
1. (a) The motion from maximum displacement to zero is one-fourth of a cycle so 0.170 s 
is one-fourth of a period. The period is T = 4(0.170 s) = 0.680 s. 

(b) The frequency is the reciprocal of the period: 

1 1
1.47 Hz.

0.680s
f

T
= = =

(c) A sinusoidal wave travels one wavelength in one period: 

1.40m
2.06m s.

0.680s
v

T
= = =λ



2. (a) The angular wave number is 

12 2
3.49m .

1.80 m
k −π π= = =

λ

(b) The speed of the wave is 

( )( )1.80m 110rad s
31.5m s.

2 2
v f

ωλ= λ = = =
π π



3. Let  y1 = 2.0 mm (corresponding to time t1) and y2 = –2.0 mm (corresponding to time t2).
Then we find

kx + 600t1  + φ = sin−1(2.0/6.0)
and

kx + 600t2  + φ = sin−1(–2.0/6.0)  . 

Subtracting equations gives  600(t1 – t2)  =  sin−1(2.0/6.0) – sin−1(–2.0/6.0).  Thus we find 
t1 – t2 = 0.011 s  (or  1.1 ms). 



4. Setting x = 0  in u = − ω ym cos(k x − ω t + φ) (see Eq. 16-21 or Eq. 16-28) gives  

u = − ω ym cos(−ω t + φ) as the function being plotted in the graph.  We note that it has a 
positive “slope” (referring to its t-derivative) at t = 0: 

d u
d t  = 

d (−ω ym cos(−ω t+ φ))
d t      = − ym ω² sin(−ω t + φ)   > 0  at t = 0.

This implies that – sinφ > 0 and consequently that φ is in either the third or fourth 
quadrant. The graph shows (at t = 0)  u = −4 m/s, and (at some later t) umax = 5 m/s.  We 
note that umax  = ym ω. Therefore, 

u = − umax cos(− ω t + φ)|t = 0 φ =  cos−1( 4
5 ) = ± 0.6435 rad

(bear in mind that cosθ = cos(−θ )), and we must choose  φ = −0.64 rad  (since this is 
about  −37° and is in fourth quadrant).  Of course, this answer added to 2nπ is still a valid 
answer (where n is any integer), so that, for example, φ = −0.64 + 2π = 5.64 rad  is also an 
acceptable result. 



5. Using v = fλ, we find the length of one cycle of the wave is λ = 350/500 = 0.700 m = 
700 mm. From f = 1/T, we find the time for one cycle of oscillation is T = 1/500 = 2.00 ×
10–3 s = 2.00 ms. 

(a) A cycle is equivalent to 2π radians, so that π/3 rad corresponds to one-sixth of a cycle. 
The corresponding length, therefore, is λ/6 = 700/6 = 117 mm. 

(b) The interval 1.00 ms is half of T and thus corresponds to half of one cycle, or half of 
2π rad. Thus, the phase difference is (1/2)2π = π rad. 



6. (a) The amplitude is ym = 6.0 cm. 

(b) We find λ from 2π/λ = 0.020π: λ = 1.0×102 cm. 

(c) Solving 2πf = ω = 4.0π, we obtain f = 2.0 Hz. 

(d) The wave speed is v = λf = (100 cm) (2.0 Hz) = 2.0×102 cm/s. 

(e) The wave propagates in the –x direction, since the argument of the trig function is kx + 
ωt instead of kx – ωt (as in Eq. 16-2). 

(f) The maximum transverse speed (found from the time derivative of y) is 

( ) ( )1
max 2 4.0 s 6.0cm 75cm s.mu fy −= π = π =

(g) y(3.5 cm, 0.26 s) = (6.0 cm) sin[0.020π(3.5) + 4.0π(0.26)] = –2.0 cm. 



7. (a) Recalling from Ch. 12 the simple harmonic motion relation um = ymω, we have 

16
400rad/s.

0.040
ω = =

Since ω = 2πf, we obtain f = 64 Hz. 

(b) Using v = fλ, we find λ = 80/64 = 1.26 m 1.3 m≈ .

(c) The amplitude of the transverse displacement is 24.0 cm 4.0 10 m.my −= = ×

(d) The wave number is k = 2π/λ = 5.0 rad/m. 

(e) The angular frequency, as obtained in part (a), is 216 / 0.040 4.0 10 rad/s.ω = = ×

(f) The function describing the wave can be written as 

( )0.040sin 5 400y x t φ= − +

where distances are in meters and time is in seconds. We adjust the phase constant φ to 
satisfy the condition y = 0.040 at x = t = 0. Therefore, sin φ = 1, for which the “simplest” 
root is φ = π/2. Consequently, the answer is 

0.040sin 5 400 .
2

y x t
π= − +

(g) The sign in front of ω is minus. 



8. With length in centimeters and time in seconds, we have 

u   =
du
dt   = 225π sin (πx − 15πt)   . 

Squaring this and adding it to the square of 15πy, we have 

u2 + (15πy)2  =  (225π )2 [sin2 (πx − 15π t) + cos2 (πx − 15π t)] 

so that 

u  = (225π)2 - (15πy)2  =  15π 152 - y2   . 

Therefore, where y = 12, u must be ± 135π.  Consequently, the speed there is 424 cm/s = 
4.24 m/s. 



9. (a) The amplitude ym is half of the 6.00 mm vertical range shown in the figure, i.e., 
3.0 mm.my =

(b) The speed of the wave is v = d/t = 15 m/s, where d = 0.060 m and t = 0.0040 s.  The 
angular wave number is k = 2π/λ where λ  = 0.40 m.  Thus,

k = 
2π
 λ   =  16 rad/m . 

(c) The angular frequency is found from  

ω = k v = (16 rad/m)(15 m/s)=2.4 102 rad/s. 

(d) We choose the minus sign (between kx and ωt) in the argument of the sine function 
because the wave is shown traveling to the right [in the +x direction] – see section 16-5).  
Therefore, with SI units understood, we obtain 

y = ym sin(kx −kvt) ≈ 0.0030 sin(16 x  −  2.4 10
2

t) . 



10. The slope that they are plotting is the physical slope of sinusoidal waveshape (not to 
be confused with the more abstract “slope” of its time development; the physical slope is 
an x-derivative whereas the more abstract “slope” would be the t-derivative).  Thus, 
where the figure shows a maximum slope equal to 0.2 (with no unit), it refers to the 
maximum of the following function: 

d y
d x  = 

d ym sin(k x − ω t)
d x   = ym k cos(k x − ω t) . 

The problem additionally gives t = 0, which we can substitute into the above expression 
if desired.  In any case, the maximum of the above expression is  ym k ,  where 

2 2
15.7 rad/m

0.40 m
k

π π
λ

= = = .

Therefore, setting  ym k equal to 0.20 allows us to solve for the amplitude ym .  We find 

0.20
0.0127 m 1.3 cm

15.7 rad/mmy = = ≈ .



11. From Eq. (16.10), a general expression for a sinusoidal wave traveling along the +x
direction is

 ( , ) sin( )my x t y kx tω φ= − +

(a) Figure 16.34 shows that at x = 0, (0, ) sin( )my t y tω φ= − + is a positive sine function, 

i.e., (0, ) sin .my t y tω= +  Therefore, the phase constant must be φ π= . At t =0, we then 

have ( ,0) sin( ) sinm my x y kx y kxπ= + = − which is a negative sine function. A plot of y(x,0) 

is depicted below. 
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(b) From the figure we see that the amplitude is ym = 4.0 cm.

(c) The angular wave number is given by k = 2π/λ = π/10 = 0.31 rad/cm. 

(d) The angular frequency is ω = 2π/T = π/5 = 0.63 rad/s.

(e) As found in part (a), the phase is φ π= .

(f) The sign is minus since the wave is traveling in the +x direction. 

(g) Since the frequency is f = 1/T = 0.10 s, the speed of the wave is v = fλ = 2.0 cm/s. 

(h) From the results above, the wave may be expressed as 

( , ) 4.0sin 4.0sin
10 5 10 5

x t x t
y x t

π π π ππ= − + = − − .

Taking the derivative of y with respect to t, we find 

( , ) 4.0 cos
10 5

y x t
u x t

t t

π π∂ π= = −
∂



which yields u(0,5.0) = –2.5 cm/s. 



12. The volume of a cylinder of height  is V = πr2 = πd2 /4. The strings are long, 
narrow cylinders, one of diameter d1 and the other of diameter d2 (and corresponding 
linear densities µ1 and µ2). The mass is the (regular) density multiplied by the volume: m
= ρV, so that the mass-per-unit length is  

2 24
4

m d dρ ρµ π π= = =

and their ratio is 

22
1 1 1

2
2 2 2

4
.

4

d d

d d

µ πρ
µ πρ

= =

Therefore, the ratio of diameters is 

1 1

2 2

3.0
3.2.

0.29

d

d

µ
µ

= = =



13. The wave speed v is given by v = τ µ , where τ is the tension in the rope and µ is 

the linear mass density of the rope. The linear mass density is the mass per unit length of 
rope: µ = m/L = (0.0600 kg)/(2.00 m) = 0.0300 kg/m. Thus 

500 N
129 m s.

0.0300 kg m
v = =



14. From v = τ µ , we have 

new newnew

old old old

2.
v

v

τ µ
τ µ

= =



15. (a) The wave speed is given by v = λ/T = ω/k, where λ is the wavelength, T is the 
period, ω is the angular frequency (2π/T), and k is the angular wave number (2π/λ). The 
displacement has the form y = ym sin(kx + ωt), so k = 2.0 m–1 and ω = 30 rad/s. Thus

v = (30 rad/s)/(2.0 m–1) = 15 m/s. 

(b) Since the wave speed is given by v = τ µ , where τ is the tension in the string and µ
is the linear mass density of the string, the tension is 

( )( )22 41.6 10 kg m 15m s 0.036 N.vτ µ −= = × =



16. We use /v = ∝τ µ τ  to obtain 

( )
2 2

2
2 1

1

180 m/s
120 N 135N.

170 m/s
v

v
= = =τ τ



17. (a) The amplitude of the wave is ym=0.120 mm. 

(b) The wave speed is given by v = τ µ , where τ is the tension in the string and µ is the 

linear mass density of the string, so the wavelength is λ = v/f = τ µ /f and the angular 

wave number is 

( ) 12 0.50kg m
2 2 100 Hz 141m .

10 N
k f −π= = π = π =

λ
µ
τ

(c) The frequency is f = 100 Hz, so the angular frequency is  

ω = 2πf = 2π(100 Hz) = 628 rad/s. 

(d) We may write the string displacement in the form y = ym sin(kx + ωt). The plus sign is 
used since the wave is traveling in the negative x direction. In summary, the wave can be 
expressed as 

( ) ( ) ( )1 10.120 mm sin 141m  + 628s .y x t− −=



18. (a) Comparing with Eq. 16-2, we see that k = 20/m and ω = 600/s. Therefore, the 
speed of the wave is (see Eq. 16-13) v = ω/k = 30 m/s. 

(b) From Eq. 16–26, we find 

2 2

15
0.017 kg m 17 g m.

30v
= = = =τµ



19. (a) We read the amplitude from the graph. It is about 5.0 cm. 

(b) We read the wavelength from the graph. The curve crosses y = 0 at about x = 15 cm 
and again with the same slope at about x = 55 cm, so

λ = (55 cm – 15 cm) = 40 cm = 0.40 m. 

(c) The wave speed is / ,v = τ µ  where τ is the tension in the string and µ is the linear 

mass density of the string. Thus, 

3

3.6 N
12 m/s.

25 10 kg/m
v −= =

×

(d) The frequency is f = v/λ = (12 m/s)/(0.40 m) = 30 Hz and the period is  

T = 1/f = 1/(30 Hz) = 0.033 s. 

(e) The maximum string speed is  

um = ωym = 2πfym = 2π(30 Hz) (5.0 cm) = 940 cm/s = 9.4 m/s. 

(f) The angular wave number is k = 2π/λ = 2π/(0.40 m) = 16 m–1.

(g) The angular frequency is ω = 2πf = 2π(30 Hz) = 1.9×102 rad/s 

(h) According to the graph, the displacement at x = 0 and t = 0 is 4.0 × 10–2 m. The 
formula for the displacement gives y(0, 0) = ym sin φ. We wish to select φ so that 5.0 × 10–

2 sin φ = 4.0 × 10–2. The solution is either 0.93 rad or 2.21 rad. In the first case the 
function has a positive slope at x = 0 and matches the graph. In the second case it has 
negative slope and does not match the graph. We select φ = 0.93 rad.

(i) The string displacement has the form y (x, t) = ym sin(kx + ωt + φ). A plus sign appears 
in the argument of the trigonometric function because the wave is moving in the negative 
x direction. Using the results obtained above, the expression for the displacement is 

( )2 1 1( , ) 5.0 10 m sin (16m ) (190s ) 0.93 .− − −= × + +y x t x t



20. (a) The general expression for y (x, t) for the wave is y (x, t) = ym sin(kx – ωt), which, 
at x = 10 cm, becomes y (x = 10 cm, t) = ym sin[k(10 cm – ωt)]. Comparing this with the 
expression given, we find ω = 4.0 rad/s, or f = ω/2π = 0.64 Hz. 

(b) Since k(10 cm) = 1.0, the wave number is k = 0.10/cm. Consequently, the wavelength 
is λ = 2π/k = 63 cm. 

(c) The amplitude is 5.0 cm.my =

(d) In part (b), we have shown that the angular wave number is k = 0.10/cm. 

(e) The angular frequency is ω = 4.0 rad/s. 

(f) The sign is minus since the wave is traveling in the +x direction. 

Summarizing the results obtained above by substituting the values of k and ω into the 
general expression for y (x, t), with centimeters and seconds understood, we obtain 

( , ) 5.0sin (0.10 4.0 ).y x t x t= −

(g) Since / / ,v k= =ω τ µ  the tension is 

2 1 2
2

2 1 2

(4.0g / cm)(4.0s )
6400g cm/s 0.064 N.

(0.10cm )

−

−= = = ⋅ =
k

ω µτ



21. The pulses have the same speed v. Suppose one pulse starts from the left end of the 
wire at time t = 0. Its coordinate at time t is x1 = vt. The other pulse starts from the right 
end, at x = L, where L is the length of the wire, at time t = 30 ms. If this time is denoted 
by t0 then the coordinate of this wave at time t is x2 = L – v(t – t0). They meet when x1 = x2,
or, what is the same, when vt = L – v(t – t0). We solve for the time they meet: t = (L + 
vt0)/2v and the coordinate of the meeting point is x = vt = (L + vt0)/2. Now, we calculate 
the wave speed: 

(250 N)(10.0m)
158m/s.

0.100kg
= = =L

v
m

τ

Here τ is the tension in the wire and L/m is the linear mass density of the wire. The 
coordinate of the meeting point is 

310.0 m (158m/s) (30.0 10 s)
7.37 m.

2
x

−+ ×= =

This is the distance from the left end of the wire. The distance from the right end is L – x
= (10.0 m – 7.37 m ) = 2.63 m. 



22. (a) The tension in each string is given by τ = Mg/2. Thus, the wave speed in string 1 is 

2

1
1 1

(500g) (9.80 m/s )
28.6m/s.

2 2(3.00g/m)
Mg

v
τ
µ µ

= = = =

(b) And the wave speed in string 2 is 

2

2
2

(500g) (9.80m/s )
22.1m/s.

2 2(5.00g/m)
Mg

v
µ

= = =

(c) Let 1 1 1 2 2 2/(2 ) /(2 )v M g v M g= = =µ µ and M1 + M2 = M. We solve for M1 and 

obtain

1
2 1

500g
187.5g 188g.

1 / 1 5.00 / 3.00

M
M

µ µ
= = = ≈

+ +

(d) And we solve for the second mass: M2 = M – M1 = (500 g – 187.5 g) ≈ 313 g. 



23. (a) The wave speed at any point on the rope is given by v = τ µ , where τ is the 

tension at that point and µ is the linear mass density. Because the rope is hanging the 
tension varies from point to point. Consider a point on the rope a distance y from the 
bottom end. The forces acting on it are the weight of the rope below it, pulling down, and 
the tension, pulling up. Since the rope is in equilibrium, these forces balance. The weight 
of the rope below is given by µgy, so the tension is τ = µgy. The wave speed is 

/ .= =v gy gyµ µ

(b) The time dt for the wave to move past a length dy, a distance y from the bottom end, is 
d d dt y v y gy= =  and the total time for the wave to move the entire length of the rope 

is

0
0

d
2 2 .= = =

L
L y y L

t
g ggy



24. Using Eq. 16–33 for the average power and Eq. 16–26 for the speed of the wave, we 
solve for f = ω/2π:

avg

3

21 1 2(85.0 W)
198 Hz.

2 2 (7.70 10 m)/ (36.0 N)(0.260kg / 2.70m )m

P
f

y µ τ µ −= = =
π π ×



25. We note from the graph (and from the fact that we are dealing with a cosine-squared, 

see Eq. 16-30) that the wave frequency is f = 1
2 ms = 500 Hz, and that the wavelength λ =

0.20 m.  We also note from the graph that the maximum value of dK/dt is 10 W.  Setting 
this equal to the maximum value of Eq. 16-29 (where we just set that cosine term equal to 
1) we find 

1
2 µ v ω2 ym

2  =  10 

with SI units understood.  Substituting in µ = 0.002 kg/m, ω = 2πf  and v = f λ , we solve 
for the wave amplitude:  

ym = 
10

2π2µλ  f 3
 =  0.0032 m . 



26. Comparing 1 1( , ) (3.00 mm)sin[(4.00 m ) (7.00 s ) ]y x t x t− −= −  to the general expression 

( , ) sin( )my x t y kx tω= − , we see that 14.00 mk −= and 7.00 rad/sω = . The speed of the 

wave is 1/ (7.00 rad/s)/(4.00 m ) 1.75 m/s.v kω −= = =



27. The wave 1 1 1/ 2( , ) (2.00 mm)[(20 m ) (4.0 s ) ]y x t x t− −= −  is of the form ( )h kx tω− with

angular wave number 120 mk −=  and angular frequency 4.0 rad/sω = . Thus, the speed of 
the wave is 1/ (4.0 rad/s)/(20 m ) 0.20 m/s.v kω −= = =



28. The wave 1 1( , ) (4.00 mm) [(30 m ) (6.0 s ) ]y x t h x t− −= +  is of the form ( )h kx tω− with

angular wave number 130 mk −=  and angular frequency 6.0 rad/sω = . Thus, the speed 
of the wave is 1/ (6.0 rad/s)/(30 m ) 0.20 m/s.v kω −= = =



29. The displacement of the string is given by  

sin( ) sin( )m my y kx t y kx tω ω φ= − + − + ( ) ( )1 1
2 22 cos sinmy kx tφ ω φ= − + ,

where φ = π/2. The amplitude is  

( )1
22 cosmA y φ= 2 cos( / 4) 1.41m my y= π = .



30. (a) Let the phase difference be φ. Then from Eq. 16–52, 2ym cos(φ/2) = 1.50ym, which 
gives 

1 1.50
2cos 82.8 .

2
m

m

y

y
φ −= = °

(b) Converting to radians, we have φ = 1.45 rad. 

(c) In terms of wavelength (the length of each cycle, where each cycle corresponds to 2π
rad), this is equivalent to 1.45 rad/2π = 0.230 wavelength. 



31. (a) The amplitude of the second wave is 9.00 mmmy = , as stated in the problem. 

(b) The figure indicates that λ = 40 cm = 0.40 m, which implies that the angular wave 
number is k = 2π/0.40 = 16  rad/m.

(c) The figure (along with information in the problem) indicates that the speed of each 
wave is v = dx/t = (56.0 cm)/(8.0 ms) = 70 m/s.  This, in turn, implies that the angular 
frequency is ω = k v = 1100 rad/s = 1.1×103 rad/s.

(d) We observe that Figure 16-38 depicts two traveling waves (both going in the –x
direction) of equal amplitude ym.  The amplitude of their resultant wave, as shown in the 
figure, is y′m = 4.00 mm.  Eq. 16-52 applies: 

y′m = 2 ym cos( 1
2 φ2) φ2 = 2 cos−1(2.00/9.00) = 2.69 rad. 

 (e) In making the plus-or-minus sign choice in y = ym sin(k x ± ω t + φ), we recall the 
discussion in section 16-5, where it shown that sinusoidal waves traveling in the –x
direction are of the form y = ym sin(k x + ω t + φ).  Here, φ should be thought of as the 
phase difference between the two waves (that is, φ1 = 0 for wave 1 and φ2 = 2.69 rad for 
wave 2).

In summary, the waves have the forms (with SI units understood): 

y1 = (0.00900)sin(16 x +1100 t)   and y2 = (0.00900)sin(16 x + 1100 t + 2.7 ) . 



32. (a) We use Eq. 16-26 and Eq. 16-33 with µ = 0.00200 kg/m and  ym = 0.00300 m.  

These give v = τ / µ  = 775 m/s and

Pavg = 12  µv ω2ym
2 = 10 W. 

(b) In this situation, the waves are two separate string (no superposition occurs).  The 
answer is clearly twice that of part (a); P = 20 W. 

(c) Now they are on the same string.  If they are interfering constructively (as in Fig. 16-
16(a)) then the amplitude ym is doubled which means its square ym

2 increases by a factor 
of 4.  Thus, the answer now is four times that of part (a); P = 40 W. 

(d) Eq. 16-52 indicates in this case that the amplitude (for their superposition) is
2 ymcos(0.2π) = 1.618 times the original amplitude ym.  Squared, this results in an increase 
in the power by a factor of 2.618.  Thus, P = 26 W in this case. 

(e) Now the situation depicted in Fig. 16-16(b) applies, so P = 0. 



33. The phasor diagram is shown below: y1m and y2m represent the original waves and ym

represents the resultant wave. The phasors corresponding to the two constituent waves 
make an angle of 90° with each other, so the triangle is a right triangle. The Pythagorean 
theorem gives  

2 2 2 2 2 2
1 2 (3.0cm) (4.0cm) (25cm)m m my y y= + = + = .

Thus ym = 5.0 cm. 



34. The phasor diagram is shown below. We use the cosine theorem: 

2 2 2 2 2
1 2 1 2 1 2 1 22 cos 2 cos .m m m m m m m m my y y y y y y y yθ φ= + − = + +

We solve for cos φ:

2 2 2 2 2 2
1 2

1 2

(9.0mm) (5.0 mm) (7.0 mm)
cos 0.10.

2 2(5.0 mm)(7.0mm)
m m m

m m

y y y

y y
φ − − − −= = =

The phase constant is therefore φ = 84°. 



35. (a) As shown in Figure 16-16(b) in the textbook, the least-amplitude resultant wave is 
obtained when the phase difference is π rad.

(b) In this case, the amplitude is (8.0 mm – 5.0 mm) = 3.0 mm. 

(c) As shown in Figure 16-16(a) in the textbook, the greatest-amplitude resultant wave is 
obtained when the phase difference is 0 rad. 

(d) In the part (c) situation, the amplitude is (8.0 mm + 5.0 mm) = 13 mm. 

(e) Using phasor terminology, the angle “between them” in this case is π/2 rad (90º), so 
the Pythagorean theorem applies: 

2 2(8.0 mm) (5.0 mm)+  = 9.4 mm . 



36. We see that  y1 and  y3 cancel (they are 180º) out of phase, and y2 cancels with y4

because their phase difference is also equal to π rad (180º).  There is no resultant wave in 
this case. 



37. (a) Using the phasor technique, we think of these as two “vectors” (the first of 
“length” 4.6 mm and the second of “length” 5.60 mm) separated by an angle of φ = 0.8π
radians (or 144º).  Standard techniques for adding vectors then leads to a resultant vector 
of length 3.29 mm. 

(b) The angle (relative to the first vector) is equal to 88.8º (or 1.55 rad).  

(c) Clearly, it should in “in phase” with the result we just calculated, so its phase angle 
relative to the first phasor should be also 88.8º (or 1.55 rad). 



38. The nth resonant frequency of string A is 

, ,
2 2

A
n A

A

v n
f n

l L

τ
µ

= =

while for string B it is 

, ,

1
.

2 8 4
B

n B n A
B

v n
f n f

l L

τ
µ

= = =

(a) Thus, we see f1,A = f4,B. That is, the fourth harmonic of B matches the frequency of A’s
first harmonic. 

(b) Similarly, we find f2,A = f8,B.

(c) No harmonic of B would match 3,

3 3
,

2 2
A

A
A

v
f

l L

τ
µ

= =



39. Possible wavelengths are given by λ = 2L/n, where L is the length of the wire and n is 
an integer. The corresponding frequencies are given by f = v/λ = nv/2L, where v is the 
wave speed. The wave speed is given by / ,v L Mτ µ τ= =  where τ is the tension in 

the wire, µ is the linear mass density of the wire, and M is the mass of the wire. µ = M/L
was used to obtain the last form. Thus 

250 N
(7.91 Hz).

2 2 2 (10.0 m) (0.100 kg)n

n L n n
f n

L M LM

τ τ= = = =

(a) The lowest frequency is 1 7.91 Hz.f =

(b) The second lowest frequency is 2 2(7.91 Hz) 15.8 Hz.f = =

(c) The third lowest frequency is 3 3(7.91 Hz) 23.7 Hz.f = =



40. (a) The wave speed is given by 

3

7.00 N
66.1m/s.

2.00  10 kg/1.25m
v −= = =

×
τ
µ

(b) The wavelength of the wave with the lowest resonant frequency f1 is λ1 = 2L, where L
= 125 cm. Thus, 

1
1

66.1 m/s
26.4 Hz.

2(1.25 m)
v

f = = =
λ



41. (a) The wave speed is given by ,v τ µ=  where τ is the tension in the string and µ is 

the linear mass density of the string. Since the mass density is the mass per unit length, µ
= M/L, where M is the mass of the string and L is its length. Thus 

(96.0 N) (8.40 m)
82.0 m/s.

0.120 kg
L

v
M

= = =τ

(b) The longest possible wavelength λ for a standing wave is related to the length of the 
string by L = λ/2, so λ = 2L = 2(8.40 m) = 16.8 m. 

(c) The frequency is f = v/λ = (82.0 m/s)/(16.8 m) = 4.88 Hz. 



42. The string is flat each time the particles passes through its equilibrium position. A 
particle may travel up to its positive amplitude point and back to equilibrium during this 
time. This describes half of one complete cycle, so we conclude T = 2(0.50 s) = 1.0 s. 
Thus, f = 1/T = 1.0 Hz, and the wavelength is 

10cm/s
10 cm.

1.0 Hz
v

f
λ = = =



43. (a) Eq. 16–26 gives the speed of the wave: 

2
3

150 N
144.34 m/s 1.44 10 m/s.

7.20 10 kg/m
v

τ
µ −= = = ≈ ×

×

(b) From the Figure, we find the wavelength of the standing wave to be λ = (2/3)(90.0 cm) 
= 60.0 cm. 

(c) The frequency is 

21.44 10 m/s
241Hz.

0.600m
v

f
×= = =

λ



44. Use Eq. 16–66 (for the resonant frequencies) and Eq. 16–26 ( / )v τ µ=  to find fn:

2 2n

nv n
f

L L

τ
µ

= =

which gives f3 = (3/2L) iτ µ .

(a) When τf = 4τi, we get the new frequency 

3 3

3
2 .

2
ff f

L

τ
= =′

µ

(b) And we get the new wavelength 

3 3
3

2
.

3
v L

f

′′λ = = = λ
′



45. (a) The resonant wavelengths are given by λ = 2L/n, where L is the length of the 
string and n is an integer, and the resonant frequencies are given by f = v/λ = nv/2L, where 
v is the wave speed. Suppose the lower frequency is associated with the integer n. Then, 
since there are no resonant frequencies between, the higher frequency is associated with n
+ 1. That is, f1 = nv/2L is the lower frequency and f2 = (n + 1)v/2L is the higher. The ratio 
of the frequencies is 

2

1

1
.

f n

f n

+=

The solution for n is 

1

2 1

315 Hz
3.

420 Hz 315 Hz

f
n

f f
= = =

− −

The lowest possible resonant frequency is f = v/2L = f1/n = (315 Hz)/3 = 105 Hz. 

(b) The longest possible wavelength is λ = 2L. If f is the lowest possible frequency then  

v = λf = 2Lf = 2(0.75 m)(105 Hz) = 158 m/s. 



46. The harmonics are integer multiples of the fundamental, which implies that the 
difference between any successive pair of the harmonic frequencies is equal to the 
fundamental frequency.   Thus, f1 = (390 Hz – 325 Hz) = 65 Hz.  This further implies that 
the next higher resonance above 195 Hz should be (195 Hz + 65 Hz) = 260 Hz. 



47. (a) The amplitude of each of the traveling waves is half the maximum displacement of 
the string when the standing wave is present, or 0.25 cm. 

(b) Each traveling wave has an angular frequency of ω = 40π rad/s and an angular wave 
number of k = π/3 cm–1. The wave speed is  

v = ω/k = (40π rad/s)/(π/3 cm–1) = 1.2×102 cm/s. 

(c) The distance between nodes is half a wavelength: d = λ/2 = π/k = π/(π/3 cm–1) = 3.0 
cm. Here 2π/k was substituted for λ.

(d) The string speed is given by u(x, t) = ∂y/∂t = –ωymsin(kx)sin(ωt). For the given 
coordinate and time, 

( )1 1 9
(40  rad/s) (0.50cm) sin cm (1.5cm) sin  40 s s 0.

3 8
u − −π= − π π =



48. Since the rope is fixed at both ends, then the phrase “second-harmonic standing wave 
pattern” describes the oscillation shown in Figure 16–23(b), where 

and =
v

L f
L

λ =

(see Eq. 16–65 and Eq. 16–69). 

(a) Comparing the given function with Eq. 17–47, we obtain k = π/2 and ω = 12π (SI 
units understood). Since k = 2π/λ then 

2
4.0m 4.0 m.

2
L

π π= λ = =
λ

(b) Since ω = 2πf then 2 12        6.0Hz       24m/s.f f v fπ = π = = λ =

(c) Using Eq. 17–25, we have 

200
    24

/
v

m L

τ
µ

= =

which leads to m = 1.4 kg. 

(d) With 

3 3(24)
9.0Hz

2 2(4.0)
v

f
L

= = =

The period is T = 1/f = 0.11 s. 



49. (a) The waves have the same amplitude, the same angular frequency, and the same 
angular wave number, but they travel in opposite directions. We take them to be y1 =
ym sin(kx – ωt) and y2 = ym sin(kx + ωt). The amplitude ym is half the maximum 
displacement of the standing wave, or 5.0 × 10–3 m. 

(b) Since the standing wave has three loops, the string is three half-wavelengths long: L = 
3λ/2, or λ = 2L/3. With L = 3.0m, λ = 2.0 m. The angular wave number is k = 2π/λ = 
2π/(2.0 m) = 3.1 m–1.

(c) If v is the wave speed, then the frequency is 

( )
( )

3 100m s3
50 Hz.

2 2 3.0m
v v

f
L

= = = =
λ

The angular frequency is the same as that of the standing wave, or ω = 2π f = 2π(50 Hz) = 
314 rad/s.

(d) The two waves are 

( ) ( ) ( )3 1 1
1 5.0 10 m sin 3.14 m 314sy x t− − −= × −

and

( ) ( ) ( )3 1 1
2 5.0 10 m sin 3.14 m 314s .y x t− − −= × +

Thus, if one of the waves has the form ( , ) sin( )my x t y kx tω= + , then the other wave must 

have the form '( , ) sin( )my x t y kx tω= − . The sign in front of ω for '( , )y x t is minus. 



50. The nodes are located from vanishing of the spatial factor sin 5πx = 0 for which the 
solutions are 

1 2 3
5 0, ,2 ,3 , 0, , , ,

5 5 5
x xπ = π π π =

(a) The smallest value of x which corresponds to a node is x = 0. 

(b) The second smallest value of x which corresponds to a node is x = 0.20 m. 

(c) The third smallest value of x which corresponds to a node is x = 0.40 m. 

(d) Every point (except at a node) is in simple harmonic motion of frequency f = ω/2π = 
40π/2π = 20 Hz. Therefore, the period of oscillation is T = 1/f = 0.050 s. 

(e) Comparing the given function with Eq. 16–58 through Eq. 16–60, we obtain 

1 20.020sin(5 40 ) and 0.020sin(5 40 )y x t y x t= π − π = π + π

for the two traveling waves. Thus, we infer from these that the speed is v = ω/k = 40π/5π
= 8.0 m/s. 

(f) And we see the amplitude is ym = 0.020 m. 

(g) The derivative of the given function with respect to time is 

(0.040)(40 )sin(5 )sin(40 )
y

u x t
t

∂= = − π π π
∂

which vanishes (for all x) at times such as sin(40πt) = 0. Thus, 

1 2 3
40 0, ,2 ,3 , 0, , , ,

40 40 40
t tπ = π π π =

Thus, the first time in which all points on the string have zero transverse velocity is when  
t = 0 s. 

(h) The second time in which all points on the string have zero transverse velocity is 
when t = 1/40 s = 0.025 s. 



(i) The third time in which all points on the string have zero transverse velocity is when  
t = 2/40 s = 0.050 s. 



 

  

 

 
 
51. From the x = 0 plot (and the requirement of an anti-node at x = 0), we infer a standing 
wave function of the form ( , ) (0.04)cos( )sin( ),y x t kx tω= − where 2 /  rad/sTω π π= = , 
with length in meters and time in seconds. The parameter k is determined by the existence 
of the node at x = 0.10 (presumably the first node that one encounters as one moves from 
the origin in the positive x direction). This implies k(0.10) = π/2 so that k = 5π rad/m. 
 
(a) With the parameters determined as discussed above and t = 0.50 s, we find 
 

(0.20 m, 0.50 s) 0.04cos( )sin( ) 0.040 m .y kx tω= − =  
 
(b) The above equation yields (0.30 m, 0.50 s) 0.04cos( )sin( ) 0 .y kx tω= − =  
 
(c) We take the derivative with respect to time and obtain, at t = 0.50 s and x = 0.20 m, 
 

( ) ( )0.04 cos cos 0dyu kx t
dt

ω ω= = − = . 

 
 d) The above equation yields u = –0.13 m/s at t = 1.0 s. 
 
(e) The sketch of this function at t = 0.50 s for 0 ≤ x ≤ 0.40 m is shown below: 
 

 

0.1 0.2 0.3 0.4
x(m)

-0.02  

-0.04 

0.02 

0.04 

y(x,0.5) 

 
 



52. Recalling the discussion in section 16-12, we observe that this problem presents us 
with a standing wave condition with amplitude 12 cm.  The angular wave number and 
frequency are noted by comparing the given waves with the form y = ym sin(k x ± ω t).
The anti-node moves through 12 cm in simple harmonic motion, just as a mass on a 
vertical spring would move from its upper turning point to its lower turning point – which 
occurs during a half-period.  Since the period T is related to the angular frequency by Eq. 
15-5, we have 

T = 
2π
ω  =

2π
4.00 π = 0.500 s .

Thus, in a time of t = 12 T = 0.250 s, the wave moves a distance ∆x = vt  where the speed of 

the wave is v = ω
k = 1.00 m/s.  Therefore, ∆x =  (1.00 m/s)(0.250 s) = 0.250 m. 



53. (a) The angular frequency is ω = 8.00π/2 = 4.00π rad/s, so the frequency is f = ω/2π = 
(4.00π rad/s)/2π = 2.00 Hz. 

(b) The angular wave number is k = 2.00π/2 = 1.00π m–1, so the wavelength is λ = 2π/k = 
2π/(1.00π m–1) = 2.00 m. 

(c) The wave speed is 

(2.00 m) (2.00Hz) = 4.00 m/s.v f= λ =

(d) We need to add two cosine functions. First convert them to sine functions using cos α
= sin (α + π/2), then apply  

cos cos sin sin 2sin cos
2 2 2 2

2cos cos
2 2

π π + + π ++ = + + + =

+ −=

α β α βα β α β

α β α β

Letting α = kx and β = ωt, we find 

cos( ) cos( ) 2 cos( )cos( ).m m my kx t y kx t y kx tω ω ω+ + − =

Nodes occur where cos(kx) = 0 or kx = nπ + π/2, where n is an integer (including zero). 
Since k = 1.0π m–1, this means ( )1

2 (1.00 m)x n= + . Thus, the smallest value of x which 

corresponds to a node is x = 0.500 m (n=0).

(e) The second smallest value of x which corresponds to a node is x = 1.50 m (n=1).

(f) The third smallest value of x which corresponds to a node is x = 2.50 m (n=2).

(g) The displacement is a maximum where cos(kx) = ±1. This means kx = nπ, where n is 
an integer. Thus, x = n(1.00 m). The smallest value of x which corresponds to an anti-
node (maximum) is x = 0 (n=0).

(h) The second smallest value of x which corresponds to an anti-node (maximum) is 
1.00 mx = (n=1).

(i) The third smallest value of x which corresponds to an anti-node (maximum) is 
2.00 mx = (n=2).



54. Reference to point A as an anti-node suggests that this is a standing wave pattern and 
thus that the waves are traveling in opposite directions.  Thus, we expect one of them to 
be of the form y = ym sin(kx + ωt) and the other to be of the form y = ym sin(kx – ωt).

(a) Because of Eq. 16-60, we conclude that ym = 12 (9.0 mm) = 4.5 mm due to the fact that 

the amplitude of the standing wave is  12 (1.80 cm) = 0.90 cm = 9.0 mm.

(b) Since one full cycle of the wave (one wavelength) is 40 cm,  k = 2π/λ ≈ 16 m−1.

(c) The problem tells us that the time of half a full period of motion is 6.0 ms, so T = 12 
ms and Eq. 16-5 gives ω = 5.2 ×102 rad/s.

(d) The two waves are therefore  

   y1(x, t) = (4.5 mm) sin[(16 m−1)x + (520 s−1)t]     and 

y2(x, t) = (4.5 mm) sin[(16 m−1)x – (520 s−1)t]   . 

If one wave has the form ( , ) sin( )my x t y kx tω= + as in y1, then the other wave must be of 

the form '( , ) sin( )my x t y kx tω= − as in y2. Therefore, the sign in front of ω is minus. 



55. (a) The frequency of the wave is the same for both sections of the wire. The wave 
speed and wavelength, however, are both different in different sections. Suppose there are 
n1 loops in the aluminum section of the wire. Then, L1 = n1λ1/2 = n1v1/2f, where λ1 is the 
wavelength and v1 is the wave speed in that section. In this consideration, we have 
substituted λ1 = v1/f, where f is the frequency. Thus f = n1v1/2L1. A similar expression 
holds for the steel section: f = n2v2/2L2. Since the frequency is the same for the two 
sections, n1v1/L1 = n2v2/L2. Now the wave speed in the aluminum section is given 
by 1 1/ ,ν τ µ=  where µ1 is the linear mass density of the aluminum wire. The mass of 

aluminum in the wire is given by m1 = ρ1AL1, where ρ1 is the mass density (mass per unit 
volume) for aluminum and A is the cross-sectional area of the wire. Thus µ1 = ρ1AL1/L1 = 
ρ1A and 1 1/ .Aν τ ρ=  A similar expression holds for the wave speed in the steel section: 

2 2/ .v Aτ ρ=  We note that the cross-sectional area and the tension are the same for the 

two sections. The equality of the frequencies for the two sections now leads to 

1 1 1 2 2 2/ / ,n L n Lρ ρ=  where A has been canceled from both sides. The ratio of the 

integers is 

( )
( )

3 3
2 22

3 3
1 1 1

0.866m 7.80 10 kg/m
2.50.

0.600m 2.60 10 kg/m

Ln

n L

ρ
ρ

×
= = =

×

The smallest integers that have this ratio are n1 = 2 and n2 = 5. The frequency 
is ( )1 1 1 1 1 1/ 2 / 2 / .f n v L n L Aτ ρ= =  The tension is provided by the hanging block and is 

τ  = mg, where m is the mass of the block. Thus 

( )
( ) ( )

( )( )
2

1
3 3 6 2

1 1

10.0kg 9.80m/s2
324 Hz.

2 2 0.600m 2.60 10 kg/m 1.00 10 m

n mg
f

L Aρ −
= = =

× ×

(b) The standing wave pattern has two loops in the aluminum section and five loops in 
the steel section, or seven loops in all. There are eight nodes, counting the end points. 



56. According to Eq. 16-69, the block mass is inversely proportional to the harmonic 
number squared.  Thus, if the 447 gram block corresponds to harmonic number n then 

447
286.1  = 

(n + 1)2

 n2   =
n2 + 2n + 1

 n2    =   1 + 
2n + 1

 n2   . 

Therefore,  447
286.1  – 1 = 0.5624  must equal an odd integer (2n + 1) divided by a squared 

integer (n2).  That is, multiplying 0.5624 by a square (such as 1, 4, 9, 16, etc) should give 
us a number very close (within experimental uncertainty) to an odd number (1, 3, 5, …).  
Trying this out in succession (starting with multiplication by 1, then by 4, …), we find 
that multiplication by 16 gives a value very close to 9; we conclude n = 4 (so n2 = 16 and 
2n + 1 = 9).  Plugging m = 0.447 kg, n = 4, and the other values from Sample Problem 
16-8 into Eq. 16-69, we find µ = 0.000845 kg/m, or 0.845 g/m.  



57. Setting x = 0  in  y = ym sin(k x − ω t + φ) gives y = ym sin(−ω t + φ) as the function 
being plotted in the graph.  We note that it has a positive “slope” (referring to its t-
derivative) at t = 0: 

d y
d t  = 

d ym sin(−ω t+ φ)
d t  = – ymω cos(−ω t+ φ)   > 0  at t = 0.

This implies that  – cos(φ) > 0 and consequently that φ is in either the second or third 
quadrant. The graph shows (at t = 0) y = 2.00 mm, and (at some later t) ym = 6.00 mm.  
Therefore,

y = ym sin(−ω t + φ)|t = 0 φ =  sin−1( 1
3 ) =  0.34 rad   or   2.8 rad 

 (bear in mind that sin(θ) = sin(π − θ)), and we must choose  φ =  2.8 rad  because this is 
about 161° and is in second quadrant.  Of course, this answer added to 2nπ is still a valid 
answer (where n is any integer), so that, for example,  φ =  2.8 – 2π  =  −3.48 rad  is also 
an acceptable result. 



58. Setting x = 0  in  ay = –ω² y (see the solution to part (b) of Sample Problem 16-2) 

where y = ym sin(k x − ω t + φ) gives ay = –ω² ym sin(−ω t + φ) as the function being 
plotted in the graph.  We note that it has a negative “slope” (referring to its t-derivative) 
at t = 0: 

d ay
d t  = 

d (–ω²ym sin(−ω t+ φ))
d t   = ym ω3 cos(− ω t + φ)   < 0  at t = 0.

This implies that  cosφ < 0 and consequently that φ is in either the second or third 
quadrant. The graph shows (at t = 0)  ay  = −100 m/s², and (at another t) amax = 400 m/s².  
Therefore,

ay = −amax sin(−ω t + φ)|t = 0 φ =  sin−1( 1
4 ) =  0.25 rad   or   2.9 rad 

(bear in mind that sinθ = sin(π − θ)), and we must choose  φ =  2.9 rad  because this is 
about 166° and is in the second quadrant.  Of course, this answer added to 2nπ is still a 
valid answer (where n is any integer), so that, for example,  φ =  2.9 – 2π  =  −3.4 rad  is 
also an acceptable result. 



59. (a) Recalling the discussion in §16-5, we see that the speed of the wave given by a 
function with argument x – 5.0t (where x is in centimeters and t is in seconds) must be 
5.0 cm/s .

(b) In part (c), we show several “snapshots” of the wave: the one on the left is as shown 
in Figure 16–45 (at t = 0), the middle one is at t = 1.0 s, and the rightmost one is at 

2.0 st = . It is clear that the wave is traveling to the right (the +x direction). 

(c) The third picture in the sequence below shows the pulse at 2.0 s. The horizontal scale 
(and, presumably, the vertical one also) is in centimeters. 

(d) The leading edge of the pulse reaches x = 10 cm at t = (10 – 4.0)/5 = 1.2 s. The 
particle (say, of the string that carries the pulse) at that location reaches a maximum 
displacement h = 2 cm at t = (10 – 3.0)/5 = 1.4 s. Finally, the trailing edge of the pulse 
departs from x = 10 cm at t = (10 – 1.0)/5 = 1.8 s. Thus, we find for h(t) at x = 10 cm 
(with the horizontal axis, t, in seconds): 



60. We compare the resultant wave given with the standard expression (Eq. 16–52) to 
obtain ( )1 1

220m 2 / ,2 cos 3.0mmmk y−= = π λ =φ , and 1
2 0.820rad=φ .

(a) Therefore, λ = 2π/k = 0.31 m. 

(b) The phase difference is φ = 1.64 rad. 

(c) And the amplitude is ym = 2.2 mm. 



61. (a) The phasor diagram is shown here: y1, y2, and y3 represent the original waves and 
ym represents the resultant wave. The horizontal component of the resultant is ymh = y1 – 
y3 = y1 – y1/3 = 2y1/3. The vertical component is ymv = y2 = y1/2. The amplitude of the 
resultant is 

2 2
2 2 1 1

1 1

2 5
0.83 .

3 2 6m mh mv

y y
y y y y y= + = + = =

(b) The phase constant for the resultant is 

1 1 11

1

2 3
tan tan tan

2 3 4

0.644 rad 37 .

mv

mh

y y

y y
φ − − −= = =

= = °

(c) The resultant wave is 

1

5
sin ( 0.644 rad).

6
y y kx tω= − +

The graph below shows the wave at time t = 0. As time goes on it moves to the right with 
speed v = ω/k.



62. We use Eq. 16-52 in interpreting the figure.   

(a) Since y’= 6.0 mm when φ = 0, then Eq. 16-52 can be used to determine ym = 3.0 mm.

(b) We note that y’= 0 when the shift distance is 10 cm; this occurs because cos(φ/2) = 0 
there φ = π rad  or ½ cycle.  Since a full cycle corresponds to a distance of one full 
wavelength, this ½ cycle shift corresponds to a distance of λ/2.  Therefore, λ = 20 cm  
k = 2π/λ = 31 m−1.

(c) Since f = 120 Hz, ω = 2πf  = 754 rad/s 27.5 10  rad/s.≈ ×

(d) The sign in front of ω is minus since the waves are traveling in the +x direction. 

The results may be summarized as y = (3.0 mm) sin[(31.4 m−1)x – (754 s−1)t]] (this 
applies to each wave when they are in phase).



63. We note that dy/dt = −ωcos(kx – ωt + φ), which we will refer to as u(x,t). so that the 
ratio of the function y(x,t) divided by u(x,t)  is – tan(kx − ωt + φ)/ω.  With the given 
information (for x = 0 and t = 0) then we can take the inverse tangent of this ratio to solve 
for the phase constant: 

φ = tan−1 -ω y(0,0)

 u(0,0)
 = tan−1 -(440)(0.0045)

-0.75  = 1.2 rad. 



64. The plot (at t = 0) is shown below.  The curve that peaks around x = −5 and then 
descends like a staircase until about x = +5 is the resultant wave.  This general shape is 
maintained as time increases, but moves towards the right at the wave speed (which in 
this example is set at v = 2 units).  The individual waves shown in this example are of the 
form:  

y1 = −12 sin(½ x − t), y2  = 6 sin(x − 2t)

y3  = −4 sin(3/2 x − 3t), y4  = 3 sin(2 x − 4t)  . 



65. (a)  From the frequency information, we find ω = 2πf = 10π rad/s.  A point on the rope 
undergoing simple harmonic motion (discussed in Chapter 15) has maximum speed as it 
passes through its "middle" point, which is equal to ymω.  Thus, 

5.0 m/s  = ymω ym  =  0.16 m   . 

(b) Because of the oscillation being in the fundamental mode (as illustrated in Fig. 16-
23(a) in the textbook), we have λ = 2L = 4.0 m.  Therefore, the speed of waves along the 
rope is v = fλ = 20 m/s.  Then, with µ = m/L = 0.60 kg/m, Eq. 16-26 leads to 

v  =
τ
µ τ  = µ v2  =  240 N 22.4 10 N≈ × .

(c) We note that for the fundamental, k = 2π/λ = π/L, and we observe that the anti-node 
having zero displacement at t = 0 suggests the use of sine instead of cosine for the simple 
harmonic motion factor.  Now, if the fundamental mode is the only one present (so the 
amplitude calculated in part (a) is indeed the amplitude of the fundamental wave pattern) 
then we have 

y =  (0.16 m) sin 
πx
2  sin (10πt) 1(0.16 m)sin[(1.57 m ) ]sin[(31.4 rad/s) ]x t−=



66. (a) The displacement of the string is assumed to have the form y(x, t) =
ym sin (kx – ωt). The velocity of a point on the string is  

u(x, t) = ∂y/∂t = –ω ym cos(kx – ωt)

and its maximum value is um = ωym. For this wave the frequency is f = 120 Hz and the 
angular frequency is ω = 2πf = 2π (120 Hz) = 754 rad/s. Since the bar moves through a 
distance of 1.00 cm, the amplitude is half of that, or ym = 5.00 × 10–3 m. The maximum 
speed is  

um = (754 rad/s) (5.00 × 10–3 m) = 3.77 m/s. 

(b) Consider the string at coordinate x and at time t and suppose it makes the angle θ with 
the x axis. The tension is along the string and makes the same angle with the x axis. Its 
transverse component is τtrans = τ sin θ. Now θ is given by tan θ = ∂y/∂x = kym cos(kx – ωt)
and its maximum value is given by tan θm = kym. We must calculate the angular wave 
number k. It is given by k = ω/v, where v is the wave speed. The wave speed is given by 

/ ,v τ µ=  where τ is the tension in the rope and µ is the linear mass density of the rope. 

Using the data given, 

90.0 N
27.4 m/s

0.120kg/m
= =v

and

1754 rad/s
27.5m .

27.4 m/s
k −= =

Thus

1 3tan (27.5m )(5.00 10 m) 0.138− −= × =mθ

and θ = 7.83°. The maximum value of the transverse component of the tension in the 
string is τtrans = (90.0 N) sin 7.83° = 12.3 N. We note that sin θ is nearly the same as tan θ
because θ is small. We can approximate the maximum value of the transverse component 
of the tension by τkym.

(c) We consider the string at x. The transverse component of the tension pulling on it due 
to the string to the left is –τ(∂y/∂x) = –τkym cos(kx – ωt) and it reaches its maximum value 
when cos(kx – ωt) = –1. The wave speed is u = ∂y/∂t = –ωym cos (kx – ωt) and it also 
reaches its maximum value when cos(kx – ωt) = –1. The two quantities reach their 



maximum values at the same value of the phase. When cos(kx – ωt) = –1 the value of 
sin(kx – ωt) is zero and the displacement of the string is y = 0. 

(d) When the string at any point moves through a small displacement ∆y, the tension does 
work ∆W = τtrans ∆y. The rate at which it does work is 

trans trans .
W y

P u
t t

τ τ∆ ∆= = =
∆ ∆

P has its maximum value when the transverse component τtrans of the tension and the 
string speed u have their maximum values. Hence the maximum power is (12.3 N)(3.77 
m/s) = 46.4 W. 

(e) As shown above y = 0 when the transverse component of the tension and the string 
speed have their maximum values. 

(f) The power transferred is zero when the transverse component of the tension and the 
string speed are zero. 

(g) P = 0 when cos(kx – ωt) = 0 and sin(kx – ωt) = ±1 at that time. The string 
displacement is y = ±ym = ±0.50 cm. 



67. (a) We take the form of the displacement to be y (x, t) = ym sin(kx – ωt). The speed of 
a point on the cord is u (x, t) = ∂y/∂t = –ωym cos(kx – ωt) and its maximum value is um = 
ωym. The wave speed, on the other hand, is given by v = λ/T = ω/k. The ratio is 

2
.

/
m m m

m

u y y
ky

v k

π= = =
λ

ω
ω

(b) The ratio of the speeds depends only on the ratio of the amplitude to the wavelength. 
Different waves on different cords have the same ratio of speeds if they have the same 
amplitude and wavelength, regardless of the wave speeds, linear densities of the cords, 
and the tensions in the cords. 



68. Let the cross-sectional area of the wire be A and the density of steel be ρ. The tensile 
stress is given by τ/A where τ is the tension in the wire. Also, µ = ρA. Thus, 

8 2
2max max

max 3

7.00 10 N m
     3.00 10 m s

7800 kg m

A
v

τ τ
µ ρ

×= = = = ×

which is indeed independent of the diameter of the wire. 



69. (a) The amplitude is ym = 1.00 cm = 0.0100 m, as given in the problem. 

(b) Since the frequency is f = 550 Hz, the angular frequency is ω = 2πf = 3.46×103 rad/s. 

(c) The angular wave number is 3/ (3.46 10  rad/s) /(330 m/s) 10.5 rad/mk vω= = × = .

(d) Since the wave is traveling in the –x direction, the sign in front of ω is plus and the 
argument of the trig function is kx + ωt.

The results may be summarized as 

( ) ( ) ( ) ( )m m

3

, sin sin 2 0.010m sin 2 550Hz
330m s

            (0.010m) sin[(10.5 rad/s) (3.46 10  rad/s) ].

x x
y x t y kx t y f t t

v

x t

ω= + = π + = π +

= + ×



70. We write the expression for the displacement in the form y (x, t) = ym sin(kx – ωt).

(a) The amplitude is ym = 2.0 cm = 0.020 m, as given in the problem. 

(b) The angular wave number k is k = 2π/λ = 2π/(0.10 m) = 63 m–1

(c) The angular frequency is ω = 2πf = 2π(400 Hz) = 2510 rad/s = 2.5×103 rad/s. 

(d) A minus sign is used before the ωt term in the argument of the sine function because 
the wave is traveling in the positive x direction.

Using the results above, the wave may be written as 

( ) ( ) ( ) ( )( )1 1, 2.00cm sin 62.8m 2510s .y x t x t− −= −

(e) The (transverse) speed of a point on the cord is given by taking the derivative of y:

( ) ( ), cosm

y
u x t y kx t

t

∂= = − −
∂

ω ω

which leads to a maximum speed of um = ωym = (2510 rad/s)(0.020 m) = 50 m/s. 

(f) The speed of the wave is 

2510 rad s
40 m s.

62.8rad/m
v

T k

ωλ= = = =



71. We orient one phasor along the x axis with length 3.0 mm and angle 0 and the other at 
70° (in the first quadrant) with length 5.0 mm. Adding the components, we obtain 

( )(3.0  mm) (5.0  mm) cos 70 4.71mm along axis

(5.0 mm)sin (70 ) 4.70 mm  along axis.

x

y

+ ° =
° =

(a) Thus, amplitude of the resultant wave is 2 2(4.71 mm) (4.70 mm) 6.7 mm.+ =

(b) And the angle (phase constant) is tan–1 (4.70/4.71) = 45°. 



72. (a) With length in centimeters and time in seconds, we have 

60 cos 4 .
8

dy x
u t

dt

π= = − π − π

Thus, when x = 6 and 1
4t = , we obtain 

60
60 cos 133

4 2
u

−π − π= − π = = −

so that the speed there is 1.33 m/s. 

(b) The numerical coefficient of the cosine in the expression for u is –60π. Thus, the 
maximum speed is 1.88 m/s. 

(c) Taking another derivative, 

2240 sin 4
8

du x
a t

dt

π= = − π − π

so that when x = 6 and t = 1
4  we obtain a = –240π2 sin(−π/4) which yields a = 16.7 m/s2.

(d) The numerical coefficient of the sine in the expression for a is –240π2. Thus, the 
maximum acceleration is 23.7 m/s2.



73. (a) Using v = fλ, we obtain 

240m/s
75 Hz.

3.2 m
f = =

(b) Since frequency is the reciprocal of the period, we find 

1 1
0.0133s 13ms.

75Hz
T

f
= = = ≈



74. By Eq. 16–69, the higher frequencies are integer multiples of the lowest (the 
fundamental).

(a) The frequency of the second harmonic is f2 = 2(440) = 880 Hz. 

(b) The frequency of the third harmonic is and f3 = 3(440) = 1320 Hz.  



75. We make use of Eq. 16–65 with L = 120 cm.

(a) The longest wavelength for waves traveling on the string  if standing waves are to be 
set up is 1 2 /1 240 cm.Lλ = =

(b) The second longest wavelength for waves traveling on the string  if standing waves 
are to be set up is 2 2 / 2 120 cm.Lλ = =

(c) The third longest wavelength for waves traveling on the string  if standing waves are 
to be set up is 3 2 / 3 80.0 cm.Lλ = =

The three standing waves are shown below: 



76. (a) At x = 2.3 m and t = 0.16 s the displacement is 

( ) ( ) ( )[ ]( , ) 0.15sin 0.79 2.3 13 0.16 m = 0.039 m.y x t = − −

(b) We choose ym = 0.15 m, so that there would be nodes (where the wave amplitude is 
zero) in the string as a result. 

(c) The second wave must be traveling with the same speed and frequency. This implies 
10.79 mk −= ,

(d) and 13 rad/sω = .

(e) The wave must be traveling in –x direction, implying a plus sign in front of ω.

Thus, its general form is y´ (x,t) = (0.15 m)sin(0.79x + 13t).

(f) The displacement of the standing wave at x = 2.3 m and t = 0.16 s is 

( , ) 0.039 m (0.15m)sin[(0.79)(2.3) 13(0.16)] 0.14 m.y x t = − + + = −



77. (a) The wave speed is 

3

120 N
144 m/s.

8.70 10 kg /1.50m−= = =
×

v
τ
µ

(b) For the one-loop standing wave we have λ1 = 2L = 2(1.50 m) = 3.00 m.

(c) For the two-loop standing wave λ2 = L = 1.50 m. 

(d) The frequency for the one-loop wave is f1 = v/λ1 = (144 m/s)/(3.00 m) = 48.0 Hz. 

(e) The frequency for the two-loop wave is f2 = v/λ2 = (144 m/s)/(1.50 m) = 96.0 Hz. 



78. We use 2 2 2 21
2 .mP y vf f= ∝ ∝µνω τ

(a) If the tension is quadrupled, then 

2 1
2 1 1 1

1 1

4
2 .P P P P= = =τ τ

τ τ

(b) If the frequency is halved, then 

2 2

2 1
2 1 1 1

1 1

/ 2 1
.

4
f f

P P P P
f f

= = =



79. We use Eq. 16-2, Eq. 16-5, Eq. 16-9, Eq. 16-13, and take the derivative to obtain the 
transverse speed u.

(a) The amplitude is ym = 2.0 mm. 

(b) Since ω = 600 rad/s, the frequency is found to be f = 600/2π ≈ 95 Hz. 

(c) Since k = 20 rad/m, the velocity of the wave is v = ω/k = 600/20 = 30 m/s in the +x
direction.

(d) The wavelength is λ = 2π/k ≈ 0.31 m, or 31 cm. 

(e) We obtain 

cos( )m m m

dy
u y kx t u y

dt
ω ω ω= = − − =

so that the maximum transverse speed is um = (600)(2.0) = 1200 mm/s, or 1.2 m/s. 



80. (a) The frequency is f = 1/T = 1/4 Hz, so v = fλ = 5.0 cm/s. 

(b) We refer to the graph to see that the maximum transverse speed (which we will refer 
to as um) is 5.0 cm/s. Recalling from Ch. 11 the simple harmonic motion relation um = 
ymω = ym2πf, we have 

1
5.0 2      3.2 cm.

4m my y= π =

(c) As already noted, f = 0.25 Hz. 

(d) Since k = 2π/λ, we have k = 10π rad/m. There must be a sign difference between the t
and x terms in the argument in order for the wave to travel to the right. The figure shows 
that at x = 0, the transverse velocity function is 0.050 2sin tπ . Therefore, the function u(x,t)

is

( , ) 0.050sin 10
2

u x t t x
π= − π

with lengths in meters and time in seconds. Integrating this with respect to time yields 

( )2 0.050
( , ) cos 10

2
y x t t x C

π= − − π +
π

where C is an integration constant (which we will assume to be zero). The sketch of this 
function at t = 2.0 s for 0 ≤ x ≤ 0.20 m is shown below. 



81. Using Eq. 16-50, we have 

' 0.60cos sin 5 200
6 6

y x t
π π= π − π +

with length in meters and time in seconds (see Eq. 16-55 for comparison). 

(a) The amplitude is seen to be 

0.60cos 0.3 3 0.52 m.
6
π = =

(b) Since k = 5π and ω  = 200π, then (using Eq. 16-12) 40m/s.v
k

= =ω

(c) k = 2π/λ leads to λ = 0.40 m. 



82. (a) Since the string has four loops its length must be two wavelengths. That is, λ = L/2,
where λ is the wavelength and L is the length of the string. The wavelength is related to 
the frequency f and wave speed v by λ = v/f, so L/2 = v/f and

L = 2v/f = 2(400 m/s)/(600 Hz) = 1.3 m. 

(b) We write the expression for the string displacement in the form y = ym sin(kx) cos(ωt),
where ym is the maximum displacement, k is the angular wave number, and ω is the 
angular frequency. The angular wave number is k = 2π/λ = 2πf/v = 2π(600 Hz)/(400 m/s) 
= 9.4m–1 and the angular frequency is ω = 2πf = 2π(600 Hz) = 3800 rad/s. ym is 2.0 mm. 
The displacement is given by 

1 1( , ) (2.0 mm)sin[(9.4m ) ]cos[(3800s ) ].y x t x t− −=



83. To oscillate in four loops means n = 4 in Eq. 16-65 (treating both ends of the string as 
effectively “fixed”). Thus, λ = 2(0.90 m)/4 = 0.45 m. Therefore, the speed of the wave is 
v = fλ = 27 m/s. The mass-per-unit-length is µ = m/L = (0.044 kg)/(0.90 m) = 0.049 kg/m. 
Thus, using Eq. 16-26, we obtain the tension:  

τ = v2 µ = (27)2(0.049) = 36 N. 



84. Repeating the steps of Eq. 16-47 → Eq. 16-53, but applying 

cos cos 2cos cos
2 2

α β α βα β + −+ =

(see Appendix E) instead of Eq. 16-50, we obtain [0.10cos ]cos4y x t′ = π π , with SI units 
understood.

(a) For non-negative x, the smallest value to produce cos πx = 0 is x = 1/2, so the answer 
is x = 0.50 m. 

(b) Taking the derivative, 

[ ]( )0.10cos 4 sin 4
dy

u x t
dt

′′ = = π − π π

We observe that the last factor is zero when 31 1
4 2 40, , , ,t =  Thus, the value of the first 

time the particle at x=0 has zero velocity is t = 0. 

(c) Using the result obtained in (b), the second time where the velocity at x =0 vanishes 
would be t = 0.25 s, 

(d) and the third time is t = 0.50 s. 



85. (a) This distance is determined by the longitudinal speed: 

( ) ( )6 22000m/s 40 10 s 8.0 10 m.d tν − −= = × = ×

(b) Assuming the acceleration is constant (justified by the near-straightness of the curve a
= 300/40 × 10–6) we find the stopping distance d:

( ) ( )
( )

2 6

2 2
300 40 10

2
2 300o ad dν ν

−×
= + =

which gives d = 6.0 × 10–3 m. This and the radius r form the legs of a right triangle 
(where r is opposite from θ = 60°). Therefore, 

2tan 60 tan 60 1.0 10 m.
r

r d
d

−° = = ° = ×



86. (a) Let the displacements of the wave at (y,t) be z(y,t). Then z(y,t) = zm sin(ky – ωt),
where zm = 3.0 mm, k = 60 cm–1, and ω = 2π/T = 2π/0.20 s = 10π s–1. Thus 

( ) ( )1 1( , ) (3.0mm)sin 60cm 10 s .z y t y t− −= − π

(b) The maximum transverse speed is (2 / 0.20s)(3.0mm) =94 mm/s.m mu z= = πω



87. (a) The wave speed is 

( )
.

/( )
∆ ∆ + ∆= = =
+ ∆

F k k
v

m mµ

(b) The time required is 

2 ( ) 2 ( )
2 1 .

( ) /

m
t

v kk m

π + ∆ π + ∆= = = π +
∆∆ + ∆

Thus if / 1∆ , then / 1/ ;t ∝ ∆ ∝ ∆  and if / 1∆ , then 

2 / const.t m kπ =



88. (a) The wave number for each wave is k = 25.1/m, which means λ = 2π/k = 250.3 mm. 
The angular frequency is ω = 440/s; therefore, the period is T = 2π/ω = 14.3 ms. We plot 
the superposition of the two waves y = y1 + y2 over the time interval 0 ≤ t ≤ 15 ms. The 
first two graphs below show the oscillatory behavior at x = 0 (the graph on the left) and at 
x = λ/8 ≈ 31 mm. The time unit is understood to be the millisecond and vertical axis (y) is 
in millimeters. 

The following three graphs show the oscillation at x = λ/4 =62.6 mm ≈ 63 mm (graph on 
the left), at x = 3λ/8 ≈ 94 mm (middle graph), and at x = λ/2 ≈ 125 mm. 

(b) We can think of wave y1 as being made of two smaller waves going in the same 
direction, a wave y1a of amplitude 1.50 mm (the same as y2) and a wave y1b of amplitude 
1.00 mm. It is made clear in §16-12 that two equal-magnitude oppositely-moving waves 
form a standing wave pattern. Thus, waves y1a and y2 form a standing wave, which leaves 
y1b as the remaining traveling wave. Since the argument of y1b involves the subtraction 
kx – ωt, then y1b travels in the +x direction. 

(c) If y2 (which travels in the –x direction, which for simplicity will be called “leftward”) 
had the larger amplitude, then the system would consist of a standing wave plus a 
leftward moving wave. A simple way to obtain such a situation would be to interchange 
the amplitudes of the given waves. 

(d) Examining carefully the vertical axes, the graphs above certainly suggest that the 
largest amplitude of oscillation is ymax = 4.0 mm and occurs at x = λ/4 = 62.6 mm.



(e) The smallest amplitude of oscillation is ymin = 1.0 mm and occurs at x = 0 and at x = 
λ/2 = 125 mm. 

(f) The largest amplitude can be related to the amplitudes of y1 and y2 in a simple way: 
ymax = y1m + y2m, where y1m = 2.5 mm and y2m = 1.5 mm are the amplitudes of the original 
traveling waves. 

(g) The smallest amplitudes is ymin = y1m – y2m, where y1m = 2.5 mm and y2m = 1.5 mm are 
the amplitudes of the original traveling waves. 



89. (a) For visible light 

8
14

min 9
max

3.0 10 m s
4.3 10 Hz

700 10 m
c

f −

×= = = ×
λ ×

and

8
14

max 9
min

3.0 10 m s
7.5 10 Hz.

400 10 m
c

f −

×= = = ×
λ ×

(b) For radio waves 

8

min 6
max

3.0 10 m s
1.0m

300 10 Hz
c ×λ = = =

λ ×

and

8
2

max 6
min

3.0 10 m s
2.0 10 m.

1.5 10 Hz
c ×λ = = = ×

λ ×

(c) For X rays 

8
16

min 9
max

3.0 10 m s
6.0 10 Hz

5.0 10 m
c

f −

×= = = ×
λ ×

and

8
19

max 11
min

3.0 10 m s
3.0 10 Hz.

1.0 10 m
c

f −

×= = = ×
λ ×



90. It is certainly possible to simplify (in the trigonometric sense) the expressions at x =
3 m (since k = 1/2 in inverse-meters), but there is no particular need to do so, if the goal is 
to plot the time-dependence of the wave superposition at this value of x. Still, it is worth 
mentioning the end result of such simplification if it provides some insight into the nature 
of the graph (shown below): y1 + y2 = (0.10 m) sin(40πt) with t in seconds. 



91. (a) Centimeters are to be understood as the length unit and seconds as the time unit. 
Making sure our (graphing) calculator is in radians mode, we find 

(b) The previous graph is at t = 0, and this next one is at t = 0.050 s. 

And the final one, shown below, is at t = 0.010 s. 

(c) The wave can be written as ( , ) sin( )my x t y kx tω= + , where /v kω=  is the speed of 

propagation. From the problem statement, we see that 2 / 0.40 5  rad/sω π π= = and
2 / 80 / 40 rad/cmk π π= = . This yields 22.0 10  cm/s 2.0 m/sv = × =



(d) These graphs (as well as the discussion in the textbook) make it clear that the wave is 
traveling in the –x direction. 



92. We consider an infinitesimal segment of a string oscillating in a standing wave 
pattern. Its length is dx and its mass is dm = µdx, where µ is its linear mass density. If it is 
moving with speed u its kinetic energy is 2 21 1

2 2d d dK u m u x= = µ . If the segment is 

located at x its displacement at time t is y = 2ym sin(kx) cos(ωt) and its velocity is u = 
∂y/∂t = –2ωym sin(kx) sin(ωt), so its kinetic energy is 

( ) ( ) ( ) ( )2 2 2 2 2 2 2 21
d 4 sin ( ) sin 2 sin sin .

2
= =m mK y kx t y kx tµω ω µω ω

Here ym is the amplitude of each of the traveling waves that combine to form the standing 
wave. The infinitesimal segment has maximum kinetic energy when sin2(ωt) = 1 and the 
maximum kinetic energy is given by the differential amount 

2 2 22 sin ( ).=m mdK y kxµω

Note that every portion of the string has its maximum kinetic energy at the same time 
although the values of these maxima are different for different parts of the string. If the 
string is oscillating with n loops, the length of string in any one loop is L/n and the kinetic 
energy of the loop is given by the integral 

/2 2 2

0
2 sin ( ) .

L n

m mK y kx dxµω=

We use the trigonometric identity 2 1
2sin ( ) [1 2cos(2 )]kx kx= +  to obtain 

/2 2 2 2

0

1 2
[1 2cos(2 )]d sin .

L n

m m m

L kL
K y kx x y

n k n
= + = +µω µω

For a standing wave of n loops the wavelength is λ = 2L/n and the angular wave number 
is k = 2π/λ = nπ/L, so 2kL/n = 2π and sin(2kL/n) = 0, no matter what the value of n. Thus, 

2 2

.m
m

y L
K

n
= µω

To obtain the expression given in the problem statement, we first make the substitutions 
ω = 2πf and L/n = λ/2, where f is the frequency and λ is the wavelength. This produces 

2 2 22m mK y f= π λµ . We now substitute the wave speed v for fλ and obtain 

mK = 2 22 my fvµπ .



93. (a) We note that each pulse travels 1 cm during each ∆t = 5 ms interval. Thus, in these 
first two pictures, their peaks are closer to each other by 2 cm, successively. And the next 
pictures show the (momentary) complete cancellation of the visible pattern at t = 15 ms, 
and the pulses moving away from each other after that. 

(b) The particles of the string are moving rapidly as they pass (transversely) through their 
equilibrium positions; the energy at t = 15 ms is purely kinetic. 



94. We refer to the points where the rope is attached as A and B, respectively. When A
and B are not displaced horizontal, the rope is in its initial state (neither stretched (under 
tension) nor slack). If they are displaced away from each other, the rope is clearly 
stretched. When A and B are displaced in the same direction, by amounts (in absolute 
value) |ξA| and |ξB|, then if |ξA| < |ξB| then the rope is stretched, and if |ξA| > |ξB| the rope is 
slack. We must be careful about the case where one is displaced but the other is not, as 
will be seen below. 

(a) The standing wave solution for the shorter cable, appropriate for the initial condition ξ
= 0 at t = 0, and the boundary conditions ξ = 0 at x = 0 and x = L (the x axis runs 
vertically here), is ξA = ξm sin(kAx) sin(ωAt). The angular frequency is ωA = 2π/TA, and the 
wave number is kA = 2π/λA where λA = 2L (it begins oscillating in its fundamental mode) 
where the point of attachment is x = L/2. The displacement of what we are calling point A
at time t = ηTA (where η is a pure number) is 

( )2 2
sin sin sin 2 .

2 2A m A m
A

L
T

L T

π πξ = ξ = ξ πη η

The fundamental mode for the longer cable has wavelength λB = 2λA = 2(2L) = 4L, which 
implies (by v = fλ and the fact that both cables support the same wave speed v) that 

1
2B Af f=  or 1

2B A=ω ω . Thus, the displacement for point B is 

( )2 1 2
sin sin sin .

4 2 2 2
m

B m A
A

L
T

L T

π π ξξ = ξ = πη η

Running through the possibilities ( )3 5 3 71 1
4 2 4 4 2 4, , ,1, , , ,and 2=η  we find the rope is under 

tension in the following cases. The first case is one we must be very careful about in our 
reasoning, since A is not displaced but B is displaced in the positive direction; we 
interpret that as the direction away from A (rightwards in the figure) — thus making the 
rope stretch. 

1
0 0

2 2
3

0 0
4 2
7

0 0
4 2

m
A B

m
A m B

m
A m B

η

η

η

ξ= ξ = ξ = >

ξ= ξ = −ξ < ξ = >

ξ= ξ = −ξ < ξ = − <

where in the last case they are both displaced leftward but A more so than B so that the 
rope is indeed stretched. 



(b) The values of η (where we have defined η = t/TA) which reproduce the initial state are 

1 0 0 and

2 0 0.
A B

B B

= ξ = ξ =
= ξ = ξ =

η
η

(c) The values of η for which the rope is slack are given below. In the first case, both 
displacements are to the right, but point A is farther to the right than B. In the second case, 
they are displaced towards each other. 

1
0 0

4 2
5

0 0
4 2
3

0 0
2 2

m
A m B

m
A m B

m
A B

xη

η

η

ξ= ξ = > ξ = >

ξ= ξ = ξ > ξ = − <

ξ= ξ = ξ = − <

where in the third case B is displaced leftward toward the undisplaced point A.

(d) The first design works effectively to damp fundamental modes of vibration in the two 
cables (especially in the shorter one which would have an anti-node at that point), 
whereas the second one only damps the fundamental mode in the longer cable. 
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