
1. (a) The amplitude is half the range of the displacement, or xm = 1.0 mm. 

(b) The maximum speed vm is related to the amplitude xm by vm = ωxm, where ω is the 
angular frequency. Since ω = 2πf, where f is the frequency, 

( )( )3= 2 = 2 120 Hz 1.0 10  m = 0.75 m/s.m mv fxπ π −×

(c) The maximum acceleration is 

( ) ( )( ) ( )222 3 2 2= = 2 = 2 120 Hz 1.0 10  m = 5.7 10  m/s .m m ma x f xω π π −× ×



2. (a) The acceleration amplitude is related to the maximum force by Newton’s second 
law: Fmax = mam. The textbook notes (in the discussion immediately after Eq. 15-7) that 
the acceleration amplitude is am = ω2xm, where ω is the angular frequency (ω = 2πf since 
there are 2π radians in one cycle). The frequency is the reciprocal of the period: f = 1/T = 
1/0.20 = 5.0 Hz, so the angular frequency is ω = 10π (understood to be valid to two 
significant figures). Therefore, 

 = = 0.12 10 0.085 = 10 . 2 2
F m xmmax  kg  rad / s  m  Nω b gb g b gπ

(b) Using Eq. 15-12, we obtain 

( ) ( )2 2    0.12kg 10  rad/s 1.2 10 N/m.
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3. (a) The angular frequency ω is given by ω = 2πf = 2π/T, where f is the frequency and T
is the period. The relationship f = 1/T was used to obtain the last form. Thus  

ω = 2π/(1.00 × 10–5 s) = 6.28 × 105 rad/s. 

(b) The maximum speed vm and maximum displacement xm are related by vm = ωxm, so 

 = =
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4. The textbook notes (in the discussion immediately after Eq. 15-7) that the acceleration 
amplitude is am = ω2xm, where ω is the angular frequency (ω = 2πf since there are 2π
radians in one cycle). Therefore, in this circumstance, we obtain 

 = 2 6.60 0.0220 = 37.8
2 2am π  Hz  m  m / sb gc h b g .



5. (a) The motion repeats every 0.500 s so the period must be T = 0.500 s. 

(b) The frequency is the reciprocal of the period: f = 1/T = 1/(0.500 s) = 2.00 Hz. 

(c) The angular frequency ω is ω = 2πf = 2π(2.00 Hz) = 12.6 rad/s. 

(d) The angular frequency is related to the spring constant k and the mass m by 
ω = k m . We solve for k: k = mω2 = (0.500 kg)(12.6 rad/s)2 = 79.0 N/m. 

(e) Let xm be the amplitude. The maximum speed is vm = ωxm = (12.6 rad/s)(0.350 m) = 
4.40 m/s. 

(f) The maximum force is exerted when the displacement is a maximum and its 
magnitude is given by Fm = kxm = (79.0 N/m)(0.350 m) = 27.6 N. 



6. (a) The problem describes the time taken to execute one cycle of the motion. The 
period is T = 0.75 s. 

(b) Frequency is simply the reciprocal of the period: f = 1/T ≈ 1.3 Hz, where the SI unit 
abbreviation Hz stands for Hertz, which means a cycle-per-second. 

(c) Since 2π radians are equivalent to a cycle, the angular frequency ω (in radians-per-
second) is related to frequency f by ω = 2πf so that ω ≈ 8.4 rad/s. 



7. (a) During simple harmonic motion, the speed is (momentarily) zero when the object is 
at a “turning point” (that is, when x = +xm or x = –xm). Consider that it starts at x = +xm

and we are told that t = 0.25 second elapses until the object reaches x = –xm. To execute a 
full cycle of the motion (which takes a period T to complete), the object which started at x
= +xm must return to x = +xm (which, by symmetry, will occur 0.25 second after it was at 
x = –xm). Thus, T = 2t = 0.50 s. 

(b) Frequency is simply the reciprocal of the period: f = 1/T = 2.0 Hz. 

(c) The 36 cm distance between x = +xm and x = –xm is 2xm. Thus, xm = 36/2 = 18 cm. 



8. (a) Since the problem gives the frequency f = 3.00 Hz, we have ω = 2πf = 6π rad/s 
(understood to be valid to three significant figures). Each spring is considered to support 
one fourth of the mass mcar so that Eq. 15-12 leads to 
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(b) If the new mass being supported by the four springs is mtotal = [1450 + 5(73)] kg = 
1815 kg, then Eq. 15-12 leads to 
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9. (a) Making sure our calculator is in radians mode, we find 
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I
KJ

(b) Differentiating with respect to time and evaluating at t = 2.0 s, we find 
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(c) Differentiating again, we obtain 
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(d) In the second paragraph after Eq. 15-3, the textbook defines the phase of the motion. 
In this case (with t = 2.0 s) the phase is 3π(2.0) + π/3 ≈ 20 rad. 

(e) Comparing with Eq. 15-3, we see that ω = 3π rad/s. Therefore, f = ω/2π = 1.5 Hz. 

(f) The period is the reciprocal of the frequency: T = 1/f ≈ 0.67 s. 



10. We note (from the graph) that xm = 6.00 cm.  Also the value at t = 0 is xo = − 2.00 cm.   
Then Eq. 15-3 leads to f = cos−1(−2.00/6.00) =  +1.91 rad or – 4.37 rad.  The other “root” 
(+4.37 rad) can be rejected on the grounds that it would lead to a positive slope at t = 0. 



11. When displaced from equilibrium, the net force exerted by the springs is –2kx acting 
in a direction so as to return the block to its equilibrium position (x = 0). Since the 
acceleration a = d2x/dt2, Newton’s second law yields 

 = 2 . 
2

2
m

d x
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Substituting x = xm cos(ωt + φ) and simplifying, we find 

 =
22ω k

m

where ω is in radians per unit time. Since there are 2π radians in a cycle, and frequency f
measures cycles per second, we obtain 
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12. We note (from the graph) that vm = ωxm = 5.00 cm/s.  Also the value at t = 0 is vo = 
4.00 cm/s.   Then Eq. 15-6 leads to φ = sin−1(− 4.00/5.00) =  – 0.927 rad or +5.36 rad.  
The other “root” (+4.07 rad) can be rejected on the grounds that it would lead to a 
positive slope at t = 0. 



13. The magnitude of the maximum acceleration is given by am = ω2xm, where ω is the 
angular frequency and xm is the amplitude.  

(a) The angular frequency for which the maximum acceleration is g is given by 
ω = g xm/ , and the corresponding frequency is given by 

2

6

1 1 9.8 m/s
498  Hz.

2 2 2 1.0 10 mm

g
f

x

ω
π π π −= = = =

×

(b) For frequencies greater than 498 Hz, the acceleration exceeds g for some part of the 
motion.



14. From highest level to lowest level is twice the amplitude xm of the motion. The period 
is related to the angular frequency by Eq. 15-5. Thus,  x dm = 1

2  and ω = 0.503 rad/h. The 
phase constant φ in Eq. 15-3 is zero since we start our clock when xo = xm (at the highest 
point). We solve for t when x is one-fourth of the total distance from highest to lowest 
level, or (which is the same) half the distance from highest level to middle level (where 
we locate the origin of coordinates). Thus, we seek t when the ocean surface is at 
x x dm= =1

2
1
4 .

x x t

d d t

t

m= +

= FHG
I
KJ +

=

cos( )

cos .

cos( . )

ω φ
1

4

1

2
0 503 0

1

2
0 503

b g

which has t = 2.08 h as the smallest positive root. The calculator is in radians mode 
during this calculation. 



15. The maximum force that can be exerted by the surface must be less than µsFN or else 
the block will not follow the surface in its motion. Here, µs is the coefficient of static 
friction and FN is the normal force exerted by the surface on the block. Since the block 
does not accelerate vertically, we know that FN = mg, where m is the mass of the block. If 
the block follows the table and moves in simple harmonic motion, the magnitude of the 
maximum force exerted on it is given by F = mam = mω2xm = m(2πf)2xm, where am is the 
magnitude of the maximum acceleration, ω is the angular frequency, and f is the 
frequency. The relationship ω = 2πf was used to obtain the last form. We substitute F = 
m(2πf)2xm and FN = mg into F < µsFN to obtain m(2πf)2xm < µsmg. The largest amplitude 
for which the block does not slip is 

 =
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0.50 9.8

2 2.0
0 0312

2

2x
g

f
m

sµ
π πb g
b gc h
b g

 m / s

 Hz×
= . .m

A larger amplitude requires a larger force at the end points of the motion. The surface 
cannot supply the larger force and the block slips. 



16. The statement that “the spring does not affect the collision” justifies the use of elastic 
collision formulas in section 10-5.  We are told the period of SHM so that we can find the 
mass of block 2: 
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At this point, the rebound speed of block 1 can be found from Eq. 10-30:

| v1 f |  =   | 0.200 - 0.600
0.200 + 0.600 | (8.00 m/s) =  4.00 m/s . 

This becomes the initial speed v0 of the projectile motion of block 1.  A variety of choices 
for the positive axis directions are possible, and we choose left as the +x direction and 
down as the +y direction, in this instance.  With the “launch” angle being zero, Eq. 4-21 
and Eq. 4-22 (with  –g replaced with  +g) lead to 

x – x0 =  v0 t  =  v0

2 h
g    =  (4.00) 

2(4.90)
9.8

Since x – x0 = d, we arrive at  d = 4.00 m. 



17. (a) Eq. 15-8 leads to 

a x
a

x
= − = − =ω ω2 123

0100.

which yields ω = 35.07 rad/s. Therefore, f = ω/2π = 5.58 Hz. 

(b) Eq. 15-12 provides a relation between ω (found in the previous part) and the mass: 
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ω = =

(c) By energy conservation, 1
2

2kxm  (the energy of the system at a turning point) is equal to 
the sum of kinetic and potential energies at the time t described in the problem. 
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Consequently, 2 2(0.325 / 400)(13.6) (0.100) 0.400m.mx = + =



18. We note that the ratio of Eq. 15-6 and Eq. 15-3 is v/x = –ωtan(ωt + φ) where ω = 1.20 
rad/s in this problem.  Evaluating this at t = 0 and using the values from the graphs shown 
in the problem, we find

φ = tan−1(–vo/xoω) = tan−1(+4.00/(2 × 1.20)) =1.03 rad (or –5.25 rad). 

One can check that the other “root” (4.17 rad) is unacceptable since it would give the 
wrong signs for the individual values of vo and xo.



19. Eq. 15-12 gives the angular velocity: 

100 N/m
7.07rad/s.

2.00 kg

k

m
ω = = =

Energy methods (discussed in §15-4) provide one method of solution. Here, we use 
trigonometric techniques based on Eq. 15-3 and Eq. 15-6. 

(a) Dividing Eq. 15-6 by Eq. 15-3, we obtain 

 = +
v

x
t−ω ω φtanb g

so that the phase (ωt + φ) is found from 

 + = =
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With the calculator in radians mode, this gives the phase equal to –1.31 rad. Plugging this 
back into Eq. 15-3 leads to 0.129m cos( 1.31)    0.500m.m mx x= − =

(b) Since ωt + φ = –1.31 rad at t = 1.00 s, we can use the above value of ω to solve for the 
phase constant φ. We obtain φ = –8.38 rad (though this, as well as the previous result, can 
have 2π or 4π (and so on) added to it without changing the physics of the situation). With 
this value of φ, we find xo = xm cos φ = – 0.251 m. 

(c) And we obtain vo = –xmω sinφ = 3.06 m/s. 



20. Both parts of this problem deal with the critical case when the maximum acceleration 
becomes equal to that of free fall. The textbook notes (in the discussion immediately after 
Eq. 15-7) that the acceleration amplitude is am = ω2xm, where ω is the angular frequency; 
this is the expression we set equal to g = 9.8 m/s2.

(a) Using Eq. 15-5 and T = 1.0 s, we have 
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(b) Since ω = 2πf, and xm = 0.050 m is given, we find 
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21. (a) Let 

 =
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2
1x

A t

T
cos

πF
HG
I
KJ

be the coordinate as a function of time for particle 1 and 
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2
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be the coordinate as a function of time for particle 2. Here T is the period. Note that since 
the range of the motion is A, the amplitudes are both A/2. The arguments of the cosine 
functions are in radians. Particle 1 is at one end of its path (x1 = A/2) when t = 0. Particle 
2 is at A/2 when 2πt/T + π/6 = 0 or t = –T/12. That is, particle 1 lags particle 2 by one-
twelfth a period. We want the coordinates of the particles 0.50 s later; that is, at t = 0.50 s, 

1

2 0.50 s
= cos = 0.25

2 1.5 s

A
x A

π × −

and

2

2 0.50 s
= cos + = 0.43 .

2 1.5 s 6

A
x A
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Their separation at that time is x1 – x2 = –0.25A + 0.43A = 0.18A.

(b) The velocities of the particles are given by 

 = =
2

1
1v

dx

dt

A

T

t

T

π π
sinFH

I
K

and

 = =
2

+
6

.2
2v

dx

dt

A

T

t

T

π π π
sinFH

I
K

We evaluate these expressions for t = 0.50 s and find they are both negative-valued, 
indicating that the particles are moving in the same direction. 



22. They pass each other at time t, at x x xm1 2
1
2= =  where 

x x t x x tm m1 1 2 2= + = +cos( ) cos( ).ω φ ω φand

From this, we conclude that cos( ) cos( )ω φ ω φt t+ = + =1 2
1
2 , and therefore that the phases 

(the arguments of the cosines) are either both equal to π/3 or one is π/3 while the other 
is –π/3. Also at this instant, we have v1 = –v2 0  where

v x t v x tm m1 1 2 2= − + = − +ω ω φ ω ω φsin( ) sin( ).and

This leads to sin(ωt + φ1) = – sin(ωt + φ 2). This leads us to conclude that the phases have 
opposite sign. Thus, one phase is π/3 and the other phase is –π /3; the wt term cancels if 
we take the phase difference, which is seen to be π /3 – (–π /3) = 2π /3. 



23. (a) The object oscillates about its equilibrium point, where the downward force of 
gravity is balanced by the upward force of the spring. If  is the elongation of the spring 
at equilibrium, then k mg= , where k is the spring constant and m is the mass of the 
object. Thus k m g=  and

f k m g= = =ω 2 1 2 1 2π π πa f a f .

Now the equilibrium point is halfway between the points where the object is momentarily 
at rest. One of these points is where the spring is unstretched and the other is the lowest 
point, 10 cm below. Thus = =5 0 0 050. .cm m and 

21 9.8  m/s
2.2 Hz.

2 0.050 m
f

π
= =

(b) Use conservation of energy. We take the zero of gravitational potential energy to be at 
the initial position of the object, where the spring is unstretched. Then both the initial 
potential and kinetic energies are zero. We take the y axis to be positive in the downward 
direction and let y = 0.080 m. The potential energy when the object is at this point is 
U ky mgy= −1

2
2 . The energy equation becomes 0 1

2
2 1

2
2= − +ky mgy mv . We solve for the 

speed. 

( )( ) ( )
2

22 2 2 9.8m/s
2 2 2 9.8m/s 0.080m 0.080m

0.050 m

0.56m/s

k g
v gy y gy y

m
= − = − = − =

=

(c) Let m be the original mass and ∆m be the additional mass. The new angular frequency 
is ′ = +ω k m m/ ( )∆ . This should be half the original angular frequency, or 1

2 k m . We 

solve k m m k m/ ( ) /+ =∆ 1
2  for m. Square both sides of the equation, then take the 

reciprocal to obtain m + ∆m = 4m. This gives m = ∆m/3 = (300 g)/3 = 100 g = 0.100 kg. 

(d) The equilibrium position is determined by the balancing of the gravitational and 
spring forces: ky = (m + ∆m)g. Thus y = (m + ∆m)g/k. We will need to find the value of 
the spring constant k. Use k = mω2 = m(2π f )2. Then 

( )
( )

( )( )
( ) ( )

2

2 2

0.100 kg 0.300 kg 9.80 m/s+
= 0.200 m.

2 0.100 kg 2 2.24 Hz

m m g
y

m fπ π

+∆
=

×

This is measured from the initial position. 



24. Let the spring constants be k1 and k2. When displaced from equilibrium, the 
magnitude of the net force exerted by the springs is |k1x + k2 x| acting in a direction so as 
to return the block to its equilibrium position (x = 0). Since the acceleration a = d2x/d2,
Newton’s second law yields 

 = . 
2

2 1 2m
d x

dt
k x k x− −

Substituting x = xm cos(ωt + φ) and simplifying, we find 

 =
+2 1 2ω k k

m

where ω is in radians per unit time. Since there are 2π radians in a cycle, and frequency f
measures cycles per second, we obtain 

 =
2

=
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2
1 2f

k k

m

ω
π π

+
.

The single springs each acting alone would produce simple harmonic motions of 
frequency 

1 2
1 2

1 1
= 30 Hz,        = 45 Hz,

2 2

k k
f f

m mπ π
= =

respectively. Comparing these expressions, it is clear that 

2 2 2 2
1 2 (30 Hz) +(45 Hz) 54 Hz.f f f= + = =



25. To be on the verge of slipping means that the force exerted on the smaller block (at 
the point of maximum acceleration) is fmax = µs mg. The textbook notes (in the discussion 
immediately after Eq. 15-7) that the acceleration amplitude is am =ω2xm, where 
ω = +k m M/ ( )  is the angular frequency (from Eq. 15-12). Therefore, using Newton’s 
second law, we have 

 =
+

=ma mg
k

m M
x gm s m sµ µ

which leads to xm = 0.22 m. 



26. We wish to find the effective spring constant for the combination of springs shown in 
Fig. 15-35. We do this by finding the magnitude F of the force exerted on the mass when 
the total elongation of the springs is ∆x. Then keff = F/∆x. Suppose the left-hand spring is 
elongated by ∆x  and the right-hand spring is elongated by ∆xr. The left-hand spring 
exerts a force of magnitude k x∆  on the right-hand spring and the right-hand spring exerts 

a force of magnitude  k∆xr on the left-hand spring. By Newton’s third law these must be 
equal, so ∆ ∆x xr= . The two elongations must be the same and the total elongation is 
twice the elongation of either spring: ∆ ∆x x= 2 . The left-hand spring exerts a force on 
the block and its magnitude is F k x= ∆ . Thus k k x x kreff = =∆ ∆/ /2 2 . The block 
behaves as if it were subject to the force of a single spring, with spring constant k/2. To 
find the frequency of its motion replace keff in f k m= 1 2/ /πa f eff  with k/2 to obtain 

 =
1

2 2
f

k

mπ
.

With m = 0.245 kg and k = 6430 N/m, the frequency is f = 18.2 Hz. 



27. (a) We interpret the problem as asking for the equilibrium position; that is, the block 
is gently lowered until forces balance (as opposed to being suddenly released and allowed 
to oscillate). If the amount the spring is stretched is x, then we examine force-components 
along the incline surface and find 

14.0sin 40.0
sin     0.0750 m

120
kx mg xθ °= = =

at equilibrium. The calculator is in degrees mode in the above calculation. The distance 
from the top of the incline is therefore (0.450 + 0.75) m = 0.525 m. 

(b) Just as with a vertical spring, the effect of gravity (or one of its components) is simply 
to shift the equilibrium position; it does not change the characteristics (such as the period) 
of simple harmonic motion. Thus, Eq. 15-13 applies, and we obtain 

14.0 9.80
= 2 = 0.686 s.

120
T π



28. (a) The energy at the turning point is all potential energy: E kxm= 1
2

2  where E = 1.00 J 
and xm = 0.100 m. Thus, 

 =
2

= 200 . 
2

k
E

xm

 N / m

(b) The energy as the block passes through the equilibrium position (with speed vm = 1.20 
m/s) is purely kinetic: 

 =
1

2
=

2
= 1.39 . 2

2
E mv m

E
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 kg

(c) Eq. 15-12 (divided by 2π) yields 

 =
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2
1 91f

k

mπ
= . .Hz



29. When the block is at the end of its path and is momentarily stopped, its displacement 
is equal to the amplitude and all the energy is potential in nature. If the spring potential 
energy is taken to be zero when the block is at its equilibrium position, then 

 =
1

2
=

1

2
1.3 10 0.024 = 3.7 10 . 2 2 2 2E kxm × × − N / m  m  Jc ha f



30. The total mechanical energy is equal to the (maximum) kinetic energy as it passes 

through the equilibrium position (x = 0):  12 mv2 = 12 (2.0 kg)(0.85 m/s)2 = 0.72 J. Looking 

at the graph in the problem, we see that U(x=10)=0.5 J. Since the potential function has 
the form 2( )U x bx= , the constant is 3 25.0 10 J/cmb −= × . Thus, U(x) = 0.72 J when x = 12 
cm. 

(a) Thus, the mass does turn back before reaching x = 15 cm. 

(b) It turns back at x = 12 cm. 



31. The total energy is given by E kxm= 1
2

2 , where k is the spring constant and xm is the 
amplitude. We use the answer from part (b) to do part (a), so it is best to look at the 
solution for part (b) first. 

(a) The fraction of the energy that is kinetic is 

1 3
= =1 =1 = 0.75

4 4

K E U U

E E E

− − − =

where the result from part (b) has been used. 

(b) When x xm= 1
2  the potential energy is U kx kxm= =1

2
2 1

8
2 . The ratio is 

21
8

21
2

1
= 0.25.

4
m

m

kxU

E kx
= =

(c) Since E kxm= 1
2

2  and U kx= 1
2

2 , U/E = x xm
2 2 . We solve x xm

2 2  = 1/2 for x. We should 

get x xm= / 2 .



32. We infer from the graph (since mechanical energy is conserved) that the total energy 
in the system is 6.0 J; we also note that the amplitude is apparently xm = 12 cm = 0.12 m.  
Therefore we can set the maximum potential energy equal to 6.0 J and solve for the 
spring constant k:
     

1
2 k xm

2 = 6.0 J     k = 8.3 ×102 N/m . 



33. (a) Eq. 15-12 (divided by 2π) yields 

 =
1

2

1

2

1000

5 00
2 25f

k

mπ π
= =N / m

kg
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.
. .

(b) With xo = 0.500 m, we have U kx0
1
2 0

2 125= = J .

(c) With vo = 10.0 m/s, the initial kinetic energy is K mv0
1
2 0

2 250= = J .

(d) Since the total energy E = Ko + Uo = 375 J is conserved, then consideration of the 
energy at the turning point leads to 

 =
1

2

2
= 0.866 . 2E kx x

E

km m =  m



34. We note that the ratio of Eq. 15-6 and Eq. 15-3 is v/x = −ωtan(ωt + φ) where ω is
given by Eq. 15-12.  Since the kinetic energy is 12 mv2 and the potential energy is 12 kx2

(which may be conveniently written as  12 mω2x2) then the ratio of kinetic to potential 

energy is simply  

(v/x)2/ω2 = tan2(ωt + φ),

which at t = 0 is tan2φ.  Since φ = π/6 in this problem, then the ratio of kinetic to potential 
energy at t = 0 is tan2(π/6) = 1/3. 



35. The textbook notes (in the discussion immediately after Eq. 15-7) that the 
acceleration amplitude is am = ω2xm, where ω is the angular frequency and xm = 0.0020 m 
is the amplitude. Thus, am = 8000 m/s2 leads to ω = 2000 rad/s. Using Newton’s second 
law with m = 0.010 kg, we have 

 = = + = 80 2000
3

F ma m a t tm− − −F
H

I
Kcos  N cosω φa fc h a f π

where t is understood to be in seconds. 

(a) Eq. 15-5 gives T = 2π/ω = 3.1 × 10–3 s. 

(b) The relation vm = ωxm can be used to solve for vm, or we can pursue the alternate 
(though related) approach of energy conservation. Here we choose the latter. By Eq. 15-
12, the spring constant is k = ω2m = 40000 N/m. Then, energy conservation leads to 

2 21 1
=        = 4.0 m/s.

2 2m m m m

k
kx mv v x

m
=

(c) The total energy is 1
2

2 1
2

2 0 080kx mvm m= = . J .

(d) At the maximum displacement, the force acting on the particle is  

4 3(4.0 10 N/m)(2.0 10 m)=80 N.F kx −= = × ×

(e) At half of the maximum displacement, 1.0 mmx = , and the force is  

4 3(4.0 10 N/m)(1.0 10 m)=40 N.F kx −= = × ×



36. We note that the spring constant is k = 4π2m1/T
2 = 1.97 × 105 N/m.  It is important to 

determine where in its simple harmonic motion (which “phase” of its motion) block 2 is 
when the impact occurs.  Since ω = 2π/T  and the given value of t (when the collision 
takes place) is one-fourth of T, then  ωt = π/2 and the location then of block 2 is x = 
xmcos(ωt + φ) where φ = π/2 which gives x = xmcos(π/2 + π/2) =  –xm.  This means block 
2 is at a turning point in its motion (and thus has zero speed right before the impact 
occurs); this means, too, that the spring is stretched an amount of 1 cm = 0.01 m at this 
moment.  To calculate its after-collision speed (which will be the same as that of block 1 
right after the impact, since they stick together in the process) we use momentum 
conservation and obtain (4.0 kg)(6.0 m/s)/(6.0 kg) = 4.0 m/s. Thus, at the end of the 
impact itself (while block 1 is still at the same position as before the impact) the system 

(consisting now of a total mass M = 6.0 kg) has kinetic energy  12 (6.0 kg)(4.0 m/s)2 = 48 J 

and potential energy  12 (1.97 × 105 N/m)(0.010 m)2 ≈ 10 J, meaning the total mechanical 

energy in the system at this stage is approximately 58 J.  When the system reaches its 
new turning point (at the new amplitude X ) then this amount must equal its (maximum) 

potential energy there: 12 (1.97 × 105) X 2.  Therefore, we find   

X = 2(58)/(1.97 x 105)  = 0.024 m. 



37. The problem consists of two distinct parts: the completely inelastic collision (which is 
assumed to occur instantaneously, the bullet embedding itself in the block before the 
block moves through significant distance) followed by simple harmonic motion (of mass 
m + M attached to a spring of spring constant k).

(a) Momentum conservation readily yields v´ = mv/(m + M). With m = 9.5 g, M = 5.4 kg 
and v = 630 m/s, we obtain ' 1.1 m/s.v =

(b) Since v´ occurs at the equilibrium position, then v´ = vm for the simple harmonic 
motion. The relation vm = ωxm can be used to solve for xm, or we can pursue the alternate 
(though related) approach of energy conservation. Here we choose the latter: 

( )( ) ( )
( )

2 2
2 2 2

2

1 1 1 1
'

2 2 2 2m m

m v
m M v kx m M kx

m M
+ = + =

+

which simplifies to 

( )
3

2

3

(9.5 10 kg)(630 m/s)
3.3 10  m.

(6000 N/m)(9.5 10 kg  5.4kg)
m

mv
x

k m M

−
−

−

×= = = ×
+ × +



38. From Eq. 15-23 (in absolute value) we find the torsion constant: 

κ τ
θ

= = =0 20

085
0 235

.

.
.

in SI units. With I = 2mR2/5 (the rotational inertia for a solid sphere — from Chapter 11), 
Eq. 15–23 leads to 

T
mR= = =2 2

95 015

0 235
12

2
5

2 2
5

2

π π
κ

b gb g.

.
.s



39. (a) We take the angular displacement of the wheel to be θ = θm cos(2πt/T), where θm

is the amplitude and T is the period. We differentiate with respect to time to find the 
angular velocity: Ω  = –(2π/T)θmsin(2πt/T). The symbol Ω  is used for the angular 
velocity of the wheel so it is not confused with the angular frequency. The maximum 
angular velocity is 

 =
2

=
2

0.500
= 39.5 . Ωm

m

T

π π πθ a fa frad

s
 rad / s

(b) When θ = π/2, then θ/θm = 1/2, cos(2πt/T) = 1/2, and 

( ) ( ) ( )22sin 2 1 cos 2 1 1 2 3 2t T t Tπ π= − = − =

where the trigonometric identity cos2θ + sin2θ = 1 is used. Thus, 

 =
2 2

=
2

0.500

3

2
= 34.2 . Ω − F

H
I
K −FH

I
K

F
HG
I
KJ −π π π π

T

t

Tmθ sin
 s

 rad  rad / sa f

During another portion of the cycle its angular speed is +34.2 rad/s when its angular 
displacement is π/2 rad. 

(c) The angular acceleration is 

( )
2 22

2

2 2
cos 2 / .m

d
t T

dt T T

θ π πα θ π θ= = − = −

When θ = π/4,
2

22
= 124 rad/s ,

0.500 s 4

π πα = − −

or 2| | 124 rad/s .α =



40. (a) Referring to Sample Problem 15-5, we see that the distance between P and C is 
h L L L= − =2

3
1
2

1
6 . The parallel axis theorem (see Eq. 15–30) leads to 

 =
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+ =
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12
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36
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And Eq. 15-29 gives 

T
I

mgh

L

gL

L

g
= = =2 2

9

6
2

2

3

2

π π π/

/

which yields T = 1.64 s for L = 1.00 m. 

(b) We note that this T is identical to that computed in Sample Problem 15-5. As far as 
the characteristics of the periodic motion are concerned, the center of oscillation provides 
a pivot which is equivalent to that chosen in the Sample Problem (pivot at the edge of the 
stick). 



41. We require 

T
L

g

I

mgh
o= =2 2π π

similar to the approach taken in part (b) of Sample Problem 15-5, but treating in our case 
a more general possibility for I. Canceling 2π, squaring both sides, and canceling g leads 
directly to the result; Lo = I/mh.



42. (a) Comparing the given expression to Eq. 15-3 (after changing notation x → θ ), we 
see that ω = 4.43 rad/s.  Since ω = g/L  then we can solve for the length: L = 0.499 m. 

(b) Since vm = ωxm = ωLθm = (4.43 rad/s)(0.499 m)(0.0800 rad) and m = 0.0600 kg, then 

we can find the maximum kinetic energy: 12 mvm
2 = 9.40 × 10− 4 J.  



43. (a) A uniform disk pivoted at its center has a rotational inertia of 21
2 Mr , where M is 

its mass and r is its radius. The disk of this problem rotates about a point that is displaced 
from its center by r+ L, where L is the length of the rod, so, according to the parallel-axis 
theorem, its rotational inertia is 2 21 1

2 2 ( )Mr M L r+ + . The rod is pivoted at one end and 
has a rotational inertia of mL2/3, where m is its mass. The total rotational inertia of the 
disk and rod is 

2 2 2

2 2 2

2

1 1
( )

2 3
1 1

(0.500kg)(0.100m) (0.500kg)(0.500m 0.100m) (0.270kg)(0.500m)
2 3

0.205kg m .

I Mr M L r mL= + + +

= + + +

= ⋅

(b) We put the origin at the pivot. The center of mass of the disk is 

= + = 0.500 m +0.100 m = 0.600 md L r

away and the center of mass of the rod is r L= = =/ ( . ) / .2 0 500 2 0 250m m away, on 
the same line. The distance from the pivot point to the center of mass of the disk-rod 
system is 

 =
+

+
=

0.500 0.600 + 0.270 0.250

0.500 + 0.270
= 0.477 . d

M m

M m
d r  kg  m  kg  m

 kg  kg
 m

a fa f a fa f

(c) The period of oscillation is 

( )
2

2

0.205 kg m
2 2 1.50 s .

(0.500 kg 0.270 kg)(9.80 m/s )(0.447 m)

I
T

M m gd
π π ⋅= = =

+ +



44. We use Eq. 15-29 and the parallel-axis theorem I = Icm + mh2 where h = d. For a solid 
disk of mass m, the rotational inertia about its center of mass is Icm = mR2/2. Therefore, 

2 2 2 2 2 2

2

/ 2 2 (2.35 cm) +2(1.75 cm)
2 2 2 0.366 s.

2 2(980 cm/s )(1.75 cm)

mR md R d
T

mgd gd
π π π+ += = = =



45. We use Eq. 15-29 and the parallel-axis theorem I = Icm + mh2 where h = d, the 
unknown. For a meter stick of mass m, the rotational inertia about its center of mass is Icm

= mL2/12 where L = 1.0 m. Thus, for T = 2.5 s, we obtain 

T
mL md

mgd

L

gd

d

g
= + = +2

12
2

12

2 2 2

π π/
.

Squaring both sides and solving for d leads to the quadratic formula: 

 =
/ 2 / 2 / 3

2
.

2 2 4 2

d
g T d T Lπ πa f a f± −

Choosing the plus sign leads to an impossible value for d (d = 1.5 > L). If we choose the 
minus sign, we obtain a physically meaningful result: d = 0.056 m. 



46. From Eq. 15-28, we find the length of the pendulum when the period is T = 8.85 s: 

 =
4

.
2

2
L

gT

π

The new length is L´ = L – d where d = 0.350 m. The new period is 

T
L

g

L

g

d

g

T d

g
'

'= = − = −2 2 2
4

2

2
π π π

π

which yields T´ = 8.77 s. 



47. To use Eq. 15-29 we need to locate the center of mass and we need to compute the 
rotational inertia about A. The center of mass of the stick shown horizontal in the figure is 
at A, and the center of mass of the other stick is 0.50 m below A. The two sticks are of 
equal mass so the center of mass of the system is 1

2 (0.50 m) 0.25mh = =  below A, as 
shown in the figure. Now, the rotational inertia of the system is the sum of the rotational 
inertia I1 of the stick shown horizontal in the figure and the rotational inertia I2 of the 
stick shown vertical. Thus, we have 

 = + =
1

12
+

1

3
=

5

121 2
2 2 2I I I ML ML ML

where L = 1.00 m and M is the mass of a meter stick (which cancels in the next step). 
Now, with m = 2M (the total mass), Eq. 15–29 yields 

T
ML

Mgh

L

g
= =2

2
2

5

6

5
12

2

π π

where h = L/4 was used. Thus, T = 1.83 s. 



48. (a) The rotational inertia of a uniform rod with pivot point at its end is I = mL2/12 + 
mL2 = 1/3ML2. Therefore, Eq. 15-29 leads to 

( )
2 21

3
2

3
2     

2 8

ML gT
T

Mg L
π

π
=

so that L = 0.84 m. 

(b) By energy conservation 

E E

K Um m

bottom of swing end of swing=

=

where U Mg= −( cos )1 θ  with  being the distance from the axis of rotation to the center 
of mass. If we use the small angle approximation ( cosθ θ≈ −1 1

2
2  with θ in radians 

(Appendix E)), we obtain 
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I
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where θm = 0.17 rad. Thus, Km = Um = 0.031 J. If we calculate (1 – cosθ)
straightforwardly (without using the small angle approximation) then we obtain within 
0.3% of the same answer. 



49. If the torque exerted by the spring on the rod is proportional to the angle of rotation of 
the rod and if the torque tends to pull the rod toward its equilibrium orientation, then the 
rod will oscillate in simple harmonic motion. If τ = –Cθ, where τ is the torque, θ is the 
angle of rotation, and C is a constant of proportionality, then the angular frequency of 
oscillation is ω = C I/  and the period is T I C= =2 2π π/ /ω , where I is the rotational 
inertia of the rod. The plan is to find the torque as a function of θ and identify the 
constant C in terms of given quantities. This immediately gives the period in terms of 
given quantities. Let 0  be the distance from the pivot point to the wall. This is also the 

equilibrium length of the spring. Suppose the rod turns through the angle θ, with the left 
end moving away from the wall. This end is now (L/2) sin θ further from the wall and has 
moved a distance (L/2)(1 – cos θ) to the right. The length of the spring is now 

( / ) ( cos ) [ ( / )sin ]L L2 1 22 2
0

2− + +θ θ . If the angle θ is small we may approximate cos 

θ with 1 and sin θ with θ in radians. Then the length of the spring is given by 0 2+ Lθ /

and its elongation is ∆x = Lθ/2. The force it exerts on the rod has magnitude F = k∆x = 
kLθ/2. Since θ is small we may approximate the torque exerted by the spring on the rod 
by τ = –FL/2, where the pivot point was taken as the origin. Thus τ = –(kL2/4)θ. The 
constant of proportionality C that relates the torque and angle of rotation is C = kL2/4. 
The rotational inertia for a rod pivoted at its center is I = mL2/12, where m is its mass. See 
Table 10-2. Thus the period of oscillation is 

T
I

C

mL

kL

m

k
= = =2 2

12

4
2

3

2

2π π π/

/
.

With m = 0.600 kg and k = 1850 N/m, we obtain T = 0.0653 s. 



50. (a) For the “physical pendulum” we have 

T = 2 π I
mgh  = 2 π Icom+ mh2

mgh   . 

If we substitute r for h and use item (i) in Table 10-2, we have 

2 22

12

a b
T r

rg

π += +

In the figure below, we plot T as a function of r, for a = 0.35 m and b = 0.45 m. 

(b) The minimum of T can be located by setting its derivative to zero, / 0dT dr = . This 
yields 

2 2 2 2(0.35 m) (0.45 m)
0.16 m.

12 12

a b
r

+ += = =

(c) The direction from the center does not matter, so the locus of points is a circle around 
the center, of radius [(a2 + b2)/12]1/2.



51. This is similar to the situation treated in Sample Problem 15-5, except that O is no 
longer at the end of the stick. Referring to the center of mass as C (assumed to be the 
geometric center of the stick), we see that the distance between O and C is h = x. The 
parallel axis theorem (see Eq. 15-30) leads to 
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And Eq. 15-29 gives 
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(a) Minimizing T by graphing (or special calculator functions) is straightforward, but the 
standard calculus method (setting the derivative equal to zero and solving) is somewhat 
awkward. We pursue the calculus method but choose to work with 12gT2/2π instead of T
(it should be clear that 12gT2/2π is a minimum whenever T is a minimum). 

d

dx

d x
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gT L
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12
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2
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0
12

12
πe j d i

= =
+

= − +

which yields / 12 (1.85 m)/ 12 0.53 mx L= = =  as the value of x which should produce 
the smallest possible value of T.

(b) With L = 1.85 m and x = 0.53 m, we obtain T = 2.1 s from the expression derived in 
part (a). 



52. Consider that the length of the spring as shown in the figure (with one of the block’s 
corners lying directly above the block’s center) is some value L (its rest length).  If the 
(constant) distance between the block’s center and the point on the wall where the spring 
attaches is a distance r, then rcosθ = d/ 2  and rcosθ = L defines the angle θ measured 
from a line on the block drawn from the center to the top corner to the line of r (a straight 
line from the center of the block to the point of attachment of the spring on the wall).  In 
terms of this angle, then, the problem asks us to consider the dynamics that results from 
increasing θ  from its original value θo to θo + 3º and then releasing the system and letting 
it oscillate.  If the new (stretched) length of spring is L′ (when θ  = θo + 3º), then it is a 
straightforward trigonometric exercise to show that  

(L′)2 = r2 + (d/ 2 )2 – 2r(d/ 2 )cos(θo + 3º) = L2 + d2 – d2cos(3º)+ 2 Ldsin(3º) . 

since θo = 45º.  The difference between L′ (as determined by this expression) and the 
original spring length L is the amount the spring has been stretched (denoted here as xm).  
If one plots xm versus L over a range that seems reasonable considering the figure shown 
in the problem (say, from L = 0.03 m to L = 0.10 m) one quickly sees that xm ≈ 0.00222 m 
is an excellent approximation (and is very close to what one would get by approximating 
xm as the arc length of the path made by that upper block corner as the block is turned 
through 3º, even though this latter procedure should in principle overestimate xm).  Using 

this value of xm with the given spring constant leads to a potential energy of  12 k xm
2 =  

0.00296 J.  Setting this equal to the kinetic energy the block has as it passes back through 
the initial position, we have 

0.00296 J =   12  I ωm
2

where ωm is the maximum angular speed of the block (and is not to be confused with the 
angular frequency ω of the oscillation, though they are related by ωm = θoω  if  θo is 

expressed in radians).  The rotational inertia of the block is I = 16 Md2 = 0.0018 kg·m2.

Thus, we can solve the above relation for the maximum angular speed of the block:  

ωm = 2(0.00296)/0.0018  = 1.81 rad/s. 

Therefore the angular frequency of the oscillation is ω = ωm/θo = 34.6 rad/s.  Using Eq. 
15-5, then, the period is T = 0.18 s. 



53. Replacing x and v in Eq. 15-3 and Eq. 15-6 with θ and dθ/dt, respectively, we identify 
4.44 rad/s as the angular frequency ω.   Then we evaluate the expressions at t = 0 and 
divide the second by the first: 

        
dθ/dt

θ at t = 0
  =   − ω tanφ .

(a) The value of θ at t = 0 is 0.0400 rad, and the value of dθ/dt then is –0.200 rad/s, so we 
are able to solve for the phase constant: φ = tan−1[0.200/(0.0400 x 4.44)] = 0.845 rad. 

(b) Once φ is determined we can plug back in to θo = θmcosφ to solve for the angular 
amplitude.  We find θm = 0.0602 rad. 



54. We note that the initial angle is θo = 7º = 0.122 rad (though it turns out this value will 
cancel in later calculations).  If we approximate the initial stretch of the spring as the arc-
length that the corresponding point on the plate has moved through (x = rθo  where r = 

0.025 m) then the initial potential energy is approximately  12 kx2 =  0.0093 J.  This should 

equal to the kinetic energy of the plate ( 12 Iωm
2 where this ωm  is the maximum angular 

speed of the plate, not the angular frequency ω).  Noting that the maximum angular speed 
of the plate is ωm = ωθo where ω = 2π/T with T = 20 ms = 0.02 s as determined from the 

graph, then we can find the rotational inertial from 1
2 I ωm

2 = 0.0093 J. Thus, 
5 21.3 10  kg mI −= × ⋅ .



55. (a) The period of the pendulum is given by T I mgd= 2π / , where I is its rotational 
inertia, m = 22.1 g is its mass, and d is the distance from the center of mass to the pivot 
point. The rotational inertia of a rod pivoted at its center is mL2/12 with L = 2.20 m. 
According to the parallel-axis theorem, its rotational inertia when it is pivoted a distance 
d from the center is I = mL2/12 + md2. Thus, 

T
m L d

mgd

L d
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= + = +

2
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2
12

12

2 2 2 2

π π( / )
.

Minimizing T with respect to d, dT/d(d)=0, we obtain d L= / 12 . Therefore, the 
minimum period T is 

2 2

min 2

12( / 12) 2 2(2.20 m)
2 2 2 2.26 s.

12 ( / 12) 12 12(9.80 m/s )

L L L
T

g L g
π π π+= = = =

(b) If d is chosen to minimize the period, then as L is increased the period will increase as 
well. 

(c) The period does not depend on the mass of the pendulum, so T does not change when 
m increases. 



56. The table of moments of inertia in Chapter 11, plus the parallel axis theorem found in 
that chapter, leads to 

IP =
1
2 MR2 + Mh2  = 1

2 (2.5 kg)(0.21 m)2  +  (2.5 kg)(0.97 m)2  =  2.41 kg·m² 

where P is the hinge pin shown in the figure (the point of support for the physical 
pendulum), which is a distance h = 0.21 m + 0.76 m away from the center of the disk.  

(a) Without the torsion spring connected, the period is 

T = 2π 
IP

Mgh  =  2.00 s  . 

(b) Now we have two “restoring torques” acting in tandem to pull the pendulum back to 
the vertical position when it is displaced.  The magnitude of the torque-sum is (Mgh + 
κ)θ = IP α, where the small angle approximation (sinθ ≈ θ in radians) and Newton’s 
second law (for rotational dynamics) have been used.  Making the appropriate adjustment 
to the period formula, we have  

T′ = 2π 
IP

Mgh + κ  . 

The problem statement requires T = T′ + 0.50 s. Thus, T′  = (2.00 – 0.50)s = 1.50 s.  
Consequently, 

κ  =   
4π2

T′ 2 IP – Mgh = 18.5  N·m/rad  .



57. Referring to the numbers in Sample Problem 15-7, we have m = 0.25 kg, b = 0.070 
kg/s and T = 0.34 s. Thus, when t = 20T, the damping factor becomes 

e ebt m− −= =2 0 070 20 0 34 2 0 25 0 39. . / . . .b gb gb g b g



58. Since the energy is proportional to the amplitude squared (see Eq. 15-21), we find the 
fractional change (assumed small) is 
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Thus, if we approximate the fractional change in xm as dxm/xm, then the above calculation 
shows that multiplying this by 2 should give the fractional energy change. Therefore, if 
xm decreases by 3%, then E must decrease by 6.0 %. 



59. (a) We want to solve e–bt/2m = 1/3 for t. We take the natural logarithm of both sides to 
obtain –bt/2m = ln(1/3). Therefore, t = –(2m/b) ln(1/3) = (2m/b) ln 3. Thus, 
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The period is T = 2π/ω´ = (2π)/(2.31 rad/s) = 2.72 s and the number of oscillations is  

t/T = (14.3 s)/(2.72 s) = 5.27. 



60. (a) From Hooke’s law, we have 

( ) ( )2

2
500 kg 9.8 m/s

= 4.9 10 N/cm.
10cm

k = ×

(b) The amplitude decreasing by 50% during one period of the motion implies 

e TbT m− = =
′

2 1

2

2
where

π
ω

.

Since the problem asks us to estimate, we let ′ ≈ =ω ω k m/ . That is, we let 

ω′≈ ≈49000

500
,

N / m

kg
9.9 rad / s

so that T ≈ 0.63 s. Taking the (natural) log of both sides of the above equation, and 
rearranging, we find 

 =
2

2
2 500

0.63
0.69 = 1.1 10 . 3b

m

T
ln  kg / s≈ ×b g b g

Note: if one worries about the ω´ ≈ ω approximation, it is quite possible (though messy) 
to use Eq. 15-43 in its full form and solve for b. The result would be (quoting more 
figures than are significant) 

 =
2 2

( 2) + 4
= 1086

2 2
b

mkln

ln
 kg / s

π

which is in good agreement with the value gotten “the easy way” above. 



61. With ω = 2π/T then Eq. 15-28 can be used to calculate the angular frequencies for the 
given pendulums.  For the given range of 2.00 < ω < 4.00 (in rad/s), we find only two of 
the given pendulums have appropriate values of ω: pendulum (d) with length of 0.80 m 
(for which ω = 3.5 rad/s) and pendulum (e) with length of 1.2 m (for which ω = 2.86 
rad/s).  



62. (a) We set ω = ωd and find that the given expression reduces to xm = Fm/bω at 
resonance. 

(b) In the discussion immediately after Eq. 15-6, the book introduces the velocity 
amplitude vm = ωxm. Thus, at resonance, we have vm = ωFm/bω = Fm/b.



63. With M = 1000 kg and m = 82 kg, we adapt Eq. 15-12 to this situation by writing 

2

4

k

T M m

πω = =
+

.

If d = 4.0 m is the distance traveled (at constant car speed v) between impulses, then we 
may write T = v/d, in which case the above equation may be solved for the spring 
constant: 

( )
2

2 2
=     4 .

4

v k v
k M m

d M m d

π π= +
+

Before the people got out, the equilibrium compression is xi = (M + 4m)g/k, and 
afterward it is xf = Mg/k. Therefore, with v = 16000/3600 = 4.44 m/s, we find the rise of 
the car body on its suspension is 

 =
4

=
4

+ 4 2
= 0.050 . 

2

x x
mg

k

mg

M m

d

vi f− F
H
I
Kπ

 m



64. We note (from the graph) that am = ω2xm = 4.00 cm/s2.  Also the value at t = 0 is ao = 
1.00 cm/s2.   Then Eq. 15-7 leads to φ = cos−1(–1.00/4.00) =  +1.82 rad or – 4.46 rad.  The 
other “root” (+4.46 rad) can be rejected on the grounds that it would lead to a negative 
slope at t = 0.



65. (a) From the graph, we find xm = 7.0 cm = 0.070 m, and T = 40 ms = 0.040 s.  Thus, 
the angular frequency is ω = 2π/T = 157 rad/s.  Using m = 0.020 kg, the maximum kinetic 

energy is then 12 mv2 = 1
2 m ω2 xm

2  = 1.2 J.

(b) Using Eq. 15-5, we have f = ω/2π = 50 oscillations per second.  Of course, Eq. 15-2 
can also be used for this.



66. (a) From the graph we see that xm = 7.0 cm = 0.070 m and T = 40 ms = 0.040 s.  The 
maximum speed is xmω = xm2π/T = 11 m/s. 

(b) The maximum acceleration is xmω2 = xm(2π/T)2 = 1.7 × 103 m/s2.



67. Setting 15 mJ (0.015 J) equal to the maximum kinetic energy leads to vmax = 0.387 
m/s.  Then one can use either an “exact” approach using vmax = 2gL(1 − cos(θmax))  or the 
“SHM” approach where  

vmax = Lωmax = Lωθmax  = L g/L θmax

to find L.  Both approaches lead to L = 1.53 m. 



68. Its total mechanical energy is equal to its maximum potential energy  12 kxm
2, and its 

potential energy at t = 0 is  12 kxo
2  where xo = xmcos(π/5) in this problem.  The ratio is 

therefore cos2(π/5) = 0.655 = 65.5%.



69. (a)  We note that ω = k/m  =  1500/0.055  =  165.1 rad/s.  We consider the most 
direct path in each part of this problem.  That is, we consider in part (a) the motion 
directly from   x1 = +0.800xm  at time t1    to   x2 = +0.600xm  at time t2    (as opposed to, 
say, the block moving from x1 = +0.800xm through x = +0.600xm, through x = 0, reaching 
x = –xm and after returning back through x = 0 then getting to x2 = +0.600xm).   Eq. 15-3 
leads to  

ωt1 + φ = cos−1(0.800) = 0.6435 rad 

ωt2 + φ = cos−1(0.600) = 0.9272 rad . 

Subtracting the first of these equations from the second leads to  
     

ω(t2 – t1) =  0.9272 – 0.6435 = 0.2838 rad . 

Using the value for ω computed earlier, we find  t2 – t1 = 1.72 × 10−3 s.

(b)  Let t3 be when the block reaches x = –0.800xm in the direct sense discussed above.  
Then the reasoning used in part (a) leads here to 

ω(t3 – t1) =  ( 2.4981 – 0.6435) rad = 1.8546 rad 

and thus to t3 – t1 = 11.2 × 10−3 s.



70. Since ω = 2πf where f = 2.2 Hz, we find that the angular frequency is ω = 13.8 rad/s. 
Thus, with x = 0.010 m, the acceleration amplitude is am = xm ω 2  = 1.91 m/s2. We set up 
a ratio: 

 = =
1.91

9.8
= 0.19 . a

a

g
g g gm

mF
HG
I
KJ
F
H
I
K



71. (a) Assume the bullet becomes embedded and moves with the block before the block 
moves a significant distance. Then the momentum of the bullet-block system is 
conserved during the collision. Let m be the mass of the bullet, M be the mass of the 
block, v0 be the initial speed of the bullet, and v be the final speed of the block and bullet. 
Conservation of momentum yields mv0 =   (m + M)v, so 

 =
+

=
0.050 150

0.050 + 4.0
= 1.85 . 0v

mv

m M

 kg  m / s

 kg  kg
 m / s

a fa f

When the block is in its initial position the spring and gravitational forces balance, so the 
spring is elongated by Mg/k. After the collision, however, the block oscillates with simple 
harmonic motion about the point where the spring and gravitational forces balance with 
the bullet embedded. At this point the spring is elongated a distance = +M m g ka f / , 
somewhat different from the initial elongation. Mechanical energy is conserved during 
the oscillation. At the initial position, just after the bullet is embedded, the kinetic energy 
is 1

2
2( )M m v+  and the elastic potential energy is 1

2
2k Mg k( / ) . We take the gravitational 

potential energy to be zero at this point. When the block and bullet reach the highest 
point in their motion the kinetic energy is zero. The block is then a distance ym above the 
position where the spring and gravitational forces balance. Note that ym is the amplitude 
of the motion. The spring is compressed by ym − , so the elastic potential energy is 
1
2

2k ym( )− . The gravitational potential energy is (M + m)gym. Conservation of 
mechanical energy yields 

1

2
+ +

1

2
=

1

2
+ + . 2

2
2

M m v k
Mg

k
k y M m gym ma f b g a fF

H
I
K −

We substitute = +M m g ka f / . Algebraic manipulation leads to 

y
m M v

k

mg

k
M mm = + − +

=
+

− +

=

a f a f

a fa f a fc h a f
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(b) The original energy of the bullet is E mv0
1
2 0

2 1
2

20 050 150 563= = =( . )( )kg m / s J . The 
kinetic energy of the bullet-block system just after the collision is 

 =
1

2
+ =

1

2
0.050 + 4.0 1.85 = 6.94 . 2 2E m M va f a fa f kg  kg  m / s  J



Since the block does not move significantly during the collision, the elastic and 
gravitational potential energies do not change. Thus, E is the energy that is transferred. 
The ratio is E/E0 = (6.94 J)/(563 J) = 0.0123 or 1.23%. 



72. (a) The rotational inertia of a hoop is I = mR2, and the energy of the system becomes 

E I kx= +1

2

1

2
2 2ω

and θ is in radians. We note that rω = v (where v = dx/dt). Thus, the energy becomes 

E
mR

r
v kx=

F
HG
I
KJ +1

2

1

2

2

2
2 2

which looks like the energy of the simple harmonic oscillator discussed in §15-4 if we 
identify the mass m in that section with the term mR2/r2 appearing in this problem. 
Making this identification, Eq. 15-12 yields 

ω = =k

mR r

r

R

k

m2 2/
.

(b) If r = R the result of part (a) reduces to ω = k m/ .

(c) And if r = 0 then ω = 0 (the spring exerts no restoring torque on the wheel so that it is 
not brought back towards its equilibrium position). 



73. (a) The graphs suggest that T = 0.40 s and κ = 4/0.2 = 0.02 N·m/rad. With these 
values, Eq. 15-23 can be used to determine the rotational inertia:   

I = κT2/4π2 = 8.11 × 10−5 kg.m2.

(b) We note (from the graph) that θmax = 0.20 rad. Setting the maximum kinetic energy 

( 1
2 Iωmax

2 ) equal to the maximum potential energy (see the hint in the problem) leads to 

ωmax = θmax κ/I = 3.14 rad/s. 



74. (a) Let vmax be the maximum speed attained during the first oscillation.  By taking the 
derivative of Eq. 15-42 and using the approximations available to us from the fact that b
« km  (see section 15-8), then we have vmax ≈ ωxm e−bt/2m  where ω = k/m .  The 
maximum x occurs at a different time than the maximum speed so that when we consider 
the ratio bvmax/kxmax = (b/k)ωe−b∆t/2m  we must account for that time difference through the 
∆t term (corresponding to a quarter-period) in the exponential.  Thus, this expression can 
be reduced to 

bvmax

kxmax
  = 

b
km

  exp(−πb/(4 km )) . 

Using the data from that Sample Problem (converted to SI units) we get 0.015 for this 
ratio.  

(b) Due to the small level of damping in this problem, the answer is no. 



75. (a) Hooke’s law readily yields k = (15 kg)(9.8 m/s2)/(0.12 m) = 1225 N/m. Rounding 
to three significant figures, the spring constant is therefore 1.23 kN/m. 

(b) We are told f = 2.00 Hz = 2.00 cycles/sec. Since a cycle is equivalent to 2π radians, 
we have ω = 2π(2.00) = 4π rad/s (understood to be valid to three significant figures). 
Using Eq. 15-12, we find 

( )2

1225  N/m
    7.76kg.

4  rad/s

k
m

m
ω

π
= = =

Consequently, the weight of the package is mg = 76.0 N. 



76. (a) The problem gives the frequency f = 440 Hz, where the SI unit abbreviation Hz 
stands for Hertz, which means a cycle-per-second. The angular frequency ω is similar to 
frequency except that ω is in radians-per-second. Recalling that 2π radians are equivalent 
to a cycle, we have ω = 2πf ≈ 2.8×103 rad/s. 

(b) In the discussion immediately after Eq. 15-6, the book introduces the velocity 
amplitude vm = ωxm. With xm = 0.00075 m and the above value for ω, this expression 
yields vm = 2.1 m/s. 

(c) In the discussion immediately after Eq. 15-7, the book introduces the acceleration 
amplitude am = ω2xm, which (if the more precise value ω = 2765 rad/s is used) yields am = 
5.7 km/s. 



77. We use vm = ωxm = 2πfxm, where the frequency is 180/(60 s) = 3.0 Hz and the 
amplitude is half the stroke, or xm = 0.38 m. Thus, vm = 2π(3.0 Hz)(0.38 m) = 7.2 m/s. 



78. (a) The textbook notes (in the discussion immediately after Eq. 15-7) that the 
acceleration amplitude is am = ω2xm, where ω is the angular frequency (ω = 2π f since 
there are 2π radians in one cycle). Therefore, in this circumstance, we obtain 

 = 2 1000 0.00040 = 1.6 10 . 
2 4 2am π  Hz  m  m / sa fb g a f ×

(b) Similarly, in the discussion after Eq. 15-6, we find vm = ωxm so that 

 = 2 1000 0.00040 = 2.5 . vm π  Hz  m  m / sb gc hb g

(c) From Eq. 15-8, we have (in absolute value) 

a  = 2 1000 0.00020 = 7.9 10 . 
2 3 2π  Hz  m  m / sb gc h b g ×

(d) This can be approached with the energy methods of §15-4, but here we will use 
trigonometric relations along with Eq. 15-3 and Eq. 15-6. Thus, allowing for both roots 
stemming from the square root, 

( ) ( )
2

2
2

sin 1 cos 1 .
m m

v x
t t

x x
ω φ ω φ

ω
+ = ± − + − = ± −

Taking absolute values and simplifying, we obtain 

( )2 2 2 2| | 2 2 1000 0.00040 0.00020 2.2 m/s.mv f x xπ π= − = − =



79. The magnitude of the downhill component of the gravitational force acting on each 
ore car is 

 = 10000 9.8  2wx  kg  m / s sinb gc h θ

where θ = 30° (and it is important to have the calculator in degrees mode during this 
problem). We are told that a downhill pull of 3ωx causes the cable to stretch x = 0.15 m. 
Since the cable is expected to obey Hooke’s law, its spring constant is 

 =
3

= 9.8 10 . 5k
w

x
x ×  N / m

(a) Noting that the oscillating mass is that of two of the cars, we apply Eq. 15-12 (divided 
by 2π).

 =
1

2
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20000
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(b) The difference between the equilibrium positions of the end of the cable when 
supporting two as opposed to three cars is 

 =
3 2

= 0.050 . ∆ −
x

w w

k
x x  m



80. (a) First consider a single spring with spring constant k and unstretched length L. One 
end is attached to a wall and the other is attached to an object. If it is elongated by ∆x the 
magnitude of the force it exerts on the object is F = k ∆x. Now consider it to be two 
springs, with spring constants k1 and k2, arranged so spring 1 is attached to the object. If 
spring 1 is elongated by ∆x1 then the magnitude of the force exerted on the object is F = 
k1 ∆x1. This must be the same as the force of the single spring, so k ∆x = k1 ∆x1. We must 
determine the relationship between ∆x and ∆x1. The springs are uniform so equal 
unstretched lengths are elongated by the same amount and the elongation of any portion 
of the spring is proportional to its unstretched length. This means spring 1 is elongated by 
∆x1 = CL1 and spring 2 is elongated by ∆x2 = CL2, where C is a constant of 
proportionality. The total elongation is  

∆x = ∆x1 + ∆x2 = C(L1 + L2) = CL2(n + 1), 

where L1 = nL2 was used to obtain the last form. Since L2 = L1/n, this can also be written 
∆x = CL1(n + 1)/n. We substitute ∆x1 = CL1 and ∆x = CL1(n + 1)/n into k ∆x = k1 ∆x1 and 
solve for k1. With k = 8600 N/m and n = L1/L2 = 0.70, we obtain

4
1

1 0.70 1.0
(8600 N/m) 20886 N/m 2.1 10 N/m

0.70

n
k k

n

+ += = = ≈ ×

(b) Now suppose the object is placed at the other end of the composite spring, so spring 2 
exerts a force on it. Now k ∆x = k2 ∆x2. We use ∆x2 = CL2 and ∆x = CL2(n + 1), then 
solve for k2. The result is k2 = k(n + 1). 

4
2 ( 1) (0.70 1.0)(8600 N/m) 14620 N/m 1.5 10 N/mk n k= + = + = ≈ ×

(c) To find the frequency when spring 1 is attached to mass m, we replace k in 
1 2/ /πa f k m  with k(n + 1)/n. With f k m= 1 2/ /πa f , we obtain, for 200 Hzf = and n = 

0.70

2
1

1 ( 1) 1 0.70 1.0
= (200 Hz) 3.1 10  Hz.

2 0.70

n k n
f f

nm nπ
+ + += = = ×

(d) To find the frequency when spring 2 is attached to the mass, we replace k with k(n + 1) 
to obtain 

2
2

1 ( 1)
= 1 0.70 1.0(200 Hz) 2.6 10 Hz.

2

n k
f n f

mπ
+ = + = + = ×



81. (a) The spring stretches until the magnitude of its upward force on the block equals 
the magnitude of the downward force of gravity: ky = mg, where y = 0.096 m is the 
elongation of the spring at equilibrium, k is the spring constant, and m = 1.3 kg is the 
mass of the block. Thus

k = mg/y = (1.3)(9.8)/0.096 = 1.3×102 N/m. 

(b) The period is given by T f m k= = = = =1 2 2 2 13 133 0 62π π πω . . .s

(c) The frequency is f = 1/T = 1/0.62 s = 1.6 Hz. 

(d) The block oscillates in simple harmonic motion about the equilibrium point 
determined by the forces of the spring and gravity. It is started from rest 5.0 cm below the 
equilibrium point so the amplitude is 5.0 cm. 

(e) The block has maximum speed as it passes the equilibrium point. At the initial 
position, the block is not moving but it has potential energy 

 = +
1

2
= 1.3 9.8 0.146 +

1

2
133 0.146 = 0.44 . 2 2U mgy kyi i i− − −a fa fa f a fa f  J

When the block is at the equilibrium point, the elongation of the spring is y = 9.6 cm and 
the potential energy is 

 = +
1

2
= 1.3 9.8 0.096 +

1

2
133 0.096 = 0.61 . 2 2U mgy kyf − − −a fa fa f a fa f  J

We write the equation for conservation of energy as U U mvi f= + 1
2

2  and solve for v:

( ) ( )2 2 0.44J 0.61J
0.51 m/s.

1.3kg
i fU U

v
m

− − +
= = =



82. (a) The rotational inertia is I MR= = = ⋅1
2

2 1
2

2 23 00 0 700 0 735( . )( . ) .kg m kg m .

(b) Using Eq. 15-22 (in absolute value), we find 

0.0600 N m
= = = 0.0240 N m/rad.

2.5 rad

τκ
θ

⋅ ⋅

(c) Using Eq. 15-5, Eq. 15-23 leads to 

2

0.024N m
0.181 rad/s.

0.735kg mI

κω ⋅= = =
⋅



83. (a) We use Eq. 15-29 and the parallel-axis theorem I = Icm + mh2 where h = R = 0.126 
m. For a solid disk of mass m, the rotational inertia about its center of mass is Icm = mR2/2. 
Therefore, 

2 2/ 2 3
2 2 0.873s.

2

mR mR R
T

mgR g
π π+= = =

(b) We seek a value of r ≠ R such that 

2
2

2
2

3

2

2 2

π πR r

gr

R
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+ =

and are led to the quadratic formula: 

r
R R R

R
R=

± −
=

3 3 8

4 2

2 2a f
or .

Thus, our result is r = 0.126/2 = 0.0630 m. 



84. For simple harmonic motion, Eq. 15-24 must reduce to 

τ θ θ= − → −L F L Fg gsinc h c h

where θ is in radians. We take the percent difference (in absolute value) 

− − −
−

= −
LF LF

LF
g g

g

sin

sin sin

θ θ
θ

θ
θ

d i d i
1

and set this equal to 0.010 (corresponding to 1.0%). In order to solve for θ (since this is 
not possible “in closed form”), several approaches are available. Some calculators have 
built-in numerical routines to facilitate this, and most math software packages have this 
capability. Alternatively, we could expand sinθ ≈ θ – θ 3/6 (valid for small θ) and thereby 
find an approximate solution (which, in turn, might provide a seed value for a numerical 
search). Here we show the latter approach: 

1
6

0 010
1

1 6
10103 2−

−
≈

−
≈θ

θ θ θ/
. .  

which leads to 6(0.01/1.01) 0.24  rad 14.0θ ≈ = = ° . A more accurate value (found 

numerically) for the θ value which results in a 1.0% deviation is 13.986°. 



85. (a) The frequency for small amplitude oscillations is f g L= 1 2/ /πa f , where L is 
the length of the pendulum. This gives  

f = =1 2 9 80 2 0 0 352/ ( . / ) / ( . ) . .πa f m s m Hz

(b) The forces acting on the pendulum are the tension force T  of the rod and the force of 
gravity mg . Newton’s second law yields T mg ma+ = , where m is the mass and a  is the 
acceleration of the pendulum. Let a a ae= + ′ , where ae  is the acceleration of the elevator 
and ′a  is the acceleration of the pendulum relative to the elevator. Newton’s second law 

can then be written ( )em g a T− + = ma′ . Relative to the elevator the motion is exactly 

the same as it would be in an inertial frame where the acceleration due to gravity is g ae− .
Since g  and ae  are along the same line and in opposite directions we can find the 
frequency for small amplitude oscillations by replacing g with g + ae in the expression 
f g L= ( / ) /1 2π . Thus 

f
g a

L
e= + = + =1

2

1

2

9 8 2 0

2 0
0 39

π π
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.
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m / s m / s

m
Hz

2 2

(c) Now the acceleration due to gravity and the acceleration of the elevator are in the 
same direction and have the same magnitude. That is, g ae− = 0. To find the frequency 

for small amplitude oscillations, replace g with zero in f g L= ( / ) /1 2π . The result is 
zero. The pendulum does not oscillate. 



86. Since the centripetal acceleration is horizontal and Earth’s gravitational g  is 
downward, we can define the magnitude of an “effective” gravitational acceleration using 
the Pythagorean theorem: 

eff

22
2

+= .
v

g g
R

Then, since frequency is the reciprocal of the period, Eq. 15-28 leads to 

f
g

L

g v R

L
eff= =

+1

2

1

2

2 4 2

π π
.

With v = 70 m/s, R = 50m, and L = 0.20 m, we have 13.53 s 3.53 Hz.f −= =



87. Since the particle has zero speed (momentarily) at x ≠ 0, then it must be at its turning 
point; thus, xo = xm = 0.37 cm. It is straightforward to infer from this that the phase 
constant φ in Eq. 15-2 is zero. Also, f = 0.25 Hz is given, so we have ω = 2πf = π/2 rad/s. 
The variable t is understood to take values in seconds. 

(a) The period is T = 1/f = 4.0 s. 

(b) As noted above, ω = π/2 rad/s. 

(c) The amplitude, as observed above, is 0.37 cm. 

(d) Eq. 15-3 becomes x = (0.37 cm) cos(πt/2).

(e) The derivative of x is v = –(0.37 cm/s)(π/2) sin(πt/2) ≈ (–0.58 cm/s) sin(πt/2). 

(f) From the previous part, we conclude vm = 0.58 cm/s. 

(g) The acceleration-amplitude is am = ω2xm = 0.91 cm/s2.

(h) Making sure our calculator is in radians mode, we find x = (0.37) cos(π(3.0)/2) = 0. It 
is important to avoid rounding off the value of π in order to get precisely zero, here. 

(i) With our calculator still in radians mode, we obtain v = –(0.58) sin(π(3.0)/2) = 0.58 
cm/s. 



88. Since T = 0.500 s, we note that ω = 2π/T = 4π rad/s. We work with SI units, so m = 
0.0500 kg and vm = 0.150 m/s. 

(a) Since ω = k m/ , the spring constant is 

 = = 4 0.0500 = 7.90 . 2 2
k mω πb g b g  N / m  

(b) We use the relation vm = xmω and obtain 

 = =
0.150

4
= 0.0119 . x

v
m

m

ω π
 m

(c) The frequency is f = ω/2π = 2.00 Hz (which is equivalent to f = 1/T).



89. (a) Hooke’s law readily yields (0.300 kg)(9.8 m/s2)/(0.0200 m) = 147 N/m. 

(b) With m = 2.00 kg, the period is 

 = 2 0 733T
m

k
π = . s.



90. Using ∆m = 2.0 kg, T1 = 2.0 s and T2 = 3.0 s, we write 

T
m

k
T

m m

k1 22 2= = +π πand
∆

.

Dividing one relation by the other, we obtain 

 =2

1

T

T

m m

m

+ ∆

which (after squaring both sides) simplifies to 

2
2 1

1.6kg.
( / ) 1

m
m

T T

∆= =
−



91. (a) Comparing with Eq. 15-3, we see ω = 10 rad/s in this problem. Thus, f = ω/2π = 
1.6 Hz. 

(b) Since vm = ωxm and xm = 10 cm (see Eq. 15-3), then vm = (10 rad/s)(10 cm) = 100 cm/s 
or 1.0 m/s. 

(c) The maximum occurs at t = 0. 

(d) Since am = ω2xm then vm = (10 rad/s)2(10 cm) = 1000 cm/s2 or 10 m/s2.

(e) The acceleration extremes occur at the displacement extremes: x = ±xm or x = ±10 cm. 

(f) Using Eq. 15-12, we find 

 = 0 10 10 10
2ω k

m
k = =. .kg rad / s N / ma fa f

Thus, Hooke’s law gives F = –kx = –10x in SI units. 



92. (a) The Hooke’s law force (of magnitude (100)(0.30) = 30 N) is directed upward and 
the weight (20 N) is downward. Thus, the net force is 10 N upward. 

(b) The equilibrium position is where the upward Hooke’s law force balances the weight, 
which corresponds to the spring being stretched (from unstretched length) by 20 N/100 
N/m = 0.20 m. Thus, relative to the equilibrium position, the block (at the instant 
described in part (a)) is at what one might call the bottom turning point (since v = 0) at x
= –xm where the amplitude is xm = 0.30 – 0.20 = 0.10 m. 

(c) Using Eq. 15-13 with m = W/g ≈ 2.0 kg, we have 

 = 2 0 90T
m

k
π = . .s

(d) The maximum kinetic energy is equal to the maximum potential energy 1
2

2kxm . Thus, 

 = =
1

2
100 0.10 = 0.50 . 2K Um m  N / m  m  Ja fa f



93. (a) The graph makes it clear that the period is T = 0.20 s. 

(b) Eq. 15-13 states 

 = 2T
m

k
π .

Thus, using the result from part (a) with k = 200 N/m, we obtain m = 0.203 ≈ 0.20 kg. 

(c) The graph indicates that the speed is (momentarily) zero at t = 0, which implies that 
the block is at x0 = ±xm. From the graph we also note that the slope of the velocity curve 
(hence, the acceleration) is positive at t = 0, which implies (from ma = –kx) that the value 
of x is negative. Therefore, with xm = 0.20 m, we obtain x0 = –0.20 m. 

(d) We note from the graph that v = 0 at t = 0.10 s, which implied a = ±am = ±ω2xm. Since 
acceleration is the instantaneous slope of the velocity graph, then (looking again at the 
graph) we choose the negative sign. Recalling ω2 = k/m we obtain a = –197 ≈ –2.0 102

m/s2.

(e) The graph shows vm = 6.28 m/s, so 

 =
1

2
= 4.0 . 2K mvm m  J



94. (a) From the graph, it is clear that xm = 0.30 m. 

(b) With F = –kx, we see k is the (negative) slope of the graph — which is 75/0.30 = 250 
N/m. Plugging this into Eq. 15-13 yields 

 = 2 0 28T
m

k
π = . .s

(c) As discussed in §15-2, the maximum acceleration is 

2 2 21.5 10  m/s .m m m

k
a x x

m
ω= = = ×

Alternatively, we could arrive at this result using am = (2π/T)2 xm.

(d) Also in §15-2 is vm = ωxm so that the maximum kinetic energy is 

 =
1

2
=

1

2
=

1

2
2 2 2 2K mv m x kxm m m mω

which yields 11.3 ≈ 11 J. We note that the above manipulation reproduces the notion of 
energy conservation for this system (maximum kinetic energy being equal to the 
maximum potential energy). 



95. (a) We require U E= 1
2  at some value of x. Using Eq. 15-21, this becomes 

1

2
=

1

2

1

2
=

2
.2 2kx kx x

x
m

mF
HG
I
KJ

We compare the given expression x as a function of t with Eq. 15-3 and find xm = 5.0 m. 
Thus, the value of x we seek is x = ≈5 0 2 3 5. / . m.

(b) We solve the given expression (with x = 5 0 2. / ), making sure our calculator is in 
radians mode: 

 =
4

+
3 1

2
= 1.54 . 1t

π
π

cos  s− F
HG
I
KJ

Since we are asked for the interval teq – t where teq specifies the instant the particle passes 
through the equilibrium position, then we set x = 0 and find 

 =
4

+
3

0 = 2.29 . 1teq cos  s
π

π
− b g

Consequently, the time interval is teq – t = 0.75 s. 



96. (a) The potential energy at the turning point is equal (in the absence of friction) to the 
total kinetic energy (translational plus rotational) as it passes through the equilibrium 
position:

2
2 2 2 2 2 2 cm

cm cm cm

2 2 2
cm cm cm

1 1 1 1 1 1

2 2 2 2 2 2

1 1 3

2 4 4

m

v
kx Mv I Mv MR

R

Mv Mv Mv

ω= + = +

= + =

which leads to Mv kxmcm
2 22 3= / = 0.125 J. The translational kinetic energy is therefore 

1
2

2 2 3 0 0625Mv kxmcm J= =/ . . 

(b) And the rotational kinetic energy is 2 2 21
cm4 / 6 0.03125J 3.13 10  JmMv kx −= = ≈ × .

(c) In this part, we use vcm to denote the speed at any instant (and not just the maximum 
speed as we had done in the previous parts). Since the energy is constant, then 

2 23 1 3
0

4 2 2

dE d d
Mv kx Mv a kxv

dt dt dt
= + = + =cm cm cm cm

which leads to 

 =
2

3
.a

k

M
xcm −FHG
I
KJ

Comparing with Eq. 15-8, we see that ω = 2 3k M/  for this system. Since ω = 2π/T, we 
obtain the desired result: T M k= 2 3 2π / .



97. We note that for a horizontal spring, the relaxed position is the equilibrium position 
(in a regular simple harmonic motion setting); thus, we infer that the given v = 5.2 m/s at 
x = 0 is the maximum value vm (which equals ωxm where ω = =k m/ 20 rad / s ).

(a) Since ω = 2π f, we find f = 3.2 Hz. 

(b) We have vm = 5.2 = (20)xm, which leads to xm = 0.26 m. 

(c) With meters, seconds and radians understood, 

0.26cos(20 )

5.2sin(20 ).

x t

v t

φ
φ

= +
= − +

The requirement that x = 0 at t = 0 implies (from the first equation above) that either φ = 
+π/2 or φ = –π/2. Only one of these choices meets the further requirement that v > 0 when 
t = 0; that choice is φ = –π/2. Therefore, 

 = 0.26 20
2

= 0.26 20 . x t tcos sin−FHG
I
KJ

π b g



98. The distance from the relaxed position of the bottom end of the spring to its 
equilibrium position when the body is attached is given by Hooke’s law:  

∆x = F/k = (0.20 kg)(9.8 m/s2)/(19 N/m) = 0.103 m. 

(a) The body, once released, will not only fall through the ∆x distance but continue 
through the equilibrium position to a “turning point” equally far on the other side. Thus, 
the total descent of the body is 2∆x = 0.21 m. 

(b) Since f = ω/2π, Eq. 15-12 leads to 

 =
1

2
1 6f

k

mπ
Η= . .z

(c) The maximum distance from the equilibrium position is the amplitude: xm = ∆x = 0.10 
m.



99. The time for one cycle is T = (50 s)/20 = 2.5 s. Thus, from Eq. 15-23, we find 

 =
2

= 0.50
2.5

2
= 0.079 . 

2 2
2I

Tκ
π π
F
H
I
K

F
H
I
K ⋅a f  kg m



100. (a) Eq. 15-21 leads to 

1 2 2(4.0)2= = = 0.20 m.
2 200m m

E
E kx x

k
=

(b) Since T m k= = ≈2 2 0 80 200 0π π/ . / .4 s, then the block completes 10/0.4 = 25 
cycles during the specified interval. 

(c) The maximum kinetic energy is the total energy, 4.0 J. 

(d) This can be approached more than one way; we choose to use energy conservation: 

 = + 4.0 =
1

2
+

1

2
.2 2E K U mv kx

Therefore, when x = 0.15 m, we find v = 2.1 m/s. 



101. (a) From Eq. 16-12, T m k= =2 0π / .45 s.

(b) For a vertical spring, the distance between the unstretched length and the equilibrium 
length (with a mass m attached) is mg/k, where in this problem mg = 10 N and k = 200 
N/m (so that the distance is 0.05 m). During simple harmonic motion, the convention is to 
establish x = 0 at the equilibrium length (the middle level for the oscillation) and to write 
the total energy without any gravity term; i.e., 

1

2
2E K U U kx= + =where .

Thus, as the block passes through the unstretched position, the energy is 
E k= + =2 0 0 05 2 251

2
2. ( . ) . J . At its topmost and bottommost points of oscillation, the 

energy (using this convention) is all elastic potential: 1
2

2kxm . Therefore, by energy 
conservation,

 2.25 =
1

2
= 0.15 . 2kx xm m ±  m

This gives the amplitude of oscillation as 0.15 m, but how far are these points from the 
unstretched position? We add (or subtract) the 0.05 m value found above and obtain 0.10 
m for the top-most position and 0.20 m for the bottom-most position. 

(c) As noted in part (b), xm = ±0.15 m. 

(d) The maximum kinetic energy equals the maximum potential energy (found in part (b)) 
and is equal to 2.25 J. 



102. The period formula, Eq. 15-29, requires knowing the distance h from the axis of 
rotation and the center of mass of the system. We also need the rotational inertia I about 
the axis of rotation. From Figure 15-59, we see h = L + R where R = 0.15 m. Using the 
parallel-axis theorem, we find 

I MR M L R M= + + =1

2
1 02 2a f where kg. . Thus, Eq. 15-29, with T = 2.0 s, leads to 

2 0 2
1
2

2 2

. =
+ +

+
π

MR M L R

Mg L R

b g
b g

which leads to L = 0.8315 m. 



103. Using Eq. 15-12, we find ω = =k m/ 10 rad / s . We also use vm = xmω and am = 
xmω2.

(a) The amplitude (meaning “displacement amplitude”) is xm = vm/ω = 3/10 = 0.30 m. 

(b) The acceleration-amplitude is am = (0.30)(10)2 = 30 m/s2.

(c) One interpretation of this question is “what is the most negative value of the 
acceleration?” in which case the answer is –am = –30 m/s2. Another interpretation is 
“what is the smallest value of the absolute-value of the acceleration?” in which case the 
answer is zero. 

(d) Since the period is T = 2π/ω = 0.628 s. Therefore, seven cycles of the motion requires 
t = 7T = 4.4 s. 



104. (a) By Eq. 15-13, the mass of the block is 

 =
4

= 2.43 . 0
2

2
m

kT
b π

 kg  

Therefore, with mp = 0.50 kg, the new period is 

T
m m

k
p b=

+
=2 0π .44 .s

(b) The speed before the collision (since it is at its maximum, passing through 
equilibrium) is v0 = xmω0 where ω0 = 2π/T0; thus, v0 = 3.14 m/s. Using momentum 
conservation (along the horizontal direction) we find the speed after the collision. 

 =
+

= 2.61 .0V v
m

m m
b

p b

 m / s  

The equilibrium position has not changed, so (for the new system of greater mass) this 
represents the maximum speed value for the subsequent harmonic motion: V = x´mω
where ω = 2π/T = 14.3 rad/s. Therefore, x´m = 0.18 m. 



105. (a) Hooke’s law provides the spring constant: k = (4.00 kg)(9.8 m/s2)/(0.160 m) = 
245 N/m. 

(b) The attached mass is m = 0.500 kg. Consequently, Eq. 15-13 leads to 

T
m

k
= = =2 2

0 500

245
0 284π π .
. .s



106.  =
0.108

6.02 10
= 1.8 10 . 

23
25m

 kg
 kg

×
× − Using Eq. 15-12 and the fact that f = ω/2π, we have 

( ) ( )213 13 25 21
1 10  Hz = 2 10 1.8 10 7 10 N/m.

2

k
k

m
π

π
−× = × × ≈ ×



107. (a) Hooke’s law provides the spring constant: k = (20 N)/(0.20 m) = 1.0×102 N/m. 

(b) The attached mass is m = (5.0 N)/(9.8 m/s2) = 0.51 kg. Consequently, Eq. 15-13 leads 
to

T
m

k
= = =2 2

0 51

100
0π π .
.45 .s



108. (a) We are told 

e t Tbt m− = =2 3

4
4where

where T m k= ′ ≈2 2π π/ /ω  (neglecting the second term in Eq. 15-43). Thus, 

T ≈ =2 2 00 10 0 2 81π ( . ) / ( . ) .kg N / m s 

and we find 

b T

m
b

4

2

4

3
0 288

2 2 00 0 288

4 2 81
0102

b g b gb g
b g= FHG

I
KJ = = =ln .

. .

.
. .kg / s

(b) Initially, the energy is 2 21 1
2 2 (10.0)(0.250) 0.313 Jo m oE kx= = = . At t = 4T,

231
2 4( ) 0.176 Jm oE k x= = .

Therefore, Eo – E = 0.137 J. 



109. (a) Eq. 15-28 gives 

T
L

g

m= = =2 2
17

9 8
8 3π π

.
. .

m / s
s2

(b) Plugging I = mL2 into Eq. 15-25, we see that the mass m cancels out. Thus, the 
characteristics (such as the period) of the periodic motion do not depend on the mass. 



110. (a) The net horizontal force is F since the batter is assumed to exert no horizontal 
force on the bat. Thus, the horizontal acceleration (which applies as long as F acts on the 
bat) is a = F/m.

(b) The only torque on the system is that due to F, which is exerted at P, at a distance 
L Lo − 1

2  from C. Since Lo = 2L/3 (see Sample Problem 15-5), then the distance from C to 
P is 2

3
1
2

1
6L L L− = . Since the net torque is equal to the rotational inertia (I = 1/12mL2

about the center of mass) multiplied by the angular acceleration, we obtain 

α τ= = =
I

F L

mL

F

mL

1
6

1
12

2

2b g
.

(c) The distance from C to O is r = L/2, so the contribution to the acceleration at O
stemming from the angular acceleration (in the counterclockwise direction of Fig. 15-11) 
is α αr L= 1

2  (leftward in that figure). Also, the contribution to the acceleration at O due to 
the result of part (a) is F/m (rightward in that figure). Thus, if we choose rightward as 
positive, then the net acceleration of O is 

 =
1

2
=

1

2

2
= 0. a

F

m
L

F

m

F

mL
LO − − FH
I
Kα

(d) Point O stays relatively stationary in the batting process, and that might be possible 
due to a force exerted by the batter or due to a finely tuned cancellation such as we have 
shown here. We assumed that the batter exerted no force, and our first expectation is that 
the impulse delivered by the impact would make all points on the bat go into motion, but 
for this particular choice of impact point, we have seen that the point being held by the 
batter is naturally stationary and exerts no force on the batter’s hands which would 
otherwise have to “fight” to keep a good hold of it. 



111. Since dm is the amplitude of oscillation, then the maximum acceleration being set to 
0.2g provides the condition: ω2dm = 0.2g.  Since ds is the amount the spring stretched in 
order to achieve vertical equilibrium of forces, then we have the condition kds = mg.
Since we can write this latter condition as mω2ds = mg, then ω2 = g/ds.  Plugging this into 
our first condition, we obtain ds = dm/0.2 = (10 cm)/0.2 = 50 cm. 



112. (a) A plot of x versus t (in SI units) is shown below:  

If we expand the plot near the end of that time interval we have 

This is close enough to a regular sine wave cycle that we can estimate its period (T = 0.18 
s, so ω = 35 rad/s) and its amplitude (ym = 0.008 m). 

(b) Now, with the new driving frequency (ωd = 13.2 rad/s), the x versus t graph (for the 
first one second of motion) is as shown below: 



It is a little more difficult in this case to estimate a regular sine-curve-like amplitude and 
period (for the part of the above graph near the end of that time interval), but we arrive at 
roughly ym = 0.07 m, T = 0.48 s, and ω = 13 rad/s. 

(c) Now, with ωd = 20 rad/s, we obtain (for the behavior of the graph, below, near the end 
of the interval) the estimates: ym = 0.03 m, T = 0.31 s, and ω = 20 rad/s. 



113. The rotational inertia for an axis through A is Icm + mhA
2  and that for an axis through 

B is Icm + mhB
2 . Using Eq. 15-29, we require 

2 2
2 2

π πI mh

mgh

I mh

mgh
A

A

B

B

cm cm+ = +

which (after canceling 2π and squaring both sides) becomes 

+
=

+
.

2 2I mh

mgh

I mh

mgh
A

A

B

B

cm cm

Cross-multiplying and rearranging, we obtain 

 = =2 2I h h m h h h h mh h h hB A A B B A A B B Acm − − −b g c h b g

which simplifies to Icm = mhAhB. We plug this back into the first period formula above 
and obtain 

T
mh h mh

mgh

h h

g
A B A

A

B A= + = +
2 2

2

π π .

From the figure, we see that hB + hA = L, and (after squaring both sides) we can solve the 
above equation for the gravitational acceleration: 

 =
2

=
4

.
2 2

2
g

T
L

L

T

π πF
HG
I
KJ
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