
1. Each atom has a mass of m = M/NA, where M is the molar mass and NA is the 
Avogadro constant. The molar mass of arsenic is 74.9 g/mol or 74.9 × 10–3 kg/mol. 7.50 
× 1024 arsenic atoms have a total mass of (7.50 × 1024) (74.9 × 10–3 kg/mol)/(6.02 × 1023

mol–1) = 0.933 kg. 



2. (a) Eq. 19-3 yields n = Msam/M = 2.5/197 = 0.0127 mol. 

(b) The number of atoms is found from Eq. 19-2:

N = nNA = (0.0127)(6.02 × 1023) = 7.64 × 1021.



3. (a) We solve the ideal gas law pV = nRT for n:

( )( )
( )( )

6 3

8
100Pa 1.0 10 m

5.47 10 mol.
8.31J/mol K 220K

pV
n

RT

−
−

×
= = = ×

⋅

(b) Using Eq. 19-2, the number of molecules N is 

( ) ( )6 23 1 16
A 5.47 10 mol 6.02 10 mol 3.29 10 molecules.N nN − −= = × × = ×



4. With V = 1.0 × 10–6 m3, p = 1.01 × 10–13 Pa, and T = 293 K, the ideal gas law gives 

( ) ( )
( )( )

13 6 3

23
1.01 10  Pa 1.0 10  m

4.1 10 mole.
8.31 J/mol K 293 K

pV
n

RT

− −
−

× ×
= = = ×

⋅

Consequently, Eq. 19-2 yields N = nNA = 25 molecules. We can express this as a ratio 
(with V now written as 1 cm3) N/V = 25 molecules/cm3.



5. (a) In solving pV = nRT for n, we first convert the temperature to the Kelvin scale: 
(40.0 273.15) K 313.15 KT = + = . And we convert the volume to SI units: 1000 cm3 = 

1000 × 10–6 m3. Now, according to the ideal gas law, 

( )( )
( )( )

5 6 3

2
1.01 10 Pa 1000 10 m

3.88 10 mol.
8.31J/mol K 313.15K

pV
n

RT

−
−

× ×
= = = ×

⋅

(b) The ideal gas law pV = nRT leads to 

( )( )
( )( )

5 6 3

2

1.06 10 Pa 1500 10 m
493K.

3.88 10 mol 8.31J/mol K

pV
T

nR

−

−

× ×
= = =

× ⋅

We note that the final temperature may be expressed in degrees Celsius as 220°C. 



6. Since (standard) air pressure is 101 kPa, then the initial (absolute) pressure of the air is 
pi = 266 kPa. Setting up the gas law in ratio form (where ni = nf and thus cancels out — 
see Sample Problem 19-1), we have 

( )
2 3

2 3

1.64 10 m 300 K
266kPa

1.67 10 m 273K
f f f

f
i i i

p V T
p

pV T

−

−

×= =
×

which yields pf = 287 kPa. Expressed as a gauge pressure, we subtract 101 kPa and obtain 
186 kPa. 



7. (a) With T = 283 K, we obtain 

( )( )
( )( )

3 3100 10 Pa 2.50 m
106mol.

8.31J/mol K 283K

pV
n

RT

´
= = =

×

(b) We can use the answer to part (a) with the new values of pressure and temperature, 
and solve the ideal gas law for the new volume, or we could set up the gas law in ratio 
form as in Sample Problem 19-1 (where ni = nf and thus cancels out): 

( )3 100kPa 303K
2.50 m

300kPa 283K
f f f

f
i i i

p V T
V

pV T
= =

which yields a final volume of Vf = 0.892 m3.



8. (a)  Eq. 19-45 (which gives 0) implies Q = W.  Then Eq. 19-14, with T = (273 + 30.0)K 
leads to gives Q = –3.14 × 103 J, or | Q | = 3.14 × 103 J. 

(b) That negative sign in the result of part (a) implies the transfer of heat is from the gas.



9. The pressure p1 due to the first gas is p1 = n1RT/V, and the pressure p2 due to the 
second gas is p2 = n2RT/V. So the total pressure on the container wall is 

( )1 2
1 2 1 2 .

n RT n RT RT
p p p n n

V V V
= + = + = +

The fraction of P due to the second gas is then 

( )( )
2 2 2

1 2 1 2

/ 0.5
0.2.

/ 2 0.5

p n RT V n

p n n RT V n n
= = = =

+ + +



10. Using Eq. 19-14, we note that since it is an isothermal process (involving an ideal gas) 
then 

Q = W = nRT ln(Vf /Vi)

applies at any point on the graph.  An easy one to read is Q = 1000 J and Vf  = 0.30 m3,
and we can also infer from the graph that Vi = 0.20 m3.  We are told that n = 0.825 mol, 
so the above relation immediately yields T = 360 K. 



11. Since the pressure is constant the work is given by W = p(V2 – V1). The initial volume 
is 2

1 1 1( )V AT BT p= − , where T1=315 K is the initial temperature, A =24.9 J/K and 

B=0.00662 J/K2. The final volume is 2
2 2 2( )V AT BT p= − , where T2=315 K. Thus

2 2
2 1 2 1

2 2 2

( ) ( )

(24.9 J/K)(325 K 315 K) (0.00662 J/K )[(325 K) (315 K) ] 207 J.

W A T T B T T= − − −

= − − − =
.



12. (a) At point a, we know enough information to compute n:

( ) ( )
( ) ( )

32500 Pa 1.0m
1.5mol.

8.31 J/mol K 200 K

pV
n

RT
= = =

⋅

(b) We can use the answer to part (a) with the new values of pressure and volume, and 
solve the ideal gas law for the new temperature, or we could set up the gas law as in 
Sample Problem 19-1 in terms of ratios (note: na = nb and cancels out): 

( )
3

3

7.5kPa 3.0m
200 K

2.5kPa 1.0 m
b b b

b
a a a

p V T
T

p V T
= =

which yields an absolute temperature at b of Tb = 1.8×103 K. 

(c) As in the previous part, we choose to approach this using the gas law in ratio form 
(see Sample Problem 19-1): 

( )
3

3

2.5kPa 3.0 m
200 K

2.5kPa 1.0 m
c c c

c
a a a

p V T
T

p V T
= =

which yields an absolute temperature at c of Tc = 6.0×102 K. 

(d) The net energy added to the gas (as heat) is equal to the net work that is done as it 
progresses through the cycle (represented as a right triangle in the pV diagram shown in 
Fig. 19-19). This, in turn, is related to ± “area” inside that triangle (with 

1
2area = (base)(height) ), where we choose the plus sign because the volume change at 

the largest pressure is an increase. Thus, 

( ) ( )3 3 3
net net

1
2.0m 5.0 10 Pa 5.0 10 J.

2
Q W= = × = ×



13. Suppose the gas expands from volume Vi to volume Vf during the isothermal portion 
of the process. The work it does is 

ln ,
f f

i i

V V
f

V V
i

VdV
W p dV nRT nRT

V V
= = =ò ò

where the ideal gas law pV = nRT was used to replace p with nRT/V. Now Vi = nRT/pi

and Vf = nRT/pf, so Vf/Vi = pi/pf. Also replace nRT with piVi to obtain 

ln .i
i i

f

p
W pV

p
=

Since the initial gauge pressure is 1.03 × 105 Pa, pi = 1.03 × 105 Pa + 1.013 × 105 Pa = 
2.04 × 105 Pa. The final pressure is atmospheric pressure: pf = 1.013 × 105 Pa. Thus 

( ) ( )
5

5 3 4
5

2.04 10 Pa
2.04 10 Pa 0.14 m ln 2.00 10 J.

1.013 10 Pa
W

×= × = ×
×

During the constant pressure portion of the process the work done by the gas is W = 
pf(Vi – Vf). The gas starts in a state with pressure pf, so this is the pressure throughout this 
portion of the process. We also note that the volume decreases from Vf to Vi. Now Vf = 
piVi/pf, so 

( ) ( )( )5 5 3

4

1.013 10 Pa 2.04 10 Pa 0.14m

1.44 10 J.

i i
f i f i i

f

pV
W p V p p V

p

æ ö÷ç ÷ç= - = - = ´ - ´÷ç ÷÷çè ø

= - ´

The total work done by the gas over the entire process is  

W = 2.00 × 104 J – 1.44 × 104 J = 5.60 × 103 J. 



14. We assume that the pressure of the air in the bubble is essentially the same as the 
pressure in the surrounding water. If d is the depth of the lake and ρ is the density of 
water, then the pressure at the bottom of the lake is p1 = p0 + ρgd, where p0 is 
atmospheric pressure. Since p1V1 = nRT1, the number of moles of gas in the bubble is n = 
p1V1/RT1 = (p0 + ρgd)V1/RT1, where V1 is the volume of the bubble at the bottom of the 
lake and T1 is the temperature there. At the surface of the lake the pressure is p0 and the 
volume of the bubble is V2 = nRT2/p0. We substitute for n to obtain 

( )( ) ( ) ( )

02
2 1

1 0

5 3 3 2

3
5

2 3

1.013 10 Pa + 0.998 10 kg/m 9.8m/s 40m293K
20cm

277 K 1.013 10 Pa

1.0 10 cm .

p gdT
V V

T p

ρ+=

× ×
=

×

= ×



15. When the valve is closed the number of moles of the gas in container A is nA = 
pAVA/RTA and that in container B is nB = 4pBVA/RTB. The total number of moles in both 
containers is then 

4
const.A A B

A B
A B

V p p
n n n

R T T
= + = + =

After the valve is opened the pressure in container A is p′A = Rn′ATA/VA and that in 
container B is p′B = Rn′BTB/4VA. Equating p′A and p′B, we obtain Rn′ATA/VA = Rn′BTB/4VA,
or n′B = (4TA/TB)n′A. Thus, 

4 4
1 .A A A B

A B A A B
B A B

T V p p
n n n n n n

T R T T
′ ′ ′= + = + = + = +

We solve the above equation for n′A:

( )
( )

4
.

1 4
A A B B

A
A B

p T p TV
n

R T T

+
¢ =

+

Substituting this expression for n′A into p′VA = n′ARTA, we obtain the final pressure: 

54 /
2.0 10 Pa.

1 4 /
A A A B A B

A A B

n RT p p T T
p

V T T

′ +′ = = = ×
+



16. The molar mass of argon is 39.95 g/mol. Eq. 19–22 gives 

( )( )
rms 3

3 8.31J/mol K 313K3
442 m/s.

39.95 10 kg/mol

RT
v

M −

⋅
= = =

×



17. According to kinetic theory, the rms speed is 

rms

3RT
v

M
=

where T is the temperature and M is the molar mass. See Eq. 19-34. According to Table 
19-1, the molar mass of molecular hydrogen is 2.02 g/mol = 2.02 × 10–3 kg/mol, so 

( ) ( ) 2
rms 3

3 8.31J/mol K 2.7 K
1.8 10 m/s.

2.02 10 kg/mol
v −

⋅
= = ×

×



18. Appendix F gives M = 4.00 × 10–3 kg/mol (Table 19-1 gives this to fewer significant 
figures). Using Eq. 19-22, we obtain 

( )( ) 3
rms 3

3 8.31 J/mol K 1000K3
2.50 10 m/s.

4.00 10 kg/mol

RT
v

M -

×
= = = ´

´



19. Table 19-1 gives M = 28.0 g/mol for nitrogen. This value can be used in Eq. 19-22 
with T in Kelvins to obtain the results. A variation on this approach is to set up ratios, 
using the fact that Table 19-1 also gives the rms speed for nitrogen gas at 300 K (the 
value is 517 m/s). Here we illustrate the latter approach, using v for vrms:

22 2

1 11

3 /
.

3 /

RT Mv T

v TRT M
= =

(a) With T2 = (20.0 + 273.15) K ≈ 293 K, we obtain 

( )2

293K
517 m/s 511m/s.

300 K
v = =

(b) In this case, we set 1
3 22v v=  and solve 3 2 3 2/ /v v T T=  for T3:

( )
2 2

3
3 2

2

1
293K 73.0 K

2

v
T T

v
= = =

which we write as 73.0 – 273 = – 200°C. 

(c) Now we have v4 = 2v2 and obtain 

( )( )
2

34
4 2

2

293K 4 1.17 10 K
v

T T
v

= = = ×

which is equivalent to 899°. 



20. First we rewrite Eq. 19-22 using Eq. 19-4 and Eq. 19-7: 

( )
( )

A
rms

A

33 3
.

kN TRT kT
v

M mN M
= = =

The mass of the electron is given in the problem, and k = 1.38 × 10–23 J/K is given in the 
textbook. With T = 2.00 × 106 K, the above expression gives vrms = 9.53 × 106 m/s. The 
pressure value given in the problem is not used in the solution. 



21. In the reflection process, only the normal component of the momentum changes, so 
for one molecule the change in momentum is 2mv cosθ, where m is the mass of the 
molecule, v is its speed, and θ is the angle between its velocity and the normal to the wall. 
If N molecules collide with the wall, then the change in their total momentum is 2Nmv
cos θ, and if the total time taken for the collisions is ∆t, then the average rate of change of 
the total momentum is 2(N/∆t)mv cosθ. This is the average force exerted by the N
molecules on the wall, and the pressure is the average force per unit area: 

( )( ) ( )23 1 27 3
4 2

3

2
 cos

2
1.0 10 s 3.3 10 kg 1.0 10 m/s cos55

2.0 10 m

1.9 10 Pa.

N
p mv

A t
θ

− −
−

=
∆

= × × × °
×

= ×

We note that the value given for the mass was converted to kg and the value given for the 
area was converted to m2.



22. We can express the ideal gas law in terms of density using n = Msam/M:

sam .
M RT pM

pV
M RT

ρ= =

We can also use this to write the rms speed formula in terms of density: 

rms

3 3( / ) 3
.

RT pM p
v

M M

ρ
ρ

= = =

(a) We convert to SI units: ρ = 1.24 × 10–2 kg/m3 and p = 1.01 × 103 Pa. The rms speed is 

3(1010) / 0.0124 494 m/s.=

(b) We find M from ρ = pM/RT with T = 273 K. 

( )3

3

(0.0124kg/m ) 8.31J/mol K (273K)
0.0279 kg/mol 27.9 g/mol.

1.01 10 Pa

RT
M

p

r ×
= = = =

´

(c) From Table 19.1, we identify the gas to be N2.



23. The average translational kinetic energy is given by 3
avg 2K kT= , where k is the 

Boltzmann constant (1.38 × 10–23 J/K) and T is the temperature on the Kelvin scale. Thus 

23 20
avg

3
(1.38 10 J/K) (1600 K) = 3.31 10 J .

2
K − −= × ×



24. (a) Eq. 19-24 gives 23 21
avg

3 J
1.38 10 (273K) 5.65 10 J .

2 K
K − −= × = ×

(b) Similarly, for T = 373 K, the average translational kinetic energy is 
21

avg 7.72 10 J .K −= ×

(c) The unit mole may be thought of as a (large) collection: 6.02 × 1023 molecules of ideal 
gas, in this case. Each molecule has energy specified in part (a), so the large collection 
has a total kinetic energy equal to 

23 21 3
mole A avg (6.02 10 ) (5.65 10 J) 3.40 10 J.K N K −= = × × = ×

(d) Similarly, the result from part (b) leads to 

23 21 3 
mole (6.02 10 ) (7.72 10 J) = 4.65 10 J.K −= × × ×



25. (a) We use ε = LV/N, where LV is the heat of vaporization and N is the number of 
molecules per gram. The molar mass of atomic hydrogen is 1 g/mol and the molar mass 
of atomic oxygen is 16 g/mol so the molar mass of H2O is (1.0 + 1.0 + 16) = 18 g/mol. 
There are NA = 6.02 × 1023 molecules in a mole so the number of molecules in a gram of 
water is (6.02 × 1023 mol–1)/(18 g/mol) = 3.34 × 1022 molecules/g. Thus  

ε = (539 cal/g)/(3.34 × 1022/g) = 1.61 × 10–20 cal = 6.76 × 10–20 J. 

(b) The average translational kinetic energy is 

23 21
avg

3 3
(1.38 10 J/K)[(32.0 + 273.15) K] = 6.32 10 J.

2 2
K kT − −= = × ×

The ratio ε/Kavg is (6.76 × 10–20 J)/(6.32 × 10–21 J) = 10.7. 



26. Using v = f λ with v = 331 m/s (see Table 17-1) with Eq. 19-2 and Eq. 19-25 leads to 

( ) ( )

10 2 A

2

3 3 5
7 7

9

(331m/s) 2 (3.0 10 m)
1

2 ( / )

m m 1.01 10 Pa
8.0 10 8.0 10

s mol s mol 8.31 J/mol K 273.15K

3.5 10 Hz.

nNv
f

V

d N V

n

V

−= = π ×

π

×= × = ×
⋅ ⋅ ⋅

= ×

where we have used the ideal gas law and substituted n/V = p/RT. If we instead use v = 
343 m/s (the “default value” for speed of sound in air, used repeatedly in Ch. 17), then the 
answer is 3.7 × 109 Hz. 



27. (a) According to Eq. 19-25, the mean free path for molecules in a gas is given by 

2

1
,

2 /d N V
λ =

π

where d is the diameter of a molecule and N is the number of molecules in volume V.
Substitute d = 2.0 × 10–10 m and N/V = 1 × 106 molecules/m3 to obtain 

12

10 2 6 3

1
6 10 m.

2 (2.0 10 m) (1 10 m )− −
λ = = ×

π × ×

(b) At this altitude most of the gas particles are in orbit around Earth and do not suffer 
randomizing collisions. The mean free path has little physical significance. 



28. We solve Eq. 19-25 for d:

5 19 3

1 1

2 ( / ) (0.80 10 cm) 2 (2.7 10 / cm )
d

N V
= =

λπ × π ×

which yields d = 3.2 × 10–8 cm, or 0.32 nm. 



29. (a) We use the ideal gas law pV = nRT = NkT, where p is the pressure, V is the 
volume, T is the temperature, n is the number of moles, and N is the number of molecules. 
The substitutions N = nNA and k = R/NA were made. Since 1 cm of mercury = 1333 Pa, 
the pressure is p = (10–7)(1333 Pa) = 1.333 × 10–4 Pa. Thus, 

4
16 3 10 3

23

1.333 10 Pa
3.27 10 molecules/m 3.27 10 molecules/cm .

(1.38 10 J/K) (295K)

N p

V kT

−

−

×= = = × = ×
×

(b) The molecular diameter is d = 2.00 × 10–10 m, so, according to Eq. 19-25, the mean 
free path is 

2 10 2 16 3

1 1
172 m.

2 / 2 (2.00 10 m) (3.27 10 m )d N V − −
λ = = =

π π × ×



30. (a) We set up a ratio using Eq. 19-25: 

( )( )
( )( )

2

2 2

22
NArAr

2
N ArN

1/ 2 /
.

1/ 2 /

dd N V

dd N V

πλ = =
λ π

Therefore, we obtain 

2

2

NAr

N Ar

27.5
1.7.

9.9

d

d

λ
= = =

λ

(b) Using Eq. 19-2 and the ideal gas law, we substitute N/V = NAn/V = NAp/RT into Eq. 
19–25 and find 

2
A

.
2

RT

d pN
λ =

π

Comparing (for the same species of molecule) at two different pressures and temperatures, 
this leads to  

2 2 1

1 1 2

.
T p

T p

λ =
λ

With λ1 = 9.9 × 10–6 cm, T1 = 293 K (the same as T2 in this part), p1 = 750 torr and p2 = 
150 torr, we find λ2 = 5.0 × 10–5 cm. 

(c) The ratio set up in part (b), using the same values for quantities with subscript 1, leads 
to λ2 = 7.9 × 10–6 cm for T2 = 233 K and p2 = 750 torr. 



31. (a) The average speed is 

,
v

v
N

=

where the sum is over the speeds of the particles and N is the number of particles. Thus 

(2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0) km/s
6.5km/s.

10
v

+ + + + + + + + += =

(b) The rms speed is given by 

2

rms  .
v

v
N

=

Now

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

  [(2.0) (3.0) (4.0) (5.0) (6.0)

(7.0) (8.0) (9.0) (10.0) (11.0) ] km / s 505 km / s

v = + + + +

+ + + + + =

so

2 2

rms

505 km / s
7.1 km/s.

10
v = =



32. (a) The average speed is 

avg

[2(1.0) 4(2.0) 6(3.0) 8(4.0) 2(5.0)] cm/s
3.2cm/s.

2 4 6 8 2
i i

i

n v
v

n

+ + + += = =
+ + + +

(b) From 2
rms /i i iv n v n=  we get 

2 2 2 2 2

rms

2(1.0) 4(2.0) 6(3.0) 8(4.0) 2(5.0)
cm/s 3.4cm/s.

2 4 6 8 2
v

+ + + += =
+ + + +

(c) There are eight particles at v = 4.0 cm/s, more than the number of particles at any 
other single speed. So 4.0 cm/s is the most probable speed. 



33. (a) The average speed is 

avg
1

1 1
[4(200 m/s) 2(500 m/s) 4(600 m/s)] 420 m/s.

10

N

i
i

v v
N =

= = + + =

(b) The rms speed is 

2 2 2 2
rms

1

1 1
[4(200 m/s) 2(500 m/s) 4(600 m/s) ] 458 m/s

10

N

i
i

v v
N =

= = + + =

(c) Yes, vrms > vavg.



34. (a) From the graph we see that vp = 400 m/s.  Using the fact that M = 28 g/mol = 
0.028 kg/mol for nitrogen (N2 )  gas, Eq. 19-35 can then be used to determine the absolute 

temperature.  We obtain T = 12 Mvp
2/R = 2.7×102 K. 

(b) Comparing with Eq. 19-34, we conclude vrms = 3/2 vp = 4.9×102 m/s. 



35. The rms speed of molecules in a gas is given by 3rmsv RT M= , where T is the 

temperature and M is the molar mass of the gas. See Eq. 19-34. The speed required for 

escape from Earth's gravitational pull is 2 ev gr= , where g is the acceleration due to 

gravity at Earth's surface and re (= 6.37 × 106 m) is the radius of Earth. To derive this 
expression, take the zero of gravitational potential energy to be at infinity. Then, the 
gravitational potential energy of a particle with mass m at Earth's surface is 

2
eeU GMm r mgr= − = − , where 2

eg GM r=  was used. If v is the speed of the particle, 

then its total energy is 21
2eE mgr mv= − + . If the particle is just able to travel far away, its 

kinetic energy must tend toward zero as its distance from Earth becomes large without 

bound. This means E = 0 and 2 ev gr= . We equate the expressions for the speeds to 

obtain 3 2 eRT M gr= . The solution for T is T = 2greM /3R.

(a) The molar mass of hydrogen is 2.02 × 10–3 kg/mol, so for that gas 

( ) ( ) ( )
( )

2 6 3

4
2 9.8m s 6.37 10 m 2.02 10 kg mol

1.0 10 K.
3 8.31J mol K

T
−× ×

= = ×
⋅

(b) The molar mass of oxygen is 32.0 × 10–3 kg/mol, so for that gas 

( ) ( ) ( )
( )

2 6 3

5
2 9.8m s 6.37 10 m 32.0 10 kg mol

1.6 10 K.
3 8.31J mol K

T
−× ×

= = ×
⋅

(c) Now, T = 2gmrmM / 3R, where rm (= 1.74 × 106 m) is the radius of the Moon and gm (= 
0.16g) is the acceleration due to gravity at the Moon's surface. For hydrogen 

( ) ( ) ( ) ( )
( )

2 6 3

2
2 0.16 9.8m s 1.74 10 m 2.02 10 kg mol

4.4 10 K.
3 8.31J mol K

T
−× ×

= = ×
⋅

(d) For oxygen 

( ) ( ) ( ) ( )
( )

2 6 3

3
2 0.16 9.8m s 1.74 10 m 32.0 10 kg mol

7.0 10 K.
3 8.31J mol K

T
−× ×

= = ×
⋅

(e) The temperature high in Earth's atmosphere is great enough for a significant number 
of hydrogen atoms in the tail of the Maxwellian distribution to escape. As a result the 
atmosphere is depleted of hydrogen.  



(f) On the other hand, very few oxygen atoms escape. So there should be much oxygen 
high in Earth’s upper atmosphere. 



36. We divide Eq. 19-35 by Eq. 19-22: 

2 2

rms 11

2 2

33
P

RT Mv T

v TRT M
= =

which leads to 

2

2
rms

1 rms

3 3
if .

2 2
P

P

T v
v v

T v
= = =



37. (a) The root-mean-square speed is given by rms 3v RT M= . See Eq. 19-34. The 

molar mass of hydrogen is 2.02 × 10–3 kg/mol, so 

( ) ( ) 3
rms 3

3 8.31J mol K 4000 K
7.0 10 m s.

2.02 10 kg mol
v −

⋅
= = ×

×

(b) When the surfaces of the spheres that represent an H2 molecule and an Ar atom are 
touching, the distance between their centers is the sum of their radii:  

d =  r1 + r2 = 0.5 × 10–8 cm + 1.5 × 10–8cm = 2.0 × 10–8 cm. 

(c) The argon atoms are essentially at rest so in time t the hydrogen atom collides with all 
the argon atoms in a cylinder of radius d and length vt, where v is its speed. That is, the 
number of collisions is πd2vtN/V, where, N/V is the concentration of argon atoms. The 
number of collisions per unit time is 

( ) ( ) ( )
2

210 3 25 3 102.0 10 m 7.0 10 m s 4.0 10 m 3.5 10 collisions s.
d vN

V
− −π = π × × × = ×



38. We divide Eq. 19-31 by Eq. 19-22: 

avg2 2 1

rms1 21

8 8

33

v RT M M

v MRT M

π
= =

π

which leads to 

2

avg21 1
avg2 rms1

2 2 rms1

3 3
4.7 if  2 .

8 2

vm M
v v

m M v

π π= = = = =



39. (a) The distribution function gives the fraction of particles with speeds between v and 
v + dv, so its integral over all speeds is unity: P(v) dv = 1. Evaluate the integral by 
calculating the area under the curve in Fig. 19-22. The area of the triangular portion is 
half the product of the base and altitude, or 1

02 av . The area of the rectangular portion is 

the product of the sides, or av0. Thus 31
0 0 02 2( )P v dv av av av= + = , so 3

02 1av =  and av0

= 2/3=0.67. 

(b) The average speed is given by ( )avg .v vP v dv=  For the triangular portion of the 

distribution P(v) = av/v0, and the contribution of this portion is 

0
2

2 3 0
0 00

0 0

2
,

3 3 9

v ava a
v dv v v

v v
= = =

where 2/3v0 was substituted for a. P(v) = a in the rectangular portion, and the contribution 
of this portion is 

( )0

0

2 2 2 2
0 0 0 0

3
4 .

2 2

v

v

a a
a v dv v v v v= − = =

Therefore,

avg
avg 0 0 0

0

2
1.22    1.22

9

v
v v v v

v
= + = = .

(c) The mean-square speed is given by 

( )2 2
rms .v v P v dv=

The contribution of the triangular section is 

0 3 4 2
0 00

0 0

1
.

4 6

va a
v dv v v

v v
= =

The contribution of the rectangular portion is 

( )0

0

2 2 3 3 3 2
0 0 0 0

7 14
8 .

3 3 9

v

v

a a
a v dv v v v v= − = =

Thus,



2 2 rms
rms 0 0 0

0

1 14
1.31   1.31 .

6 9

v
v v v v

v
= + = =

(d) The number of particles with speeds between 1.5v0 and 2v0 is given by 
0

0

2

1.5
( )

v

v
N P v dv .

The integral is easy to evaluate since P(v) = a throughout the range of integration. Thus 
the number of particles with speeds in the given range is N a(2.0v0 – 1.5v0) = 0.5N av0 = 
N/3, where 2/3v0 was substituted for a. In other words, the fraction of particles in this 
range is 1/3 or 0.33. 



40. The internal energy is 

( )( )( ) 3
int

3 3
1.0 mol 8.31 J/mol K 273K 3.4 10 J.

2 2
E nRT= = ⋅ = ×



41.  (a) The work is zero in this process since volume is kept fixed. 

(b) Since CV = 32 R for an ideal monatomic gas, then Eq. 19-39 gives Q = +374 J. 

(c) ∆Eint = Q – W = +374 J. 

(d) Two moles are equivalent to N = 12 x 1023 particles.  Dividing the result of part (c) by 
N gives the average translational kinetic energy change per atom: 3.11 × 10−22 J. 



42. (a) Since the process is a constant-pressure expansion,  

( )( )( )2.02 mol 8.31 J/mol K 15K 249J.W p V nR T= ∆ = ∆ = ⋅ =

(b) Now, Cp = 52 R in this case, so Q =nCp∆T= +623 J by Eq. 19-46.  

(c) The change in the internal energy is ∆Eint = Q – W = +374 J.  

(d) The change in the average kinetic energy per atom is ∆Kavg = ∆Eint/N = +3.11 × 10−22 J. 



43. When the temperature changes by ∆T the internal energy of the first gas changes by 
n1C1 ∆T, the internal energy of the second gas changes by n2C2 ∆T, and the internal 
energy of the third gas changes by n3C3 ∆T. The change in the internal energy of the 
composite gas is  

∆Eint = (n1 C1 + n2 C2 + n3 C3) ∆T.

This must be (n1 + n2 + n3) CV ∆T, where CV is the molar specific heat of the mixture. 
Thus

1 1 2 2 3 3

1 2 3

.V

n C n C n C
C

n n n

+ +=
+ +

With n1=2.40 mol, CV1=12.0 J/mol·K for gas 1, n2=1.50 mol, CV2=12.8 J/mol·K for gas 2, 
and n3=3.20 mol, CV3=20.0 J/mol·K for gas 3, we obtain CV =15.8 J/mol·K for the mixture. 



44. (a) According to the first law of thermodynamics Q = ∆Eint + W. When the pressure is 
a constant W = p ∆V. So 

( )( )
6 3

5 3 3
int 3

1 10 m
20.9 J 1.01 10 Pa 100 cm 50 cm 15.9 J.

1 cm
E Q p V

−×∆ = − ∆ = − × − =

(b) The molar specific heat at constant pressure is 

( )
( ) ( )

( )( )5 6 3

8.31 J/mol K 20.9J
34.4J mol K.

/ 1.01 10 Pa 50 10 m
p

Q Q R Q
C

n T n p V nR p V −

⋅
= = = = = ⋅

∆ ∆ ∆ × ×

(c) Using Eq. 19-49, CV = Cp – R = 26.1 J/mol·K. 



45. Argon is a monatomic gas, so f = 3 in Eq. 19-51, which provides 

( )3 3 1 cal cal
8.31 J/mol K 2.98

2 2 4.186 J mol CVC R= = ⋅ =
⋅ °

where we have converted Joules to calories, and taken advantage of the fact that a Celsius 
degree is equivalent to a unit change on the Kelvin scale. Since (for a given substance) M
is effectively a conversion factor between grams and moles, we see that cV (see units 
specified in the problem statement) is related to CV by  V VC c M= where AM mN= , and 

m is the mass of a single atom (see Eq. 19-4). 

(a) From the above discussion, we obtain 

23
23

/ 2.98 / 0.075
6.6 10 g.

6.02 10
V VC cM

m
N N

−

Α Α

= = = = ×
×

(b) The molar mass is found to be M = CV/cV = 2.98/0.075 = 39.7 g/mol which should be 
rounded to 40 since the given value of cV is specified to only two significant figures. 



46. Two formulas (other than the first law of thermodynamics) will be of use to us. It is 
straightforward to show, from Eq. 19-11, that for any process that is depicted as a straight
line on the pV diagram — the work is 

straight 2
i fp p

W V
+

= ∆

which includes, as special cases, W = p∆V for constant-pressure processes and W = 0 for 
constant-volume processes. Further, Eq. 19-44 with Eq. 19-51 gives 

int 2 2

f f
E n RT pV= =

where we have used the ideal gas law in the last step. We emphasize that, in order to 
obtain work and energy in Joules, pressure should be in Pascals (N / m2) and volume 
should be in cubic meters. The degrees of freedom for a diatomic gas is f = 5. 

(a) The internal energy change is 

( ) ( )( ) ( )( )( )3 3 3 3
int int 

3

5 5
2.0 10 Pa 4.0m 5.0 10 Pa 2.0m

2 2
5.0 10 J.

c a c c a aE E p V p V− = − = × − ×

= − ×

(b) The work done during the process represented by the diagonal path is 

( ) ( )( )3 3
diag =  3.5 10 Pa 2.0 m

2
a c

c a

p p
W V V

+= − ×

which yields Wdiag = 7.0×103 J. Consequently, the first law of thermodynamics gives 

3 3 3
diag int diag ( 5.0 10 7.0 10 ) J 2.0 10 J.Q E W= ∆ + = − × + × = ×

(c) The fact that ∆Eint only depends on the initial and final states, and not on the details of 
the “path” between them, means we can write 3

int int int 5.0 10 Jc aE E E∆ = − = − ×  for the 

indirect path, too. In this case, the work done consists of that done during the constant 
pressure part (the horizontal line in the graph) plus that done during the constant volume 
part (the vertical line): 

( )( )3 3 4
indirect 5.0 10 Pa 2.0m 0 1.0 10 J.W = × + = ×



Now, the first law of thermodynamics leads to 

3 4 3
indirect int indirect ( 5.0 10 1.0 10 ) J 5.0 10 J.Q E W= ∆ + = − × + × = ×



47. To model the “uniform rates” described in the problem statement, we have expressed 
the volume and the temperature functions as follows: 

V = Vi  + 
Vf   – Vi

τ f
t           and T  = Ti  + 

Tf  – Ti

τ f
t

where Vi = 0.616 m3, Vf  = 0.308 m3, τ f  = 7200 s, Ti = 300 K and Tf  = 723 K.

(a) We can take the derivative of V with respect to t and use that to evaluate the 
cumulative work done (from t = 0 until t = τ): 

W = p dV  = 
nRT

V
dV
dt dt = 12.2 τ +  238113 ln(14400 − τ) − 2.28 × 106

with SI units understood.  With τ = τ f  our result is W = −77169 J ≈ −77.2 kJ, or |W | ≈
77.2 kJ. 

The graph of cumulative work is shown below. The graph for work done is purely 
negative because the gas is being compressed (work is being done on the gas). 

2000 4000 6000 8000
t

-80000

-60000

-40000

-20000

W

(b) With CV = 3
2 R (since it’s a monatomic ideal gas) then the (infinitesimal) change in 

internal energy is  nCV dT  = 32 nR
dT
dt dt  which involves taking the derivative of the 

temperature expression listed above.  Integrating this and adding this to the work done 
gives the cumulative heat absorbed (from t = 0 until t = τ): 

Q = 
nRT

V
dV
dt   + 3

2 nR
dT
dt dt  = 30.5 τ + 238113 ln(14400 − τ) − 2.28 × 106

with SI units understood. With τ = τ f  our result is Qtotal = 54649 J ≈ 5.46×104 J. 

The graph cumulative heat is shown below.  We see that Q > 0 since the gas is absorbing 
heat.   



2000 4000 6000 8000
t
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20000
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Q

(c) Defining C = 
Qtotal

n(Tf - Ti)
  we obtain C = 5.17 J/mol·K.  We note that this is considerably 

smaller than the constant-volume molar heat CV.

We are now asked to consider this to be a two-step process (time dependence is no longer 
an issue) where the first step is isothermal and the second step occurs at constant volume 
(the ending values of pressure, volume and temperature being the same as before).   

(d) Eq. 19-14 readily yields W = −43222 J ≈ −4.32 ×104 J (or | W | ≈ 4.32 ×104 J ), where 
it is important to keep in mind that no work is done in a process where the volume is held 
constant.

(e) In step 1 the heat is equal to the work (since the internal energy does not change 
during an isothermal ideal gas process), and step 2 the heat is given by Eq. 19-39.  The 
total heat is therefore 88595 ≈ 8.86 ×104 J.   

(f) Defining a molar heat capacity in the same manner as we did in part (c), we now arrive 
at C = 8.38 J/ mol·K. 



48. Referring to Table 19-3, Eq. 19-45 and Eq. 19-46, we have 

int

5

2
7

 .
2

V

p

E nC T nR T

Q nC T nR T

∆ = ∆ = ∆

= ∆ = ∆

Dividing the equations, we obtain 

int 5
.

7

E

Q

∆ =

Thus, the given value Q = 70 J leads to int 50 J.E∆ =



49. The fact that they rotate but do not oscillate means that the value of f given in Table 
19-3 is relevant. Thus, Eq. 19-46 leads to 

( )7 7
1

2 2
f

p f i i
i

T
Q nC T n R T T nRT

T
= ∆ = − = −

where Ti = 273 K and n = 1.0 mol. The ratio of absolute temperatures is found from the 
gas law in ratio form (see Sample Problem 19-1). With pf = pi we have 

2.f f

i i

T V

T V
= =

Therefore, the energy added as heat is 

( )( )( ) ( ) 37
1.0 mol 8.31 J/mol K 273K 2 1 8.0 10 J.

2
Q = ⋅ − ≈ ×



50. (a) Using M = 32.0 g/mol from Table 19-1 and Eq. 19-3, we obtain 

sam 12.0 g
0.375 mol.

32.0 g/mol

M
n

M
= = =

(b) This is a constant pressure process with a diatomic gas, so we use Eq. 19-46 and 
Table 19-3. We note that a change of Kelvin temperature is numerically the same as a 
change of Celsius degrees. 

( ) ( )( ) 37 7
0.375 mol 8.31 J/mol K 100 K 1.09 10 J.

2 2pQ nC T n R T= ∆ = ∆ = ⋅ = ×

(c) We could compute a value of ∆Eint from Eq. 19-45 and divide by the result from part 
(b), or perform this manipulation algebraically to show the generality of this answer (that 
is, many factors will be seen to cancel). We illustrate the latter approach: 

( )
( )

5
2int

7
2

5
0.714.

 7

n R TE

Q n R T

∆∆ = = ≈
∆



51. (a) Since the process is at constant pressure, energy transferred as heat to the gas is 
given by Q = nCp ∆T, where n is the number of moles in the gas, Cp is the molar specific 
heat at constant pressure, and ∆T is the increase in temperature. For a diatomic ideal gas 

7
2 .pC R=  Thus 

( ) ( ) ( ) 37 7
4.00mol 8.31J/mol K 60.0 K 6.98 10 J.

2 2
Q nR T= ∆ = ⋅ = ×

(b) The change in the internal energy is given by ∆Eint = nCV ∆T, where CV is the specific 
heat at constant volume. For a diatomic ideal gas 5

2VC R= , so 

( ) ( ) ( ) 3
int

5 5
4.00mol 8.31J/mol.K 60.0 K 4.99 10 J.

2 2
E nR T∆ = ∆ = = ×

(c) According to the first law of thermodynamics, ∆Eint = Q – W, so 

3 3 3
int 6.98 10 J 4.99 10 J = 1.99 10 J.W Q E= − ∆ = × − × ×

(d) The change in the total translational kinetic energy is 

( ) ( ) ( ) 33 3
4.00mol 8.31J/mol K 60.0 K 2.99 10 J.

2 2
K nR T∆ = ∆ = ⋅ = ×



52. The fact that they rotate but do not oscillate means that the value of f given in Table 
19-3 is relevant. In §19-11, it is noted that γ = Cp/CV so that we find γ = 7/5 in this case. 
In the state described in the problem, the volume is 

.
( )( ) ( ) 3

5 2

2.0 mol 8.31 J/mol K 300K
0.049 m

1.01 10 N/m

nRT
V

p

⋅
= = =

×

Consequently, 

( ) ( )1.45 2 3 3 2.21.01 10 N/m 0.049 m 1.5 10 N m .pV = × = × ⋅γ



53. (a) Let pi, Vi, and Ti represent the pressure, volume, and temperature of the initial state 
of the gas. Let pf, Vf, and Tf represent the pressure, volume, and temperature of the final 

state. Since the process is adiabatic i i f fpV p Vγ γ= , so 

( )
1.4

4.3 L
1.2atm 13.6atm 14 atm.

0.76 L
i

f i
f

V
p p

V

γ

= = = ≈

We note that since Vi and Vf have the same units, their units cancel and pf has the same 
units as pi.

(b) The gas obeys the ideal gas law pV = nRT, so piVi/pfVf = Ti/Tf and 

( )( )
( )( ) ( ) 213.6atm 0.76L

310K 6.2 10 K.
1.2atm 4.3L

f f
f i

i i

p V
T T

pV
= = = ×



54. (a) We use Eq. 19-54 with 1
2/f iV V =  for the gas (assumed to obey the ideal gas law). 

1.3(2.00)f i
i i f f

i f

p V
pV p V

p V

γ
γ γ= = =

which yields pf = (2.46)(1.0 atm) = 2.46 atm.

(b) Similarly, Eq. 19-56 leads to 

( ) ( )
1

273K 1.23 336 K.i
f i

f

V
T T

V

−

= = =
γ

(c) We use the gas law in ratio form (see Sample Problem 19-1) and note that when p1 = 
p2 then the ratio of volumes is equal to the ratio of (absolute) temperatures. Consequently, 
with the subscript 1 referring to the situation (of small volume, high pressure, and high 
temperature) the system is in at the end of part (a), we obtain 

2 2

1 1

273K
0.813.

336K

V T

V T
= = =

The volume V1 is half the original volume of one liter, so 

( )2 0.813 0.500 L 0.406L.V = =



55. Since ∆Eint does not depend on the type of process, 

( ) ( )int intpath 2 path 1
.E E∆ = ∆

Also, since (for an ideal gas) it only depends on the temperature variable (so ∆Eint = 0 for 
isotherms), then 

( ) ( )int intpath1 adiabat
.E E∆ = ∆

Finally, since Q = 0 for adiabatic processes, then (for path 1) 

( )
( ) ( )

int adiabatic expansion

int adiabatic compression

40 J

25 J 25 J.

E W

E W

∆ = − = −

∆ = − = − − =

Therefore, ( )int path 2
40 J + 25 J = 15 J .E∆ = − −



56. (a) Eq. 19-54 leads to

4 = 200
74.3

γ
γ = log(4)/log(200/74.3) = 1.4 = 7/5. 

This implies that the gas is diatomic (see Table 19-3). 

(b) One can now use either Eq. 19-56 (as illustrated in part (a) of Sample Problem 19-9) 
or use the ideal gas law itself.  Here we illustrate the latter approach: 

Pf Vf

 Pi Vi
  =

nRTf

 nRTi
Tf  =  446 K . 

(c) Again using the ideal gas law: n = Pi Vi /RTi = 8.10 moles.  The same result would, of 
course, follow from n = Pf Vf /RTf . 



57. The aim of this problem is to emphasize what it means for the internal energy to be a 
state function.  Since path 1 and path 2 start and stop at the same places, then the internal 
energy change along path 1 is equal to that along path 2.  Now, during isothermal 
processes (involving an ideal gas) the internal energy change is zero, so the only step in 
path 1 that we need to examine is step 2.  Eq. 19-28 then immediately yields  –20 J as the 
answer for the internal energy change. 



58. (a) In the free expansion from state 0 to state 1 we have Q = W = 0, so ∆Eint = 0, 
which means that the temperature of the ideal gas has to remain unchanged. Thus the 
final pressure is 

0 0 0 0 1
1 0

1 0 0

1 1
 0.333.

3.00 3.00 3.00

p V p V p
p p

V V p
= = = = =

(b) For the adiabatic process from state 1 to 2 we have p1V1
γ =p2V2

γ, i.e., 

( ) ( )
1

3
0 0 0 0

1
3.00 3.00

3.00
p V p V

γ γ=

which gives γ = 4/3. The gas is therefore polyatomic. 

(c) From T = pV/nR we get 

( )
1

2 2 2 3

1 1 1

3.00 1.44.
K T p

K T p
= = = =



59. In the following 3
2VC R=  is the molar specific heat at constant volume, 5

2pC R=  is 

the molar specific heat at constant pressure, ∆T is the temperature change, and n is the 
number of moles. 

The process 1 → 2 takes place at constant volume.  

(a) The heat added is 

( )( ) ( ) 33 3
1.00mol 8.31J/mol K 600 K 300K 3.74 10 J.

2 2VQ nC T nR T= ∆ = ∆ = ⋅ − = ×

(b) Since the process takes place at constant volume the work W done by the gas is zero, 
and the first law of thermodynamics tells us that the change in the internal energy is 

3
int 3.74 10 J.E Q∆ = = ×

(c) The work W done by the gas is zero. 

The process 2 → 3 is adiabatic.  

(d) The heat added is zero.  

(e) The change in the internal energy is 

( )( )( ) 3
int

3 3
1.00 mol 8.31J/mol K 455K 600K 1.81 10 J.

2 2VE nC T nR T∆ = ∆ = ∆ = ⋅ − = − ×

(f) According to the first law of thermodynamics the work done by the gas is 

3
int 1.81 10 J.W Q E= − ∆ = + ×

The process 3 → 1 takes place at constant pressure.  

(g) The heat added is 

35 5
(1.00 mol) (8.31J/mol K) (300K 455K) 3.22 10 J. 

2 2pQ nC T nR T= ∆ = ∆ = ⋅ − = − ×

(h) The change in the internal energy is 



3
int

3 3
(1.00mol) (8.31J/mol K) (300 K 455K) 1.93 10 J.

2 2VE nC T nR T∆ = ∆ = ∆ = ⋅ − = − ×

(i) According to the first law of thermodynamics the work done by the gas is 

3 3 3
int 3.22 10 J 1.93 10 J 1.29 10 J.W Q E= − ∆ = − × + × = − ×

(j) For the entire process the heat added is 

3 33.74 10 J 0 3.22 10 J 520 J.Q = × + − × =

(k) The change in the internal energy is 

3 3 3
int 3.74 10 J 1.81 10 J 1.93 10 J 0.E∆ = × − × − × =

(l) The work done by the gas is 

3 30 1.81 10 J 1.29 10 J 520 J.W = + × − × =

(m) We first find the initial volume. Use the ideal gas law p1V1 = nRT1 to obtain 

2 31
1 5

1

(1.00mol) (8.31J / mol K) (300 K)
2.46 10 m .

(1.013 10 Pa)

nRT
V

p
−⋅= = = ×

×

(n) Since 1 → 2 is a constant volume process V2 = V1 = 2.46 × 10–2 m3. The pressure for 
state 2 is 

52
2 2 3

2

(1.00 mol) (8.31 J / mol K)(600 K)
2.02 10 Pa .

2.46 10 m

nRT
p

V −

⋅= = = ×
×

This is approximately equal to 2.00 atm.  

(o) 3 → 1 is a constant pressure process. The volume for state 3 is 

2 33
3 5

3

(1.00mol) (8.31J / mol K)(455K)
3.73 10 m .

1.013 10 Pa

nRT
V

p
−⋅= = = ×

×

(p) The pressure for state 3 is the same as the pressure for state 1: p3 = p1 = 1.013 × 105

Pa (1.00 atm) 



60. (a) The p-V diagram is shown below:

Note that o obtain the above graph, we have chosen n = 0.37 moles for concreteness, in 
which case the horizontal axis (which we note starts not at zero but at 1) is to be 
interpreted in units of cubic centimeters, and the vertical axis (the absolute pressure) is in 
kilopascals.  However, the constant volume temp-increase process described in the third 
step (see problem statement) is difficult to see in this graph since it coincides with the 
pressure axis. 

(b) We note that the change in internal energy is zero for an ideal gas isothermal process, 
so (since the net change in the internal energy must be zero for the entire cycle) the 
increase in internal energy in step 3 must equal (in magnitude) its decease in step 1.  By 
Eq. 19-28, we see this number must be 125 J. 

(c) As implied by Eq. 19-29, this is equivalent to heat being added to the gas.



61. (a) The ideal gas law leads to 

( )( ) ( )
5

1.00mol 8.31J/mol K 273K

1.01 10 Pa

nRT
V

p

⋅
= =

×

which yields V = 0.0225 m3 = 22.5 L. If we use the standard pressure value given in 
Appendix D, 1 atm = 1.013 × 105 Pa, then our answer rounds more properly to 22.4 L. 

(b) From Eq. 19-2, we have N = 6.02 × 1023 molecules in the volume found in part (a) 
(which may be expressed as V = 2.24 × 104 cm3), so that 

23
19 3

4 3

6.02 10
2.69 10 molecules/cm .

2.24 10 cm

N

V

×= = ×
×



62. Using the ideal gas law, one mole occupies a volume equal to 

( ) ( ) ( ) 10 3
8

1 8.31 50.0
4.16 10 m .

1.00 10

nRT
V

p −= = = ×
×

Therefore, the number of molecules per unit volume is 

( ) ( )23

13A
10 3

1 6.02 10 molecules
1.45 10 .

4.16 10 m

nNN

V V

×
= = = ×

×

Using d = 20.0 × 10–9 m, Eq. 19-25 yields 

( )2

1
38.8 m.

2 N
Vd

λ = =
π



63. In this solution we will use non-standard notation: writing ρ for weight-density 
(instead of mass-density), where ρc refers to the cool air and ρh refers to the hot air.  Then 
the condition required by the problem is 

Fnet  = Fbuoyant –  hot-air-weight   –   balloon-weight  

2.67 × 103 N  = ρcV  – ρhV  – 2.45 × 103 N 

where V = 2.18 × 103 m3 and   ρc = 11.9 N/m3.  This condition leads to ρh = 9.55 N/m3.
Using the ideal gas law to write ρh as PMg/RT where P = 101000 Pascals and M = 0.028 
kg/m3 (as suggested in the problem), we conclude that the temperature of the enclosed air 
should be 349 K. 



64. (a)  Using the atomic mass value in Appendix F, we compute that the molecular mass 
for the (diatomic) hydrogen gas is M = 2.016 g/mol = 0.002016 kg/mol. Eq. 19-35 then  
gives vp =1.44 × 103 m/s. 

(b) At that value of speed the Maxwell distribution (Eq. 19-27) has the value P(vp) =  5.78 
× 10−4.

(c) Eq. 19-29, with the limits indicated in the problem, yields frac = 0.707 = 71%. 

(d) For T = 500 K, the result is vp = 2.03 × 103 m/s. 

(e) Now the Maxwell distribution (Eq. 19-27) has the value P(vp) =  4.09 × 10−4.

(f) As expected (from Eq. 19-35) the value of vp increased. 

(g) We also found that the value of P(vp) decreased.  One way to think of this is that the 
curve (see Fig 19-7(b)) widens as temperature increases (but must maintain the same total 
area, by Eq. 19-28), thus causing the peak value to lower. 



65. We note that ( )3
2K n R T∆ = ∆  according to the discussion in §19-5 and §19-9. Also, 

∆Eint = nCV∆T can be used for each of these processes (since we are told this is an ideal 
gas). Finally, we note that Eq. 19-49 leads to Cp = CV + R ≈ 8.0 cal/mol·K after we 
convert Joules to calories in the ideal gas constant value (Eq. 19-6): R ≈ 2.0 cal/mol·K. 
The first law of thermodynamics Q = ∆Eint + W applies to each process. 

• Constant volume process with ∆T = 50 K and n = 3.0 mol. 
 
(a) Since the change in the internal energy is ∆Eint = (3.0)(6.00)(50) = 900 cal, and the 
work done by the gas is W = 0 for constant volume processes, the first law gives Q = 900 
+ 0 = 900 cal. 

(b) As shown in part (a), W = 0. 

(c) The change in the internal energy is, from part (a), ∆Eint = (3.0)(6.00)(50) = 900 cal. 

(d) The change in the total translational kinetic energy is 

( )3
2(3.0) (2.0) (50) 450cal.K∆ = =

• Constant pressure process with ∆T = 50 K and n = 3.0 mol. 

(e) W = p∆V for constant pressure processes, so (using the ideal gas law)  

W = nR∆T = (3.0)(2.0)(50) = 300 cal. 

The first law gives Q = (900 + 300) cal = 1200 cal. 

(f) From (e), we have W=300 cal. 
 
(g) The change in the internal energy is ∆Eint = (3.0)(6.00)(50) = 900 cal. 
 
(h) The change in the translational kinetic energy is ( )3

2(3.0) (2.0) (50) 450cal.K∆ = =

• Adiabiatic process with ∆T = 50 K and n = 3.0 mol. 

(i) Q = 0 by definition of “adiabatic.” 

(j) The first law leads to W = Q – Eint = 0 – 900 cal = –900 cal. 

(k) The change in the internal energy is ∆Eint = (3.0)(6.00)(50) = 900 cal. 



 
(l) As in part (d) and (h), ( )3

2(3.0) (2.0) (50) 450cal.K∆ = =



66. (a) Since an ideal gas is involved, then ∆Eint = 0 implies T1 = T0 (see Eq. 19-62). 
Consequently, the ideal gas law leads to 

0 0
1 0

1 5.00

V p
p p

V
= =

for the pressure at the end of the sudden expansion. Now, the (slower) adiabatic process 
is described by Eq. 19-54: 

1
2 1 1

2

(5.00)
V

p p p
V

γ
γ= =

as a result of the fact that V2 = V0. Therefore, 

10
2 0(5.00) (5.00)

5.00

p
p pγ γ −= =

which is compared with the problem requirement that p2 = (5.00)0.4 p0. Thus, we find that 
1.4 7 / 5γ = = . Since γ = Cp/CV, we see from Table 19-3 that this is a diatomic gas with 

rotation of the molecules. 

(b) The direct connection between Eint and Kavg is explained at the beginning of §19-8. 
Since ∆Eint = 0 in the free expansion, then K1 = K0, or K1/K0=1.00.

(c) In the (slower) adiabatic process, Eq. 19-56 indicates 

( )
( )

1

int0.4 0.41 2 2
2 1 0

2 int 00

(5.00) (5.00) 1.90.
EV T

T T T
V E T

γ −

= = = = ≈

Therefore, K2/K0 = 1.90. 



67. (a) Differentiating Eq. 19-53, we obtain 

1
(constant) (constant)

dp dp
B V

dV V dV Vγ γ
γ γ
+

−= = − =

which produces the desired result upon using Eq. 19-53 again ( p = (constant)/Vγ ).

(b) Due to the fact that /v B ρ= (from Chapter 17) and p = nRT/V = (Msam/M)RT/V

(from this chapter) with ρ = Msam/V (the definition of density), the speed of sound in an 
ideal gas becomes 

( )sam

sam

/ /
.

/

M M RT Vp RT
v

M V M

γγ γ
ρ

= = =



68. With p = 1.01 × 105 Pa and ρ = 1.29 kg/m3, we use the result of part (b) of the 
previous problem to obtain 

( ) ( )232

5

1.29kg/m 331m/s
1.40.

1.01 10 Pa

v

p

ργ = = =
×



69. (a) We use the result of exercise 58 to express γ in terms of the speed of sound v = fλ.

2 2 2

.
Mv M f

RT RT
γ λ= =

The distance between nodes is half of a wavelength λ = 2 × 0.0677 m, and the molar mass 
in SI units is M = 0.127 kg/mol. Consequently, 

( ) ( ) ( )
( ) ( )

2 2
0.127 2 0.0677 1400

1.37.
8.31 400

γ
×

= =

(b) Using Table 19-3, we find γ = 5/3 ≈ 1.7 for monatomic gases, γ = 7/5 = 1.4 for 
diatomic gases, and γ = 4/3 ≈ 1.3 for polyatomic gases. Our result in part (a) suggests that 
iodine is a diatomic gas. 



70. The ratio is  

mgh
1
2mvrms

2  =
2gh
vrms

2  =
2Mgh
3RT

where we have used Eq. 19-22 in that last step.  With T = 273 K, h = 0.10 m and M = 32 
g/mol = 0.032 kg/mol, we find the ratio equals 9.2 × 10−6.



71. (a) By Eq. 19-28, W = –374 J (since the process is an adiabatic compression).   

(b) Q = 0 since the process is adiabatic.  

(c) By first law of thermodynamics, the change in internal energy is ∆Eint= Q – W = +374 
J.   

(d) The change in the average kinetic energy per atom is ∆Kavg = ∆Eint/N = +3.11 × 10−22 J. 



72. Using Eq. 19-53 in Eq. 18-25 gives 

W = Pi Vi
γ

V
−γ

 dV = PiVi
γ Vf

1−γ
 – Vi

1−γ

1 – γ  . 

Using Eq. 19-54 we can write this as 

W = PiVi

1 – 
Pf

Pi

1−1/γ

1 – γ  . 

In this problem, γ = 7/5 (see Table 19-3) and  Pf /Pi = 2.  Converting the initial pressure 
to Pascals we find Pi Vi = 24240 J.  Plugging in, then, we obtain W = −1.33 × 104 J. 



73. (a) With work being given by W = p∆V = (250)(−0.60) J = −150 J, and the heat 
transfer given as –210 J, then the change in internal energy is found from the first law of 
thermodynamics to be  [–210 – (–150)] J = –60 J. 

(b) Since the pressures (and also the number of moles) don’t change in this process, then 
the volume is simply proportional to the (absolute) temperature.  Thus, the final 
temperature is ¼ of the initial temperature.  The answer is 90 K.  



74. Eq. 19-25 gives the mean free path: 

λ = 
1

2 d2 π εo (N/V)
  =

n R T
2 d2 π εo P N

where we have used the ideal gas law in that last step.  Thus, the change in the mean free 
path is  

∆λ =
n R ∆T

2 d2 π εo P N
  =

R Q
2 d2 π εo P N Cp

where we have used Eq. 19-46.  The constant pressure molar heat capacity is (7/2)R in 
this situation, so (with N = 9 × 1023  and d = 250 ×10−12 m) we find 

∆λ = 1.52 × 10− 9 m  = 1.52 nm . 



75. This is very similar to Sample Problem 19-4 (and we use similar notation here) except 
for the use of Eq. 19-31 for vavg  (whereas in that Sample Problem, its value was just 
assumed).  Thus, 

f = speed
distance  = avgv

λ
  =

p d2

k
16πR
MT   . 

Therefore, with p = 2.02 × 103 Pa, d = 290 × 10−12 m and M = 0.032 kg/mol (see Table 
19-1), we obtain f = 7.03 × 109 s−1.



76. (a) The volume has increased by a factor of 3, so the pressure must decrease 
accordingly (since the temperature does not change in this process).  Thus, the final 
pressure is one-third of the original 6.00 atm.  The answer is 2.00 atm. 

(b) We note that Eq. 19-14 can be written as PiVi ln(Vf /Vi).  Converting “atm” to “Pa” (a 
Pascal is equivalent to a N/m2) we obtain W = 333 J. 

(c) The gas is monatomic so γ = 5/3.  Eq. 19-54 then yields Pf  = 0.961 atm. 

(d) Using Eq. 19-53 in Eq. 18-25 gives 

W = Pi Vi
γ

V
−γ

 dV  =  PiVi
γ Vf

1−γ
 – Vi

1−γ

1 – γ  =
Pf Vf  – Pi Vi

1 – γ

where in the last step Eq. 19-54 has been used. Converting “atm” to “Pa”, we obtain W = 
236 J. 



77. (a) With P1 = (20.0)(1.01 × 105 Pa) and V1 = 0.0015 m3, the ideal gas law gives 

P1V1 = nRT1 T1 = 121.54 K ≈  122 K. 

(b) From the information in the problem, we deduce that T2 = 3T1 = 365 K. 

(c) We also deduce that T3 = T1 which means ∆T = 0 for this process.  Since this involves 
an ideal gas, this implies the change in internal energy is zero here. 



78. (a) We use i i f fpV p Vγ γ=  to compute γ:

( )
( )

( )
( )

5

3 6

ln 1.0atm 1.0 10 atmln 5
.

3ln ln 1.0 10 L 1.0 10 L

i f

f i

p p

V V
γ

×
= = =

× ×

Therefore the gas is monatomic. 

(b) Using the gas law in ratio form (see Sample Problem 19-1), the final temperature is 

( ) ( ) ( )
( ) ( )

5 3

4

6

1.0 10 atm 1.0 10 L
273K 2.7 10 K.

1.0atm 1.0 10 L
f f

f i
i i

p V
T T

pV

× ×
= = = ×

×

(c) The number of moles of gas present is 

( )( )
( )( )

5 3 3

4
1.01 10 Pa 1.0 10 cm

4.5 10 mol.
8.31 J/mol K 273K

i i

i

pV
n

RT

× ×
= = = ×

⋅

(d) The total translational energy per mole before the compression is 

( ) ( ) 33 3
8.31 J/mol K 273K 3.4 10 J.

2 2i iK RT= = ⋅ = ×

(e) After the compression, 

( )( )4 53 3
8.31 J/mol K 2.7 10 K 3.4 10 J.

2 2f fK RT= = ⋅ × = ×

(f) Since 2
rmsv T∝ , we have 

2
rms,

2 4
rms,

273K
0.010.

2.7 10 K
i i

f f

v T

v T
= = =

×



79. (a) The final pressure is 

( ) ( )32atm 1.0 L
8.0atm,

4.0 L
i i

f
f

pV
p

V
= = =

(b) For the isothermal process the final temperature of the gas is Tf = Ti = 300 K. 

(c) The work done is 

( )( )( )5 3 3

3

4.0L
ln ln 32atm 1.01 10 Pa atm 1.0 10 m ln

1.0 L

4.4 10 J.

f f
i i i

i i

V V
W nRT pV

V V
−= = = × ×

= ×

For the adiabatic process i i f fpV p Vγ γ= . Thus, 

(d) The final pressure is  

( )
5 3

1.0L
32atm 3.2atm.

4.0 L
i

f f
f

V
p p

V

γ

= = =

(e) The final temperature is 

( )( )( )
( )( )

3.2atm 4.0 L 300K
120 K 

32atm 1.0L
f f i

f
i i

p V T
T

pV
= = = .

(f) The work done is 

( )

( )( ) ( ) ( ) ( )( )
int int

5 3 3

3

3 3

2 2
3

3.2atm 4.0 L 32atm 1.0L 1.01 10 Pa atm 10 m L
2

2.9 10 J .

f f i iW Q E E nR T p V pV

−

= − ∆ = −∆ = − ∆ = − −

= − − ×

= ×

If the gas is diatomic, then γ = 1.4.

(g) The final pressure is 

( )
1.4

1.0 L
32atm 4.6atm

4.0L
i

f i
f

V
p p

V

γ

= = = .



(h) The final temperature is  

( )( )( )
( )( )

4.6atm 4.0L 300 K
170K

32atm 1.0L
f f i

f
i i

p V T
T

pV
= = = .

(i) The work done is

( )

( )( ) ( )( ) ( ) ( )
int

5 3 3

3

5 5

2 2
5

4.6atm 4.0 L 32atm 1.0L 1.01 10 Pa atm 10 m L
2

3.4 10 J.

f f i iW Q E nR T p V pV

−

= − ∆ = − ∆ = − −

= − − ×

= ×



80. We label the various states of the ideal gas as follows: it starts expanding 
adiabatically from state 1 until it reaches state 2, with V2 = 4 m3; then continues on to 
state 3 isothermally, with V3 = 10 m3; and eventually getting compressed adiabatically to 
reach state 4, the final state. For the adiabatic process 1 1 2 21 2 p V p Vγ γ→ = , for the 

isothermal process 2 → 3 p2V2 = p3V3, and finally for the adiabatic process 

3 3 4 43 4 p V p Vγ γ→ = . These equations yield 

3 3 32 1 2
4 3 2 1

4 3 4 2 3 4

.
V V VV V V

p p p p
V V V V V V

γ γ γ γ

= = =

We substitute this expression for p4 into the equation p1V1 = p4V4 (since T1 = T4) to obtain 
V1V3 = V2V4. Solving for V4 we obtain 

( ) ( )3 3

31 3
4 3

2

2.0m 10m
5.0 m .

4.0 m

VV
V

V
= = =



81. We write T = 273 K and use Eq. 19-14: 

( ) ( ) ( ) 16.8
1.00 mol 8.31  J/mol K 273K ln

22.4
W = ⋅

which yields W = –653 J. Recalling the sign conventions for work stated in Chapter 18, 
this means an external agent does 653 J of work on the ideal gas during this process. 



82. (a) We use pV = nRT. The volume of the tank is 

( )( )( )300g
17 g mol 2 3

6

8.31 J/mol K 350 K
3.8 10 m 38L.

1.35 10 Pa

nRT
V

p
−

⋅
= = = × =

×

(b) The number of moles of the remaining gas is 

( )( )
( )( )

5 2 38.7 10 Pa 3.8 10 m
13.5mol.

8.31 J/mol K 293K

p V
n

RT

−× ×′′ = = =
′ ⋅

The mass of the gas that leaked out is then ∆m = 300 g – (13.5 mol)(17 g/mol) = 71 g. 



83. From Table 19-3, 3
2 12.5 J/mol KVC R= = ⋅ for a monatomic gas such as helium. To 

obtain the desired result cV we need to effectively “convert” mol → kg, which can be 
done using the molar mass M expressed in kilograms per mole. Although we could look 
up M for helium in Table 19-1 or Appendix F, the problem gives us m so that we can use 
Eq. 19-4 to find M. That is, 

( ) ( )27 23 3
A

kg
6.66 10 kg 6.02 10 / mol 4.01 10 .

mol
M mN − −= = × × = ×

Therefore, cV = CV/M = 3.11 × 103 J/kg·K. 



84. (a) When n = 1, V = Vm = RT/p, where Vm is the molar volume of the gas. So 

( ) ( )
5

8.31J/mol K 273.15 K
22.5 L .

1.01 10 Pam

RT
V

p

⋅
= = =

×

(b) We use rms 3 /v RT M= . The ratio is given by 

rms, He Ne

rms, Ne He

20 g
2.25.

4.0 g

v M

v M
= = =

(c) We use e
2 1( 2 )d N VΗ

−λ = π , where the number of particles per unit volume is given 

by N/V = NAn/V = NAp/RT= p/kT. So 

( )
( )( )

( ) ( )

He 2 2

23

210 5

1

2 / 2

1.38 10 J/K 273.15K
0.840 m .

1.414 1 10 m 1.01 10 Pa

kT

d p kT d p

µ
−

−

λ = =
π π

×
= =

π × ×

(d) λNe = λHe = 0.840 µm.



85. For convenience, the “int” subscript for the internal energy will be omitted in this 
solution. Recalling Eq. 19-28, we note that 

cycle

0

0.A B B C C D D E E A

E

E E E E E→ → → → →

=

∆ + ∆ + ∆ + ∆ + ∆ =

Since a gas is involved (assumed to be ideal), then the internal energy does not change 
when the temperature does not change, so 

0.A B D EE E→ →∆ = ∆ =

Now, with ∆EE→A = 8.0 J given in the problem statement, we have 

8.0 J 0.B C C DE E→ →∆ + ∆ + =

In an adiabatic process, ∆E = –W, which leads to 5.0  J 8.0 J 0,C DE →− + ∆ + =  and we 

obtain ∆EC→D = –3.0 J. 



86. We solve 

helium hydrogen

3 3 (293K)RT R

M M
=

for T. With the molar masses found in Table 19-1, we obtain 

4.0
(293K) 580 K

2.02
T = =

which is equivalent to 307°C. 



87. It is straightforward to show, from Eq. 19-11, that for any process that is depicted as a 
straight line on the pV diagram, the work is 

straight 2
i fp p

W V
+

= ∆

which includes, as special cases, W = p∆V for constant-pressure processes and W = 0 for 
constant-volume processes. Also, from the ideal gas law in ratio form (see Sample 
Problem 1), we find the final temperature: 

2 2
2 1 1

1 1

4 .
p V

T T T
p V

= =

(a) With ∆V = V2 – V1 = 2V1 – V1 = V1 and p1 + p2 = p1 + 2p1 = 3p1, we obtain 

( )1 1 1
1

3 3 3
1.5

2 2 2

W
W p V nRT

nRT
= = = =

where the ideal gas law is used in that final step. 

(b) With ∆T = T2 – T1 = 4T1 – T1 = 3T1 and 3
2VC R= , we find 

( ) int
int 1 1

1

3 9 9
3 4.5.

2 2 2

E
E n R T nRT

nRT

∆
∆ = = = =

(c) The energy added as heat is Q = ∆Eint + W = 6nRT1, or 1/ 6.Q nRT =

(d) The molar specific heat for this process may be defined by 

1

1

6
2 2.

(3 )

nRTQ C
C R

n T n T R
= = = =

∆



88. The gas law in ratio form (see Sample Problem 19-1) leads to 

( )
3

1 2
2 1 3

2 1

4.00 m 313K
5.67 Pa 4.67 Pa .

7.00 m 217 K

V T
p p

V T
= = =



89. It is recommended to look over §19-7 before doing this problem. 

(a) We normalize the distribution function as follows: 

( )o

30
o

3
1 .

v
P v dv C

v
= =

(b) The average speed is 

( )o o
2

o30 0
o

3 3
.

4

v v v
vP v dv v dv v

v
= =

(c) The rms speed is the square root of 

( )o o
2

2 2 2
o30 0

o

3 3
.

5

v v v
v P v dv v dv v

v
= =

Therefore, rms 3 5 0.775 .v v v= ≈o o



90. (a) From Table 19-3, 5
2VC R=  and 7

2pC R= . Thus, Eq. 19-46 yields 

( ) ( ) ( ) 37
3.00 8.31 40.0 3.49 10 J.

2pQ nC T= ∆ = = ×

(b) Eq. 19-45 leads to 

( ) ( ) ( ) 3
int

5
3.00 8.31 40.0 2.49 10 J.

2VE nC T∆ = ∆ = = ×

(c) From either W = Q – ∆Eint or W = p∆T = nR∆T, we find W = 997 J. 

(d) Eq. 19-24 is written in more convenient form (for this problem) in Eq. 19-38. Thus, 
we obtain 

( ) 3
trans avg

3
1.50 10 J.

2
K NK n R T∆ = ∆ = ∆ ≈ ×



91. (a) The temperature is 10.0°C → T = 283 K. Then, with n = 3.50 mol and Vf/V0 = 3/4, 
we use Eq. 19-14: 

0

ln 2.37 kJ.fV
W nRT

V
= = −

(b) The internal energy change ∆Eint vanishes (for an ideal gas) when ∆T = 0 so that the 
First Law of Thermodynamics leads to Q = W = –2.37 kJ. The negative value implies that 
the heat transfer is from the sample to its environment. 



92. (a) Since n/V = p/RT, the number of molecules per unit volume is 

( ) ( )
5

23 25A
A 3J

mol K

1.01 10 Pa molecules
(6.02 10 ) 2.5 10 .

8.31 293K m

N nN p
N

V V RT ⋅

×= = × = ×

(b) Three-fourths of the 2.5 × 1025 value found in part (a) are nitrogen molecules with M
= 28.0 g/mol (using Table 19-1), and one-fourth of that value are oxygen molecules with 
M = 32.0 g/mol. Consequently, we generalize the Msam = NM/NA expression for these two 
species of molecules and write 

25 25 3
23 23

3 28.0 1 32.0
(2.5 10 ) (2.5 10 ) 1.2 10 g.

4 6.02 10 4 6.02 10
× + × = ×

× ×



93. (a) The work done in a constant-pressure process is W = p∆V. Therefore, 

( )2 3 325 N/m (1.8m 3.0 m ) 30J.W = − = −

The sign conventions discussed in the textbook for Q indicate that we should write –75 J 
for the energy which leaves the system in the form of heat. Therefore, the first law of 
thermodynamics leads to 

int ( 75 J) ( 30 J) 45 J.E Q W∆ = − = − − − = −

(b) Since the pressure is constant (and the number of moles is presumed constant), the 
ideal gas law in ratio form (see Sample Problem 19-1) leads to 

3
22

2 1 3
1

1.8m
(300 K) 1.8 10 K.

3.0m

V
T T

V
= = = ×

It should be noted that this is consistent with the gas being monatomic (that is, if one 
assumes 3

2VC R=  and uses Eq. 19-45, one arrives at this same value for the final 

temperature). 



94. Since no heat is transferred in an adiabatic process, then 

total isotherm isotherm

3
ln

12
Q Q W nRT= = =

where the First Law of Thermodynamics (with ∆Eint = 0 during the isothermal process) 
and Eq. 19-14 have been used. With n = 2.0 mol and T = 300 K, we obtain Q = –6912 J 
≈ –6.9 kJ. 
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