
1. Our notation is as follows: x1 = 0 and y1 = 0 are the coordinates of the m1 = 3.0 kg 
particle; x2 = 2.0 m and y2 = 1.0 m are the coordinates of the m2 = 4.0 kg particle; and, x3

= 1.0 m and y3 = 2.0 m are the coordinates of the m3 = 8.0 kg particle. 

(a) The x coordinate of the center of mass is 
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(b) The y coordinate of the center of mass is 
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(c) As the mass of m3, the topmost  particle,  is increased, the center of mass shifts toward 
that particle. As we approach the limit where m3 is infinitely more massive than the 
others, the center of mass becomes infinitesimally close to the position of m3.



2. We use Eq. 9-5 (with SI units understood).  

(a) The x coordinates of the system’s center of mass is: 

xcom = 
m1x1 + m2x2 + m3x3

 m1 + m2 + m3
  =

(2.00)(–1.20) + (4.00)(0.600) + (3.00) x3

 2.00 + 4.00 + 3.00  =  –0.500 

Solving the equation yields x3 = –1.50 m. 

(b) The y coordinates of the system’s center of mass is: 

ycom = 
m1y1 + m2y2 + m3y3

 m1 + m2 + m3
  =

(2.00)(0.500) + (4.00)(-0.750) + (3.00) y3

 2.00 + 4.00 + 3.00    =   –0.700 . 

Solving the equation yields y3 = –1.43 m.



3. We will refer to the arrangement as a “table.” We locate the coordinate origin at the 
left end of the tabletop (as shown in Fig. 9-37). With +x rightward and +y upward, then 
the center of mass of the right leg is at (x,y) = (+L, –L/2), the center of mass of the left leg 
is at (x,y) = (0, –L/2), and the center of mass of the tabletop is at (x,y) = (L/2, 0).  

(a) The x coordinate of the (whole table) center of mass is 
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With L = 22 cm, we have xcom = 11 cm. 

(b) The y coordinate of the (whole table) center of mass is 
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or ycom = – 4.4 cm.

From the coordinates, we see that the whole table center of mass is a small distance 4.4 
cm directly below the middle of the tabletop. 



4. Since the plate is uniform, we can split it up into three rectangular pieces, with the 
mass of each piece being proportional to its area and its center of mass being at its 
geometric center.  We’ll refer to the large 35 cm ×  10 cm piece (shown to the left of the y
axis in Fig. 9-38) as section 1; it has 63.6% of the total area and its center of mass is at 
(x1 ,y1) = (−5.0 cm, −2.5 cm).  The top 20 cm ×  5 cm piece (section 2, in the first quadrant) 
has 18.2% of the total area; its center of mass is at (x2,y2) = (10 cm, 12.5 cm). The bottom 
10 cm x 10 cm piece (section 3) also has 18.2% of the total area; its center of mass is at 
(x3,y3) = (5 cm, −15 cm).   

(a) The x coordinate of the center of mass for the plate is  

xcom = (0.636)x1 + (0.182)x2 + (0.182)x3 =   – 0.45 cm . 

(b) The y coordinate of the center of mass for the plate is  

ycom = (0.636)y1 + (0.182)y2 + (0.182)y3 =   – 2.0 cm . 



5. (a) By symmetry the center of mass is located on the axis of symmetry of the 
molecule – the y axis. Therefore xcom = 0. 

(b) To find ycom, we note that 3mHycom = mN(yN – ycom), where yN is the distance from the 
nitrogen atom to the plane containing the three hydrogen atoms: 

( ) ( )2 211 11 11
N 10.14 10 m 9.4 10 m 3.803 10 m.y − − −= × − × = ×

Thus,
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where Appendix F has been used to find the masses. 



6. We use Eq. 9-5 to locate the coordinates. 

(a) By symmetry xcom = –d1/2 = –13 cm/2 = – 6.5 cm. The negative value is due to our 
choice of the origin. 

(b) We find ycom as
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(c) Again by symmetry, we have zcom = 2.8 cm/2 = 1.4 cm.  



7. The centers of mass (with centimeters understood) for each of the five sides are as 
follows:

1 1 1

2 2 2

3 3 3

4 4 4

   ( , , ) (0,20, 20) for the side in the  plane

  ( , , ) (20,0, 20) for the side in the  plane

  ( , , ) (20,20,0) for the side in the  plane

( , , ) (40,20,20) for the remaining side paral

x y z yz

x y z xz

x y z xy

x y z

=
=
=

=

5 5 5

lel to side 1

( , , ) (20,40, 20) for the remaining side parallel to side 2x y z =

Recognizing that all sides have the same mass m, we plug these into Eq. 9-5 to obtain the 
results (the first two being expected based on the symmetry of the problem). 

(a) The x coordinate of the center of mass is 

x
mx mx mx mx mx
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(b) The y coordinate of the center of mass is 
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(c) The z coordinate of the center of mass is 
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8. (a) Since the can is uniform, its center of mass is at its geometrical center, a distance 
H/2 above its base. The center of mass of the soda alone is at its geometrical center, a 
distance x/2 above the base of the can. When the can is full this is H/2. Thus the center of 
mass of the can and the soda it contains is a distance 

h
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M m

H=
+
+

=
/ /2 2

2

b g b g

above the base, on the cylinder axis. With H = 12 cm, we obtain h = 6.0 cm. 

(b) We now consider the can alone. The center of mass is H/2 = 6.0 cm above the base, 
on the cylinder axis. 

(c) As x decreases the center of mass of the soda in the can at first drops, then rises to H/2 
= 6.0 cm again. 

(d) When the top surface of the soda is a distance x above the base of the can, the mass of 
the soda in the can is mp = m(x/H), where m is the mass when the can is full (x = H). The 
center of mass of the soda alone is a distance x/2 above the base of the can. Hence 
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We find the lowest position of the center of mass of the can and soda by setting the 
derivative of h with respect to x equal to 0 and solving for x. The derivative is 
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The solution to m2x2 + 2MmHx – MmH2 = 0 is 

x
MH

m

m

M
= − + +
F
HG

I
KJ1 1 .  

The positive root is used since x must be positive. Next, we substitute the expression 
found for x into h = (MH2 + mx2)/2(MH + mx). After some algebraic manipulation we 
obtain



1 1

(12 cm)(0.14 kg) 1.31
1 1 2.8 cm.

1.31 kg 0.14

HM m
h

m M
= + −

= + − =



9. We use the constant-acceleration equations of Table 2-1 (with +y downward and the 
origin at the release point), Eq. 9-5 for ycom and Eq. 9-17 for 

r
vcom .

(a) The location of the first stone (of mass m1) at t = 300 × 10–3 s is

y1 = (1/2)gt2 = (1/2)(9.8) (300 × 10–3)2 = 0.44 m, 

and the location of the second stone (of mass m2 = 2m1) at t = 300 × 10–3 s is  

y2 = (1/2)gt2 = (1/2)(9.8)(300 × 10–3 – 100 × 10–3)2 = 0.20 m. 

Thus, the center of mass is at 
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(b) The speed of the first stone at time t is v1 = gt, while that of the second stone is  

v2 = g(t – 100 × 10–3 s). 

Thus, the center-of-mass speed at t = 300 × 10–3 s is 

( )( ) ( )( )3 3 3
1 11 1 2 2

com
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9.8 300 10 2 9.8 300 10 100 10
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10. Since the center of mass of the two-skater system does not move, both skaters will 
end up at the center of mass of the system. Let the center of mass be a distance x from the 
40-kg skater, then 

65 10 40 6 2kg m kg mb gb g b g− = =x x x . .

Thus the 40-kg skater will move by 6.2 m. 



11. We use the constant-acceleration equations of Table 2-1 (with the origin at the traffic 
light), Eq. 9-5 for xcom and Eq. 9-17 for

r
vcom . At t = 3.0 s, the location of the automobile 

(of mass m1) is x at1
1
2

2 1
2

2
4 0 30 18= = =. .m / s s m,2c hb g  while that of the truck (of mass 

m2) is x2 = vt = (8.0 m/s)(3.0s) = 24 m. The speed of the automobile then is 

( ) ( )2
1 4.0 m/s 3.0 s 12 m/s,v at= = =  while the speed of the truck remains v2 = 8.0 m/s. 

(a) The location of their center of mass is 
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(b) The speed of the center of mass is 
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12. The implication in the problem regarding 
r
v0  is that the olive and the nut start at rest. 

Although we could proceed by analyzing the forces on each object, we prefer to approach 

this using Eq. 9-14. The total force on the nut-olive system is 
r r
F Fo n i j+ = − +$ $  with the 

unit Newton understood. Thus, Eq. 9-14 becomes 

− + =$ $i j comMa
r

where M = 2.0 kg. Thus, 
r
acom

1
2i + j= − 1

2
$ $  in SI units. Each component is constant, so we 

apply the equations discussed in Chapters 2 and 4.  

∆r r
r a tcom com i + 4.0j= = −1

2
4 02 . $ $

(in meters) when t = 4.0 s. It is perhaps instructive to work through this problem the long 
way (separate analysis for the olive and the nut and then application of Eq. 9-5) since it 
helps to point out the computational advantage of Eq. 9-14.  



13. (a) The net force on the system (of total mass m1 + m2) is m2g.  Thus, Newton’s 
second law leads to a = g(m2/( m1 + m2)) = 0.4g. For block1, this acceleration is to the 
right (the i

^
 direction), and for block 2 this is an acceleration downward (the –j

^
 direction).  

Therefore, Eq. 9-18 gives 

acom
→

=
m1 a1

→
 + m2 a2

→

 m1 + m2
=

(0.6)(0.4gi
^
 ) + (0.4)(–0.4gj

^
 )

 0.6 + 0.4   =  (2.35 i^ – 1.57 j^ ) m/s2 . 

(b) Integrating Eq. 4-16, we obtain 

 vcom
→

  = (2.35 i^ – 1.57j^ ) t

(with SI units understood), since it started at rest.  We note that the ratio of the y-
component to the x-component (for the velocity vector) does not change with time, and it 
is that ratio which determines the angle of the velocity vector (by Eq. 3-6), and thus the 
direction of motion for the center of mass of the system. 

(c) The last sentence of our answer for part (b) implies that the path of the center-of-mass 
is a straight line.   

(d) Eq. 3-6 leads to θ = −34º.  The path of the center of mass is therefore straight, at 
downward angle 34°.



14. (a) The phrase (in the problem statement) “such that it [particle 2] always stays 
directly above particle 1 during the flight” means that the shadow (as if a light were 
directly above the particles shining down on them) of particle 2 coincides with the 
position of particle 1, at each moment.  We say, in this case, that they are vertically 
aligned.  Because of that alignment, v2x = v1 = 10.0 m/s.  Because the initial value of v2 is
given as 20.0 m/s, then (using the Pythagorean theorem) we must have  

2 2
2 2 2y xv v v= − = 300   m/s 

for the initial value of the y component of particle 2’s velocity. Eq. 2-16 (or conservation 
of energy) readily yields ymax = 300/19.6 = 15.3 m.  Thus, we obtain 

Hmax = m2 ymax /mtotal = (3.00)(15.3)/8.00 = 5.74 m. 

(b) Since both particles have the same horizontal velocity, and particle 2’s vertical 
component of velocity vanishes at that highest point, then the center of mass velocity 

then is simply ˆ(10.0 m/s) i (as one can verify using Eq. 9-17). 

(c) Only particle 2 experiences any acceleration (the free fall acceleration downward), so 
Eq. 9-18 (or Eq. 9-19) leads to  

acom = m2 g /mtotal = (3.00)(9.8)/8.00 = 3.68 m/s2

for the magnitude of the downward acceleration of the center of mass of this system. 

Thus, 2
com

ˆ( 3.68 m/s ) ja = −r
.



15. We need to find the coordinates of the point where the shell explodes and the velocity 
of the fragment that does not fall straight down. The coordinate origin is at the firing 
point, the +x axis is rightward, and the +y direction is upward. The y component of the 
velocity is given by v = v0 y – gt and this is zero at time t = v0 y/g = (v0/g) sin θ0, where v0

is the initial speed and θ0 is the firing angle. The coordinates of the highest point on the 
trajectory are  

( )22
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Since no horizontal forces act, the horizontal component of the momentum is conserved. 
Since one fragment has a velocity of zero after the explosion, the momentum of the other 
equals the momentum of the shell before the explosion. At the highest point the velocity 
of the shell is v0 cosθ0, in the positive x direction. Let M be the mass of the shell and let 
V0 be the velocity of the fragment. Then Mv0cosθ0 = MV0/2, since the mass of the 
fragment is M/2. This means 

V v0 0 02 2 20 60 20= = =°cos cosθ m / s  m / s.b g

This information is used in the form of initial conditions for a projectile motion problem 
to determine where the fragment lands. Resetting our clock, we now analyze a projectile 
launched horizontally at time t = 0 with a speed of 20 m/s from a location having 
coordinates x0 = 17.7 m, y0 = 15.3 m. Its y coordinate is given by y y gt= −0

1
2

2 ,  and 

when it lands this is zero. The time of landing is t y g= 2 0 /  and the x coordinate of the 
landing point is  

x x V t x V
y

g
= + = + = + =0 0 0 0

02
17 7

2 15 3

9 8
53.

.

.
 m 20 m / s

 m

m / s
m.2b g b g



16. We denote the mass of Ricardo as MR and that of Carmelita as MC. Let the center of 
mass of the two-person system (assumed to be closer to Ricardo) be a distance x from the 
middle of the canoe of length L and mass m. Then MR(L/2 – x) = mx + MC(L/2 + x). Now, 
after they switch positions, the center of the canoe has moved a distance 2x from its 
initial position. Therefore, x = 40 cm/2 = 0.20 m, which we substitute into the above 
equation to solve for MC:

M
M L x mx

L xC
R=

− −
+

=
− −

+
=

/

/

. .

. / .

.2

2

80 0 20 30 0 20

3 0 2 0 20
58

3 0
2b g b gb g b gb g
b g  kg.



17. There is no net horizontal force on the dog-boat system, so their center of mass does 
not move. Therefore by Eq. 9-16, M x m x m xb b d d∆ ∆ ∆com = = +0 ,  which implies 

.d
b d

b

m
x x

m
∆ = ∆

Now we express the geometrical condition that relative to the boat the dog has moved a 
distance d = 2.4 m: 

∆ ∆x x db d+ =

which accounts for the fact that the dog moves one way and the boat moves the other. We 
substitute for |∆xb| from above: 

m

m
x x dd

b
d d∆ ∆b g + =

which leads to ∆x
d

d m
m

d

b

=
+

=
+

=
1

2 4

1
192

4 5
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.
m.   

The dog is therefore 1.9 m closer to the shore than initially (where it was D = 6.1 m from 
it). Thus, it is now D −|∆xd| = 4.2 m from the shore. 



18. The magnitude of the ball’s momentum change is  

∆p mv mvi f= − = − − = ⋅0 70 5 0 2 0 4 9. . . . kg  m / s  m / s  kg m / s.b g b g



19. (a) The change in kinetic energy is  

( ) ( ) ( )( )
( ) ( )( )( )

2 22 2

224 3

4

1 1 1
2100 kg 51 km/h 41 km/h

2 2 2

9.66 10  kg km/h 10  m/km 1 h/3600 s

7.5 10  J.

f iK mv mv∆ = − = −

= × ⋅

= ×

(b) The magnitude of the change in velocity is  

( ) ( ) ( ) ( )22 2 2
41 km/h 51 km/h 65.4 km/hi fv v v∆ = − + = − + =

so the magnitude of the change in momentum is  

∆ ∆r r
p m v= = F

HG
I
KJ = × ⋅2100 65 4

1000

3600
38 104 kg  km / h

m / km

s / h
 kg m / s.b gb g. .

(c) The vector p∆r  points at an angle θ south of east, where  

θ =
F
HG
I
KJ =

F
HG

I
KJ = °− −tan tan .1 1 41

51
39

v

v
i

f

 km / h

 km / h



20. (a) Since the force of impact on the ball is in the y direction, px is conserved:  

px i = mvi sinθ1 = px f = mvi sin θ2.

With θ1 = 30.0°, we find θ2 = 30.0°. 

(b) The momentum change is  

( ) ( ) ( ) ( ) ( )2 2
ˆ ˆ ˆcos j cos j 2 0.165 kg 2.00 m/s cos30 j

ˆ( 0.572 kg m/s)j.

i ip mv mvθ θ∆ = − − + = − °

= − ⋅

r



21. We infer from the graph that the horizontal component of momentum px is 4.0 kg·m/s. 
Also, its initial magnitude of momentum po is 6.0 kg·m/s.  Thus, 

cosθo =
px

 po
θo =  48° . 



22. We use coordinates with +x horizontally toward the pitcher and +y upward. Angles 
are measured counterclockwise from the +x axis. Mass, velocity and momentum units are 
SI. Thus, the initial momentum can be written 

r
p0 4 5 215= ∠ °.b g  in magnitude-angle 

notation.

(a) In magnitude-angle notation, the momentum change is (6.0 ∠  – 90°) – (4.5 ∠  215°) 
= (5.0 ∠ – 43°) (efficiently done with a vector-capable calculator in polar mode). The 
magnitude of the momentum change is therefore 5.0 kg ⋅ m/s.

(b) The momentum change is (6.0 ∠  0°) – (4.5 ∠  215°) = (10 ∠  15°). Thus, the 
magnitude of the momentum change is 10 kg ⋅ m/s.  



23. The initial direction of motion is in the +x direction. The magnitude of the average 
force Favg is given by 

3
2

32.4 N s
1.20 10  N

2.70 10  savg

J
F

t −

⋅= = = ×
∆ ×

The force is in the negative direction. Using the linear momentum-impulse theorem 
stated in Eq. 9-31, we have  

–Favg∆t = mvf – mvi.

where m is the mass, vi the initial velocity, and vf  the final velocity of the ball. Thus, 

( )( ) ( ) ( )3
avg

0.40 kg 14 m s 1200 N 27 10 s
67 m s.

0.40kg
i

f

mv F t
v

m

−− ×− ∆
= = = −

(a) The final speed of the ball is | |fv = 67 m/s.

(b) The negative sign indicates that the velocity is in the –x direction, which is opposite to 
the initial direction of travel. 

(c) From the above, the average magnitude of the force is 3
avg 1.20 10 NF = × .

(d) The direction of the impulse on the ball is –x, same as the applied force. 



24. We estimate his mass in the neighborhood of 70 kg and compute the upward force F
of the water from Newton’s second law: F mg ma− = , where we have chosen +y upward, 
so that a > 0 (the acceleration is upward since it represents a deceleration of his 
downward motion through the water). His speed when he arrives at the surface of the 

water is found either from Eq. 2-16 or from energy conservation: v gh= 2 , where 

12 mh = , and since the deceleration a reduces the speed to zero over a distance d = 0.30 

m we also obtain v ad= 2 .  We use these observations in the following. 

Equating our two expressions for v leads to a = gh/d. Our force equation, then, leads to 

F mg m g
h

d
mg

h

d
= + FHG

I
KJ = +FHG

I
KJ1

which yields F ≈ 2.8 × 104 kg. Since we are not at all certain of his mass, we express this 
as a guessed-at range (in kN) 25 < F < 30. 

Since F mg>> ,  the impulse
r
J  due to the net force (while he is in contact with the water) 

is overwhelmingly caused by the upward force of the water: F dt J=z r
 to a good 

approximation. Thus, by Eq. 9-29, 

Fdt p p m ghf i= − = − −z r r
0 2d i

(the minus sign with the initial velocity is due to the fact that downward is the negative 

direction) which yields (70) 2 9 8 12 11 103. . .b gb g = × ⋅kg m s   Expressing this as a range 

(in kN⋅s) we estimate

10 12. . .< <z F dt



25. We choose +y upward, which implies a > 0 (the acceleration is upward since it 
represents a deceleration of his downward motion through the snow). 

(a) The maximum deceleration amax of the paratrooper (of mass m and initial speed v = 56 
m/s) is found from Newton’s second law 

F mg masnow max− =

where we require Fsnow = 1.2 × 105 N. Using Eq. 2-15 v2 = 2amaxd, we find the minimum 
depth of snow for the man to survive: 

( )
( ) ( )

( )
22 2

5
max snow

85kg 56m s
1.1 m.

2 2 2 1.2 10 N

v mv
d

a F mg
= = ≈ =

− ×

(b) His short trip through the snow involves a change in momentum 

( )( ) 30 85kg 56m s 4.8 10 kg m s,f ip p p∆ = − = − − = − × ⋅r r r

or 3| | 4.8 10 kg m sp∆ = × ⋅r
. The negative value of the initial velocity is due to the fact that 

downward is the negative direction. By the impulse-momentum theorem, this equals the 
impulse due to the net force Fsnow – mg, but since F mgsnow >>  we can approximate this 
as the impulse on him just from the snow. 



26. We choose +y upward, which means 
r
vi = −25m s  and 

r
v f = +10 m s.  During the 

collision, we make the reasonable approximation that the net force on the ball is equal to 
Favg – the average force exerted by the floor up on the ball. 

(a) Using the impulse momentum theorem (Eq. 9-31) we find 

r r r
J mv mvf i= − = − − = ⋅12 10 12 25 42. .b gb g b gb g kg m s.  

(b) From Eq. 9-35, we obtain 

r
r

F
J

tavg N.= = = ×
∆

42

0 020
21 103

.
.



27. We choose the positive direction in the direction of rebound so that 
r
v f > 0  and

r
vi < 0.  Since they have the same speed v, we write this as 

r
v vf =  and 

r
v vi = − .  Therefore, 

the change in momentum for each bullet of mass m is ∆ ∆r
p m v mv= = 2 . Consequently, 

the total change in momentum for the 100 bullets (each minute) ∆ ∆
r r
P p mv= =100 200 .  

The average force is then 

( ) ( )( )
( ) ( )

3

avg

200 3 10 kg 500 m s
5 N.

1min 60s min

P
F

t

−×∆= = ≈
∆

r
r



28. (a) By the impulse-momentum theorem (Eq. 9-31) the change in momentum must 

equal the “area” under the F(t) curve. Using the facts that the area of a triangle is  12
(base)(height), and that of a rectangle is (height)(width), we find the momentum at t = 4 s 
to be (30 kg.m/s)i^.

(b) Similarly (but keeping in mind that areas beneath the axis are counted negatively) we 
find the momentum at t = 7 s is (38 kg.m/s)i^.

(c) At t = 9 s, we obtain  p
→

  = (6.0 m/s)i^.



29. We use coordinates with +x rightward and +y upward, with the usual conventions for 
measuring the angles (so that the initial angle becomes 180 + 35 = 215°). Using SI units 
and magnitude-angle notation (efficient to work with when using a vector-capable 
calculator), the change in momentum is 

( ) ( ) ( )3.00 90 3.60 215 5.86 59.8 .f iJ p p p= ∆ = − = ∠ ° − ∠ ° = ∠ °
r r r r

(a) The magnitude of the impulse is 5.86 kg m/sJ p= ∆ = ⋅ .

(b) The direction of J
r

is 59.8° measured counterclockwise from the +x axis. 

(c) Eq. 9-35 leads to 

3
avg avg 3

5.86
5.86    2.93 10 N.

2.00 10
J F t F −= ∆ = = ≈ ×

×

We note that this force is very much larger than the weight of the ball, which justifies our 
(implicit) assumption that gravity played no significant role in the collision. 

(d) The direction of avgF
r

is the same as J
r

, 59.8° measured counterclockwise from the +x

axis. 



30. (a) Choosing upward as the positive direction, the momentum change of the foot is  

3
foot0 (0.003 kg) ( 1.50 m s )=4.50 10  N sip m v −∆ = − = − − × ⋅r r

.

(b) Using Eq. 9-35 and now treating downward as the positive direction, we have 

avg lizard   (0.090) (9.80) (0.60) 0.529 N s.J F t m g t= ∆ = ∆ = = ⋅
r r



31. (a) By Eq. 9-30, impulse can be determined from the “area” under the F(t) curve.  

Keeping in mind that the area of a triangle is  12 (base)(height), we find the impulse in this 

case is 1.00 N.s.

(b) By definition (of the average of function, in the calculus sense) the average force must 
be the result of part (a) divided by the time (0.010 s).  Thus, the average force is found to 
be 100 N. 

(c) Consider ten hits.  Thinking of ten hits as 10 F(t) triangles, our total time interval is 
10(0.050 s) = 0.50 s, and the total area is 10(1.0 N.s).  We thus obtain an average force of 
10/0.50 = 20.0 N.  One could consider 15 hits, 17 hits, and so on, and still arrive at this 
same answer.  



32. We choose our positive direction in the direction of the rebound (so the ball’s initial 

velocity is negative-valued). We evaluate the integral J F dt= z  by adding the 

appropriate areas (of a triangle, a rectangle, and another triangle) shown in the graph (but 
with the t converted to seconds). With m = 0.058 kg and v = 34 m/s, we apply the 
impulse-momentum theorem: 

( ) ( )

( ) ( ) ( )

0.002 0.004 0.006

wall 0 0.002 0.004

max max max

1 1
0.002s 0.002s 0.002s 2

2 2

f iF dt mv mv F dt F dt F dt m v m v

F F F mv

= − + + = + − −

+ + =

which yields ( ) ( )( )max 0.004s 2 0.058kg 34m sF = = 9.9 × 102 N. 



33. From Fig. 9-55, +y corresponds to the direction of the rebound (directly away from 
the wall) and +x towards the right. Using unit-vector notation, the ball’s initial and final 
velocities are 

ˆ ˆ ˆ ˆcos i sin j 5.2 i 3.0 j

ˆ ˆ ˆ ˆcos i sin j 5.2 i 3.0 j

i

f

v v v

v v v

θ θ

θ θ

= − = −

= + = +

r

r

respectively (with SI units understood). 

(a) With m = 0.30 kg, the impulse-momentum theorem (Eq. 9-31) yields 

( ) ˆ ˆ2 0.30 kg (3.0 m/s j) (1.8 N s)jf iJ mv mv= − = = ⋅
r r r

(b) Using Eq. 9-35, the force on the ball by the wall is ˆ ˆ(1.8 0.010)j (180 N) j.J t∆ = =
r

By Newton’s third law, the force on the wall by the ball is ˆ( 180 N)j−  (that is, its 
magnitude is 180 N and its direction is directly into the wall, or “down” in the view 
provided by Fig. 9-55). 



34. (a) Performing the integral (from time a to time b) indicated in Eq. 9-30, we obtain 

2 3 3(12 3 ) 12( ) ( )
b

a
t dt b a b a− = − − −

in SI units. If b = 1.25 s and a = 0.50 s, this gives 7.17 N.s.

(b) This integral (the impulse) relates to the change of momentum in Eq. 9-31.  We note 
that the force is zero at t = 2.00 s.  Evaluating the above expression for a = 0 and b = 2.00 
gives an answer of 16.0 kg.m/s.



35. No external forces with horizontal components act on the man-stone system and the 
vertical forces sum to zero, so the total momentum of the system is conserved. Since the 
man and the stone are initially at rest, the total momentum is zero both before and after 
the stone is kicked. Let ms be the mass of the stone and vs be its velocity after it is kicked; 
let mm be the mass of the man and vm be his velocity after he kicks the stone. Then 

msvs + mmvm = 0 → vm = –msvs/mm.

We take the axis to be positive in the direction of motion of the stone. Then  

( ) ( ) 30.068 kg 4.0 m/s
3.0 10  m/s

91 kgmv −= − = − × ,

or 3| | 3.0 10  m/smv −= × . The negative sign indicates that the man moves in the direction 

opposite to the direction of motion of the stone.



36. We apply Eq. 9-17, with M m= = 13. kg ,

( ) ( ) ( )( ) ( )( )
com

ˆ ˆ ˆ(1.3) 0.40 i 0.50 0.60 0.20 i 0.20 0.30 i

A A B B C C

A

Mv m v m v m v

v

= + +

− = + +

r r r r

r

which leads to 
r
vA = −14. $i  in SI units (m/s). 



37. Our notation is as follows: the mass of the motor is M; the mass of the module is m;
the initial speed of the system is v0; the relative speed between the motor and the module 
is vr; and, the speed of the module relative to the Earth is v after the separation. 
Conservation of linear momentum requires

(M + m)v0 = mv + M(v – vr).

Therefore, 

v v
Mv

M m

m

m m
r= +

+
= +

+
= ×0

34300
82

4
4 4 10km / h

4 km / h
km / h.

b gb g
.



38. (a) With SI units understood, the velocity of block L (in the frame of reference 
indicated in the figure that goes with the problem) is  (v1 – 3)i

^
.  Thus, momentum 

conservation (for the explosion at t = 0) gives 

mL (v1 – 3)  +  (mC + mR)v1 = 0 

which leads to      

v1  = 
3 mL

 mL + mC + mR
=

3(2 kg)
10 kg  =   0.60 m/s. 

Next, at t = 0.80 s, momentum conservation (for the second explosion) gives 

mC v2   + mR (v2 + 3) = (mC + mR)v1 = (8 kg)(0.60 m/s) = 4.8 kg·m/s. 

This yields v2 =  – 0.15.  Thus, the velocity of block C after the second explosion is  

v2 = –(0.15 m/s)i^.

(b) Between t = 0 and t = 0.80 s, the block moves v1∆t = (0.60)(0.80) = 0.48 m.  Between 
t = 0.80 s and t = 2.80 s, it moves an additional v2∆t = (– 0.15)(2.00) = – 0.30 m.  Its net 
displacement since t = 0 is therefore 0.48 – 0.30 = 0.18 m.  



39. Our +x direction is east and +y direction is north. The linear momenta for the two m =
2.0 kg parts are then 

r r
p mv mv1 1 1= = $j

where v1 = 3.0 m/s, and 

r r
p mv m v v mvx y2 2 2 2= = + = +$ $ cos $ $i j i sin j2e j e jθ θ

where v2 = 5.0 m/s and θ = 30°. The combined linear momentum of both parts is then 

( ) ( ) ( )
( )( ) ( ) ( ) ( )( )( )
( )

1 2 1 2 2 1 2
ˆ ˆ ˆ ˆ ˆj cos i sin j cos i sin j

ˆ ˆ2.0 kg 5.0 m/s cos30 i 2.0 kg 3.0 m/s 5.0 m/s sin 30 j

ˆ ˆ8.66 i 11 j kg m/s.

P p p mv mv mv mv mvθ θ θ θ= + = + + = + +

= ° + + °

= + ⋅

From conservation of linear momentum we know that this is also the linear momentum of 
the whole kit before it splits. Thus the speed of the 4.0-kg kit is 

( ) ( )2 22 2 8.66 kg m/s 11 kg m/s
3.5 m/s.

4.0 kg
x yP PP

v
M M

+ ⋅ + ⋅
= = = =



40. Our notation (and, implicitly, our choice of coordinate system) is as follows: the mass 

of the original body is m; its initial velocity is 
r
v v0 = $i ; the mass of the less massive piece 

is m1; its velocity is 
r
v1 0= ; and, the mass of the more massive piece is m2. We note that 

the conditions m2 = 3m1 (specified in the problem) and m1 + m2 = m generally assumed in 
classical physics (before Einstein) lead us to conclude  

m m m m1 2

1

4

3

4
= =  and  .

Conservation of linear momentum requires 

0 1 1 2 2 2

3
î 0

4
mv m v m v mv mv= + = +

which leads to 
r
v v2

4

3
= $i.  The increase in the system’s kinetic energy is therefore 

2
2 2 2 2 2

1 1 2 2 0

1 1 1 1 3 4 1 1
0 .

2 2 2 2 4 3 2 6
K m v m v mv m v mv mv∆ = + − = + − =



41. Our notation (and, implicitly, our choice of coordinate system) is as follows: the mass 

of one piece is m1 = m; its velocity is 
r
v1 30= − $i  in SI units (m/s); the mass of the second 

piece is m2 = m; its velocity is 
r
v2 30= − $j  in SI units; and, the mass of the third piece is 

m3 = 3m.

(a) Conservation of linear momentum requires 

( ) ( )0 1 1 2 2 3 3 3
ˆ ˆ0 30i 30j 3mv m v m v m v m m mv= + + = − + − +

which leads to
r
v3 10 10= +$ $i j  in SI units. Its magnitude is v3 10 2= ≈ 14 m / s .

(b) The direction is 45° counterclockwise from +x (in this system where we have m1

flying off in the –x direction and m2 flying off in the –y direction). 



42. We can think of the sliding-until-stopping as an example of kinetic energy converting 
into thermal energy (see Eq. 8-29 and Eq. 6-2, with FN = mg).  This leads to v2 = 2µgd
being true separately for each piece.  Thus we can set up a ratio: 

vL

vR

2

 =
2µL gdL

2µR gdR
   =

12
25  . 

But (by the conservation of momentum) the ratio of speeds must be inversely 
proportional to the ratio of masses (since the initial momentum – before the explosion – 
was zero).  Consequently, 

mR

mL

2

 =
12
25 mR = 25 3 mL  =  1.39 kg. 

Therefore, the total mass is   mR + mL ≈ 3.4 kg. 



43. Our notation is as follows: the mass of the original body is M = 20.0 kg; its initial 

velocity is 
r
v0 200= $i  in SI units (m/s); the mass of one fragment is m1 = 10.0 kg; its

velocity is 
r
v1 100= − $j  in SI units; the mass of the second fragment is m2 = 4.0 kg; its 

velocity is 
r
v2 500= − $i   in SI units; and, the mass of the third fragment is m3 = 6.00 kg. 

(a) Conservation of linear momentum requires Mv m v m v m v
r r r s

0 1 1 2 2 3 3= + + , which (using the 
above information) leads to 

3 3
3

ˆ ˆ(1.00 10 i 0.167 10 j) m/sv = × − ×r

in SI units. The magnitude of 
r
v3  is v3

2 2 31000 167 101 10= + − = ×( ) . m / s . It points at 

tan–1 (–167/1000) = –9.48° (that is, at 9.5° measured clockwise from the +x axis). 

(b) We are asked to calculate ∆K or 

1

2

1

2

1

2

1

2
3 23 101 1

2
2 2

2
3 3

2
0
2 6m v m v m v Mv+ +F

HG
I
KJ − = ×. J.



44. This problem involves both mechanical energy conservation U K Ki = +1 2 , where Ui

= 60 J, and momentum conservation 

0 1 1 2 2= +m v m v
r r

where m2 = 2m1. From the second equation, we find | | | |
r r
v v1 22=  which in turn implies 

(since v v1 1= | |
r

 and likewise for v2)

K m v m v m v K1 1 1
2

2 2

2

2 2
2

2

1

2

1

2

1

2
2 2

1

2
2= = FHG

I
KJ = FHG

I
KJ =b g .

(a) We substitute K1 = 2K2 into the energy conservation relation and find 

U K K K Ui i= + = =2
1

3
202 2 2 J.

(b) And we obtain K1 = 2(20) = 40 J. 



45. (a) We choose +x along the initial direction of motion and apply momentum 
conservation:

                  

 g) (672 m / s) (5.2 g) (428 m / s)  (700 g)
bullet bullet blockm v m v m v

v
i

r r r

r
= +
= +

1 2

25 2( .

which yields v2 = 1.81 m/s. 

(b) It is a consequence of momentum conservation that the velocity of the center of mass 
is unchanged by the collision. We choose to evaluate it before the collision: 

bullet
com

bullet block

(5.2 g) (672 m/s)
  4.96 m/s.

5.2 g 700 g
im v

v
m m

= = =
+ +



46. We refer to the discussion in the textbook (see Sample Problem 9-8, which uses the 
same notation that we use here) for many of the important details in the reasoning. Here 
we only present the primary computational step (using SI units): 

v
m M

m
gh= + = = ×2

2.010

0.010
2(9.8) (0.12) 3.1 10  m / s.2



47. This is a completely inelastic collision, but Eq. 9-53 (V =
m1

m1+ m2
v1i) is not easily 

applied since that equation is designed for use when the struck particle is initially 
stationary.  To deal with this case (where particle 2 is already in motion), we return to the 
principle of momentum conservation: 

m1 v1
→

 + m2 v2
→

  = (m1 + m2)V
→

V
→

  = 
2(4i^-5j^) + 4(6i^-2j^)

2 + 4   .

(a) In unit-vector notation, then,  

V
→

= (2.67 m/s)i^ + (−3.00 m/s)j^ . 

(b) The magnitude of V
→

 is | |V =
r

4.01 m/s

(c) The direction of V
→

 is 48.4° (measured clockwise from the +x axis). 



48. (a) The magnitude of the deceleration of each of the cars is a = f /m = µk mg/m = µkg.
If a car stops in distance d, then its speed v just after impact is obtained from Eq. 2-16: 

v v ad v ad gdk
2

0
2= + = =2 2 2µ

since v0 = 0 (this could alternatively have been derived using Eq. 8-31). Thus, 

2 2(0.13)(9.8)(8.2)  4.6 m/s.A k Av gdµ= = =

(b) Similarly, 2 2(0.13)(9.8)(6.1) 3.9 m/s.B k Bv gdµ= = =

(c) Let the speed of car B be v just before the impact. Conservation of linear momentum 
gives mBv = mAvA + mBvB, or 

v
m v m v

m
A A B B

B

= + = + =( (1100)(4.6) (1400)(3.9)
7.5 m / s.

)

1400

(d) The conservation of linear momentum during the impact depends on the fact that the 
only significant force (during impact of duration ∆t) is the force of contact between the 
bodies. In this case, that implies that the force of friction exerted by the road on the cars 
is neglected during the brief ∆t. This neglect would introduce some error in the analysis. 
Related to this is the assumption we are making that the transfer of momentum occurs at 
one location – that the cars do not slide appreciably during ∆t – which is certainly an 
approximation (though probably a good one). Another source of error is the application 
of the friction relation Eq. 6-2 for the sliding portion of the problem (after the impact); 
friction is a complex force that Eq. 6-2 only partially describes. 



49. In solving this problem, our +x direction is to the right (so all velocities are positive-
valued).

(a) We apply momentum conservation to relate the situation just before the bullet strikes 
the second block to the situation where the bullet is embedded within the block. 

(0.0035 kg) (1.8035 kg)(1.4 m/s) 721 m/s.v v= =

(b) We apply momentum conservation to relate the situation just before the bullet strikes 
the first block to the instant it has passed through it (having speed v found in part (a)). 

0(0.0035 kg) (1.20 kg)(0.630 m/s) (0.00350 kg)(721 m/s)v = +

which yields v0 = 937 m/s. 



50. We think of this as having two parts: the first is the collision itself – where the bullet 
passes through the block so quickly that the block has not had time to move through any 
distance yet – and then the subsequent “leap” of the block into the air (up to height h
measured from its initial position). The first part involves momentum conservation (with 
+y upward): 

0 01 1000 5 0 0 01 400. . .kg m s kg kg m sb gb g b g b gb g= +rv

which yields 
r
v = 12. m s. The second part involves either the free-fall equations from Ch. 

2 (since we are ignoring air friction) or simple energy conservation from Ch. 8. Choosing 
the latter approach, we have 

1

2
5 0 12 5 0 9 8

2 2. . . .kg m s kg m sb gb g b gd i= h

which gives the result h = 0.073 m. 



51. We choose +x in the direction of (initial) motion of the blocks, which have masses m1

= 5 kg and m2 = 10 kg. Where units are not shown in the following, SI units are to be 
understood.

(a) Momentum conservation leads to 

( ) ( ) ( )( ) ( ) ( )1 1 2 2 1 1 2 2 15 3 10 2 5 10 2.5i i f f fm v m v m v m v v+ = + + = +

which yields 
r
v f1 2= . Thus, the speed of the 5 kg block immediately after the collision is 

2 0. m s .

(b) We find the reduction in total kinetic energy: 

( )( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 21 1 1 1
5 3 10 2 5 2 10 2.5 1.25 J 1.3 J.

2 2 2 2i fK K− = + − − = − ≈ −

 (c) In this new scenario where 
r
v f2 4 0= . m s , momentum conservation leads to 

r
v f1 10= − . m s  and we obtain 40 JK∆ = + .

(d) The creation of additional kinetic energy is possible if, say, some gunpowder were on 
the surface where the impact occurred (initially stored chemical energy would then be 
contributing to the result). 



52. The total momentum immediately before the collision (with +x upward) is  

pi = (3.0 kg)(20 m/s) + (2.0 kg)( –12 m/s) = 36 kg·m/s. 

Their momentum immediately after, when they constitute a combined mass of M = 5.0 
kg, is pf = (5.0 kg) v

r
.  By conservation of momentum, then, we obtain v

r
= 7.2 m/s, which 

becomes their "initial" velocity for their subsequent free-fall motion.  We can use Ch. 2 
methods or energy methods to analyze this subsequent motion; we choose the latter.  The 
level of their collision provides the reference (y = 0) position for the gravitational 
potential energy, and we obtain 

K0 + U0   =  K + U    
1
2 Mv2

0 + 0   =  0 + Mgymax .

Thus, with v0 = 7.2 m/s, we find ymax = 2.6 m.



53. As hinted in the problem statement, the velocity v of the system as a whole – when 
the spring reaches the maximum compression xm – satisfies  

m1v1i + m2v2i = (m1 + m2)v.

The change in kinetic energy of the system is therefore 

2
2 2 2 2 21 1 2 2

1 2 1 1 2 2 1 1 2 2
1 2

( )1 1 1 1 1
( )

2 2 2 2( ) 2 2
i i

i i i i

m v m v
K m m v m v m v m v m v

m m

+∆ = + − − = − −
+

which yields ∆K = –35 J. (Although it is not necessary to do so, still it is worth noting 

that algebraic manipulation of the above expression leads to ∆K vm m
m m= +

1
2

1 2

1 2
d i rel

2  where 

vrel = v1 – v2). Conservation of energy then requires 

1

2

2 2 35

1120
2kx K x

K

km m= − = − = − −∆ ∆ ( )
 = 0.25 m. 



54. We think of this as having two parts: the first is the collision itself – where the blocks
“join” so quickly that the 1.0-kg block has not had time to move through any distance 
yet – and then the subsequent motion of the 3.0 kg system as it compresses the spring to 
the maximum amount xm. The first part involves momentum conservation (with +x
rightward): 

m1v1 = (m1+m2)v ( . ( .2 0 30 kg)(4.0 m s)  kg)= r
v

which yields 
r
v = 2 7. .m s  The second part involves mechanical energy conservation: 

1

2
30

1

2
( .  kg) (2.7 m s)  (200 N m)2

m
2= x

which gives the result xm = 0.33 m. 



55. (a) Let m1 be the mass of the cart that is originally moving, v1i be its velocity before 
the collision, and v1f be its velocity after the collision. Let m2 be the mass of the cart that 
is originally at rest and v2f be its velocity after the collision. Then, according to Eq. 9-67, 

v
m m

m m
vf i1

1 2

1 2
1= −

+ .

Using SI units (so m1 = 0.34 kg), we obtain 

m
v v

v v
mi f

i f
2

1 1

1 1
1

12 0 66

12 0 66
0 099=

−
+

= −
+

F
HG

I
KJ =. .

. .
. (0.34)  kg.

(b) The velocity of the second cart is given by Eq. 9-68: 

v
m

m m
vf i2

1

1 2
1

2 2 0 34

0 34 0 099
12 19=

+
=

+
F
HG

I
KJ =( . )

. .
( . ) .  m s. 

(c) The speed of the center of mass is 

v
m v m v

m m
i i

com m s.= +
+

= +
+

=1 1 2 2

1 2

0 34 12 0

0 34 0 099
0 93

( . ) ( . )

. .
.

Values for the initial velocities were used but the same result is obtained if values for the 
final velocities are used. 



56. (a) Let mA be the mass of the block on the left, vAi be its initial velocity, and vAf be its 
final velocity. Let mB be the mass of the block on the right, vBi be its initial velocity, and 
vBf be its final velocity. The momentum of the two-block system is conserved, so  

mAvAi + mBvBi  = mAvAf  + mBvBf

and

(1.6)(5.5) (2.4)(2.5) (2.4)(4.9)
1.9 m/s.

1.6
A Ai B Bi B Bf

Af
A

m v m v m v
v

m

+ − + −= = =

(b) The block continues going to the right after the collision. 

(c) To see if the collision is elastic, we compare the total kinetic energy before the 
collision with the total kinetic energy after the collision. The total kinetic energy before is 

2 2 2 21 1 1 1
(1.6) (5.5) (2.4) (2.5) 31.7 J.

2 2 2 2i A Ai B BiK m v m v= + = + =

The total kinetic energy after is 

2 2 2 21 1 1 1
(1.6) (1.9) (2.4) (4.9) 31.7 J.

2 2 2 2f A Af B BfK m v m v= + = + =

Since Ki = Kf the collision is found to be elastic. 



57. (a) Let m1 be the mass of one sphere, v1i be its velocity before the collision, and v1f be
its velocity after the collision. Let m2 be the mass of the other sphere, v2i be its velocity 
before the collision, and v2f be its velocity after the collision. Then, according to Eq.  
9-75,

v
m m

m m
v

m

m m
vf i i1

1 2

1 2
1

2

1 2
2

2= −
+

+
+  .

Suppose sphere 1 is originally traveling in the positive direction and is at rest after the 
collision. Sphere 2 is originally traveling in the negative direction. Replace v1i with v, v2i

with –v, and v1f with zero to obtain 0 = m1 – 3m2. Thus, 2 1 / 3 (300 g) / 3 100 gm m= = = .

(b) We use the velocities before the collision to compute the velocity of the center of 
mass: 

( ) ( ) ( ) ( )1 1 2 2
com

1 2

300 g 2.00 m s 100 g 2.00 m s
1.00 m/s.

300 g 100 g
i im v m v

v
m m

+ −+= = =
+ +



58. We use Eq 9-67 and 9-68 to find the velocities of the particles after their first 
collision (at x = 0 and t = 0): 

v1 f  = 
m1 − m2

m1+ m2
v1i  =

−0.1 kg
0.7 kg  (2.0 m/s)  = 

−2
7 m/s

v2 f  = 
2m1

m1+ m2
v1i  =

0.6 kg
0.7 kg (2.0 m/s) =

12
7 m/s ≈ 1.7 m/s. 

At a rate of motion of 1.7 m/s, 2xw = 140 cm (the distance to the wall and back to x= 0) 
will be traversed by particle 2 in 0.82 s.  At t = 0.82 s, particle 1 is located at  

x = (–2/7)(0.82) = –23 cm, 

and particle 2 is “gaining” at a rate of (10/7) m/s leftward; this is their relative velocity at 
that time.  Thus, this “gap” of 23 cm between them will be closed after an additional time 
of (0.23 m)/(10/7 m/s) = 0.16 s has passed.  At this time (t = 0.82 + 0.16 = 0.98 s) the two 
particles are at  x = (–2/7)(0.98) = –28 cm. 



59. (a) Let m1 be the mass of the body that is originally moving, v1i be its velocity before 
the collision, and v1f be its velocity after the collision. Let m2 be the mass of the body that 
is originally at rest and v2f be its velocity after the collision. Then, according to Eq. 9-67, 

v
m m

m m
vf i1

1 2

1 2
1= −

+
.

We solve for m2 to obtain 

m
v v

v v
mi f

f i
2

1 1

1 1
1=

−
+

.

We combine this with v vf i1 1 4= /  to obtain m m2 13 5 3 2 0 5 12= = =. .b g kg . 

(b) The speed of the center of mass is 

v
m v m v

m m
i i

com m s= +
+

=
+

=1 1 2 2

1 2

2 0 4 0

2 0 12
2 5

. .

. .
.

b gb g
.



60. First, we find the speed v of the ball of mass m1 right before the collision (just as it 
reaches its lowest point of swing). Mechanical energy conservation (with h = 0.700 m) 
leads to 

2
1 1

1
2 3.7 m s.

2
m gh m v v gh= = =

(a) We now treat the elastic collision (with SI units) using Eq. 9-67: 

v
m m

m m
vf1

1 2

1 2

0 5 2 5

05 2 5
37 2 47= −

+
= −

+
= −. .

. .
( . ) .

which means the final speed of the ball is 2 47. .m s

(b) Finally, we use Eq. 9-68 to find the final speed of the block: 

v
m

m m
vf2

1

1 2

2 2 0 5

05 2 5
3 7 123=

+
=

+
=( . )

. .
( . ) .  m s.



61. (a) The center of mass velocity does not change in the absence of external forces.  In 
this collision, only forces of one block on the other (both being part of the same system) 
are exerted, so the center of mass velocity is 3.00 m/s before and after the collision. 

(b) We can find the velocity v1i of block 1 before the collision (when the velocity of block 
2 is known to be zero) using Eq. 9-17: 

(m1 + m2)vcom = m1 v1i + 0 v1i = 12.0 m/s . 

Now we use Eq. 9-68 to find v2 f :

v2 f  =
2m1

m1+ m2
v1i   = 6.00 m/s . 



62. (a) If the collision is perfectly elastic, then Eq. 9-68 applies 

v2 =
2m1

m1+ m2
v1i  =

2m1

m1+  (2.00)m1
2gh  =

2
3 2gh

where we have used the fact (found most easily from energy conservation) that the speed 
of block 1 at the bottom of the frictionless ramp is 2gh (where h = 2.50 m).  Next, for 
block 2’s “rough slide” we use Eq. 8-37: 

1
2 m2 v2

2 = ∆Eth = fk d  = µk m2 g d . 

where µk = 0.500.  Solving for the sliding distance d, we find that m2 cancels out and we 
obtain d = 2.22 m. 

(b) In a completely inelastic collision, we apply Eq. 9-53: v2 =
m1

m1+ m2
v1i   (where, as 

above, v1i = 2gh ).   Thus, in this case we have v2 = 2gh /3. Now, Eq. 8-37 (using the 
total mass since the blocks are now joined together) leads to a sliding distance of 

0.556 md =  (one-fourth of the part (a) answer). 



63. (a) We use conservation of mechanical energy to find the speed of either ball after it 
has fallen a distance h. The initial kinetic energy is zero, the initial gravitational potential 
energy is M gh, the final kinetic energy is 1

2
2Mv , and the final potential energy is zero. 

Thus Mgh Mv= 1
2

2  and v gh= 2 .  The collision of the ball of M with the floor is an 

elastic collision of a light object with a stationary massive object. The velocity of the 
light object reverses direction without change in magnitude. After the collision, the ball is 

traveling upward with a speed of 2gh . The ball of mass m is traveling downward with 

the same speed. We use Eq. 9-75 to find an expression for the velocity of the ball of mass 
M after the collision: 

2 2 3
2 2 2  .Mf Mi mi

M m m M m m M m
v v v gh gh gh

M m M m M m M m M m

− − −= + = − =
+ + + + +

For this to be zero, m = M/3. With M = 0.63 kg, we have m = 0.21 kg.  

(b) We use the same equation to find the velocity of the ball of mass m after the collision: 

v
m M

M m
gh

M

M m
gh

M m

M m
ghmf = − −

+
+

+
= −

+
2

2
2

3
2

which becomes (upon substituting M = 3m) v ghmf = 2 2  .  We next use conservation of 

mechanical energy to find the height h' to which the ball rises. The initial kinetic energy 
is 1

2
2mvm f , the initial potential energy is zero, the final kinetic energy is zero, and the final 

potential energy is mgh'. Thus 

1

2 2
42

2

mv mgh h
v

g
hm f

m f= = =' ' . 

With h = 1.8 m, we have h’ = 7.2 m. 



64. We use Eqs. 9-67, 9-68 and 4-21 for the elastic collision and the subsequent projectile 
motion.  We note that both pucks have the same time-of-fall t (during their projectile 
motions).  Thus, we have 

∆x2 = v2 t     where ∆x2 = d  and v2  =
2m1

m1+ m2
v1i

     ∆x1 = v1 t     where ∆x1 = −2d  and v1  =  
m1 − m2

m1+ m2
v1i  . 

Dividing the first equation by the second, we arrive at  

d
 −2d

  =

2m1

m1 + m2
 v1i t

m1 − m2

 m1 + m2
 v1i t

  . 

After canceling v1i , t and d, and solving, we obtain m2 = 1.0 kg. 



65. We apply the conservation of linear momentum to the x and y axes respectively. 

1 1 1 1 1 2 2 2

1 1 1 2 2 2

    cos cos

      0   sin sin
i f f

f f

m v m v m v

m v m v

θ θ
θ θ

= +
= −

We are given 5
2 1.20 10 m/sfv = × , 1 64.0θ = ° and 2 51.0 .θ = ° Thus, we are left with two 

unknowns and two equations, which can be readily solved. 

(a) We solve for the final alpha particle speed using the y-momentum equation: 

( ) ( ) ( )
( ) ( )

5
2 2 2 5

1
1 1

16.0 1.20 10 sin 51.0sin
4.15 10  m/s

sin 4.00 sin 64.0
f

f

m v
v

m

θ
θ

× °
= = = ×

°
.

(b) Plugging our result from part (a) into the x-momentum equation produces the initial 
alpha particle speed: 

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 2 2
1

1

5 5

5

cos cos

4.00 4.15 10 cos 64.0 16.0 1.2 10 cos 51.0

4.00
        4.84 10  m/s .

f f
i

i

m v m v
v

m

θ θ+
=

× ° + × °
=

= ×



66. (a) Conservation of linear momentum implies  

m v m v m v m vA A B B A A B B

r r r r+ = +' ' .

Since mA = mB = m = 2.0 kg, the masses divide out and we obtain (in m/s) 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ'  '  (15i 30j) ( 10 i 5j) ( 5 i 20 j)  10 i 15 j .B A B Av v v v= + − = + + − + − − + = +

(b) The final and initial kinetic energies are 

K mv mv

K mv mv

f A B

i A B

= + = − + + + = ×

= + = + + − + = ×

1

2

1

2

1

2
2 0 5 20 10 15 8 0 10

1

2

1

2

1

2
2 0 15 30 10 5 13 10

2 2 2 2 2 2 2

2 2 2 2 2 2 3

' ' ( . ) ( ) .

( . ) ( ) .

c h

c h

 J

  J .

The change kinetic energy is then ∆K = –5.0 × 102 J (that is, 500 J of the initial kinetic 
energy is lost). 



67. We orient our +x axis along the initial direction of motion, and specify angles in the
“standard” way — so θ = +60° for the proton (1) which is assumed to scatter into the first 
quadrant and φ = –30° for the target proton (2) which scatters into the fourth quadrant 
(recall that the problem has told us that this is perpendicular to θ). We apply the 
conservation of linear momentum to the x and y axes respectively. 

m v m v m v

m v m v
1 1 1 1 2 2

1 1 2 20      

= +
= +

' cos ' cos

' sin ' sin

θ φ
θ φ

We are given v1 = 500 m/s, which provides us with two unknowns and two equations, 
which is sufficient for solving. Since m1 = m2 we can cancel the mass out of the equations 
entirely. 

(a) Combining the above equations and solving for 2v′  we obtain 

1
2

sin 500sin(60 )
433 m/s.

sin ( ) sin (90 )

v
v

θ
θ φ

°′ = = =
− °

We used the identity sin θ cosφ – cosθ sinφ = sin (θ – φ) in simplifying our final 
expression. 

(b) In a similar manner, we find 

1
1

sin 500sin( 30 )
250 m/s .

sin ( ) sin ( 90 )

v
v

θ
φ θ

− °′ = = =
− − °



68. We orient our +x axis along the initial direction of motion, and specify angles in the
“standard” way — so θ = –90° for the particle B which is assumed to scatter “downward”
and φ > 0 for particle A which presumably goes into the first quadrant. We apply the 
conservation of linear momentum to the x and y axes respectively. 

m v m v m v

m v m v
B B B B A A

B B A A

    

         

= ′ + ′
= ′ + ′

cos cos

sin sin

θ φ
θ φ0

(a) Setting vB = v and 2Bv v′ = , the y-momentum equation yields 

m v m
v

A A B′ =sinφ
2

and the x-momentum equation yields m v m vA A B′ =cos .φ

Dividing these two equations, we find tanφ = 1
2  which yields φ = 27°.

(b) We can formally solve for Av′  (using the y-momentum equation and the fact that 

φ = 1 5 )

′ =v
m

m
vA

B

A

5

2

but lacking numerical values for v and the mass ratio, we cannot fully determine the final 

speed of A. Note: substituting cos 2 5 ,φ =  into the x-momentum equation leads to 
exactly this same relation (that is, no new information is obtained which might help us 
determine an answer).  



69. Suppose the objects enter the collision along lines that make the angles θ > 0 and φ >
0 with the x axis, as shown in the diagram that follows. Both have the same mass m and
the same initial speed v. We suppose that after the collision the combined object moves in 
the positive x direction with speed V. Since the y component of the total momentum of 
the two-object system is conserved,  

mv sin θ – mv sin φ = 0. 

This means φ = θ. Since the x component is conserved, 2mv cos θ = 2mV. We now use  
V v= 2  to find that cos .θ = 1 2  This means θ = 60°. The angle between the initial 
velocities is 120°.  



70. We use Eq. 9-88 and simplify with vi = 0, vf = v, and vrel = u.

v v v
M

M

M

M
ef i

i

f

i

f

v u− = =rel ln /

(a) If v = u we obtain 
M

M
ei

f

= ≈1 2 7. .  

(b) If v = 2u we obtain 
M

M
ei

f

= ≈2 7 4. .  



71. (a) The thrust of the rocket is given by T = Rvrel where R is the rate of fuel 
consumption and vrel is the speed of the exhaust gas relative to the rocket. For this 
problem R = 480 kg/s and vrel = 3.27 × 103 m/s, so 

T = × = ×480 327 10 157 103 6kg s m s N.b gc h. .

(b) The mass of fuel ejected is given by Mfuel = R t∆ ,  where ∆t  is the time interval of the 
burn. Thus, Mfuel = (480 kg/s)(250 s) = 1.20 × 105 kg. The mass of the rocket after the 
burn is

Mf = Mi – Mfuel = (2.55 × 105 kg ) – (1.20 × 105 kg) = 1.35 ×105 kg. 

(c) Since the initial speed is zero, the final speed is given by 

v v
M

Mf
i

f

= = × ×
×

F
HG

I
KJ = ×rel

5

ln ln
2.55 10

m s3 27 10
135 10

2 08 103
5

3.
.

. .c h



72. We use Eq. 9-88. Then 

rel

6090 kg
ln 105 m/s (253 m/s) ln 108 m/s.

6010 kg
i

f i
f

M
v v v

M
= + = + =



73. (a) We consider what must happen to the coal that lands on the faster barge during 
one minute (∆t = 60s). In that time, a total of m = 1000 kg of coal must experience a 
change of velocity ∆v = − = =20 10 10 2 8km h km h km h m s. , where rightwards is 
considered the positive direction. The rate of change in momentum for the coal is 
therefore 

∆
∆

∆
∆

r r
p

t

m v

t
= = =

1000 2 8

60
46

b gb g.
N

which, by Eq. 9-23, must equal the force exerted by the (faster) barge on the coal. The 
processes (the shoveling, the barge motions) are constant, so there is no ambiguity in 

equating 
∆
∆

p

t
 with 

dp

dt
.

(b) The problem states that the frictional forces acting on the barges does not depend on 
mass, so the loss of mass from the slower barge does not affect its motion (so no extra 
force is required as a result of the shoveling). 



74. (a) This is a highly symmetric collision, and when we analyze the y-components of 
momentum we find their net value is zero.  Thus, the stuck-together particles travel along 
the x axis. 

(b) Since it is an elastic collision with identical particles, the final speeds are the same as 
the initial values.  Conservation of momentum along each axis then assures that the 
angles of approach are the same as the angles of scattering.  Therefore, one particle 
travels along line 2, the other along line 3. 

(c) Here the final speeds are less than they were initially.  The total x-component cannot 
be less, however, by momentum conservation, so the loss of speed shows up as a 
decrease in their y-velocity-components.  This leads to smaller angles of scattering.  
Consequently, one particle travels through region B, the other through region C; the paths 
are symmetric about the x-axis.  We note that this is intermediate between the final states 
described in parts (b) and (a). 

(d) Conservation of momentum along the x-axis leads (because these are identical 
particles) to the simple observation that the x-component of each particle remains 
constant:

vf x = v cosθ = 3.06 m/s. 

(e) As noted above, in this case the speeds are unchanged; both particles are moving at 
4.00 m/s in the final state. 



75. (a) We use Eq. 9-68 twice: 

v2 =
2m1

m1 + m2
v1i  =

2m1

1.5m1
 (4.00 m/s) =

16
3 m/s

v3 =
2m2

m2 + m3
v2  =

2m2

1.5m2
 (16/3  m/s) =  

64
9 m/s  = 7.11 m/s . 

(b) Clearly, the speed of block 3 is greater than the (initial) speed of block 1. 

(c) The kinetic energy of block 3 is  

K3f = 1
2 m3 v3

2 = 1
2

3

m1
16
9

2

v1i
2 = 

64
81 K1i .

We see the kinetic energy of block 3 is less than the (initial) K of block 1.  In the final 
situation, the initial K is being shared among the three blocks (which are all in motion), 
so this is not a surprising conclusion. 

(d) The momentum of block 3 is   

p3f = m3 v3  = 1
2

2

m1
16
9 v1i = 

4
9 p1i

and is therefore less than the initial momentum (both of these being considered in 
magnitude, so questions about ± sign do not enter the discussion).  



76. Using Eq. 9-67 and Eq. 9-68, we have after the first collision 

v1 f  = 
m1 − m2

m1+ m2
v1i  =

−m1

3m1
v1i  = − 13 v1i

v2 f  = 
2m1

m1+ m2
v1i  =

2m1

3m1
v1i  =

2
3 v1i  . 

After the second collision, the velocities are 

v2 ff  = 
m2 − m3

m2+ m3
v2 f  =

−m2

3m2

2
3 v1i  = − 2

9 v1i

v3 ff  = 
2m2

m2+ m3
v2 f   =

2m2

3m2

2
3 v1i  =

4
9 v1i  . 

(a) Setting v1i  = 4 m/s, we find v3 ff ≈ 1.78 m/s. 

(b) We see that v3 ff  is less than v1i . 

(c) The final kinetic energy of block 3 (expressed in terms of the initial kinetic energy of 
block 1) is 

K3 ff  =
1
2 m3 v3

2 = 12 (4m1)
16
9

2

v1i
2 = 

64
81 K1i  . 

We see that this is less than K1i . 

(d) The final momentum of block 3 is  p3ff = m3 v3 ff = (4m1)
16
9 v1 > m1v1.



77. (a) Momentum conservation gives 

mR vR + mL vL  = 0     (0.500) vR + (1.00)(−1.2)  =  0 

which yields vR = 2.40 m/s. Thus, ∆x = vR t = (2.40)(0.800) = 1.92 m. 

(b) Now we have  mR vR + mL (vR − 1.20)  =  0, which yields 

vR = 
1.2 mL

 mL + mR
=

(1.2)(1)
1 + 0.5  =  0.800 m/s. 

Consequently, ∆x = vR t = 0.640 m. 



78. Momentum conservation (with SI units understood) gives  

m1(vf − 20)  +  (M − m1)vf  = Mvi

which yields 

vf   =
Mvi  + 20 m1

 M    = vi  + 20 
m1

 M   = 40 + 20 (m1/M).

(a) The minimum value of vf  is 40 m/s, 

(b) The final speed vf  reaches a minimum as m1 approaches zero. 

(c) The maximum value of vf  is 60 m/s. 

(d) The final speed vf  reaches a maximum as m1 approaches M.



79. We convert mass rate to SI units: R = 540/60 = 9.00 kg/s. In the absence of the asked-
for additional force, the car would decelerate with a magnitude given by Eq. 9-87: 

relR v M a=

so that if a = 0 is desired then the additional force must have a magnitude equal to R vrel

(so as to cancel that effect). 

F Rv= = =rel N .9 00 320 28 8. . .b gb g



80. Denoting the new speed of the car as v, then the new speed of the man relative to the 
ground is v – vrel. Conservation of momentum requires 

W

g

w

g
v

W

g
v

w

g
v v+

F
HG

I
KJ =
F
HG
I
KJ +
F
HG
I
KJ −0 relb g.

Consequently, the change of velocity is 

rel
0

(915 N)(4.00 m/s)
1.10 m/s.

(2415 N) (915 N)

w v
v v v

W w
∆ = − = = =

+ +
r



81. (a) We place the origin of a coordinate system at the center of the pulley, with the x
axis horizontal and to the right and with the y axis downward. The center of mass is 
halfway between the containers, at x = 0 and y = l,  where l  is the vertical distance from 
the pulley center to either of the containers. Since the diameter of the pulley is 50 mm, 
the center of mass is at a horizontal distance of 25 mm from each container.  

(b) Suppose 20 g is transferred from the container on the left to the container on the right. 
The container on the left has mass m1 = 480 g and is at x1 = –25 mm. The container on 
the right has mass m2 = 520 g and is at x2 = +25 mm. The x coordinate of the center of 
mass is then  

x
m x m x

m mcom

g  mm  g  mm

 g 520 g
mm.= +

+
=

− +
+

=1 1 2 2

1 2

480 25 520 25

480
10

b gb g b gb g
.

The y coordinate is still l . The center of mass is 26 mm from the lighter container, along 
the line that joins the bodies. 

(c) When they are released the heavier container moves downward and the lighter 
container moves upward, so the center of mass, which must remain closer to the heavier 
container, moves downward.  

(d) Because the containers are connected by the string, which runs over the pulley, their 
accelerations have the same magnitude but are in opposite directions. If a is the 
acceleration of m2, then –a is the acceleration of m1. The acceleration of the center of 
mass is  

a
m a m a

m m
a

m m

m mcom =
− +

+
= −

+
1 2

1 2

2 1

1 2

b g
.

We must resort to Newton’s second law to find the acceleration of each container. The 
force of gravity m1g, down, and the tension force of the string T, up, act on the lighter 
container. The second law for it is m1g – T = –m1a. The negative sign appears because a
is the acceleration of the heavier container. The same forces act on the heavier container 
and for it the second law is m2g – T = m2a. The first equation gives T = m1g + m1a. This is 
substituted into the second equation to obtain m2g – m1g – m1a = m2a, so

a = (m2 – m1)g/(m1 + m2).

Thus,

a
g m m

m m
com

2

2
m / s  g  g

 g
m / s=

−
+

=
−

+
= × −2 1

2

1 2

2

2

2
2

9 8 520 480

480 520 g
16 10

b g
b g

c hb g
b g

.
. .  



The acceleration is downward. 



82. First, we imagine that the small square piece (of mass m) that was cut from the large 
plate is returned to it so that the large plate is again a complete 6 m × 6 m (d =1.0 m) 
square plate (which has its center of mass at the origin). Then we “add” a square piece of
“negative mass” (–m) at the appropriate location to obtain what is shown in Fig. 9-75. If 
the mass of the whole plate is M, then the mass of the small square piece cut from it is 
obtained from a simple ratio of areas: 

m M M m=
F
HG
I
KJ =2 0

6 0
9

2
.

.
.

m

m

(a) The x coordinate of the small square piece is x = 2.0 m (the middle of that square
“gap” in the figure). Thus the x coordinate of the center of mass of the remaining piece is 

x
m x

M m

m

m mcom

m
m=

−
+ −

=
−

−
= −b g

b g
b g2 0

9
0 25

.
. .

(b) Since the y coordinate of the small square piece is zero, we have ycom = 0. 



83. By the principle of momentum conservation, we must have 

m1 v1
→

+ m2 v2
→

 +  m3 v3
→

=  0, 

which implies 

1 1 2 2
3

3

m v m v
v

m

+= −
r r

r
.

With

1 1

2 2

ˆ ˆ ˆ ˆ(0.500)(10.0 i 12.0 j) 5.00 i 6.00j
ˆ ˆ ˆ ˆ(0.750)(14.0)(cos110 i sin110 j) 3.59 i 9.87 j

m v

m v

= + = +

= ° + ° = − +

r

r

(in SI units) and 3 1 2 (2.65 0.500 0.750)kg 1.40 kgm m m m= − − = − − = , we solve for 

v3
→

 and obtain 3
ˆ ˆ( 1.01 m/s)i ( 11.3 m/s)jv = − + −r

.

(a) The magnitude of 3v
r

 is 3| |v =r
11.4 m/s. 

(b) Its angle is 264.9°, which means it is 95.1° clockwise from the +x axis. 



84. Using Eq. 9-75 and Eq. 9-76, we find after the collision 

(a) v1 f  = 
m1 − m2

m1+ m2
v1i  +

2m2

m1+ m2
v2i =   (–3.8 m/s)i^, and 

(b) v2 f  = 
2m1

m1+ m2
v1i  +

m2 − m1

m1+ m2
v2i  =  (7.2 m/s)i^ . 



85. We assume no external forces act on the system composed of the two parts of the last 
stage. Hence, the total momentum of the system is conserved. Let mc be the mass of the 
rocket case and mp the mass of the payload. At first they are traveling together with 
velocity v. After the clamp is released mc has velocity vc and mp has velocity vp.
Conservation of momentum yields  

(mc + mp)v = mcvc + mpvp.

(a) After the clamp is released the payload, having the lesser mass, will be traveling at the 
greater speed. We write vp = vc + vrel, where vrel is the relative velocity. When this 
expression is substituted into the conservation of momentum condition, the result is 

m m v m v m v m vc p c c p c p+ = + +d i rel .

Therefore, 

( ) ( )( ) ( )( )rel 290.0 kg 150.0 kg 7600 m/s 150.0 kg 910.0 m/s

290.0 kg 150.0 kg

7290 m/s.

c p p

c
c p

m m v m v
v

m m

+ − + −
= =

+ +
=

(b) The final speed of the payload is vp = vc + vrel = 7290 m/s + 910.0 m/s = 8200 m/s. 

(c) The total kinetic energy before the clamp is released is 

K m m vi c p= + = + = ×1

2

1

2
290 0 7600 1271 102 2 10d i b gb g. .kg 150.0 kg m / s J.

(d) The total kinetic energy after the clamp is released is 

( )( ) ( )( )2 22 2

10

1 1 1 1
290.0 kg 7290 m/s 150.0 kg 8200 m/s

2 2 2 2
1.275 10 J.

f c c p pK m v m v= + = +

= ×

The total kinetic energy increased slightly. Energy originally stored in the spring is 
converted to kinetic energy of the rocket parts. 



86. Using Eq. 9-67, we have after the elastic collision 

v1 f  = 
m1 − m2

m1+ m2
v1i  =

−200 g
600 g v1i  = − 13 (3 m/s)  = − 1 m/s . 

(a) The impulse is therefore  

J = m1v1 f  – m1v1i = (0.2)(–1) – (0.2)(3) = – 0.800 N.s = – 0.800 kg.m/s,

or | J | = –0.800 kg.m/s.
(b) For the completely inelastic collision Eq. 9-75 applies  

v1 f  = V = 
m1

m1+ m2
v1i  = + 1 m/s . 

Now the impulse is   

J = m1v1 f  – m1v1i = (0.2)(1) – (0.2)(3) = 0.400 N.s = 0.400 kg.m/s.



87. The velocity of the object is  

r
r

v
dr

dt

d

dt
t= = − + + = −( ) $ $ $ $3500 160 300 160i 2700 j k i m / s.e j

(a) The linear momentum is ( )( ) 4ˆ ˆ250 160 i ( 4.0 10 kg m/s) i.p mv= = − = − × ⋅r r

(b) The object is moving west (our – î  direction).

(c) Since the value of 
r
p  does not change with time, the net force exerted on the object is 

zero, by Eq. 9-23.  



88. We refer to the discussion in the textbook (Sample Problem 9-10, which uses the 
same notation that we use here) for some important details in the reasoning. We choose 
rightward in Fig. 9-21 as our +x direction. We use the notation 

r
v  when we refer to 

velocities and v when we refer to speeds (which are necessarily positive). Since the 
algebra is fairly involved, we find it convenient to introduce the notation ∆m = m2 – m1

(which, we note for later reference, is a positive-valued quantity). 

(a) Since 
r
v ghi1 12= +  where h1 = 9.0 cm, we have 

r
v

m m

m m
v

m

m m
ghf i1

1 2

1 2
1

1 2
12= −

+
= −

+
∆

which is to say that the speed of sphere 1 immediately after the collision is 

v m m m ghf1 1 2 12= +∆ b gc h  and that 
r
v f1  points in the –x direction. This leads (by energy 

conservation m gh m vf f1 1
1
2 1 1

2= ) to 

h
v

g

m

m m
hf

f
1

1
2

1 2

2

12
= =

+
F
HG

I
KJ

∆
.

With m1 = 50 g and m2 = 85 g, this becomes 1 0.60 cmfh ≈ .

(b) Eq. 9-68 gives 

v
m

m m
v

m

m m
ghf i2

1

1 2
1

1

1 2
1

2 2
2=

+
=

+

which leads (by energy conservation m gh m vf f2 2
1
2 2 2

2= ) to 

h
v

g

m

m m
hf

f
2

2
2

1

1 2

2

12

2= =
+

F
HG

I
KJ .

With m1 = 50 g and m2 = 85 g, this becomes  h f2 4 9≈ . cm . 

(c) Fortunately, they hit again at the lowest point (as long as their amplitude of swing was
“small” – this is further discussed in Chapter 16). At the risk of using cumbersome 
notation, we refer to the next set of heights as h1ff and h2ff. At the lowest point (before this 

second collision) sphere 1 has velocity + 2 1gh f  (rightward in Fig. 9-21) and sphere 2 



has velocity − 2 1gh f  (that is, it points in the –x direction). Thus, the velocity of sphere 

1 immediately after the second collision is, using Eq. 9-75, 

( )

( )
( )

1 2 2
1 1 2

1 2 1 2

2 1
1 1

1 2 1 2 1 2 1 2

2

1 2
12

1 2

2
2 2

2 2
2 2

4
     2  .

ff f f

m m m
v gh gh

m m m m

m mm m
gh gh

m m m m m m m m

m m m
gh

m m

−= + −
+ +

−∆ ∆= −
+ + + +

∆ +
= −

+

This can be greatly simplified (by expanding (∆m)2 and (m1 + m2)
2) to arrive at the 

conclusion that the speed of sphere 1 immediately after the second collision is simply 

v ghff1 12=  and that 
r
v ff1  points in the –x direction. Energy conservation 

m gh m vff ff1 1
1
2 1 1

2=d i  leads to 

h
v

g
hff

ff
1

1
2

12
9 0= = = .  cm . 

(d) One can reason (energy-wise) that h1 ff = 0 simply based on what we found in part (c). 
Still, it might be useful to see how this shakes out of the algebra. Eq. 9-76 gives the 
velocity of sphere 2 immediately after the second collision: 

v
m

m m
gh

m m

m m
gh

m

m m

m

m m
gh

m

m m

m

m m
gh

ff f f2
1

1 2
1

2 1

1 2
2

1

1 2 1 2
1

1 2

1

1 2
1

2
2 2

2
2

2
2

=
+

+ −
+

−

=
+ +
F
HG

I
KJ + +

−
+

F
HG

I
KJ

e j
∆ ∆

which vanishes since ( )( ) ( )( )2 2 01 1m m m m∆ ∆− = . Thus, the second sphere (after the 
second collision) stays at the lowest point, which basically recreates the conditions at the 
start of the problem (so all subsequent swings-and-impacts, neglecting friction, can be 
easily predicted – as they are just replays of the first two collisions). 



89. (a) Since the center of mass of the man-balloon system does not move, the balloon 
will move downward with a certain speed u relative to the ground as the man climbs up 
the ladder.  

(b) The speed of the man relative to the ground is vg = v – u. Thus, the speed of the center 
of mass of the system is 

v
mv Mu

M m

m v u Mu

M m
g

com =
−
+

=
− −

+
=b g

0.  

This yields  

(80 kg)(2.5 m/s)
0.50 m/s.

320 kg + 80 kg

mv
u

M m
= = =

+

 (c) Now that there is no relative motion within the system, the speed of both the balloon 
and the man is equal to vcom, which is zero. So the balloon will again be stationary. 



90. (a) The momentum change for the 0.15 kg object is  

∆ p
→

  = (0.15)[2 i
^
 + 3.5 j

^
–3.2 k

^
 – (5 i

^
  + 6.5 j

^
 +4 k

^
 )] = (–0.450i^ – 0.450j^ – 1.08k^) kg.m/s.

(b) By the impulse-momentum theorem (Eq. 9-31), J
→

 = ∆ p
→

 , we have 

J
→

 = (–0.450i^ – 0.450j^ – 1.08k^) N.s.

(c) Newton’s third law implies Jwall

→
 = – Jball

→
 (where Jball

→
 is the result of part (b)), so 

Jwall

→
 = (0.450i^ + 0.450j^ + 1.08k^) N.s.



91. We use Eq. 9-5. 

(a) The x coordinate of the center of mass is 

xcom = 
m1x1 + m2x2 + m3x3 + m4x4

 m1 + m2 + m3 + m4
=

0 + (4)(3) + 0 + (12)(-1)
 m1 + m2 + m3 + m4

  = 0. 

(b) The ycoordinate of the center of mass is 

ycom = 
m1y1 + m2y2 + m3y3 + m4y4

 m1 + m2 + m3 + m4
  =

(2)(3) + 0 + (3)(-2) + 0
 m1 + m2 + m3 + m4

   =  0 . 

(c) We now use Eq. 9-17:  

 vcom
→

=
m1 v1

→
 + m2 v2

→
  + m3 v3

→
  + m4 v4

→

 m1 + m2 + m3 + m4

                                       = 
(2)(–9j

^
 ) + (4)(6i

^
 ) +(3)(6j

^
 ) +(12)(–2i

^
 )

 m1 + m2 + m3 + m4
  = 0 . 



92. (a) The change in momentum (taking upwards to be the positive direction) is 

∆ p
→

  =  (0.550 kg)[ (3 m/s)j
^
  – (–12 m/s)j

^
] =  (+8.25 kg.m/s) j^ . 

(b) By the impulse-momentum theorem (Eq. 9-31) J
→

 = ∆ p
→

 =  (+8.25 N.s) j^ . 

(c) By Newton’s third law, Jc

→
 =  – Jb

→
 = (–8.25 N.s) j^ . 



93. One approach is to choose a moving coordinate system which travels the center of 
mass of the body, and another is to do a little extra algebra analyzing it in the original 
coordinate system (in which the speed of the m = 8.0 kg mass is v0 = 2 m/s, as given). 
Our solution is in terms of the latter approach since we are assuming that this is the 
approach most students would take. Conservation of linear momentum (along the 
direction of motion) requires 

0 1 1 2 2 1 2(8.0)(2.0) (4.0) (4.0)mv m v m v v v= + = +

which leads to v v2 14= −  in SI units (m/s). We require 

2 2 2 2 2 2
1 1 2 2 0 1 2

1 1 1 1 1 1
16 (4.0) (4.0) (8.0) (2.0)

2 2 2 2 2 2
K m v m v mv v v∆ = + − = + −

which simplifies to v v2
2

1
216= −  in SI units. If we substitute for v2 from above, we find 

( )4 161
2

1
2− = −v v

which simplifies to 2 8 01
2

1v v− = , and yields either v1 = 0 or v1 = 4 m/s. If v1 = 0 then v2 = 
4 – v1 = 4 m/s, and if v1 = 4 m/s then v2 = 0.

(a) Since the forward part continues to move in the original direction of motion, the speed 
of the rear part must be zero.  

(b) The forward part has a velocity of 4.0 m/s along the original direction of motion. 



94. Using Eq. 9-67 and Eq. 9-68, we have after the collision 

v1  = 
m1 − m2

m1+ m2
v1i  =

0.6m1

1.4m1
v1i  = − 37 (4 m/s) 

v2   = 
2m1

m1+ m2
v1i  =

2m1

1.4m1
v1i  =

1
7 (4 m/s)  . 

(a) During the (subsequent) sliding, the kinetic energy of block 1 K1 f = 1
2 m1 v1

2 is

converted into thermal form (∆Eth = µ k m1 g d1).  Solving for the sliding distance d1 we 
obtain d1 = 0.2999 m ≈ 30 cm. 

(b) A very similar computation (but with subscript 2 replacing subscript 1) leads to block 
2’s sliding distance d2 = 3.332 m ≈ 3.3 m. 



95. (a) Noting that the initial velocity of the system is zero, we use Eq. 9-19 and Eq. 2-15 
(adapted to two dimensions) to obtain  

d
→

  = 12
F1
→

 + F2
→

 m1 + m2
t2 = 12

–2i
^
 + j

^

0.006 (0.002)2

which has a magnitude of 0.745 mm. 

(b) The angle of  d
→

 is 153° counterclockwise from +x-axis.  

(c) A similar calculation using Eq. 2-11 (adapted to two dimensions) leads to a center of 

mass velocity of  v
→

  = 0.7453 m/s at 153°.  Thus, the center of mass kinetic energy is 

Kcom =
1
2 (m1 + m2)v

2 = 0.00167 J. 



96. (a) Since the initial momentum is zero, then the final momenta must add (in the 
vector sense) to 0. Therefore, with SI units understood, we have  

( )( ) ( )( )
( )

3 1 2 1 1 2 2

27 6 27 6

19 19

ˆ ˆ16.7 10 6.00 10 i 8.35 10 8.00 10 j

ˆ ˆ1.00 10 i 0.67 10 j kg m/s.

p p p m v m v
− −

− −

= − − = − −

= − × × − × − ×

= − × + × ⋅

(b) Dividing by m3 = 11.7 × 10– 27 kg and using the Pythagorean theorem we find the 
speed of the third particle to be v3 = 1.03 × 107 m/s. The total amount of kinetic energy is  

1

2

1

2

1

2
119 101 1

2
2 2

2
3 3

2 12m v m v m v+ + = × −. .J



97. Let M = 22.7 kg and m = 3.63 be the mass of the sled and the cat, respectively. Using 
the principle of momentum conservation, the speed of the first sled after the cat’s first 
jump with a speed of 3.05 m/siv = is

1 0.488 m/si
f

mv
v

M
= = .

On the other hand, as the cat lands on the second sled, it sticks to it and the system (sled 
plus cat) moves forward with a speed  

2 0.4205 m/s.i
f

mv
v

M m
= =

+

When the cat makes the second jump back to the first sled with a speed vi, momentum 
conservation implies 

2 2( ) 2ff i f i i iMv mv M m v mv mv mv= + + = + =
which yields 

2

2
0.975 m/s.i

f f

mv
v

M
= =

After the cat lands on the first sled, the entire system (cat and the sled) again moves 
together. By momentum conservation, we have  

1 1( ) 2ff i f i i iM m v mv Mv mv mv mv+ = + = + =
or

1

2
0.841 m/s.i

ff

mv
v

M m
= =

+

(a) From the above, we conclude that the first sled moves with a speed 1 0.841 m/sffv = a

after the cat’s two jumps. 

(b) Similarly, the speed of the second sled is  2 0.975 m/s.f fv =



98. We refer to the discussion in the textbook (see Sample Problem 9-8, which uses the 
same notation that we use here) for many of the important details in the reasoning. Here 
we only present the primary computational step (using SI units).  

(a) The bullet’s initial kinetic energy is  

1

2

1

2
22

2

mv m
m M

m
gh

m M

m
U f= +F

HG
I
KJ = +

where Uf = (m + M)gh is the system’s final potential energy (equal to its total mechanical 
energy since its speed is zero at height h). Thus,

U

mv

m

m M1
2

2

0 008

7 008
0 00114=

+
= =.

.
. .

(b) The fraction m/(m + M) shown in part (a) has no v-dependence. The answer remains 
the same. 



99. (a) If m is the mass of a pellet and v is its velocity as it hits the wall, then its 
momentum is p = mv = (2.0 × 10–3 kg)(500 m/s) = 1.0 kg · m/s, toward the wall. 

(b) The kinetic energy of a pellet is 

K mv= = × = ×−1

2

1

2
2 0 10 500 2 5 102 3 2 2. .kg m s J .c hb g

(c) The force on the wall is given by the rate at which momentum is transferred from the 
pellets to the wall. Since the pellets do not rebound, each pellet that hits transfers p =
1.0 kg · m/s. If ∆N pellets hit in time ∆t, then the average rate at which momentum is 
transferred is 

F
p N

tavg kg m s s N.= = ⋅ =−∆
∆

10 10 101.b gc h

The force on the wall is in the direction of the initial velocity of the pellets. 

(d) If ∆t is the time interval for a pellet to be brought to rest by the wall, then the average 
force exerted on the wall by a pellet is 

F
p

tavg

kg m s

s
N.= = ⋅

×
= ×−∆

10

0 6 10
17 10

3
3.

.
.

The force is in the direction of the initial velocity of the pellet. 

(e) In part (d) the force is averaged over the time a pellet is in contact with the wall, while 
in part (c) it is averaged over the time for many pellets to hit the wall. During the 
majority of this time, no pellet is in contact with the wall, so the average force in part (c) 
is much less than the average force in part (d). 



100. We first consider the 1200 kg part. The impulse has magnitude J and is (by our 
choice of coordinates) in the positive direction. Let m1 be the mass of the part and v1 be
its velocity after the bolts are exploded. We assume both parts are at rest before the 
explosion. Then J = m1v1, so 

v
J

m1
1

300

1200
0 25= = ⋅ =N s

kg
m s. .

The impulse on the 1800 kg part has the same magnitude but is in the opposite direction, 
so – J = m2v2, where m2 is the mass and v2 is the velocity of the part. Therefore, 

v
J

m2
2

300

1800
0167= − = − ⋅ = −N s

kg
m s. .

Consequently, the relative speed of the parts after the explosion is  

u = 0.25 m/s – (–0.167 m/s) = 0.417 m/s. 



101. (a) The initial momentum of the car is 

r r
p mvi i= = = ⋅1400 53kg m s j 7400kg m s jb gb g b g. $ $

and the final momentum is 
r
pf = ⋅7400kg m s i.b g$  The impulse on it equals the change in 

its momentum: 
r r r
J p pf i= − = ⋅ −7400 N s i jb ge j$ $ .

(b) The initial momentum of the car is 
r
pi = ⋅7400kg m s ib g$  and the final momentum is 

r
pf = 0. The impulse acting on it is 3 ˆ( 7.4 10 N s)i.f iJ p p= − = − × ⋅

r r r

(c) The average force on the car is 

r
r r

F
p

t

J

tavg

kg m s i j

4.6s
N i j= = =

⋅ −
= −∆

∆ ∆

7400
1600

b ge j b ge j
$ $

$ $

and its magnitude is ( ) 3
avg 1600 N 2 2.3 10 N.F = = ×

(d) The average force is 

r
r

F
J

tavg

kg m s i

s
N i= =

− ⋅
×

= − ×−∆
7400

350 10
2 1 10

3
4b g c h

$

. $

and its magnitude is Favg = 2.1 × 104 N. 

(e) The average force is given above in unit vector notation. Its x and y components have 
equal magnitudes. The x component is positive and the y component is negative, so the 
force is 45° below the positive x axis. 



102. We locate the coordinate origin at the center of the carbon atom, and we consider 
both atoms to be “point particles.” We will use the non-SI units for mass found in 
Appendix F; since they will cancel they will not prevent the answer from being in SI 
units.

rcom

grams / mole m

grams / mole grams / mole
m=

×
+

= ×
−

−
15 9994 1131 10

12 01115 159994
6 46 10

10

11
. .

. .
. .

b gc h



103. We choose our positive direction in the direction of the rebound (so the ball’s initial 
velocity is negative-valued 

r
vi = − 5 2. m s ).

(a) The speed of the ball right after the collision is 

( ) 21 1
2 2

2 2
3.7 m s .

2
f i i i

f

K K mv v
v

m m m
= = = = ≈

(b) With m = 0.15 kg, the impulse-momentum theorem (Eq. 9-31) yields 

r r r
J mv mvf i= − = − − =015 37 015 52 13. . . . .b gb g b gb g  N ⋅ s . 

(c) Eq. 9-35 leads to Favg = J/∆t = 1.3/0.0076 = 1.8 × 102 N. 



104. Let mc be the mass of the Chrysler and vc be its velocity. Let mf be the mass of the 
Ford and vf be its velocity. Then the velocity of the center of mass is 

v
m v m v

m m
c c f f

c f
com

kg km / h kg km / h

kg kg
km / h=

+
+

=
+
+

=
2400 80 1600 60

2400 1600
72

b gb g b gb g
.

We note that the two velocities are in the same direction, so the two terms in the 
numerator have the same sign. 



105. (a) We take the force to be in the positive direction, at least for earlier times. Then 
the impulse is 

3 3

3

3.0  10 3.0  10 6 9 2

0 0

3.0 10
6 2 9 3

0

(6.0 10 ) (2.0 10 )

1 1
(6.0 10 ) (2.0 10 )

2 3

9.0 N s.

J F dt t t dt

t t

− −

−

× ×

×

= = × − ×

= × − ×

= ⋅

(b) Since J = Favg ∆t, we find 

F
J

tavg
3   

9.0 N s

3.0 10 s
  3.0  10  N.

∆
= ⋅

×
= ×−3

(c) To find the time at which the maximum force occurs, we set the derivative of F with 
respect to time equal to zero – and solve for t. The result is t = 1.5 × 10–3 s. At that time 
the force is 

Fmax
6 9 36.0 10 10 2.0 10 10 4.5 10 N.= × × − × × = ×− −c hc h c hc h15 153 3 2

. .  

(d) Since it starts from rest, the ball acquires momentum equal to the impulse from the 
kick. Let m be the mass of the ball and v its speed as it leaves the foot. Then, 

9.0 N s
  20 m/s.

0.45 kg

p J
v

m m

⋅= = = =



106. The fact that they are connected by a spring is not used in the solution. We use Eq.  
9-17 for 

r
vcom:

( )( ) ( )
com 1 1 2 2

21.0 1.7 3.0

Mv m v m v

v

= +
= +

r r r

r

which yields 
r
v2 0 57= . m / s. The direction of 

r
v2  is opposite that of 

r
v1  (that is, they are 

both headed towards the center of mass, but from opposite directions). 



107. Let mF be the mass of the freight car and vF be its initial velocity. Let mC be the mass 
of the caboose and v be the common final velocity of the two when they are coupled. 
Conservation of the total momentum of the two-car system leads to mFvF = (mF + mC)v,
so v v m m mF F F C= +b g . The initial kinetic energy of the system is 

K m vi F F= 1

2
2

and the final kinetic energy is 

K m m v m m
m v

m m

m v

m mf F C F C
F F

F C

F F

F C

= + = +
+

=
+

1

2

1

2

1

2
2

2 2

2

2 2

b g b g b g b g .

Since 27% of the original kinetic energy is lost, we have Kf = 0.73Ki. Thus, 

1

2
0 73

1

2

2 2
2m v

m m
m vF F

F C
F F+

= F
HG

I
KJb g b g. .

Simplifying, we obtain m m mF F C+ =b g 0 73. ,  which we use in solving for the mass of the 

caboose:

m m mC F F= = = × = ×0 27

0 73
0 37 0 37 318 10 118 104 4.

.
. . . . .b gc hkg kg



108. No external forces with horizontal components act on the cart-man system and the 
vertical forces sum to zero, so the total momentum of the system is conserved. Let mc be
the mass of the cart, v be its initial velocity, and vc be its final velocity (after the man 
jumps off). Let mm be the mass of the man. His initial velocity is the same as that of the 
cart and his final velocity is zero. Conservation of momentum yields (mm + mc)v = mcvc.
Consequently, the final speed of the cart is  

v
v m m

mc
m c

c

=
+

=
+

=b g b gb g2 3 75 39

39
6 7

.
.

m / s kg kg

kg
m / s.  

The cart speeds up by 6.7 – 2.3 = + 4.4 m/s. In order to slow himself, the man gets the 
cart to push backward on him by pushing forward on it, so the cart speeds up.  



109. (a) Let v be the final velocity of the ball-gun system. Since the total momentum of 
the system is conserved mvi = (m + M)v. Therefore,   

(60 g)(22 m/s)
4.4 m/s

60 g + 240 g
imv

v
m M

= = =
+

.

(b) The initial kinetic energy is K mvi i= 1
2

2  and the final kinetic energy is 

K m M v m v m Mf i= + = +1
2

2 1
2

2 2b g b g . The problem indicates ∆Eth = 0 , so the difference 

Ki – Kf must equal the energy Us stored in the spring: 

U mv
m v

m M
mv

m

m M
mv

M

m Ms i
i

i i= −
+

= −
+

F
HG

I
KJ =

+
1

2

1

2

1

2
1

1

2
2

2 2
2 2

b g .

Consequently, the fraction of the initial kinetic energy that becomes stored in the spring 
is

240
0.80

60+240
s

i

U M

K m M
= = =

+
.



110. (a) We find the momentum 
r
pn r  of the residual nucleus from momentum 

conservation.

22 23ˆ ˆ0 ( 1.2 10 ) i +( 6.4 10 ) jn i e v n r n rp p p p p− −= + + = − × − × +

Thus, 22 23ˆ ˆ(1.2 10 kg m/s) i (6.4 10 kg m/s) jn rp − −= × ⋅ + × ⋅ .  Its magnitude is 

| | . . .
r
pn r = × + × = × ⋅− − −12 10 6 4 10 14 1022 2 23 2 22c h c h kg m / s.

(b) The angle measured from the +x axis to
r
pn r  is 

θ = ×
×

F
HG

I
KJ = °−

−

−tan
.

.
.1

23

22

6 4 10

12 10
28  

 (c) Combining the two equations p = mv and K mv= 1
2

2 , we obtain (with p = pn r and

m = mn r)

K
p

m
= =

×

×
= ×

−

−
−

2 22 2

26

19

2

14 10

2 58 10
16 10

.

.
.

c h
c h J. 



111. We use m1 for the mass of the electron and m2 = 1840m1 for the mass of the 
hydrogen atom. Using Eq. 9-68, 

v
m

m m
v vf i i2

1

1 1
1 1

2

1840

2

1841
=

+
=

we compute the final kinetic energy of the hydrogen atom: 

K m
v

m vf
i

i2 1
1

2

2 1 1
21

2
1840

2

1841

1840 4

1841

1

2
1840= F

HG
I
KJ = F

HG
I
KJb g b g( ) ( )

so we find the fraction to be 1840 4 1841 2 2 102 3b gb g ≈ × −. ,  or 0.22%. 



112. (a) We use Eq. 9-87. The thrust is 

( )( )24 4
rel 4.0 10 kg 2.0m s 8.0 10 N.Rv Ma= = × = ×

(b) Since vrel = 3000 m/s, we see from part (a) that R ≈ 27 kg/s. 



113. The velocities of m1 and m2 just after the collision with each other are given by Eq. 
9-75 and Eq. 9-76 (setting v1i = 0). 

v
m

m m
v

v
m m

m m
v

f i

f i

1
2

1 2
2

2
2 1

1 2
2

2=
+

= −
+

After bouncing off the wall, the velocity of m2 becomes –v2f. In these terms, the problem 
requires

v v

m

m m
v

m m

m m
v

f f

i i

1 2

2

1 2
2

2 1

1 2
2

2

= −

+
= − −

+

which simplifies to 

2
32 2 1 2

1m m m m
m= − − =b g  .

With m1 = 6.6 kg, we have m2= 2.2 kg. 



114. We use Eq. 9-88 and simplify with vf – vi = ∆v, and vrel = u.

rel ln f v ui
f i

f i

MM
v v v e

M M
−∆− = =

If  ∆v = 2.2 m/s and u = 1000 m/s, we obtain 
M M

M
ei f

i

−
= − ≈−1 0 00220 0022. . .  



115. This is a completely inelastic collision (see Eq. 9-53).  Thus, the kinetic energy loss 
is

∆K = 12 (m1 + m2)V
2 – 12 m1v1i

2 = 12 (m1 + m2)( 
m1

m1+ m2
v1i)

2 – 12 m1v1i
2 =  – 12

m1 m2

m1+ m2
v1i

2 . 

Keeping in mind the relation between mass and weight (m = w/g), we find the (absolute 
value) of ∆K is 61.2 kJ. 



116. We treat the car (of mass m1) as a “point-mass” (which is initially 1.5 m from the 
right end of the boat).  The left end of the boat (of mass m2) is initially at x = 0 (where the 
dock is), and its left end is at x = 14 m.  The boat’s center of mass (in the absence of the 
car) is initially at x = 7.0 m. We use Eq. 9-5 to calculate the center of mass of the system: 

xcom = 
m1x1 + m2x2

 m1 + m2
  =

(1500 kg)(14 m – 1.5 m) + (4000 kg)(7 m)
 1500 kg + 4000 kg   =  8.5 m. 

In the absence of external forces, the center of mass of the system does not change.  Later, 
when the car (about to make the jump) is near the left end of the boat (which has moved 
from the shore an amount δx), the value of the system center of mass is still 8.5 m.  The 
car (at this moment) is thought of as a “point-mass” 1.5 m from the left end, so we must 
have

xcom = 
m1x1 + m2x2

 m1 + m2
  =

(1500 kg)( δx + 1.5 m) + (4000 kg)(7 m + δx)
 1500 kg + 4000 kg   =  8.5 m. 

Solving this for δx, we find δx = 3.0 m. 



117. This is a completely inelastic collision, but Eq. 9-53 (V =
m1

m1+ m2
v1i) is not easily 

applied since that equation is designed for use when the struck particle is initially 
stationary.  To deal with this case (where particle 2 is already in motion), we return to the 
principle of momentum conservation: 

m1 v1
→

 + m2 v2
→

  = (m1 + m2)V
→

V
→

  = 
2(4i^) + 4(2j^)

2 + 4   .

(a) In unit-vector notation, then, V
→

 is equal to (1.3 m/s)i^ + (1.3 m/s)j^ . 

(b) The magnitude of V
→

 is 2 2| | (1.3 m/s) (1.3 m/s) 1.9 m/sV = + ≈
r

.

(c) The direction of V
→

 is 45° (measured counterclockwise from the +x axis).  



118. (a) The initial momentum of the system is zero, and it remains so as the electron and 
proton move toward each other.  If pe is the magnitude of the electron momentum at some 
instant (during their motion) and pp is the magnitude of the proton momentum, then these 
must be equal (and their directions must be opposite) in order to maintain the zero total 
momentum requirement.  Thus, the ratio of their momentum magnitudes is +1. 

(b) With ve and vp being their respective speeds, we obtain (from the pe = pp requirement)

meve = mpvp     ve / vp = mp /me ≈  1830 ≈ 1.83 × 103.

(c) We can rewrite K = 12 mv2 as K = 12 p2/m which immediately leads to  

Ke / Kp = mp /me ≈  1830 ≈ 1.83 × 103.

(d) Although the speeds (and kinetic energies) increase, they do so in the proportions 
indicated above.  The answers stay the same. 



119. (a) The magnitude of the impulse is equal to the change in momentum: 

J = mv – m(–v) = 2mv = 2(0.140 kg)(7.80 m/s) = 2.18 kg ⋅ m/s

(b) Since in the calculus sense the average of a function is the integral of it divided by the 
corresponding interval, then the average force is the impulse divided by the time ∆t.
Thus, our result for the magnitude of the average force is 2mv/∆t. With the given values, 
we obtain 

Favg = 
2(0.140 kg)(7.80 m/s)

0.00380 s    = 575 N . 



120. (a) Using Eq. 9-18, we have  

acom
→

=
m1 a1

→
 + m2 a2

→

 m1 + m2
  =

0 + m (–9.8 j
^
 )

 2 m   = (– 4.9 m/s2) j^.

(b) Now we have 

acom
→

=
m1 a1

→
 + m2 a2

→

 m1 + m2
  =

m (–9.8 j
^
 ) + m (–9.8 j

^
 )

 2 m   = (– 9.8 m/s2) j^

for (most of ) this second time interval.  We note that there is an “undefined” acceleration 
at the instant when the first coin hits (at t = 1.498 ≈ 1.5 s). 

(c) Except for the moment when the second coin hits, the answer is the same as in part (a), 
acom
→

= (– 4.9 m/s2) j^, since one of them is in free fall while the other is at rest.  As noted 
in part (b), we are not given enough information to quantitatively describe the 
acceleration value at the instant when the second coin strikes the ground.  Qualitatively, 
we can describe it as a large and very brief acceleration (a “spike”) in the +j

^
 direction at t

= 1.998 ≈ 2 s. 

(d) Eq. 2-11 readily yields the center of mass velocity at t = 0.25 s (which is in the first 
time interval – see part (a)): vcom

→
 = (– 4.9 j^ )(0.25) =(–1.225 m/s) j^.  The center of mass 

speed at that moment is therefore approximately 1.23 m/s. 

(e) Because of the “spikes” referred to above, it is probably a better approach to find the 
individual velocities at t = 0.75 s and then use Eq. 9-17 to obtain vcom

→
.  At this moment, 

both coins are in free-fall, with speeds v1 = (9.8)(0.75) = 7.35 m/s and v2 = (9.8)(0.25)= 
2.45 m/s (because the second coin has been in free fall for only 0.25 second).  The 
average of these two speeds (which is the same as what results from Eq. 9-17 for equal-
mass objects) is 4.90 m/s. 

(f) At t = 1.75 s, the first coin is at rest on the ground (and thus has v1 = 0) whereas the 
second coin is still in free fall and has speed given by v2 = (9.8)(1.25) = 12.3 m/s  
(because the second coin has been in free fall for 1.25 second).  Now the average of these 
leads to a center of mass speed approximately equal to 6.13 m/s. 



121. Using Eq. 9-68 with m1 = 3.0 kg, v1i = 8.0 m/s and v2f = 6.0 m/s, then 

11
2 1 2 1

1 2 2

22
1i

f i
f

vm
v v m m

m m v
= = −

+

leads to m2 = M = 5.0 kg. 



122. Conservation of momentum leads to

(900 kg)(1000 m/s) = (500 kg)(vshuttle – 100 m/s) + (400 kg)(vshuttle)

which yields vshuttle = 1055.6 m/s for the shuttle speed and vshuttle – 100 m/s =  955.6 m/s 
for the module speed (all measured in the frame of reference of the stationary main 
spaceship).  The fractional increase in the kinetic energy is 

∆K
 Ki

  =
Kf

 Ki
− 1   =

500 kg
2 (955.6 m/s)2 +

400 kg
2 (1055.6 m/s)2

900 kg
2 (1000 m/s)2

 =   2.5 × 10−3.



123. Let m = 6.00 kg be the mass of the original model rocket which travels with an 

initial velocity ˆ(20.0 m/s) jiv = −r
. The two pieces it breaks up into have masses m1=2.00 

kg and m2=4.00 kg, with 1v
r

being the velocity of m1. Using the principle of momentum 

conservation, we have 1 1 2 2imv m v m v= +r r r
.

(a) The momentum of the second piece is (SI units understood) 

2 2 2 1 1
ˆ ˆ ˆ ˆ(6.00)( 20.0 j) (2.00)( 12.0i 30.0j 15.0k)

ˆ ˆ ˆ24.0 i 180 j 30.0k.

ip m v mv m v= = − = − − − + −

= − +

r r r r

(b) With 2
ˆ ˆ ˆ ˆ ˆ ˆ(24.0i 180j 30.0k) / 4 6.00i 45.0 j 7.50kv = − + = − +r

(in m/s), the kinetic energy 

of m2 is given by  

2 2 2 2 2 2 2 3
2 2 2 2 2 2 2

1 1 1
( ) (4.00)[(6.00) ( 45.0) (7.50) ] 4.23 10  J

2 2 2x y zK m v m v v v= = + + = + − + = × .

(c) The initial kinetic energy is  

2 2 31 1
(6.00)(20.0) 1.20 10  J.

2 2i iK mv= = = ×

The kinetic energy of m1 is

2 2 2 2
1 1 1 1 1 1 1

2 2 2 3

1 1
( )

2 2
1

(2.00)[( 12.0) (30.0) ( 15.0) ] 1269 J 1.27 10  J
2

x y zK m v m v v v= = + +

= − + + − = ≈ ×

Thus, the change in kinetic energy is 

3 3
1 2 (1.27 4.23 1.20) 10 J = 4.30 10 J iK K K K∆ = + − = + − × ×



124. The momentum before the collision (with +x rightward) is 

( .6 0 kg) (8.0 m / s) (4.0 kg) (2.0 m / s) 56 kg m / s.+ = ⋅

(a) The total momentum at this instant is ( .6 0 kg) (6.4 m / s) (4.0 kg)+ r
v . Since this must 

equal the initial total momentum (56, using SI units), then we find 4.4 m/s.v =r

(b) The initial kinetic energy was 

1

2
6 0 4 0( . ( . kg) (8.0 m / s)

1

2
 kg) (2.0 m / s) 200 J.2 2+ =

The kinetic energy at the instant described in part (a) is 

1

2
6 0 4 0( . ( . kg) (6.4 m / s)

1

2
 kg) (4.4 m / s) 162 J.2 2+ =

The “missing” 38 J is not dissipated since there is no friction; it is the energy stored in the 
spring at this instant when it is compressed. Thus, Ue = 38 J. 



125. By conservation of momentum, the final speed v of the sled satisfies  

2900 250 2900 920kg m / s kg kgb gb g b g= + v

which gives v = 190 m/s.  



126. This is a completely inelastic collision, followed by projectile motion. In the 
collision, we use momentum conservation. 

shoes together (3.2 kg) (3.0 m/s) (5.2 kg)p p v= =

Therefore, 
r
v = 1.8 m / s  toward the right as the combined system is projected from the 

edge of the table. Next, we can use the projectile motion material from Ch. 4 or the 
energy techniques of Ch. 8; we choose the latter. 

                                                              

 kg) (1.8 m / s) (5.2 kg) (9.8 m / s  m) 0

edge edge floor floor

2 2
floor

K U K U

K

+ = +

+ = +1

2
52 0 40( . ) ( .

Therefore, the kinetic energy of the system right before hitting the floor is Kfloor = 29 J. 



127. We denote the mass of the car as M and that of the sumo wrestler as m. Let the
initial velocity of the sumo wrestler be v0 > 0 and the final velocity of the car be v. We 
apply the momentum conservation law.  

(a) From mv0 =  (M + m)v we get  

v
mv

M m
=

+
=

+
=0 242

2140 242
0 54

(
. .

 kg)(5.3 m / s)

 kg  kg
m / s  

(b) Since vrel = v0, we have mv Mv m v v mv M m v0 0= + + = + +relb g b g , and obtain v = 0 for 

the final speed of the flatcar.  

(c) Now mv0 = Mv + m (v – vrel), which leads to  

v
m v v

m M
=

+
+

=
+

+
=0 242 53 53

242
11rel kg m / s m / s

kg 2140 kg
m / s

b g b gb g. .
. .  



128. (a) Since net /F dp dt=
r r

, we read from value of Fx (see graph) that the rate of change 

of momentum is 4 0.  kg m / s2⋅ at t = 3.0 s. 

(b) The impulse, which causes the change in momentum, is equivalent to the area under 
the curve in this graph (see Eq. 9-30). We break the area into that of a triangle 
1
2 2 0( .  s) (4.0 N)  plus that of a rectangle (1.0 s) (4.0 N), which yields a total of 8.0 N s.⋅
Since the car started from rest, its momentum at t = 3.0 s must therefore be8 0.  kg m / s.⋅



129. From mechanical energy conservation (or simply using Eq. 2-16 with 
r
a g=

downward) we obtain  

v gh= = =2 2 9 8 15 54( . ) ( . ) .  m s 

for the speed just as the body makes contact with the ground. 

(a) During the compression of the body, the center of mass must decelerate over a 
distance d = 0.30 m. Choosing +y downward, the deceleration a is found using Eq. 2-16.  

0 2
2

5 4

2 0 30
2

2 2

= + = − = −v ad a
v

d
   

.

( . )

which yields a = −49 m s2 .  Thus, the magnitude of the net (vertical) force is m|a| = 49m
in SI units, which (since 49 = 5(9.8)) can be expressed as 5mg.

(b) During the deceleration process, the forces on the dinosaur are (in the vertical 

direction) NF
r

 and mg
r

. If we choose +y upward, and use the final result from part (a), we 

therefore have FN – mg = 5mg, or FN = 6mg. In the horizontal direction, there is also a 
deceleration (from v0 = 19 m/s to zero), in this case due to kinetic friction 

(6 )k k N kf F mgµ µ= = . Thus, the net force exerted by the ground on the dinosaur is  

2 2
ground 7 .k NF f F mg= + ≈

(c) We can applying Newton’s second law in the horizontal direction (with the sliding 
distance denoted as ∆x ) and then use Eq. 2-16, or we can apply the general notions of 
energy conservation. The latter approach is shown: 

1

2
6

2 6 0 6 9 8
2mv mg x xko

219
5 m.= = ≈µ ( )

( )( . )( . )
∆ ∆



130. The diagram below shows the situation as the incident ball (the left-most ball) 
makes contact with the other two.  

It exerts an impulse of the same magnitude on each ball, along the line that joins the 
centers of the incident ball and the target ball. The target balls leave the collision along 
those lines, while the incident ball leaves the collision along the x axis. The three dotted 
lines that join the centers of the balls in contact form an equilateral triangle, so both of the 
angles marked θ are 30°. Let v0 be the velocity of the incident ball before the collision 
and V be its velocity afterward. The two target balls leave the collision with the same 
speed. Let v represent that speed. Each ball has mass m. Since the x component of the 
total momentum of the three-ball system is conserved, 

mv mV mv0 2= + cosθ

and since the total kinetic energy is conserved,  

1

2

1

2
2

1

20
2 2 2mv mV mv= + FHG

I
KJ .

We know the directions in which the target balls leave the collision so we first eliminate 
V and solve for v. The momentum equation gives V = v0 – 2v cos θ, so

2V = 2 2 2
0 04 cos 4 cosv v v vθ θ− +

and the energy equation becomes 2
0v = 2 2 2 2

0 04 cos 4 cos 2 .v v v v vθ θ− + +  Therefore,  

v
v=

+
= °

+ °
=2

1 2

2 10 30

1 2 30
6 930

2 2

cos

cos

( cos

cos
. .

θ
θ

m s)
m s

(a) The discussion and computation above determines the final speed of ball 2 (as labeled 
in Fig. 9-83) to be 6.9 m/s. 

(b) The direction of ball 2 is at 30° counterclockwise from the +x axis.  



(c) Similarly, the final speed of ball 3 is 6.9 m/s. 

(d) The direction of ball 3 is at −30° counterclockwise from the +x axis.  

(e) Now we use the momentum equation to find the final velocity of ball 1:  

V v v= − = − ° = −0 2 10 2 6 93 30 2 0cos ( . cos .θ m s  m s) m s.

So the speed of ball 1 is | |V = 2.0 m/s. 

(f) The minus sign indicates that it bounces back in the – x direction. The angle is −180°.



131. The mass of each ball is m, and the initial speed of one of the balls is 1 2.2 m s.iv =
We apply the conservation of linear momentum to the x and y axes respectively. 

1 1 1 2 2

1 1 2 2

   cos cos

   0    sin sin
i f f

f f

mv mv mv

mv mv

θ θ
θ θ

= +
= −

The mass m cancels out of these equations, and we are left with two unknowns and two 
equations, which is sufficient to solve.  

(a) The y-momentum equation can be rewritten as, using 2 60θ = °and 2 1.1 m/sfv = ,

1 1sin (1.1 m/s)sin 60 0.95 m/s.fv θ = ° =

and the x-momentum equation yields  

1 1cos (2.2 m/s) (1.1 m/s)cos 60 1.65 m/s.fv θ = − ° =

Dividing these two equations, we find tanθ1= 0.576 which yields θ1 = 30°. We plug the 
value into either equation and find 1 fv ≈ 1.9 m/s.

(b) From the above, we have θ1 = 30°. 

(c) One can check to see if this an elastic collision by computing  

2 2 2
1 1 2

22
  and  fi

i f f

KK
v v v

m m
= = +

and seeing if they are equal (they are), but one must be careful not to use rounded-off 
values. Thus, it is useful to note that the answer in part (a) can be expressed “exactly” as 

1
1 12 3f iv v=  (and of course 1

2 12f iv v= “exactly” — which makes it clear that these two 

kinetic energy expressions are indeed equal). 



132. (a) We use Fig. 9-22 of the text (which treats both angles as positive-valued, even 
though one of them is in the fourth quadrant; this is why there is an explicit minus sign in 
Eq. 9-80 as opposed to it being implicitly in the angle). We take the cue ball to be body 1 
and the other ball to be body 2. Conservation of the x and the components of the total 
momentum of the two-ball system leads to:  

mv1i = mv1f cos θ1 + mv2f cos θ2

       0 = –mv1f sin θ1 + mv2f sin θ2.

The masses are the same and cancel from the equations. We solve the second equation for 
sin θ2:

sin sin
.

.
sin . .θ θ2

1

2
1

350

2 00
22 0 0 656= = FHG

I
KJ ° =

v

v
f

f

m / s

m / s
 .

Consequently, the angle between the second ball and the initial direction of the first is θ2

= 41.0°. 

(b) We solve the first momentum conservation equation for the initial speed of the cue 
ball. 

1  1 1 2 2cos cos (3.50 m/s)cos 22.0 (2.00 m/s)cos 41.0 4.75 m/s .i f fv v vθ θ= + = °+ ° =

(c) With SI units understood, the initial kinetic energy is  

K mv m mi i= = =1

2

1

2
4 75 1132 2( . ) .

and the final kinetic energy is 

K mv mv m mf f f= + = + =1

2

1

2

1

2
350 2 00 811

2
2
2 2 2( . ) ( . ) . .c h

Kinetic energy is not conserved. 



133. (a) We locate the coordinate origin at the center of Earth.  Then the distance rcom of
the center of mass of the Earth-Moon system is given by 

r
m r

m m
M M

M E
com =

+

where mM is the mass of the Moon, mE is the mass of Earth, and rM is their separation. 
These values are given in Appendix C. The numerical result is 

( )( )22 8

6 3
com 22 24

7.36 10 kg 3.82 10 m
4.64 10 m 4.6 10  km.

7.36 10 kg 5.98 10 kg
r

× ×
= = × ≈ ×

× + ×

(b) The radius of Earth is RE = 6.37 × 106 m, so com / 0.73 73%Er R = = .



134. (a) Each block is assumed to have uniform density, so that the center of mass of 
each block is at its geometric center (the positions of which are given in the table [see 
problem statement] at t = 0).  Plugging these positions (and the block masses) into Eq. 9-
29 readily gives xcom = –0.50 m (at t = 0). 

(b) Note that the left edge of block 2 (the middle of which is still at x = 0) is at x = –2.5 
cm, so that at the moment they touch the right edge of block 1 is at x = –2.5 cm and thus 
the middle of block 1 is at x = –5.5 cm.  Putting these positions (for the middles) and the 
block masses into Eq. 9-29 leads to xcom = –1.83 cm or  –0.018 m (at t = (1.445 m)/(0.75 
m/s) = 1.93 s). 

(c) We could figure where the blocks are at t = 4.0 s and use Eq. 9-29 again, but it is 
easier (and provides more insight) to note that in the absence of external forces on the 
system the center of mass should move at constant velocity: 

vcom
→

  =
m1 v1

→
 + m2 v2

→

 m1 + m2
  = 0.25 m/s i

^

as can be easily verified by putting in the values at t = 0.  Thus,

xcom = xcom initial  +  vcom
→

t  =  (–0.50 m) +  (0.25 m/s)(4.0 s)  =  +0.50 m . 



135. (a) The thrust is Rvrel where vrel = 1200 m/s. For this to equal the weight Mg where 
M = 6100 kg, we must have R = (6100) (9.8)/1200 ≈ 50 kg/s. 

(b) Using Eq. 9-42 with the additional effect due to gravity, we have 

Rv Mg Marel − =

so that requiring a = 21 m/s2 leads to R = (6100)(9.8 + 21)/1200 = 1.6 × 102 kg/s. 



136. From mechanical energy conservation (or simply using Eq. 2-16 with 
r
a g=

downward) we obtain v gh= = =2 2(9.8)(6.0) 10.8 m / s  for the speed just as the m =
3000-kg block makes contact with the pile. At the moment of “joining,” they are a system 
of mass M = 3500 kg and speed V. With downward positive, momentum conservation 
leads to 

mv MV V= = =(3000) (10.8)
9.3 m / s.

3500

Now this block-pile “object” must be rapidly decelerated over the small distance d =
0.030 m. Using Eq. 2-16 and choosing +y downward, we have 

0
2 0 030

14402= + = − = −V ad a2
9.32

( . )

in SI units (m/s2). Thus, the net force during the decelerating process has magnitude  

M |a| = 5.0 × 106 N. 



137. In the momentum relationships, we could as easily work with weights as with 
masses, but because part (b) of this problem asks for kinetic energy—we will find the 
masses at the outset: m1 = 280 × 103/9.8 = 2.86 × 104 kg and m2 = 210 × 103/9.8 = 2.14 ×
104 kg. Both cars are moving in the +x direction: v1i = 1.52 m/s and v2i = 0.914 m/s. 

(a) If the collision is completely elastic, momentum conservation leads to a final speed of 

V
m v m v

m m
i i= +

+
=1 1 2 2

1 2

1.26 m / s.

(b) We compute the total initial kinetic energy and subtract from it the final kinetic 
energy. 

K K m v m v m m Vi f i i− = + − + = ×1

2

1

2

1

2
( 2.25 10 J.3

1 1
2

2 2
2

1 2
2)

(c) Using Eq. 9-76, we find 

1 2 1
2 1 2

1 2 1 2

2
1.61 m/s   f i i

m m m
v v v

m m m m

−= + =
+ +

(d) Using Eq. 9-75, we find 

1 2 2
1 1 2

1 2 1 2

2
1.00  m/s.f i i

m m m
v v v

m m m m

−= + =
+ +



138. (a) The center of mass does not move in the absence of external forces (since it was 
initially at rest). 

(b) They collide at their center of mass.  If the initial coordinate of P is x = 0 and the 
initial coordinate of Q is x = 1.0 m, then Eq. 9-5 gives 

xcom  =
m1x1 + m2x2

 m1 + m2
   =

0 + (0.30 kg)(1.0 m)
0.1 kg  +  0.3 kg   =  0.75 m. 

Thus, they collide at a point 0.75 m from P’s original position. 



139. We choose coordinates with +x East and +y North, with the standard conventions for 
measuring the angles. With SI units understood, we write the initial magnitude of the 
man’s momentum as (60)(6.0) = 360 and the final momentum of the two of them together 
as (98)(3.0) = 294. Using magnitude-angle notation (quickly implemented using a vector- 
capable calculator in polar mode), momentum conservation becomes 

man child together (360 90 ) (294 35 )p p p p+ = ∠ ° + = ∠ °r r r r

Therefore, the momentum of the 38 kg child before the collision is 
r
p = ∠ − °(308 38 ).

(a) Thus, the child’s velocity has magnitude equal to 308/38 = 8.1 m/s. 

(b) The direction of the child’s velocity is 38° south of east. 



140. We use coordinates with +x eastward and +y northward.  Angles are in degrees and 
are measured counterclockwise from the +x axis.  Mass, velocity and momentum units 

are SI. Thus, the initial momentum can be written p0

→
= (0.20)(10 i

^
) = 2.0 i

^
  or in 

magnitude-angle notation as (2.0 ∠ 0). 

(a) The momentum change is  

4.0 i
^ − 2.0 i

^
  = 2.0 i

^
, or (4.0 ∠ 0) − (2.0 ∠ 0) = (2.0 ∠ 0) 

(efficiently done with a vector capable calculator in polar mode).  With either notation, 
we see the magnitude of the change is 2.0 kg·m/s and its direction is east. 

(b) The momentum change is  

1.0 i
^ − 2.0 i

^
  = −1.0 i

^
, or (1.0 ∠ 0) − (2.0 ∠ 0) = (1.0 ∠ 180). 

The magnitude of the change is 1.0 kg·m/s and its direction is west. 

(c) The momentum change is  

−2.0 i
^ − 2.0 i

^
 = −4.0 i

^
, or (2.0 ∠ 180) − (2.0 ∠ 0) = (4.0 ∠ 180) 

(efficiently done with a vector capable calculator in polar mode).  Thus, the magnitude of 
the change is 4.0 kg·m/s; the direction of the change is west. 
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