m, Eq. 2-16 leads to  

2
0 2 12.1 m/s.v v ad= + =

(b) In this case, we find a = +1.1 m/s2, and the speed (when impact occurs) is 19.4 m/s. 



19. If the block is sliding then we compute the kinetic friction from Eq. 6-2; if it is not 
sliding, then we determine the extent of static friction from applying Newton’s law, with 
zero acceleration, to the x axis (which is parallel to the incline surface). The question of 
whether or not it is sliding is therefore crucial, and depends on the maximum static 
friction force, as calculated from Eq. 6-1. The forces are resolved in the incline plane 
coordinate system in Figure 6-5 in the textbook. The acceleration, if there is any, is along 
the x axis, and we are taking uphill as +x. The net force along the y axis, then, is certainly 
zero, which provides the following relationship: 

0 cosy NF F W θ= =

where W = mg = 45 N is the weight of the block, and θ = 15° is the incline angle. Thus, 
FN = 43.5 N, which implies that the maximum static friction force should be  

fs,max = (0.50) (43.5) = 21.7 N. 

(a) For ˆ( 5.0 N)iP = − , Newton’s second law, applied to the x axis becomes 

| | sin .f P mg maθ− − =

Here we are assuming f  is pointing uphill, as shown in Figure 6-5, and if it turns out that 
it points downhill (which is a possibility), then the result for fs will be negative. If f = fs

then a = 0, we obtain

fs = | P | + mg sinθ = 5.0 + (43.5)sin15° =17 N, 

or ˆ(17 N)isf = . This is clearly allowed since sf  is less than fs, max.

(b) For ˆ( 8.0 N)iP = − , we obtain (from the same equation) ˆ(20 N)isf = , which is still 

allowed since it is less than fs, max.

(c) But for ˆ( 15 N)iP = − , we obtain (from the same equation) fs = 27 N, which is not 
allowed since it is larger than fs, max. Thus, we conclude that it is the kinetic friction 
instead of the static friction that is relevant in this case. The result is  

ˆ ˆ ˆi (0.34)(43.5 N) i (15 N) ik k Nf Fµ= = = .



20. We use coordinates and weight-components as indicated in Fig. 5-18 (see Sample 
Problem 5-7 from the previous chapter). 

(a) In this situation, we take f s  to point uphill and to be equal to its maximum value, in 

which case fs, max = s NFµ applies, where µs = 0.25. Applying Newton’s second law to the 

block of mass m = W/g = 8.2 kg, in the x and y directions, produces 
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s

N

F mg f ma
F mg

θ
θ

− + = =
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which (with θ = 20°) leads to 

( )min 1 sin cos 8.6 N.sF mg θ µ θ− + =

(b) Now we take f s  to point downhill and to be equal to its maximum value, in which 

case fs, max = µsFN applies, where µs = 0.25. Applying Newton’s second law to the block 
of mass m = W/g = 8.2 kg, in the x and y directions, produces 

min 2 , maxsin 0
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s
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θ
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= − = =
− =

which (with θ = 20°) leads to 

F mg smin sin cos2 46= + =θ µ θb g N.  

A value slightly larger than the “exact” result of this calculation is required to make it 
accelerate uphill, but since we quote our results here to two significant figures, 46 N is a 
“good enough” answer. 

(c) Finally, we are dealing with kinetic friction (pointing downhill), so that 

sin 0
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k
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F mg f ma
F mg

θ
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− − = =
− =

along with fk = µkFN (where µk = 0.15) brings us to 

F mg k= + =sin cosθ µ θb g 39 N .



21. The free-body diagrams for block B and for the knot just above block A are shown 
next. T1  is the tension force of the rope pulling on block B or pulling on the knot (as the 

case may be), T2  is the tension force exerted by the second rope (at angle θ = 30°) on the 

knot, f  is the force of static friction exerted by the horizontal surface on block B, NF  is 
normal force exerted by the surface on block B, WA is the weight of block A (WA is the 
magnitude of m gA ), and WB is the weight of block B (WB = 711 N is the magnitude of 
m gB ).

For each object we take +x horizontally rightward and +y upward. Applying Newton’s 
second law in the x and y directions for block B and then doing the same for the knot 
results in four equations: 
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where we assume the static friction to be at its maximum value (permitting us to use Eq. 
6-1). Solving these equations with µs = 0.25, we obtain 2103 N 1.0 10  NAW = ≈ × .



22. Treating the two boxes as a single system of total mass mC + mW =1.0 + 3.0 = 4.0 kg, 
subject to a total (leftward) friction of magnitude 2.0 + 4.0 = 6.0 N, we apply Newton’s 
second law (with +x rightward): 

(4.0)
total totalF f m a

a

− =
− =12 0 6 0. .

which yields the acceleration a = 1.5 m/s2. We have treated F as if it were known to the 
nearest tenth of a Newton so that our acceleration is “good” to two significant figures. 
Turning our attention to the larger box (the Wheaties box of mass mW = 3.0 kg) we apply 
Newton’s second law to find the contact force F' exerted by the Cheerios box on it. 

W W

4.0 (3.0)(1.5)

F f m a

F

′ − =
′ − =

This yields the contact force F' = 8.5 N. 



23. Let the tensions on the strings connecting m2 and m3 be T23, and that connecting m2

and m1 be T12, respectively. Applying Newton’s second law (and Eq. 6-2, with FN = m2g
in this case) to the system we have 

3 23 3

23 2 12 2
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k

m g T m a
T m g T m a

T m g m a
µ

− =
− − =
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Adding up the three equations and using 1 2 3, 2m M m m M= = = , we obtain

2Mg – 2µk Mg – Mg = 5Ma .

With a = 0.500 m/s2 this yields µk = 0.372.  Thus, the coefficient of kinetic friction is 
roughly µk = 0.37. 



24. (a) Applying Newton’s second law to the system (of total mass M = 60.0 kg) and 
using Eq. 6-2 (with FN = Mg in this case) we obtain   

F – µkMg = Ma   a= 0.473 m/s2.

Next, we examine the forces just on m3 and find F32 = m3(a + µkg) = 147 N.  If the 
algebra steps are done more systematically, one ends up with the interesting relationship: 

32 3( / )F m M F= (which is independent of the friction!). 

(b) As remarked at the end of our solution to part (a), the result does not depend on the 
frictional parameters.  The answer here is the same as in part (a). 



25. The free-body diagrams for the two blocks are shown next. T is the magnitude of the 

tension force of the string, NAF is the normal force on block A (the leading block), NBF  is 

the normal force on block B, f A  is kinetic friction force on block A, f B  is kinetic friction 
force on block B. Also, mA is the mass of block A (where mA = WA/g and WA = 3.6 N), and 
mB is the mass of block B (where mB = WB/g and WB = 7.2 N). The angle of the incline is 
θ = 30°. 

For each block we take +x downhill (which is toward the lower-left in these diagrams) 
and +y in the direction of the normal force. Applying Newton’s second law to the x and y
directions of first block A and next block B, we arrive at four equations: 

 sin  
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A A A
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which, when combined with Eq. 6-2 ( A kA NAf Fµ= where µk A = 0.10 and B kB NBf Fµ= fB

where µk B = 0.20), fully describe the dynamics of the system so long as the blocks have 
the same acceleration and T > 0. 

(a) These equations lead to an acceleration equal to 

2sin cos 3.5 m/s .k A A k B B

A B

W W
a g

W W

µ µθ θ+= − =
+

(b) We solve the above equations for the tension and obtain 

( )cos 0.21 N.A B
k B k A

A B

W W
T

W W
µ µ θ= − =

+



Simply returning the value for a found in part (a) into one of the above equations is 
certainly fine, and probably easier than solving for T algebraically as we have done, but 
the algebraic form does illustrate the µk B – µk A factor which aids in the understanding of 
the next part. 



26. The free-body diagrams are shown below. T is the magnitude of the tension force of 
the string, f is the magnitude of the force of friction on block A, FN is the magnitude of 
the normal force of the plane on block A, m gA  is the force of gravity on body A (where 

mA = 10 kg), and m gB  is the force of gravity on block B. θ = 30° is the angle of incline. 
For A we take the +x to be uphill and +y to be in the direction of the normal force; the 
positive direction is chosen downward for block B.

Since A is moving down the incline, the force of friction is uphill with magnitude fk = 
µkFN (where µk = 0.20). Newton’s second law leads to 

sin 0
cos 0

0

k A A
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T f m g m a
F m g
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θ
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− + = =
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− = =

for the two bodies (where a = 0 is a consequence of the velocity being constant). We 
solve these for the mass of block B.

m mB A k= − =sin cos .θ µ θb g 3 3 kg.



27. First, we check to see if the bodies start to move. We assume they remain at rest and 
compute the force of (static) friction which holds them there, and compare its magnitude 
with the maximum value µsFN. The free-body diagrams are shown below. T is the 
magnitude of the tension force of the string, f is the magnitude of the force of friction on 
body A, FN is the magnitude of the normal force of the plane on body A, m gA  is the force 
of gravity on body A (with magnitude WA = 102 N), and m gB  is the force of gravity on 

body B (with magnitude WB = 32 N). θ = 40° is the angle of incline. We are told the 

direction of f  but we assume it is downhill. If we obtain a negative result for f, then we 
know the force is actually up the plane. 

(a) For A we take the +x to be uphill and +y to be in the direction of the normal force. The 
x and y components of Newton’s second law become 

sin 0
cos 0.

A

N A

T f W
F W

θ
θ

− − =
− =

Taking the positive direction to be downward for body B, Newton’s second law leads to 
W TB − = 0 .  Solving these three equations leads to 

f W WB A= − = − ° = −sin sinθ 32 102 40 34 N

(indicating that the force of friction is uphill) and to 

cos 102 cos 40 78NN AF W θ= = ° =

which means that  

fs,max = µsFN = (0.56) (78) = 44 N. 

Since the magnitude f of the force of friction that holds the bodies motionless is less than 
fs,max the bodies remain at rest. The acceleration is zero. 



(b) Since A is moving up the incline, the force of friction is downhill with 
magnitude k k Nf Fµ= . Newton’s second law, using the same coordinates as in part (a), 

leads to 

sin
cos 0

k A A

N A

B B

T f W m a
F W

W T m a

θ
θ

− − =
− =

− =

for the two bodies. We solve for the acceleration: 

( ) ( )( )
( ) ( )2

2

32N 102N sin 40 0.25 102N cos 40sin cos

32N +102N 9.8 m s

3.9 m s .

B A k A

B A

W W W
a

m m

θ µ θ − ° − °− −= =
+

= −

The acceleration is down the plane, i.e., 2 ˆ( 3.9 m/s )ia = − , which is to say (since the 
initial velocity was uphill) that the objects are slowing down. We note that m = W/g has 
been used to calculate the masses in the calculation above. 

(c) Now body A is initially moving down the plane, so the force of friction is uphill with 
magnitude k k Nf Fµ= . The force equations become 

sin
cos 0

k A A

N A

B B

T f W m a
F W

W T m a

θ
θ

+ − =
− =

− =

which we solve to obtain 

( ) ( )( )
( ) ( )2

2

32N 102N sin 40 0.25 102N cos 40sin cos

32N+102N 9.8 m s

1.0 m s .

B A k A

B A

W W W
a

m m

θ µ θ − ° + °− += =
+

= −

The acceleration is again downhill the plane, i.e., 2 ˆ( 1.0 m/s ) ia = − . In this case, the 
objects are speeding up. 



28. (a) Free-body diagrams for the blocks A and C, considered as a single object, and for 
the block B are shown below. T is the magnitude of the tension force of the rope, FN is 
the magnitude of the normal force of the table on block A, f is the magnitude of the force 
of friction, WAC is the combined weight of blocks A and C (the magnitude of force Fg AC

shown in the figure), and WB is the weight of block B (the magnitude of force  Fg B

shown). Assume the blocks are not moving. For the blocks on the table we take the x axis 
to be to the right and the y axis to be upward. From Newton’s second law, we have 

       x component:            T – f = 0 

        y component: FN – WAC = 0. 

For block B take the downward direction to be positive. Then Newton’s second law for 
that block is WB – T = 0. The third equation gives T = WB and the first gives f = T = WB.
The second equation gives FN = WAC. If sliding is not to occur, f must be less than µs FN,
or WB < µs WAC. The smallest that WAC can be with the blocks still at rest is  

WAC = WB/µs = (22 N)/(0.20) = 110 N. 

Since the weight of block A is 44 N, the least weight for C is (110 – 44) N = 66 N. 

(b) The second law equations become  

                     T – f  = (WA/g)a
 FN – WA  = 0 

              WB – T = (WB/g)a.

In addition, f = µkFN. The second equation gives FN = WA, so f = µkWA. The third gives T
= WB – (WB/g)a. Substituting these two expressions into the first equation, we obtain 

WB – (WB/g)a – µkWA = (WA/g)a.

Therefore, 



( ) ( ) ( )( )2
2

(9.8 m/s ) 22 N 0.15 44 N
2.3 m/s .

44 N + 22 N
B k A

A B

g W W
a

W W

µ −−
= = =

+



29. The free-body diagrams for the two blocks, treated individually, are shown below 
(first m and then M). F' is the contact force between the two blocks, and the static friction 

force f s  is at its maximum value (so Eq. 6-1 leads to fs = fs,max = µsF' where µs = 0.38). 

Treating the two blocks together as a single system (sliding across a frictionless floor), 
we apply Newton’s second law (with +x rightward) to find an expression for the 
acceleration. 

F m a a
F

m M
= =

+total     

This is equivalent to having analyzed the two blocks individually and then combined 
their equations. Now, when we analyze the small block individually, we apply Newton’s 
second law to the x and y axes, substitute in the above expression for a, and use Eq. 6-1. 

F F ma F F m
F

m M

f mg F mgs s

− = = −
+
F
HG

I
KJ

− = − =

' '

'

     

     0 0µ

These expressions are combined (to eliminate F') and we arrive at 

F
mg

m

m Ms

=
−

+
F
HG

I
KJµ 1

which we find to be F = 4.9 × 102 N. 



30. The free-body diagrams for the slab and block are shown below.  

F  is the 100 N force applied to the block, NsF  is the normal force of the floor on the slab, 

NbF  is the magnitude of the normal force between the slab and the block, f  is the force 

of friction between the slab and the block, ms is the mass of the slab, and mb is the mass 
of the block. For both objects, we take the +x direction to be to the right and the +y
direction to be up. 

Applying Newton’s second law for the x and y axes for (first) the slab and (second) the 
block results in four equations: 

                     
 0

              
         0

s s

Ns Ns s

b b

Nb b

f m a
F F m g

f F m a
F m g

− =
− − =

− =
− =

from which we note that the maximum possible static friction magnitude would be 

2(0.60)(10 kg)(9.8 m/s ) 59 N .s Nb s bF m gµ µ= = =

We check to see if the block slides on the slab. Assuming it does not, then as = ab (which 
we denote simply as a) and we solve for f:

f
m F

m m
s

s b

=
+

=
+

=(40

40
80

 kg)(100 N)

 kg 10 kg
 N

which is greater than fs,max so that we conclude the block is sliding across the slab (their 
accelerations are different). 

(a) Using f = µk NbF the above equations yield 



2
2(0.40)(10 kg)(9.8 m/s ) 100 N

6.1 m/s .
10 kg

k b
b

b

m g F
a

m

µ − −= = = −

The negative sign means that the acceleration is leftward. That is, 2 ˆ( 6.1 m/s )iba = −

(b) We also obtain 

2
2(0.40)(10 kg)(9.8 m/s )

0.98 m/s .
40 kg

k b
s

s

m g
a

m

µ= − = − = −

As mentioned above, this means it accelerates to the left. That is, 2 ˆ( 0.98 m/s )isa = −



31. We denote the magnitude of the frictional force αv , where α = ⋅70 N s m . We take 
the direction of the boat’s motion to be positive. Newton’s second law gives 

− =αv m
dv

dt
.

Thus,

0 0

v t

v

dv
dt

v m

α= −

where v0 is the velocity at time zero and v is the velocity at time t. The integrals are 
evaluated with the result 

0

ln
v t

v m

α= −

We take v = v0/2 and solve for time: 

1000 kg
ln 2 ln 2 9.9 s .

70 N s/m

m
t

α
= = =

⋅



32. Using Eq. 6-16, we solve for the area 

2

2

t

m g
A

C vρ

which illustrates the inverse proportionality between the area and the speed-squared. 
Thus, when we set up a ratio of areas – of the slower case to the faster case – we obtain 

A

A
slow

fast

 km / h

160 km / h
= FHG

I
KJ =310

375
2

. .



33. For the passenger jet D C Avj j= 1
2 1

2ρ , and for the prop-driven transport 21
22t tD C Avρ= ,

where ρ1  and ρ2  represent the air density at 10 km and 5.0 km, respectively. Thus the 
ratio in question is 

( )( )
( )( )

232
1

22 3
2

0.38  kg/m 1000  km/h
2.3.

0.67  kg/m 500  km/h

j j

t t

D v

D v

ρ
ρ

= = =



34. (a) From Table 6-1 and Eq. 6-16, we have 

v
F

C A
C A

mg

vt
g

t

= =
2

2 2ρ
ρ

where vt = 60 m/s. We estimate the pilot’s mass at about m = 70 kg. Now, we convert v = 
1300(1000/3600) ≈ 360 m/s and plug into Eq. 6-14: 

D C Av
mg

v
v mg

v

vt t

= =
F
HG
I
KJ =

F
HG
I
KJ

1

2

1

2
22

2
2

2

ρ

which yields D = (690)(360/60)2 ≈ 2 × 104 N. 

(b) We assume the mass of the ejection seat is roughly equal to the mass of the pilot. 
Thus, Newton’s second law (in the horizontal direction) applied to this system of mass 
2m gives the magnitude of acceleration: 

a
D

m

g v

v
g

t

= =
F
HG
I
KJ =

2 2
18

2

.



35. In the solution to exercise 4, we found that the force provided by the wind needed to 
equal F = 157 N (where that last figure is not “significant’’). 

(a) Setting F = D (for Drag force) we use Eq. 6-14 to find the wind speed V along the 
ground (which actually is relative to the moving stone, but we assume the stone is 
moving slowly enough that this does not invalidate the result): 

22 2(157)
90 m/s 3.2 10  km/h.

(0.80)(1.21)(0.040)

F
V

C Aρ
= = = = ×

(b) Doubling our previous result, we find the reported speed to be 6.5 × 102 km/h. 

(c) The result is not reasonable for a terrestrial storm. A category 5 hurricane has speeds 
on the order of 2.6 × 102 m/s. 



36. The magnitude of the acceleration of the car as it rounds the curve is given by v2/R,
where v is the speed of the car and R is the radius of the curve. Since the road is 
horizontal, only the frictional force of the road on the tires makes this acceleration 
possible. The horizontal component of Newton’s second law is f = mv2/R. If FN is the 
normal force of the road on the car and m is the mass of the car, the vertical component of 
Newton’s second law leads to FN = mg. Thus, using Eq. 6-1, the maximum value of static 
friction is  

fs,max = µs FN = µsmg.

If the car does not slip, f ≤ µsmg. This means 

2

   .s s

v
g v Rg

R
µ µ≤ ≤

Consequently, the maximum speed with which the car can round the curve without 
slipping is 

max (0.60)(30.5)(9.8) 13 m/s 48 km/h.sv Rgµ= = = ≈



37. The magnitude of the acceleration of the cyclist as it rounds the curve is given by v2/R,
where v is the speed of the cyclist and R is the radius of the curve. Since the road is 
horizontal, only the frictional force of the road on the tires makes this acceleration 
possible. The horizontal component of Newton’s second law is f = mv2/R. If FN is the 
normal force of the road on the bicycle and m is the mass of the bicycle and rider, the 
vertical component of Newton’s second law leads to FN = mg. Thus, using Eq. 6-1, the 
maximum value of static friction is fs,max = µs FN = µsmg. If the bicycle does not slip, f ≤
µsmg. This means 

v

R
g R

v

gs
s

2 2

≤ ≥µ
µ

    .  

Consequently, the minimum radius with which a cyclist moving at 29 km/h = 8.1 m/s can 
round the curve without slipping is 

2 2

min 2

(8.1 m/s)
21 m.

(0.32)(9.8 m/s )s

v
R

gµ
= = =



38. With v = 96.6 km/h = 26.8 m/s, Eq. 6-17 readily yields 

2 2
2(26.8 m/s)

94.7 m/s
7.6 m

v
a

R
= = =

which we express as a multiple of g:

a
a

g
g g g=

F
HG
I
KJ = FHG

I
KJ =94 7

9 8
9 7

.

.
. .



39. Perhaps surprisingly, the equations pertaining to this situation are exactly those in 
Sample Problem 6-9, although the logic is a little different.  In the Sample Problem, the 
car moves along a (stationary) road, whereas in this problem the cat is stationary relative 
to the merry-go-around platform.  But the static friction plays the same role in both cases 
since the bottom-most point of the car tire is instantaneously at rest with respect to the 
race track, just as static friction applies to the contact surface between cat and platform.  
Using Eq. 6-23 with Eq. 4-35, we find  

µs = (2πR/T )2/gR = 4π2R/gT 2.

With T = 6.0 s and R = 5.4 m, we obtain µs = 0.60.



40. We will start by assuming that the normal force (on the car from the rail) points up. 
Note that gravity points down, and the y axis is chosen positive upwards. Also, the 
direction to the center of the circle (the direction of centripetal acceleration) is down. 
Thus, Newton’s second law leads to 

2

.N

v
F mg m

r
− = −

(a) When v = 11 m/s, we obtain FN = 3.7 × 103 N.  

(b) NF  points upward. 

(c) When v = 14 m/s, we obtain FN = –1.3 × 103 N.  

(d) The fact that this answer is negative means that NF  points opposite to what we had 

assumed. Thus, the magnitude of NF  is NF = 1.3 kN and its direction is down.



41. At the top of the hill, the situation is similar to that of Sample Problem 6-7 but with 
the normal force direction reversed.  Adapting Eq. 6-19, we find  

FN = m(g – v2/R).

Since FN = 0 there (as stated in the problem) then v2 = gR.  Later, at the bottom of the 
valley, we reverse both the normal force direction and the acceleration direction (from 
what is shown in Sample Problem 6-7) and adapt Eq. 6-19 accordingly.  Thus we obtain  

FN = m(g + v2/R) = 2mg = 1372 N ≈ 1.37 × 103 N. 



42. (a) We note that the speed 80.0 km/h in SI units is roughly 22.2 m/s.  The horizontal 
force that keeps her from sliding must equal the centripetal force (Eq. 6-18), and the 
upward force on her must equal mg. Thus,

Fnet = (mg)2 + (mv2/R)2   = 547 N. 

(b) The angle is tan−1[(mv2/R)/(mg)] = tan−1(v2/gR) = 9.53º (as measured from a vertical 
axis). 



43. (a) Eq. 4-35 gives T = 2π(10)/6.1 = 10 s. 

(b) The situation is similar to that of Sample Problem 6-7 but with the normal force 
direction reversed.  Adapting Eq. 6-19, we find  

FN = m(g – v2/R) = 486 N ≈ 4.9 × 102 N. 
.

(c) Now we reverse both the normal force direction and the acceleration direction (from 
what is shown in Sample Problem 6-7) and adapt Eq. 6-19 accordingly.  Thus we obtain  

FN = m(g + v2/R) = 1081 N ≈ 1.1 kN. 



44. The situation is somewhat similar to that shown in the “loop-the-loop” example done 
in the textbook (see Figure 6-10) except that, instead of a downward normal force, we are 
dealing with the force of the boom FB  on the car – which is capable of pointing any 
direction. We will assume it to be upward as we apply Newton’s second law to the car (of 
total weight 5000 N): BF W ma− =  where /m W g=  and 2 /a v r= − . Note that the 

centripetal acceleration is downward (our choice for negative direction) for a body at the 
top of its circular trajectory. 

(a) If r = 10 m and v = 5.0 m/s, we obtain FB = 3.7 × 103 N = 3.7 kN.

(b) The direction of FB is up. 

(c) If r = 10 m and v = 12 m/s, we obtain FB = – 2.3 × 103 N = – 2.3 kN, or |FB |= 2.3 kN. 

(d) The minus sign indicates that FB  points downward. 



45. (a) At the top (the highest point in the circular motion) the seat pushes up on the 
student with a force of magnitude FN = 556 N. Earth pulls down with a force of 
magnitude W = 667 N. The seat is pushing up with a force that is smaller than the 
student’s weight, and we say the student experiences a decrease in his “apparent weight” 
at the highest point. Thus, he feels “light.” 

(b) Now FN is the magnitude of the upward force exerted by the seat when the student is 
at the lowest point. The net force toward the center of the circle is Fb – W = mv2/R (note 
that we are now choosing upward as the positive direction). The Ferris wheel is “steadily 
rotating” so the value mv R2  is the same as in part (a). Thus, 

2

111 N 667 N 778 N.N

mv
F W

R
= + = + =

(c) If the speed is doubled, mv R2  increases by a factor of 4, to 444 N. Therefore, at the 

highest point we have 2
NW F mv R− = , which leads to 

667 N 444 N 223 N.NF = − =

(d) Similarly, the normal force at the lowest point is now found to be 

667 N  444 N  1.11 kN.NF = + ≈



46. The free-body diagram (for the hand straps of mass m) is the view that a passenger 
might see if she was looking forward and the streetcar was curving towards the right (so 
a  points rightwards in the figure). We note that | | /a v R= 2  where v = 16 km/h = 4.4 m/s. 

Applying Newton’s law to the axes of the problem (+x is rightward and +y is upward) we 
obtain

2

sin

cos  .

v
T m

R
T mg

θ

θ

=

=

We solve these equations for the angle: 

θ =
F
HG
I
KJ

−tan 1
2v

Rg

which yields θ = 12°. 



47. The free-body diagram (for the airplane of mass m) is shown below. We note that F

is the force of aerodynamic lift and a  points rightwards in the figure. We also note that 
| | /a v R= 2  where v = 480 km/h = 133 m/s. 

Applying Newton’s law to the axes of the problem (+x rightward and +y upward) we 
obtain

2

sin

cos

v
F m

R
F mg

θ

θ

=

=

where θ = 40°. Eliminating mass from these equations leads to 

tanθ = v

gR

2

which yields R = v2/g tan θ = 2.2 × 103 m. 



48. We note that the period T is eight times the time between flashes ( 1
2000  s), so T = 

0.0040 s. Combining Eq. 6-18 with Eq. 4-35 leads to 

F = 
4mπ2R

T2   = 
4(0.030 kg)π2(0.035 m)

(0.0040 s)2   = 2.6 × 103 N . 



49. For the puck to remain at rest the magnitude of the tension force T of the cord must 
equal the gravitational force Mg on the cylinder. The tension force supplies the 
centripetal force that keeps the puck in its circular orbit, so T = mv2/r. Thus Mg = mv2/r.
We solve for the speed: 

(2.50)(9.80)(0.200)
1.81 m/s.

1.50

Mgr
v

m
= = =



50. We refer the reader to Sample Problem 6-10, and use the result Eq. 6-26: 

θ =
F
HG
I
KJ

−tan 1
2v

gR

with v = 60(1000/3600) = 17 m/s and R = 200 m. The banking angle is therefore θ = 8.1°. 
Now we consider a vehicle taking this banked curve at v' = 40(1000/3600) = 11 m/s. Its 
(horizontal) acceleration is 2  /a v R′ ′= , which has components parallel the incline and 
perpendicular to it. 

2

| |

2

cos
cos  

sin
sin

v
a a

R
v

a a
R

θθ

θθ⊥

′′= =

′′= =

These enter Newton’s second law as follows (choosing downhill as the +x direction and 
away-from-incline as +y):

| |sin    

   cos
s

N

mg f ma

F mg ma

θ
θ ⊥

− =
− =

and we are led to 

2

2

sin cos /
.

cos sin /
s

N

f mg mv R

F mg mv R

θ θ
θ θ

′−=
′+

We cancel the mass and plug in, obtaining fs/FN = 0.078. The problem implies we should 
set fs = fs,max so that, by Eq. 6-1, we have µs = 0.078. 



51. The free-body diagram for the ball is shown below. Tu  is the tension exerted by the 

upper string on the ball, T  is the tension force of the lower string, and m is the mass of 

the ball. Note that the tension in the upper string is greater than the tension in the lower 
string. It must balance the downward pull of gravity and the force of the lower string. 

(a) We take the +x direction to be leftward (toward the center of the circular orbit) and +y
upward. Since the magnitude of the acceleration is a = v2/R, the x component of 
Newton’s second law is 

T T
mv

Ru cos cos ,θ θ+ =
2

where v is the speed of the ball and R is the radius of its orbit. The y component is 

T T mgu sin sin .θ θ− − = 0

The second equation gives the tension in the lower string: T T mgu= − / sinθ . Since the 

triangle is equilateral θ = 30.0°. Thus 

(1.34)(9.80)
35.0 8.74 N.

sin 30.0
T = − =

°

(b) The net force has magnitude 

( )net,str cos (35.0 8.74)cos30.0 37.9 N.uF T T θ= + = + ° =

(c) The radius of the path is  

R = ((1.70 m)/2)tan 30.0° = 1.47 m. 

Using Fnet,str = mv2/R, we find that the speed of the ball is 



net,str (1.47 m)(37.9 N)
6.45 m/s.

1.34 kg

RF
v

m
= = =

(d) The direction of net,strF is leftward (“radially inward’’). 



52. (a) We note that R (the horizontal distance from the bob to the axis of rotation) is the 
circumference of the circular path divided by 2π; therefore, R =  0.94/2π = 0.15 m.  The 
angle that the cord makes with the horizontal is now easily found:  

θ = cos−1(R/L) = cos−1(0.15/0.90) = 80º. 

The vertical component of the force of tension in the string is Tsinθ and must equal the 
downward pull of gravity (mg).  Thus,

0.40 N
sin

mg
T

θ
= = .

Note that we are using T for tension (not for the period). 

(b) The horizontal component of that tension must supply the centripetal force (Eq. 6-18), 
so we have Tcosθ = mv2/R.  This gives speed v = 0.49 m/s. This divided into the 
circumference gives the time for one revolution: 0.94/0.49 = 1.9 s. 



53. The layer of ice has a mass of 

( )3 5
ice 917 kg/m  (400 m 500 m 0.0040 m) 7.34 10  kg.m = × × = ×

This added to the mass of the hundred stones (at 20 kg each) comes to m = 7.36 × 105 kg. 

(a) Setting F = D (for Drag force) we use Eq. 6-14 to find the wind speed v along the 
ground (which actually is relative to the moving stone, but we assume the stone is 
moving slowly enough that this does not invalidate the result): 

( ) ( )( )
( )( ) ( )

5

ice ice

0.10 7.36 10 9.8
19 m/s 69 km/h.

4 4 0.002 1.21 400 500
kmg

v
C A

µ
ρ

×
= = = ≈

×

(b) Doubling our previous result, we find the reported speed to be 139 km/h. 

(c) The result is reasonable for storm winds. (A category 5 hurricane has speeds on the 
order of 2.6 × 102 m/s.) 



54. (a) To be on the verge of sliding out means that the force of static friction is acting 
“down the bank” (in the sense explained in the problem statement) with maximum 

possible magnitude.  We first consider the vector sum F
→

 of the (maximum) static 
friction force and the normal force.  Due to the facts that they are perpendicular and their 

magnitudes are simply proportional (Eq. 6-1), we find F
→

 is at angle (measured from the 
vertical axis) φ = θ + θs  where tanθs = µs (compare with Eq. 6-13), and θ is the bank 

angle (as stated in the problem).  Now, the vector sum of F
→

 and the vertically downward 
pull (mg) of gravity must be equal to the (horizontal) centripetal force (mv2/R), which 
leads to a surprisingly simple relationship: 

tanφ = 
2 2/mv R v

mg Rg
=   . 

Writing this as an expression for the maximum speed, we have  

1
max

(tan )
tan( tan )

1 tan
s

s
s

Rg
v Rg

θ µθ µ
µ θ

− += + =
−

(b) The graph is shown below (with θ in radians):  

 (c) Either estimating from the graph (µs = 0.60, upper curve) or calculated it more 
carefully leads to v = 41.3 m/s = 149 km/h when θ = 10º = 0.175 radian.  

(d) Similarly (for µs = 0.050, the lower curve) we find v = 21.2 m/s = 76.2 km/h when θ = 
10º = 0.175 radian. 



55. We apply Newton’s second law (as Fpush – f = ma).  If we find Fpush < fmax, we 
conclude “no, the cabinet does not move” (which means a is actually 0 and f = Fpush), and 
if we obtain a > 0 then it is moves (so f = fk).  For fmax and fk  we use Eq. 6-1 and Eq. 6-2 
(respectively), and in those formulas we set the magnitude of the normal force equal to 
556 N.  Thus, fmax = 378 N and fk = 311 N. 

(a) Here we find Fpush < fmax which leads to f = Fpush = 222 N. 

(b) Again we find Fpush < fmax which leads to f = Fpush = 334 N. 

(c) Now we have Fpush > fmax which means it moves and f = fk = 311 N. 

(d) Again we have Fpush > fmax which means it moves and f = fk = 311 N. 

(e) The cabinet moves in (c) and (d). 



56. Sample Problem 6-3 treats the case of being in “danger of sliding” down the θ ( = 
35.0º in this problem) incline: tanθ = µs = 0.700 (Eq. 6-13).  This value represents a 3.4% 
decrease from the given 0.725 value. 



57. (a) Refer to the figure in the textbook accompanying Sample Problem 6-3 (Fig. 6-5).  
Replace fs with fk in Fig. 6-5(b). With θ = 60º, we apply Newton’s second law to the 
“downhill” direction:   

 mg sinθ – f  = ma
           f = fk = µk FN = µk mg cosθ.

Thus,
a = g(sinθ – µk cosθ ) = 7.5 m/s2.

(b) The direction of the acceleration a  is down the slope. 

(c) Now the friction force is in the “downhill” direction (which is our positive direction) 
so that we obtain

a = g(sinθ + µk cosθ ) = 9.5 m/s2.

(d) The direction is down the slope.  



58. (a) The x component of F
→

 tries to move the crate while its y component indirectly 
contributes to the inhibiting effects of friction (by increasing the normal force).  
Newton’s second law implies 

x direction:  Fcosθ – fs = 0 

           y direction: FN – Fsinθ – mg = 0. 

To be “on the verge of sliding” means fs = fs,max = µsFN  (Eq. 6-1).  Solving these 
equations for F (actually, for the ratio of F to mg) yields 

cos sin
s

s

F

mg

µ
θ µ θ

=
−

   . 

This is plotted below (θ in degrees). 

(b) The denominator of our expression (for F/mg) vanishes when  

1
inf

1
cos sin 0     tans

s

θ µ θ θ
µ

−− = =

For 0.70sµ = , we obtain
1

inf

1
tan 55

s

θ
µ

−= = °
.

(c) Reducing the coefficient means increasing the angle by the condition in part (b). 

(d) For 0.60sµ = we have 
1

inf

1
tan 59

s

θ
µ

−= = ° .



59. (a) The x component of F
→

 contributes to the motion of the crate while its y
component indirectly contributes to the inhibiting effects of friction (by increasing the 
normal force).  Along the y direction, we have FN – Fcosθ – mg = 0 and along the x
direction we have  Fsinθ – fk = 0 (since it is not accelerating, according to the problem).  
Also, Eq. 6-2 gives fk = µk FN.  Solving these equations for F yields 

        
sin cos

k

k

mg
F

µ
θ µ θ

=
−

 . 

(b) When 1
0 tan sθ θ µ−< = , F will not be able to move the mop head. 



60. (a) The tension will be the greatest at the lowest point of the swing.  Note that there is 
no substantive difference between the tension T in this problem and the normal force FN

in Sample Problem 6-7.  Eq. 6-19 of that Sample Problem examines the situation at the 
top of the circular path (where FN is the least), and rewriting that for the bottom of the 
path leads to  

T = mg + mv2/r

where FN is at its greatest value. 

(b) At the breaking point T = 33 N = m(g + v2/r) where m = 0.26 kg and r = 0.65 m.  
Solving for the speed, we find that the cord should break when the speed (at the lowest 
point) reaches 8.73 m/s. 



61. (a) Using sF mgµ= , the coefficient of static friction for the surface between the two 

blocks is sµ = (12 N)/(39.2 N) = 0.31, where mt g = (4.0)(9.8)=39.2 N is the weight of the 

top block. Let 9.0 kgt bM m m= + = be the total system mass, then the maximum 

horizontal force has a magnitude Ma = Mµs g = 27 N. 

(b) The acceleration (in the maximal case) is a = µsg =3.0 m/s2.



62. Note that since no static friction coefficient is mentioned, we assume fs is not relevant 
to this computation. We apply Newton's second law to each block's x axis, which for m1

is positive rightward and for m2 is positive downhill: 

    T – fk   =   m1a
 m2g sinθ – T   =   m2a

Adding the equations, we obtain the acceleration: 

2

1 2

sin km g f
a

m m

θ −=
+

For fk = µkFN = µk m1g, we obtain

2(3.0)(9.8)sin 30 (0.25)(2.0)(9.8)
1.96 m/s

3.0 2.0
a

° −= =
+

.

Returning this value to either of the above two equations, we find T = 8.8 N. 



63. (a) To be “on the verge of sliding” means the applied force is equal to the maximum 
possible force of static friction (Eq. 6-1, with FN = mg in this case):  

fs,max = µsmg = 35.3 N. 

(b) In this case, the applied force F
→

 indirectly decreases the maximum possible value of 
friction (since its y component causes a reduction in the normal force) as well as directly 
opposing the friction force itself (because of its x component).  The normal force turns 
out to be

FN = mg – Fsinθ

where θ = 60º, so that the horizontal equation (the x application of Newton’s second law) 
becomes  

Fcosθ – fs,max = Fcosθ – µs(mg – Fsinθ ) = 0     39.7 N.F =

(c) Now, the applied force F
→

 indirectly increases the maximum possible value of friction 
(since its y component causes a reduction in the normal force) as well as directly 
opposing the friction force itself (because of its x component).  The normal force in this 
case turns out to be  

FN = mg + Fsinθ,

where θ = 60º, so that the horizontal equation becomes  

Fcosθ – fs,max = Fcosθ – µs(mg + Fsinθ ) = 0 320 N.F =



64. Refer to the figure in the textbook accompanying Sample Problem 6-3 (Fig. 6-5).  
Replace fs with fk in Fig. 6-5(b). With θ = 40º, we apply Newton’s second law to the 
“downhill” direction:   

mg sinθ – f  = ma,

      f = fk = µk FN  = µk mg cosθ

using Eq. 6-12.  Thus,  

a = 0.75 m/s2 = g(sinθ – µk cosθ )

determines the coefficient of kinetic friction: µk = 0.74. 



65. The assumption that there is no slippage indicates that we are dealing with static 
friction fs, and it is this force that is responsible for "pushing" the luggage along as the 
belt moves.  Thus, Fig. 6-5 in the textbook is appropriate for this problem -- if one 
reverses the arrow indicating the direction of motion (and removes the word 
"impending").  The mass of the box is m = 69/9.8 = 7.0 kg.  Applying Newton's law to 
the x axis leads to 

fs − mg sin θ  = ma

where θ = 2.5° and uphill is the positive direction. 

(a) Interpreting "temporarily at rest" (which is not meant to be the same thing as 
"momentarily at rest") to mean that the box is at equilibrium, we have a = 0 and, 
consequently, fs = mg sin θ = 3.0 N.  It is positive and therefore pointed uphill. 

(b) Constant speed in a one-dimensional setting implies that the velocity is constant -- 
thus, a = 0 again.  We recover the answer fs = 3.0 N uphill, which we obtained in part (a). 

(c) Early in the problem, the direction of motion of the luggage was given:  downhill.  
Thus, an increase in that speed indicates a downhill acceleration a = −0.20 m/s2.  We now 
solve for the friction and obtain  

fs = ma + mg sin θ = 1.6 N, 

which is positive -- therefore, uphill. 

(d)  A decrease in the (downhill) speed indicates the acceleration vector points uphill; 
thus, a = +0.20 m/s2.  We solve for the friction and obtain  

fs = ma + mg sinθ = 4.4 N, 

which is positive -- therefore, uphill. 

(e) The situation is similar to the one described in part (c), but with a = −0.57 m/s2.  Now,

fs = ma + mg sinθ = −1.0 N, 

or | | 1.0 Nsf = . Since sf is negative , the direction is downhill. 

(f) From the above, the only case where fs is directed downhill is (e). 



66. For the m2 = 1.0 kg block, application of Newton's laws result in 

2

2

cos       axis

sin 0       axis
k

N

F T f m a x

F F m g y

θ
θ
− − =

− − =

Since fk = µk FN, these equations can be combined into an equation to solve for a:

2 2(cos sin )k kF T m g m aθ µ θ µ− − − =

Similarly (but without the applied push) we analyze the m1= 2.0 kg block: 

1

1

     axis

0       axis
k

N

T f m a x

F m g y

′− =
′ − =

Using fk = µk NF ′ , the equations can be combined: 

1 1kT m g m aµ− =

Subtracting the two equations for a and solving for the tension, we obtain 

1

1 2

(cos sin ) (2.0)[cos35 (0.20)sin 35 ]
(20) 9.4 N.

2.0 1.0
km

T F
m m

θ µ θ− ° − °= = =
+ +



67. Each side of the trough exerts a normal force on the crate. The first diagram shows 
the view looking in toward a cross section. The net force is along the dashed line. Since 
each of the normal forces makes an angle of 45° with the dashed line, the magnitude of 
the resultant normal force is given by  

2 cos 45 2Nr N NF F F= ° = .

The second diagram is the free-body diagram for the crate (from a “side” view, similar to 
that shown in the first picture in Fig. 6-50). The force of gravity has magnitude mg,
where m is the mass of the crate, and the magnitude of the force of friction is denoted by f.

We take the +x direction to be down the incline and +y to be in the direction of NrF
r

. Then 
the x and the y components of Newton’s second law are 

   x: mg sin θ – f = ma
 y: FNr – mg cos θ = 0. 

Since the crate is moving, each side of the trough exerts a force of kinetic friction, so the 
total frictional force has magnitude  

2 2 / 2 2k N k Nr k Nrf F F Fµ µ µ= = =

Combining this expression with FNr = mg cos θ and substituting into the x component
equation, we obtain

mg mg masin cosθ θ− =2 .

Therefore a g k= −(sin cos )θ µ θ2 .



68. The free-body diagrams for the two boxes are shown below. T is the magnitude of the 
force in the rod (when T > 0 the rod is said to be in tension and when T < 0 the rod is 

under compression), 2NF  is the normal force on box 2 (the uncle box), 1NF  is the the 

normal force on the aunt box (box 1), f1  is kinetic friction force on the aunt box, and f2

is kinetic friction force on the uncle box. Also, m1 = 1.65 kg is the mass of the aunt box 
and m2 = 3.30 kg is the mass of the uncle box (which is a lot of ants!). 

For each block we take +x downhill (which is toward the lower-right in these diagrams) 
and +y in the direction of the normal force. Applying Newton’s second law to the x and y
directions of first box 2 and next box 1, we arrive at four equations: 

2 2 2

2 2

1 1 1

1 1

sin

cos 0

sin

cos 0

N

N

m g f T m a

F m g

m g f T m a

F m g

θ
θ

θ
θ

− − =
− =

− + =
− =

which, when combined with Eq. 6-2 (f1 = µ1FN1 where µ1 = 0.226 and f2 = µ2FN2 where 
µ2 = 0.113), fully describe the dynamics of the system. 

(a) We solve the above equations for the tension and obtain 

T
m m g

m m
=

+
F
HG

I
KJ − =2 1

2 1
1 2 105 (  N.µ µ θ) cos .  

(b) These equations lead to an acceleration equal to 

a g
m m

m m
= − +

+
F
HG

I
KJ

F
HG

I
KJ =sin cos . .θ µ µ θ2 2 1 1

2 1

3 62 m / s2



(c) Reversing the blocks is equivalent to switching the labels. We see from our algebraic 
result in part (a) that this gives a negative value for T (equal in magnitude to the result we 
got before). Thus, the situation is as it was before except that the rod is now in a state of 
compression. 



69. (a) For block A the figure in the textbook accompanying Sample Problem 6-3 (Fig. 6-
5) applies, but with the addition of an “uphill” tension force T (as in Fig. 5-18(b)) and 
with fs replaced with fk,incline (to be as general as possible, we are treating the incline as 
having a coefficient of kinetic friction µ′).  If we choose “downhill” positive, then 
Newton’s law gives  

mA g sinθ – fA – T = mA a

for block A (where θ = 30º).  For block B we choose leftward as the positive direction and 
write T – fB = mB a.  Now  

fA = µk,incline FNA = µ′mA g cosθ

using Eq. 6-12 applies to block A, and

fB = µk FNB = µk mB g.

In this particular problem, we are asked to set µ′ = 0, and the resulting equations can be 
straightforwardly solved for the tension: T = 13 N. 

(b) Similarly, finding the value of a is straightforward:  

a = g(mA sinθ – µk mB )/(mA + mB) =1.6 m/s2.



70. (a) The coefficient of static friction is µs = tan(θslip) = 0.577 0.58≈ .

(b) Using  

mg sinθ – f = ma

         f = fk = µk FN = µk mg cosθ

and a = 2d/t2 (with d = 2.5 m and t = 4.0 s), we obtain µk = 0.54.



71. This situation is similar to that described in Sample Problem 6-2 but with the 
direction of the normal force reversed (the ceiling “pushes” down on the stone).  Making 
the corresponding change of sign (in front of FN) in Eq. 6-7, then (the new version of) the 
result for F (analogous to the T in that Sample Problem) is  

F = –µk mg/(cosθ – µk sinθ).

With µk = 0.65, m =5.0 kg, and θ = 70º, we obtain F = 118 N. 



72. Consider that the car is “on the verge of sliding out” – meaning that the force of static 
friction is acting “down the bank” (or “downhill” from the point of view of an ant on the 

banked curve) with maximum possible magnitude.  We first consider the vector sum F
→

of the (maximum) static friction force and the normal force.  Due to the facts that they are 

perpendicular and their magnitudes are simply proportional (Eq. 6-1), we find F
→

 is at 
angle (measured from the vertical axis) φ = θ + θs  where tan θs = µs (compare with Eq. 6-

13), and θ is the bank angle.  Now, the vector sum of F
→

 and the vertically downward pull 
(mg) of gravity must be equal to the (horizontal) centripetal force (mv2/R), which leads to 
a surprisingly simple relationship: 

tanφ =  
mv2/R

mg    =   
v2

Rg  . 

Writing this as an expression for the maximum speed, we have 

1
max

(tan )
tan( tan )

1 tan
s

s
s

Rg
v Rg

θ µθ µ
µ θ

− += + =
−

.

(a) We note that the given speed is (in SI units) roughly 17 m/s.  If we do not want the 
cars to “depend” on the static friction to keep from sliding out (that is, if we want the 
component “down the back” of gravity to be sufficient), then we can set µs = 0 in the 

above expression and obtain tanv Rg θ= .  With R = 150 m, this leads to θ = 11°.

(b) If, however, the curve is not banked (so θ  = 0) then the above expression becomes  

1tan(tan )s sv Rg Rgµ µ−= =

Solving this for the coefficient of static friction µs = 0.19. 



73. Replace fs with fk in Fig. 6-5(b) to produce the appropriate force diagram for the first 
part of this problem (when it is sliding downhill with zero acceleration).  This amounts to 
replacing the static coefficient with the kinetic coefficient in Eq. 6-13: µk = tanθ.  Now 
(for the second part of the problem, with the block projected uphill) the friction direction 
is reversed from what is shown in Fig. 6-5(b).  Newton’s second law for the uphill motion 
(and Eq. 6-12) leads to  

– m g sinθ – µk m g cosθ = m a.

Canceling the mass and substituting what we found earlier for the coefficient, we have  

– g sinθ – tanθ g cosθ = a .

This simplifies to  – 2 g sinθ = a. Eq. 2-16 then gives the distance to stop: ∆x = –vo
2/2a.

(a) Thus, the distance up the incline traveled by the block is ∆x = vo
2/(4gsinθ ).

(b) We usually expect µs > µk (see the discussion in section 6-1). Sample Problem 6-3 
treats the “angle of repose” (the minimum angle necessary for a stationary block to start 
sliding downhill): µs = tan(θrepose).  Therefore, we expect θrepose > θ found in part (a).  
Consequently, when the block comes to rest, the incline is not steep enough to cause it to 
start slipping down the incline again. 



74. Analysis of forces in the horizontal direction (where there can be no acceleration) 
leads to the conclusion that F = FN; the magnitude of the normal force is 60 N.  The 
maximum possible static friction force is therefore µsFN = 33 N, and the kinetic friction 
force (when applicable) is µkFN = 23 N. 

(a) In this case, P
→

 = 34 N upward.  Assuming f
→

 points down, then Newton's second 
law for the y leads to 

P – mg – f  =  ma  . 

if we assume f = fs and a = 0, we obtain f = (34 – 22) N = 12 N.  This is less than fs, max,

which shows the consistency of our assumption.  The answer is: fs

→
 = 12 N down. 

(b) In this case, P
→

 = 12 N upward.  The above equation, with the same assumptions as in 
part (a), leads to f = (12 – 22) N = –10 N.  Thus, | fs | < fs, max, justifying our assumption 
that the block is stationary, but its negative value tells us that our initial assumption about 

the direction of f
→

 is incorrect in this case.  Thus, the answer is: fs

→
 = 10 N up. 

(c) In this case, P
→

 = 48 N upward.  The above equation, with the same assumptions as in 
part (a), leads to f = (48 – 22) N = 26 N.  Thus, we again have fs < fs, max, and our answer 

is: fs

→
 = 26 N down. 

(d) In this case, P
→

 = 62 N upward.  The above equation, with the same assumptions as in 
part (a), leads to f = (62 – 22) N = 40 N, which is larger than fs, max, -- invalidating our 
assumptions.  Therefore, we take f = fk and a ≠ 0 in the above equation; if we wished to 
find the value of a we would find it to be positive, as we should expect.  The answer is:  

fk

→
 = 23 N down. 

(e) In this case, P
→

 = 10 N downward.  The above equation (but with P replaced with -P)
with the same assumptions as in part (a), leads to f = (–10 – 22) N = –32 N.  Thus, we 
have | fs | < fs, max, justifying our assumption that the block is stationary, but its negative 

value tells us that our initial assumption about the direction of f
→

 is incorrect in this case.  

Thus, the answer is: fs

→
 = 32 N up. 

(f) In this case, P
→

 = 18 N downward.  The above equation (but with P replaced with –P)
with the same assumptions as in part (a), leads to f = (–18 – 22) N = –40 N, which is 
larger (in absolute value) than fs, max, -- invalidating our assumptions.  Therefore, we take 
f = fk and a ≠ 0 in the above equation; if we wished to find the value of a we would find it 

to be negative, as we should expect.  The answer is:  fk

→
 = 23 N up. 



(g) The block moves up the wall in case (d) where a > 0. 

(h) The block moves down the wall in case (f) where a < 0. 

(i) The frictional force fs

→
 is directed down in cases (a), (c) and (d). 



75. The figure in the textbook accompanying Sample Problem 6-3 (Fig. 6-5) applies, but 
with fs replaced with fk. If we choose “downhill” positive, then Newton’s law gives 

m g sinθ – fk = m a

for the sliding child.  Now using Eq. 6-12 

fk = µk FN = µk m g,

so we obtain a = g(sinθ – µk cosθ) = – 0.5 m/s2 (note that the problem gives the direction 
of the acceleration vector as uphill, even though the child is sliding downhill, so it is a 
deceleration). With θ = 35º, we solve for the coefficient and find µk = 0.76. 



76. We may treat all 25 cars as a single object of mass m = 25 × 5.0 × 104 kg and (when 
the speed is 30 km/h = 8.3 m/s) subject to a friction force equal to f = 25 × 250 × 8.3 = 
5.2 × 104 N. 

(a) Along the level track, this object experiences a “forward” force T exerted by the 
locomotive, so that Newton’s second law leads to 

4 6 5    5.2 10 (1.25 10 )(0.20) 3.0 10  NT f ma T− = = × + × = × .

 (b) The free-body diagram is shown next, with θ as the angle of the incline. The +x
direction (which is the only direction to which we will be applying Newton’s second law) 
is uphill (to the upper right in our sketch). 

Thus, we obtain 

sin  = T f mg maθ− −

where we set a = 0 (implied by the problem statement) and solve for the angle. We obtain 
θ = 1.2°.  



77. (a) The distance traveled by the coin in 3.14 s is 3(2πr) = 6π(0.050) = 0.94 m. Thus, 
its speed is v = 0.94/3.14 = 0.30 m/s. 

(b) This centripetal acceleration is given by Eq. 6-17: 

a
v

r
= = =

2 20 30

0 050
18

.

.
. .m / s2

(c) The acceleration vector (at any instant) is horizontal and points from the coin towards 
the center of the turntable. 

(d) The only horizontal force acting on the coin is static friction fs and must be large 
enough to supply the acceleration of part (b) for the m = 0.0020 kg coin. Using Newton’s 
second law, 

f mas = = = × −0 0020 18 36 10 3. . .b gb g N

(e) The static friction fs must point in the same direction as the acceleration (towards the 
center of the turntable). 

(f) We note that the normal force exerted upward on the coin by the turntable must equal 
the coin’s weight (since there is no vertical acceleration in the problem). We also note 
that if we repeat the computations in parts (a) and (b) for r' = 0.10 m, then we obtain v' = 
0.60 m/s and a' = 3.6 m/s2. Now, if friction is at its maximum at r = r', then, by Eq. 6-1, 
we obtain 

µ s
sf

mg

ma

mg
= = ′ =,max . .0 37



78. Although the object in question is a sphere, the area A in Eq. 6-16 is the cross 
sectional area presented by the object as it moves through the air (the cross section is 
perpendicular to v ). Thus, A is that of a circle: A = πR2. We also note that 16 lb equates 
to an SI weight of 71 N. Thus, 

v
F

C R
Rt

g= =
2 1

145

2 71

0 49 122ρπ π
b g

b gb g. .

which yields a diameter of 2R = 0.12 m. 



79. In the following sketch, T and T ′  are the tensions in the left and right strings, 
respectively. Also, m1 = M = 2.0 kg, m2 = 2M = 4.0 kg, and m3 = 2M = 4.0 kg. Since it 
does, in fact, slide (presumably rightward), the type of friction that is acting upon m2 is 
kinetic friction.  

We use the familiar axes with +x rightward and +y upward for each block. This has the 
consequence that m1 and m2 accelerate with the same sign, but the acceleration of m3 has 
the opposite sign. We take this into account as we apply Newton’s second law to the 
three blocks. 

T m g m a

T T f m a

T m g m a

k

− = +

′ − − = +

′ − = −

1 1

2

3 3

b g
b g
b g

Adding the first two equations, and subtracting the last, we obtain 

m m g f m m m ak3 1 1 2 3− − = + +b g b g

or (using M as in the problem statement) 

Mg f Mak− = 5 .

With a = 1.5 m/s2, we find fk = 4.6 N. 



80. (a) The component of the weight along the incline (with downhill understood as the 
positive direction) is mg sinθ where m = 630 kg and θ = 10.2°. With f = 62.0 N, Newton’s 
second law leads to 

mg f masinθ − =

which yields a = 1.64 m/s2. Using Eq. 2-15, we have 

80 0 6 20
1

2
164 2. . . .m

m

s

m

s2= FHG
I
KJ + FHG

I
KJt t

This is solved using the quadratic formula. The positive root is t = 6.80 s. 

(b) Running through the calculation of part (a) with f = 42.0 N instead of f = 62 N results 
in t = 6.76 s. 



81. An excellent discussion and equation development related to this problem is given in 
Sample Problem 6-3. We merely quote (and apply) their main result (Eq. 6-13) 

θ µ= = = °− −tan tan .1 1 0 5 27s

which implies that the angle through which the slope should be reduced is

φ = 45° – 27° ≈ 20°. 



82. (a) Comparing the t = 2.0 s photo with the t = 0 photo, we see that the distance 
traveled by the box is 

d = + =4 0 2 0 4 52 2. . . .m

Thus (from Table 2-1, with downhill positive) d v t at= +0
1
2

2 , we obtain a = 2.2 m/s2;

note that the boxes are assumed to start from rest. 

(b) For the axis along the incline surface, we have 

mg f maksin .θ − =

We compute mass m from the weight m = (240/9.8) kg = 24 kg, and θ is figured from the 
absolute value of the slope of the graph: θ = tan–1 (2.5/5.0) = 27°. Therefore, we find fk = 
53 N. 



83. (a) If the skier covers a distance L during time t with zero initial speed and a constant 
acceleration a, then L = at2/2, which gives the acceleration a1 for the first (old) pair of 
skis:

a
L

t1
1
2 2

22 2 200

61
011= = =

m

s
m / s

b g
b g

. . 

(b) The acceleration a2 for the second (new) pair is 

a
L

t2
2
2 2

22 2 200

42
0 23= = =

m

s
m / s

b g
b g

. .  

(c) The net force along the slope acting on the skier of mass m is 

F mg f mg mak knet = − = − =sin sin cosθ θ µ θb g

which we solve for µk1 for the first pair of skis: 

1
1

0.11
tan tan 3.0 0.041

cos 9.8cos3.0k

a

g
µ θ

θ
= − = ° − =

°

(d) For the second pair, we have  

2
2

0.23
tan tan 3.0 0.029 .

cos 9.8cos3.0k

a

g
µ θ

θ
= − = ° − =

°



84. We make use of Eq. 6-16 which yields 

2mg
CρπR2  =

2(6)(9.8)
(1.6)(1.2)π(0.03)2  = 147 m/s. 



85. (a) The box doesn’t move until t = 2.8 s, which is when the applied force F  reaches a 
magnitude of F = (1.8)(2.8) = 5.0 N, implying therefore that fs, max = 5.0 N. Analysis of 
the vertical forces on the block leads to the observation that the normal force magnitude 
equals the weight FN = mg = 15 N. Thus, µs = fs, max/FN = 0.34. 

(b) We apply Newton’s second law to the horizontal x axis (positive in the direction of 
motion).

F f ma t f tk k− = − = −18 15 12 2 4. . . .b gb g

Thus, we find fk = 3.6 N. Therefore, µk = fk / FN = 0.24. 



86. In both cases (highest point and lowest point), the normal force (on the child from the 
seat) points up, gravity points down, and the y axis is chosen positive upwards. At the 
high point, the direction to the center of the circle (the direction of centripetal 
acceleration) is down, and at the low point that direction is up. 

(a) Newton’s second law (using Eq. 6-17 for the magnitude of the acceleration) leads to 

2

.N

v
F mg m

R
− = −

With m = 26 kg, v = 5.5 m/s and R = 12 m, this yields FN = 189 N which we round off to 
FN ≈ 190 N. 

(b) Now, Newton’s second law leads to 

2

N

v
F mg m

r
− =

which yields FN = 320 N. As already mentioned, the direction of NF  is up in both cases. 



87. The mass of the car is m = (10700/9.80) kg = 1.09 × 103 kg. We choose “inward” 
(horizontally towards the center of the circular path) as the positive direction. 

(a) With v = 13.4 m/s and R = 61 m, Newton’s second law (using Eq. 6-18) leads to 

f
mv

Rs = = ×
2

33 21 10. N .  

(b) Noting that FN = mg in this situation, the maximum possible static friction is found to 
be

f mgs s,max . .= = = ×µ 0 35 10700 3 75 103b gb g N

using Eq. 6-1. We see that the static friction found in part (a) is less than this, so the car 
rolls (no skidding) and successfully negotiates the curve. 



88. (a) The distance traveled in one revolution is 2πR = 2π(4.6) = 29 m. The (constant) 
speed is consequently v = 29/30 = 0.96 m/s. 

(b) Newton’s second law (using Eq. 6-17 for the magnitude of the acceleration) leads to 

f m
v

R
ms =

F
HG
I
KJ =

2

0 20( . )  

in SI units. Noting that FN = mg in this situation, the maximum possible static friction is 
fs,max = µs mg using Eq. 6-1. Equating this with fs = m(0.20) we find the mass m cancels 
and we obtain µs = 0.20/9.8 = 0.021. 



89. At the top of the hill the vertical forces on the car are the upward normal force 
exerted by the ground and the downward pull of gravity. Designating +y downward, we 
have

2

N

mv
mg F

R
− =

from Newton’s second law. To find the greatest speed without leaving the hill, we set FN

= 0 and solve for v:

v gR= = =( . )( ) .9 8 250 49 5 m / s  = 49.5(3600/1000) km/h = 178 km/h. 



90. For simplicity, we denote the 70° angle as θ and the magnitude of the push (80 N) as 
P. The vertical forces on the block are the downward normal force exerted on it by the 
ceiling, the downward pull of gravity (of magnitude mg) and the vertical component of 
P (which is upward with magnitude P sin θ). Since there is no acceleration in the vertical 
direction, we must have 

sinNF P mgθ= −

in which case the leftward-pointed kinetic friction has magnitude 

f P mgk k= −µ θ( sin ).

Choosing +x rightward, Newton’s second law leads to 

P f ma a
P u P mg

mk
kcos

cos ( sin )
   θ θ θ− = = − −

which yields a = 3.4 m/s2 when µk = 0.40 and m = 5.0 kg. 



91. Probably the most appropriate picture in the textbook to represent the situation in this 
problem is in the previous chapter: Fig. 5-9. We adopt the familiar axes with +x
rightward and +y upward, and refer to the 85 N horizontal push of the worker as P (and 
assume it to be rightward). Applying Newton’s second law to the x axis and y axis, 
respectively, produces 

0.
k

N

P f ma

F mg

− =
− =

Using v v a x2
0
2 2= + ∆  we find a = 0.36 m/s2. Consequently, we obtain fk = 71 N and FN = 

392 N. Therefore, µk = fk/ FN = 0.18. 



92. In the figure below, m = 140/9.8 = 14.3 kg is the mass of the child. We use wx  and 
wy  as the components of the gravitational pull of Earth on the block; their magnitudes 

are wx = mg sin θ and wy = mg cos θ.

(a) With the x axis directed up along the incline (so that a = –0.86 m/s2), Newton’s 
second law leads to 

f mk − °= −140 25 0 86sin ( . )

which yields fk = 47 N. We also apply Newton’s second law to the y axis (perpendicular 
to the incline surface), where the acceleration-component is zero: 

140cos 25 0     127 N.N NF F− ° = =

Therefore, µk = fk/FN = 0.37. 

(b) Returning to our first equation in part (a), we see that if the downhill component of 
the weight force were insufficient to overcome static friction, the child would not slide at 
all. Therefore, we require 140 sin 25° > fs,max = µs FN, which leads to tan 25° = 0.47 > µs.
The minimum value of µs equals µk and is more subtle; reference to §6-1 is recommended. 
If µk exceeded µs then when static friction were overcome (as the incline is raised) then it 
should start to move – which is impossible if fk is large enough to cause deceleration! The 
bounds on µs are therefore given by 0.47 > µs > 0.37.



93. (a) Our +x direction is horizontal and is chosen (as we also do with +y) so that the 
components of the 100 N force F  are non-negative. Thus, Fx = F cos θ = 100 N, which 
the textbook denotes Fh in this problem. 

(b) Since there is no vertical acceleration, application of Newton’s second law in the y
direction gives 

sinN y NF F mg F mg F θ+ = = −

where m = 25.0 kg. This yields FN = 245 N in this case (θ = 0°). 

(c) Now, Fx = Fh = F cos θ = 86.6 N for θ = 30.0°. 

(d) And FN = mg – F sin θ = 195 N. 

(e) We find Fx = Fh = F cos θ = 50.0 N for θ = 60.0°. 

(f) And FN = mg – F sin θ = 158 N. 

(g) The condition for the chair to slide is 

,max
where  0.42.

sx s N sF f Fµ µ> = =

For θ = 0°, we have 

F fx s= = =100 0 42 245 103 N <  N,max ( . )( )  

so the crate remains at rest. 

(h) For θ = 30.0°, we find 

F fx s= = =86 6 0 42 195 819. ( . )( ) .,max N >  N  

so the crate slides. 

(i) For θ = 60°, we get 

F fx s= = =50 0 0 42 158 66 4. ( . )( ) .,max N <  N  

which means the crate must remain at rest. 



94. We note that FN = mg in this situation, so fk = µkmg = (0.32) (220) = 70.4 N and fs,max

= µsmg = (0.41) (220) = 90.2 N. 

(a) The person needs to push at least as hard as the static friction maximum if he hopes to 
start it moving. Denoting his force as P, this means a value of P slightly larger than  
90.2 N is sufficient. Rounding to two figures, we obtain P = 90 N. 

(b) Constant velocity (zero acceleration) implies the push equals the kinetic friction, so 
70 NP = .

(c) Applying Newton’s second law, we have 

P f ma a
mg mg

mk
s k− = = −µ µ

which simplifies to a = g(µs – µk) = 0.88 m/s2.



95. Except for replacing fs with fk, Fig 6-5 in the textbook is appropriate. With that figure 
in mind, we choose uphill as the +x direction. Applying Newton’s second law to the x
axis, we have 

sin  where  ,k

W
f W ma m

g
θ− = =

and where W = 40 N, a = +0.80 m/s2 and θ = 25°. Thus, we find fk = 20 N. Along the y
axis, we have 

0 cosNy
F F W θ= =

so that µk = fk/ FN = 0.56. 



96. (a) We note that FN = mg in this situation, so fs,max = µsmg = (0.52)(11)(9.8) = 56 N. 
Consequently, the horizontal force F  needed to initiate motion must be (at minimum) 
slightly more than 56 N. 

(b) Analyzing vertical forces when F  is at nonzero θ yields 

,maxsin   (  sin ).N s sF F mg f mg Fθ µ θ+ = = −

Now, the horizontal component of F  needed to initiate motion must be (at minimum) 
slightly more than this, so 

cos ( sin )  
cos sin 

s
s

s

mg
F mg F F

µθ µ θ
θ µ θ

= − =
+

which yields F = 59 N when θ = 60°. 

(c) We now set θ = –60° and obtain 

F
(0.52)(11)(9.8)

  (0.52) sin (
  1.1  N.=

− ° + − °
= ×

cos( ) )60 60
103



97. The coordinate system we wish to use is shown in Fig. 5-18 in the textbook, so we 
resolve this horizontal force into appropriate components. 

(a) Applying Newton’s second law to the x (directed uphill) and y (directed away from 
the incline surface) axes, we obtain 

cos sin

sin cos 0.
k

N

F f mg ma

F F mg

θ θ
θ θ

− − =
− − =

Using fk = µk FN, these equations lead to 

(cos sin ) (sin cos )k k

F
a g

m
θ µ θ θ µ θ= − − +

which yields a = –2.1 m/s2, or  |a | = 2.1 m/s2 , for µk = 0.30, F = 50 N and m = 5.0 kg. 

(b) The direction of a is down the plane. 

(c) With v0 = +4.0 m/s and v = 0, Eq. 2-16 gives 

24.0
3.9 m.

2( 2.1)
x∆ = − =

−

(d) We expect µs ≥ µk; otherwise, an object started into motion would immediately start 
decelerating (before it gained any speed)! In the minimal expectation case, where µs = 
0.30, the maximum possible (downhill) static friction is, using Eq. 6-1, 

,max ( sin cos )s s N sf F F mgµ µ θ θ= = +

which turns out to be 21 N. But in order to have no acceleration along the x axis, we must 
have

cos sin 10 Nsf F mgθ θ= − =



(the fact that this is positive reinforces our suspicion that f s  points downhill).  

(e) Since the fs needed to remain at rest is less than fs,max then it stays at that location. 



98. (a) The upward force exerted by the car on the passenger is equal to the downward 
force of gravity (W = 500 N) on the passenger. So the net force does not have a vertical 
contribution; it only has the contribution from the horizontal force (which is necessary for 

maintaining the circular motion). Thus F Fnet  N.= = 210

(b) Using Eq. 6-18, we have 

v
FR

m
= = =( )( )

.
.

210 470

510
44 0 m / s.  



99. The magnitude of the acceleration of the cyclist as it moves along the horizontal 
circular path is given by v2/R, where v is the speed of the cyclist and R is the radius of the 
curve.

(a) The horizontal component of Newton’s second law is f = mv2/R, where f is the static 
friction exerted horizontally by the ground on the tires. Thus, 

f = =
850 9 00

250
275

2
. .

.
.

b gb g
  N  

(b) If FN is the vertical force of the ground on the bicycle and m is the mass of the bicycle 
and rider, the vertical component of Newton’s second law leads to FN = mg = 833 N. The 
magnitude of the force exerted by the ground on the bicycle is therefore 

2 2 2 2(275) (833) 877  N.Nf F+ = + =



100. We use Eq. 6-14, D C Av= 1
2

2ρ , where ρ is the air density, A is the cross-sectional 

area of the missile, v is the speed of the missile, and C is the drag coefficient. The area is 
given by A = πR2, where R = 0.265 m is the radius of the missile. Thus 

D = = ×1

2
0 75 12 0 265 250 6 2 10

2 2 3( . ) . . . . kg / m  m  m / s  N3c h b g b gπ



101. We convert to SI units: v = 94(1000/3600) = 26 m/s. Eq. 6-18 yields 

F
mv

R
= = =

2 2
85 26

220
263

b gb g
N

for the horizontal force exerted on the passenger by the seat. But the seat also exerts an 
upward force equal to 833 N.mg = The magnitude of force is therefore 

2 2(263) (833) 874 N.+ =



102. (a) The free-body diagram for the person (shown as an L-shaped block) is shown 
below. The force that she exerts on the rock slabs is not directly shown (since the 
diagram should only show forces exerted on her), but it is related by Newton’s third law) 

to the normal forces 1NF  and 2NF  exerted horizontally by the slabs onto her shoes and 
back, respectively. We will show in part (b) that FN1 = FN2 so that we there is no 
ambiguity in saying that the magnitude of her push is FN2. The total upward force due to 

(maximum) static friction is f f f= +1 2  where 1 1 1s Nf Fµ= and 2 2 2s Nf Fµ= . The 

problem gives the values µs1 = 1.2 and µs2 = 0.8. 

(b) We apply Newton’s second law to the x and y axes (with +x rightward and +y upward 
and there is no acceleration in either direction). 

1 2

1 2

0

0
N NF F

f f mg

− =
+ − =

The first equation tells us that the normal forces are equal FN1 = FN2 = FN. Consequently, 
from Eq. 6-1, 

1 s 1

2 s 2

N

N

f F

f F

µ
µ

=

=

we conclude that 

s 1
1 2

s 2

.f f
µ
µ

=

Therefore, f1 + f2 – mg = 0 leads to 

s 1
2

s 2

1 f mg
µ
µ

+ =



which (with m = 49 kg) yields f2 = 192 N. From this we find FN = f2/µs2 = 240 N. This is 
equal to the magnitude of the push exerted by the rock climber. 

(c) From the above calculation, we find 1 s1 288 NNf Fµ= =  which amounts to a fraction 

f

W
1 288

49 9 8
0 60= =b g b g. .

or 60% of her weight. 



103. (a) The push (to get it moving) must be at least as big as fs,max = µs FN  (Eq. 6-1, with 
FN = mg in this case), which equals (0.51)(165 N) = 84.2 N. 

(b) While in motion, constant velocity (zero acceleration) is maintained if the push is 
equal to the kinetic friction force fk = µk FN = µk mg = 52.8 N. 

(c) We note that the mass of the crate is 165/9.8 = 16.8 kg.  The acceleration, using the 
push from part (a), is a = (84.2 –  52.8)/16.8  ≈ 1.87 m/s2.



104. The free-body diagram for the puck is shown below. NF  is the normal force of the 

ice on the puck, f is the force of friction (in the –x direction), and mg  is the force of 
gravity. 

(a) The horizontal component of Newton’s second law gives –f = ma, and constant 
acceleration kinematics (Table 2-1) can be used to find the acceleration. 

Since the final velocity is zero, v v ax2
0
2 2= +  leads to a v x= − 0

2 2/ . This is substituted 
into the Newton’s law equation to obtain 

f
mv

x
=

=

=

0
2

2

2

0110 6 0

2 15

013

. .

.

kg m / s

m

N .

b g b g
b g

(b) The vertical component of Newton’s second law gives FN – mg = 0, so FN = mg which 
implies (using Eq. 6-2) f = µk mg. We solve for the coefficient: 

µ k

f

mg
= = =013

0110 9 8
012

.

. .
. .

N

kg m / s2b g c h



105. We use the familiar horizontal and vertical axes for x and y directions, with 
rightward and upward positive, respectively. The rope is assumed massless so that the 
force exerted by the child F  is identical to the tension uniformly through the rope. The x
and y components of F  are Fcosθ and Fsinθ, respectively. The static friction force 
points leftward. 

(a) Newton’s Law applied to the y-axis, where there is presumed to be no acceleration, 
leads to 

sin 0NF F mgθ+ − =

which implies that the maximum static friction is µs(mg – F sin θ). If fs = fs, max is 
assumed, then Newton’s second law applied to the x axis (which also has a = 0 even 
though it is “verging” on moving) yields 

cos        cos ( sin )  0s sF f ma F mg Fθ θ µ θ− = − − =

which we solve, for θ = 42° and µs = 0.42, to obtain F = 74 N. 

(b) Solving the above equation algebraically for F, with W denoting the weight, we obtain 

(0.42)(180) 76
  .

cos sin cos (0.42) sin cos (0.42) sin
s

s

W
F

µ
θ µ θ θ θ θ θ

= = =
+ + +

(c) We minimize the above expression for F by working through the condition: 

dF

d

Ws s

sθ
µ θ µ θ

θ µ θ
 (sin    cos )

    sin )
  0

2
= −

+
=

(cos

which leads to the result θ = tan–1 µs = 23°. 

(d) Plugging θ = 23° into the above result for F, with µs = 0.42 and W = 180 N, yields 
70 NF = .



106. (a) The centripetal force is given by Eq. 6-18: 

( ) ( )22

6

1.00 465
0.0338 N .

6.40 10

mv
F

R
= = =

×

(b) Calling downward (towards the center of Earth) the positive direction, Newton’s 
second law leads to 

mg T ma− =

where mg = 9.80 N and ma = 0.034 N, calculated in part (a). Thus, the tension in the cord 
by which the body hangs from the balance is T = 9.80 – 0.03 = 9.77 N. Thus, this is the 
reading for a standard kilogram mass, of the scale at the equator of the spinning Earth. 



107. (a) The intuitive conclusion, that the tension is greatest at the bottom of the swing, is 
certainly supported by application of Newton’s second law there: 

T mg
mv

R
T m g

v

R
− = = +

F
HG
I
KJ

2 2

where Eq. 6-18 has been used. Increasing the speed eventually leads to the tension at the 
bottom of the circle reaching that breaking value of 40 N. 

(b) Solving the above equation for the speed, we find 

v R
T

m
g= −FHG
I
KJ = −F

HG
I
KJ( . )

.
.0 91

40

0 37
9 8  

which yields v = 9.5 m/s. 



108. (a) The angle made by the cord with the vertical axis is given by  

θ = cos–1 (18/30) = 53°. 

This means the radius of the plane’s circular path is r = 30 sinθ = 24 m (we also could 
have arrived at this using the Pythagorean theorem). The speed of the plane is 

v
r

= =
4 4 2

1

8 8 24

60

.

min

.π πb g b gm

s

which yields v = 11 m/s. Eq. 6-17 then gives the acceleration (which at any instant is 
horizontally directed from the plane to the center of its circular path) 

a
v

r
= = =

2 211

24
51. .m / s2

(b) The only horizontal force on the airplane is that component of tension, so Newton’s 
second law gives 

T
mv

r
Tsin

.

sin
θ = =

°

2 2
0 75 11

24 53

b gb g

which yields T = 4.8 N. 

(c) The net vertical force on the airplane is zero (since its only acceleration is horizontal), 
so

F T mglift N= + = ° + =cos . cos . . .θ 4 8 53 0 75 9 8 10b gb g
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