
1. The initial speed of the car is v = (80.0)(1000/3600) = 22.2 m/s. The tire radius is R = 
0.750/2 = 0.375 m. 

(a) The initial speed of the car is the initial speed of the center of mass of the tire, so Eq. 
11-2 leads to
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(b) With θ = (30.0)(2π) = 188 rad and ω = 0, Eq. 10-14 leads to 
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(c) Eq. 11-1 gives Rθ = 70.7 m for the distance traveled. 



2. The velocity of the car is a constant ( ) ( ) ˆ80 1000 3600 ( 22m s)i,v = + = +  and the 

radius of the wheel is r = 0.66/2 = 0.33 m. 

(a) In the car’s reference frame (where the lady perceives herself to be at rest) the road is 
moving towards the rear at v vroad m s= − = −22 ,  and the motion of the tire is purely 
rotational. In this frame, the center of the tire is “fixed” so vcenter = 0. 

(b) Since the tire’s motion is only rotational (not translational) in this frame, Eq. 10-18 

gives top
ˆ( 22m/s)i.v = +

(c) The bottom-most point of the tire is (momentarily) in firm contact with the road (not 

skidding) and has the same velocity as the road: bottom
ˆ( 22m s)i .v = −  This also follows 

from Eq. 10-18. 

(d) This frame of reference is not accelerating, so “fixed” points within it have zero 
acceleration; thus, acenter = 0. 

(e) Not only is the motion purely rotational in this frame, but we also have ω = constant, 
which means the only acceleration for points on the rim is radial (centripetal). Therefore, 
the magnitude of the acceleration is 
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(f) The magnitude of the acceleration is the same as in part (d): abottom = 1.5 × 103 m/s2.

(g) Now we examine the situation in the road’s frame of reference (where the road is
“fixed” and it is the car that appears to be moving). The center of the tire undergoes 
purely translational motion while points at the rim undergo a combination of translational 

and rotational motions. The velocity of the center of the tire is ˆ( 22 m s)i.v = +

(h) In part (b), we found v vtop,car = +  and we use Eq. 4-39: 

top, ground top, car car, ground
ˆ ˆ ˆi i 2 iv v v v v v= + = + =

which yields 2v = +44 m/s. This is consistent with Fig. 11-3(c). 

(i) We can proceed as in part (h) or simply recall that the bottom-most point is in firm 
contact with the (zero-velocity) road. Either way – the answer is zero. 

(j) The translational motion of the center is constant; it does not accelerate. 



(k) Since we are transforming between constant-velocity frames of reference, the 
accelerations are unaffected. The answer is as it was in part (e): 1.5 × 103 m/s2.

(1) As explained in part (k), a = 1.5 × 103 m/s2.



3. By Eq. 10-52, the work required to stop the hoop is the negative of the initial kinetic 
energy of the hoop. The initial kinetic energy is K I mv= +1

2
2 1

2
2ω  (Eq. 11-5), where I = 

mR2 is its rotational inertia about the center of mass, m = 140 kg, and v = 0.150 m/s is the 
speed of its center of mass. Eq. 11-2 relates the angular speed to the speed of the center of 
mass: ω = v/R. Thus, 
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which implies that the work required is – 3.15 J. 



4. We use the results from section 11.3. 

(a) We substitute I M R= 2
5

2  (Table 10-2(f)) and a = – 0.10g into Eq. 11-10: 
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which yields θ = sin–1 (0.14) = 8.0°. 

(b) The acceleration would be more. We can look at this in terms of forces or in terms of 
energy. In terms of forces, the uphill static friction would then be absent so the downhill 
acceleration would be due only to the downhill gravitational pull. In terms of energy, the 
rotational term in Eq. 11-5 would be absent so that the potential energy it started with 
would simply become 1

2
2mv  (without it being “shared” with another term) resulting in a 

greater speed (and, because of Eq. 2-16, greater acceleration). 



5. Let M be the mass of the car (presumably including the mass of the wheels) and v be 
its speed. Let I be the rotational inertia of one wheel and ω be the angular speed of each 
wheel. The kinetic energy of rotation is 

K Irot = FHG
I
KJ4
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where the factor 4 appears because there are four wheels. The total kinetic energy is 
given by K Mv I= +1

2
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24( )ω . The fraction of the total energy that is due to rotation is 
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For a uniform disk (relative to its center of mass) I mR= 1
2

2  (Table 10-2(c)). Since the 

wheels roll without sliding ω = v/R (Eq. 11-2). Thus the numerator of our fraction is 
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and the fraction itself becomes 
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The wheel radius cancels from the equations and is not needed in the computation. 



6. With app
ˆ(10  N)iF = , we solve the problem by applying Eq. 9-14 and Eq. 11-37. 

(a) Newton’s second law in the x direction leads to 

( )( )2
app     10N 10kg 0.60 m s 4.0 N.s sF f ma f− = = − =

In unit vector notation, we have ˆ( 4.0 N)isf = −  which points leftward. 

(b) With R = 0.30 m, we find the magnitude of the angular acceleration to be  

|α| = |acom| / R = 2.0 rad/s2,

from Eq. 11-6. The only force not directed towards (or away from) the center of mass is 

f s ,  and the torque it produces is clockwise: 

( )( ) ( )20.30 m 4.0 N 2.0 rad sI Iτ α= =

which yields the wheel’s rotational inertia about its center of mass: I = ⋅0 60. .kg m2



7. (a) We find its angular speed as it leaves the roof using conservation of energy. Its 
initial kinetic energy is Ki = 0 and its initial potential energy is Ui = Mgh where 

6.0sin 30 3.0 mh = ° = (we are using the edge of the roof as our reference level for 
computing U). Its final kinetic energy (as it leaves the roof) is (Eq. 11-5) 

K Mv If = +1
2

2 1
2

2ω .

Here we use v to denote the speed of its center of mass and ω is its angular speed — at 
the moment it leaves the roof. Since (up to that moment) the ball rolls without sliding we 
can set v = Rω = v where R = 0.10 m. Using I MR= 1

2
2  (Table 10-2(c)), conservation of 

energy leads to 
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The mass M cancels from the equation, and we obtain 
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(b) Now this becomes a projectile motion of the type examined in Chapter 4. We put the 
origin at the position of the center of mass when the ball leaves the track (the “initial”
position for this part of the problem) and take +x leftward and +y downward. The result 
of part (a) implies v0 = Rω = 6.3 m/s, and we see from the figure that (with these positive 
direction choices) its components are 
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The projectile motion equations become 

x v t y v t gtx y= = +0 0
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2
and .

We first find the time when y = H = 5.0 m from the second equation (using the quadratic 
formula, choosing the positive root): 
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Then we substitute this into the x equation and obtain x = =54 0 74 4 0. . .m s s m.b gb g



8. Using the floor as the reference position for computing potential energy, mechanical 
energy conservation leads to 
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Substituting  I mr= 2
5

2  (Table 10-2(f)) and ω = v rcom  (Eq. 11-2), we obtain 
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where we have canceled out mass m in that last step. 

(a) To be on the verge of losing contact with the loop (at the top) means the normal force 
is vanishingly small. In this case, Newton’s second law along the vertical direction (+y
downward) leads to 

mg ma g
v

R rr= =
−

com
2

where we have used Eq. 10-23 for the radial (centripetal) acceleration (of the center of 
mass, which at this moment is a distance R – r from the center of the loop). Plugging the 
result  v g R rcom

2 = −b g  into the previous expression stemming from energy considerations 

gives 

gh g R r gR= − +7

10
2b gb g

which leads to 2.7 0.7 2.7 .h R r R= − ≈  With R = 14.0 cm , we have h = (2.7)(14.0 cm) = 
37.8 cm. 

(b) The energy considerations shown above (now with h = 6R) can be applied to point Q
(which, however, is only at a height of R) yielding the condition 

g R v gR6
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10
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which gives us v g Rcom
2 = 50 7 . Recalling previous remarks about the radial acceleration, 

Newton’s second law applied to the horizontal axis at Q leads to 
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(b) The direction is toward the center of the loop. 



9. To find where the ball lands, we need to know its speed as it leaves the track (using 
conservation of energy). Its initial kinetic energy is Ki = 0 and its initial potential energy 
is Ui = M gH. Its final kinetic energy (as it leaves the track) is K Mv If = +1

2
2 1

2
2ω  (Eq. 

11-5) and its final potential energy is M gh. Here we use v to denote the speed of its 
center of mass and ω is its angular speed — at the moment it leaves the track. Since (up 
to that moment) the ball rolls without sliding we can set ω = v/R. Using I MR= 2

5
2

(Table 10-2(f)), conservation of energy leads to 
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The mass M cancels from the equation, and we obtain 
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Now this becomes a projectile motion of the type examined in Chapter 4. We put the 
origin at the position of the center of mass when the ball leaves the track (the “initial”
position for this part of the problem) and take +x rightward and +y downward. Then 
(since the initial velocity is purely horizontal) the projectile motion equations become 

x vt y gt= = −and
1

2
2.

Solving for x at the time when y = h, the second equation gives t h g= 2 .  Then, 

substituting this into the first equation, we find 
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10. We plug a =   – 3.5 m/s2 (where the magnitude of this number was estimated from the 
“rise over run” in the graph), θ = 30º, M = 0.50 kg and R = 0.060 m into Eq. 11-10 and 
solve for the rotational inertia.  We find I = 7.2 × 10−4 kg.m2

.



11. (a) Let the turning point be designated P. We use energy conservation with Eq. 11-5: 

Mechanical Energy (at x = 7.0 m)  =  Mechanical Energy at P

    75 J   =   12 mvp
2 + 1

2 Icom ωp
2  + Up

Using item (f) of Table 10-2 and Eq. 11-2 (which means, if this is to be a turning point, 
that ωp = vp = 0), we find Up = 75 J.  On the graph, this seems to correspond to x = 2.0 m, 
and we conclude that there is a turning point (and this is it).  The ball, therefore, does not 
reach the origin. 

(b) We note that there is no point (on the graph, to the right of x = 7.0 m) which is shown      
“higher” than 75 J, so we suspect that there is no turning point in this direction, and we 
seek the velocity vp at x = 13 m.  If we obtain a real, nonzero answer, then our      
suspicion is correct (that it does reach this point P at x = 13 m). 

Mechanical Energy (at x = 7.0 m)  =  Mechanical Energy at P

    75 J   =   12 mvp
2 + 1

2 Icom ωp
2  + Up

Again, using item (f) of Table 11-2, Eq. 11-2 (less trivially this time) and Up = 60 J (from 
the graph), as well as the numerical data given in the problem, we find vp = 7.3 m/s. 



12. To find the center of mass speed v on the plateau, we use the projectile motion 
equations of Chapter 4.  With voy = 0 (and using “h” for h2) Eq. 4-22 gives the time-of-
flight as t = 2h/g .  Then Eq. 4-21 (squared, and using d for the horizontal displacement) 
gives v2 = gd2/2h.  Now, to find the speed vp at point P, we use energy conservation with 
Eq. 11-5:

Mechanical Energy on the Plateau  =  Mechanical Energy at P

1
2 mv2 + 1

2 Icom ω2 + mgh1  =   12 mvp
2 + 1

2 Icom ωp
2

Using item (f) of Table 10-2, Eq. 11-2, and our expression (above) v2 = gd2/2h, we obtain 

gd2/2h + 10gh1/7 = vp
2

which yields (using the values stated in the problem) vp = 1.34 m/s. 



13. The physics of a rolling object usually requires a separate and very careful discussion 
(above and beyond the basics of rotation discussed in chapter 10); this is done in the first 
three sections of chapter 11.  Also, the normal force on something (which is here the 
center of mass of the ball) following a circular trajectory is discussed in section 6-6 (see 
particularly sample problem 6-7).  Adapting Eq. 6-19 to the consideration of forces at the 
bottom of an arc, we have  

FN – Mg = Mv2/r

which tells us (since we are given FN = 2Mg) that the center of mass speed (squared) is v2

= gr, where r is the arc radius (0.48 m)  Thus, the ball’s angular speed (squared) is  

ω2 = v2/R2 = gr/R2,

where R is the ball’s radius. Plugging this into Eq. 10-5 and solving for the rotational 
inertia (about the center of mass), we find 

      Icom = 2MhR2/r – MR2 = MR2[2(0.36/0.48) – 1] . 

Thus, using the β notation suggested in the problem, we find  β = 2(0.36/0.48) – 1 = 0.50. 



14. The physics of a rolling object usually requires a separate and very careful discussion 
(above and beyond the basics of rotation discussed in chapter 11); this is done in the first 
three sections of Chapter 11. Using energy conservation with Eq. 11-5 and solving for the 
rotational inertia (about the center of mass), we find 

      Icom = 2MhR2/r – MR2 = MR2[2g(H – h)/v2 – 1] . 

Thus, using the β notation suggested in the problem, we find   

β = 2g(H – h)/v2  –  1. 

To proceed further, we need to find the center of mass speed v, which we do using the 
projectile motion equations of Chapter 4.  With voy = 0, Eq. 4-22 gives the time-of-flight 
as t = 2h/g .  Then Eq. 4-21 (squared, and using d for the horizontal displacement) gives 
v2 = gd2/2h.  Plugging this into our expression for β gives  

2g(H – h)/v2 – 1 = 4h(H – h)/d2  –  1 

Therefore, with the values given in the problem, we find β = 0.25. 



15. (a) The derivation of the acceleration is found in §11-4; Eq. 11-13 gives 

a
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2

where the positive direction is upward. We use Icom g cm= ⋅950 2 , M =120g, R0 = 0.320 
cm and g = 980 cm/s2 and obtain 
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(b) Taking the coordinate origin at the initial position, Eq. 2-15 leads to y a tcom com= 1
2

2 .

Thus, we set ycom = – 120 cm, and find 
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(c) As it reaches the end of the string, its center of mass velocity is given by Eq. 2-11:  

( ) ( )2
com com 12.5 cm s 4.38s 54.8 cm sv a t= = − = − ,

so its linear speed then is approximately 55 cm/s. 

(d) The translational kinetic energy is  

1
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(e) The angular velocity is given by ω = – vcom/R0 and the rotational kinetic energy is 
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which yields Krot = 1.4 J. 

(f) The angular speed is  

( ) ( )3 2
com 0 0.548m s 3.2 10 m 1.7 10 rad sv Rω −= = × = × 27 rev s= .



16. (a) The derivation of the acceleration is found in § 11-4; Eq. 11-13 gives 

a
g

I MRcom
com

= −
+1 0

2

where the positive direction is upward. We use I MRcom = 1

2
2  where the radius is R = 

0.32 m and M = 116 kg is the total mass (thus including the fact that there are two disks) 
and obtain 

a
g

MR MR

g

R

R

= −
+

=

+
F
HG
I
KJ

1
1
2 1

1
2

2
0
2

0

2

which yields a = –g/51 upon plugging in R0 = R/10 = 0.032 m. Thus, the magnitude of the 
center of mass acceleration is 0.19 m/s2.

(b) As observed in §11-4, our result in part (a) applies to both the descending and the 
rising yoyo motions. 

(c) The external forces on the center of mass consist of the cord tension (upward) and the 
pull of gravity (downward). Newton’s second law leads to 

T Mg ma T M g
g− = = −FHG
I
KJ51

 = 1.1 × 103 N. 

(d) Our result in part (c) indicates that the tension is well below the ultimate limit for the 
cord.

(e) As we saw in our acceleration computation, all that mattered was the ratio R/R0 (and, 
of course, g). So if it’s a scaled-up version, then such ratios are unchanged and we obtain 
the same result. 

(f) Since the tension also depends on mass, then the larger yoyo will involve a larger cord 
tension.



17. If we write r x y z= + +i j k,  then (using Eq. 3-30) we find r F×  is equal to 

yF zF zF xF xF yFz y x z y x− + − + −d i b g d i .i j k

(a) In the above expression, we set (with SI units understood) x = –2.0, y = 0, z = 4.0, Fx

= 6.0, Fy = 0 and Fz = 0. Then we obtain ˆ(24 N m)j.r Fτ = × = ⋅

(b) The values are just as in part (a) with the exception that now Fx = –6.0. We find 
ˆ( 24N m)j.r Fτ = × = − ⋅

(c) In the above expression, we set x = –2.0, y = 0, z = 4.0, Fx = 0, Fy = 0 and Fz = 6.0. 

We get  ˆ(12 N m)j.r Fτ = × = ⋅

(d) The values are just as in part (c) with the exception that now Fz = –6.0. We find 
ˆ( 12N m)j.r Fτ = × = − ⋅



18. If we write r x y z= + +i j k,  then (using Eq. 3-30) we find r F×  is equal to 

yF zF zF xF xF yFz y x z y x− + − + −d i b g d i .i j k

(a) In the above expression, we set (with SI units understood) x = 0, y = – 4.0, z = 3.0, Fx

= 2.0, Fy = 0 and Fz = 0. Then we obtain  

( )ˆ ˆ6.0j 8.0k N m.r Fτ = × = + ⋅

This has magnitude 6 8 102 2+ = ⋅N m and is seen to be parallel to the yz plane. Its angle 

(measured counterclockwise from the +y direction) is tan .− = °1 8 6 53b g

(b) In the above expression, we set x = 0, y = – 4.0, z = 3.0, Fx = 0, Fy = 2.0 and Fz = 4.0. 

Then we obtain ˆ( 22 N m)i.r Fτ = × = − ⋅  This has magnitude 22 N m⋅  and points in the –x
direction.



19. If we write r x y z= i + j + k,  then (using Eq. 3-30) we find r F×  is equal to 

yF zF zF xF xF yFz y x z y x− − −d i b g d ii + j + k.

With (using SI units) x = 0, y = – 4.0, z = 5.0, Fx = 0, Fy = –2.0 and  Fz = 3.0 (these latter 
terms being the individual forces that contribute to the net force), the expression above 
yields 

ˆ( 2.0N m)i.r Fτ = × = − ⋅



20. If we write ′ = ′ + ′ + ′r x y zi j k,  then (using Eq. 3-30) we find ′ ×r F  is equal to 

′ − ′ + ′ − ′ + ′ − ′y F z F z F x F x F y Fz y x z y xd i b g d i .i j k

(a) Here, ′ =r r  where  ˆ ˆ ˆ3.0i 2.0j 4.0k,r = − +  and F F= 1.  Thus, dropping the prime in 
the above expression, we set (with SI units understood) x = 3.0, y = –2.0, z = 4.0, Fx = 3.0, 
Fy = –4.0 and Fz = 5.0. Then we obtain   

τ = × = − − ⋅r F1 6 0 3 0 6 0. . .i j k N m.e j

(b) This is like part (a) but with F F= 2 .  We plug in Fx = –3.0, Fy = –4.0 and Fz =  –5.0 
and obtain

τ = × = + − ⋅r F2 26 30 18.i j k N m.e j

(c) We can proceed in either of two ways. We can add (vectorially) the answers from 
parts (a) and (b), or we can first add the two force vectors and then compute 

τ = × +r F F1 2d i  (these total force components are computed in the next part). The result 

is

( ) ( )1 2
ˆ ˆ32 i 24k N m.r F Fτ = × + = − ⋅

(d) Now ′ = −r r ro  where o
ˆ ˆ ˆ3.0i 2.0j 4.0k.r = + +  Therefore, in the above expression, we 

set 0, 4.0, 0, 3.0 3.0 0, 4.0 4.0 8.0x yx y z F F′ ′ ′= = − = = − = = − − = −  and Fz = 5.0 – 5.0 = 0. 

We get τ = ′ × + =r F F1 2 0d i .



21. If we write r x y z= + +i j k,  then (using Eq. 3-30) we find r F×  is equal to 

yF zF zF xF xF yFz y x z y x− + − + −d i b g d ii j k.

(a) Plugging in, we find ( ) ( ) ( ) ( ) ˆ ˆ3.0m 6.0N 4.0m 8.0N k 50kN m.τ = − − = ⋅

(b) We use Eq. 3-27, | | sin ,r F rF× = φ  where φ is the angle between r  and F . Now 

r x y= + =2 2 5 0. m  and F F Fx y= + =2 2 10 N.  Thus,  

rF = = ⋅50 10 50. m N N m,b gb g

the same as the magnitude of the vector product calculated in part (a). This implies sin φ
= 1 and φ = 90°.  



22. We use the notation ′r  to indicate the vector pointing from the axis of rotation 

directly to the position of the particle. If we write ′ = ′ + ′ + ′r x y zi j k,  then (using Eq.  

3-30) we find ′ ×r F  is equal to 

′ − ′ + ′ − ′ + ′ − ′y F z F z F x F x F y Fz y x z y xd i b g d ii j k.

(a) Here, ′ =r r .  Dropping the primes in the above expression, we set (with SI units 
understood) x = 0, y = 0.5, z = –2.0, Fx = 2.0, Fy = 0 and Fz = –3.0. Then we obtain  

( )ˆ ˆ ˆ1.5i 4.0j 1.0k N m.r Fτ = × = − − − ⋅

(b) Now ′ = −r r ro where o
ˆ ˆ2.0i 3.0k.r = −  Therefore, in the above expression, we set 

2.0, 0.5, 1.0, 2.0, 0x yx y z F F′ ′ ′= − = = = =  and 3.0.zF = −   Thus, we obtain

( )ˆ ˆ ˆ1.5 i 4.0 j 1.0k N m.r Fτ ′= × = − − − ⋅



23. Eq. 11-14 (along with Eq. 3-30) gives 

r Fτ = ×  =  4.00i
^
  + (12.0 + 2.00Fx)j

^
  +  (14.0 + 3.00Fx)k

^

with SI units understood. Comparing this with the known expression for the torque (given 
in the problem statement), we see that Fx must satisfy two conditions:  

12.0 + 2.00Fx = 2.00   and  14.0 + 3.00Fx = –1.00. 

The answer (Fx = –5.00 N) satisfies both conditions. 



24. We note that the component of v  perpendicular to r  has magnitude v sin θ2 where 
θ2= 30°. A similar observation applies to F .

(a) Eq. 11-20 leads to = = ° = ⋅⊥rmv 3 0 2 0 4 0 30 12 2. . . sin .b gb gb g kg m s

(b) Using the right-hand rule for vector products, we find r p×  points out of the page, or 
along the +z axis, perpendicular to the plane of the figure. 

(c) Eq. 10-38 leads to ( ) ( )2sin 3.0 2.0 sin 30 3.0N m.rFτ θ= = ° = ⋅

(d) Using the right-hand rule for vector products, we find r F×  is also out of the page, or 
along the +z axis, perpendicular to the plane of the figure. 



25. For the 3.1 kg particle, Eq. 11-21 yields  

1 1 1
22 8 31 3 6 312= = = ⋅⊥r mv . . . . .b gb gb g kg m s  

Using the right-hand rule for vector products, we find this r p1 1×b g  is out of the page, or 

along the +z axis, perpendicular to the plane of Fig. 11-40. And for the 6.5 kg particle, we 
find

2 2 2
215 6 5 2 2 214= = = ⋅⊥r mv . . . . .b gb gb g kg m s  

And we use the right-hand rule again, finding that this r p2 2×b g  is into the page, or in 

the –z direction.

(a) The two angular momentum vectors are in opposite directions, so their vector sum is 
the difference of their magnitudes: L = − = ⋅1 2 9 8. .kg m s2

(b) The direction of the net angular momentum is along the +z axis. 



26. If we write ′ = ′ + ′ + ′r x y zi j k,  then (using Eq. 3-30) we find ′ =r v  is equal to 

′ − ′ + ′ − ′ + ′ − ′y v z v z v x v x v y vz y x z y xd i b g d i .i j k

(a) Here, r r′ =  where ˆ ˆ3.0 i 4.0 j.r = −  Thus, dropping the primes in the above expression, 

we set (with SI units understood) 3.0, 4.0, 0, 30, 60x yx y z v v= = − = = = and vz = 0. Then 

(with m = 2.0 kg) we obtain  

( ) 2 2 ˆ(6.0 10 kg m s)k .m r v= × = × ⋅

(b) Now ′ = −r r ro  where o
ˆ ˆ2.0i 2.0j.r = − −  Therefore, in the above expression, we set 

5.0, 2.0, 0, 30, 60x yx y z v v′ ′ ′= = − = = =  and vz = 0 . We get

( ) 2 2 ˆ(7.2 10 kg m s)k.m r v′= × = × ⋅



27. (a) We use = ×mr v ,  where r  is the position vector of the object, v  is its velocity 
vector, and m is its mass. Only the x and z components of the position and velocity 

vectors are nonzero, so Eq. 3-30 leads to r v xv zvz z× = − +b g j.  Therefore, 

( ) ( ) ( )( ) ( ) ( )( )ˆ ˆj 0.25 kg 2.0 m 5.0 m s 2.0 m 5.0 m s j 0.z xm xv zv= − + = − + − − =

(b) If we write r x y z= + +i j k,  then (using Eq. 3-30) we find r F×  is equal to 

yF zF zF xF xF yFz y x z y x− + − + −d i b g d i .i j k

With x = 2.0, z = –2.0, Fy = 4.0 and all other components zero (and SI units understood) 
the expression above yields  

τ = × = + ⋅r F 8 0 8 0. .i k N m.e j



28. (a) Since the speed is (momentarily) zero when it reaches maximum height, the 
angular momentum is zero then. 

(b) With the convention (used in several places in the book) that clockwise sense is to be 
associated with the negative sign, we have L = – r⊥ m v  where r⊥ = 2.00 m, m = 0.400 kg, 
and v is given by free-fall considerations (as in chapter 2).  Specifically, ymax is 
determined by Eq. 2-16 with the speed at max height set to zero; we find ymax = vo

2/2g

where vo = 40.0 m/s. Then with y = 12 ymax,  Eq. 2-16 can be used to give v = vo / 2 .  In 

this way we arrive at L = –22.6 kg.m2/s.

(c) As mentioned in the previous part, we use the minus sign in writing τ = – r⊥F with the 
force F being equal (in magnitude) to mg.  Thus, τ = –7.84 N.m.

(d) Due to the way r⊥ is defined it does not matter how far up the ball is.  The answer is 
the same as in part (c), τ = –7.84 N.m.



29. (a) The acceleration vector is obtained by dividing the force vector by the (scalar) 
mass:  

a
→

  = F
→

/m = (3.00 m/s2)i^ – (4.00 m/s2)j^ + (2.00 m/s2)k^ .

(b) Use of Eq. 11-18 leads directly to  

L
→

 =  (42.0 kg.m2/s)i^ + (24.0 kg.m2/s)j^ + (60.0 kg.m2/s)k^ .

(c) Similarly, the torque is  

r Fτ = ×  = (–8.00 N.m)i^ – (26.0 N.m)j^ – (40.0 N.m)k^.

(d) We note (using the Pythagorean theorem) that the magnitude of the velocity vector is 
7.35 m/s and that of the force is 10.8 N.  The dot product of these two vectors is  

 v
→ . F

→
 = – 48 (in SI units).  Thus, Eq. 3-20 yields  

 
θ = cos−1[−48.0/(7.35 ×10.8)] = 127°.



30. The rate of change of the angular momentum is 

1 2
ˆ ˆ(2.0 N m)i (4.0 N m) j.

d

dt
τ τ= + = ⋅ − ⋅

Consequently, the vector d dt  has a magnitude 2 0 4 0 4 52 2
. . .+ − = ⋅b g N m and is at an 

angle θ (in the xy plane, or a plane parallel to it) measured from the positive x axis, where     

θ = −F
HG
I
KJ = − °−tan

.

.
1 4 0

2 0
63 ,

the negative sign indicating that the angle is measured clockwise as viewed “from above” 
(by a person on the +z  axis). 



31. If we write (for the general case) r x y z= + +i j k,  then (using Eq. 3-30) we find r v×
is equal to 

yv zv zv xv xv yvz y x z y x− + − + −d i b g d i .i j k

(a) The angular momentum is given by the vector product = ×mr v ,  where r  is the 
position vector of the particle, v  is its velocity, and m = 3.0 kg is its mass. Substituting 
(with SI units understood) x = 3, y = 8, z = 0, vx = 5, vy = –6 and vz = 0 into the above 
expression, we obtain 

( ) 2 2ˆ ˆ3.0 [(3.0)( 6.0) (8.0)(5.0)]k ( 1.7 10 kg m s)k.= − − = − × ⋅

(b) The torque is given by Eq. 11-14, τ = ×r F.  We write r x y= +i j  and F Fx= i  and 
obtain

τ = + × = −x y F yFx xi j i ke j e j

since i i× = 0 and j i k.× = −  Thus, we find  

( ) ( ) ˆ ˆ8.0m 7.0N k (56 N m)k.τ = − − = ⋅

(c) According to Newton’s second law τ = d dt ,  so the rate of change of the angular 
momentum is 56 kg ⋅ m2/s2, in the positive z direction. 



32. We use a right-handed coordinate system with k  directed out of the xy plane so as to 
be consistent with counterclockwise rotation (and the right-hand rule). Thus, all the 
angular momenta being considered are along the – k  direction; for example, in part (b) 

= −4 0 2. t k  in SI units. We use Eq. 11-23. 

(a) The angular momentum is constant so its derivative is zero. There is no torque in this 
instance. 

(b) Taking the derivative with respect to time, we obtain the torque: 

( )
2

ˆ ˆ4.0k ( 8.0  N m)k
d dt

t
dt dt

τ = = − = − ⋅ .

This vector points in the – k  direction (causing the clockwise motion to speed up) for all t
> 0. 

(c) With ˆ( 4.0 )kt= −  in SI units, the torque is 

τ = − = − F
HG
I
KJ4 0 4 0

1

2
. .k ke j e jd t

dt t

which yields ˆ( 2.0  N m)ktτ = − ⋅ . This vector points in the – k  direction (causing the 
clockwise motion to speed up) for all t > 0 (and it is undefined for t < 0). 

(d) Finally, we have 

τ = − = − −F
HG
I
KJ

−

4 0 4 0
22

3
. .k ke j e jdt

dt t

which yields 3 ˆ(8.0  N m)ktτ = ⋅ . This vector points in the + k  direction (causing the 
initially clockwise motion to slow down) for all t > 0. 



33. (a) We note that

d r
v

dt
=  =  8.0t i

^
  – (2.0 + 12t)j

^

with SI units understood.  From Eq. 11-18 (for the angular momentum) and Eq. 3-30, we 
find the particle’s angular momentum is 8t2 k

^
 . Using Eq. 11-23 (relating its time-

derivative to the (single) torque) then yields τ
→

 = 48t k^.

(b) From our (intermediate) result in part (a), we see the angular momentum increases in 
proportion to t2.



34. (a) Eq. 10-34 gives α = τ/I and Eq. 10-12 leads to ω = αt = τt/I. Therefore, the 
angular momentum at t = 0.033 s is 

( )( ) 216 N m 0.033s 0.53kg m sI tω τ= = ⋅ = ⋅

where this is essentially a derivation of the angular version of the impulse-momentum 
theorem. 

(b) We find 

( )( )
3

16 0.033
440 rad

1.2 10

t

I

τω −= = =
×

which we convert as follows: ω = (440)(60/2π) ≈ 4.2 ×103 rev/min. 



35. (a) Since τ = dL/dt, the average torque acting during any interval ∆ t is given by 

τ avg = −L L tf id i ∆ ,  where Li is the initial angular momentum and Lf is the final angular 

momentum. Thus 

2 2

avg

0.800 kg m s 3.00 kg m s
1.47 N m

1.50s
τ ⋅ − ⋅= = − ⋅ ,

or avg| | 1.47 N mτ = ⋅ . In this case the negative sign indicates that the direction of the 

torque is opposite the direction of the initial angular momentum, implicitly taken to be 
positive. 

(b) The angle turned is θ ω α= +0
21

2
t t .  If the angular acceleration α is uniform, then so 

is the torque and α = τ/I. Furthermore, ω0 = Li/I, and we obtain 

( )( ) ( )( )22 2

2

1 1
3.00 kg m s 1.50s 1.467 N m 1.50s

2 2 20.4 rad.
0.140kg m

iL t t

I

τ
θ

+ ⋅ + − ⋅
= = =

⋅

(c) The work done on the wheel is 

( )( )1.47 N m 20.4 rad 29.9 JW τθ= = − ⋅ = −

where more precise values are used in the calculation than what is shown here. An 
equally good method for finding W is Eq. 10-52, which, if desired, can be rewritten as 

( )2 2 2f iW L L I= − .

(d) The average power is the work done by the flywheel (the negative of the work done 
on the flywheel) divided by the time interval: 

avg

29.8 J
19.9 W.

1.50s

W
P

t

−= − = − =
∆



36. We relate the motions of the various disks by examining their linear speeds (using Eq. 
10-18).  The fact that the linear speed at the rim of disk A must equal the linear speed at 
the rim of disk C leads to ωA = 2ωC . The fact that the linear speed at the hub of disk A

must equal the linear speed at the rim of disk B leads to ωA = 12 ωB .  Thus, ωB = 4ωC .  The 

ratio of their angular momenta depend on these angular velocities as well as their 
rotational inertias (see item (c) in Table 11-2), which themselves depend on their masses.  
If h is the thickness and ρ is the density of each disk, then each mass is ρπR2h.  Therefore, 

LC

LB
   =

(½)ρπRC

2
h RC

2
ωC

(½)ρπRB

2
h RB

2
ωB

    =  1024 . 



37. (a) A particle contributes mr2 to the rotational inertia. Here r is the distance from the 
origin O to the particle. The total rotational inertia is 

( ) ( ) ( )2 2 2 2

2 2 3 2

3 2 14

14(2.3 10 kg)(0.12 m) 4.6 10  kg m .

I m d m d m d md
− −

= + + =

= × = × ⋅

(b) The angular momentum of the middle particle is given by Lm = Imω, where Im = 4md 2

is its rotational inertia. Thus  

2 2 2 3 24 4(2.3 10 kg)(0.12 m) (0.85 rad/s) 1.1 10  kg m /s.mL md ω − −= = × = × ⋅

(c) The total angular momentum is  

2 2 2 3 214 14(2.3 10 kg)(0.12 m) (0.85 rad/s) 3.9 10  kg m /s.I mdω ω − −= = × = × ⋅



38. The results may be found by integrating Eq. 11-29 with respect to time, keeping in 

mind that Li
→

 = 0 and that the integration may be thought of as “adding the areas” under 
the line-segments (in the plot of the torque versus time – with “areas” under the time axis 

contributing negatively). It is helpful to keep in mind, also, that the area of a triangle is 12
(base)(height). 

(a) We find that L
→

 =  24 kg.m2/s at t = 7.0 s. 

(b) Similarly, L
→

 = 1.5 kg.m2/s at t = 20 s.



39. (a) For the hoop, we use Table 10-2(h) and the parallel-axis theorem to obtain 

I I mh mR mR mR1
2 2 2 21

2

3

2
= + = + =com .

Of the thin bars (in the form of a square), the member along the rotation axis has 
(approximately) no rotational inertia about that axis (since it is thin), and the member 
farthest from it is very much like it (by being parallel to it) except that it is displaced by a 
distance h; it has rotational inertia given by the parallel axis theorem: 

I I mh mR mR2
2 2 20= + = + =com .

Now the two members of the square perpendicular to the axis have the same rotational 
inertia (that is I3 = I4). We find I3 using Table 10-2(e) and the parallel-axis theorem: 

I I mh mR m
R

mR3
2 2

2
21

12 2

1

3
= + = + FHG

I
KJ =com .

Therefore, the total rotational inertia is 

I I I I mR1 2 3 4
219

6
16+ + + = = ⋅. .kg m2

(b) The angular speed is constant: 

ω θ= = =∆
∆t

2

2 5
2 5

.
. rad s.

Thus, L I= = ⋅total
2kg m s.ω 4 0.



40. We use conservation of angular momentum:  

Imωm = Ipωp.

The respective angles θm and θp by which the motor and probe rotate are therefore related 
by 

I dt I I dt Im m m m p p p pω θ ω θ= = =z z
which gives 

θ
θ

m
p p

m

I

I
= =

⋅ °
× ⋅

= °−

12 30

2 0 10
180000

3

kg m

kg m

2

2

c hb g
.

.

The number of  revolutions for the rotor is then 1.8 × 105/360 = 5.0× 102 rev. 



41. (a) No external torques act on the system consisting of the man, bricks, and platform, 
so the total angular momentum of the system is conserved. Let Ii be the initial rotational 
inertia of the system and let If be the final rotational inertia. Then Iiωi = Ifωf and 

( )
2

2

6.0kg m
1.2 rev s 3.6 rev s.

2.0 kg m
i

f i
f

I

I
ω ω ⋅= = =

⋅

(b) The initial kinetic energy is K Ii i i= 1

2
2ω ,  the final kinetic energy is K If f f= 1

2
2ω ,

and their ratio is 

K

K

I

I
f

i

f f

i i

= =
⋅

⋅
=

ω
ω

2

2

2

2

2 0 36

6 0 12
3 0

. .

. .
. .

kg m rev s

kg m rev s

2

2

c hb g
c hb g

(c) The man did work in decreasing the rotational inertia by pulling the bricks closer to 
his body. This energy came from the man’s store of internal energy. 



42. (a) We apply conservation of angular momentum:  I1ω1 + I2ω2 = (I1 + I2)ω. The 
angular speed after coupling is therefore 

( )( ) ( )( )2 2

1 1 2 2
2 2

1 2

3.3kg m 450 rev min 6.6kg m 900 rev min

3.3kg m 6.6kg m

750 rev min .

I I

I I

ω ωω
⋅ + ⋅+= =

+ ⋅ + ⋅
=

(b) In this case, we obtain 

ω ω ω= +
+

=
+ −
+

= −I I

I I
1 1 2 2

1 2

33 450 6 6 900

33 6 6
450

. .

. .

b gb g b gb g
 rev min , 

or | | 450 rev minω = .

(c) The minus sign indicates that ω  is in the direction of the second disk’s initial angular 
velocity - clockwise. 



43. (a) No external torques act on the system consisting of the two wheels, so its total 
angular momentum is conserved. Let I1 be the rotational inertia of the wheel that is 
originally spinning at ω ib g  and I2 be the rotational inertia of the wheel that is initially at 

rest. Then I I Ii f1 1 2ω ω= +b g  and 

ω ωf i

I

I I
=

+
1

1 2

where ω f  is the common final angular velocity of the wheels. Substituting I2 = 2I1 and 

ω i = 800 rev min,  we obtain ω f = 267 rev min.  

(b) The initial kinetic energy is K Ii i= 1
2 1

2ω  and the final kinetic energy is 

K I If f= +1
2 1 2

2b gω . We rewrite this as 

K I I
I

I I
If

i
i= +

+
F
HG

I
KJ =1

2
2

2

1

61 1
1

1 1

2

2b g ω ω .

Therefore, the fraction lost, K K Ki f i−d i  is 

21
6

21
2

2
1 1 0.667.

3
f i

i i

K I

K I

ω
ω

− = − = =



44. Using Eq. 11-31 with angular momentum conservation, Li
→

 = Lf
→

 (Eq. 11-33) leads to 
the ratio of rotational inertias being inversely proportional to the ratio of angular 
velocities.  Thus, If /Ii = 6/5 = 1.0 + 0.2.  We interpret the “1.0” as the ratio of disk 
rotational inertias (which does not change in this problem) and the “0.2” as the ratio of 
the roach rotational inertial to that of the disk.  Thus, the answer is 0.20.



45. No external torques act on the system consisting of the train and wheel, so the total 
angular momentum of the system (which is initially zero) remains zero. Let I = MR2 be 
the rotational inertia of the wheel. Its final angular momentum is  

Lf
→

= = −I M Rω ωk k,2

where k  is up in Fig. 11-47 and that last step (with the minus sign) is done in recognition 
that the wheel’s clockwise rotation implies a negative value for ω. The linear speed of a 
point on the track is ωR and the speed of the train (going counterclockwise in Fig. 11-47 
with speed ′v  relative to an outside observer) is therefore ′ = −v v Rω  where v is its 

speed relative to the tracks. Consequently, the angular momentum of the train is 

m v R R− ωc h k .  Conservation of angular momentum yields 

0 2= − + −MR m v R Rω ωk k.c h

When this equation is solved for the angular speed, the result is 

( ) ( )2

(0.15 m/s)
| | 0.17 rad/s.

/ 1 (1.1+1)(0.43 m)

mvR v

M m R M m R
ω = = = =

+ +



46. Angular momentum conservation I Ii i f fω ω=  leads to 

ω
ω

ωf

i

i

f
i

I

I
= = 3

which implies 

K

K

I

I

I

I
f

i

f f

i i

f

i

f

i

= =
F
HG
I
KJ =

1
2

2

1
2

2

2

3
ω
ω

ω
ω

.



47. We assume that from the moment of grabbing the stick onward, they maintain rigid 
postures so that the system can be analyzed as a symmetrical rigid body with center of 
mass midway between the skaters. 

(a) The total linear momentum is zero (the skaters have the same mass and equal-and-
opposite velocities). Thus, their center of mass (the middle of the 3.0 m long stick) 
remains fixed and they execute circular motion (of radius r = 1.5 m) about it.  

(b) Using Eq. 10-18, their angular velocity (counterclockwise as seen in Fig. 11-48) is 

ω = = =v

r

14

15
0 93

.

.
. rad / s.

(c) Their rotational inertia is that of two particles in circular motion at r = 1.5 m, so Eq. 
10-33 yields 

I mr= = = ⋅2 2
2 50 15 225b gb g. .kg m2

Therefore, Eq. 10-34 leads to 

K I= =1

2

1

2
225 0 93 982 2ω b gb g. J.

(d) Angular momentum is conserved in this process. If we label the angular velocity 
found in part (a) ω i  and the rotational inertia of part (b) as Ii, we have 

I Ii i f fω ω= =225 0 93b gb g. .

The final rotational inertia is mrf
2  where rf = 0.5 m so If = 25 kg ⋅  m2. Using this value, 

the above expression gives ω f = 8 4. rad s.  

(e) We find 

K If f f= = = ×1

2

1

2
25 8 4 8 8 102 2 2ω b gb g. . J.

(f) We account for the large increase in kinetic energy (part (e) minus part (c)) by noting 
that the skaters do a great deal of work (converting their internal energy into mechanical 
energy) as they pull themselves closer — “fighting” what appears to them to be large
“centrifugal forces” trying to keep them apart. 



48. So that we don’t get confused about ± signs, we write the angular speed to the lazy 
Susan as ω  and reserve the ω symbol for the angular velocity (which, using a common 

convention, is negative-valued when the rotation is clockwise). When the roach “stops”
we recognize that it comes to rest relative to the lazy Susan (not relative to the ground). 

(a) Angular momentum conservation leads to 

mvR I mR I f+ = +ω ω0
2c h

which we can write (recalling our discussion about angular speed versus angular velocity) 
as

mvR I mR I f− = − +ω ω0
2c h .

We solve for the final angular speed of the system: 

3 2
0

2 3 2 2

| | (0.17 kg)(2.0 m/s)(0.15 m) (5.0 10  kg m )(2.8 rad/s)
| |

(5.0 10  kg m ) (0.17 kg)(0.15 m)

      4.2 rad/s.

f

mvR I

mR I

ωω
−

−

− − × ⋅= =
+ × ⋅ +

=

(b) No, K Kf i≠  and — if desired — we can solve for the difference: 

K K
mI v R Rv

mR Ii f− =
+ +

+2

22
0
2 2

0
2

ω ω

which  is clearly positive. Thus, some of the initial kinetic energy is “lost” — that is, 
transferred to another form. And the culprit is the roach, who must find it difficult to stop 
(and “internalize” that energy). 



49. For simplicity, we assume the record is turning freely, without any work being done 
by its motor (and without any friction at the bearings or at the stylus trying to slow it 
down). Before the collision, the angular momentum of the system (presumed positive) is 
Ii iω  where Ii = × ⋅−50 10 4. kg m2  and ω i = 4 7. .rad s  The rotational inertia afterwards is  

I I mRf i= + 2

where m = 0.020 kg and R = 0.10 m. The mass of the record (0.10 kg), although given in 
the problem, is not used in the solution. Angular momentum conservation leads to 

I I
I

I mRi i f f f
i i

i

ω ω ω ω= =
+

=
2

3 4. rad / s.



50. (a) We consider conservation of angular momentum (Eq. 11-33) about the center of 
the rod: 

Li
→

 = Lf
→

     –dmv + 1
12 ML2ω = 0 

where negative is used for “clockwise.” Item (e) in Table 01-2 and Eq. 11-21 (with r⊥ = d)
have also been used.  This leads to 

d = 
ML2 ω
12 m v  =

M(0.60 m)2 (80 rad/s)
12(M/3)(40 m/s)    =  0.180 m . 

(b) Increasing d causes the magnitude of the negative (clockwise) term in the above 
equation to increase.  This would make the total angular momentum negative before the 
collision, and (by Eq. 11-33) also negative afterwards.  Thus, the system would rotate 
clockwise if d were greater. 



51. The axis of rotation is in the middle of the rod, with r = 0.25 m from either end. By 
Eq. 11-19, the initial angular momentum of the system (which is just that of the bullet, 
before impact) is rmv sinθ  where m = 0.003 kg and θ = 60°. Relative to the axis, this is 
counterclockwise and thus (by the common convention) positive. After the collision, the 
moment of inertia of the system is  

I = Irod + mr2

where Irod = ML2/12 by Table 10-2(e), with M = 4.0 kg and L = 0.5 m. Angular 
momentum conservation leads to 

2 21
sin .

12
rmv ML mrθ ω= +

Thus, with ω = 10 rad/s, we obtain 

v =
+

= ×°

1
12

2 2

3
4 0 0 5 0 003 0 25 10

0 25 0 003 60
13 10

. . . .

. . sin
. .

b gb g b gb ge jb g
b gb g m s



52. We denote the cockroach with subscript 1 and the disk with subscript 2. The 
cockroach has a mass m1 = m, while the mass of the disk is m2 = 4.00 m.

(a) Initially the angular momentum of the system consisting of the cockroach and the disk 
is

L m v r I m R m Ri i i i= + = +1 1 1 2 2 1 0
2

2 0
21

2
ω ω ω .

After the cockroach has completed its walk, its position (relative to the axis) is r Rf1 2=
so the final angular momentum of the system is 

L m
R

m Rf f f= F
HG
I
KJ +1

2

2
2

2

1

2
ω ω .

Then from Lf = Li we obtain 

ω ωf m R m R m R m R
1

4

1

2

1

21
2

2 0 1
2

2
2+F

HG
I
KJ = +F
HG

I
KJ .

Thus,

2 2
1 2 2 1

0 0 0 02 2
1 2 2 1

2 1 ( / ) 2 1 2
1.33 .

4 2 1/ 4 ( / ) 2 1/ 4  2f

m R m R m m

m R m R m m
ω ω ω ω ω+ + += = = =

+ + +

With ω0 = 0.260 rad/s, we have ωf =0.347 rad/s.  

(b) We substitute I = L/ω into K I= 1

2
2ω  and obtain K L= 1

2
ω . Since we have Li = Lf,

the kinetic energy ratio becomes 

0 0

1
2 1.33.
1
2

f f
f

i i

LK

K L

ω ω
ωω

= = =

(c) The cockroach does positive work while walking toward the center of the disk, 
increasing the total kinetic energy of the system. 



53. By angular momentum conservation (Eq. 11-33), the total angular momentum after 
the explosion must be equal to before the explosion: 

p r p rL L L L′ ′+ = +

L
2 mvp  +

1
12 ML2 ω′  = Ip ω + 1

12 ML2 ω

where one must be careful to avoid confusing the length of the rod (L = 0.800 m) with the 
angular momentum symbol.  Note that Ip = m(L/2)2 by Eq.10-33, and  

ω′ = vend/r = (vp − 6)/(L/2),

where the latter relation follows from the penultimate sentence in the problem (and “6” 
stands for “6.00 m/s” here). Since M = 3m and ω = 20 rad/s, we end up with enough 
information to solve for the particle speed: vp = 11.0 m/s. 



54. The initial rotational inertia of the system is  Ii = Idisk + Istudent,  where Idisk = 300 
kg ⋅ m2 (which, incidentally, does agree with Table 10-2(c)) and Istudent = mR2 where m = 
60 kg and R = 2.0 m.

The rotational inertia when the student reaches r = 0.5 m is If = Idisk + mr2. Angular 
momentum conservation leads to 

I I
I mR

I mri i f f f iω ω ω ω= = +
+

disk

disk

2

2

which yields, for ωi = 1.5 rad/s, a final angular velocity of ωf = 2.6 rad/s. 



55. Their angular velocities, when they are stuck to each other, are equal, regardless of 
whether they share the same central axis. The initial rotational inertia of the system is 

I I I I MR0
21

2
= + =bigdisk smalldisk bigdiskwhere

using Table 10-2(c). Similarly, since the small disk is initially concentric with the big one, 
I mrsmalldisk = 1

2
2 . After it slides, the rotational inertia of the small disk is found from the 

parallel axis theorem (using h = R – r). Thus, the new rotational inertia of the system is 

( )22 21 1
.

2 2
I MR mr m R r= + + −

(a) Angular momentum conservation, I0ω0 = Iω, leads to the new angular velocity: 

ω ω=
+

+ + −
0

2 2

2 2 2

1
2

1
2

1
2

1
2

MR mr

MR mr m R rb g
.

Substituting M = 10m and R = 3r, this becomes ω = ω0(91/99). Thus, with ω0 = 20 rad/s, 
we find ω = 18 rad/s. 

(b) From the previous part, we know that 

I

I
0

0

91

99

91

99
= =and

ω
ω

.

Plugging these into the ratio of kinetic energies, we have 

2 2 2

20 0 0
0 0

1
99 912 0.92.

1 91 99
2

IK I

K II

ω ω
ωω

= = = =



56. (a) With r = 0.60 m, we obtain I = 0.060 + (0.501)r2 = 0.24 kg · m2.

(b) Invoking angular momentum conservation, with SI units understood, 

( ) ( ) ( ) ( )0 0 00.001 0.60 0.24 4.5fL mv r I vω= = =

which leads to v0 = 1.8 × 103 m/s. 



57. We make the unconventional choice of clockwise sense as positive, so that the 
angular velocities in this problem are positive. With r = 0.60 m and I0 = 0.12 kg · m2, the 
rotational inertia of the putty-rod system (after the collision) is  

I = I0 + (0.20)r2 = 0.19 kg · m2.

Invoking angular momentum conservation, with SI units understood, we have 

( )( ) ( )0 0 0 0.12 2.4 0.19fL L I Iω ω ω= = =

which yields ω = 1.5 rad/s. 



58. This is a completely inelastic collision which we analyze using angular momentum 
conservation. Let m and v0 be the mass and initial speed of the ball and R the radius of the 
merry-go-round. The initial angular momentum is 

( )
0 0 0 0 0 cos37r p R mv= × = °

where φ=37° is the angle between v0 and the line tangent to the outer edge of the merry-

go-around. Thus, 0 19= ⋅kg m s2 . Now, with SI units understood, 

( ) ( )( )2 2
0 19 150 30 1.0fL I R Rω ω= = = + +

so that ω = 0.070 rad/s. 



59. (a) If we consider a short time interval from just before the wad hits to just after it hits 
and sticks, we may use the principle of conservation of angular momentum. The initial 
angular momentum is the angular momentum of the falling putty wad. The wad initially 
moves along a line that is d/2 distant from the axis of rotation, where d = 0.500 m is the 
length of the rod. The angular momentum of the wad is mvd/2 where  m = 0.0500 kg and 
v = 3.00 m/s are the mass and initial speed of the wad. After the wad sticks, the rod has 
angular velocity ω and angular momentum Iω, where I is the rotational inertia of the 
system consisting of the rod with the two balls and the wad at its end. Conservation of 
angular momentum yields mvd/2 = Iω where  

I = (2M + m)(d/2)2

and M = 2.00 kg is the mass of each of the balls. We solve  

mvd M m d2 2 2
2= +b gb g ω

for the angular speed: 

ω =
+

=
+

=2

2

2 0 0500 3 00

2 2 00 0 0500 0 500
0148

mv

M m db g
b gb g

b gc hb g
. .

. . .
. .rad s  

(b) The initial kinetic energy is K mvi = 1
2

2 ,  the final kinetic energy is K If = 1
2

2ω ,  and 

their ratio is K K I mvf i = ω 2 2 .  When I M m d= +2 42b g  and ω = +2 2mv M m db g
are substituted, this becomes 

K

K

m

M m
f

i

=
+

=
+

=
2

0 0500

2 2 00 0 0500
0 0123

.

. .
. .b g

(c) As the rod rotates, the sum of its kinetic and potential energies is conserved. If one of 
the balls is lowered a distance h, the other is raised the same distance and the sum of the 
potential energies of the balls does not change. We need consider only the potential 
energy of the putty wad. It moves through a 90° arc to reach the lowest point on its path, 
gaining kinetic energy and losing gravitational potential energy as it goes. It then swings 
up through an angle θ, losing kinetic energy and gaining potential energy, until it 
momentarily comes to rest. Take the lowest point on the path to be the zero of potential 
energy. It starts a distance d/2 above this point, so its initial potential energy is Ui = 
mgd/2. If it swings up to the angular position θ, as measured from its lowest point, then 
its final height is (d/2)(1 – cos θ) above the lowest point and its final potential energy is  

U mg df = −2 1b gb gcos .θ



The initial kinetic energy is the sum of that of the balls and wad:  

K I M m di = = +1
2

2 1
2

2 22 2ω ωb gb g .

At its final position, we have Kf = 0. Conservation of energy provides the relation: 

mg
d

M m
d

mg
d

2

1

2
2

2 2
1

2
2+ + FHG

I
KJ = −b g b gω θcos .  

When this equation is solved for cos θ, the result is 

( )
( ) ( ) ( )22

2

2 2.00 kg 0.0500 kg1 2 1 0.500 m
cos 0.148 rad s

2 2 2 20.0500 kg 9.8 m s

0.0226.

M m d

mg
θ ω

++= − = −

= −

Consequently, the result for θ is 91.3°. The total angle through which it has swung is 90° 
+ 91.3° = 181°. 



60. We make the unconventional choice of clockwise sense as positive, so that the 
angular velocities (and angles) in this problem are positive. Mechanical energy 
conservation applied to the particle (before impact) leads to 

mgh mv v gh= =1

2
22

for its speed right before undergoing the completely inelastic collision with the rod. The 
collision is described by angular momentum conservation: 

mvd I md= +rod
2c hω

where Irod is found using Table 10-2(e) and the parallel axis theorem: 

I Md M
d

Mdrod = + FHG
I
KJ =1

12 2

1

3
2

2
2 .

Thus, we obtain the angular velocity of the system immediately after the collision: 

ω =
+

md gh

Md md

2
1
3

2 2

which means the system has kinetic energy ( )2 2
rod / 2I md ω+  which will turn into 

potential energy in the final position, where the block has reached a height H (relative to 
the lowest point) and the center of mass of the stick has increased its height by H/2. From 
trigonometric considerations, we note that H = d(1 – cosθ), so we have 

( ) ( ) ( )
2 2

2 2
rod 2 2

21 1
1 cos

2 2 2 ( / 3) 2

m d ghH M
I md mgH Mg m gd

Md md
ω θ+ = + = + −

+

from which we obtain 

( ) ( )
2

1 1

1 1

/
cos 1 cos 1

1 1/ 2 / 3 1 1
2 3

(20 cm/ 40 cm)
cos 1 cos (0.85)

(1 1)(1 2/3)

32 .

m h h d
M Mm M m M
m m

θ − −

− −

= − = −
+ + + +

= − =
+ +

= °



61. (a) The angular speed of the top is 30 rev/s 30(2 ) rad/sω π= = . The precession rate of 
the top can be obtained by using Eq. 11-46: 

2

4 2

(0.50 kg)(9.8 m/s )(0.040 m)
2.08 rad/s 0.33 rev/s.

(5.0 10  kg m )(60  rad/s)

Mgr

Iω π−Ω = = = ≈
× ⋅

(b) The direction of the precession is clockwise as viewed from overhead. 



62. The precession rate can be obtained by using Eq. 11-46 with r =(11/2) cm = 0.055 m. 
Noting that Idisk=MR2/2 and its angular speed is 

22 (1000)
1000 rev/min  rad/s 1.0 10  rad/s,

60

πω = = ≈ ×

we have

2

2 2 2 2

2 2(9.8 m/s )(0.055 m)
0.041 rad/s.

( / 2) (0.50 m) (1.0 10  rad/s)

Mgr gr

MR Rω ω
Ω = = = ≈

×



63. The total angular momentum (about the origin) before the collision (using Eq. 11-18 
and Eq. 3-30 for each particle and then adding the terms) is  

Li
→

 = [(0.5 m)(2.5 kg)(3.0 m/s) + (0.1 m)(4.0 kg)(4.5 m/s)]k^ .

The final angular momentum of the stuck-together particles (after the collision) measured 

relative to the origin is (using Eq. 11-33) Lf
→

 = Li
→

 = (5.55 kg.m2/s)k^ .



64. (a) We choose clockwise as the negative rotational sense and rightwards as the 
positive translational direction. Thus, since this is the moment when it begins to roll 
smoothly, Eq. 11-2 becomes v Rcom m= − = −ω ω011. .b g

This velocity is positive-valued (rightward) since ω is negative-valued (clockwise) as 
shown in Fig. 11-57. 

(b) The force of friction exerted on the ball of mass m is −µ k mg  (negative since it points 
left), and setting this equal to macom leads to 

a gcom
2 2m s m s= − = − = −µ 0 21 9 8 21. . .b g c h

where the minus sign indicates that the center of mass acceleration points left, opposite to 
its velocity, so that the ball is decelerating. 

(c) Measured about the center of mass, the torque exerted on the ball due to the frictional 
force is given by τ µ= − mgR . Using Table 10-2(f) for the rotational inertia, the angular 
acceleration becomes (using Eq. 10-45) 

α τ µ µ= = − = − =
−

= −
I

mgR

m R

g

R2 5

5

2

5 0 21 9 8

2 011
472

. .

.

b gb g
b g rad s2

where the minus sign indicates that the angular acceleration is clockwise, the same 
direction as ω (so its angular motion is “speeding up’’). 

(d) The center-of-mass of the sliding ball decelerates from vcom,0 to vcom during time t
according to Eq. 2-11: v v gtcom com,0= − µ .  During this time, the angular speed of the ball 

increases (in magnitude) from zero to ω  according to Eq. 10-12: 

ω α µ= = =t
gt

R

v

R

5

2
com

where we have made use of our part (a) result in the last equality. We have two equations 
involving vcom, so we eliminate that variable and find 

t
v

g
= = =

2

7

2 85

7 0 21 9 8
12com,0 s.

µ
.

. .
.

b g
b gb g

(e) The skid length of the ball is (using Eq. 2-15) 



∆x v t g t= − = − =com,0 m.
1

2
85 12

1

2
0 21 9 8 12 8 62 2µb g b gb g b gb gb g. . . . . .

(f) The center of mass velocity at the time found in part (d) is 

v v gtcom com,0 m s= − = − =µ 85 0 21 9 8 12 61. . . . . .b gb gb g



65. Item (i) in Table 10-2 gives the moment of inertia about the center of mass in terms of 
width a (0.15 m) and length b (0.20 m).  In using the parallel axis theorem, the distance 
from the center to the point about which it spins (as described in the problem) is 

(a/4)2 + (b/4)2 .  If we denote the thickness as h (0.012 m) then the volume is abh, which 
means the mass is ρabh (where ρ = 2640 kg/m3 is the density).  We can write the kinetic 
energy in terms of the angular momentum by substituting ω = L/I  into Eq. 10-34: 

K = 12
L2

I   = 1
2

(0.104)2

 ρabh((a2 + b2)/12 + (a/4)2 + (b/4)2 )
  =   0.62 J . 



66. We denote the cat with subscript 1 and the ring with subscript 2. The cat has a mass 
m1 = M/4, while the mass of the ring is m2 = M = 8.00 kg. The moment of inertia of the 
ring is 2 2

2 2 1 2( ) / 2I m R R= +  (Table 10-2), and I1=m1r
2 for the cat, where r is the 

perpendicular distance from the axis of rotation.  

Initially the angular momentum of the system consisting of the cat (at r = R2) and the ring 
is

2
2 2 2 2 2 1

1 1 1 2 2 1 0 2 2 1 2 0 1 2 0 2
1 2

1 1
( ) 1 1 .

2 2i i i i

m R
L m v r I m R m R R m R

m R
ω ω ω ω= + = + + = + +

After the cat has crawled to the inner edge at 1r R=  the final angular momentum of the 

system is 

2
2 2 2 2 2 2

1 1 2 1 2 1 1 2
1 1

1 1
( ) 1 1 .

2 2f f f f

m R
L m R m R R m R

m R
ω ω ω= + + = + +

Then from Lf = Li we obtain 

2
2 1

22
1 2 22

2 2
0 1 2 2

2
1 1

1
1 1

2 1 2(0.25 1)
(2.0) 1.273

1 2(1 4)1
1 1

2

f

m R

m RR

R m R

m R

ω
ω

+ +
+ += = =

+ +
+ +

Thus, 01.273fω ω= . Using ω0 =8.00 rad/s, we have ωf =10.2 rad/s. By substituting I = 

L/ω into K I= 1

2
2ω , we obtain K L= 1

2
ω . Since Li = Lf, the kinetic energy ratio 

becomes 

0

1
2 1.273.
1
2

f f
f f

i
i i

LK

K L

ω ω
ωω

= = =

which implies 0.273f i iK K K K∆ = − = . The cat does positive work while walking toward 

the center of the ring, increasing the total kinetic energy of the system. 

Since the initial kinetic energy is given by 



2
2 2 2 2 2 2 2 1

1 2 2 1 2 0 1 2 0 2
1 2

2 2 2

1 1 1 1
( ) 1 1

2 2 2 2

1
(2.00 kg)(0.800 m) (8.00 rad/s) [1+(1/2)(4)(0.5 +1)]

2
=143.36 J,

i

m R
K m R m R R m R

m R
ω ω= + + = + +

=

the increase in kinetic energy is (0.273)(143.36 J)=39.1 J.K∆ =



67. (a) The diagram below shows the particles and their lines of motion. The origin is 
marked O and may be anywhere. The angular momentum of particle 1 has magnitude  

( )1 1 1sin  mvr mv d hθ= = +

and it is into the page. The angular momentum of particle 2 has magnitude  

2 2 2= =mvr mvhsinθ

and it is out of the page. The net angular momentum has magnitude  

4

5 2

( )

(2.90 10  kg)(5.46 m/s)(0.042 m)

6.65 10  kg m /s.

L mv d h mvh mvd
−

−

= + − =
= ×
= × ⋅

and is into the page. This result is independent of the location of the origin. 

(b) As indicated above, the expression does not change. 

(c) Suppose particle 2 is traveling to the right. Then  

L = mv(d + h) + mvh = mv(d + 2h).

This result depends on h, the distance from the origin to one of the lines of motion. If the 
origin is midway between the lines of motion, then h d= − 2  and L = 0. 

(d) As we have seen in part (c), the result depends on the choice of origin.  



68. (a) When the small sphere is released at the edge of the large “bowl” (the hemisphere 
of radius R), its center of mass is at the same height at that edge, but when it is at the 
bottom of the “bowl” its center of mass is a distance r above the bottom surface of the 
hemisphere. Since the small sphere descends by R – r, its loss in gravitational potential 
energy is mg(R– r), which, by conservation of mechanical energy, is equal to its kinetic 
energy at the bottom of the track. Thus, 

4 2

4

( )

(5.6 10 kg)(9.8 m/s )(0.15 m  0.0025 m)

 8.1 10  J.

K mg R r
−

−

= −
= × −
= ×

(b) Using Eq. 11-5 for K, the asked-for fraction becomes 

K

K

I

I Mv M
I

v

rot

com com

=
+

=
+

1
2

2

1
2

2 1
2

2 2

1

1

ω
ω

ωb gd i
.

Substituting vcom = Rω (Eq. 11-2) and I MR= 2
5

2  (Table 10-2(f)), we obtain 

( )2

rot
25

2

1 2
0.29.

71
R

K

K R
= = ≈

+

(c) The small sphere is executing circular motion so that when it reaches the bottom, it 
experiences a radial acceleration upward (in the direction of the normal force which the
“bowl” exerts on it). From Newton’s second law along the vertical axis, the normal force 
FN satisfies FN – mg = macom where

a v R rcom com= −2 / ( ) . 

Therefore, 

( ) 22
comcom .N

mg R r mvmv
F mg

R r R r

− +
= + =

− −

But from part (a), mg(R – r) = K, and from Eq. 11-5, 1
2

2mv K Kcom rot= − . Thus, 

( )rot rot
2

3 2 .N

K K K KK
F

R r R r R r

+ −
= = −

− − −

We now plug in R – r = K/mg and use the result of part (b): 



4 2 22 17 17
3 2 (5.6 10  kg)(9.8 m/s ) 1.3 10  N.

7 7 7NF mg mg mg − −= − = = × = ×



69. Since we will be taking the vector cross product in the course of our calculations, 
below, we note first that when the two vectors in a cross product A B×  are in the xy

plane, we have A A Ax y= i + j  and B B Bx y= i + j , and Eq. 3-30 leads to 

A B A B A Bx y y x× = −d ik.

Now, we choose coordinates centered on point O, with +x rightwards and +y upwards. In 

unit-vector notation, the initial position of the particle, then, is r s0 = i  and its later 

position (halfway to the ground) is r s h= −i j1
2 . Using either the free-fall equations of 

Ch. 2 or the energy techniques of Ch. 8, we find the speed at its later position to be 

v g y gh= =2 ∆ . Its momentum there is p M gh= − j . We find the angular 

momentum using Eq. 11-18 and our observation, above, about the cross product of two 
vectors in the xy plane. 

= × = −r p sM gh k

Therefore, its magnitude is 

2 2| | (0.45 m)(0.25 kg) (9.8 m/s )(1.8 m) 0.47 kg m /ssM gh= = = ⋅ .



70. From I MR= 2
3

2  (Table 10-2(g)) we find 

M
I

R
= = =3

2

3 0 040

2 015
2 7

2 2

.

.
.

b g
b g

kg.  

It also follows from the rotational inertia expression that 1
2

2 1
3

2 2I MRω ω= . Furthermore, 

it rolls without slipping, vcom = Rω, and we find 

K

K K

MR

mR MR
rot

com rot+
=

+

1
3

2 2

1
2

2 2 1
3

2 2

ω
ω ω

.

(a) Simplifying the above ratio, we find Krot/K = 0.4. Thus, 40% of the kinetic energy is 
rotational, or  

Krot = (0.4)(20) = 8.0  J. 

(b) From  2 21
rot 3 8.0 JK M R ω= =  (and using the above result for M) we find 

ω = =1

015

3 8 0

2 7
20

.

.

.m

J

kg
rad s

b g

which leads to vcom = (0.15)(20) = 3.0 m/s. 

(c) We note that the inclined distance of 1.0 m corresponds to a height h = 1.0 sin 30° = 
0.50 m. Mechanical energy conservation leads to 

20Ji f f fK K U K Mgh= + = +

which yields (using the values of M and h found above) Kf = 6.9 J. 

(d) We found in part (a) that 40% of this must be rotational, so 

1

3
0 40

1

015

3 0 40 6 9

2 7
2 2MR Kf f fω ω= =.

.

. .

.
b g b gb g

which yields ωf = 12 rad/s and leads to 

v Rf fcom m s= = =ω 015 12 18. . .b gb g



71. Both r  and v  lie in the xy plane. The position vector r  has an x component that is a 
function of time (being the integral of the x component of velocity, which is itself time-
dependent) and a y component that is constant (y = –2.0 m). In the cross product r v× ,
all that matters is the y component of r  since vx ≠ 0  but vy = 0: 

r v yvx× = − k .

(a) The angular momentum is = ×m r vb g  where the mass is m = 2.0 kg in this case. 

With SI units understood and using the above cross-product expression, we have 

( ) ( )( )( )2 2ˆ ˆ2.0 2.0 6.0 k= 24 kt t= − − − −

in kg ⋅ m2/s. This implies the particle is moving clockwise (as observed by someone on 
the +z axis) for t > 0. 

(b) The torque is caused by the (net) force F ma=  where 

a
dv

dt
t= = −12 .i m / s2

The remark above that only the y component of r  still applies, since ay = 0. We use 
τ = × = ×r F m r ab g  and obtain 

τ = − − − −2 0 2 0 12. .b g b gb gc ht tk = 48 k  

in N ⋅ m. The torque on the particle (as observed by someone on the +z axis) is clockwise, 
causing the particle motion (which was clockwise to begin with) to increase. 

(c) We replace r  with ′r  (measured relative to the new reference point) and note (again) 
that only its y component matters in these calculations. Thus, with y′  = –2.0 – (–3.0) = 
1.0 m, we find 

( ) ( ) ( )( )2 2 2ˆ ˆ2.0 1.0 6.0 k (12  kg m /s)kt t′ = − − = ⋅ .

The fact that this is positive implies that the particle is moving counterclockwise relative 
to the new reference point. 

(d) Using ′ = ′ × = ′ ×τ r F m r ab g,  we obtain 

( ) ( )( )( ) ˆ ˆ2.0 1.0 12 k=(24 N m)kt tτ = − − ⋅ .



The torque on the particle (as observed by someone on the +z axis) is counterclockwise, 
relative to the new reference point. 



72. Conservation of energy (with Eq. 11-5) gives 

(Mechanical Energy at max height up the ramp) = (Mechanical Energy on the floor) 

1
2 mvf

2
 + 1

2 Icom ωf
2
 + mgh  =   12 mv2 + 1

2 Icom ω2

where vf = ωf = 0 at the point on the ramp where it (momentarily) stops.  We note that the 
height h relates to the distance traveled along the ramp d by h = dsin(15º).  Using item (f)
in Table 10-2 and Eq. 11-2, we obtain 

mgd sin(15º) = mv2(½ + 1/5) . 

After canceling m and plugging in d = 1.5 m, we find v = 2.33 m/s. 



73. For a constant (single) torque, Eq. 11-29 becomes τ
→

 =  d L
→

d t
= ∆ L

→

 ∆ t
.  Thus, we obtain ∆t

= 600/50 = 12 s. 



74. The rotational kinetic energy is K I= 1
2

2ω ,  where I = mR2 is its rotational inertia 

about the center of mass (Table 10-2(a)), m = 140 kg, and ω  = vcom/R (Eq. 11-2). The 
asked-for ratio is 

( ) ( )
21
comtransl 2

221
rot com2

1.00.
mvK

K mR v R
= =



75. This problem involves the vector cross product of vectors lying in the xy plane. For 

such vectors, if we write ′ = ′ ′r x yi + j , then (using Eq. 3-30) we find 

′ × = ′ − ′r v x v y vy xd ik.

(a) Here, ′r  points in either the +i  or the −i  direction (since the particle moves along 
the x axis). It has no y′  or z′  components, and neither does v , so it is clear from the 

above expression (or, more simply, from the fact that i i = 0× ) that = ′ × =m r vb g 0  in 

this case. 

(b) The net force is in the −i  direction (as one finds from differentiating the velocity 
expression, yielding the acceleration), so, similar to what we found in part (a), we obtain 
τ = ′ × =r F 0 .

(c) Now, ′ = −r r ro  where ro i j= +2 0 50. .  (with SI units understood) and points from (2.0, 
5.0, 0) to the instantaneous position of the car (indicated by r  which points in either the 
+x or –x directions, or nowhere (if the car is passing through the origin)). Since r v× = 0
we have (plugging into our general expression above) 

= ′ × = − × = − − −m r v m r v tb g b g b g b gb g b gc he jo k30 2 0 0 50 2 0 3. . . .

which yields = −30 3t k  in SI units kg m s2⋅c h.

(d) The acceleration vector is given by a tdv
dt= = −6 0 2. i  in SI units, and the net force on 

the car is ma.  In a similar argument to that given in the previous part, we have 

τ = ′ × = − × = − − −m r a m r a tb g b g b g b gb g b gc he jo k3 0 2 0 0 50 6 0 2. . . .

which yields τ = −90 2t k  in SI units (N m)⋅ .

(e) In this situation, ′ = −r r ro  where ro i j= −2 0 5 0. .  (with SI units understood) and 
points from (2.0, –5.0, 0) to the instantaneous position of the car (indicated by r  which 
points in either the +x or –x directions, or nowhere (if the car is passing through the 
origin)). Since r v× = 0  we have (plugging into our general expression above) 

= ′ × = − × = − − − −m r v m r v tb g b g b g b gb g b gc he jo k3 0 2 0 0 5 0 2 0 3. . . .



which yields = 30 3t k  in SI units  kg m s2⋅c h.

(f) Again, the acceleration vector is given by a t= −6 0 2. i  in SI units, and the net force on 
the car is ma.  In a similar argument to that given in the previous part, we have 

τ = ′ × = − × = − − − −m r a m r a tb g b g b g b gb g b gc he jo k30 2 0 0 50 6 0 2. . . .

which yields τ = 90 2t k  in SI units N m⋅b g.



76. We use L = Iω and K I= 1
2

2ω  and observe that the speed of points on the rim 

(corresponding to the speed of points on the belt) of wheels A and B must be the same (so 
ωARA = ωBrB).

(a) If LA = LB (call it L) then the ratio of rotational inertias is 

1
0.333.

3
A A A A

B B B B

I L R

I L R

ω ω
ω ω

= = = = =

(b) If we have KA = KB (call it K) then the ratio of rotational inertias becomes 

2 22

2

2 1
0.111.

2 9
A A B A

B B A B

I K R

I K R

ω ω
ω ω

= = = = =



77. The initial angular momentum of the system is zero. The final angular momentum of 
the girl-plus-merry-go-round is (I + MR2) ω which we will take to be positive. The final 
angular momentum we associate with the thrown rock is negative: –mRv, where v is the 
speed (positive, by definition) of the rock relative to the ground. 

(a) Angular momentum conservation leads to 

0 2
2

= + − =
+

I MR mRv
mRv

I MR
c hω ω .

(b) The girl’s linear speed is given by Eq. 10-18: 

R
mvR

I MR
ω =

+

2

2
.



78. (a) With p mv= = − ⋅16 ,j kg m s  we take the vector cross product (using either Eq. 

3-30 or, more simply, Eq. 11-20 and the right-hand rule): 2 ˆ( 32 kg m / s )k.r p= × = − ⋅

(b) Now the axis passes through the point R = 4 0. j m,  parallel with the z axis. With 

′ = − =r r R 2 0. i m,  we again take the cross product and arrive at the same result as 

before: 2 ˆ( 32 kg m s)k.r p′ ′= × = − ⋅

(c) Torque is defined in Eq. 11-14: ˆ(12 N m)k.r Fτ = × = ⋅

(d) Using the notation from part (b), ′ = ′ × =τ r F 0.



79. This problem involves the vector cross product of vectors lying in the xy plane. For 

such vectors, if we write r x y= +i j , then (using Eq. 3-30) we find 

r p xp ypy x× = −∆ ∆d ik.

The momentum components are

px = p cos θ
py = p sin θ

where p = 2.4 (SI units understood) and θ = 115°. The mass (0.80 kg) given in the 
problem is not used in the solution. Thus, with x = 2.0, y = 3.0 and the momentum 
components described above, we obtain 

2 ˆ(7.4kg m s)k.r p= × = ⋅



80. We note that its mass is M = 36/9.8 = 3.67 kg and its rotational inertia is 

I MRcom = 2

5
2  (Table 10-2(f)). 

(a) Using Eq. 11-2, Eq. 11-5 becomes 

2
2 2 2 2 2com

com com com com

1 1 1 2 1 7

2 2 2 5 2 10

v
K I Mv MR Mv Mv

R
ω= + = + =

which yields K = 61.7 J for vcom = 4.9 m/s. 

(b) This kinetic energy turns into potential energy Mgh at some height h = d sin θ where 
the sphere comes to rest. Therefore, we find the distance traveled up the θ = 30° incline 
from energy conservation: 

7

10
2

2

Mv M gd d
v

gcom
com  sin     

7

10
  3.43m.= = =θ

θsin

(c) As shown in the previous part, M cancels in the calculation for d. Since the answer is 
independent of mass, then, it is also independent of the sphere’s weight. 



81. (a) Interpreting h as the height increase for the center of mass of the body, then (using 
Eq. 11-5) mechanical energy conservation leads to 

K U

mv I mgh

mv I
v

R
mg

v

g

i f=

+ =

+ FHG
I
KJ =

F
HG
I
KJ

1

2

1

2

1

2

1

2

3

4

2 2

2
2 2

com ω

from which v cancels and we obtain I mR= 1
2

2 .

(b) From Table 10-2(c), we see that the body could be a solid cylinder. 



82. (a) Using Eq. 2-16 for the translational (center-of-mass) motion, we find 

v v a x a
v

x
2

0
2 0

2

2
2

= + = −∆
∆

which yields a = –4.11 for v0 = 43 and ∆x = 225  (SI units understood). The magnitude of 
the linear acceleration of the center of mass is therefore 4.11 m/s2.

(b) With R = 0.250 m, Eq. 11-6 gives  

α = =a R 16 4. .rad s2

If the wheel is going rightward, it is rotating in a clockwise sense. Since it is slowing 
down, this angular acceleration is counterclockwise (opposite to ω) so (with the usual 
convention that counterclockwise is positive) there is no need for the absolute value signs 
for α.

(c) Eq. 11-8 applies with Rfs representing the magnitude of the frictional torque. Thus,  

Rfs = Iα = (0.155) (16.4) = 2.55 N·m. 



83. As the wheel-axel system rolls down the inclined plane by a distance d, the decrease 
in potential energy is sinU mgd θ∆ = . This must be equal to the total kinetic energy 
gained: 

2 21 1
sin

2 2
mgd mv Iθ ω= + .

Since the axel rolls without slipping, the angular speed is given by /v rω = , where r is 
the radius of the axel. The above equation then becomes 

2 2
2

rot

1
sin 1 1

2

mr mr
mgd I K

I I
θ ω= + = +

(a) With m=10.0 kg, d = 2.00 m, r = 0.200 m, and I = 0.600 kg m2, mr2/I =2/3, the 
rotational kinetic energy may be obtained as rot98 J = (5 / 3)K , or rot 58.8 JK = .

(b) The translational kinetic energy is trans (98 58.8)J 39.2 J.K = − =



84. The speed of the center of mass of the car is v = (40)(1000/3600) = 11 m/s. The 
angular speed of the wheels is given by Eq. 11-2: ω = v/R where the wheel radius R is not 
given (but will be seen to cancel in these calculations). 

(a) For one wheel of mass M = 32 kg, Eq. 10-34 gives (using Table 10-2(c)) 

K I MR
v

R
Mvrot = = FHG

I
KJ
F
HG
I
KJ =1

2

1

2

1

2

1

4
2 2

2
2ω

which yields Krot = 9.9 × 102 J. The time given in the problem (10 s) is not used in the 
solution.

(b) Adding the above to the wheel’s translational kinetic energy, 1
2

2Mv , leads to 

K Mv Mvwheel J.= + = = ×1

2

1

4

3

4
32 11 3 0 102 2 2 3b gb g .

(c) With Mcar = 1700 kg and the fact that there are four wheels, we have 

1

2
4

3

4
12 102 2 5M v Mvcar J.+ FHG
I
KJ = ×.



85. We make the unconventional choice of clockwise sense as positive, so that the 
angular acceleration is positive (as is the linear acceleration of the center of mass, since 
we take rightwards as positive). 

(a) We approach this in the manner of Eq. 11-3 (pure rotation about point P) but use 
torques instead of energy: 

τ α= = +I I MR MRP Pwhere
1

2
2 2

where the parallel-axis theorem and Table 10-2(c) has been used. The torque (relative to 
point P) is due to the Fapp = 12 N force and is τ = Fapp (2R). In this way, we find 

α =
+

=
12 0 20

0 05 010
16

b gb g.

. .
.rad s2

Hence, acom = Rα = 1.6 m/s2.

(b) As shown above, α = 16 rad/s2.

(c) Applying Newton’s second law in its linear form yields 12 N comb g− =f Ma .

Therefore, f = –4.0 N. Contradicting what we assumed in setting up our force equation, 

the friction force is found to point rightward with magnitude 4.0 N, i.e., ˆ(4.0 N)if = .



86. Since we will be taking the vector cross product in the course of our calculations, 
below, we note first that when the two vectors in a cross product A B×  are in the xy

plane, we have A A Ax y= i + j  and B B Bx y= i + j,  and Eq. 3-30 leads to 

A B A B A Bx y y x× = −d ik.

(a) We set up a coordinate system with its origin at the firing point, the positive x axis in 
the horizontal direction of motion of the projectile and the positive y axis vertically 
upward. The projectile moves in the xy plane, and if +x is to our right then the “rotation”
sense will be clockwise. Thus, we expect our answer to be negative. The position vector 
for the projectile (as a function of time) is given by 

r v t v t gt v t v gtx y= + −F
HG

I
KJ = + −0 0

2
0 0 0 0

1

2
b g b g b gcos sini j i jθ θ

and the velocity vector is 

v v v v v gtx y= + = + −cos sini j i j.0 0 0 0θ θb g b g

Thus (using the above observation about the cross product of vectors in the xy plane) the 
angular momentum of the projectile as a function of time is 

2 2 2
0 0

2 2

1 1ˆ ˆcos k (0.320 kg)(12.6 m/s)cos30 (9.8 m/s ) k
2 2

ˆ( 17.1  kg m /s) k

mr v mv gt t

t

θ= × = − = − °

= − ⋅

(b) We take the derivative of our result in part (a): 

2 2
0 0

ˆ ˆcos k ( 34.2  kg m /s ) k.
d

v mgt t
dt

θ= − = − ⋅

(c) Again using the above observation about the cross product of vectors in the xy plane, 
we find 

( )( ) ( )0 0 0 0
ˆ ˆ ˆ ˆ ˆcos i j j ( cos ) k ( 34.2  N m) kyr F v t r mg v mgt tθ θ× = + × − = − = − ⋅

which is the same as the result in part (b). 

(d) They are the same because d dt r F= = ×τ .



87. We denote the wheel with subscript 1 and the whole system with subscript 2. We take 
clockwise as the negative sense for rotation (as is the usual convention).  

(a) Conservation of angular momentum gives L = I1ω1 = I2ω2, where 2
1 1 1I m R= . Thus 

ω ω2 1
1

2

2

57 7
37 0 35

2 1
= = −

⋅
I

I
.

.

.
rad s

N 9.8m s m

kg m

2

2b g c hb g
= –12.7 rad/s, 

or 2| | 12.7 rad/sω = .

(b) The system rotates clockwise (as seen from above) at the rate of 12.7 rad/s. 



88. The problem asks that we put the origin of coordinates at point O but compute all the 
angular momenta and torques relative to point A. This requires some care in defining r
(which occurs in the angular momentum and torque formulas). If rO  locates the point 

(where the block is) in the prescribed coordinates, and rOA = −12. j  points from O to A,
then r r rO OA= −  gives the position of the block relative to point A. SI units are used 
throughout this problem. 

(a) Here, the momentum is p mv0 0 15= = . i  and r0 12= . j,  so that 

2
0 0 0

ˆ( 1.8kg m s )k.r p= × = − ⋅

(b) The horizontal component of momentum doesn’t change in projectile motion (without 
friction), and its vertical component depends on how far it has fallen. From either the 
free-fall equations of Ch. 2 or the energy techniques of Ch. 8, we find the vertical 

momentum component after falling a distance h to be −m gh2 . Thus, with m = 0.50 and 

h = 1.2, the momentum just before the block hits the floor is p = −15 2 4. .i j.  Now, 

r R= i  where R is figured from the projectile motion equations of Ch. 4 to be  

0
2 1.5 m.hR v
g

= =

Consequently, 2 ˆ( 3.6kg m s)k.r p= × = − ⋅

(c) The only force on the object is its weight ˆ4.9jmg = − . Thus, just after the block leaves 

the table, we have 0 0 0.r Fτ = × =

(d) Similarly, just before the block strikes the floor, we have ˆ( 7.3N m)kr Fτ = × = − ⋅ .



89. (a) The acceleration is given by Eq. 11-13: 

a
g

I MRcom
com

=
+1 0

2

where upward is the positive translational direction. Taking the coordinate origin at the 
initial position, Eq. 2-15 leads to 

y v t a t v t
gt

I MRcom com,0 com com,0
com

= + = −
+

1

2 1
2

1
2

2

0
2

where ycom = – 1.2 m and  vcom,0 = – 1.3 m/s. Substituting Icom kg m= ⋅0 000095 2. , M = 
0.12 kg, R0 = 0.0032 m and g = 9.8 m/s2, we use the quadratic formula and find 

( )( )

( )( )
( )( )

( )( )( )

com
2
0

2

com
2

com 0

2

2
com,0 com,0

2 9.8 1.22

1 0.000095 0.12 0.0032

2
1

0.000095
0.12 0.0032

1

1 1.3 1.3

9.8
21.7 or 0.885

I

MR

gy

I MR
v v

t
g

−

+

++ −
=

+ − −
=

= −

where we choose t = 0.89 s as the answer. 

(b) We note that the initial potential energy is Ui = Mgh and h = 1.2 m (using the bottom 
as the reference level for computing U). The initial kinetic energy is as shown in Eq. 11-5, 
where the initial angular and linear speeds are related by Eq. 11-2. Energy conservation 
leads to 

( ) ( ) ( ) ( )( ) ( )

2

com,02
com,0

0

2
2 5

1 1

2 2

1 1 1.3
0.12 1.3 9.5 10 0.12 9.8 1.2

2 2 0.0032
9.4 J.

f i i

v
K K U mv I Mgh

R

−

= + = + +

= + × +

=

(c) As it reaches the end of the string, its center of mass velocity is given by Eq. 2-11: 

v v a t v
gt

I MRcom com com com
com

= + = −
+, , .0 0

0
21



Thus, we obtain 

vcom m s= − −
+

= −13
9 8 0885

1
0 000095

012 0 0032

141

2

.
. .

.

. .

.
b gb g

b gb g

so its linear speed at that moment is approximately 14. m s .

(d) The translational kinetic energy is ( ) ( )221 1
com2 2 0.12 1.41 0.12 J.mv = =

(e) The angular velocity at that moment is given by 

ω = − = − − =v

R
com

0

141

0 0032
441

.

.

or approximately 24.4 10 rad s× .

(f) And the rotational kinetic energy is 

1

2

1

2
9 50 10 441 9 22 5 2 2

Icom kg m rad s Jω = × ⋅ =−. . .c hb g



90. (a) We use Table 10-2(e) and the parallel-axis theorem to obtain the rod’s rotational 
inertia about an axis through one end: 

I I Mh ML M
L

ML= + = + FHG
I
KJ =com

2 2
2

21

12 2

1

3

where L = 6.00 m and M = 10.0/9.8 = 1.02 kg. Thus, 212.2 kg mI = ⋅ .

(b) Using ω = (240)(2π/60) = 25.1 rad/s, Eq. 11-31 gives the magnitude of the angular 
momentum as  

( )( ) 212.2 25.1 308 kg m sIω = = ⋅ .

Since it is rotating clockwise as viewed from above, then the right-hand rule indicates 
that its direction is down. 



91. (a) Sample Problem 10-7 gives I = 19.64 kg.m2 and ω = 1466 rad/s.  Thus, the angular 
momentum is  

L = Iω = 28792 ≈ 2.9 × 104 kg.m2/s . 

(b) We rewrite Eq. 11-29 as  |τavg
→

| = |∆ L
→

|
 ∆ t

and plug in |∆L| = 2.9 × 104 kg.m2/s  and ∆t = 

0.025 s, which leads to |τavg
→

| = 1.2 × 106 N.m.



92. If the polar cap melts, the resulting body of water will effectively increase the 
equatorial radius of the Earth from Re to e eR R R′ = + ∆ , thereby increasing the moment of 

inertia of the Earth and slowing its rotation (by conservation of angular momentum), 
causing the duration T of a day to increase by ∆T. We note that (in rad/s) ω = 2π/T so 

′ = ′ =
′

ω
ω

2

2

π
π

T

T

T

T

from which it follows that 

∆ ∆ω
ω

ω
ω

= ′ − =
′
− = −

′
1 1

T

T

T

T
.

We can approximate that last denominator as T so that we end up with the simple 
relationship ∆ ∆ω ω = T T . Now, conservation of angular momentum gives us 

∆ ∆ ∆ ∆L I I I= = ≈ +0 ω ω ωb g b g b g

so that ∆ ∆ω ω = I I . Thus, using our expectation that rotational inertia is proportional 

to the equatorial radius squared (supported by Table 10-2(f) for a perfect uniform sphere, 
but then this isn’t a perfect uniform sphere) we have 

( ) ( )2

2 6

2 30m2

6.37 10 m
e e

e e

R RT I

T I R R

∆ ∆∆ ∆= = ≈ =
×

so with T = 86400s we find (approximately) that ∆T = 0.8 s. The radius of the earth can 
be found in Appendix C or on the inside front cover of the textbook. 



93. We may approximate the planets and their motions as particles in circular orbits, and 
use Eq. 11-26

L m ri i i i
ii

= =
==

2

1

9

1

9

ω

to compute the total angular momentum. Since we assume the angular speed of each one 
is constant, we have (in rad/s) ωi = 2π/Ti where Ti is the time for that planet to go around 
the Sun (this and related information is found in Appendix C but there, the Ti are 
expressed in years and we’ll need to convert with 3.156 × 107 s/y, and the Mi are 
expressed as multiples of Mearth which we’ll convert by multiplying by 5.98 × 1024 kg). 

(a) Using SI units, we find (with i = 1 designating Mercury) 

( ) ( )

( ) ( ) ( )

( )

23 249 2 22 9 9
6 7

1

24 23 27
2 2 29 9 9

7 7 8

26
29

8

2 3.34 10 4.87 10
2 57.9 10 2 108 10

7.61 10 19.4 10

5.98 10 6.40 10 1.9 10
2 150 10 2 228 10 2 778 10

3.156 10 5.93 10 3.76 10

5.69 10 8.67
2 1430 10 2

9.31 10

i i
i i

L m r
T=

π × ×= = π × + π ×
× ×

× × ×+ π × + π × + π ×
× × ×

× ×+ π × + π
×

( ) ( )

( )

25 26
2 29 9

9 9

22
29

9

43 2

10 1.03 10
2870 10 2 4500 10

2.65 10 5.21 10

1.2 10
2 5900 10

7.83 10

3.14 10 kg m s.

×× + π ×
× ×

×+ π ×
×

= × ⋅

(b) The fractional contribution of Jupiter is 

( )( )27

8

291.9 10
3.76 105

43

2 778 10
0.614.

3.14 10L

×
×

π ×
= =

×



94. With  r⊥ = 1300 m,  Eq. 11-21 gives 

= = = × ⋅⊥r mv 1300 1200 80 12 108b gb gb g . .kg m s2



95. (a) In terms of the radius of gyration k, the rotational inertia of the merry-go-round is 
I = Mk2. We obtain  

I = (180 kg) (0.910 m)2 = 149 kg ⋅ m2.

(b) An object moving along a straight line has angular momentum about any point that is 
not on the line. The magnitude of the angular momentum of the child about the center of 
the merry-go-round is given by Eq. 11-21, mvR, where R is the radius of the merry-go-
round. Therefore, 

Lchild
2 kg m s m kg m / s.= = ⋅44 0 300 120 158. . .b gb gb g

(c) No external torques act on the system consisting of the child and the merry-go-round, 
so the total angular momentum of the system is conserved. The initial angular momentum 
is given by mvR; the final angular momentum is given by (I + mR2) ω, where ω is the 

final common angular velocity of the merry-go-round and child. Thus mvR I mR= + 2c hω
and

ω =
+

= ⋅
⋅ +

=mvR

I mR2 2

158

149 44 0 120
0 744

kg m s

kg m kg m
rad s

2

2 . .
. .

b gb g



96. The result follows immediately from Eq. 3-30. We consider all possible products and 
then simplify using relations such as î × î = 0 and the important fundamental products 

.

i  j   j i     k

j  k  k j    i

k  i  i k    j

× = − × =

× = − × =

× = − × =

Thus,

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ   i   j   k   i j   k

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ  i i  i j  i  k   j  i    j  j  

ˆ ˆ ˆ  (0)   (k)   ( j)   ( k)  (0)  

x y z

x y z x y

x y z x y

r F x y z F F F

xF xF xF yF yF

xF xF xF yF yF

× = + + × + +

= × + × + × + × + × +

= + + − + − + +

which is seen to simplify to the desired result. 



97. Information relevant to this calculation can be found in Appendix C or on the inside 
front cover of the textbook. The angular speed is constant so 

ω = = = × −2 2

86400
7 3 10 5π π

T
. .rad s

Thus, with m = 84 kg and R = 6.37 × 106 m, we find = = × ⋅mR2 112 5 10ω . .kg m s2



98. One method is to show that  r r F F r F⋅ × = ⋅ × =d i d i 0,  but we choose here a more 

pedestrian approach: without loss of generality we take  r  and F  to be in the xy plane — 

and will show that τ  has no x and y components (that it is parallel to the k  direction). 

We proceed as follows: in the general expression r x y z= + +i j k,  we will set z = 0 to 

constrain r  to the xy plane, and similarly for F . Using Eq. 3-30, we find r F×  is equal 
to

yF zF zF xF xF yFz y x z y x− + − + −d i b g d ii j k

and once we set z = 0 and Fz = 0 we obtain 

τ = × = −r F xF yFy xd ik

which demonstrates that τ  has no component in the xy plane. 



99. (a) This is easily derived from Eq. 11-18, using Eq. 3-30.  

(b) If the z-components of  r
→

  and  v
→

  are zero, then the only non-zero component for 
the angular momentum is the z-component. 



100. We integrate Eq. 11-29 (for a single torque) over the time interval (where the 
angular speed at the beginning is ωi and at the end is ωf)

τ ω ωdt
dL

dt
dt L L If i f i= = − = −zz d i

and if we use the calculus-based notion of the average of a function f

f
t

f dtavg = z1

∆

then (using Eq. 11-16) we obtain 

τ τdt t F R t= =z avg avg∆ ∆ .

Inserting this into the top line proves the relationship shown in the problem. 
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