
 

 

1. (a) With a understood to mean the magnitude of acceleration, Newton’s second and 

third laws lead to 
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(b) The magnitude of the (only) force on particle 1 is 
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Inserting the values for m1 and a1 (see part (a)) we obtain |q| = 7.1 × 10
–11

 C. 



  

 

 

2. The magnitude of the mutual force of attraction at r = 0.120 m is 
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3. Eq. 21-1 gives Coulomb’s Law, F k
q q

r
= 1 2

2 , which we solve for the distance: 
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4. The fact that the spheres are identical allows us to conclude that when two spheres are 

in contact, they share equal charge. Therefore, when a charged sphere (q) touches an 

uncharged one, they will (fairly quickly) each attain half that charge (q/2). We start with 

spheres 1 and 2 each having charge q and experiencing a mutual repulsive force 
2 2/F kq r= . When the neutral sphere 3 touches sphere 1, sphere 1’s charge decreases to 

q/2. Then sphere 3 (now carrying charge q/2) is brought into contact with sphere 2, a total 

amount of q/2 + q becomes shared equally between them. Therefore, the charge of sphere 

3 is 3q/4 in the final situation. The repulsive force between spheres 1 and 2 is finally 
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5. The magnitude of the force of either of the charges on the other is given by 
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where r is the distance between the charges. We want the value of q that maximizes the 

function f(q) = q(Q – q). Setting the derivative df/dq equal to zero leads to Q – 2q = 0, or 

q = Q/2. Thus, q/Q = 0.500. 



  

 

 

6. For ease of presentation (of the computations below) we assume Q > 0 and q < 0 

(although the final result does not depend on this particular choice).  

 

(a) The x-component of the force experienced by q1 = Q is 
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which (upon requiring F1x = 0) leads to / | | 2 2Q q = , or / 2 2 2.83.Q q = − = −  

 

(b) The y-component of the net force on q2 = q is 
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which (if we demand F2y = 0) leads to / 1/ 2 2Q q = −  . The result is inconsistent with 

that obtained in part (a). Thus, we are unable to construct an equilibrium configuration 

with this geometry, where the only forces present are given by Eq. 21-1. 



  

 

 

7. The force experienced by q3 is 
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(a) Therefore, the x-component of the resultant force on q3 is 
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(b) Similarly, the y-component of the net force on q3 is 
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8. (a) The individual force magnitudes (acting on Q) are, by Eq. 21-1, 
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which leads to |q1| = 9.0 |q2|. Since Q is located between q1 and q2, we conclude q1 and q2 

are like-sign. Consequently, q1/q2 = 9.0. 

 

(b) Now we have 
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which yields |q1| = 25 |q2|. Now, Q is not located between q1 and q2, one of them must 

push and the other must pull. Thus, they are unlike-sign, so q1/q2 = –25. 



  

 

 

9. We assume the spheres are far apart. Then the charge distribution on each of them is 

spherically symmetric and Coulomb’s law can be used. Let q1 and q2 be the original 

charges. We choose the coordinate system so the force on q2 is positive if it is repelled by 

q1. Then, the force on q2 is 
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where r = 0.500 m. The negative sign indicates that the spheres attract each other. After 

the wire is connected, the spheres, being identical, acquire the same charge. Since charge 

is conserved, the total charge is the same as it was originally. This means the charge on 

each sphere is (q1 + q2)/2. The force is now one of repulsion and is given by 
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We solve the two force equations simultaneously for q1 and q2. The first gives the product 
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and the second gives the sum 

 

q q r
F

k

b
1 2

62 2 0 500
0 0360

2 00 10+ = =
× ⋅

= × −.
.

.m
N

8.99 10 N m C
C

9 2 2b g  

 

where we have taken the positive root (which amounts to assuming q1 + q2 ≥ 0). Thus, the 

product result provides the relation 

 

( )12 2

2

1

3.00 10 C
q

q

−− ×
=  

 

which we substitute into the sum result, producing 
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Multiplying by q1 and rearranging, we obtain a quadratic equation 
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The solutions are 
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If the positive sign is used, q1 = 3.00 × 10
–6

 C, and if the negative sign is used, 
6

1 1.00 10  Cq −= − × .  

 

(a) Using q2 = (–3.00 × 10
–12

)/q1 with q1 = 3.00 × 10
–6

 C, we get 6

2 1.00 10  Cq −= − × .  

 

(b) If we instead work with the q1 = –1.00 × 10
–6

 C root, then we find 6

2 3.00 10  Cq −= × .  

 

Note that since the spheres are identical, the solutions are essentially the same: one sphere 

originally had charge –1.00 × 10
–6

 C and the other had charge +3.00 × 10
–6

 C.  

 

What if we had not made the assumption, above, that q1 + q2 ≥ 0? If the signs of the 

charges were reversed (so q1 + q2 < 0), then the forces remain the same, so a charge of 

+1.00 × 10
–6

 C on one sphere and a charge of –3.00 × 10
–6

 C on the other also satisfies 

the conditions of the problem. 



  

 

 

10. With rightwards positive, the net force on q3 is 
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We note that each term exhibits the proper sign (positive for rightward, negative for 

leftward) for all possible signs of the charges. For example, the first term (the force 

exerted on q3 by q1) is negative if they are unlike charges, indicating that q3 is being 

pulled toward q1, and it is positive if they are like charges (so q3 would be repelled from 

q1). Setting the net force equal to zero L23= L12 and canceling k, q3 and L12 leads to 
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11. (a) Eq. 21-1 gives 
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(b) A force diagram is shown as well as our choice of y axis (the dashed line). 

 

 
 

The y axis is meant to bisect the line between q2 and q3 in order to make use of the 

symmetry in the problem (equilateral triangle of side length d, equal-magnitude charges 

q1 = q2 = q3 = q). We see that the resultant force is along this symmetry axis, and we 

obtain 
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12. (a) According to the graph, when q3 is very close to q1 (at which point we can 

consider the force exerted by particle 1 on 3 to dominate) there is a (large) force in the 

positive x direction.  This is a repulsive force, then, so we conclude q1 has the same sign 

as q3.  Thus, q3 is a positive-valued charge. 

 

(b) Since the graph crosses zero and particle 3 is between the others, q1 must have the 

same sign as q2, which means it is also positive-valued.  We note that it crosses zero at r  

= 0.020 m (which is a distance d = 0.060 m from q2).  Using Coulomb’s law at that point, 

we have 
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or q2/q1 = 9.0. 



  

 

 

3

being pulled by one and pushed by the other (since q1 and q2 have different signs); in this 

region this means the two force arrows on q3 are in the same direction and cannot cancel.  

It should also be clear that off-axis (with the axis defined as that which passes through the 

two fixed charges) there are no equilibrium positions. On the semi-infinite region of the 

axis which is nearest q2 and furthest from q1 an equilibrium position for q3 cannot be 

found because |q1| < |q2| and the magnitude of force exerted by q2 is everywhere (in that 

region) stronger than that exerted by q1 on q3. Thus, we must look in the semi-infinite 

region of the axis which is nearest q1 and furthest from q2, where the net force on q3 has 

magnitude 
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with d = 10 cm and x assumed positive. We set this equal to zero, as required by the 

problem, and cancel k and q3. Thus, we obtain 
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which yields (after taking the square root) 
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for the distance between q3 and q1.  

 

(b) As stated above, y = 0.  

13. (a) There is no equilibrium position for q  between the two fixed charges, because it is 



  

 

 

14. Since the forces involved are proportional to q, we see that the essential difference 

between the two situations is Fa ∝ qB + qC  (when those two charges are on the same side) 

versus Fb ∝ −qB + qC  (when they are on opposite sides).  Setting up ratios, we have 

 
Fa

 Fb
  =  

qB + qC 

- qB + qC 
         

20.14

-2.877
  =  

1 + r

-1 + r
  

 

where in the last step we have canceled (on the left hand side) 10
−24 

N from the numerator 

and the denominator, and (on the right hand side) introduced the symbol r = qC /qB .  

After noting that the ratio on the left hand side is very close to – 7, then, after a couple of 

algebra steps, we are led to 
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The magnitude of the force exerted by q1 on q2 is 
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(b) The vector F21   is directed towards q1 and makes an angle θ with the +x axis, where 
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(c) Let the third charge be located at (x3, y3), a distance r from q2. We note that q1, q2 and 

q3 must be collinear; otherwise, an equilibrium position for any one of them would be 

impossible to find. Furthermore, we cannot place q3 on the same side of q2 where we also 

find q1, since in that region both forces (exerted on q2 by q3 and q1) would be in the same 

direction (since q2 is attracted to both of them). Thus, in terms of the angle found in part 

(a), we have x3 = x2 – r cosθ and y3 = y2 – r sinθ (which means y3 > y2 since θ is negative). 

The magnitude of force exerted on q2 by q3 is 2

23 2 3| |F k q q r= , which must equal that of 

the force exerted on it by q1 (found in part (a)). Therefore, 
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Consequently, x3 = x2 – r cosθ = –2.0 cm – (6.45 cm) cos(–10°) = –8.4 cm, 

 

(d) and y3 =  y2 – r sinθ = 1.5 cm – (6.45 cm) sin(–10°) = 2.7 cm. 

15. (a) The distance between q  and q  is 



  

 

 

16. (a) For the net force to be in the +x direction, the y components of the individual 

forces must cancel. The angle of the force exerted by the q1 = 40 µC charge on 

3 20q Cµ=  is 45°, and the angle of force exerted on q3 by Q is at –θ where 
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Therefore, cancellation of y components requires 
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from which we obtain |Q| = 83 µC. Charge Q is “pulling” on q3, so (since q3 > 0) we 

conclude Q = –83 µC. 

 

(b) Now, we require that the x components cancel, and we note that in this case, the angle 

of force on q3 exerted by Q is +θ (it is repulsive, and Q is positive-valued). Therefore, 

 

( ) ( )
1 3 3

2 2
2 2

cos 45 cos

0.02 2 (0.030) (0.020)

q q Qq
k k θ° =

+
 

 

from which we obtain Q = 55.2 µC 55 Cµ≈ . 



  

 

 

17. (a) If the system of three charges is to be in equilibrium, the force on each charge 

must be zero. The third charge q3 must lie between the other two or else the forces acting 

on it due to the other charges would be in the same direction and q3 could not be in 

equilibrium. Suppose q3 is at a distance x from q, and L – x from 4.00q. The force acting 

on it is then given by 
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where the positive direction is rightward. We require F3 = 0 and solve for x. Canceling 

common factors yields 1/x
2
 = 4/(L – x)

2
 and taking the square root yields 1/x = 2/(L – x). 

The solution is x = L/3. 

 

The force on q is 
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The signs are chosen so that a negative force value would cause q to move leftward. We 

require Fq = 0 and solve for q3: 
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where x = L/3 is used. We may easily verify that the force on 4.00q also vanishes: 
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(b) As seen above, q3 is located at x = L/3. With L = 9.00 cm, we have x = 3.00 cm. 

 

(c) Similarly, the y coordinate of q3 is y = 0.  



  

 

 

18. (a) We note that cos(30º) = 
1

2
 3 , so that the dashed line distance in the figure is 

2 / 3r d= .  We net force on q1 due to the two charges q3 and q4 (with |q3| = |q4| = 1.60 × 

10
−19

 C) on the y axis has magnitude 
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This must be set equal to the magnitude of the force exerted on q1 by q2 = 8.00 × 10
−19

 C 

= 5.00 |q3| in order that its net force be zero: 
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Given d = 2.00 cm, then this leads to D = 1.92 cm. 

 

(b) As the angle decreases, its cosine increases, resulting in a larger contribution from the 

charges on the y axis.  To offset this, the force exerted by q2 must be made stronger, so 

that it must be brought closer to q1 (keep in mind that Coulomb’s law is inversely 

proportional to distance-squared).  Thus, D must be decreased. 



  

 

 
2

ρ = b/r, we have 
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With b = 3.0 µC/m
2
, r2 = 0.06 m and r1 = 0.04 m, we obtain q = 0.038 µC = 3.8 × 10

−8
 C. 

19. The charge dq within a thin shell of thickness dr is ρ A dr where A = 4πr . Thus, with 



  

 

 

20. If θ is the angle between the force and the x-axis, then  

 

cosθ  =  
x

x
2
 + d

2  . 

 

We note that, due to the symmetry in the problem, there is no y component to the net 

force on the third particle.  Thus, F represents the magnitude of force exerted by q1 or q2 

on q3. Let e = +1.60 × 10
−19

 C, then q1 = q2 = +2e and q3 = 4.0e and we have 
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(a) To find where the force is at an extremum, we can set the derivative of this expression 

equal to zero and solve for x, but it is good in any case to graph the function for a fuller 

understanding of its behavior – and as a quick way to see whether an extremum point is a 

maximum or a miminum.  In this way, we find that the value coming from the derivative 

procedure is a maximum (and will be presented in part (b)) and that the minimum is 

found at the lower limit of the interval.  Thus, the net force is found to be zero at x = 0, 

which is the smallest value of the net force in the interval 5.0 m ≥ x ≥  0. 

 

(b) The maximum is found to be at x = d/ 2  or roughly 12 cm. 

 

(c) The value of the net force at x = 0 is Fnet  = 0. 

 

(d) The value of the net force at x = d/ 2  is Fnet  = 4.9 × 10
−26 

N. 
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where q is the charge on either of them and r is the distance between them. We solve for 

the charge: 
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(b) Let N be the number of electrons missing from each ion. Then, Ne = q, or 
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21. (a) The magnitude of the force between the (positive) ions is given by 



  

 

 

22. The magnitude of the force is 

 

F k
e

r
= = × ⋅F

HG
I
KJ

×

×
= ×

−

−

−
2

2

9

19
2

10
2

98 99 10
160 10

2 82 10
2 89 10.

.

.
.

N m

C

C

m
N.

2

2

c h
c h

 



  

 

 

23. Eq. 21-11 (in absolute value) gives 
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24. (a) Eq. 21-1 gives 
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(b) If n is the number of excess electrons (of charge –e each) on each drop then 
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25. The unit Ampere is discussed in §21-4. The proton flux is given as 1500 protons per 

square meter per second, where each proton provides a charge of q = +e. The current 

through the spherical area 4π R
2
 = 4π (6.37 × 10

6
 m)

2
 = 5.1 × 10

14
 m

2
 would be 
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26. The volume of 250 cm
3
 corresponds to a mass of 250 g since the density of water is 

1.0 g/cm
3
. This mass corresponds to 250/18 = 14 moles since the molar mass of water is 

18. There are ten protons (each with charge q = +e) in each molecule of H2O, so 
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27. Since the graph crosses zero, q1 must be positive-valued: q1 = +8.00e.  We note that it 

crosses zero at r  = 0.40 m.  Now the asymptotic value of the force yields the magnitude 

and sign of q2: 
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3 4

+y axis, where the symbol q is assumed to be a positive value.  Similarly, d is the 

(positive) distance from the origin q4 = − on the −y axis.  If we take each angle θ in the 

figure to be positive, then we have tanθ = d/R and cosθ = R/r (where r is the dashed line 

distance shown in the figure).  The problem asks us to consider θ to be a variable in the 

sense that, once the charges on the x axis are fixed in place (which determines R), d can 

then be arranged to some multiple of R, since d = R tanθ.   The aim of this exploration is 

to show that if q is bounded then θ (and thus d) is also bounded. 

  

From symmetry, we see that there is no net force in the vertical direction on q2 = –e 

sitting at a distance R to the left of the coordinate origin.  We note that the net x force 

caused by q3 and q4 on the y axis will have a magnitude equal to 
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Consequently, to achieve a zero net force along the x axis, the above expression must 

equal the magnitude of the repulsive force exerted on q2 by q1 = –e. Thus, 

 

2 q e cos
3
(θ)

4πεo R
2   =  

 e
2
 

4πεo R
2              q =  

e

2 cos
3
(θ)

  . 

 

Below we plot q/e as a function of the angle (in degrees):  

 

 
 

The graph suggests that q/e < 5 for θ < 60º, roughly.  We can be more precise by solving 

the above equation.  The requirement  that q ≤ 5e  leads to  

 

e

2 cos
3
(θ)

 ≤ 5e             
1

(10)
1/3  ≤ cosθ 

 

28. Let d be the vertical distance from the coordinate origin to q  = −q and q  = −q on the 



  

which yields θ  ≤ 62.34º.  The problem asks for “physically possible values,” and it is 

reasonable to suppose that only positive-integer-multiple values of e are allowed for q.  If 

we let q = Ne, for N = 1 … 5, then θN will be found by taking the inverse cosine of the 

cube root of (1/2N).   

 

(a) The smallest value of angle is θ1 = 37.5º (or 0.654 rad). 

 

(b) The second smallest value of angle is θ2 = 50.95º (or 0.889 rad). 

 

(c) The third smallest value of angle is θ3 = 56.6º (or 0.988 rad). 



  

 

 

29. (a) Every cesium ion at a corner of the cube exerts a force of the same magnitude on 

the chlorine ion at the cube center. Each force is a force of attraction and is directed 

toward the cesium ion that exerts it, along the body diagonal of the cube. We can pair 

every cesium ion with another, diametrically positioned at the opposite corner of the cube. 

Since the two ions in such a pair exert forces that have the same magnitude but are 

oppositely directed, the two forces sum to zero and, since every cesium ion can be paired 

in this way, the total force on the chlorine ion is zero. 

 

(b) Rather than remove a cesium ion, we superpose charge –e at the position of one 

cesium ion. This neutralizes the ion, and as far as the electrical force on the chlorine ion 

is concerned, it is equivalent to removing the ion. The forces of the eight cesium ions at 

the cube corners sum to zero, so the only force on the chlorine ion is the force of the 

added charge. 

 

The length of a body diagonal of a cube is 3a , where a is the length of a cube edge. 

Thus, the distance from the center of the cube to a corner is d a= 3 2d i . The force has 

magnitude 

 

F k
e

d

ke

a
= = =

× ⋅ ×

×
= ×

−

−

−
2

2

2

2

9 2 2 19
2

9
2

9

3 4

8 99 10 160 10

3 4 0 40 10
19 10b g

c hc h
b gc h

. .

.
. .

N m C C

m
N  

 

Since both the added charge and the chlorine ion are negative, the force is one of 

repulsion. The chlorine ion is pushed away from the site of the missing cesium ion. 



  

 

 

30. (a) Since the proton is positively charged, the emitted particle must be a positron       

(as opposed to the negatively charged electron) in accordance with the law of charge 

conservation. 

 

(b) In this case, the initial state had zero charge (the neutron is neutral), so the sum of 

charges in the final state must be zero.  Since there is a proton in the final state, there 

should also be an electron (as opposed to a positron) so that Σq = 0. 



  

 

 

number of neutrons, and the number of electrons are each conserved. Atomic numbers 

(numbers of protons and numbers of electrons) and molar masses (combined numbers of 

protons and neutrons) can be found in Appendix F of the text. 

 

(a) 
1
H has 1 proton, 1 electron, and 0 neutrons and 

9
Be has 4 protons, 4 electrons, and 9 – 

4 = 5 neutrons, so X has 1 + 4 = 5 protons, 1 + 4 = 5 electrons, and 0 + 5 – 1 = 4 neutrons. 

One of the neutrons is freed in the reaction. X must be boron with a molar mass of 5 + 4 

= 9 g/mol: 
9
B. 

 

(b) 
12

C has 6 protons, 6 electrons, and 12 – 6 = 6 neutrons and 
1
H has 1 proton, 1 electron, 

and 0 neutrons, so X has 6 + 1 = 7 protons, 6 + 1 = 7 electrons, and 6 + 0 = 6 neutrons. It 

must be nitrogen with a molar mass of 7 + 6 = 13 g/mol: 
13

N. 

 

(c) 
15

N has 7 protons, 7 electrons, and 15 – 7 = 8 neutrons; 
1
H has 1 proton, 1 electron, 

and 0 neutrons; and 
4
He has 2 protons, 2 electrons, and 4 – 2 = 2 neutrons; so X has 7 + 

1 – 2 = 6 protons, 6 electrons, and 8 + 0 – 2 = 6 neutrons. It must be carbon with a molar 

mass of 6 + 6 = 12: 
12

C. 

31. None of the reactions given include a beta decay, so the number of protons, the 



  

 

 

32. We note that the problem is examining the force on charge A, so that the respective 

distances (involved in the Coulomb force expressions) between B and A, and between C 

and A, do not change as particle B is moved along its circular path.  We focus on the 

endpoints (θ = 0º and 180º) of each graph, since they represent cases where the forces (on 

A) due to B and C are either parallel or antiparallel (yielding maximum or minimum force 

magnitudes, respectively).  We note, too, that since Coulomb’s law is inversely 

proportional to r² then the (if, say, the charges were all the same) force due to C would be 

one-fourth as big as that due to B (since C is twice as far away from A).  The charges, it 

turns out, are not the same, so there is also a factor of the charge ratio ξ (the charge of C 

divided by the charge of B), as well as the aforementioned ¼ factor.   That is, the force 

exerted by C is, by Coulomb’s law equal to ±¼ξ multiplied by the force exerted by B. 

 

(a) The maximum force is 2F0 and occurs when θ = 180º  (B is to the left of A, while C is 

the right of A).  We choose the minus sign and write  

 

2 F0 = (1 − ¼ξ) F0            ξ = – 4 . 

 

One way to think of the minus sign choice is cos(180º) = –1.  This is certainly consistent 

with the minimum force ratio (zero) at θ = 0º since that would also imply 

 

0 = 1 + ¼ξ          ξ = – 4 . 

 

(b) The ratio of maximum to minimum forces is 1.25/0.75 = 5/3 in this case, which 

implies 

 

5

3
   = 

1 + ¼ξ
1 − ¼ξ          ξ = 16 . 

 

Of course, this could also be figured as illustrated in part (a), looking at the maximum 

force ratio by itself and solving, or looking at the minimum force ratio (¾) at θ = 180º 

and solving for ξ. 



  

 

 

33. We note that, as result of the fact that the Coulomb force is inversely proportional to 

r
2
, a particle of charge Q which is distance d from the origin will exert a force on some 

charge qo at the origin of equal strength as a particle of charge 4Q at distance 2d would 

exert on qo.  Therefore, q6 = +8e on the –y axis could be replaced with a +2e closer to the 

origin (at half the distance); this would add to the q5 = +2e already there and produce +4e 

below the origin which exactly cancels the force due to q2 = +4e above the origin.   

 

Similarly, q4 = +4e to the far right could be replaced by a +e at half the distance, which 

would add to q3 = +e already there to produce a +2e at distance d to the right of the 

central charge q7. The horizontal force due to this +2e is cancelled exactly by that of q1 = 

+2e on the –x axis, so that the net force on q7 is zero. 



  

 
 
34. For the Coulomb force to be sufficient for circular motion at that distance (where r = 
0.200 m and the acceleration needed for circular motion is a = v2/r) the following 
equality is required: 
 

Q q
4πεo r2  =  − 

m v2

 r   . 

 
With q = 4.00 × 10−6 C, m = 0.000800 kg, v = 50.0 m/s, this leads to Q = −1.11 × 10−5 C.   



  

 

 

12  denotes the force on q1 exerted by q2 and 12F be its magnitude. 

 

(a) We consider the net force on q1. 12F  points in the +x direction since q1 is attracted to 

q2. 13F and 14F  both point in the –x direction since q1 is repelled by q3 and q4. Thus, using 

d = 0.0200 m, the net force is 

 

F1 = F12 – F13 – F14  =  
2

0

2 | |

4

e e

dπε
−

  − 
(2e)(e)

4πεo (2d)
2  − 

(2e)(4e)

4πεo(3d)
2  =  + 3.52 × 10

−25 
N , 

 

or 25

1
ˆ(3.52 10  N)i.F −= ×  

 

(b) We now consider the net force on q2.  We note that 21 12F F= −  points in the –x 

direction, and 23F and 24F  both point in the +x direction. The net force is 

 

 23 24 21 2 2 2

0 0 0

4 | | | | 2 | |
0

4 (2 ) 4 4

e e e e e e
F F F

d d dπε πε πε
− − −+ − = + − =  

35. Let F



  

 

 

1

2 A , where 

qA is the initial charge of sphere A.  As a result of the second action, sphere W has charge 

 
1

2
 ( 1

2
 qA  − 32e )  . 

 

As a result of the final action, sphere W now has charge equal to 

 
1

2
 [ 

1

2
 ( 1

2
 qA  − 32e ) + 48e] . 

 
Setting this final expression equal to +18e as required by the problem leads (after a 

couple of algebra steps) to the answer: qA = +16e. 

36. As a result of the first action, both sphere W and sphere A possess charge  q



  

 

 

 

cosθ  =  
d2

d1
2
 + d2

2  . 

 

Thus, using Coulomb’s law for F, we have 

 

  Fx =  F cosθ   =  
q1 q2

4πεo (d1
2
 + d2

2
)
 

d2

d1
2
 + d2

2  = 1.31 × 10
−22 

N . 

37. If θ is the angle between the force and the x axis, then  



  

 

 

3 .  In the initial (highly symmetrical) configuration, 

the net force on the central bead is in the –y direction and has magnitude 3F where F is 

the Coulomb’s law force of one bead on another at distance d = 10 cm.  This is due to the 

fact that the forces exerted on the central bead (in the initial situation) by the beads on the 

x axis cancel each other; also, the force exerted “downward” by bead 4 on the central 

bead is four times larger than the “upward” force exerted by bead 2.  This net force along 

the y axis does not change as bead 1 is now moved, though there is now a nonzero x-

component Fx .  The components are now related by 
 

                                 tan(30°)  =  
Fx

 Fy
        

1

3
    =   

Fx

3F
  

 

which implies Fx = 3 F.  Now, bead 3 exerts a “leftward” force of magnitude F on the 

central bead, while bead 1 exerts a “rightward” force of magnitude F′.  Therefore, 
 

F′ − F = 3 F.            F′  =  ( 3  + 1) F . 
 

The fact that Coulomb’s law depends inversely on distance-squared then implies 

 

r
2
 =      

d
2

3 + 1
               r =   

d

3 + 1
  

 

where r is the distance between bead 1 and the central bead.  Thus r = 6.05 cm. 

 

(b) To regain the condition of high symmetry (in particular, the cancellation of x-

components) bead 3 must be moved closer to the central bead so that it, too, is the 

distance r (as calculated in part(a)) away from it. 

38. (a) We note that tan(30°) = 1/



  

 

 

1
–9

9

2 80 10 CQ −= + ×  is on the y axis at y = –0.003 m. The force on particle 3 (which has a 

charge of q = +18 × 10
–9

 C) is due to the vector sum of the repulsive forces from Q1 and 

Q2. In symbols, 3 1 3 2 3 ,F F F+ = where 

 

| |
| |

| | .F k
q q

r
F k

q q

r
3 1

3 1

3 1

2 3 2
3 2

3 2

2
= =and  

 

Using the Pythagorean theorem, we have r31 = r32 = 0.005 m. In magnitude-angle 

notation (particularly convenient if one uses a vector-capable calculator in polar mode), 

the indicated vector addition becomes 

 

( ) ( ) ( )3 0.518 37 0.518 37 0.829 0 .F = ∠ − ° + ∠ ° = ∠ °  

 

Therefore, the net force is 3
ˆ(0.829 N)iF = . 

 

(b) Switching the sign of Q2 amounts to reversing the direction of its force on q. 

Consequently, we have 

 

( ) ( ) ( )3 0.518 37 0.518 143 0.621 90 .F = ∠ − ° + ∠− ° = ∠− °  

 

Therefore, the net force is 3
ˆ(0.621 N)jF = − . 

39. (a) Charge Q  = +80 × 10  C is on the y axis at y = 0.003 m, and charge 



  

 

 

40. (a) Let x be the distance between particle 1 and particle 3.  Thus, the distance between 

particle 3 and particle 2 is L – x. Both particles exert leftward forces on q3 (so long as it is 

on the line between them), so the magnitude of the net force on q3 is 

 

Fnet =  |F  1 3 
→   

 |  +  |F  2 3 
→   

 |  =  
|q1 q3|

4πεo x
2  + 

|q2 q3|

4πεo (L− x)
2   =  

e
2

 πεo 
 

1

 x
2 + 

27

(L −  x)
2  

 

with the values of the charges (stated in the problem) plugged in.  Finding the value of x 

which minimizes this expression leads to x = ¼ L.  Thus, x = 2.00 cm. 

 

(b) Substituting x = ¼ L back into the expression for the net force magnitude and using 

the standard value for e leads to Fnet = 9.21 × 10
−24 

N. 



  

 

 

41. The individual force magnitudes are found using Eq. 21-1, with SI units (so 

0.02 ma = ) and k as in Eq. 21-5. We use magnitude-angle notation (convenient if one 

uses a vector-capable calculator in polar mode), listing the forces due to +4.00q, +2.00q, 

and  –2.00q charges: 

 

4 60 10 180 2 30 10 90 102 10 145 616 10 15224 24 24 24. . . .× ∠ ° + × ∠ − ° + × ∠ − ° = × ∠ − °− − − −c h c h c h c h
 

(a) Therefore, the net force has magnitude 6.16 × 10
–24

 N. 

 

(b) The direction of the net force is at an angle of –152° (or 208° measured 

counterclockwise from the +x axis). 



  

 

 

42. The charge dq within a thin section of the rod (of thickness dx) is ρ A dx where 
4 24.00 10 mA −= ×  and ρ is the charge per unit volume. The number of (excess) electrons 

in the rod (of length L = 2.00 m) is N = q/(–e) where e is given in Eq. 21-14. 

 

(a) In the case where ρ = –4.00 × 10
–6

 C/m
3
, we have 

 

10

0

| |
= 2.00 10

Lq A AL
N dx

e e e
= = = ×

− −
ρ ρ

. 

 

(b) With ρ = bx
2
 (b = –2.00 × 10

–6
 C/m

5
) we obtain 

 
3

2 10

0

| |
1.33 10 .

3

Lb A b A L
N x dx

e e
= = = ×

−
 



  

 

 

43. The magnitude of the net force on the q = 42 × 10
–6

 C charge is 

 

k
q q

k
q q1

2

2

20 28 0 44.

| |

.
+  

 

where q1 = 30 × 10
–9

 C and |q2| = 40 × 10
–9

 C. This yields 0.22 N. Using Newton’s 

second law, we obtain 

 

m
F

a
= =

×
= × −0 22

10
2 2 10

3

6.
.

N

100 m s
kg.

2
 



  

 

 

44. Let q1 be the charge of one part and q2 that of the other part; thus, q1 + q2 = Q = 6.0 µC. 

The repulsive force between them is given by Coulomb’s law: 

 

F = 
q1 q2

4πεo r
2  =  

q1(Q - q1)

4πεo r
2    . 

 

If we maximize this expression by taking the derivative with respect to q1 and setting 

equal to zero, we find q1 = Q/2 , which might have been anticipated (based on symmetry 

arguments).  This implies q2 =  Q/2 also. With r = 0.0030 m and Q = 6.0 × 10
−6 

C, we find 

 

F = 
(Q/2)(Q/2)

4πεo r
2    ≈ 9.0 × 10

3
 N . 



  

 

 

1 2 = q must 

exactly cancel the force of attraction caused by q4 =  –2Q.  Consequently, 

 

 
2

2 2 2
0 0 0

| 2 |
cos 45

4 4 ( 2 ) 4 2

Qq Q Q Q

a a aπε πε πε
= ° =  

 

or q = Q/ 2 . This implies that / 1/ 2 0.707.q Q = =  

45. For the net force on q  = +Q to vanish, the x force component due to q



  

 

 

46. We are looking for a charge q which, when placed at the origin, experiences Fnet = 0,  

where 

 

F F F Fnet = + +1 2 3 .  

 

The magnitude of these individual forces are given by Coulomb’s law, Eq. 21-1, and 

without loss of generality we assume q > 0. The charges q1 (+6 µC), q2 (–4 µC), and q3 

(unknown), are located on the +x axis, so that we know F1  points towards –x, F2  points 

towards +x, and F3  points towards –x if q3 > 0 and points towards +x if q3 < 0. Therefore, 

with r1 = 8 m, r2 = 16 m and r3 = 24 m, we have 

 

0 1

1

2

2

2

2

3

3

2
= − + −k

q q

r
k

q q

r
k

q q

r

| |
.  

 

Simplifying, this becomes 

 

0
6

8

4

16 242 2

3

2
= − + − q

 

 

where q3 is now understood to be in µC. Thus, we obtain q3 = –45 µC. 



  

 

 

47. There are two protons (each with charge q = +e) in each molecule, so 

 

Q N qA= = × × = × =−6 02 10 2 160 10 19 1023 19 5. . .c hb gc hC C 0.19 MC. 



  

 

 

48. (a) Since the rod is in equilibrium, the net force acting on it is zero, and the net torque 

about any point is also zero. We write an expression for the net torque about the bearing, 

equate it to zero, and solve for x. The charge Q on the left exerts an upward force of 

magnitude (1/4πε0) (qQ/h
2
), at a distance L/2 from the bearing. We take the torque to be 

negative. The attached weight exerts a downward force of magnitude W, at a distance 

/ 2x L−  from the bearing. This torque is also negative. The charge Q on the right exerts 

an upward force of magnitude (1/4πε0) (2qQ/h
2
), at a distance L/2 from the bearing. This 

torque is positive. The equation for rotational equilibrium is 

 

2 2

0 0

1 1 2
0.

4 2 2 4 2

qQ L L qQ L
W x

h hε ε
− − − + =

ππ
 

 

The solution for x is 

 

x
L qQ

h W
= +
F
HG

I
KJ2

1
1

4 0

2πε
.  

 

(b) If FN is the magnitude of the upward force exerted by the bearing, then Newton’s 

second law (with zero acceleration) gives 

 

2 2

0 0

1 1 2
0.

4 4
N

qQ qQ
W F

h hπε πε
− − − =  

 

We solve for h so that FN = 0. The result is 

 

h
qQ

W
= 1

4

3

0πε
.  



  

 

 

49. Charge q1 = –80 × 10
–6

 C is at the origin, and charge q2 = +40 × 10
–6

 C is at x = 0.20 

m. The force on q3 = +20 × 10
–6

 C is due to the attractive and repulsive forces from q1 

and q2, respectively. In symbols, F F F3 3 1 3 2 net = + , where 

 

3 1 3 2
31 322 2

31 3 2

| |
and | | .

q q q q
F k F k

r r
= =  

 

(a) In this case r31 = 0.40 m and r32 = 0.20 m, with F3 1  directed towards –x and F3 2  

directed in the +x direction. Using the value of k in Eq. 21-5, we obtain 3 net
ˆ(89.9 N)iF = .  

 

(b) In this case r31 = 0.80 m and r32 = 0.60 m, with F3 1  directed towards –x and F3 2  

towards +x. Now we obtain 3 net
ˆ( 2.50 N)iF = − .  

 

(c) Between the locations treated in parts (a) and (b), there must be one where F3 0net = . 

Writing r31 = x and r32 = x – 0.20 m, we equate F3 1  and F3 2 , and after canceling 

common factors, arrive at 

 

| |

.
.

q

x

q

x

1

2

2

2
0 2

=
−b g

 

 

This can be further simplified to 

 

( . )

| |
.

x

x

q

q

− = =0 2 1

2

2

2

2

1

 

 

Taking the (positive) square root and solving, we obtain x = 0.683 m. If one takes the 

negative root and ‘solves’, one finds the location where the net force would be zero if q1 

and q2 were of like sign (which is not the case here). 

 

(d) From the above, we see that y = 0. 



  

 

 

50. We are concerned with the charges in the nucleus (not the “orbiting” electrons, if 

there are any). The nucleus of Helium has 2 protons and that of Thorium has 90. 

 

(a) Eq. 21-1 gives 

 

( )9 2 2 19 192
2

2 15 2

8.99 10 N m C (2(1.60 10 C))(90(1.60 10 C))
5.1 10 N.

(9.0 10 m)

q
F k

r

− −

−

× ⋅ × ×
= = = ×

×
 

 

(b) Estimating the helium nucleus mass as that of 4 protons (actually, that of 2 protons 

and 2 neutrons, but the neutrons have approximately the same mass), Newton’s second 

law leads to 

 

a
F

m
= = ×

×
= ×

−

51 10

4 167 10
7 7 10

2

27

28.

.
. .

N

kg
m s2

c h  



  

 

 

51. Coulomb’s law gives 

 

( )9 2 2 19 22

2 2 15 2

0

8.99 10 N m C (1.60 10 C)| | | | ( 3)
3.8 N.

4 9(2.6 10 m)

q q k e
F

r rε

−

−

× ⋅ ×⋅= = = =
π ×

 



  

 

 

52. (a) Since qA = –2.00 nC and qC = +8.00 nC Eq. 21-4 leads to 

 

  
  

  
9 2 2 9 9

6

2 2

0

| | | (8.99 10 N m C )( 2.00 10 C)(8.00 10 C) |
| | 3.60 10 N.

4 (0.200 m)

A C
AC

q q
F

dπε

− −
−× ⋅ − × ×= = = ×  

 

(b) After making contact with each other, both A and B have a charge of 

 

( )2.00 4.00
nC 3.00 nC.

2 2

A Bq q − + −+ = = −  

 

When B is grounded its charge is zero. After making contact with C, which has a charge 

of +8.00 nC, B acquires a charge of [0 + (–8.00 nC)]/2 = –4.00 nC, which charge C has as 

well. Finally, we have QA = –3.00 nC and QB = QC = –4.00 nC. Therefore, 

 
9 2 2 9 9

6

2 2

0

| | | (8.99 10 N m C )( 3.00 10 C)( 4.00 10 C) |
| | 2.70 10 N.

4 (0.200 m)

A C
AC

q q
F

dπε

− −
−× ⋅ − × − ×= = = ×  

 

(c) We also obtain 

 
9 2 2 9 9

6

2 2

0

| | | (8.99 10 N m C )( 4.00 10 C)( 4.00 10 C) |
| | 3.60 10 N.

4 (0.200 m)

B C
BC

q q
F

dπε

− −
−× ⋅ − × − ×= = = ×  



  

 

 

53. Let the two charges be q1 and q2. Then q1 + q2 = Q = 5.0 × 10
–5

 C. We use Eq. 21-1: 

 

( )
( )

9 2 2

1 2

2

8.99 10 N m C
1.0N .

2.0m

q q× ⋅
=  

 

We substitute q2 = Q – q1 and solve for q1 using the quadratic formula. The two roots 

obtained are the values of q1 and q2, since it does not matter which is which. We get 
51.2 10  C−×  and 3.8 × 10

–5
 C. Thus, the charge on the sphere with the smaller charge is 

51.2 10  C−× . 



  

 

 

54. The unit Ampere is discussed in §21-4. Using i for current, the charge transferred is 

 

( )( )4 62.5 10 A 20 10 s 0.50 C.q it −= = × × =  



  

 

 

55. (a) Using Coulomb’s law, we obtain 

 

( ) ( )
( )

29 2 22
91 2

22 2

0

8.99 10 N m C 1.00C
8.99 10 N.

4 1.00m

q q kq
F

r rε
× ⋅

= = = = ×
π

 

 

(b) If r = 1000 m, then 

 

( ) ( )
( )

29 2 22
31 2

22 2 3
0

8.99 10 N m C 1.00C
8.99 10 N.

4 1.00 10 m

q q kq
F

r rε
× ⋅

= = = = ×
π ×

 



  

 

 

56. Keeping in mind that an Ampere is a Coulomb per second, and that a minute is 60 

seconds, the charge (in absolute value) that passes through the chest is 

 

| q |   = ( 0.300 
Coulomb

second
  ) ( 120 seconds ) = 36.0 Coulombs . 

 

This charge consists of a number N of electrons (each of which has an absolute value of 

charge equal to e).  Thus, 

 

      N = 
| q |

e
  =   

36.0 C

1.60 x 10
-19 

C
    =   2.25 × 10

20 
. 



  

 

 

57. When sphere C touches sphere A, they divide up their total charge (Q/2 plus Q) 

equally between them. Thus, sphere A now has charge 3Q/4, and the magnitude of the 

force of attraction between A and B becomes 

 

19

2

(3 / 4)( / 4)
4.68 10 N.

Q Q
F k

d

−= = ×  



  

 

 

58. In experiment 1, sphere C first touches sphere A, and they divided  up their total 

charge (Q/2 plus Q) equally between them. Thus, sphere A and sphere C each acquired 

charge 3Q/4. Then, sphere C touches B and those spheres split up their total charge (3Q/4 

plus –Q/4) so that B ends up with charge equal to Q/4. The force of repulsion between A 

and B is therefore 

 

1 2

(3 / 4)( / 4)Q Q
F k

d
=  

 

at the end of experiment 1. Now, in experiment 2, sphere C first touches B which leaves 

each of them with charge Q/8. When C next touches A, sphere A is left with charge 9Q/16. 

Consequently, the force of repulsion between A and B is 

 

2 2

(9 /16)( / 8)Q Q
F k

d
=  

 

at the end of experiment 2. The ratio is 

 

2

1

(9 /16)(1/ 8)
0.375.

(3 / 4)(1/ 4)

F

F
= =  



  

 

 

59. If the relative difference between the proton and electron charges (in absolute value) 

were 

 

q q

e

p e−
= 0 0000010.  

 

then the actual difference would be q qp e− = × −16 10 25. .C  Amplified by a factor of 29 × 

3 × 10
22

 as indicated in the problem, this amounts to a deviation from perfect neutrality of 

 

∆q = × × × =−29 3 10 16 10 01422 25c hc h. .C C  

 

in a copper penny. Two such pennies, at r = 1.0 m, would therefore experience a very 

large force. Eq. 21-1 gives 

 

F k
q

r
= = ×

∆b g2
2

817 10. .N  



  

 

 

60. With F = meg, Eq. 21-1 leads to 

 

( ) ( )
( ) ( )

2
9 2 2 192

2

231

8.99 10 N m C 1.60 10 C

9.11 10 kg 9.8m se

ke
y

m g

−

−

× ⋅ ×
= =

×
 

 

which leads to y =  ± 5.1 m. We choose 5.1 my = − since the second electron must be 

below the first one, so that the repulsive force (acting on the first) is in the direction 

opposite to the pull of Earth’s gravity. 



  

 

 

61. Letting kq
2
/r

2
 = mg, we get 

 

( ) ( ) ( )
9 2 2

19

27 2

8.99 10 N m C
1.60 10 C 0.119m.

1.67 10 kg 9.8 m s

k
r q

mg

−
−

× ⋅= = × =
×

 



  

 

 

62. The net charge carried by John whose mass is m is roughly 

 

( )

( )
23 19

5

0.0001

(90kg)(6.02 10 molecules mol)(18 electron proton pairs molecule) (1.6 10 C)
0.0001

0.018 kg mol

8.7 10 C,

AmN Ze
q

M
−

=

× ×=

= ×
 

and the net charge carried by Mary is half of that. So the electrostatic force between them 

is estimated to be 

 

( ) ( )
( )

5 2
9 2 2 18

22

2 (8.7 10 C)
8.99 10 N m C 4 10 N.

2 30m

q q
F k

d

×≈ = × ⋅ ≈ ×  

 

Thus, the order of magnitude of the electrostatic force is 1810  N . 



  

 

 

63. (a) Eq. 21-11 (in absolute value) gives 

 

n
q

e
= = ×

×
= ×

−

−

2 00 10

160 10
125 10

6

19

13.

.
. .

C

C
electrons  

 

(b) Since you have the excess electrons (and electrons are lighter and more mobile than 

protons) then the electrons “leap” from you to the faucet instead of protons moving from 

the faucet to you (in the process of neutralizing your body). 

 

(c) Unlike charges attract, and the faucet (which is grounded and is able to gain or lose 

any number of electrons due to its contact with Earth’s large reservoir of mobile charges) 

becomes positively charged, especially in the region closest to your (negatively charged) 

hand, just before the spark. 

 

(d) The cat is positively charged (before the spark), and by the reasoning given in part (b) 

the flow of charge (electrons) is from the faucet to the cat. 

 

(e) If we think of the nose as a conducting sphere, then the side of the sphere closest to 

the fur is of one sign (of charge) and the side furthest from the fur is of the opposite sign 

(which, additionally, is oppositely charged from your bare hand which had stroked the 

cat’s fur). The charges in your hand and those of the furthest side of the “sphere” 

therefore attract each other, and when close enough, manage to neutralize (due to the 

“jump” made by the electrons) in a painful spark. 



  

 

 

64. The two charges are q = αQ (where α is a pure number presumably less than 1 and 

greater than zero) and Q – q = (1 – α)Q. Thus, Eq. 21-4 gives 

 

F
Q Q

d

Q

d
=

−
=

−1

4

1 1

40

2

2

0

2π πε
α α α α

ε
b g b gc h b g

.  

 

The graph below, of F versus α, has been scaled so that the maximum is 1. In actuality, 

the maximum value of the force is Fmax = Q
2
/16πε0 d 

2
. 

 

 
 

(a) It is clear that α = 1

2
 = 0.5 gives the maximum value of F. 

 

(b) Seeking the half-height points on the graph is difficult without grid lines or some of 

the special tracing features found in a variety of modern calculators. It is not difficult to 

algebraically solve for the half-height points (this involves the use of the quadratic 

formula). The results are 

 

1 2

1 1 1 1
1 0.15   and   1 0.85.

2 22 2
α α= − ≈ = + ≈  

 

Thus, the smaller value of α is 1 0.15α = , 

 

(c) and the larger value of α is 2 0.85α = . 



  

 

 

65. (a) The magnitudes of the gravitational and electrical forces must be the same: 

 

1

4 0

2

2 2πε
q

r
G

mM

r
=  

 

where q is the charge on either body, r is the center-to-center separation of Earth and 

Moon, G is the universal gravitational constant, M is the mass of Earth, and m is the mass 

of the Moon. We solve for q: 

 

q GmM= 4 0πε .  

 

According to Appendix C of the text, M = 5.98 × 10
24

 kg, and m = 7.36 × 10
22

 kg, so 

(using 4πε0 = 1/k) the charge is 

 

q =
× ⋅ × ×

× ⋅
= ×

−6 67 10 7 36 10 5 98 10

8 99 10
5 7 10

11 22 24

9

13
. . .

.
.

N m kg kg kg

N m C
C.

2 2

2 2

c hc hc h
 

 

 

(b) The distance r cancels because both the electric and gravitational forces are 

proportional to 1/r
2
. 

 

(c) The charge on a hydrogen ion is e = 1.60 × 10
–19

 C, so there must be 

 

q

e
= ×

×
= ×−

57 10

16 10
36 10

13

19

32.

.
.

C

C
ions.  

 

Each ion has a mass of 1.67 × 10
–27

 kg, so the total mass needed is 

 

36 10 167 10 6 0 1032 27 5. . .× × = ×−c hc hkg kg. 



  

 

 

66. (a) A force diagram for one of the balls is shown below. The force of gravity mg  acts 

downward, the electrical force Fe  of the other ball acts to the left, and the tension in the 

thread acts along the thread, at the angle θ to the vertical. The ball is in equilibrium, so its 

acceleration is zero. The y component of Newton’s second law yields T cosθ – mg = 0 

and the x component yields T sinθ – Fe = 0. We solve the first equation for T and obtain T 

= mg/cosθ. We substitute the result into the second to obtain mg tanθ – Fe = 0. 

 

 
 

Examination of the geometry of Figure 21-43 leads to 

 

tan .θ =
−

x

L x

2

22 2b g
 

 

If L is much larger than x (which is the case if θ is very small), we may neglect x/2 in the 

denominator and write tanθ ≈ x/2L. This is equivalent to approximating tanθ by sinθ. The 

magnitude of the electrical force of one ball on the other is 

 

F
q

x
e =

2

0

24πε
 

 

by Eq. 21-4. When these two expressions are used in the equation mg tanθ = Fe, we 

obtain 

 

mgx

L

q

x
x

q L

mg2

1

4 20

2

2

2

0

1 3

≈ ≈
F
HG

I
KJπ πε ε

/

.  

 

(b) We solve x
3
 = 2kq

2
L/mg) for the charge (using Eq. 21-5): 

 



 

 

( )( )( )
( )( )

323
8

9 2 2

0.010 kg 9.8m s 0.050 m
2.4 10 C.

2 2 8.99 10 N m C 1.20 m

mgx
q

kL

−= = = ± ×
× ⋅

 

 

Thus, the magnitude is 8| | 2.4 10 C.q −= ×  



  

 

 

67. (a) If one of them is discharged, there would no electrostatic repulsion between the 

two balls and they would both come to the position θ = 0, making contact with each other.  

 

(b) A redistribution of the remaining charge would then occur, with each of the balls 

getting q/2. Then they would again be separated due to electrostatic repulsion, which 

results in the new equilibrium separation 

 

( ) ( )
1/3

2 1/3 1/3

0

2 1 1
5.0 cm 3.1 cm.

2 4 4

q L
x x

mgε
′ = = = =

π
 



  

 

 

68. Regarding the forces on q3 exerted by q1 and q2, one must “push” and the other must 

“pull” in order that the net force is zero; hence, q1 and q2 have opposite signs. For 

individual forces to cancel, their magnitudes must be equal: 

 

( ) ( )
1 3 2 3

2 2

12 23 23

| || | | || |q q q q
k k

L L L
=

+
. 

 

With 23 122.00L L= , the above expression simplifies to 
| | | |

.
q q1 2

9 4
=  Therefore,  

1 29 / 4q q= − , or 1 2/ 2.25.q q = −  



  

 

 

69. (a) The charge q placed at the origin is a distance r from Q (which is the positive 

charge on which the forces are being evaluated), and the charge q placed at x = d is a 

distance r´ from Q.  Depending on what region Q is located in, the relation between r, r´ 

and d will be either  

 

  r´ = r + d       if Q is along the –x axis (region A) 

       r´ = d – r        if Q is between the charges (region B) 

r´ = r – d     if Q is at x > d  (region C). 

 

Since all charges in this problem are taken to be positive, then the net force in region A 

will in the –x direction; its magnitude will consist of the individual force magnitudes 

added together.  In region C the net force will be in the +x direction and will consist 

again of the individual force magnitudes added together.  It is in region B where the 

individual force magnitudes must be subtracted, and in order for the result to exhibit the 

correct sign (positive when the net force F  
→

   should point in the +x direction, and so 

forth), we must write 

 

   FB 
→

  = 
q Q

4πεo r
2  − 

q Q

4πεo r´ 
2  = 

q Q

4πεo r
2  − 

q Q

4πεo (d – r)
2  . 

 

If we further adopt the notation suggested in the problem, then r = αd in regions B and C, 

and r = −αd in region A.(since r must by definition be a positive number, yet α is 

negative-valued in region A).  Using this notation, too, it is clear that we can factor out a 

common qQ/4πεod² from our expressions.  For brevity we will use the notation 

 

J = 
q Q

4πεo d
2 . 

 

Then, using the observations noted above, we are able to write down the expressions for 

the force in each region: 

 

FA

→
 = −J 

1

α2 + 
1

(1 − α)
2   

FB

→
 = J 

1

α2 − 
1

(1 − α)
2   

FC

→
 = J 

1

α2 + 
1

(α − 1)
2   

 



  

 
 

(b) We set J =1 in our plot of the force, below.  

 



  

 

 

70. The mass of an electron is m = 9.11 × 10
–31

 kg, so the number of electrons in a 

collection with total mass M = 75.0 kg is 

 

N
M

m
= =

×
= ×−

750

10
8 23 10

31

31.
.

kg

9.11 kg
electrons.  

 

The total charge of the collection is 

 

q Ne= − = − × × = − ×−8 23 10 160 10 132 1031 19 13. . .c hc hC C. 



  

 

 

71. (a) If a (negative) charged particle is placed a distance x to the right of the +2q 

particle, then its attraction to the +2q particle will be exactly balanced by its repulsion 

from the –5q particle is we require 

 

 
2 2

5 2

( )L x x
=

+
 

 

which is obtained by equating the Coulomb force magnitudes and then canceling 

common factors.  Cross-multiplying and taking the square root, we obtain 

 

 
2

5

x

L x
=

+
 

 

which can be rearranged to produce 

 

 1.72 
2

1
5

L
x L= ≈

−
 

 

(b) The y coordinate of particle 3 is y = 0. 
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