
1. We take p3 to be 80 kPa for both thermometers. According to Fig. 18-6, the nitrogen 
thermometer gives 373.35 K for the boiling point of water. Use Eq. 18-5 to compute the 
pressure:

N 3

373.35K
(80kPa) = 109.343kPa.

273.16 K 273.16 K

T
p p= =

The hydrogen thermometer gives 373.16 K for the boiling point of water and 

H

373.16 K
(80kPa) 109.287 kPa.

273.16 K
p = =

(a) The difference is pN−pH=0.056 kPa 0.06 kPa≈ .

(b) The pressure in the nitrogen thermometer is higher than the pressure in the hydrogen 
thermometer.  



2. From Eq. 18-6, we see that the limiting value of the pressure ratio is the same as the 
absolute temperature ratio: (373.15 K)/(273.16 K) = 1.366. 



3. Let TL be the temperature and pL be the pressure in the left-hand thermometer. 
Similarly, let TR be the temperature and pR be the pressure in the right-hand thermometer. 
According to the problem statement, the pressure is the same in the two thermometers 
when they are both at the triple point of water. We take this pressure to be p3. Writing Eq. 
18-5 for each thermometer, 

3 3

(273.16 K) and (273.16 K) ,L R
L R

p p
T T

p p
= =

we subtract the second equation from the first to obtain 

3

(273.16 K) .L R
L R

p p
T T

p

−− =

First, we take TL = 373.125 K (the boiling point of water) and TR = 273.16 K (the triple 
point of water). Then, pL – pR = 120 torr. We solve 

3

120 torr
373.125K 273.16 K (273.16 K) 

p
− =

for p3. The result is p3 = 328 torr. Now, we let TL = 273.16 K (the triple point of water) 
and TR be the unknown temperature. The pressure difference is pL – pR = 90.0 torr. 
Solving 

90.0 torr
273.16 K (273.16 K) 

328 torrRT− =

for the unknown temperature, we obtain TR = 348 K. 



4. (a) Let the reading on the Celsius scale be x and the reading on the Fahrenheit scale be 
y. Then 9

5 32y x= + . If we require y = 2x, then we have 

9
2 32        (5) (32) 160 C

5
x x x= + = = °

which yields y = 2x = 320°F. 

(b) In this case, we require 1
2y x=  and find 

1 9 (10)(32)
32        24.6 C

2 5 13
x x x= + = − ≈ − °

which yields y = x/2 = –12.3°F. 



5. (a) Let the reading on the Celsius scale be x and the reading on the Fahrenheit scale be 
y. Then 9

5 32y x= + . For x = –71°C, this gives y = –96°F. 

(b) The relationship between y and x may be inverted to yield 5
9 ( 32)x y= − . Thus, for y

= 134 we find x ≈ 56.7 on the Celsius scale. 



6. We assume scales X and Y are linearly related in the sense that reading x is related to 
reading y by a linear relationship y = mx + b. We determine the constants m and b by 
solving the simultaneous equations: 

( )
( )

70.00 125.0

30.00 375.0

m b

m b

− = − +

− = +

which yield the solutions m = 40.00/500.0 = 8.000 × 10–2 and b = –60.00. With these 
values, we find x for y = 50.00: 

50.00 60.00
1375 .

0.08000

y b
x X

m

− += = = °



7. We assume scale X is a linear scale in the sense that if its reading is x then it is related 
to a reading y on the Kelvin scale by a linear relationship y = mx + b. We determine the 
constants m and b by solving the simultaneous equations: 

373.15 ( 53.5)

273.15 ( 170)

m b

m b

= − +
= − +

which yield the solutions m = 100/(170 – 53.5) = 0.858 and b = 419. With these values, 
we find x for y = 340: 

340 419
92.1 .

0.858

y b
x X

m

− −= = = − °



8. (a) The coefficient of linear expansion α for the alloy is 

510.015cm 10.000cm
/ 1.88 10 / C .

(10.01cm)(100 C 20.000 C)
L L T −−= ∆ ∆ = = × °

° − °
α

Thus, from 100°C to 0°C we have 

5 2(10.015cm)(1.88 10 / C )(0 C 100 C) = 1.88  10 cm.L L T − −∆ = ∆ = × ° ° − ° − ×α

The length at 0°C is therefore L′ = L + ∆L = (10.015 cm – 0.0188 cm) = 9.996 cm. 

(b) Let the temperature be Tx. Then from 20°C to Tx we have 

510.009cm 10.000cm = (1.88 10 / C )(10.000cm) ,L L T T−∆ = − ∆ = × ° ∆α

giving ∆T = 48 °C. Thus, Tx = (20°C + 48 °C )= 68°C. 



9. The new diameter is 

6
0 1(1 ) (2.725cm)[1+ (23 10 / C )(100.0 C 0.000 C)] 2.731cm.AD D Tα −= + ∆ = × ° ° − ° =



10. The change in length for the aluminum pole is 

6
0 1 (33m)(23 10 / C )(15 C) = 0.011m.A Tα −∆ = ∆ = × ° °



11. Since a volume is the product of three lengths, the change in volume due to a 
temperature change ∆T is given by ∆V = 3αV ∆T, where V is the original volume and α is 
the coefficient of linear expansion. See Eq. 18-11. Since V = (4π/3)R3, where R is the 
original radius of the sphere, then 

( )( ) ( ) ( )33 6 34
3   = 23 10 / C 4 10cm 100 C 29cm .

3
V R Tα −π∆ = ∆ × ° π ° =

The value for the coefficient of linear expansion is found in Table 18-2. 



12. The volume at 30°C is given by 

3 6

3

' (1 ) (1 3 ) (50.00cm )[1 3(29.00 10 / C ) (30.00 C 60.00 C)]

49.87cm

V V T V Tβ α −= + ∆ = + ∆ = + × ° ° − °

=

where we have used β = 3α.



13. The increase in the surface area of the brass cube (which has six faces), which had 
side length is L at 20°, is 

2 2 2 6 2
b

2

6( ) 6 12 12 12 (19 10 / C ) (30cm) (75 C 20 C)

11cm .

A L L L L L L Tα −∆ = + ∆ − ≈ ∆ = ∆ = × ° ° − °

=



14. The change in length for the section of the steel ruler between its 20.05 cm mark and 
20.11 cm mark is 

6(20.11cm)(11 10 / C )(270 C 20 C) = 0.055cm.s s sL L T −∆ = ∆ = × ° ° − °α

Thus, the actual change in length for the rod is ∆L = (20.11 cm – 20.05 cm) + 0.055 cm = 
0.115 cm. The coefficient of thermal expansion for the material of which the rod is made 
is then 

60.115 cm
23 10 / C .

270 C  20 C

L

T
α −∆= = = × °

∆ ° − °



15. If Vc is the original volume of the cup, αa is the coefficient of linear expansion of 
aluminum, and ∆T is the temperature increase, then the change in the volume of the cup 
is ∆Vc = 3αa Vc ∆T. See Eq. 18-11. If β is the coefficient of volume expansion for 
glycerin then the change in the volume of glycerin is ∆Vg = βVc ∆T. Note that the original 
volume of glycerin is the same as the original volume of the cup. The volume of glycerin 
that spills is 

( ) ( ) ( ) ( )( )4 6 3

3

3 5.1 10 / C 3 23 10 / C 100cm 6.0 C

                0.26cm .

g c a cV V V Tβ α − −∆ − ∆ = − ∆ = × ° − × ° °

=



16. (a) We use ρ = m/V and  

2( / ) ( / ) / ( / ) 3 ( / )m V m 1 V m V V V V L L .ρ ρ ρ∆ = ∆ = ∆ − ∆ = − ∆ = − ∆

The percent change in density is 

3 3(0.23%) 0.69%.
L

L

ρ
ρ

∆ ∆= − = − = −

(b) Since α = ∆L/(L∆T ) = (0.23 × 10–2) / (100°C – 0.0°C) = 23 × 10–6 /C°, the metal is 
aluminum (using Table 18-2). 



17. After the change in temperature the diameter of the steel rod is Ds = Ds0 + αsDs0 ∆T
and the diameter of the brass ring is Db = Db0 + αbDb0 ∆T, where Ds0 and Db0 are the 
original diameters, αs and αb are the coefficients of linear expansion, and ∆T is the 
change in temperature. The rod just fits through the ring if Ds = Db. This means Ds0 + 
αsDs0 ∆T = Db0 + αbDb0 ∆T. Therefore, 

( )( ) ( )( )
0 0

6 6
0 0

3.000cm 2.992cm

19.00  10 / C 2.992cm 11.00 10 / C 3.000cm

335.0 C.

s b

b b s s

D D
T

D Dα α − −

− −∆ = =
− × ° − × °

= °

The temperature is T = (25.00°C + 335.0 °C) = 360.0°C. 



18. (a) Since A = πD2/4, we have the differential dA = 2(πD/4)dD. Dividing the latter 
relation by the former, we obtain dA/A = 2 dD/D. In terms of ∆'s, this reads 

2       for   1.
A D D

A D D

∆ ∆ ∆=

We can think of the factor of 2 as being due to the fact that area is a two-dimensional 
quantity. Therefore, the area increases by 2(0.18%) = 0.36%. 

(b) Assuming that all dimensions are allowed to freely expand, then the thickness 
increases by 0.18%. 

(c) The volume (a three-dimensional quantity) increases by 3(0.18%) = 0.54%. 

(d) The mass does not change. 

(e) The coefficient of linear expansion is 

2
50.18 10

1.8 10 C .
100 C

D
/

D T
α

−
−∆ ×= = = × °

∆ °



19. The initial volume V0 of the liquid is h0A0 where A0 is the initial cross-section area 
and h0 = 0.64 m. Its final volume is V = hA where h – h0 is what we wish to compute. 
Now, the area expands according to how the glass expands, which we analyze as follows: 
Using 2A rπ= , we obtain 

( ) 22 2 2 ( ) 2dA r dr r r dT r dT AdTπ π α α π α= = = = .

Therefore, the height is 

( )
( )

0 liquid

0 glass

1
.

1 2

V TV
h

A A T

β
α

+ ∆
= =

+ ∆

Thus, with V0/A0 = h0 we obtain 

( ) ( ) ( )
( )( )

5
liquid 4

0 0 5
glass

1 4 10 101
1 0.64 1.3 10 m.

1 2 1 2 1 10 10

T
h h h

T

β
α

−
−

−

+ × °+ ∆
− = − = = ×

+ ∆ + × °



20. We divide Eq. 18-9 by the time increment ∆t and equate it to the (constant) speed v = 
100 × 10–9 m/s. 

0

T
v L

t
α ∆=

∆

where L0 = 0.0200 m and α = 23 × 10–6/C°. Thus, we obtain 

C K
0.217 0.217 .

s s

T

t

∆ °= =
∆



21. Consider half the bar. Its original length is 0 0 / 2L=  and its length after the 

temperature increase is 0 0 T= + ∆α . The old position of the half-bar, its new position, 

and the distance x that one end is displaced form a right triangle, with a hypotenuse of 
length , one side of length 0 , and the other side of length x. The Pythagorean theorem 

yields 2 2 2 2 2 2
0 0 0(1 ) .x Tα= − = + ∆ −  Since the change in length is small we may 

approximate (1 + α ∆T )2 by 1 + 2α ∆T, where the small term (α ∆T )2 was neglected. 
Then,

2 2 2 2 2
0 0 0 02 2x T T= + ∆ − = ∆α α

and

( )( )6 2
0

3.77 m
2 2 25 10 /C 32 C 7.5 10 m.

2
x Tα − −= ∆ = × ° ° = ×



22. The amount of water m which is frozen is 

50.2 kJ
0.151kg 151g.

333kJ/kgF

Q
m

L
= = = =

Therefore the amount of water which remains unfrozen is 260 g – 151 g = 109 g. 



23. (a) The specific heat is given by c = Q/m(Tf – Ti), where Q is the heat added, m is the 
mass of the sample, Ti is the initial temperature, and Tf is the final temperature. Thus, 
recalling that a change in Celsius degrees is equal to the corresponding change on the 
Kelvin scale, 

( ) ( )3

314J
523J/kg K.

30.0 10 kg 45.0 C 25.0 C
c

−
= = ⋅

× ° − °

(b) The molar specific heat is given by 

( ) ( ) ( )
314J

26.2J/mol K.
0.600mol 45.0 C 25.0 Cm

f i

Q
c

N T T
= = = ⋅

° − °−

(c) If N is the number of moles of the substance and M is the mass per mole, then m = 
NM, so 

3

3

30.0 10 kg
0.600mol.

50 10 kg/mol

m
N

M

−

−

×= = =
×



24. We use Q = cm∆T. The textbook notes that a nutritionist's “Calorie” is equivalent to 
1000 cal. The mass m of the water that must be consumed is 

( ) ( )

3
43500 10 cal

94.6 10 g,
1g/cal C 37.0 C 0.0 C 

Q
m

c T

×= = = ×
∆ ⋅ ° ° − °

which is equivalent to 9.46 × 104 g/(1000 g/liter) = 94.6 liters of water. This is certainly 
too much to drink in a single day! 



25. The melting point of silver is 1235 K, so the temperature of the silver must first be 
raised from 15.0° C (= 288 K) to 1235 K. This requires heat 

4( ) (236J/kg K)(0.130kg)(1235 C 288 C) 2.91 10 J.f iQ cm T T= − = ⋅ ° − ° = ×

Now the silver at its melting point must be melted. If LF is the heat of fusion for silver 
this requires 

( ) ( )3 40.130kg 105 10 J/kg 1.36 10 J.FQ mL= = × = ×

The total heat required is ( 2.91 × 104 J + 1.36 × 104 J ) = 4.27 × 104 J. 



26. The work the man has to do to climb to the top of Mt. Everest is given by  

W = mgy = (73.0 kg)(9.80 m/s2)(8840 m) = 6.32 × 106 J. 

Thus, the amount of butter needed is 

( )6 1.00cal
4.186J(6.32 10 J) 

250g.
6000cal/g

m
×

= ≈



27. The mass m = 0.100 kg of water, with specific heat c = 4190 J/kg·K, is raised from an 
initial temperature Ti = 23°C to its boiling point Tf = 100°C. The heat input is given by Q
= cm(Tf – Ti). This must be the power output of the heater P multiplied by the time t; Q = 
Pt. Thus, 

( ) ( ) ( )( ) 4190J/kg K 0.100kg 100 C 23 C
160s.

200J/s
f icm T TQ

t
P P

− ⋅ ° − °
= = = =



28. (a) The water (of mass m) releases energy in two steps, first by lowering its 
temperature from 20°C to 0°C, and then by freezing into ice. Thus the total energy 
transferred from the water to the surroundings is 

( ) ( ) ( ) ( ) ( ) 74190J/kg K 125kg 20 C 333kJ/kg 125kg 5.2 10 J.w FQ c m T L m= ∆ + = ⋅ ° + = ×

(b) Before all the water freezes, the lowest temperature possible is 0°C, below which the 
water must have already turned into ice. 



29. We note from Eq. 18-12 that 1 Btu = 252 cal. The heat relates to the power, and to the 
temperature change, through Q = Pt = cm∆T. Therefore, the time t required is 

5

(1000cal / kg C )(40gal)(1000 kg / 264gal)(100 F 70 F)(5 C / 9 F)

(2.0 10 Btu / h)(252.0 cal / Btu)(1 h / 60 min)

3.0 min .

cm T
t

P

∆ ⋅ ° ° − ° ° °= =
×

=

The metric version proceeds similarly: 

3 3(4190 J/kg·C )(1000 kg/m )(150 L)(1 m /1000 L)(38 C 21 C)

(59000 J/s)(60 s /1min)

 3.0min.

c V T
t

P

∆ ° ° − °= =

=

ρ



30. (a) Using Eq. 18-17, the heat transferred to the water is 

( )( )( ) ( )( )1cal/g C 220g 100 C 20.0 C 539cal/g 5.00g

20.3kcal.
w w w V sQ c m T L m= ∆ + = ⋅ ° ° − ° +

=

(b) The heat transferred to the bowl is 

( ) ( ) ( )0.0923cal/g C 150g 100 C 20.0 C 1.11kcal.b b bQ c m T= ∆ = ⋅ ° ° − ° =

(c) If the original temperature of the cylinder be Ti, then Qw + Qb = ccmc(Ti – Tf), which 
leads to  

( ) ( )
20.3kcal + 1.11kcal

100 C = 873 C.
0.0923cal/g C 300g

w b
i f

c c

Q Q
T T

c m

+= + = + ° °
⋅ °



31. Let the mass of the steam be ms and that of the ice be mi. Then

LFmc + cwmc(Tf – 0.0°C) = Lsms + cwms(100°C – Tf),

where Tf = 50°C is the final temperature. We solve for ms:

( 0.0 C) (79.7 cal / g)(150g) (1cal / g· C)(150g)(50 C 0.0°C)

(100 C ) 539cal / g (1cal / g C )(100 C 50 C)

    33g.

F c w c f
s

s w f

L m c m T
m

L c T

+ − ° + ° ° −= =
+ ° − + ⋅ ° ° − °

=



32. While the sample is in its liquid phase, its temperature change (in absolute values) is  
| ∆T | = 30 °C.  Thus, with m = 0.40 kg, the absolute value of Eq. 18-14 leads to 

  |Q| =  c m |∆T | = (3000)(0.40)(30) = 36000 J . 

The rate (which is constant) is P = |Q| / t = 36000/40 = 900 J/min, which is equivalent to 
15 Watts.   

(a) During the next 30 minutes, a phase change occurs which is described by Eq. 18-16:

  |Q| = P t = (900 J/min)(30 min) = 27000 J =  L m . 

Thus, with m = 0.40 kg, we find L = 67500 J/kg  ≈  68 kJ/kg. 

(b) During the final 20 minutes, the sample is solid and undergoes a temperature change 
(in absolute values) of | ∆T | = 20 C°.  Now, the absolute value of Eq. 18-14 leads to 

c = 
|Q|

m |∆T| 
 = 

P t
m |∆T| 

=
(900)(20)
(0.40)(20) = 2250 J

kg·C° ≈  2.3 kJ
kg·C°  . 



33. The power consumed by the system is 

3 3 3

4

1 1 (4.18J / g C)(200 10 cm )(1g / cm )(40 C 20 C)

20% 20% (1.0h)(3600s / h)

  2.3 10 W.

cm T
P

t

∆ ⋅° × ° − °= =

= ×

The area needed is then 

4
2

2

2.3 10 W
33m .

700W / m
A

×= =



34. We note that the heat capacity of sample B is given by the reciprocal of the slope of 
the line in Figure 18-32(b) (compare with Eq. 18-14).  Since the reciprocal of that slope is 
16/4 = 4 kJ/kg·C°, then cB = 4000 J/kg·C° = 4000 J/kg·K (since a change in Celsius is 
equivalent to a change in Kelvins).  Now, following the same procedure as shown in 
Sample Problem 18-4, we find 

                                                 cA mA (Tf − TA)  + cB mB (Tf − TB)   = 0 

cA (5.0 kg)(40°C – 100°C) + (4000 J/kg·C°)(1.5 kg)(40°C – 20°C) = 0 

which leads to cA = 4.0×102 J/kg·K.



35. To accomplish the phase change at 78°C, Q = LVm = (879) (0.510) = 448.29 kJ must 
be removed. To cool the liquid to –114°C, Q = cm|∆T| = (2.43) (0.510) (192) = 237.95 kJ, 
must be removed. Finally, to accomplish the phase change at –114°C,  

Q = LFm = (109) (0.510) = 55.59 kJ 

must be removed. The grand total of heat removed is therefore (448.29 + 237.95 + 55.59) 
kJ = 742 kJ. 



36. (a)  Eq. 18-14 (in absolute value) gives |Q| = (4190)(0.530)(40°) = 88828 J. Since 
d Q
d t

is assumed constant (we will call it P) then we have 

P  =
88828 J
40 min   =  

88828 J
2400 s   =  37 W . 

(b)  During that same time (used in part (a)) the ice warms by 20 C°.  Using Table 18-3 
and Eq. 18-14 again we have 

mice  = 
Q

cice ∆T
   =   

88828
(2220)(20°) =  2.0 kg . 

(c) To find the ice produced (by freezing the water that has already reached 0°C – so we 
concerned with the 40 min < t < 60 min  time span), we use Table 18-4 and Eq. 18-16: 

mwater becoming ice  =
Q 20 min

LF
   =  

44414
333000  =  0.13 kg. 



37. We compute with Celsius temperature, which poses no difficulty for the J/kg·K 
values of specific heat capacity (see Table 18-3) since a change of Kelvin temperature is 
numerically equal to the corresponding change on the Celsius scale. If the equilibrium 
temperature is Tf then the energy absorbed as heat by the ice is  

QI = LFmI + cwmI(Tf – 0°C), 

while the energy transferred as heat from the water is Qw = cwmw(Tf – Ti). The system is 
insulated, so Qw + QI = 0, and we solve for Tf : 

.
( )
w w i F I

f
I C w

c m T L m
T

m m c

−=
+

(a) Now Ti = 90°C so 

3(4190J / kg C )(0.500kg)(90 C) (333 10 J / kg)(0.500kg)
5.3 C.

(0.500kg 0.500kg)(4190J / kg C )fT
⋅ ° ° − ×= = °

+ ⋅ °

(b) Since no ice has remained at 5.3fT C= ° , we have 0fm = .

(c) If we were to use the formula above with Ti = 70°C, we would get Tf < 0, which is 
impossible. In fact, not all the ice has melted in this case and the equilibrium temperature 
is Tf = 0°C.  

(d) The amount of ice that melts is given by 

3

( 0 C) (4190J / kg C )(0.500kg)(70C°)
0.440kg.

333 10 J / kg
w w i

I
F

c m T
m

L

− ° ⋅ °′ = = =
×

Therefore, the amount of (solid) ice remaining is mf = mI – m'I = 500 g – 440 g = 60.0 g, 
and (as mentioned) we have Tf = 0°C (because the system is an ice-water mixture in 
thermal equilibrium). 



38. The heat needed is found by integrating the heat capacity: 

15.0 C 2

5.0 C

15.02 3

5.0

 (2.09) (0.20 0.14 0.023 )

  (2.0) (0.20 0.070 0.00767 ) (cal)

  82cal.

f f

i i

T T

T T
Q cm dT m cdT T T dT

T T T

°

°
= = = + +

= + +

=



39. (a) We work in Celsius temperature, which poses no difficulty for the J/kg·K values 
of specific heat capacity (see Table 18-3) since a change of Kelvin temperature is 
numerically equal to the corresponding change on the Celsius scale. There are three 
possibilities: 

• None of the ice melts and the water-ice system reaches thermal equilibrium at a 
temperature that is at or below the melting point of ice. 

• The system reaches thermal equilibrium at the melting point of ice, with some of the ice 
melted. 

• All of the ice melts and the system reaches thermal equilibrium at a temperature at or 
above the melting point of ice. 

First, suppose that no ice melts. The temperature of the water decreases from TWi = 25°C 
to some final temperature Tf and the temperature of the ice increases from TIi = –15°C to 
Tf. If mW is the mass of the water and cW is its specific heat then the water rejects heat 

| | ( ).W W Wi fQ c m T T= −

If mI is the mass of the ice and cI is its specific heat then the ice absorbs heat 

( ).I I f IiQ c m T T= −

Since no energy is lost to the environment, these two heats (in absolute value) must be 
the same. Consequently, 

( ) ( ).W W Wi f I I f Iic m T T c m T T− = −

The solution for the equilibrium temperature is 

(4190J / kg K)(0.200kg)(25 C) (2220J/kg K)(0.100kg)( 15 C)

(4190J/kg K)(0.200kg) (2220J/kg K)(0.100kg)

   16.6 C.

W W Wi I I Ii
f

W W I I

c m T c m T
T

c m c m

+=
+

⋅ ° + ⋅ − °=
⋅ + ⋅

= °

This is above the melting point of ice, which invalidates our assumption that no ice has 
melted. That is, the calculation just completed does not take into account the melting of 
the ice and is in error. Consequently, we start with a new assumption: that the water and 
ice reach thermal equilibrium at Tf = 0°C, with mass m (< mI) of the ice melted. The 
magnitude of the heat rejected by the water is 



| | = ,W W WiQ c m T

and the heat absorbed by the ice is 

(0 ) ,I I Ii FQ c m T mL= − +

where LF is the heat of fusion for water. The first term is the energy required to warm all 
the ice from its initial temperature to 0°C and the second term is the energy required to 
melt mass m of the ice. The two heats are equal, so 

.W W Wi I I Ii Fc m T c m T mL= − +

This equation can be solved for the mass m of ice melted: 

3

2

(4190J / kg K)(0.200kg)(25 C) (2220J / kg K)(0.100kg)( 15 C )

333 10 J / kg

5.3 10 kg 53g.

W W Wi I I Ii

F

c m T c m T
m

L

−

+=

⋅ ° + ⋅ − °=
×

= × =

Since the total mass of ice present initially was 100 g, there is enough ice to bring the 
water temperature down to 0°C. This is then the solution: the ice and water reach thermal 
equilibrium at a temperature of 0°C with 53 g of ice melted. 

(b) Now there is less than 53 g of ice present initially. All the ice melts and the final 
temperature is above the melting point of ice. The heat rejected by the water is 

( )W W W i fQ c m T T= −

and the heat absorbed by the ice and the water it becomes when it melts is 

(0 ) ( 0) .I I Ii W I f I FQ c m T c m T m L= − + − +

The first term is the energy required to raise the temperature of the ice to 0°C, the second 
term is the energy required to raise the temperature of the melted ice from 0°C to Tf, and 
the third term is the energy required to melt all the ice. Since the two heats are equal, 

( ) ( ) .W W W i f I I I i W I f I Fc m T T c m T c m T m L− = − + +

The solution for Tf is 



.
( )

W W W i I I Ii I F
f

W W I

c m T c m T m L
T

c m m

+ −
=

+

Inserting the given values, we obtain Tf = 2.5°C. 



40. We denote the ice with subscript I and the coffee with c, respectively. Let the final 
temperature be Tf. The heat absorbed by the ice is QI = λFmI + mIcw (Tf – 0°C), and the 
heat given away by the coffee is |Qc| = mwcw (TI – Tf). Setting QI = |Qc|, we solve for Tf :

3(130g) (4190 J/kg C ) (80.0 C) (333 10 J/g) (12.0g)

( ) (12.0g +130g ) (4190J/kg C°)

66.5 C.

w w I F I
f

I c w

m c T m
T

m m c

−λ ⋅ ° ° − ×= =
+ ⋅

= °

Note that we work in Celsius temperature, which poses no difficulty for the J/kg·K values 
of specific heat capacity (see Table 18-3) since a change of Kelvin temperature is 
numerically equal to the corresponding change on the Celsius scale. Therefore, the 
temperature of the coffee will cool by |∆T | = 80.0°C – 66.5°C = 13.5C°. 



41. If the ring diameter at 0.000°C is Dr0 then its diameter when the ring and sphere are in 
thermal equilibrium is 

0 (1 ),r r c fD D Tα= +

where Tf is the final temperature and αc is the coefficient of linear expansion for copper. 
Similarly, if the sphere diameter at Ti (= 100.0°C) is Ds0 then its diameter at the final 
temperature is 

0 [1 ( )],s s a f iD D T Tα= + −

where αa is the coefficient of linear expansion for aluminum. At equilibrium the two 
diameters are equal, so 

0 0(1 ) [1 ( )].r c f s a f iD T D T Tα α+ = + −

The solution for the final temperature is 

0 0 0

0 0

6

6 6

2.54000cm 2.54508cm (2.54508cm)(23 10 /C )(100.0 C)

(2.54508cm)(23 10 / C ) (2.54000cm) (17 10 /C°)

50.38 C.

r s s a i
f

s a r c

D D D T
T

D D

α
α α

−

− −

− +=
−

− + × ° °=
× ° − ×

= °

The expansion coefficients are from Table 18-2 of the text. Since the initial temperature 
of the ring is 0°C, the heat it absorbs is ,c r fQ c m T=  where cc is the specific heat of 

copper and mr is the mass of the ring. The heat rejected up by the sphere is 

( )a s i fQ c m T T= −

where ca is the specific heat of aluminum and ms is the mass of the sphere. Since these 
two heats are equal, 

( ) ,c r f a s i fc m T c m T T= −

we use specific heat capacities from the textbook to obtain 

3(386J/kg K)(0.0200kg)(50.38 C)
8.71 10 kg.

( ) (900J/kg K)(100 C 50.38 C)
c r f

s
a i f

c m T
m

c T T
−⋅ °= = = ×

− ⋅ ° − °



42. During process A → B, the system is expanding, doing work on its environment, so W
> 0, and since ∆Eint > 0 is given then Q = W + ∆Eint must also be positive. 

(a) Q > 0. 

(b) W > 0. 

During process B → C, the system is neither expanding nor contracting. Thus, 

(c) W = 0. 

(d) The sign of ∆Eint must be the same (by the first law of thermodynamics) as that of Q
which is given as positive. Thus, ∆Eint > 0. 

During process C → A, the system is contracting. The environment is doing work on the 
system, which implies W < 0. Also, ∆Eint < 0 because ∆Eint = 0 (for the whole cycle) 
and the other values of ∆Eint (for the other processes) were positive. Therefore, Q = W + 
∆Eint must also be negative. 

(e) Q < 0. 

(f) W < 0. 

(g) ∆Eint < 0. 

(h) The area of a triangle is 1
2  (base)(height). Applying this to the figure, we find 

31
net 2| | (2.0m )(20 Pa) 20JW = = . Since process C → A involves larger negative work (it 

occurs at higher average pressure) than the positive work done during process A → B,
then the net work done during the cycle must be negative. The answer is therefore Wnet

= –20 J. 



43. (a) One part of path A represents a constant pressure process. The volume changes 
from 1.0 m3 to 4.0 m3 while the pressure remains at 40 Pa. The work done is 

3 3 2(40Pa)(4.0 m 1.0 m ) 1.2 10 J.AW p V= ∆ = − = ×

(b) The other part of the path represents a constant volume process. No work is done 
during this process. The total work done over the entire path is 120 J. To find the work 
done over path B we need to know the pressure as a function of volume. Then, we can 
evaluate the integral W = p dV. According to the graph, the pressure is a linear function 
of the volume, so we may write p = a + bV, where a and b are constants. In order for the 
pressure to be 40 Pa when the volume is 1.0 m3 and 10 Pa when the volume is 4.00 m3

the values of the constants must be a = 50 Pa and b = –10 Pa/m3. Thus p =
50 Pa – (10 Pa/m3)V and 

( ) ( )4 4 2 4
11 1

 50 10 50 5 200 J 50 J 80J  +  5.0 J = 75J.BW p dV V dV V V= = − = − = − −

(c) One part of path C represents a constant pressure process in which the volume 
changes from 1.0 m3 to 4.0 m3 while p remains at 10 Pa. The work done is 

3 3(10 Pa)(4.0m 1.0m ) 30J.CW p V= ∆ = − =

The other part of the process is at constant volume and no work is done. The total work is 
30 J. We note that the work is different for different paths. 



44. (a) Since work is done on the system (perhaps to compress it) we write W = –200 J. 

(b) Since heat leaves the system, we have Q = –70.0 cal = –293 J. 

(c) The change in internal energy is ∆Eint = Q – W = –293 J – (–200 J) = –93 J. 



45. Over a cycle, the internal energy is the same at the beginning and end, so the heat Q
absorbed equals the work done: Q = W. Over the portion of the cycle from A to B the 
pressure p is a linear function of the volume V and we may write 

310 20
Pa +  Pa/m ,

3 3
p V=

where the coefficients were chosen so that p = 10 Pa when V = 1.0 m3 and p = 30 Pa 
when V = 4.0 m3. The work done by the gas during this portion of the cycle is 

4
4 4 2

1 1
1

10 20 10 10
  =   = 

3 3 3 3

40 160 10 10
=  J 60 J.

3 3 3 3

ABW pdV V dV V V+ = +

+ − − =

The BC portion of the cycle is at constant pressure and the work done by the gas is WBC = 
p∆V = (30 Pa)(1.0 m3 – 4.0 m3) = –90 J. The CA portion of the cycle is at constant 
volume, so no work is done. The total work done by the gas is W = WAB + WBC + WCA = 
60 J – 90 J + 0 = –30 J and the total heat absorbed is Q = W = –30 J. This means the gas 
loses 30 J of energy in the form of heat. 



46. (a) We note that process a to b is an expansion, so W > 0 for it.  Thus, Wab = +5.0 J.   
We are told that the change in internal energy during that process is +3.0 J, so application 
of the first law of thermodynamics for that process immediately yields Qab = +8.0 J. 

(b) The net work (+1.2 J) is the same as the net heat (Qab + Qbc + Qca), and we are told 
that Qca = +2.5 J.  Thus we readily find Qbc = (1.2 – 8.0 – 2.5) J = −9.3 J. 



47. We note that there is no work done in the process going from d to a, so Qda = ∆Eint da

= 80 J.  Also, since the total change in internal energy around the cycle is zero, then  

∆Eint ac + ∆Eint cd   + ∆Eint da = 0 

−200 J   + ∆Eint cd  + 80 J    = 0 

which yields  ∆Eint cd = 120 J.  Thus, applying the first law of thermodynamics to the c to 
d process gives the work done as Wcd = Qcd − ∆Eint cd  = 180 J  – 120 J  = 60 J. 



48. Since the process is a complete cycle (beginning and ending in the same 
thermodynamic state) the change in the internal energy is zero and the heat absorbed by 
the gas is equal to the work done by the gas: Q = W. In terms of the contributions of the 
individual parts of the cycle QAB + QBC + QCA = W and

QCA = W – QAB – QBC = +15.0 J – 20.0 J – 0 = –5.0 J. 

This means 5.0 J of energy leaves the gas in the form of heat. 



49. (a) The change in internal energy ∆Eint is the same for path iaf and path ibf.
According to the first law of thermodynamics, ∆Eint = Q – W, where Q is the heat 
absorbed and W is the work done by the system. Along iaf

∆Eint = Q – W = 50 cal – 20 cal = 30 cal. 

Along ibf

W = Q – ∆Eint = 36 cal – 30 cal = 6.0 cal. 

(b) Since the curved path is traversed from f to i the change in internal energy is –30 cal 
and Q = ∆Eint + W = –30 cal – 13 cal = – 43 cal. 

(c) Let ∆Eint = Eint, f – Eint, i. Then, Eint, f = ∆Eint + Eint, i = 30 cal + 10 cal = 40 cal. 

(d) and (e) The work Wbf for the path bf is zero, so Qbf = Eint, f – Eint, b = 40 cal – 22 cal = 
18 cal. For the path ibf Q = 36 cal so Qib = Q – Qbf = 36 cal – 18 cal = 18 cal. 



50. We refer to the polyurethane foam with subscript p and silver with subscript s. We 
use Eq. 18–32 to find L = kR.

(a) From Table 18-6 we find kp = 0.024 W/m·K so 

( )( ) ( ) ( ) ( )( )22= 0.024 W/m K 30ft F h/Btu 1m/3.281ft 5C / 9F 3600s/h 1Btu/1055J

= 0.13m.

p p pL k R=

⋅ ⋅ ° ⋅ ° °

(b) For silver ks = 428 W/m·K, so 

( )
( ) ( ) 3428 30

0.13m 2.3 10 m.
0.024 30

s s
s s s p

p p

k R
L k R L

k R
= = = = ×



51. The rate of heat flow is given by 

cond ,H CT T
P kA

L

−=

where k is the thermal conductivity of copper (401 W/m·K), A is the cross-sectional area 
(in a plane perpendicular to the flow), L is the distance along the direction of flow 
between the points where the temperature is TH and TC. Thus, 

( ) ( ) ( )4 2

3
cond

401W/m K 90.0 10 m 125 C 10.0 C
1.66 10 J/s.

0.250m
P

−⋅ × ° − °
= = ×

The thermal conductivity is found in Table 18-6 of the text. Recall that a change in 
Kelvin temperature is numerically equivalent to a change on the Celsius scale. 



52. (a) We estimate the surface area of the average human body to be about 2 m2 and the 
skin temperature to be about 300 K (somewhat less than the internal temperature of  
310 K). Then from Eq. 18-37 

( ) ( ) ( ) ( )44 8 2 4 2 25.67 10 W/m K 0.9 2.0m 300 K 8 10 W.rP AT −= ≈ × ⋅ = ×σε

(b) The energy lost is given by 

( ) ( )2 48 10 W 30s 2 10 J.rE P t∆ = ∆ = × = ×



53. (a) Recalling that a change in Kelvin temperature is numerically equivalent to a 
change on the Celsius scale, we find that the rate of heat conduction is 

( ) ( )( )( )4 2

cond

401W/m K 4.8 10 m 100 C
16 J/s.

1.2 m
H CkA T T

P
L

−⋅ × °−
= = =

(b) Using Table 18-4, the rate at which ice melts is 

cond 16J/s
0.048g/s.

333J/gF

dm P

dt L
= = =



54. We use Eqs. 18-38 through 18-40. Note that the surface area of the sphere is given by 
A = 4πr2, where r = 0.500 m is the radius. 

(a) The temperature of the sphere is T = (273.15 + 27.00) K = 300.15 K. Thus  

( )( )( )( ) ( )2 44 8 2 4

3

5.67 10 W m K 0.850 4 0.500m 300.15K

1.23 10 W.

rP ATσε π−= = × ⋅

= ×

(b) Now, Tenv = 273.15 + 77.00 = 350.15 K so 

( )( )( ) ( ) ( )2 44 8 2 4
env

3

5.67 10 W m K 0.850 4 0.500 m 350.15K

2.28 10 W.

aP ATσε π−= = × ⋅

= ×

(c) From Eq. 18-40, we have 

3 3 32.28 10 W 1.23 10 W 1.05 10 W.n a rP P P= − = × − × = ×



55. We use Pcond = kA∆T/L ∝ A/L. Comparing cases (a) and (b) in Figure 18–42, we have  

cond cond cond 4 .b a
b a a

a b

A L
P P P

A L
= =

Consequently, it would take 2.0 min/4 = 0.50 min for the same amount of heat to be 
conducted through the rods welded as shown in Fig. 18-42(b).



56. (a) The surface area of the cylinder is given by 

2 2 2 2 2 2 2
1 1 1 12 2 2 (2.5 10 m) 2 (2.5 10 m)(5.0 10 m) 1.18 10 mA r rhπ π π π− − − −= + = × + × × = × ,

its temperature is T1 = 273 + 30 = 303 K, and the temperature of the environment is Tenv = 
273 + 50 = 323 K. From Eq. 18-39 we have 

( ) ( )( )( )4 4 2 2 4 4
1 1 env 0.85 1.18 10 m (323K) (303K) 1.4 W.P A T Tσε −= − = × − =

(b) Let the new height of the cylinder be h2. Since the volume V of the cylinder is fixed, 
we must have 2 2

1 1 2 2V r h r hπ π= = . We solve for h2:

( )
2 2

1
2 1

2

2.5cm
 5.0cm  125cm 1.25m.

0.50cm

r
h h

r
= = = =

The corresponding new surface area A2 of the cylinder is 

2 2 2 2
2 2 22 2 2 m) 2 m)(1.25 m) 3.94 10 m .A r r hπ π π π−2 −2 −

2= + = (0.50×10 + (0.50×10 = ×

Consequently, 

2 2
2 2

2 2
1 1

3.94 10 m
3.3.

1.18 10 m

P A

P A

−

−

×= = =
×



57. (a) We use 

cond
H CT T

P kA
L

−=

with the conductivity of glass given in Table 18-6 as 1.0 W/m·K. We choose to use the 
Celsius scale for the temperature: a temperature difference of 

( )72 F 20 F 92 FH CT T− = ° − − ° = °

is equivalent to 5
9 (92) 51.1C= ° . This, in turn, is equal to 51.1 K since a change in Kelvin 

temperature is entirely equivalent to a Celsius change. Thus,  

( ) 4 2cond
3

51.1 C
1.0 W m K 1.7 10 W m .

3.0 10 m
H CP T T

k
A L −

− °= = ⋅ = ×
×

(b) The energy now passes in succession through 3 layers, one of air and two of glass. 
The heat transfer rate P is the same in each layer and is given by 

( )
cond

H CA T T
P

L k

−
=

where the sum in the denominator is over the layers. If Lg is the thickness of a glass layer, 
La is the thickness of the air layer, kg is the thermal conductivity of glass, and ka is the 
thermal conductivity of air, then the denominator is 

2 2
.g g a a ga

g a a g

L L k L kLL

k k k k k

+
= + =

Therefore, the heat conducted per unit area occurs at the following rate: 

( ) ( ) ( )( )
( )( ) ( )( )

cond
3

2

51.1 C 0.026 W m K 1.0 W m K

2 2 3.0 10 m 0.026 W m K 0.075m 1.0 W m K

18 W m .

H C a g

g a a g

T T k kP

A L k L k −

− ° ⋅ ⋅
= =

+ × ⋅ + ⋅

=



58. (a) As in Sample Problem 18-6, we take the rate of conductive heat transfer through 
each layer to be the same.  Thus, the rate of heat transfer across the entire wall Pw is equal 
to the rate across layer 2 (P2 ).  Using Eq. 18-37 and canceling out the common factor of 
area A, we obtain 

TH - Tc

(L1/k1+ L2/k2 + L3/k3)
    =

∆T2

(L2/k2)
45 C°

(1 + 7/9 + 35/80)    =
∆T2

(7/9)

which leads to ∆T2 = 15.8 °C.  

(b) We expect (and this is supported by the result in the next part) that greater 
conductivity should mean a larger rate of conductive heat transfer. 

(c) Repeating the calculation above with the new value for k2 , we have 

45 C°
(1 + 7/11 + 35/80)    =

∆T2

(7/11)

which leads to ∆T2 = 13.8 °C.  This is less than our part (a) result which implies that the 
temperature gradients across layers 1 and 3 (the ones where the parameters did not 
change) are greater than in part (a); those larger temperature gradients lead to larger 
conductive heat currents (which is basically a statement of “Ohm’s law as applied to heat 
conduction”).



59. We divide both sides of Eq. 18-32 by area A, which gives us the (uniform) rate of 
heat conduction per unit area: 

cond 1
1 4

1 4

CHP T TT T
k k

A L L

−−= =

where TH = 30°C, T1 = 25°C and TC = –10°C. We solve for the unknown T.

( )1 4
1

4 1

4.2 C.C H

k L
T T T T

k L
= + − = − °



60. We assume (although this should be viewed as a “controversial” assumption) that the 
top surface of the ice is at TC = –5.0°C. Less controversial are the assumptions that the 
bottom of the body of water is at TH = 4.0°C and the interface between the ice and the 
water is at TX = 0.0°C. The primary mechanism for the heat transfer through the total 
distance L = 1.4 m is assumed to be conduction, and we use Eq. 18-34: 

( ) ( )water ice

ice ice ice ice

(0.12) 4.0 0.0 (0.40) 0.0 5.0( ) ( )
    .

1.4
H X X C

A Ak A T T k A T T

L L L L L

° − ° ° + °− −= =
− −

We cancel the area A and solve for thickness of the ice layer: Lice = 1.1 m. 



61. Let h be the thickness of the slab and A be its area. Then, the rate of heat flow through 
the slab is  

( )
cond

H CkA T T
P

h

−
=

where k is the thermal conductivity of ice, TH is the temperature of the water (0°C), and 
TC is the temperature of the air above the ice (–10°C). The heat leaving the water freezes 
it, the heat required to freeze mass m of water being Q = LFm, where LF is the heat of 
fusion for water. Differentiate with respect to time and recognize that dQ/dt = Pcond to 
obtain

cond .F

dm
P L

dt
=

Now, the mass of the ice is given by m = ρAh, where ρ is the density of ice and h is the 
thickness of the ice slab, so dm/dt = ρA(dh/dt) and 

cond .F

dh
P L A

dt
ρ=

We equate the two expressions for Pcond and solve for dh/dt:

( )
.H C

F

k T Tdh

dt L h

−
=

ρ

Since 1 cal = 4.186 J and 1 cm = 1 × 10–2 m, the thermal conductivity of ice has the SI 
value

k = (0.0040 cal/s·cm·K) (4.186 J/cal)/(1 × 10–2 m/cm) = 1.674 W/m·K. 

The density of ice is ρ = 0.92 g/cm3 = 0.92 × 103 kg/m3. Thus, 

( )( )
( )( )( )

6

3 3 3

1.674 W m K 0 C  10 C
1.1 10 m s 0.40cm h.

333 10 J kg 0.92 10 kg m 0.050m

dh

dt
−⋅ ° + °

= = × =
× ×



62. We denote the total mass M and the melted mass m. The problem tells us that 
Work/M = p/ρ, and that all the work is assumed to contribute to the phase change Q = 
Lm where L = 150 × 103 J/kg. Thus,  

6

3

5.5 10
    

1200 150 10

p M
M Lm m

×= =
×ρ

which yields m = 0.0306M. Dividing this by 0.30 M (the mass of the fats, which we are 
told is equal to 30% of the total mass), leads to a percentage 0.0306/0.30 = 10%. 



63. Since the combination “p1V1” appears frequently in this derivation we denote it as “x.
Thus for process 1, the heat transferred is Q1 = 5x = ∆Eint 1 + W1 , and for path 2 (which 
consists of two steps, one at constant volume followed by an expansion accompanied by 
a linear pressure decrease) it is Q2 = 5.5x = ∆Eint 2 + W2.  If we subtract these two 
expressions and make use of the fact that internal energy is state function (and thus has 
the same value for path 1 as for path 2) then we have  

5.5x – 5x  = W2  –  W1   =  “area” inside the triangle = 
1
2 (2 V1 )( p2 – p1) . 

Thus, dividing both sides by x (=  p1V1), we find 

0.5 =
p2

p1
  – 1 

which leads immediately to the result:  p2 /p1 = 1.5 .



64. The orientation of the block is such that its top and bottom faces are parallel to the 
liquid surface, so that we have (using “sub” to indicate the submerged portion of the 
block)

sub
  =

Vsub

V

where  is the length of a side, equal to 20.0 cm for T0 = 270 K, and sub is the vertical 
distance from the mercury surface to the bottom of the block.  We interpret the problem 
as seeking the difference sub.  As a consequence of Archimedes’ principle, the extent to 
which a floating object is submerged depends on the ratio of its density and the density of 
the liquid.

Vsub

V   =
alum

Hg
   . 

Thus, we have, using  sub =
alum

Hg
,

d sub = 
alum

Hg
d   +

Hg
d alum –

alum
2

Hg
d Hg

           =
alum

Hg
 ( dT ) +

Hg
 (–3 alum) dT –

alum
2

Hg
 (– Hg) dT

With dT T = 50 K, we find, using alum0 = 2710 kg/m3 (Table 13-1) and Hg0 = 13600 
kg/m3 (Table 15-1), that d sub = 2.7 × 10−4 m. 



65. (a) We denote the 3.000000 m length as L1 . Combining Eq. 18-14 and Eq. 18-9 we 
have

∆L =
α L1 Q

m c    =
(17 x 10-6)(3.000000)(20000.00)

(0.400000)(386)   = 0.006606 m . 

(b) The new length (denoted L2) is L1 + ∆L  = 3.006606 m. 

(c) We now combine Eq. 18-14 and Eq. 18-9 in absolute value and obtain 

   |∆L|  =
α L2 |Q|

m c    =  
(17 x 10-6)(3.006606)(20000.00)

(0.400000)(386)    =   0.006621 m . 

(d) Now, the length (denoted L3) is L3 = L2 − ∆L  = 2.999985 m. 

(e) We expect L3 to equal L1 , of course, but due to having used an approximate formula 
for thermal length expansion/contraction (Eq. 18-9, with L interpreted as the initial length 
for each process) and having treated the “constants” as exact constants, we have found an 
“error” of  L1 − L3 =  14.5 µm.



66. As is shown in the textbook for Sample Problem 18-4, we can express the final 
temperature in the following way: 

Tf   =
mAcATA + mBcBTB

mAcA + mBcB
    =

cATA + cBTB

cA + cB

where the last equality is made possible by the fact that mA = mB .  Thus, in a graph of Tf

versus TA , the “slope” must be cA /(cA + cB), and the “y intercept” is cB /(cA + cB)TB.
From the observation that the “slope” is equal to 2/5 we can determine, then, not only the 
ratio of the heat capacities but also the coefficient of TB in the “y intercept”; that is, 

cB /(cA + cB)TB  = (1 – “slope”)TB .

(a) We observe that the “y intercept” is 150 K, so  

TB = 150/(1 – “slope”) = 150/(3/5) 

which yields TB = 2.5×102 K. 

(b) As noted already, cA /(cA + cB) = 25 , so 5 cA  = 2cA + 2cB , which leads to cB /cA = 32 =1.5. 



67. For a cylinder of height h, the surface area is Ac = 2πrh, and the area of a sphere is Ao

= 4πR2. The net radiative heat transfer is given by Eq. 18-40. 

(a) We estimate the surface area A of the body as that of a cylinder of height 1.8 m and 
radius r = 0.15 m plus that of a sphere of radius R = 0.10 m. Thus, we have A ≈ Ac + Ao = 
1.8 m2. The emissivity ε = 0.80 is given in the problem, and the Stefan-Boltzmann 
constant is found in §18-11: σ = 5.67 × 10–8 W/m2·K4. The “environment” temperature is 
Tenv = 303 K, and the skin temperature is T = 5

9 (102 – 32) + 273 = 312 K. Therefore, 

( )4 4
net env 86 W.P A T Tσε= − = −

The corresponding sign convention is discussed in the textbook immediately after Eq. 18-
40. We conclude that heat is being lost by the body at a rate of roughly 90 W. 

(b) Half the body surface area is roughly A = 1.8/2 = 0.9 m2. Now, with Tenv = 248 K, we 
find

( )4 4 2
net env| | | | 2.3 10 W.P A T Tσε= − ≈ ×

(c) Finally, with Tenv = 193 K (and still with A = 0.9 m2) we obtain |Pnet| = 3.3×102 W. 



68. The graph shows that the absolute value of the temperature change is  | ∆T | = 25 °C.  
Since a Watt is a Joule per second, we reason that the energy removed is 

|Q| = (2.81 J/s)(20 min)(60 s/min) =  3372 J . 

Thus, with m = 0.30 kg, the absolute value of Eq. 18-14 leads to 

c  =
|Q|

m |∆T| 
= 4.5×102 J/kg.K . 



69. We use TC = TK – 273 = (5/9) (TF – 32). The results are: 

(a) T = 10000°F; 

(b) T = 37.0°C; 

(c) T = –57°C; 

(d) T = –297°F; 



70. Its initial volume is 53 = 125 cm3, and using Table 18-2, Eq. 18-10 and Eq. 18-11, we 
find

3 6 3(125m ) (3 23 10 / C ) (50.0 C ) 0.432cm .V −∆ = × × ° ° =



71. Let mw = 14 kg, mc = 3.6 kg, mm = 1.8 kg, Ti1 = 180°C, Ti2 = 16.0°C, and Tf = 18.0°C. 
The specific heat cm of the metal then satisfies 

( ) ( ) ( )2 1 0w w c m f i m m f im c m c T T m c T T+ − + − =

which we solve for cm:

( )
( ) ( )

( )( )( )
( ) ( )

2

2 1

14kg 4.18kJ/kg K 16.0 C 18.0 C

(3.6kg) 18.0 C 16.0 C (1.8kg) 18.0 C 180 C

0.41kJ/kg C 0.41kJ/kg K.

w w i f

m

c f i m f i

m c T T
c

m T T m T T

− ⋅ ° − °
= =

° − ° + ° − °− + −

= ⋅ ° = ⋅



72. The net work may be computed as a sum of works (for the individual processes 
involved) or as the “area” (with appropriate ± sign) inside the figure (representing the 
cycle). In this solution, we take the former approach (sum over the processes) and will 
need the following fact related to processes represented in pV diagrams: 

for straight line Work
2

i fp p
V

+
= ∆

which is easily verified using the definition Eq. 18-25. The cycle represented by the 
“triangle” BC consists of three processes: 

• “tilted” straight line from (1.0 m3, 40 Pa) to (4.0 m3, 10 Pa), with 

( )3 340 Pa  10 Pa
Work 4.0m 1.0m 75J

2

+= − =

• horizontal line from (4.0 m3, 10 Pa) to (1.0 m3, 10 Pa), with 

( ) ( )3 3Work 10 Pa 1.0m 4.0m 30J= − = −

• vertical line from (1.0 m3, 10 Pa) to (1.0 m3, 40 Pa), with 

( )3 310 Pa 40 Pa
Work 1.0m 1.0m 0

2

+= − =

(a) and (b) Thus, the total work during the BC cycle is (75 – 30) J = 45 J. During the BA
cycle, the “tilted” part is the same as before, and the main difference is that the horizontal 
portion is at higher pressure, with Work = (40 Pa)(–3.0 m3) = –120 J. Therefore, the total 
work during the BA cycle is (75 – 120) J = –45 J. 



73. (a) Let the number of weight lift repetitions be N. Then Nmgh = Q, or (using Eq. 18-
12 and the discussion preceding it) 

( )( )
( ) ( ) ( )

4

2

3500Cal 4186J/Cal
1.87 10 .

80.0kg 9.80m/s 1.00 m

Q
N

mgh
= = ≈ ×

(b) The time required is 

( ) ( ) 1.00h
18700 2.00s 10.4 h.

3600s
t = =



74. (a) We denote TH = 100°C, TC = 0°C, the temperature of the copper-aluminum 
junction by T1. and that of the aluminum-brass junction by T2. Then, 

cond 1 1 2 2( ) ( ) ( ).c a b
H c

k A k A k A
P T T T T T T

L L L
= − = − = −

We solve for T1 and T2 to obtain 

1

0.00 C 100 C
100 C 84.3 C

1 ( ) / 1 401(235 109) /[(235)(109)]
C H

H
c a b a b

T T
T T

k k k k k

− ° − °= + = ° + = °
+ + + +

(b) and 

2

100 C 0.00 C
0.00 C

1 ( ) / 1 109(235 401) /[(235)(401)]

57.6 C.

H C
c

b c a c a

T T
T T

k k k k k

− ° − °= + = ° +
+ + + +

= °



75. For isotropic materials, the coefficient of linear expansion α is related to that for 
volume expansion by 1

3=α β  (Eq. 18-11). The radius of Earth may be found in the 

Appendix. With these assumptions, the radius of the Earth should have increased by 
approximately 

( ) ( )3 5 21
6.4 10 km 3.0 10 / K  (3000 K 300K) 1.7 10 km.

3E ER R Tα −∆ = ∆ = × × − = ×



76. The heat needed is 

12

1
(10%) (200,000metric tons) (1000kg / metric ton) (333kJ/kg)

10

6.7 10 J.

FQ mL= =

= ×



77. The work (the “area under the curve”) for process 1 is 4piVi, so that

Ub – Ua = Q1 – W1 = 6piVi

by the First Law of Thermodynamics. 

(a) Path 2 involves more work than path 1 (note the triangle in the figure of area 
1
2 (4Vi)(pi/2) = piVi). With W2 = 4piVi + piVi = 5piVi, we obtain 

2 2 5 6 11 .b a i i i i i iQ W U U pV pV pV= + − = + =

(b) Path 3 starts at a and ends at b so that ∆U = Ub – Ua = 6piVi.



78. We use Pcond = kA(TH – TC)/L. The temperature TH at a depth of 35.0 km is 

( ) ( )3 2 3

cond
54.0 10 W/m 35.0 10 m

10.0 C 766 C.
2.50W/m KH C

P L
T T

kA

−× ×
= + = + ° = °

⋅



79. The volume of the disk (thought of as a short cylinder) is πr²L where L = 0.50 cm is 
its thickness and r = 8.0 cm is its radius.  Eq. 18-10, Eq. 18-11 and Table 18-2 (which 
gives  α = 3.2 ×10−6/C°) lead to 

∆V = (πr²L)(3α)(60°C – 10°C) = 4.83 × 10−2 cm3 .



80. We use Q = cm∆T and m = ρV. The volume of water needed is 

( ) ( )
( ) ( ) ( )

6

3

3 3

1.00 10 kcal/day 5days
35.7 m .

1.00 10 kg/m 1.00kcal/kg 50.0 C 22.0 C

m Q
V

C T

×
= = = =

∆ × ° − °ρ ρ



81. We have W = p dV (Eq. 18-24). Therefore, 

( )2 3 3 23 J.
3 f i

a
W a V dV V V= = − =



82. We note that there is no work done in process c → b, since there is no change of 
volume. We also note that the magnitude of work done in process b → c is given, but not 
its sign (which we identify as negative as a result of the discussion in §18-8). The total 
(or net) heat transfer is Qnet = [(–40) + (–130) + (+400)] J = 230 J. By the First Law of 
Thermodynamics (or, equivalently, conservation of energy), we have 

( )

net net

230 J

0 80J

a c c b b a

a c

Q W

W W W

W

→ → →

→

=
= + +

= + + −

Therefore, Wa → c = 3.1×102 J. 



83. (a) Regarding part (a), it is important to recognize that the problem is asking for the 
total work done during the two-step “path”: a → b followed by b → c. During the latter 
part of this “path” there is no volume change and consequently no work done. Thus, the 
answer to part (b) is also the answer to part (a). Since ∆U for process c → a is –160 J, 
then Uc – Ua = 160 J. Therefore, using the First Law of Thermodynamics, we have 

160

40 0 200

c b b a

b c b c a b a b

a b

U U U U

Q W Q W

W

→ → → →

→

= − + −
= − + −

= − + −

Therefore, Wa → b→ c = Wa → b = 80 J. 

(b) Wa → b = 80 J. 



84. The change in length of the rod is 

6 3(20cm)(11 10 / C )(50 C 30 C) 4.4 10 cm.L L T − −∆ = ∆ = × ° ° − ° = ×α



85. Consider the object of mass m1 falling through a distance h. The loss of its 
mechanical energy is ∆E = m1gh. This amount of energy is then used to heat up the 
temperature of water of mass m2: ∆E = m1gh = Q = m2c∆T. Thus, the maximum possible 
rise in water temperature is 

( )( )( )
( )( )

2

1

2

6.00kg 9.8m/s 50.0 m
1.17 C.

0.600 kg 4190J/kg C

m gh
T

m c
∆ = = = °

⋅ °



86. (a) The rate of heat flow is 

( ) ( ) ( ) ( )2

2
cond 2

0.040W/m K 1.8m 33 C 1.0 C
2.3 10 J/s.

1.0 10 m
H CkA T T

P
L −

⋅ ° − °−
= = = ×

×

(b) The new rate of heat flow is 

( ) 3cond
cond

0.60W/m K (230J/s)
3.5 10 J/s,

0.040W/m K

k P
P

k

⋅′′ = = = ×
⋅

which is about 15 times as fast as the original heat flow. 



87. The cube has six faces, each of which has an area of (6.0 × 10–6 m)2. Using Kelvin 
temperatures and Eq. 18-40, we obtain 

( ) ( )

4 4
net env

8 10 2 4 4
2 4

9

( )

W
5.67 10 (0.75) 2.16 10 m (123.15 K)   (173.15 K)

m K

6.1 10 W.

P A T T

− −

−

= −

= × × −
⋅

= − ×

σε



88. If the window is L1 high and L2 wide at the lower temperature and L1 + ∆L1 high and 
L2 + ∆L2 wide at the higher temperature then its area changes from A1 = L1L2 to 

( ) ( )2 1 1 2 2 1 2 1 2 2 1A L L L L L L L L L L= + ∆ + ∆ ≈ + ∆ + ∆

where the term ∆L1 ∆L2 has been omitted because it is much smaller than the other terms, 
if the changes in the lengths are small. Consequently, the change in area is 

2 1 1 2 2 1 .A A A L L L L∆ = − = ∆ + ∆

If ∆T is the change in temperature then ∆L1 = αL1 ∆T and ∆L2 = αL2 ∆T, where α is the 
coefficient of linear expansion. Thus 

( )
1 2 1 2 1 2

6

2

( ) 2

2 9 10 / C (30cm) (20cm) (30 C)

0.32cm .

A L L L L T L L T
−

∆ = + ∆ = ∆

= × ° °

=

α α



89. Following the method of Sample Problem 18-4 (particularly its third Key Idea), we 
have

 (900 J
kg·C° )(2.50 kg)(Tf  – 92.0°C) + (4190 J

kg·C° )(8.00 kg)(Tf  – 5.0°C) = 0 

where Table 18-3 has been used.  Thus we find Tf  = 10.5°C. 



90. We use Q = –λFmice = W + ∆Eint. In this case ∆Eint = 0. Since ∆T = 0 for the ideal gas, 
then the work done on the gas is 

' (333J/g)(100g) 33.3kJ.F iW W m= − = λ = =



91. Using Table 18-6, the heat conducted is 

( ) ( ) ( ) ( )( )( )2

cond 3

7

67 W/m K / 4 1.7 m 5.0min 60s/min 2.3C

5.2 10 m

2.0 10 J.

kAt T
Q P t

L

π
−

⋅ °∆= = =
×

= ×



92. We take absolute values of Eq. 18-9 and Eq. 12-25: 

| | | |  and .
F L

L L T E
A L

∆∆ = ∆ =α

The ultimate strength for steel is (F/A)rupture = Su = 400 × 106 N/m2 from Table 12-1. 
Combining the above equations (eliminating the ratio ∆L/L), we find the rod will rupture 
if the temperature change exceeds 

( ) ( )
6 2

9 2 6

400 10 N/m
| | 182 C.

200 10 N/m 11 10 / C
uS

T
Eα −

×∆ = = = °
× × °

Since we are dealing with a temperature decrease, then, the temperature at which the rod 
will rupture is T = 25.0°C – 182°C = –157°C.  



93. This is similar to Sample Problem 18-3.  An important difference with part (b) of that 
sample problem is that, in this case, the final state of the H2O is all liquid at Tf > 0.  As 
discussed in part (a) of that sample problem, there are three steps to the total process: 

    Q  = m ( cice (0 C° –  (–150 C°))  +  LF    + cliquid ( Tf  – 0 C°)) 

Thus,

Tf  =
Q/m − (cice(150°) + LF )

cliquid
=   79.5°C . 



94. The problem asks for 0.5% of E, where E = Pt with t = 120 s and P given by Eq. 18-
38. Therefore, with A = 4πr2 = 5.0 × 10 –3 m2, we obtain 

( ) ( ) 40.005 0.005 8.6 J.Pt AT tσε= =



95. (a) A change of five Celsius degrees is equivalent to a change of nine Fahrenheit 
degrees. Using Table 18-2, 

( )6 65C
23 10 / C 13 10 / F .

9 F
α − −°= × ° = × °

°

(b) For ∆T = 55 F° and L = 6.0 m, we find ∆L = Lα∆T = 0.0042 m = 4.2 mm. 



96. (a) Recalling that a Watt is a Joule-per-second, and that a change in Celsius 
temperature is equivalent (numerically) to a change in Kelvin temperature, we convert 
the value of k to SI units, using Eq. 18-12. 

3 cal 4.186 J 100cm W
2.9 10 1.2 .

cm C s 1cal 1m m K
−× =

⋅ ° ⋅ ⋅

(b) Now, a change in Celsius is equivalent to five-ninths of a Fahrenheit change, so 

3 cal 0.003969 Btu 5C 3600s 30.48cm Btu
2.9 10 0.70 .

cm C s 1cal 9 F 1h 1ft ft F h
− °× =

⋅ ° ⋅ ° ⋅ ° ⋅

(c) Using Eq. 18-33, we obtain 

3 20.0064m
5.3 10 m K/W.

1.2 W/m K

L
R

k
−= = = × ⋅

⋅



97. One method is to simply compute the change in length in each edge (x0 = 0.200 m 
and y0 = 0.300 m) from Eq. 18-9 (∆x = 3.6 × 10 –5 m and ∆y = 5.4 × 10 –5 m) and then 
compute the area change: 

( ) ( ) 5 2
0 0 0 0 0 2.16 10 m .A A x x y y x y −− = + ∆ + ∆ − = ×

Another (though related) method uses ∆A = 2αA0∆T (valid for 1A A∆ ) which can be 

derived by taking the differential of A = xy and replacing d 's with ∆'s. 



98. Let the initial water temperature be Twi and the initial thermometer temperature be Tti.
Then, the heat absorbed by the thermometer is equal (in magnitude) to the heat lost by the 
water:

( ) ( ).t t f ti w w wi fc m T T c m T T− = −

We solve for the initial temperature of the water: 

( ) ( )( )( )
( )( )

0.0550kg 0.837 kJ/kg K 44.4 15.0 K
44.4 C

4.18kJ / kg C 0.300kg

45.5 C.

t t f ti

wi f
w w

c m T T
T T

c m

− ⋅ −
= + = + °

⋅ °
= °



99. (a) The 8.0 cm thick layer of air in front of the glass conducts heat at a rate of 

( ) ( )cond

15
0.026 0.36 1.8W

0.08
H CT T

P kA
L

−= = =

which must be the same as the heat conduction current through the glass if a steady-state 
heat transfer situation is assumed. 

(b) For the glass pane, 

( )( )cond       1.8 1.0 0.36
0.005

H C H CT T T T
P kA

L

− −= =

which yields TH – TC = 0.024 C°. 



100. From the law of cosines, with φ = 59.95º, we have 

L 2
Invar  = L 2

alum  + L 2
steel   –  2LalumLsteel cos φ

Plugging in L = L0 (1 + T), dividing by L0 (which is the same for all sides) and 
ignoring terms of order ( T)2 or higher, we obtain 

1 + 2 Invar T  =  2 + 2 ( alum + steel) T –  2 (1 + ( alum + steel) T) cos φ  . 

This is rearranged to yield 

T  =
cos φ - ½

(αalum + αsteel) (1 - cos φ) - αInvar
  = 46 C≈ ° ,

so that the final temperature is T = 20.0º + T = 66º C.  Essentially the same argument, 
but arguably more elegant, can be made in terms of the differential of the above cosine 
law expression. 



101. We assume the ice is at 0°C to being with, so that the only heat needed for melting is 
that described by Eq. 18-16 (which requires information from Table 18-4).  Thus,  

Q = Lm = (333 J/g)(1.00 g) =  333 J . 



102. We denote the density of the liquid as ρ, the rate of liquid flowing in the calorimeter 
as µ, the specific heat of the liquid as c, the rate of heat flow as P, and the temperature 
change as ∆T. Consider a time duration dt, during this time interval, the amount of liquid 
being heated is dm = µρdt. The energy required for the heating is  

dQ = Pdt = c(dm) ∆T = cµ∆Tdt.

Thus,

( ) ( )( )6 3 3 3

3 3

250 W

8.0 10 m / s 0.85 10 kg/m 15 C

2.5 10 J/kg C 2.5 10 J/kg K.

P
c

Tρµ −
= =

∆ × × °

= × ⋅ ° = × ⋅


	ch18_p1.pdf
	ch18_p2.pdf
	ch18_p3.pdf
	ch18_p4.pdf
	ch18_p5.pdf
	ch18_p6.pdf
	ch18_p7.pdf
	ch18_p8.pdf
	ch18_p9.pdf
	ch18_p10.pdf
	ch18_p11.pdf
	ch18_p12.pdf
	ch18_p13.pdf
	ch18_p14.pdf
	ch18_p15.pdf
	ch18_p16.pdf
	ch18_p17.pdf
	ch18_p18.pdf
	ch18_p19.pdf
	ch18_p20.pdf
	ch18_p21.pdf
	ch18_p22.pdf
	ch18_p23.pdf
	ch18_p24.pdf
	ch18_p25.pdf
	ch18_p26.pdf
	ch18_p27.pdf
	ch18_p28.pdf
	ch18_p29.pdf
	ch18_p30.pdf
	ch18_p31.pdf
	ch18_p32.pdf
	ch18_p33.pdf
	ch18_p34.pdf
	ch18_p35.pdf
	ch18_p36.pdf
	ch18_p37.pdf
	ch18_p38.pdf
	ch18_p39.pdf
	ch18_p40.pdf
	ch18_p41.pdf
	ch18_p42.pdf
	ch18_p43.pdf
	ch18_p44.pdf
	ch18_p45.pdf
	ch18_p46.pdf
	ch18_p47.pdf
	ch18_p48.pdf
	ch18_p49.pdf
	ch18_p50.pdf
	ch18_p51.pdf
	ch18_p52.pdf
	ch18_p53.pdf
	ch18_p54.pdf
	ch18_p55.pdf
	ch18_p56.pdf
	ch18_p57.pdf
	ch18_p58.pdf
	ch18_p59.pdf
	ch18_p60.pdf
	ch18_p61.pdf
	ch18_p62.pdf
	ch18_p63.pdf
	ch18_p64.pdf
	ch18_p65.pdf
	ch18_p66.pdf
	ch18_p67.pdf
	ch18_p68.pdf
	ch18_p69.pdf
	ch18_p70.pdf
	ch18_p71.pdf
	ch18_p72.pdf
	ch18_p73.pdf
	ch18_p74.pdf
	ch18_p75.pdf
	ch18_p76.pdf
	ch18_p77.pdf
	ch18_p78.pdf
	ch18_p79.pdf
	ch18_p80.pdf
	ch18_p81.pdf
	ch18_p82.pdf
	ch18_p83.pdf
	ch18_p84.pdf
	ch18_p85.pdf
	ch18_p86.pdf
	ch18_p87.pdf
	ch18_p88.pdf
	ch18_p89.pdf
	ch18_p90.pdf
	ch18_p91.pdf
	ch18_p92.pdf
	ch18_p93.pdf
	ch18_p94.pdf
	ch18_p95.pdf
	ch18_p96.pdf
	ch18_p97.pdf
	ch18_p98.pdf
	ch18_p99.pdf
	ch18_p100.pdf
	ch18_p101.pdf
	ch18_p102.pdf

