
1. The air inside pushes outward with a force given by piA, where pi is the pressure inside 
the room and A is the area of the window. Similarly, the air on the outside pushes inward 
with a force given by poA, where po is the pressure outside. The magnitude of the net 
force is F = (pi – po)A. Since 1 atm = 1.013 × 105 Pa, 

5 4(1.0 atm 0.96 atm)(1.013 10  Pa/atm)(3.4 m)(2.1 m) = 2.9 10  N.F = − × ×



2. We note that the container is cylindrical, the important aspect of this being that it has a 
uniform cross-section (as viewed from above); this allows us to relate the pressure at the 
bottom simply to the total weight of the liquids. Using the fact that 1L = 1000 cm3, we 
find the weight of the first liquid to be 

1 1 1 1

3 3 2 6 2    (2.6 g / cm )(0.50 L)(1000 cm / L)(980 cm/s ) 1.27 10 g cm/s 12.7 N.

W m g V gρ= =

= = × ⋅ =

In the last step, we have converted grams to kilograms and centimeters to meters. 
Similarly, for the second and the third liquids, we have 

3 3 2
2 2 2 2 (1.0 g/cm )(0.25 L)(1000 cm L )(980 cm s ) 2.5 NW m g V gρ= = = =

and

3 3 2
3 3 3 3 (0.80 g/cm )(0.40 L)(1000 cm / L)(980 cm/s ) 3.1 N.W m g V gρ= = = =

The total force on the bottom of the container is therefore F = W1 + W2 + W3 = 18 N. 



3. The pressure increase is the applied force divided by the area: ∆p = F/A = F/πr2, where 
r is the radius of the piston. Thus ∆p = (42 N)/π(0.011 m)2 = 1.1 × 105 Pa. This is 
equivalent to 1.1 atm. 



4. The magnitude F of the force required to pull the lid off is F = (po – pi)A, where po is 
the pressure outside the box, pi is the pressure inside, and A is the area of the lid. 
Recalling that 1N/m2 = 1 Pa, we obtain 

5 4
4 2

480 N
1.0 10  Pa 3.8 10  Pa.

77 10  mi o

F
p p

A −= − = × − = ×
×



5. Let the volume of the expanded air sacs be Va and that of the fish with its air sacs 
collapsed be V. Then 

3 3fish fish
fish 1.08 g/cm     and     1.00 g/cmw

a

m m

V V V
ρ ρ= = = =

+

where ρw is the density of the water. This implies ρfishV = ρw(V + Va) or (V + Va)/V = 
1.08/1.00, which gives Va/(V + Va) = 7.4%. 



6. Knowing the standard air pressure value in several units allows us to set up a variety of 
conversion factors: 

(a) ( )
5

2
2

1.01 10  Pa
28 lb/in. 190 kPa

14.7 lb/in
P

×= =

(b)
5 51.01 10 Pa 1.01 10  Pa

 (120 mmHg) 15.9 kPa,     (80 mmHg) 10.6 kPa.
760 mmHg 760 mmHg

× ×= =



7. (a) The pressure difference results in forces applied as shown in the figure. We 
consider a team of horses pulling to the right. To pull the sphere apart, the team must 
exert a force at least as great as the horizontal component of the total force determined by 
“summing” (actually, integrating) these force vectors. 

We consider a force vector at angle θ. Its leftward component is ∆p cos θdA, where dA is 
the area element for where the force is applied. We make use of the symmetry of the 
problem and let dA be that of a ring of constant θ on the surface. The radius of the ring is 
r = R sin θ, where R is the radius of the sphere. If the angular width of the ring is dθ, in 
radians, then its width is R dθ and its area is dA = 2πR2 sin θ dθ. Thus the net horizontal 
component of the force of the air is given by 

22 2 2 / 2 2
00

2  sin  c os  sin .hF R p d R p R pππ θ θ θ π θ π
π

= ∆ = ∆ = ∆

(b) We use 1 atm = 1.01 × 105 Pa to show that ∆p = 0.90 atm = 9.09 × 104 Pa. The sphere 
radius is R = 0.30 m, so

Fh = π(0.30 m)2(9.09 × 104 Pa) = 2.6 × 104 N. 

(c) One team of horses could be used if one half of the sphere is attached to a sturdy wall. 
The force of the wall on the sphere would balance the force of the horses. 



8. Note that 0.05 atm equals 5065 N/m2.  Application of Eq. 14-7 with the notation in this 
problem leads to 

dmax = 
5065

 ρliquid g

with SI units understood.  Thus the difference of this quantity between fresh water (998 
kg/m3)  and Dead Sea water (1500 kg/m3) is 

∆dmax = 
5065
9.8

1
998 - 

1
1500    = 0.17 m . 



9. We estimate the pressure difference (specifically due to hydrostatic effects) as follows: 

3 3 2 4(1.06 10  kg/m )(9.8 m/s )(1.83 m) = 1.90 10 Pa.p ghρ∆ = = × ×



10. Recalling that 1 atm = 1.01 × 105 Pa, Eq. 14-8 leads to 

3 2 3 3
5

1 atm
(1024 kg/m ) (9.80 m/s ) (10.9 10 m) 1.08 10 atm.

1.01 10 Pa
ghρ = × ≈ ×

×



11. The pressure p at the depth d of the hatch cover is p0 + ρgd, where ρ is the density of 
ocean water and p0 is atmospheric pressure. The downward force of the water on the 
hatch cover is (p0 + ρgd)A, where A is the area of the cover. If the air in the submarine is 
at atmospheric pressure then it exerts an upward force of p0A. The minimum force that 
must be applied by the crew to open the cover has magnitude  

F = (p0 + ρgd)A – p0A = ρgdA = (1024 kg/m3)(9.8 m/s2)(100 m)(1.2 m)(0.60 m) 
            = 7.2 × 105 N. 



12. In this case, Bernoulli’s equation reduces to Eq. 14-10. Thus, 

3 2 4( ) (1800 kg/m ) (9.8 m/s ) (1.5 m) 2.6 10 Pa .gp g hρ= − = − = − ×



13. With A = 0.000500 m2 and F = pA (with p given by Eq. 14-9), then we have ρghA = 
9.80 N.    This gives h ≈ 2.0 m, which means d + h = 2.80 m. 



14. Since the pressure (caused by liquid) at the bottom of the barrel is doubled due to the 
presence of the narrow tube, so is the hydrostatic force. The ratio is therefore equal to 2.0. 
The difference between the hydrostatic force and the weight is accounted for by the 
additional upward force exerted by water on the top of the barrel due to the increased 
pressure introduced by the water in the tube. 



15. When the levels are the same the height of the liquid is h = (h1 + h2)/2, where h1 and 
h2 are the original heights. Suppose h1 is greater than h2. The final situation can then be 
achieved by taking liquid with volume A(h1 – h) and mass ρA(h1 – h), in the first vessel, 
and lowering it a distance h – h2. The work done by the force of gravity is  

W = ρA(h1 – h)g(h – h2). 

We substitute h = (h1 + h2)/2 to obtain

( )2 3 3 2 4 2 2
1 2

1 1
(1.30 10 kg/m )(9.80 m/s )(4.00 10 m )(1.56 m 0.854 m)

4 4
0.635 J

W gA h hρ −= − = × × −

=
.



16. Letting pa = pb, we find  

ρcg(6.0 km + 32 km + D) + ρm(y – D) = ρcg(32 km) + ρmy

and obtain 

( ) ( ) ( )3

3 3

6.0km 2.9g cm6.0 km
44km.

3.3g cm 2.9g cm
c

m c

D
ρ

ρ ρ
= = =

− −



17. We can integrate the pressure (which varies linearly with depth according to Eq. 14-7) 
over the area of the wall to find out the net force on it, and the result turns out fairly 
intuitive (because of that linear dependence): the force is the “average” water pressure 
multiplied by the area of the wall (or at least the part of the wall that is exposed to the 

water), where “average” pressure is taken to mean 12 (pressure at surface + pressure at 

bottom).  Assuming the pressure at the surface can be taken to be zero (in the gauge 

pressure sense explained in section 14-4), then this means the force on the wall is 12 ρgh

multiplied by the appropriate area.  In this problem the area is hw (where w is the 8.00 m 

width), so the force is 12 ρgh2w, and the change in force (as h is changed) is 

1
2 ρgw ( hf

2 – hi
2 )  = 1

2 (998 kg/m3)(9.80 m/s2)(8.00 m)(4.002 – 2.002)m2  = 4.69 × 105 N. 



18. (a) The force on face A of area AA due to the water pressure alone is 

( )( )( )32 3 3 2

6

(2 ) 2 1.0 10 kg m 9.8m s 5.0 m

2.5 10 N.

A A A w A A wF p A gh A g d dρ ρ= = = = ×

= ×

Adding the contribution from the atmospheric pressure, F0= (1.0 × 105 Pa)(5.0 m)2 =
2.5 × 106 N, we have 

6 6 6
0' 2.5 10 N  2.5 10 N 5.0 10 N.A AF F F= + = × + × = ×

(b) The force on face B due to water pressure alone is 

( )( )( )32 3 3 3 2
avg

6

5 5 5
1.0 10 kg m 9.8m s 5.0m

2 2 2

3.1 10 N.

B B B w

d
F p A g d gdωρ ρ= = = = ×

= ×

Adding the contribution from the atmospheric pressure, F0= (1.0 × 105 Pa)(5.0 m)2 =
2.5 × 106 N, we have 

6 6 6
0' 2.5 10 N  3.1 10 N 5.6 10 N.B BF F F= + = × + × = ×



19. (a) At depth y the gauge pressure of the water is p = ρgy, where ρ is the density of the 
water. We consider a horizontal strip of width W at depth y, with (vertical) thickness dy,
across the dam. Its area is dA = W dy and the force it exerts on the dam is dF = p dA = 
ρgyW dy. The total force of the water on the dam is 

( )( )( )( )

2

0

23 3 2 9

1

2
1

1.00 10 kg m 9.80 m s 314 m 35.0m 1.88 10 N.
2

D
F gyW dy gWDρ ρ= =

= × = ×

(b) Again we consider the strip of water at depth y. Its moment arm for the torque it 
exerts about O is D – y so the torque it exerts is dτ = dF(D – y) = ρgyW (D – y)dy and the 
total torque of the water is 

( )

( )( )( )( )

3 3 3

0

33 3 2 10

1 1 1

2 3 6

1
1.00 10 kg m 9.80m s 314m 35.0m 2.20 10 N m.

6

D
gyW D y dy gW D D gWDτ ρ ρ ρ= − = − =

= × = × ⋅

(c) We write τ = rF, where r is the effective moment arm. Then, 

31
6

21
2

35.0 m
11.7 m.

3 3

gWD D
r

F gWD

ρτ
ρ

= = = = =



20. The gauge pressure you can produce is 

( ) ( ) ( )3 2 2

3
5

1000 kg m 9.8m s 4.0 10 m
3.9 10 atm

1.01 10 Pa atm
p ghρ

−
−

×
= − = − = − ×

×

where the minus sign indicates that the pressure inside your lung is less than the outside 
pressure. 



21. (a) We use the expression for the variation of pressure with height in an 
incompressible fluid: p2 = p1 – ρg(y2 – y1). We take y1 to be at the surface of Earth, where 
the pressure is p1 = 1.01 × 105 Pa, and y2 to be at the top of the atmosphere, where the 
pressure is p2 = 0. For this calculation, we take the density to be uniformly 1.3 kg/m3.
Then,

5
31

2 1 3 2

1.01 10 Pa
7.9 10 m = 7.9 km.

(1.3 kg/m ) (9.8 m/s )

p
y y

gρ
×− = = = ×

(b) Let h be the height of the atmosphere. Now, since the density varies with altitude, we 
integrate 

2 1 0
.

h
p p g dyρ= −

Assuming ρ = ρ0 (1 - y/h), where ρ0 is the density at Earth’s surface and g = 9.8 m/s2 for 
0 ≤ y ≤ h, the integral becomes 

2 1 0 1 00

1
1 .

2

h y
p p g dy p gh

h
ρ ρ= − − = −

Since p2 = 0, this implies 

5
31

3 2
0

2 2(1.01 10 Pa)
16 10 m = 16 km.

(1.3 kg/m ) (9.8 m/s )

p
h

gρ
×= = = ×



22. (a) According to Pascal’s principle F/A = f/a → F = (A/a)f.

(b) We obtain 

2
3

2

(3.80 cm)
(20.0 10 N) = 103 N.

(53.0 cm)

a
f F

A
= = ×

The ratio of the squares of diameters is equivalent to the ratio of the areas. We also note 
that the area units cancel. 



23. Eq. 14-13 combined with Eq. 5-8 and Eq. 7-21 (in absolute value) gives 

mg = kx
A1

 A2
 . 

With A2 = 18A1 (and the other values given in the problem) we find m = 8.50 kg. 



24. (a) Archimedes’ principle makes it clear that a body, in order to float, displaces an 
amount of the liquid which corresponds to the weight of the body. The problem 
(indirectly) tells us that the weight of the boat is W = 35.6 kN. In salt water of density  
ρ' = 1100 kg/m3, it must displace an amount of liquid having weight equal to 35.6 kN. 

(b) The displaced volume of salt water is equal to 

3
3

3 3 2

3.56 10 N
' 3.30 m .

' (1.10 10  kg/m )(9.80 m/s )

W
V

gρ
×= = =

×

In freshwater, it displaces a volume of V = W/ρg = 3.63 m3, where ρ = 1000 kg/m3. The 
difference is V – V ' = 0.330 m3.



25. (a) The anchor is completely submerged in water of density ρw. Its effective weight is 
Weff = W – ρw gV, where W is its actual weight (mg). Thus, 

( ) ( )
2 3eff

3 2

200 N
2.04 10 m .

1000 kg/m 9.8 m/sw

W W
V

gρ
−−= = = ×

(b) The mass of the anchor is m = ρV, where ρ is the density of iron (found in Table  
14-1). Its weight in air is 

( ) ( )3 2 3 2 37870 kg/m (2.04 10 m ) 9.80 m/s 1.57 10 N .W mg Vgρ −= = = × = ×



26. (a) The pressure (including the contribution from the atmosphere) at a depth of htop = 
L/2 (corresponding to the top of the block) is 

5 5
top atm top 1.01 10 (1030) (9.8) (0.300) Pa 1.04 10 Pap p ghρ= + = × + = ×

where the unit Pa (Pascal) is equivalent to N/m2. The force on the top surface (of area A
= L2 = 0.36 m2) is Ftop = ptop A = 3.75 × 104 N. 

(b) The pressure at a depth of hbot = 3L/2 (that of the bottom of the block) is 

5 5
bot atm bot 1.01 10 (1030) (9.8) (0.900) Pa 1.10 10 Pap p ghρ= + = × + = ×

where we recall that the unit Pa (Pascal) is equivalent to N/m2. The force on the bottom 
surface is Fbot = pbot A = 3.96 × 104 N. 

(c) Taking the difference Fbot – Ftop cancels the contribution from the atmosphere 
(including any numerical uncertainties associated with that value) and leads to 

3 3
bot top bot top( ) 2.18 10 NF F g h h A gLρ ρ− = − = = ×

which is to be expected on the basis of Archimedes’ principle. Two other forces act on 
the block: an upward tension T and a downward pull of gravity mg. To remain stationary, 
the tension must be 

2 3 3
bot top( ) (450 kg) (9.80 m/s ) 2.18 10  N 2.23 10 N.T mg F F= − − = − × = ×

(d) This has already been noted in the previous part: 32.18 10 NbF = × , and T + Fb = mg.



27. The problem intends for the children to be completely above water. The total 
downward pull of gravity on the system is 

( ) wood3 356 N N gVρ+

where N is the (minimum) number of logs needed to keep them afloat and V is the 
volume of each log: V = π(0.15 m)2 (1.80 m) = 0.13 m3. The buoyant force is Fb = 
ρwatergVsubmerged where we require Vsubmerged ≤ NV. The density of water is 1000 kg/m3. To 
obtain the minimum value of N we set Vsubmerged = NV and then round our “answer” for N
up to the nearest integer: 

( ) ( )
( )wood water

water wood

3 356 N
3 356 N N gV gNV N

gV
ρ ρ

ρ ρ
+ = =

−

which yields N = 4.28 → 5 logs. 



28. Work is the integral of the force (over distance – see Eq. 7-32), and referring to the 
equation immediately preceding Eq. 14-7, we see the work can be written as 

W = waterρ gA(–y) dy

where we are using y = 0 to refer to the water surface (and the +y direction is upward).  
Let h = 0.500 m.  Then, the integral has a lower limit of –h and an upper limit of yf ,
which can be determined by the condition described in Sample Problem 14-4 (which 
implies that  yf /h = − ρcylinder /ρwater = – 0.400).  The integral leads to 

        W = 12 ρwatergAh2(1 – 0.42)  =  4.11 kJ . 



29. (a) Let V be the volume of the block. Then, the submerged volume is Vs = 2V/3. Since 
the block is floating, the weight of the displaced water is equal to the weight of the block, 
so ρw Vs = ρb V, where ρw is the density of water, and ρb is the density of the block. We 
substitute Vs = 2V/3 to obtain

ρb = 2ρw/3 = 2(1000 kg/m3)/3 ≈ 6.7 ×102 kg/m3.

(b) If ρo is the density of the oil, then Archimedes’ principle yields ρo Vs = ρbV. We 
substitute Vs = 0.90V to obtain ρo = ρb/0.90 = 7.4 ×102 kg/m3.



30. Taking “down” as the positive direction, then using Eq. 14-16 in Newton’s second 
law, we have  5g – 3g = 5a  (where “5” = 5.00 kg, and “3” = 3.00 kg and g = 9.8 m/s2).  

This gives a = 25 g.  Then (see Eq. 2-15)  12 at2 = 0.0784 m (in the downward direction). 



31. (a) The downward force of gravity mg is balanced by the upward buoyant force of the 
liquid: mg = ρg Vs. Here m is the mass of the sphere, ρ is the density of the liquid, and Vs

is the submerged volume. Thus m = ρVs. The submerged volume is half the total volume 
of the sphere, so ( ) 31

2 4 3s oV r= π , where ro is the outer radius. Therefore, 

( )3 3 32 2
800 kg/m (0.090 m) 1.22 kg.

3 3om r
π πρ= = =

(b) The density ρm of the material, assumed to be uniform, is given by ρm = m/V, where m
is the mass of the sphere and V is its volume. If ri is the inner radius, the volume is 

( ) ( )( )3 33 3 4 34 4
( ) 0.090 m 0.080 m 9.09 10 m .

3 3o iV r r
π π −= − = − = ×

The density is 

3 3
4 3

1.22 kg
1.3 10 kg/m .

9.09 10 mmρ −= = ×
×



32. (a) An object of the same density as the surrounding liquid (in which case the 
“object” could just be a packet of the liquid itself) is not going to accelerate up or down 
(and thus won’t gain any kinetic energy).  Thus, the point corresponding to zero K in the 
graph must correspond to the case where the density of the object equals ρliquid.
Therefore, ρball = 1.5 g/cm3 (or 1500 kg/m3).

(b) Consider the ρliquid = 0 point (where Kgained = 1.6 J).  In this case, the ball is falling 

through perfect vacuum, so that v2 = 2gh (see Eq. 2-16) which means that K = 12 mv2 = 1.6 

J can be used to solve for the mass.  We obtain mball = 4.082 kg.  The volume of the ball 
is then given by mball/ρball = 2.72 × 10−3 m3.



33. For our estimate of Vsubmerged we interpret “almost completely submerged” to mean 

3
submerged

4
where 60 cm .

3 o oV r rπ≈ =

Thus, equilibrium of forces (on the iron sphere) leads to 

3 3
iron water submerged iron

4 4

3 3b o iF m g gV g r rρ ρ π π= = −

where ri is the inner radius (half the inner diameter). Plugging in our estimate for 
Vsubmerged as well as the densities of water (1.0 g/cm3) and iron (7.87 g/cm3), we obtain the 
inner diameter: 

1/ 3

o

1
2 2 1 57.3 cm.

7.87ir r= − =



34. From the “kink” in the graph it is clear that d = 1.5 cm. Also, the h = 0 point makes it 
clear that the (true) weight is 0.25 N.  We now use Eq. 14-19 at h = d = 1.5 cm to obtain  
Fb = (0.25 N – 0.10 N ) = 0.15 N.  Thus, ρliquid g V = 0.15, where V = (1.5 cm)(5.67 cm2)
= 8.5 × 10−6 m3.  Thus, ρliquid = 1800 kg/m3 = 1.8 g/cm3.



35. The volume Vcav of the cavities is the difference between the volume Vcast of the 
casting as a whole and the volume Viron contained: Vcav = Vcast – Viron. The volume of the 
iron is given by Viron = W/gρiron, where W is the weight of the casting and ρiron is the 
density of iron. The effective weight in water (of density ρw) is Weff = W – gρw Vcast. Thus, 
Vcast = (W – Weff)/gρw and 

ff
cav 2 3 2 3 3

iron

3

6000 N 4000 N 6000 N

(9.8 m/s ) (1000 kg/m ) (9.8 m/s ) (7.87 10 kg/m )

0.126 m .

e

w

W W W
V

g gρ ρ
− −= − = −

×

=



36. Due to the buoyant force, the ball accelerates upward (while in the water) at rate a
given by Newton’s second law: 

ρwaterVg – ρballVg = ρballVa ρball = ρwater (1 + “a”) 

where – for simplicity – we are using in that last expression an acceleration “a” measured 
in “gees” (so that “a” = 2, for example, means that a = 2(9.80) = 19.6 m/s2).  In this 
problem, with ρball = 0.300 ρwater, we find therefore that “a” = 7/3.  Using Eq. 2-16, then 
the speed of the ball as it emerges from the water is 

v = 2a∆y  , 

were a = (7/3)g and ∆y = 0.600 m. This causes the ball to reach a maximum height hmax

(measured above the water surface) given by hmax = v2/2g (see Eq. 2-16 again).  Thus, 
hmax = (7/3)∆y = 1.40 m. 



37. (a) If the volume of the car below water is V1 then Fb = ρwV1g = Wcar, which leads to 

( ) ( )
( ) ( )

2

3car
1 3 2

1800 kg 9.8m s
1.80 m .

1000kg m 9.8m sw

W
V

gρ
= = =

(b) We denote the total volume of the car as V and that of the water in it as V2. Then 

car 2b w wF Vg W V gρ ρ= = +

which gives 

( )3 3 3 3car
2 3

1800 kg
0.750 m 5.00 m 0.800 m 4.75 m .

1000 kg mw

W
V V

gρ
= − = + + − =



38. (a) Since the lead is not displacing any water (of density ρw), the lead’s volume is not 
contributing to the buoyant force Fb. If the immersed volume of wood is Vi, then 

wood
wood

wood

0.900 0.900 ,b w i w w

m
F V g V g gρ ρ ρ

ρ
= = =

which, when floating, equals the weights of the wood and lead: 

wood
wood lead

wood

0.900 ( ) .b w

m
F g m m gρ

ρ
= = +

Thus,

3
wood

lead wood 3
wood

(0.900) (1000 kg/m ) (3.67 kg)
0.900 3.67 kg 1.84 kg .

600 kg/mw

m
m mρ

ρ
= − = − =

(b) In this case, the volume Vlead = mlead/ρlead also contributes to Fb. Consequently, 

wood
lead wood lead

wood lead

0.900 ( ) ,w
b w

m
F g m g m m g

ρρ
ρ ρ

= + = +

which leads to 

wood wood wood
lead 3 3 4 3

lead

0.900( / ) 1.84 kg

1 / 1 (1.00 10 kg/m /1.13 10 kg/m )

2.01 kg.

w

w

m m
m

ρ ρ
ρ ρ

−
= =

− − × ×
=



39. (a) When the model is suspended (in air) the reading is Fg (its true weight, neglecting 
any buoyant effects caused by the air). When the model is submerged in water, the 
reading is lessened because of the buoyant force: Fg – Fb. We denote the difference in 
readings as ∆m. Thus, 

( )g g bF F F mg− − = ∆

which leads to Fb = ∆mg. Since Fb = ρwgVm (the weight of water displaced by the model) 
we obtain 

4 30.63776 kg
6.378 10 m .

1000 kg/mm
w

m
V

ρ
−∆= = ≈ ×

(b) The 1
20  scaling factor is discussed in the problem (and for purposes of significant 

figures is treated as exact). The actual volume of the dinosaur is 

3 3
dino 20 5.102 m .mV V= =

(c) Using ρ ≈ ρw = 1000 kg/m3, we find 

3 3dino
dino

dino

(1000 kg/m ) (5.102 m )
m

m
V

ρ = =

which yields 5.102 × 103 kg for the T. rex mass. 



40. Let ρ be the density of the cylinder (0.30 g/cm3 or 300 kg/m3) and ρFe be the density 
of the iron (7.9 g/cm3 or 7900 kg/m3).  The volume of the cylinder is Vc = (6×12) cm3 = 
72 cm3 (or 0.000072 m3), and that of the ball is denoted Vb . The part of the cylinder that 
is submerged has volume Vs = (4 × 12) cm3 = 48 cm3 (or 0.000048 m3).  Using the ideas 
of section 14-7, we write the equilibrium of forces as 

ρgVc  + ρFe gVb  = ρw gVs   + ρw gVb Vb = 3.8 cm3

where we have used ρw = 998 kg/m3  (for water, see Table 14-1). Using Vb = 43 πr3 we 

find r = 9.7 mm. 



41. We use the equation of continuity. Let v1 be the speed of the water in the hose and v2

be its speed as it leaves one of the holes. A1 = πR2 is the cross-sectional area of the hose. 
If there are N holes and A2 is the area of a single hole, then the equation of continuity 
becomes 

( )
2

1
1 1 2 2 2 1 12

2

A R
v A v NA v v v

NA Nr
= = =

where R is the radius of the hose and r is the radius of a hole. Noting that R/r = D/d (the 
ratio of diameters) we find 

( )
( )

( )
22

2 1 22

1.9cm
0.91m s 8.1m s.

24 0.13cm

D
v v

Nd
= = =



42. We use the equation of continuity and denote the depth of the river as h. Then, 

( )( )( ) ( )( )( ) ( )( )8.2 m 3.4 m 2.3m s 6.8m 3.2 m 2.6m s 10.5m 2.9 m sh+ =

which leads to h = 4.0 m. 



43. Suppose that a mass ∆m of water is pumped in time ∆t. The pump increases the 
potential energy of the water by ∆mgh, where h is the vertical distance through which it is 
lifted, and increases its kinetic energy by 21

2 mv∆ , where v is its final speed. The work it 

does is 21
2W mgh mv∆ = ∆ + ∆  and its power is 

21
.

2

W m
P gh v

t t

∆ ∆= = +
∆ ∆

Now the rate of mass flow is ∆m/ ∆t = ρwAv, where ρw is the density of water and A is the 
area of the hose. The area of the hose is A = πr2 = π(0.010 m)2 = 3.14 × 10–4 m2 and

ρwAv = (1000 kg/m3) (3.14 × 10–4 m2) (5.00 m/s) = 1.57 kg/s. 

Thus,

( ) ( )( ) ( )2

2 2 5.0m s1
1.57 kg s 9.8m s 3.0 m 66 W.

2 2
P Av gh vρ= + = + =



44. (a) The equation of continuity provides (26 + 19 + 11) L/min = 56 L/min for the flow 
rate in the main (1.9 cm diameter) pipe. 

(b) Using v = R/A and A = πd 2/4, we set up ratios: 

2
56

2
26

56 / (1.9) / 4
1.0.

26 / (1.3) / 4

v

v

π
π

= ≈



45. (a) We use the equation of continuity: A1v1 = A2v2. Here A1 is the area of the pipe at 
the top and v1 is the speed of the water there; A2 is the area of the pipe at the bottom and 
v2 is the speed of the water there. Thus v2 = (A1/A2)v1 = [(4.0 cm2)/(8.0 cm2)] (5.0 m/s) = 
2.5m/s.

(b) We use the Bernoulli equation: 2 21 1
1 1 1 2 2 22 2p v gh p v ghρ ρ ρ ρ+ + = + + , where ρ is the 

density of water, h1 is its initial altitude, and h2 is its final altitude. Thus 

( ) ( )2 2
2 1 1 2 1 2

5 3 2 2 3 2

5

1

2
1

1.5 10 Pa (1000 kg m ) (5.0 m s) (2.5m s) (1000kg m )(9.8m/s )(10 m)
2

2.6 10 Pa.

p p v v g h hρ ρ= + − + −

= × + − +

= ×



46. We use Bernoulli’s equation: 

( )2 2
2 1 2

1

2ip p gD v vρ ρ− = + −

where ρ = 1000 kg/m3, D = 180 m, v1 = 0.40 m/s and v2 = 9.5 m/s. Therefore, we find ∆p
= 1.7 × 106 Pa, or 1.7 MPa. The SI unit for pressure is the Pascal (Pa) and is equivalent to 
N/m2.



47. (a) The equation of continuity leads to 

2
1

2 2 1 1 2 1 2
2

r
v A v A v v

r
= =

which gives v2 = 3.9 m/s. 

(b) With h = 7.6 m and p1 = 1.7 × 105 Pa, Bernoulli’s equation reduces to 

( )2 2 4
2 1 1 2

1
8.8 10 Pa.

2
p p gh v vρ ρ= − + − = ×



48. (a) We use Av = const. The speed of water is 

( ) ( )
( )

( )
2 2

2

25.0cm 5.00cm
2.50 m s 2.40m s.

25.0cm
v

−
= =

(b) Since 21
2 const.,p vρ+ =  the pressure difference is 

( ) ( ) ( )2 22 31 1
1000 kg m 2.50m s 2.40m s 245Pa.

2 2
p vρ∆ = ∆ = − =



49. (a) We use the Bernoulli equation: 2 21 1
1 1 1 2 2 22 2p v gh p v ghρ ρ ρ ρ+ + = + + , where h1 is 

the height of the water in the tank, p1 is the pressure there, and v1 is the speed of the water 
there; h2 is the altitude of the hole, p2 is the pressure there, and v2 is the speed of the water 
there. ρ is the density of water. The pressure at the top of the tank and at the hole is 
atmospheric, so p1 = p2. Since the tank is large we may neglect the water speed at the top; 
it is much smaller than the speed at the hole. The Bernoulli equation then becomes 

21
1 2 22gh v ghρ ρ ρ= +  and 

( ) ( ) ( )2
2 1 22 2 9.8m s 0.30 m 2.42m s.v g h h= − = =

The flow rate is A2v2 = (6.5 × 10–4 m2)(2.42 m/s) = 1.6 × 10–3 m3/s. 

(b) We use the equation of continuity: A2v2 = A3v3, where 1
3 22A A=  and v3 is the water 

speed where the area of the stream is half its area at the hole. Thus v3 = (A2/A3)v2 = 2v2 = 
4.84 m/s. The water is in free fall and we wish to know how far it has fallen when its 
speed is doubled to 4.84 m/s. Since the pressure is the same throughout the fall, 

2 21 1
2 2 3 32 2v gh v ghρ ρ ρ ρ+ = + . Thus 

( ) ( )
( )

2 22 2
3 2

2 3 2

4.84m s 2.42m s
0.90 m.

2 2 9.8m s

v v
h h

g

−−− = = =



50. The left and right sections have a total length of 60.0 m, so (with a speed of 2.50 m/s) 
it takes 60.0/2.50  = 24.0 seconds to travel through those sections.  Thus it takes (88.8 – 
24.0) s = 64.8 s to travel through the middle section.  This implies that the speed in the 
middle section is vmid = (110 m)/(64.8 s) = 0.772 m/s.  Now Eq. 14-23 (plus that fact that 
A = πr2) implies rmid = rA (2.5 m/s)/(0.772 m/s)  where rA = 2.00 cm.  Therefore, rmid = 
3.60 cm. 



51. We rewrite the formula for work W (when the force is constant in a direction parallel 
to the displacement d) in terms of pressure: 

( )
F

W Fd Ad pV
A

= = =

where V is the volume of the water being forced through, and p is to be interpreted as the 
pressure difference between the two ends of the pipe. Thus, 

5 3 5(1.0 10 Pa) (1.4 m ) 1.4 10 J.W = × = ×



52. (a) The speed v of the fluid flowing out of the hole satisfies 21
2  or 2v gh v ghρ ρ= = .

Thus, ρ1v1A1 = ρ2v2A2, which leads to 

1 2
1 1 2 2

2 1

2 2 2.
A

ghA ghA
A

ρρ ρ
ρ

= = =

(b) The ratio of volume flow is 

1 1 1 1

2 2 2 2

1

2

R v A A

R v A A
= = =

(c) Letting R1/R2 = 1, we obtain 1 2 2 1 1 22v v A A h h= = =  Thus 

2 1 4 (12.0 cm)/4 3.00 cmh h= = = .



53. (a) The friction force is  

3 3 2 2(1.0 10  kg/m ) (9.8 m/s ) (6.0m) (0.040 m) 74 N.
4

f A p gdAωρ π= ∆ = = × =

(b) The speed of water flowing out of the hole is v = 2 .gd  Thus, the volume of water 

flowing out of the pipe in t = 3.0 h is 

2
2 2 2 3(0.040 m) 2(9.8 m/s ) (6.0 m)  (3.0 h) (3600 s/h) 1.5 10 m .

4
V Avt

π= = = ×



54. (a) The volume of water (during 10 minutes) is 

( ) ( ) ( ) ( ) ( )2 3
1 1 15m s 10 min 60s min 0.03m 6.4m .

4
V v t A

π= = =

(b) The speed in the left section of pipe is 

( )
2 2

1 1
2 1 1

2 2

3.0cm
15m s 5.4 m s.

5.0cm

A d
v v v

A d
= = = =

(c) Since 2 21 1
1 1 1 2 2 2 1 2 1 02 2  and ,p v gh p v gh h h p pρ ρ ρ ρ+ + = + + = = , which is the 

atmospheric pressure, 

( ) ( ) ( ) ( )2 22 2 5 3 3
2 0 1 2

5

1 1
1.01 10 Pa 1.0 10 kg m 15m s 5.4 m s

2 2
1.99 10 Pa 1.97 atm.

p p v vρ= + − = × + × −

= × =

Thus the gauge pressure is (1.97 atm – 1.00 atm) = 0.97 atm = 9.8 × 104 Pa. 



55. (a) Since Sample Problem 14-8 deals with a similar situation, we use the final 
equation (labeled “Answer”) from it: 

02    for the projectile motion.v gh v v= =

The stream of water emerges horizontally (θ0 = 0° in the notation of Chapter 4), and 
setting y – y0 = –(H – h) in Eq. 4-22, we obtain the “time-of-flight”  

2( ) 2
( ).

H h
t H h

g g

− −= = −
−

Using this in Eq. 4-21, where x0 = 0 by choice of coordinate origin, we find  

0

2( )
2 2 ( ) 2 (10 cm)(40 cm 10 cm) 35 cm.

H h
x v t gh h H h

g

−= = = − = − =

(b) The result of part (a) (which, when squared, reads x2 = 4h(H – h)) is a quadratic 
equation for h once x and H are specified. Two solutions for h are therefore 
mathematically possible, but are they both physically possible? For instance, are both 
solutions positive and less than H? We employ the quadratic formula: 

2 2 2
2 0

4 2

x H H x
h Hh h

± −− + = =

which permits us to see that both roots are physically possible, so long as x < H. Labeling 
the larger root h1 (where the plus sign is chosen) and the smaller root as h2 (where the 
minus sign is chosen), then we note that their sum is simply  

2 2 2 2

1 2 .
2 2

H H x H H x
h h H

+ − − −+ = + =

Thus, one root is related to the other (generically labeled h' and h) by h' = H – h. Its 
numerical value is ' 40cm  10 cm 30 cm.h = − =

(c) We wish to maximize the function f = x2 = 4h(H – h). We differentiate with respect to 
h and set equal to zero to obtain  

4 8 0
2

df H
H h h

dh
= − = =



or h = (40 cm)/2 = 20 cm, as the depth from which an emerging stream of water will 
travel the maximum horizontal distance. 



56. (a) We note (from the graph) that the pressures are equal when the value of inverse-
area-squared is 16 (in SI units).  This is the point at which the areas of the two pipe 
sections are equal.  Thus, if A1 = 1/ 16  when the pressure difference is zero, then A2 is 
0.25 m2.

(b) Using Bernoulli’s equation (in the form Eq. 14-30) we find the pressure difference 
may be written in the form a straight line: mx + b where x is inverse-area-squared (the 
horizontal axis in the graph), m is the slope, and b is the intercept (seen to be –300 

kN/m2).  Specifically, Eq. 14-30 predicts that b should be  – 12 ρ v2
2.  Thus, with ρ = 1000 

kg/m3 we obtain v2 = 600  m/s.  Then the volume flow rate (see Eq. 14-24) is R =  A2 v2

=  (0.25 m2)( 600  m/s) =  6.12 m3/s.  If the more accurate value (see Table 14-1) ρ = 998 
kg/m3 is used, then the answer is 6.13 m3/s.



57. (a) This is similar to the situation treated in Sample Problem 14-7, and we refer to 
some of its steps (and notation). Combining Eq. 14-35 and Eq. 14-36 in a manner very 
similar to that shown in the textbook, we find 

( )1 2 2 2
1 2

2 p
R A A

A Aρ
∆=
−

for the flow rate expressed in terms of the pressure difference and the cross-sectional 
areas. Note that this reduces to Eq. 14-38 for the case A2 = A1/2 treated in the Sample 
Problem. Note that ∆p = p1 – p2 = –7.2 × 103 Pa and 2 2 3 4

1 2 8.66 10 mA A −− = − × , so that 
the square root is well defined. Therefore, we obtain R = 0.0776 m3/s.

(b) The mass rate of flow is ρR = 69.8 kg/s. 



58. By Eq. 14-23, we note that the speeds in the left and right sections are  14 vmid and  19
vmid, respectively, where vmid = 0.500 m/s.  We also note that 0.400 m3 of water has a 
mass of 399 kg (see Table 14-1). Then Eq. 14-31 (and the equation below it) gives 

W = 12 m vmid
2 1

92 −
1
42  =  –2.50 J . 



59. (a) The continuity equation yields Av = aV, and Bernoulli’s equation yields 
2 21 1

2 2p v Vρ ρ∆ + = , where ∆p = p1 – p2. The first equation gives V = (A/a)v. We use this 

to substitute for V in the second equation, and obtain ( )22 21 1
2 2p v A a vρ ρ∆ + = . We 

solve for v. The result is  

( )
2

2 2 2

2

2 2
.

1

p a p
v

A A a
a

ρρ

∆ ∆= =
−−

(b) We substitute values to obtain  

( )
4 2 2 3 3

3 4 2 2 4 2 2

2(32 10 m ) (55 10 Pa 41 10 Pa)
3.06 m/s.

(1000kg / m ) (64 10 m ) (32 10 m )
v

−

− −

× × − ×= =
× − ×

Consequently, the flow rate is  

4 2 2 3(64 10 m ) (3.06 m/s) 2.0 10 m / s.Av − −= × = ×



60. We use the result of part (a) in the previous problem. 

(a) In this case, we have ∆p = p1 = 2.0 atm. Consequently,  

5

2 3 2

2 4(1.01 10 Pa)
4.1m/s.

(( / ) 1) (1000 kg/m ) [(5 / ) 1]

p
v

A a a aρ
∆ ×= = =

− −

(b) And the equation of continuity yields V = (A/a)v = (5a/a)v = 5v = 21 m/s. 

(c) The flow rate is given by  

4 2 3 3(5.0 10 m ) (4.1 m/s) 8.0 10 m / s.
4

Av − −π= × = ×



61. (a) Bernoulli’s equation gives 21
air2 But A B A Bp p v p p p ghρ ρ= + ⋅ ∆ = − = in order to 

balance the pressure in the two arms of the U-tube. Thus 21
air2gh vρ ρ= , or

air

2
.

gh
v

ρ
ρ

=

(b) The plane’s speed relative to the air is  

( )3 2

3
air

2 810 kg/m (9.8m/s ) (0.260m)2
63.3m/s.

1.03kg/m

gh
v

ρ
ρ

= = =



62. We use the formula for v obtained in the previous problem: 

2
3

air

2 2(180 Pa)
1.1 10 m/s.

0.031kg/m

p
v

ρ
∆= = = ×



63. We use Bernoulli’s equation 2 21 1
1 1 1 2 2 22 2p v gh p v ghρ ρ ρ ρ+ + = + + .

When the water level rises to height h2, just on the verge of flooding, 2v , the speed of 

water in pipe M , is given by 

2
1 2 2 2 1 2

1
( )    2 ( ) 13.86 m/s.

2
g h h v v g h hρ ρ− = = − =

By continuity equation, the corresponding rainfall rate is  

2
52

1 2
1

(0.030 m)
(13.86 m/s) 2.177 10  m/s 7.8 cm/h.

(30 m)(60 m)

A
v v

A

π −= = = × ≈



64. The volume rate of flow is R = vA where A = πr2 and r = d/2. Solving for speed, we 
obtain

2 2

4
.

( / 2)

R R R
v

A d dπ π
= = =

(a) With R = 7.0 × 10–3 m3/s and d = 14 × 10–3 m, our formula yields v = 45 m/s, which is 
about 13% of the speed of sound (which we establish by setting up a ratio: v/vs where vs = 
343 m/s).

(b) With the contracted trachea (d = 5.2 × 10–3 m) we obtain v = 330 m/s, or 96% of the 
speed of sound.



65. This is very similar to Sample Problem 14-4, where the ratio of densities is shown 
equal to a particular ratio of volumes.  With volume equal to area multiplied by height, 
then that result becomes hsubmerged/htotal = ρblock/ρliquid. Applying this to the first liquid, then 
applying it again to the second liquid, and finally dividing the two applications we arrive 
at another ratio: hsubmerged in liquid 2 divided by hsubmerged in liquid 1  is equal to ρliquid2 divided by 
ρliquid1.  Since the height submerged in liquid 1 is (8.00 – 6.00) cm = 2 cm, then this last 
ratio tells us that the height submerged in liquid 2 is twice as much (because liquid 2 is 
half as dense), so hsubmerged in liquid 2 = 4.00 cm.  Since the total height is 8 cm, then the 
height above the surface is also 4.00 cm. 



66. The normal force NF  exerted (upward) on the glass ball of mass m has magnitude 
0.0948 N.  The buoyant force exerted by the milk (upward) on the ball has magnitude  

Fb = ρmilk g V 

where V = 43 π r3  is the volume of the ball.  Its radius is r = 0.0200 m. The milk density is 

ρmilk = 1030 kg/m3.  The (actual) weight of the ball is, of course, downward, and has 
magnitude  Fg = mglass g.  Application of Newton's second law (in the case of zero 
acceleration) yields 

FN + ρmilk g V − mglass g = 0

which leads to mglass = 0.0442 kg.  We note the above equation is equivalent to Eq.14-19 
in the textbook. 



67. If we examine both sides of the U-tube at the level where the low-density liquid (with 
ρ = 0.800 g/cm3 = 800 kg/m3) meets the water (with ρw = 0.998 g/cm3 = 998 kg/m3), then 
the pressures there on either side of the tube must agree: 

ρgh = ρwghw

where h = 8.00 cm = 0.0800 m, and Eq. 14-9 has been used.  Thus, the height of the 
water column (as measured from that level) is hw = (800/998)(8.00 cm) = 6.41 cm.  The 
volume of water in that column is therefore πr2hw = π(1.50 cm)2(6.41 cm) = 45.3 cm3.



68. Since (using Eq. 5-8)  Fg  = mg = ρskier g V and (Eq. 14-16) the buoyant force is Fb = 
ρsnow g V, then their ratio is 

Fb

Fg
  =   

ρsnow g V
ρskier g V

   =   
ρsnow

ρskier
   =

96
1020  = 0.094  (or 9.4%). 



69. (a) We consider a point D on the surface of the liquid in the container, in the same 
tube of flow with points A, B and C. Applying Bernoulli’s equation to points D and C, we 
obtain

2 21 1

2 2D D D C C Cp v gh p v ghρ ρ ρ ρ+ + = + +

which leads to 

2
2

2( )
2 ( ) 2 ( )D C

C D C D

p p
v g h h v g d h

ρ
−= + − + ≈ +

where in the last step we set pD = pC =  pair and vD/vC ≈ 0. Plugging in the values, we 
obtain

22(9.8 m/s )(0.40 m  0.12 m) 3.2 m/s.cv = + =

(b) We now consider points B and C:

2 21 1
.

2 2B B B C C Cp v gh p v ghρ ρ ρ ρ+ + = + +

Since vB = vC by equation of continuity, and pC = pair, Bernoulli’s equation becomes 

air 1 2

5 3 3 2

4

( ) ( )

1.0 10  Pa (1.0 10 kg/m )(9.8 m/s )(0.25 m  0.40 m  0.12 m)

9.2 10  Pa.

B C C Bp p g h h p g h h dρ ρ= + − = − + +

= × − × + +
= ×

(c) Since pB ≥ 0, we must let pair – ρg(h1 + d + h2) ≥ 0, which yields 

air air
1 1,max 2 10.3 m.

p p
h h d h

ρ ρ
≤ = − − ≤ =



70. To be as general as possible, we denote the ratio of body density to water density as f
(so that f = ρ/ρw = 0.95 in this problem). Floating involves an equilibrium of vertical 
forces acting on the body (Earth’s gravity pulls down and the buoyant force pushes up). 
Thus,

b g w wF F gV gVρ ρ= =

where V is the total volume of the body and Vw is the portion of it which is submerged.

(a) We rearrange the above equation to yield  

w

w

V
f

V

ρ
ρ

= =

which means that 95% of the body is submerged and therefore 5% is above the water 
surface.  

(b) We replace ρw with 1.6ρw in the above equilibrium of forces relationship, and find  

1.6 1.6
w

w

V f

V

ρ
ρ

= =

which means that 59% of the body is submerged and thus 41% is above the quicksand 
surface. 

(c) The answer to part (b) suggests that a person in that situation is able to breathe. 



71. (a) To avoid confusing weight with work, we write out the word instead of using the 
symbol W. Thus,

4 2 2weight (1.85 10 kg) (9.8m/s ) 1.8 10 kN.mg= = × ≈ ×

(b) The buoyant force is Fb = ρwgVw where ρw = 1000 kg/m3 is the density of water and 
Vw is the volume of water displaced by the dinosaur. If we use f for the fraction of the 
dinosaur’s total volume V which is submerged, then Vw = fV. We can further relate V to 
the dinosaur’s mass using the assumption that the density of the dinosaur is 90% that of 
water: V = m/(0.9ρw). Therefore, the apparent weight of the dinosaur is  

appweight weight weight .
0.9 0.9w

w

m m
g f g fρ

ρ
= − = −

If f = 0.50, this yields 81 kN for the apparent weight. 

(c) If f = 0.80, our formula yields 20 kN for the apparent weight.  

(d) If f = 0.90, we find the apparent weight is zero (it floats). 

(e) Eq. 14-8 indicates that the water pressure at that depth is greater than standard air 
pressure (the assumed pressure at the surface) by ρwgh = (1000)(9.8)(8) = 7.8 × 104 Pa. If 
we assume the pressure of air in the dinosaur’s lungs is approximately standard air 
pressure, then this value represents the pressure difference which the lung muscles would 
have to work against.  

(f) Assuming the maximum pressure difference the muscles can work with is 8 kPa, then 
our previous result (78 kPa) spells doom to the wading Diplodocus hypothesis. 



72. We note that in “gees” (where acceleration is expressed as a multiple of g) the given 
acceleration is 0.225/9.8 = 0.02296. Using m = ρV, Newton’s second law becomes 

ρwatVg – ρbubVg = ρbubVa ρbub = ρwat (1 + “a”)

where in the final expression “a” is to be understood to be in “gees.”  Using ρwat = 998 

kg/m3  (see Table 14-1) we find ρbub = 975.6 kg/m3.  Using volume V = 43 πr3 for the 

bubble, we then find its mass: mbub = 5.11 × 10−7 kg. 



73. (a) We denote a point at the top surface of the liquid A and a point at the opening B.
Point A is a vertical distance h = 0.50 m above B. Bernoulli’s equation yields 

21
2A B Bp p v ghρ ρ= + − . Noting that pA = pB we obtain  

22
2 ( ) 2(9.8 m/s )(0.50 m) 3.1 m/s.B A Bv gh p p

ρ
= + − = =

(b)

2
3 3

2 2(1.40 atm 1.00 atm)
2 ( ) 2(9.8 m/s )(0.50 m) 9.5 m/s.

1.0 10  kg/mB A Bv gh p p
ρ

−= + − = + =
×



74. Since all the blood that passes through the capillaries must have also passed through 
the aorta, the volume flow rate through the aorta is equal to the total volume flow rate 
through the capillaries. Assuming that the capillaries are identical with cross-sectional 
area A and flow speed v, we then have 0 0A v nAv= , where n is the number of capillaries. 

Solving for n yields 

2
90 0

7 2

(3 cm )(30 cm/s)
6 10

(3 10 cm )(0.05 cm/s)

A v
n

Av −= = = ×
×



75. We assume the fluid in the press is incompressible. Then, the work done by the 
output force is the same as the work done by the input force. If the large piston moves a 
distance D and the small piston moves a distance d, then fd = FD and 

( ) ( ) 3
3

103 N 0.85m
4.4 10 m = 4.4 mm.

20.0 10 N

fd
D

F
−= = = ×

×



76. The downward force on the balloon is mg and the upward force is Fb = ρoutVg.
Newton’s second law (with m = ρinV) leads to 

out
out in in

in

1 .Vg Vg Va g a
ρρ ρ ρ
ρ

− = − =

The problem specifies ρout / ρin = 1.39 (the outside air is cooler and thus more dense than 
the hot air inside the balloon). Thus, the upward acceleration is (1.39 – 1.00)(9.80 m/s2) = 
3.82 m/s2.



77. The equation of continuity is i i f fAv A v= , where A = πr2. Therefore, 

( )
2 2

0.2
0.09 m/s .

0.6
i

f i
f

r
v v

r
= =

Consequently, vf = 1.00 × 10–2 m/s. 



78. We equate the buoyant force Fb to the combined weight of the cork and sinker: 

w w c c s sV g V g V gρ ρ ρ= +

With 1
2w cV V=  and ρw = 1.00 g/cm3, we obtain 

( )( )
( )

32 11.4 0.4002
15.2cm .

2 1.00 2 0.200
s s

c
w c

V
V

ρ
ρ ρ

= = =
− −

Using the formula for the volume of a sphere (Appendix E), we have 

1/ 3
3

1.54cm.
4

cV
r = =

π



79. (a) From Bernoulli equation 2 21 1
1 1 1 2 2 22 2p v gh p v ghρ ρ ρ ρ+ + = + + , the height of the 

water extended up into the standpipe for section B is related to that for section D by 

( )2 21

2B D D Bh h v v
g

= + −

Equation of continuity further implies that D D B Bv A v A= , or 

2
2

4D B
B D D D

B B

A R
v v v v

A R
= = =

where 2 3 3 2/( ) (2.0 10 m /s) /( (0.040 m) ) 0.40 m/s.D V Dv R Rπ π−= = × =  With 0.50 mDh = ,

we have 

2
2

1
0.50 m ( 15)(0.40 m/s) 0.38 m.

2(9.8 m/s )Bh = + − =

(b) From the above result, we see that the greater the radius of the cross-sectional area, 
the greater the height. Thus, C D B Ah h h h> > > .



80. The absolute pressure is 

( ) ( ) ( )
0

5 2 3 3 2 61.01 10 N/m 1.03 10 kg/m 9.8m/s 150m 1.62 10 Pa.

p p ghρ= +

= × + × = ×



81. We consider the can with nearly its total volume submerged, and just the rim above 
water. For calculation purposes, we take its submerged volume to be V = 1200 cm3. To 
float, the total downward force of gravity (acting on the tin mass mt and the lead mass 
m ) must be equal to the buoyant force upward: 

3 3( ) (1g/cm ) (1200 cm ) 130 gt wm m g Vg mρ+ = = −

which yields 1.07×103 g for the (maximum) mass of the lead (for which the can still 
floats). The given density of lead is not used in the solution. 



82. If the mercury level in one arm of the tube is lowered by an amount x, it will rise by x
in the other arm. Thus, the net difference in mercury level between the two arms is 2x,
causing a pressure difference of ∆p = 2ρHggx, which should be compensated for by the 
water pressure pw = ρwgh, where h = 11.2 cm. In these units, ρw = 1.00 g/cm3 and ρHg =
13.6 g/cm3 (see Table 14-1). We obtain 

3

3
Hg

(1.00 g/cm ) (11.2 cm)
0.412 cm.

2 2(13.6 g/cm )
w gh

x
g

ρ
ρ

= = =



83. Neglecting the buoyant force caused by air, then the 30 N value is interpreted as the 
true weight W of the object. The buoyant force of the water on the object is therefore  
(30 – 20) N = 10 N, which means 

3 3
3 2

10 N
1.02 10 m

(1000 kg/m ) (9.8m/s )b wF Vg Vρ −= = = ×

is the volume of the object. When the object is in the second liquid, the buoyant force is 
(30 – 24) N = 6.0 N, which implies 

2 3
2 2 3 3

6.0 N
6.0 10 kg/m .

(9.8 m/s ) (1.02 10 m )
ρ −= = ×

×



84. (a) Using Eq. 14-10, we have pg = ρgh = 1.21 × 107 Pa. 

(b) By definition, p = pg + patm = 1.22 × 107 Pa. 

(c) We interpret the question as asking for the total force compressing the sphere’s 
surface, and we multiply the pressure by total area: 

2 5(4 ) 3.82 10 N.p rπ = ×

(d) The (upward) buoyant force exerted on the sphere by the seawater is 

34
where .

3b wF gV V rρ= = π

Therefore, Fb = 5.26 N. 

(e) Newton’s second law applied to the sphere (of mass m = 7.00 kg) yields 

bF mg ma− =

which results in a = –9.04 m/s2, which means the acceleration vector has a magnitude of  
9.04 m/s2.

(f) The direction is downward. 



85. The volume of water that drains back into the river annually is ¾(0.48 m)(3.0 × 109

m2) = 1.08 × 109 m3.  Dividing this (on a per unit time basis, according to Eq. 14-24) by 
area gives the (average) speed: 

v =
1.08 x 109

20 x 4    =   1.35 × 107 m/y  = 0.43 m/s. 



86. An object of mass m = ρV floating in a liquid of density ρliquid is able to float if the 
downward pull of gravity mg is equal to the upward buoyant force Fb = ρliquidgVsub where 
Vsub is the portion of the object which is submerged. This readily leads to the relation: 

sub

iquidl

V

V

ρ
ρ

=

for the fraction of volume submerged of a floating object. When the liquid is water, as 
described in this problem, this relation leads to 

1
w

ρ
ρ

=

since the object “floats fully submerged” in water (thus, the object has the same density 
as water). We assume the block maintains an “upright” orientation in each case (which is 
not necessarily realistic). 

(a) For liquid A,

1

2A

ρ
ρ

=

so that, in view of the fact that ρ = ρw, we obtain ρA/ρw = 2. 

(b) For liquid B, noting that two-thirds above means one-third below,

1

3B

ρ
ρ

=

so that ρB/ρw = 3. 

(c) For liquid C, noting that one-fourth above means three-fourths below,

3

4C

ρ
ρ

=

so that ρC/ρw = 4/3. 



87. The pressure (relative to standard air pressure) is given by Eq. 14-8: 

3 2 3 7(1024 kg/m ) (9.8 m/s ) (6.0 10 m) = 6.02 10 Pa .ghρ = × ×



88. Eq. 14-10 gives    

ρwater g (– 0.11 m) =  – 1076 N/m2 (or – 1076 Pa). 

Quoting the answer to two significant figures, we have the gauge pressure equal to 
31.1 10  Pa− × .



89. (a) Bernoulli’s equation implies 2 21 1
1 1 2 22 2p v p v ghρ ρ ρ+ = + + , or 

2 2
2 1 2 1

1
( )

2
p p v v ghρ ρ− = − +

where 1 2.00 atmp = , 2 1.00 atmp = and 9.40 mh = . Using continuity equation 

1 1 2 2v A v A= , the above equation may be rewritten as 

2 22
2 22 2

2 1 2 2 2
1 1

1 1
( ) 1 1

2 2

A R
p p gh v v

A R
ρ ρ ρ− − = − = −

With 2 1/ 1/ 6,R R = we obtain 2 4.216 m/sv = . Thus, the amount of time required to fill up 

a 10.0 m by 10.0 m swimming pool to a height of 2.00 m is  

5
2 2

2 2

(10.0 m)(10.0 m)(2.00 m)
1.51 10  s 42 h.

(1.00 10 m) (4.216 m/s)

V
t

A v π −= = = × ≈
×

(b) Yes, the filling time is acceptable. 



90. This is analogous to the same “weighted average” idea encountered in the discussion 
of centers of mass (in Chapter 9), particularly due to the assumption that the volume does 
not change: 

ρmix = 
d1ρ1 + d2ρ2

d1  + d2
  = 

(8)(1.2) + (4)(2.0)
8 + 4   = 1.5 g/cm3.



91. Equilibrium of forces (on the floating body) is expressed as 

body liqui d submerged body totalbF m g gV gVρ ρ= =

which leads to 

submerged body

total liquid

.
V

V

ρ
ρ

=

We are told (indirectly) that two-thirds of the body is below the surface, so the fraction 
above is 2/3. Thus, with ρbody = 0.98 g/cm3, we find ρliquid ≈ 1.5 g/cm3 — certainly much 
more dense than normal seawater (the Dead Sea is about seven times saltier than the 
ocean due to the high evaporation rate and low rainfall in that region). 



92. (a) We assume that the top surface of the slab is at the surface of the water and that 
the automobile is at the center of the ice surface. Let M be the mass of the automobile, ρi

be the density of ice, and ρw be the density of water. Suppose the ice slab has area A and 
thickness h. Since the volume of ice is Ah, the downward force of gravity on the 
automobile and ice is (M + ρiAh)g. The buoyant force of the water is ρwAhg, so the 
condition of equilibrium is (M + ρiAh)g – ρwAhg = 0 and 

( ) ( ) ( )
2

3 3

1100 kg
45 m .

998kg m 917 kg m 0.30mw i

M
A

hρ ρ
= = =

− −

These density values are found in Table 14-1 of the text. 

(b) It does matter where the car is placed since the ice tilts if the automobile is not at the 
center of its surface. 



93. (a) The total weight is 

( ) ( ) ( ) ( )3 3 2 2 91.00 10 kg m 9.8m s 200 m 3000m 6.06 10 N.W ghAρ= = × = ×

(b) The water pressure is 

( ) ( ) ( )3 3 2
5

1atm
1.03 10 kg m 9.8m s 200m 20atm

1.01 10 Pa
p ghρ= = × =

×

(c) No, because the pressure is too much for anybody to endure without special 
equipment.



94. The area facing down (and up) is A = (0.050 m)(0.040 m) = 0.0020 m2. The 
submerged volume is V = Ad where d = 0.015 m. In order to float, the downward pull of 
gravity mg must equal the upward buoyant force exerted by the seawater of density ρ:

( ) ( ) ( )1025 0.0020 0.015 0.031kg.mg Vg m Vρ ρ= = = =



95. Note that “surface area” refers to the total surface area of all six faces, so that the area 
of each (square) face is 24/6 = 4 m2. From Archimedes’ principle and the requirement 
that the cube (of total volume V and density ρ) floats, we find 

sub
subw

w

V
Vg V g

V

ρρ ρ
ρ

= =

for the fraction of volume submerged. The assumption that the cube floats upright, as 
described in this problem, simplifies this relation to 

sub

w

h

h

ρ
ρ

=

where h is the length of one side, and ρw 4ρ =  is given. With 4 2m,h = =  we find hsub

= h/4 = 0.50 m. 



96. The beaker is indicated by the subscript b. The volume of the glass of which the 
beaker walls and base are made is Vb = mb/ρb. We consider the case where the beaker is 
slightly more than half full (which, for calculation purposes, will be simply set equal to 
half-volume) and thus remains on the bottom of the sink — as the water around it reaches 
its rim. At this point, the force of buoyancy exerted on it is given by F = (Vb + V)ρwg,
where V is the interior volume of the beaker. Thus F = (Vb + V)ρwg = ρwg(V/2) + mb,
which we solve for ρb:

3
3

3 3

2 2(390 g) (1.00 g/cm )
2.79 g/cm .

2 2(390 g) (1.00 g/cm ) (500 cm )
b w

b
b w

m

m V

ρρ
ρ

= = =
− −



97. (a) Since the pressure (due to the water) increases linearly with depth, we use its 
average (multiplied by the dam area) to compute the force exerted on the face of the dam, 
its average being simply half the pressure value near the bottom (at depth d4 = 48 m). The 
maximum static friction will be µFN where the normal force FN (exerted upward by the 
portion of the bedrock directly underneath the concrete) is equal to the weight mg of the 
dam. Since m = ρcV with ρc being the density of the concrete and V being the volume 
(thickness times width times height: 1 2 3d d d ), we write 1 2 3N cF d d d gρ= . Thus, the 

safety factor is 

1 2 3 1 2 3 2 3
2

4 1 4 4
4 face

2 2
1 ( )
2

c c c

w w
w

d d d g d d d d d

d d d dgd A

µρ µρ µρ
ρ ρρ

= =

which (since ρw = 1 g/cm3) yields 2(0.47) (3.2) (24) (71) / (48)2 = 2.2. 

(b) To compute the torque due to the water pressure, we will need to integrate Eq. 14-7 
(multiplied by (d4 – y) and the dam width d1) as shown below. The countertorque due to 
the weight of the concrete is the weight multiplied by half the thickness d3, since we take 
the center of mass of the dam at its geometric center and the axis of rotation at A. Thus, 
the safety factor relative to rotation is 

4

2
3 1 2 3 3 3 2

3 3
1 4 44 1o

( / 2) ( / 2) 3

/ 6( )

c c
d

w ww

mg d d d d g d d d

gd d dgy d y d dy

ρ ρ
ρ ρρ

= =
−

which yields 3(3.2) (24)2 (71)/(48)3 = 3.6. 



98. Let Fo be the buoyant force of air exerted on the object (of mass m and volume V),
and Fbrass be the buoyant force on the brass weights (of total mass mbrass and volume 
Vbrass). Then we have 

air airo

mg
F Vgρ ρ

ρ
= =

and

brass
brass air brass air

brass

.
m

F V gρ ρ
ρ

= =

For the two arms of the balance to be in mechanical equilibrium, we require mg – Fo = 
mbrassg – Fbrass, or 

air brass
brass brass

brass

,
m

mg mg m g m g
ρ
ρ ρ

− = −

which leads to 

air
brass

air brass

1 /
.

1 /
m m

ρ ρ
ρ ρ

−=
−

Therefore, the percent error in the measurement of m is 

brass air air brass

air brass air brass

1 / (1/ 1/
1

1 / 1 /

0.0012(1/ 1/8.0) 1 1
0.0012 ,

1 0.0012 /8.0) 8.0

m mm

m m

ρ ρ ρ ρ ρ
ρ ρ ρ ρ

ρ
ρ

− − −∆ = = − =
− −

−= ≈ −
−

where ρ is in g/cm3. Stating this as a percent error, our result is 0.12% multiplied by  
(1/ρ – 1/8.0). 
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