
1. With speed v = 11200 m/s, we find 

K mv= = × = ×1

2

1

2
2 9 10 11200 18 102 5 2 13( . ) ( ) .  J.



2. (a) The change in kinetic energy for the meteorite would be 

( )( )22 6 3 141 1
4 10 kg 15 10 m/s 5 10 J

2 2f i i i iK K K K m v∆ = − = − = − = − × × = − × ,

or 14| | 5 10  JK∆ = × . The negative sign indicates that kinetic energy is lost. 

(b) The energy loss in units of megatons of TNT would be 

( )14
15

1 megaton TNT
5 10 J    0.1megaton TNT.

4.2 10 J
K−∆ = × =

×

(c) The number of bombs N that the meteorite impact would correspond to is found by 
noting that megaton = 1000 kilotons and setting up the ratio: 

0.1 1000kiloton TNT
8.

13kiloton TNT
N

×= =



3. (a) From Table 2-1, we have v v a x2
0
2 2= + ∆ . Thus, 

( ) ( ) ( )22 7 15 7
0 2 2.4 10 2 3.6 10 0.035 2.9 10 m/s.v v a x= + ∆ = × + × = ×

(b) The initial kinetic energy is 

( ) ( )22 27 7 13
0

1 1
 1.67 10 kg 2.4 10 m/s 4.8 10 J.

2 2iK mv − −= = × × = ×

The final kinetic energy is 

( ) ( )22 27 7 131 1
 1.67 10 kg 2.9 10 m/s 6.9 10 J.

2 2fK mv − −= = × × = ×

The change in kinetic energy is ∆K = (6.9 × 10–13 – 4.8 × 10–13) J = 2.1 × 10–13 J. 



4. We apply the equation 21
0 0 2( )x t x v t at= + + , found in Table 2-1. Since at t = 0 s, x0 = 0 

and 0 12 m/sv = , the equation becomes (in unit of meters) 

21
2( ) 12x t t at= + .

With 10 mx = when 1.0 st = , the acceleration is found to be 24.0 m/sa = − . The fact 
that 0a < implies that the bead is decelerating. Thus, the position is described by 

2( ) 12 2.0x t t t= − . Differentiating x with respect to t then yields  

( ) 12 4.0
dx

v t t
dt

= = − .

Indeed at t =3.0 s, ( 3.0) 0v t = = and the bead stops momentarily. The speed at 10 st = is
( 10) 28 m/sv t = = − , and the corresponding kinetic energy is  

2 2 21 1
(1.8 10 kg)( 28 m/s) 7.1 J.

2 2
K mv −= = × − =



5. We denote the mass of the father as m and his initial speed vi. The initial kinetic energy 
of the father is 

K Ki = 1

2 son

and his final kinetic energy (when his speed is vf = vi + 1.0 m/s) is K Kf = son .  We use 

these relations along with Eq. 7-1 in our solution. 

(a) We see from the above that K Ki f= 1
2  which (with SI units understood) leads to 

( )221 1 1
 1.0

2 2 2i imv m v= + .

The mass cancels and we find a second-degree equation for vi :

1

2

1

2
02v vi i− − = .

The positive root (from the quadratic formula) yields vi = 2.4 m/s. 

(b) From the first relation above K Ki = 1
2 sonb g , we have 

1

2

1

2

1

2 2
2mv

m
vi = F

HG
I
KJ

F
HG

I
KJ   son

2

and (after canceling m and one factor of 1/2) are led to v vison = 2 = 4.8 m s.



6. By the work-kinetic energy theorem, 

( )2 2 2 21 1 1
(2.0kg) (6.0m/s) (4.0 m/s) 20 J.

2 2 2f iW K mv mv= ∆ = − = − =

We note that the directions of v f  and vi  play no role in the calculation. 



7. Eq. 7-8 readily yields (with SI units understood)  

W =  Fx ∆x + Fy ∆y  = 2cos(100º)(3.0) + 2sin(100º)(4.0) = 6.8 J. 



8. Using Eq. 7-8 (and Eq. 3-23), we find the work done by the water on the ice block: 

( ) ( ) 3ˆ ˆ ˆ ˆ210 i 150 j 15i 12j (210) (15) ( 150) ( 12) 5.0 10 J.W F d= ⋅ = − ⋅ − = + − − = ×



9. Since this involves constant-acceleration motion, we can apply the equations of Table 
2-1, such as x v t at= +0

1
2

2  (where x0 0= ). We choose to analyze the third and fifth 

points, obtaining 

2
0

2
0

1
0.2 m (1.0 s)  (1.0 s)

2
1

0.8m (2.0 s)  (2.0 s)
2

v a

v a

= +

= +

Simultaneous solution of the equations leads to 0 0v =  and a = 0 40. m s2 . We now have 

two ways to finish the problem. One is to compute force from F = ma and then obtain the 
work from Eq. 7-7. The other is to find ∆K  as a way of computing W (in accordance 
with Eq. 7-10). In this latter approach, we find the velocity at t = 2.0 s from 

0 (so 0.80m s)v v at v= + = . Thus, 

21
(3.0kg) (0.80 m/s) 0.96 J.

2
W K= ∆ = =



10. The change in kinetic energy can be written as 

2 21 1
( ) (2 )

2 2f iK m v v m a x ma x∆ = − = ∆ = ∆

where we have used  2 2 2f iv v a x= + ∆  from Table 2-1. From Fig. 7-27, we see that 

(0 30) J 30 JK∆ = − = − when 5 mx∆ = + . The acceleration can then be obtained as 

2( 30 J)
0.75 m/s .

(8.0 kg)(5.0 m)

K
a

m x

∆ −= = = −
∆

The negative sign indicates that the mass is decelerating. From the figure, we also see 
that when 5 mx = the kinetic energy becomes zero, implying that the mass comes to rest 
momentarily. Thus, 

2 2 2 2 2
0 2 0 2( 0.75 m/s )(5.0 m) 7.5 m /sv v a x= − ∆ = − − = ,

or 0 2.7 m/sv = . The speed of the object when x = −3.0 m is

2
0 2 7.5 2( 0.75)( 3.0) 12 3.5 m/sv v a x= + ∆ = + − − = = .



11. We choose +x as the direction of motion (so a  and F  are negative-valued). 

(a) Newton’s second law readily yields 2(85kg) ( 2.0m/s )F = −  so that

2| | 1.7 10 NF F= = × .

(b) From Eq. 2-16 (with v = 0) we have 

( )
( )

2

2 2
0 2

37 m/s
0 2     3.4 10 m

2 2.0m/s
v a x x= + ∆ ∆ = − = ×

−
.

Alternatively, this can be worked using the work-energy theorem. 

(c) Since F  is opposite to the direction of motion (so the angle φ  between F  and 

d x= ∆  is 180°) then Eq. 7-7 gives the work done as 45.8 10 JW F x= − ∆ = − × .

(d) In this case, Newton’s second law yields ( ) ( )285kg 4.0m/sF = −  so that 
2| | 3.4 10 NF F= = × .

(e) From Eq. 2-16, we now have 

( )
( )

2

2

2

37 m/s
1.7 10 m.

2 4.0m/s
x∆ = − = ×

−

(f) The force F  is again opposite to the direction of motion (so the angle φ is again 180°) 
so that Eq. 7-7 leads to 45.8 10 J.W F x= − ∆ = − ×  The fact that this agrees with the result 
of part (c) provides insight into the concept of work. 



12. (a) From Eq. 7-6, F = W/x = 3.00 N (this is the slope of the graph). 

(b) Eq. 7-10 yields K = Ki + W =  3.00 J + 6.00 J = 9.00 J. 



13. (a) The forces are constant, so the work done by any one of them is given by 

W F d= ⋅ , where d  is the displacement. Force F1  is in the direction of the displacement, 
so

1 1 1cos (5.00 N)(3.00m)cos 0 15.0 J.W F d φ= = ° =

Force F2  makes an angle of 120° with the displacement, so 

2 2 2cos (9.00 N) (3.00m)cos120 13.5 J.W F d φ= = ° = −

Force F3  is perpendicular to the displacement, so W3 = F3d cos φ3 = 0 since cos 90° = 0. 
The net work done by the three forces is 

1 2 3 15.0 J 13.5 J 0 1.50 J.W W W W= + + = − + = +

(b) If no other forces do work on the box, its kinetic energy increases by 1.50 J during the 
displacement. 



14. The forces are all constant, so the total work done by them is given by W F x= net∆ ,
where Fnet is the magnitude of the net force and ∆x  is the magnitude of the displacement. 
We add the three vectors, finding the x and y components of the net force: 

net 1 2 3

net 2 3

sin 50.0 cos35.0 3.00 N (4.00 N)sin 35.0 (10.0 N)cos35.0

2.13N

cos50.0 sin 35.0 (4.00 N) cos50.0 (10.0 N)sin 35.0

3.17 N.

x

y

F F F F

F F F

= − − ° + ° = − − ° + °
=

= − ° + ° = − ° + °

=

The magnitude of the net force is 

2 2 2 2
net net net (2.13) (3.17) 3.82 N.x yF F F= + = + =

The work done by the net force is 

net (3.82 N)(4.00 m) 15.3 JW F d= = =

where we have used the fact that d Fnet||  (which follows from the fact that the canister 
started from rest and moved horizontally under the action of horizontal forces — the 
resultant effect of which is expressed by Fnet ).



15. Using the work-kinetic energy theorem, we have  

cosK W F d Fd φ∆ = = ⋅ =

In addition, 12 NF = and 2 2 2(2.00) ( 4.00) (3.00) 5.39 md = + − + = .

(a) If 30.0 JK∆ = + , then 

1 1 30.0
cos cos 62.3

(12.0)(5.39)

K

Fd
φ − −∆= = = ° .

(b) 30.0 JK∆ = − , then 

1 1 30.0
cos cos 118

(12.0)(5.39)

K

Fd
φ − −∆ −= = = °



16. In both cases, there is no acceleration, so the lifting force is equal to the weight of the 
object.

(a) Eq. 7-8 leads to (360kN)(0.10 m) 36 kJ.W F d= ⋅ = =

(b) In this case, we find W = (4000 N)(0.050 m) 22.0 10  J= × .



17. (a) We use F  to denote the upward force exerted by the cable on the astronaut. The 
force of the cable is upward and the force of gravity is mg downward. Furthermore, the 
acceleration of the astronaut is g/10 upward. According to Newton’s second law, F – mg

= mg/10, so F = 11 mg/10. Since the force F  and the displacement d  are in the same 
direction, the work done by F  is 

W Fd
mgd

F = = = = ×11

10

11

10
1164

 (72 kg) 9.8 m / s  (15 m)
  10  J

2

4c h
.

which (with respect to significant figures) should be quoted as 1.2 × 104 J. 

(b) The force of gravity has magnitude mg and is opposite in direction to the 
displacement. Thus, using Eq. 7-7, the work done by gravity is 

W mgdg = − = − = − × (72 kg) 9.8 m / s  (15 m)    10  J2 4c h 1058.

which should be quoted as – 1.1 × 104 J. 

(c) The total work done is W = × − × = ×1164. 10 J 1.058 10 J 1.06 10 J4 4 3 . Since the 
astronaut started from rest, the work-kinetic energy theorem tells us that this (which we 
round to 1 1. ×10 J3 ) is her final kinetic energy. 

(d) Since K mv= 1
2

2 ,  her final speed is 

v
K

m
= = × =2 2 106 10

54
3( .

.
J)

72 kg
 m / s.  



18. (a) Using notation common to many vector capable calculators, we have (from Eq. 7-
8) W = dot([20.0,0] + [0, −(3.00)(9.8)], [0.500 ∠ 30.0º]) =  +1.31 J. 

(b) Eq. 7-10 (along with Eq. 7-1) then leads to  

v = 2(1.31 J)/(3.00 kg)  =  0.935 m/s. 



19. (a) We use F to denote the magnitude of the force of the cord on the block. This force 
is upward, opposite to the force of gravity (which has magnitude Mg). The acceleration is 
a g= / 4 downward. Taking the downward direction to be positive, then Newton’s second 
law yields 

F ma Mg F M
g

net    = − = FHG
I
KJ4

so F = 3Mg/4. The displacement is downward, so the work done by the cord’s force is, 
using Eq. 7-7,  

WF = –Fd = –3Mgd/4.

(b) The force of gravity is in the same direction as the displacement, so it does work 

gW Mgd= .

(c) The total work done on the block is − + =3 4 4M gd M gd M gd . Since the block 

starts from rest, we use Eq. 7-15 to conclude that this M gd 4b g  is the block’s kinetic 

energy K at the moment it has descended the distance d.

(d) Since 21
2 ,K Mv=   the speed is 

v
K

M

Mgd

M

gd= = =2 2 4

2

( / )

at the moment the block has descended the distance d.



20. The fact that the applied force aF causes the box to move up a frictionless ramp at a 

constant speed implies that there is no net change in the kinetic energy: 0K∆ = . Thus, 

the work done by aF  must be equal to the negative work done by gravity: a gW W= − .

Since the box is displaced vertically upward by 0.150 mh = , we have

 (3.00)(9.80)(0.150) 4.41 JaW mgh= + = =



21. Eq. 7-15 applies, but the wording of the problem suggests that it is only necessary to 
examine the contribution from the rope (which would be the “Wa” term in Eq. 7-15):  

Wa = −(50 N)(0.50 m) =   −25 J 

(the minus sign arises from the fact that the pull from the rope is anti-parallel to the 
direction of motion of the block).  Thus, the kinetic energy would have been 25 J greater 
if the rope had not been attached (given the same displacement). 



22. We use d to denote the magnitude of the spelunker’s displacement during each stage. 
The mass of the spelunker is m = 80.0 kg. The work done by the lifting force is denoted 
Wi where i = 1, 2, 3 for the three stages. We apply the work-energy theorem, Eq. 17-15. 

(a) For stage 1, W mgd K mv v1 1
1
2 1

2
1 500− = = =∆ , . where  m / s. This gives 

2 2 3
1 1

1 1
(80.0) (9.80) (10.0)  (8.00)(5.00) 8.84 10  J.

2 2
W mgd mv= + = + = ×

(b) For stage 2, W2 – mgd = ∆K2 = 0, which leads to 

( )2 3
2 (80.0 kg) 9.80 m/s  (10.0 m) 7.84 10  J.W mgd= = = ×

(c) For stage 3, W mgd K mv3 3
1
2 1

2− = = −∆ . We obtain 

2 2 3
3 1

1 1
(80.0) (9.80) (10.0)  (80.0)(5.00) 6.84 10  J.

2 2
W mgd mv= − = − = ×



23. (a) The net upward force is given by 

 ( ) ( )NF F m M g m M a+ − + = +

where m = 0.250 kg is the mass of the cheese, M = 900 kg is the mass of the elevator cab, 
F is the force from the cable, and 3.00 NNF =  is the normal force on the cheese.  On the 

cheese alone, we have  

23.00 (0.250)(9.80)
2.20 m/s

0.250NF mg ma a
−− = = = .

Thus the force from the cable is 4( )( ) 1.08 10 NNF m M a g F= + + − = × , and the work 

done by the cable on the cab is 

4 4
1 (1.80 10 )(2.40) 2.59 10  J.W Fd= = × = ×

(b) If 92.61 kJW = and 2 10.5 md = , the magnitude of the normal force is  

4

2

9.261 10
( ) (0.250 900)(9.80) 2.45 N.

10.5N

W
F m M g

d

×= + − = + − =



24. The spring constant is k = 100 N/m and the maximum elongation is xi = 5.00 m. 
Using Eq. 7-25 with xf = 0, the work is found to be 

W kxi= = = ×1

2

1

2
125 102 3 (100)(5.00)  J.2 .



25. We make use of Eq. 7-25 and Eq. 7-28 since the block is stationary before and after 
the displacement. The work done by the applied force can be written as 

2 21
( )

2a s f iW W k x x= − = − .

The spring constant is 3(80 N) /(2.0 cm)=4.0 10 N/m.k = × With 4.0 JaW = , and 

2.0 cmix = − , we have 

2 2
3

2 2(4.0 J)
( 0.020 m) 0.049 m 4.9 cm.

(4.0 10  N/m)
a

f i

W
x x

k
= ± + = ± + − = ± = ±

×



26. From Eq. 7-25, we see that the work done by the spring force is given by 

2 21
( )

2s i fW k x x= − .

The fact that 360 N of force must be applied to pull the block to x = + 4.0 cm implies that 
the spring constant is  

3360 N
90 N/cm=9.0 10  N/m

4.0 cm
k = = × .

(a) When the block moves from 5.0 cmix = + to 3.0 cmx = + , we have  

3 2 21
(9.0 10  N/m)[(0.050 m) (0.030 m) ] 7.2 J.

2sW = × − =

(b) Moving from 5.0 cmix = + to 3.0 cmx = − , we have 

3 2 21
(9.0 10  N/m)[(0.050 m) ( 0.030 m) ] 7.2 J.

2sW = × − − =

(c) Moving from 5.0 cmix = + to 5.0 cmx = − , we have 

3 2 21
(9.0 10  N/m)[(0.050 m) ( 0.050 m) ] 0 J.

2sW = × − − =

(d) Moving from 5.0 cmix = + to 9.0 cmx = − , we have 

3 2 21
(9.0 10  N/m)[(0.050 m) ( 0.090 m) ] 25 J.

2sW = × − − = −



27. The work done by the spring force is given by Eq. 7-25: 

2 21
( )

2s i fW k x x= − .

Since xF kx= − , the slope in Fig. 7-35 corresponds to the spring constant k. Its value is 

given by 380 N/cm=8.0 10  N/mk = × .

(a) When the block moves from 8.0 cmix = + to 5.0 cmx = + , we have 

3 2 21
(8.0 10  N/m)[(0.080 m) (0.050 m) ] 15.6 J 16 J.

2sW = × − = ≈

(b) Moving from 8.0 cmix = + to 5.0 cmx = − , we have 

3 2 21
(8.0 10  N/m)[(0.080 m) ( 0.050 m) ] 15.6 J 16 J.

2sW = × − − = ≈

(c) Moving from 8.0 cmix = + to 8.0 cmx = − , we have 

3 2 21
(8.0 10  N/m)[(0.080 m) ( 0.080 m) ] 0 J.

2sW = × − − =

(d) Moving from 8.0 cmix = + to 10.0 cmx = − , we have 

3 2 21
(8.0 10  N/m)[(0.080 m) ( 0.10 m) ] 14.4 J 14 J.

2sW = × − − = − ≈ −



28. The work done by the spring force is given by Eq. 7-25: 2 21
( )

2s i fW k x x= − .

The spring constant k can be deduced from Fig. 7-36 which shows the amount of work 
done to pull the block from 0 to x = 3.0 cm. The parabola 2 / 2aW kx= contains (0,0), (2.0 

cm, 0.40 J) and (3.0 cm, 0.90 J). Thus, we may infer from the data that 
32.0 10  N/mk = × .

(a) When the block moves from 5.0 cmix = + to 4.0 cmx = + , we have  

3 2 21
(2.0 10  N/m)[(0.050 m) (0.040 m) ] 0.90 J.

2sW = × − =

(b) Moving from 5.0 cmix = + to 2.0 cmx = − , we have 

3 2 21
(2.0 10  N/m)[(0.050 m) ( 0.020 m) ] 2.1 J.

2sW = × − − =

(c) Moving from 5.0 cmix = + to 5.0 cmx = − , we have 

3 2 21
(2.0 10  N/m)[(0.050 m) ( 0.050 m) ] 0 J.

2sW = × − − =



29. (a) As the body moves along the x axis from xi = 3.0 m to xf = 4.0 m the work done by 
the force is 

2 2 2 2 6  3( ) 3 (4.0 3.0 ) 21 J.
f f

i i

x x

x f ix x
W F dx x dx x x= = − = − − = − − = −

According to the work-kinetic energy theorem, this gives the change in the kinetic energy: 

W K m v vf i= = −∆ 1

2
2 2d i

where vi is the initial velocity (at xi) and vf is the final velocity (at xf). The theorem yields 

2 22 2( 21)
(8.0) 6.6 m/s.

2.0f i

W
v v

m

−= + = + =

(b) The velocity of the particle is vf = 5.0 m/s when it is at x = xf. The work-kinetic energy 

theorem is used to solve for xf. The net work done on the particle is ( )2 23 f iW x x= − − , so 

the theorem leads to 

− − = −3
1

2
2 2 2 2x x m v vf i f id i d i .

Thus,

( ) ( )2 2 2 2 2 22.0 kg
(5.0 m/s) (8.0 m/s) (3.0 m) 4.7 m.

6 6 N/mf f i i

m
x v v x= − − + = − − + =



30. (a) This is a situation where Eq. 7-28 applies, so we have  

              Fx = 1
2 kx2  (3.0 N) x = 12 (50 N/m)x2

which (other than the trivial root) gives x =  (3.0/25) m = 0.12 m.  

(b) The work done by the applied force is Wa = Fx = (3.0 N)(0.12 m)  = 0.36 J. 

(c) Eq. 7-28 immediately gives Ws = –Wa = –0.36 J. 

(d) With Kf = K considered variable and Ki = 0, Eq. 7-27 gives K = Fx –  12 kx2.  We take 

the derivative of K with respect to x and set the resulting expression equal to zero, in 
order to find the position xc which corresponds to a maximum value of K:   

xc =
F
k  =  (3.0/50) m  = 0.060 m. 

We note that xc is also the point where the applied and spring forces “balance.” 

(e) At xc we find K = Kmax = 0.090 J. 



31. According to the graph the acceleration a varies linearly with the coordinate x. We 
may write a = αx, where α is the slope of the graph. Numerically, 

α = = −20

8 0
2 5 2 m / s

m
 s

2

.
. .  

The force on the brick is in the positive x direction and, according to Newton’s second 
law, its magnitude is given by F a m m x= = αb g .  If xf is the final coordinate, the work 

done by the force is 

2 2 2

0 0

2.5
  (8.0) 8.0 10  J.

2 2(10)
f fx x

fW F dx x dx x
m m

α α= = = = = ×



32. From Eq. 7-32, we see that the “area” in the graph is equivalent to the work done. 
Finding that area (in terms of rectangular [length × width] and triangular 
[ 1

2  base height]× areas) we obtain 

0 2 2 4 4 6 6 8 (20 10 0 5) J 25 J.x x x xW W W W W< < < < < < < <= + + + = + + − =



33. (a) The graph shows F as a function of x assuming x0 is positive. The work is negative 
as the object moves from x x x= =0 0 to  and positive as it moves from x x x x= =0 02 to .

Since the area of a triangle is (base)(altitude)/2, the work done from x x x= =0 0 to  is

0 0( )( ) / 2x F− and the work done from x x x x= =0 02 to  is 0 0 0 0 0(2 )( ) / 2 ( )( ) / 2x x F x F− =
The total work is the sum, which is zero. 

(b) The integral for the work is 

W F
x

x
dx F

x

x
x

x
x

      1          0.
0

2
= −

F
HG

I
KJ = −

F
HG

I
KJ =z 0

0
0

2

0 0

2

2

0

0



34. Using Eq. 7-32, we find 

W e dxx     0.21 J
0.25

1.25
= =−z 4 2

where the result has been obtained numerically. Many modern calculators have that 
capability, as well as most math software packages that a great many students have 
access to. 



35. We choose to work this using Eq. 7-10 (the work-kinetic energy theorem). To find the 
initial and final kinetic energies, we need the speeds, so 

v
dx

dt
t t= = − +3 0 8 0 30 2. . .

in SI units. Thus, the initial speed is vi = 3.0 m/s and the speed at t = 4 s is vf = 19 m/s. 
The change in kinetic energy for the object of mass m = 3.0 kg is therefore 

( )2 21
528 J

2 f iK m v v∆ = − =

which we round off to two figures and (using the work-kinetic energy theorem) conclude 
that the work done is 25.3 10 J.W = ×



36. (a) Using the work-kinetic energy theorem 

2.0 2 3

0

1
(2.5 ) 0 (2.5)(2.0) (2.0) 2.3 J.

3f iK K x dx= + − = + − =

 (b) For a variable end-point, we have Kf as a function of x, which could be differentiated 
to find the extremum value, but we recognize that this is equivalent to solving F = 0 for x:

F x  0  2.5    0 = − =2 .

Thus, K is extremized at   2.5 1.6 mx = ≈  and we obtain 

2.5 2 3

0

1
(2.5 ) 0 (2.5)( 2.5)  ( 2.5) 2.6 J.

3f iK K x dx= + − = + − =

Recalling our answer for part (a), it is clear that this extreme value is a maximum. 



37. (a) We first multiply the vertical axis by the mass, so that it becomes a graph of the 
applied force.  Now, adding the triangular and rectangular “areas” in the graph (for 0 ≤ x
≤ 4) gives 42 J for the work done. 

(b) Counting the “areas” under the axis as negative contributions, we find (for 0 ≤ x ≤ 7) 
the work to be 30 J at x = 7.0 m. 

(c) And at x = 9.0 m, the work is 12 J. 

(d) Eq. 7-10 (along with Eq. 7-1) leads to speed v = 6.5 m/s at x = 4.0 m.  Returning to 
the original graph (where a was plotted) we note that (since it started from rest) it has 
received acceleration(s) (up to this point) only in the +x direction and consequently must 
have a velocity vector pointing in the +x direction at x = 4.0 m.

(e) Now, using the result of part (b) and Eq. 7-10 (along with Eq. 7-1) we find the speed 
is 5.5 m/s at x = 7.0 m.  Although it has experienced some deceleration during the 0 ≤ x ≤
7 interval, its velocity vector still points in the +x direction. 

(f) Finally, using the result of part (c) and Eq. 7-10 (along with Eq. 7-1) we find its speed 
v = 3.5 m/s at x = 9.0 m.  It certainly has experienced a significant amount of deceleration 
during the 0 ≤ x ≤ 9 interval; nonetheless, its velocity vector still points in the +x
direction.



38. As the body moves along the x axis from xi = 0 m to xf = 3.00 m the work done by the 
force is 

3
2 2 3 2 3

0

( 3.00 ) (3.00) (3.00)
2 2

4.50 27.0.

f f

i i

x x

xx x

c c
W F dx cx x dx x x

c

= = − = − = −

= −

However, (11.0 20.0) 9.00 JW K= ∆ = − = − from the work-kinetic energy theorem. 
Thus,

4.50 27.0 9.00c − = −

or 4.00 N/mc = .



39. We solve the problem using the work-kinetic energy theorem which states that the 
change in kinetic energy is equal to the work done by the applied force, K W∆ = . In our 
problem, the work done is W Fd= , where F is the tension in the cord and d is the length 
of the cord pulled as the cart slides from x1 to x2. From Fig. 7-40, we have 

2 2 2 2 2 2 2 2
1 2 (3.00) (1.20) (1.00) (1.20)

3.23 m 1.56 m 1.67 m

d x h x h= + − + = + − +
= − =

which yields (25.0 N)(1.67 m) 41.7 J.K Fd∆ = = =



40. Recognizing that the force in the cable must equal the total weight (since there is no 
acceleration), we employ Eq. 7-47: 

P Fv mg
x

t
   cos    = = F

HG
I
KJθ ∆

∆

where we have used the fact that θ = °0  (both the force of the cable and the elevator’s 
motion are upward). Thus, 

P  (3.0  10  kg) (9.8 m / s  
210 m

23 s
  2.7  10  W.3 2 5= × F

HG
I
KJ = ×)



41. The power associated with force F  is given by P F v    = ⋅ ,  where v  is the velocity 
of the object on which the force acts. Thus, 

2cos (122 N)(5.0 m/s)cos37 4.9 10  W. P F v Fv φ= ⋅ = = ° = ×



42. (a) Since constant speed implies ∆K  0,=  we require W Wa g= − , by Eq. 7-15. Since 

Wg  is the same in both cases (same weight and same path), then 29.0 10aW = ×  J just as it 

was in the first case. 

(b) Since the speed of 1.0 m/s is constant, then 8.0 meters is traveled in 8.0 seconds. 
Using Eq. 7-42, and noting that average power is the power when the work is being done 
at a steady rate, we have 

2900 J
 1.1 10  W.

8.0 s

W
P

t
= = = ×

∆

(c) Since the speed of 2.0 m/s is constant, 8.0 meters is traveled in 4.0 seconds. Using Eq. 
7-42, with average power replaced by power, we have 

900 J

4.0 s

W
P

t
= =

∆
= 225 W 22.3 10  W≈ × .



43. (a) The power is given by P = Fv and the work done by F  from time t1  to time t2  is 
given by 

W P t Fv t
t

t

t

t
   d    d= = zz .

1

2

1

2

Since F  is the net force, the magnitude of the acceleration is a = F/m, and, since the 
initial velocity is v0 0= , the velocity as a function of time is given by 
v v at F m t= + =0 ( ) .  Thus 

2

1

2 2 2 2
2 1

1
( / )  d ( / )( ).

2

t

t
W F m t t F m t t= = −

For t1 0=  and 2 1.0s,t =

2
21 (5.0 N)

(1.0 s) = 0.83 J.
2 15 kg

W =

(b) For 1 1.0s,t =  and 2 2.0s,t =

2
2 21 (5.0 N)

[(2.0 s) (1.0 s) ] 2.5 J.
2 15 kg

W = − =

(c) For 1 2.0st =  and 2 3.0s,t =

2
2 21 (5.0 N)

[(3.0 s) (2.0 s) ] 4.2 J.
2 15 kg

W = − =

(d) Substituting v = (F/m)t into P = Fv we obtain P F t m= 2  for the power at any time t.
At the end of the third second 

P
(5.0 N)  (3.0 s)

15 kg
  5.0 W.

2

=
F
HG

I
KJ =



44. (a) Using Eq. 7-48 and Eq. 3-23, we obtain 

      (4.0 N)( 2.0 m/s)  (9.0 N)(4.0 m/s) 28 W.P F v= ⋅ = − + =

(b) We again use Eq. 7-48 and Eq. 3-23, but with a one-component velocity: v v  j.=

             

12 W   N)

P F v

v

= ⋅
− = −( .2 0

which yields v = 6 m/s. 



45. The total work is the sum of the work done by gravity on the elevator, the work done 
by gravity on the counterweight, and the work done by the motor on the system:  

WT = We + Wc + Ws.

Since the elevator moves at constant velocity, its kinetic energy does not change and 
according to the work-kinetic energy theorem the total work done is zero. This means We

+ Wc + Ws = 0. The elevator moves upward through 54 m, so the work done by gravity on 
it is 

2 5(1200 kg)(9.80 m/s )(54 m) 6.35  10  J.e eW m gd= − = − = − ×

The counterweight moves downward the same distance, so the work done by gravity on it 
is

2 5    (950 kg) (9.80 m/s ) (54 m)  5.03  10  J.c cW m gd= = = ×

Since WT = 0, the work done by the motor on the system is 

5 5 56.35 10  J  5.03 10  J  1.32 10  J.s e cW W W= − − = × − × = ×

This work is done in a time interval of ∆t  3.0 min  180 s,= =  so the power supplied by 
the motor to lift the elevator is 

5
21.32  10  J

7.4  10  W.
180 s

sW
P

t

×= = = ×
∆



46. (a) Since the force exerted by the spring on the mass is zero when the mass passes 
through the equilibrium position of the spring, the rate at which the spring is doing work 
on the mass at this instant is also zero. 

(b) The rate is given by P F v Fv      = ⋅ = − ,  where the minus sign corresponds to the 
fact that F  and v  are anti-parallel to each other. The magnitude of the force is given by 
F = kx = (500 N/m)(0.10 m) = 50 N, while v is obtained from conservation of energy for 
the spring-mass system: 

2 2 2 21 1 1 1
10 J (0.30 kg) (500 N/m)(0.10 m)

2 2 2 2
E K U mv kx v= + = = + = +

which gives v = 7.1 m/s. Thus 

2(50 N)(7.1 m/s) 3.5  10  W.P Fv= − = − = − ×



47. (a) Eq. 7-8 yields (with SI units understood)  

W =  Fx ∆x + Fy ∆y + Fz ∆z
= (2.0)(7.5 – 0.50) + (4.0)(12.0 – 0.75) + (6.0)(7.2 – 0.20) =101 J 
≈  1.0×  102 J. 

(b) Dividing this result by 12 s (see Eq. 7-42) yields P = 8.4 W. 



48. (a) With SI units understood, the object’s displacement is 

ˆ ˆ ˆ8.00 i 6.00 j 2.00k .f id d d= − = − + +

Thus, Eq. 7-8 gives (3.00)( 8.00) (7.00)(6.00) (7.00)(2.00) 32.0 J.W F d= ⋅ = − + + =

(b) The average power is given by Eq. 7-42: 

avg

32.0
8.00 W.

4.00

W
P

t
= = =

(c) The distance from the coordinate origin to the initial position is 
2 2 2(3.00) ( 2.00) (5.00) 6.16 mid = + − + = , and the magnitude of the distance from the 

coordinate origin to the final position is 2 2 2( 5.00) (4.00) (7.00) 9.49 mfd = − + + = .

Their scalar (dot) product is 

2(3.00)( 5.00) ( 2.00)(4.00) (5.00)(7.00) 12.0 m .i fd d⋅ = − + − + =

Thus, the angle between the two vectors is 

1 1 12.0
cos cos 78.2 .

(6.16)(9.49)
i f

i f

d d

d d
φ − −⋅

= = = °



49. From Eq. 7-32, we see that the “area” in the graph is equivalent to the work done. We 
find the area in terms of rectangular [length × width] and triangular [ 1

2 base × height] 

areas and use the work-kinetic energy theorem appropriately. The initial point is taken to 
be x = 0, where v0 = 4.0 m/s. 

(a) With K mvi = =1
2 0

2 16 J,  we have 

3 0 0 1 1 2 2 3 4.0 Jx x xK K W W W< < < < < <− = + + = −

so that K3 (the kinetic energy when x = 3.0 m) is found to equal 12 J. 

(b) With SI units understood, we write 3 as ( 4.0)( 3.0)
fx x x fW F x x< < ∆ = − − and apply the 

work-kinetic energy theorem: 

K K W

K x

x x x

x f f

f f
− =

− = − −
< <3 3

12 4 30( )( . )

so that the requirement 8.0 JfKx =  leads to x f = 4 0.  m.  

(c) As long as the work is positive, the kinetic energy grows. The graph shows this 
situation to hold until x = 1.0 m. At that location, the kinetic energy is 

1 0 0 1     16 J  2.0 J  18 J.xK K W < <= + = + =



50. (a) The compression of the spring is d = 0.12 m. The work done by the force of 
gravity (acting on the block) is, by Eq. 7-12, 

W mgd1 0 25 0 29= = =( . . kg) 9.8 m / s  (0.12 m)  J.2c h

(b) The work done by the spring is, by Eq. 7-26, 

W kd2
21

2

1

2
250 18= − = − = −  N / m) (0.12 m)  J.2( .

(c) The speed vi of the block just before it hits the spring is found from the work-kinetic 
energy theorem (Eq. 7-15). 

∆K mv W Wi= − = +0
1

2
2

1 2

which yields 

v
W W

mi = − + = − − =( )( ) ( )( . . )

.
.

2 2 0 29 18

0 25
351 2  m / s.  

(d) If we instead had ' 7 m/siv = , we reverse the above steps and solve for d ′ . Recalling 

the theorem used in part (c), we have 

2 2
1 2

1 1
0

2 2imv W W mgd kd′ ′ ′ ′ ′− = + = −

which (choosing the positive root) leads to 

′ =
+ + ′

d
mg m g mkv

k
i

2 2 2

which yields d´ = 0.23 m. In order to obtain this result, we have used more digits in our 

intermediate results than are shown above (so vi = =12 048 3 471. .  m / s  and '
iv  = 6.942 

m/s).



51. (a) The component of the force of gravity exerted on the ice block (of mass m) along 
the incline is mg sin θ , where θ = sin−1 0 91 15. .b g  gives the angle of inclination for the 

inclined plane. Since the ice block slides down with uniform velocity, the worker must 
exert a force F  “uphill” with a magnitude equal to mg sin θ. Consequently, 

( )2 20.91m
sin (45 kg) 9.8 m/s  2.7 10  N.

1.5m
F mg θ= = = ×

(b) Since the “downhill” displacement is opposite to F , the work done by the worker is 

W1
2 22 7 10 4 0 10= − × = − ×. .N  (1.5 m) J.c h

(c) Since the displacement has a vertically downward component of magnitude 0.91 m (in 
the same direction as the force of gravity), we find the work done by gravity to be 

W2
2 245 9 8 4 0 10= = ×( . . kg)  m / s  (0.91 m) J.c h

(d) Since NF  is perpendicular to the direction of motion of the block, and cos90°  = 0, 
work done by the normal force is W3 = 0 by Eq. 7-7. 

(e) The resultant force Fnet  is zero since there is no acceleration. Thus, its work is zero, as 
can be checked by adding the above results W W W1 2 3 0+ + = .



52. (a) The force of the worker on the crate is constant, so the work it does is given by 

W F d FdF = ⋅ = cosφ , where F  is the force, d  is the displacement of the crate, and φ is 

the angle between the force and the displacement. Here F = 210 N, d = 3.0 m, and φ = 
20°. Thus  

WF = (210 N) (3.0 m) cos 20° = 590 J. 

(b) The force of gravity is downward, perpendicular to the displacement of the crate. The 
angle between this force and the displacement is 90° and cos 90° = 0, so the work done 
by the force of gravity is zero. 

(c) The normal force of the floor on the crate is also perpendicular to the displacement, so 
the work done by this force is also zero. 

(d) These are the only forces acting on the crate, so the total work done on it is 590 J. 



53. The work done by the applied force aF  is given by cosa aW F d F d φ= ⋅ = . From Fig. 

7-43, we see that 25 JW = when 0φ = and 5.0 cmd = . This yields the magnitude of aF :

225 J
5.0 10  N

0.050 ma

W
F

d
= = = × .

(a) For 64φ = ° , we have 2cos (5.0 10 N)(0.050 m)cos64 11 J.aW F d φ= = × ° =

(b) For 147φ = ° , we have 2cos (5.0 10 N)(0.050 m)cos147 21 J.aW F d φ= = × ° = −



54. (a) Eq. 7-10 (along with Eq. 7-1 and Eq. 7-7) leads to 

vf = (2 
d
m F cosθ )1/2= (cosθ )1/2

with SI units understood. 

(b) With vi = 1, those same steps lead to vf = (1 + cosθ )1/2.

(c) Replacing θ with 180º – θ, and still using vi = 1, we find  

vf = [1 + cos(180º – θ )]1/2 = (1 – cosθ )1/2.

(d) The graphs are shown below.  Note that as θ is increased in parts (a) and (b) the force 
provides less and less of a positive acceleration, whereas in part (c) the force provides 
less and less of a deceleration (as its θ value increases).  The highest curve (which slowly 
decreases from 1.4 to 1) is the curve for part (b); the other decreasing curve (starting at 1 
and ending at 0) is for part (a).  The rising curve is for part (c); it is equal to 1 where  θ = 
90º.



55. (a) We can easily fit the curve to a concave-downward parabola: x = 1
10 t(10 – t), from 

which (by taking two derivatives) we find the acceleration to be a = –0.20 m/s2.  The 
(constant) force is therefore F = ma = –0.40 N, with a corresponding work given by W = 

Fx = 2
50 t(t – 10).  It also follows from the x expression that vo = 1.0 m/s.  This means that 

Ki = 12 mv2 = 1.0 J.  Therefore, when t = 1.0 s, Eq. 7-10 gives K = Ki + W = 0.64 J 0.6 J≈ ,

where the second significant figure is not to be taken too seriously. 

(b) At t = 5.0 s, the above method gives K = 0. 

(c) Evaluating the W = 2
50 t(t – 10) expression at t = 5.0 s and t = 1.0 s, and subtracting, 

yields –0.6 J.  This can also be inferred from the answers for parts (a) and (b). 



56. With SI units understood, Eq. 7-8 leads to W = (4.0)(3.0) – c(2.0) = 12 – 2c.

(a) If W = 0, then c = 6.0 N. 

(b) If W =  17 J, then c = –2.5 N. 

(c) If W =  –18 J, then c = 15 N. 



57. (a) Noting that the x component of the third force is F3x = (4.00 N)cos(60º), we apply 
Eq. 7-8 to the problem:

W = [5.00 – 1.00 + (4.00)cos 60º](0.20 m) = 1.20 J. 

(b) Eq. 7-10 (along with Eq. 7-1) then yields v = 2W/m  = 1.10 m/s. 



58. (a) The plot of the function (with SI units understood) is shown below. 

Estimating the area under the curve allows for a range of answers.  Estimates from 11 J to 
14 J are typical.   

(b) Evaluating the work analytically (using Eq. 7-32), we have 

W = 10 e-x/2 dx = −20 e-x/2|
0

2

  =  12.6 J 13 J≈ .



59. (a) Eq. 7-6 gives Wa = Fd = (209 N)(1.50 m)  ≈  314 J. 

(b) Eq. 7-12 leads to Wg = (25.0 kg)(9.80 m/s2)(1.50 m)cos(115º) ≈ –155 J.  

(c) The angle between the normal force and the direction of motion remains 90º at all 
times, so the work it does is zero. 

(d) The total work done on the crate is WT = 314 J – 155 J =158 J.  



60. (a) Eq. 7-8 gives  W = (3.0)(–5.0 – 3.0) + (7.0)[4.0 – (–2.0)] + (7.0)(7.0 – 5.0) = 32 J. 

(b) Eq. 7-42 gives P = W/t = 32/4.0 = 8.0 W. 

(c) Proceeding as in Sample Problem 3-6, we have 

φ = cos-1 (-5.0)(3.0) + (4.0)(-2.0) + (7.0)(5.0)
di df

 = 78°

where we used the Pythagorean theorem to find di = 38  and df = 90 (distances 
understood to be in meters).



61. Hooke’s law and the work done by a spring is discussed in the chapter. We apply 
work-kinetic energy theorem, in the form of ∆K W Wa s= + , to the points in Figure 7-48 at 
x = 1.0 m and x = 2.0 m, respectively. The “applied” work Wa is that due to the constant 
force P .

4 10
1

2
10

0 2 0
1

2
2 0

2

2

= −

= −

P k

P k

( . ) ( . )

( . ) ( . )

(a) Simultaneous solution leads to P = 8.0 N, 

(b) and k = 8.0 N/m. 



62. Using Eq. 7-8, we find 

ˆ ˆ ˆ ˆ( cos  i+F sin  j) ( i j) cos sinW F d F x y Fx Fyθ θ θ θ= ⋅ = ⋅ + = +

where x = 2.0 m, y = –4.0 m, F = 10 N, and θ = °150 . Thus, we obtain W = –37 J. Note 
that the given mass value (2.0 kg) is not used in the computation. 



63. There is no acceleration, so the lifting force is equal to the weight of the object. We 
note that the person’s pull F  is equal (in magnitude) to the tension in the cord. 

(a) As indicated in the hint, tension contributes twice to the lifting of the canister: 2T = 

mg. Since F T= , we find 98 N.F =

(b) To rise 0.020 m, two segments of the cord (see Fig. 7-48) must shorten by that 
amount. Thus, the amount of string pulled down at the left end (this is the magnitude of 
d , the downward displacement of the hand) is d = 0.040 m. 

(c) Since (at the left end) both F  and d  are downward, then Eq. 7-7 leads to  

(98) (0.040) 3.9 J.W F d= ⋅ = =

(d) Since the force of gravity Fg  (with magnitude mg) is opposite to the displacement 

dc = 0 020.  m (up) of the canister, Eq. 7-7 leads to  

(196) (0.020) 3.9 J.g cW F d= ⋅ = − = −

This is consistent with Eq. 7-15 since there is no change in kinetic energy. 



64. The acceleration is constant, so we may use the equations in Table 2-1. We choose 
the direction of motion as +x and note that the displacement is the same as the distance 
traveled, in this problem. We designate the force (assumed singular) along the x direction 
acting on the m = 2.0 kg object as F.

(a) With v0 = 0, Eq. 2-11 leads to a = v/t. And Eq. 2-17 gives ∆x vt1
2= . Newton’s 

second law yields the force F = ma. Eq. 7-8, then, gives the work: 

21 1

2 2

v
W F x m vt mv

t
= ∆ = =

as we expect from the work-kinetic energy theorem. With v = 10 m/s, this yields 
21.0 10  JW = × .

(b) Instantaneous power is defined in Eq. 7-48. With t = 3.0 s, we find 

67 W.
v

P Fv m v
t

= = =

(c) The velocity at 1.5st′ =  is v at' ' .= = 5 0 m s . Thus, ′ = ′ =P Fv 33 W.



65. One approach is to assume a “path” from ri  to rf  and do the line-integral accordingly. 

Another approach is to simply use Eq. 7-36, which we demonstrate: 

4 3

2 3
     (2 )   (3) 

f f

i i

x y

x yx y
W F dx F dy x dx dy

− −
= + = +

with SI units understood. Thus, we obtain W = 12 – 18 = –6 J. 



66. The total weight is (100)(660) = 6.6 × 104 N, and the words “raises … at constant 
speed” imply zero acceleration, so the lift-force is equal to the total weight. Thus  

P = Fv = (6.6 × 104)(150/60) = 1.65 × 105 W. 



67. (a) The force F  of the incline is a combination of normal and friction force which is 
serving to “cancel” the tendency of the box to fall downward (due to its 19.6 N weight). 
Thus, F mg=  upward. In this part of the problem, the angle φ  between the belt and F
is 80°. From Eq. 7-47, we have 

P Fv   cos   (19.6)(0.50) cos 80= = °φ  = 1.7 W. 

(b) Now the angle between the belt and F  is 90°, so that P = 0. 

(c) In this part, the angle between the belt and F  is 100°, so that  

P = (19.6)(0.50) cos 100° = –1.7 W. 



68. Using Eq. 7-7, we have W = Fd cos φ = 1504 J . Then, by the work-kinetic energy 
theorem, we find the kinetic energy Kf = Ki + W = 0 + 1504 J. The answer is therefore 
1.5 kJ .



69. (a) In the work-kinetic energy theorem, we include both the work due to an applied 
force Wa and work done by gravity Wg in order to find the latter quantity. 

∆K W W Wa g g= + = ° +     30 (100)(1.8) cos 180  

leading to 22.1 10  JgW = × .

(b) The value of Wg obtained in part (a) still applies since the weight and the path of the 
child remain the same, so 22.1 10  JgWΚ∆ = = × .



70. (a) To hold the crate at equilibrium in the final situation, F  must have the same 
magnitude as the horizontal component of the rope’s tension T sin θ , where θ  is the 
angle between the rope (in the final position) and vertical: 

θ = F
HG
I
KJ = °−sin

.

.
. .1 4 00

12 0
19 5

But the vertical component of the tension supports against the weight: T cos θ = mg .
Thus, the tension is

T = (230)(9.80)/cos 19.5° = 2391 N 

and F = (2391) sin 19.5° = 797 N. 

An alternative approach based on drawing a vector triangle (of forces) in the final 
situation provides a quick solution. 

(b) Since there is no change in kinetic energy, the net work on it is zero. 

(c) The work done by gravity is W F d mghg g= ⋅ = − , where h = L(1 – cos θ ) is the 

vertical component of the displacement. With L = 12.0 m, we obtain Wg = –1547 J which 
should be rounded to three figures: –1.55 kJ. 

(d) The tension vector is everywhere perpendicular to the direction of motion, so its work 
is zero (since cos 90° = 0). 

(e) The implication of the previous three parts is that the work due to F  is –Wg (so the 
net work turns out to be zero). Thus, WF = –Wg = 1.55 kJ. 

(f) Since F does not have constant magnitude, we cannot expect Eq. 7-8 to apply. 



71. (a) Hooke’s law and the work done by a spring is discussed in the chapter. Taking 
absolute values, and writing that law in terms of differences ∆ ∆F xand  , we analyze the 

first two pictures as follows: 

                   

  N  N   mm 40 mm)

| | | |

(

∆ ∆F k x

k

=
− = −240 110 60

which yields k = 6.5 N/mm. Designating the relaxed position (as read by that scale) as xo

we look again at the first picture: 

110 40 N  mm o= −k x( )

which (upon using the above result for k) yields xo = 23 mm. 

(b) Using the results from part (a) to analyze that last picture, we find 

W k x= − =( )30 45mm  N .o



72. (a) Using Eq. 7-8 and SI units, we find 

ˆ ˆ ˆ ˆ(2 i 4 j) (8 i j) 16 4W F d c c= ⋅ = − ⋅ + = −

which, if equal zero, implies c = 16/4 = 4 m. 

(b) If W > 0 then 16 > 4c, which implies c < 4 m. 

(c) If W < 0 then 16 < 4c, which implies c > 4 m. 



73. A convenient approach is provided by Eq. 7-48. 

P = F v = (1800 kg + 4500 kg)(9.8 m/s2)(3.80 m/s) = 235 kW. 

Note that we have set the applied force equal to the weight in order to maintain constant 
velocity (zero acceleration).



74. (a) To estimate the area under the curve between x = 1 m and x = 3 m (which should 
yield the value for the work done), one can try “counting squares” (or half-squares or 
thirds of squares) between the curve and the axis.  Estimates between 5 J and 8 J are 
typical for this (crude) procedure. 

(b) Eq. 7-32 gives 

3

1

a
x2 dx =

a
3  –

a
1 =  6 J 

where a = –9 N·m2 is given in the problem statement.  



75. (a) Using Eq. 7-32, the work becomes W = 92 x2  –  x3   (SI units understood).  The plot 

is shown below: 

(b) We see from the graph that its peak value occurs at x = 3.00 m.  This can be verified 
by taking the derivative of W and setting equal to zero, or simply by noting that this is 
where the force vanishes. 

(c) The maximum value is W = 92 (3.00)2  –  (3.00)3  = 13.50 J. 

(d) We see from the graph (or from our analytic expression) that W = 0 at x = 4.50 m. 

(e) The case is at rest when 0v = . Since 2 / 2W K mv= ∆ = , the condition implies 0W = .
This happens at x = 4.50 m. 



76. The problem indicates that SI units are understood, so the result (of Eq. 7-23) is in 
Joules.  Done numerically, using features available on many modern calculators, the 
result is roughly 0.47 J.  For the interested student it might be worthwhile to quote the 
“exact” answer (in terms of the “error function”): 

        
1.2

.15
e-2x² dx =  ¼ 2π [erf(6 2 /5) – erf(3 2 /20)] . 



77. (a) In 10 min the cart moves 

mi 5280 ft/mi
6.0   (10 min)  5280 ft

h 60 min/h
d = =

so that Eq. 7-7 yields 

W F d    cos   (40 lb) (5280 ft) cos 30   1.8  10  ft lb.5= = ° = × ⋅φ

(b) The average power is given by Eq. 7-42, and the conversion to horsepower (hp) can 
be found on the inside back cover. We note that 10 min is equivalent to 600 s. 

Pavg

51.8  10  ft  lb

s
  305 ft lb / s= × ⋅ = ⋅

600

which (upon dividing by 550) converts to Pavg = 0.55 hp. 



78. (a) Estimating the initial speed from the slope of the graph near the origin is 
somewhat difficult, and it may be simpler to determine it from the constant-acceleration 
equations from chapter 2: v v at= +0  and x v at= +0

1
2

2 , where x0 = 0 has been used. 

Applying these to the last point on the graph (where the slope is apparently zero) or 
applying just the x equation to any two points on the graph, leads to a pair of 
simultaneous equations from which 22.0 m sa = −  and 0 10 m sv =  can be found. Then, 

K mv0 0
2 31

2
2 5 10= = × =. J 2.5 kJ.

(b) The speed at t = 3.0 s is obtained by 

0 10 ( 2.0)(3.0) 4.0 m/sv v at= + = + − =

or by estimating the slope from the graph (not recommended). Then the work-kinetic 
energy theorem yields 

2 31
(50 kg)(4.0 m/s) 2.5 10  J= 2.1 kJ .

2
W K= ∆ = − × −



79. (a) We set up the ratio 

50

1

1 3
 km

1 km  megaton
=
F
HG

I
KJ

E
/

and find E = 503 ≈ 1 × 105 megatons of TNT. 

(b) We note that 15 kilotons is equivalent to 0.015 megatons. Dividing the result from 
part (a) by 0.013 yields about ten million bombs. 



80. After converting the speed to meters-per-second, we find  

K = 12 mv2 = 667 kJ.
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