
 

 

1. We note that the symbol q2 is used in the problem statement to mean the absolute value 

of the negative charge which resides on the larger shell. The following sketch is for 

1 2q q= . 

 

 
 

The following two sketches are for the cases q1 > q2 (left figure) and q1 < q2 (right figure). 

 

 



 

 

 

2. (a) We note that the electric field points leftward at both points. Using F q E= 0 , and 

orienting our x axis rightward (so î  points right in the figure), we find 
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which means the magnitude of the force on the proton is 6.4 × 10
–18

 N and its direction 
ˆ( i)−  is leftward. 

 

(b) As the discussion in §22-2 makes clear, the field strength is proportional to the 

“crowdedness” of the field lines. It is seen that the lines are twice as crowded at A than at 

B, so we conclude that EA = 2EB. Thus, EB = 20 N/C. 



 

 

 

3. The following diagram is an edge view of the disk and shows the field lines above it. 

Near the disk, the lines are perpendicular to the surface and since the disk is uniformly 

charged, the lines are uniformly distributed over the surface. Far away from the disk, the 

lines are like those of a single point charge (the charge on the disk). Extended back to the 

disk (along the dotted lines of the diagram) they intersect at the center of the disk. 

 

 
 

If the disk is positively charged, the lines are directed outward from the disk. If the disk is 

negatively charged, they are directed inward toward the disk. A similar set of lines is 

associated with the region below the disk. 



 

 

 

4. We find the charge magnitude |q| from E = |q|/4πε0r
2
: 
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5. Since the magnitude of the electric field produced by a point charge q is given by 
2

0| | / 4E q rπε= , where r is the distance from the charge to the point where the field has 

magnitude E, the magnitude of the charge is 
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6. With x1 = 6.00 cm and x2 = 21.00 cm, the point midway between the two charges is 

located at x = 13.5 cm. The values of the charge are q1 = –q2 = – 2.00 × 10
–7

 C, and the 

magnitudes and directions of the individual fields are given by: 
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Thus, the net electric field is  
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7. Since the charge is uniformly distributed throughout a sphere, the electric field at the 

surface is exactly the same as it would be if the charge were all at the center. That is, the 

magnitude of the field is 

 

E
q

R
=

4 0

2πε
 

 

where q is the magnitude of the total charge and R is the sphere radius.  

 

(a) The magnitude of the total charge is Ze, so 
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(b) The field is normal to the surface and since the charge is positive, it points outward 

from the surface. 



 

 

 

8. (a) The individual magnitudes E1  and E2  are figured from Eq. 22-3, where the 

absolute value signs for q2 are unnecessary since this charge is positive. Whether we add 

the magnitudes or subtract them depends on if E1  is in the same, or opposite, direction as 

E2 . At points left of q1 (on the –x axis) the fields point in opposite directions, but there is 

no possibility of cancellation (zero net field) since E1  is everywhere bigger than E2  in 

this region. In the region between the charges (0 < x < L) both fields point leftward and 

there is no possibility of cancellation. At points to the right of q2 (where x > L), E1  points 

leftward and E2  points rightward so the net field in this range is 
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Although |q1| > q2 there is the possibility of Enet = 0  since these points are closer to q2 

than to q1. Thus, we look for the zero net field point in the x > L region: 
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which leads to 
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(b) A sketch of the field lines is shown in the figure below: 

 

 



 

 

 

9. At points between the charges, the individual electric fields are in the same direction 

and do not cancel. Since charge q2= − 4.00 q1 located at x2 = 70 cm has a greater 

magnitude than q1 = 2.1 ×10
−8 

C located at x1 = 20 cm, a point of zero field must be closer 

to q1 than to q2. It must be to the left of q1.  

 

Let x be the coordinate of P, the point where the field vanishes. Then, the total electric 

field at P is given by 
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If the field is to vanish, then 
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Taking the square root of both sides, noting that |q2|/|q1| = 4, we obtain 

 

 
70

2.0
20

x

x

− = ±
−

. 

 

Choosing –2.0 for consistency, the value of x is found to be x = −30 cm.   



 

 

 

10. We place the origin of our coordinate system at point P and orient our y axis in the 

direction of the q4 = –12q charge (passing through the q3 = +3q charge). The x axis is 

perpendicular to the y axis, and thus passes through the identical q1 = q2 = +5q charges. 

The individual magnitudes | |, | |, | |,E E E1 2 3  and | |E4  are figured from Eq. 22-3, where the 

absolute value signs for q1, q2, and q3 are unnecessary since those charges are positive 

(assuming q > 0). We note that the contribution from q1 cancels that of q2 (that is, 

| | | |E E1 2= ), and the net field (if there is any) should be along the y axis, with magnitude 

equal to 
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which is seen to be zero. A rough sketch of the field lines is shown below: 

 

 



 

 

 

11. The x component of the electric field at the center of the square is given by  
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Similarly, the y component of the electric field is  
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Thus, the electric field at the center of the square is 5ˆ ˆj (1.02 10  N/C)j.
y

E E= = ×  



 

 

 

12. By symmetry we see the contributions from the two charges q1 = q2 = +e cancel each 

other, and we simply use Eq. 22-3 to compute magnitude of the field due to q3 = +2e.  

 

(a) The magnitude of the net electric field is 

 
19

9

net 2 2 6 22
0 0 0

1 2 1 2 1 4 4(1.60 10 )
| | (8.99 10 ) 160 N/C.

4 4 4 (6.00 10 )( / 2)

e e e
E

r aaπε πε πε

−

−

×= = = = × =
×

 

 

(b) This field points at 45.0°, counterclockwise from the x axis.  



 

 

 

13. (a) The vertical components of the individual fields (due to the two charges) cancel, 

by symmetry.  Using d = 3.00 m, the horizontal components (both pointing to the –x 

direction) add to give a magnitude of  
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(b) The net electric field points in the –x direction, or 180° counterclockwise from the +x 

axis. 



 

 

 

(caused by q1 and q2) must point in opposite directions for x > 0.  Given their locations in 

the figure, we conclude they are therefore oppositely charged.  Further, since the net field 

points more strongly leftward for the small positive x (where it is very close to q2) then 

we conclude that q2 is the negative-valued charge.  Thus, q1 is a positive-valued charge.  

We write each charge as a multiple of some positive number ξ (not determined at this 

point).  Since the problem states the absolute value of their ratio, and we have already 

inferred their signs, we have q1 = 4 ξ and q2 = −ξ.  Using Eq. 22-3 for the individual fields, 

we find 
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for points along the positive x axis.  Setting Enet = 0 at x = 20 cm (see graph) immediately 

leads to L = 20 cm.    

 

(a) If we differentiate Enet with respect to x and set equal to zero (in order to find where it 

is maximum), we obtain (after some simplification) that location:      
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We note that the result for part (a) does not depend on the particular value of ξ. 

 

(b) Now we are asked to set  ξ = 3e, where e = 1.60 ×10
−19 

C, and evaluate Enet at the 

value of x (converted to meters) found in part (a).  The result is 2.2 ×  10
−8 

N/C . 

14. For it to be possible for the net field to vanish at some x > 0, the two individual fields 
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The directions are indicated in standard format below. We use the magnitude-angle 

notation (convenient if one is using a vector-capable calculator in polar mode) and write 

(starting with the proton on the left and moving around clockwise) the contributions to 

Enet  as follows: 

 

E E E E E∠ − ° + ∠ ° + ∠ − ° + ∠ − ° + ∠ °20 130 100 150 0b g b g b g b g b g.  

 

This yields 3 93 10 76 46. .× ∠ − °−c h , with the N/C unit understood. 

 

(a) The result above shows that the magnitude of the net electric field is 
6

net| | 3.93 10  N/C.E
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(b) Similarly, the direction of Enet  is –76.4° from the x axis.  

15. The field of each charge has magnitude 



 

 

 

16. The net field components along the x and y axes are 
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 The magnitude is the square root of the sum of the components-squared.  Setting the 

magnitude equal to E = 2.00 ×  10
5 

N/C, squaring and simplifying, we obtain 
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With R = 0.500 m, q1 = 2.00 ×  10
− 6 

C and  q2 = 6.00 ×  10
− 6 

C, we can solve this 

expression for cos θ  and then take the inverse cosine to find the angle. There are two 

answers. 

 

(a) The positive value of angle is θ = 67.8°. 

 

(b) The positive value of angle is θ = − 67.8°. 



 

 

 

17. The magnitude of the dipole moment is given by p = qd, where q is the positive 

charge in the dipole and d is the separation of the charges. For the dipole described in the 

problem, 

 

p = × × = × ⋅− − −160 10 4 30 10 6 88 1019 9 28. . . C  m  C mc hc h . 

 

The dipole moment is a vector that points from the negative toward the positive charge. 



 

 

 

18. According to the problem statement, Eact  is Eq. 22-5 (with z = 5d)  

 

q

4πεo (4.5d)
2  – 

q

4πεo (5.5d)
2  = 

40 q

9801 πεo d
2  

 

 and Eapprox is 

 

      
q d

2πεo (5d)
3  =  

q

250πεo d
2 .   

 

The ratio is therefore  
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  = 0.9801  ≈  0.98. 



 

 

 

 

 
 

(a) The magnitude of the net electric field at point P is 
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For r d>> , we write [(d/2)
2
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3
 so the expression above reduces to 
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(b) From the figure, it is clear that the net electric field at point P points in the − j  

direction, or −90° from the +x axis. 

19. Consider the figure below. 



 

 

 

20. Referring to Eq. 22-6, we use the binomial expansion (see Appendix E) but keeping 

higher order terms than are shown in Eq. 22-7: 
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Therefore, in the terminology of the problem, Enext = q d
3
/ 4πε0z

5
.   



 

 

 

magnitude p = qd. The moments point in opposite directions and produce fields in 

opposite directions at points on the quadrupole axis. Consider the point P on the axis, a 

distance z to the right of the quadrupole center and take a rightward pointing field to be 

positive. Then, the field produced by the right dipole of the pair is qd/2πε0(z – d/2)
3
 and 

the field produced by the left dipole is –qd/2πε0(z + d/2)
3
. Use the binomial expansions  
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Let Q = 2qd 
2
. Then, 
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21. Think of the quadrupole as composed of two dipoles, each with dipole moment of 



 

 

 

22. We use Eq. 22-3, assuming both charges are positive. At P, we have 
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Simplifying, we obtain 
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23. (a) We use the usual notation for the linear charge density: λ = q/L.  The arc length is 

L = rθ  if θ is expressed in radians.  Thus,  

 

L = (0.0400 m)(0.698 rad) = 0.0279 m. 

 

With q = −300(1.602 ×  10
−19 

C), we obtain λ =  −1.72 ×  10
−15 

C/m. 

 

(b) We consider the same charge distributed over an area A = πr
2
 = π(0.0200 m)

2
 and 

obtain σ = q/A = −3.82 ×  10
−14 

C/m². 

 

(c) Now the area is four times larger than in the previous part (Asphere = 4πr
2
) and thus 

obtain an answer that is one-fourth as big:  

 

σ = q/Asphere = −9.56 ×  10
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(d) Finally, we consider that same charge spread throughout a volume of 4π r
3
/3 and 

obtain the charge density ρ = charge/volume =  −1.43 ×  10
−12 

C/m
3
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semicircular charge + = ⋅q Rλ π (and that it points downward). Adapting the steps leading 

to Eq. 22-21, we find 
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(a) With R = 8.50 ×  10
− 2 

m and q = 1.50 ×  10
−8 

C, net| | 23.8 N/C.E =  

 

(b) The net electric field netE  points in the ĵ− direction, or 90− ° counterclockwise from 

the +x axis. 

24. From symmetry, we see that the net field at P is twice the field caused by the upper 



 

 

 

25. Studying Sample Problem 22-4, we see that the field evaluated at the center of 

curvature due to a charged distribution on a circular arc is given by 
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where λ = q/rθ with θ in radians. In this problem, each charged quarter-circle produces a 

field of magnitude 
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That produced by the positive quarter-circle points at – 45°, and that of the negative 

quarter-circle points at +45°.  

 

(a) The magnitude of the net field is 
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(b) By symmetry, the net field points vertically downward in the ĵ− direction, or 90− °  

counterclockwise from the +x axis.   



 

 

 

26. We find the maximum by differentiating Eq. 22-16 and setting the result equal to zero. 
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which leads to z R= / 2 . With R = 2.40 cm, we have z = 1.70 cm. 



 

 

 

27. (a) The linear charge density is the charge per unit length of rod. Since the charge is 

uniformly distributed on the rod,   
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(b) We position the x axis along the rod with the origin at the left end of the rod, as shown 

in the diagram.  

 

 
 

Let dx be an infinitesimal length of rod at x. The charge in this segment is dq dx= λ . The 

charge dq may be considered to be a point charge. The electric field it produces at point P 

has only an x component and this component is given by 
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The total electric field produced at P by the whole rod is the integral 
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upon substituting q Lλ− = . With q = 4.23 × 10
−15

 C, L =0.0815 m and a = 0.120 m, we 

obtain 31.57 10  N/C
x

E
−= − × . 

 

(c) The negative sign indicates that the field points in the –x direction, or −180° 

counterclockwise form the +x axis. 

 

(d) If a is much larger than L, the quantity L + a in the denominator can be approximated 

by a and the expression for the electric field becomes 
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Since 50 m  0.0815 m,a L= =  the above approximation applies and we have 
81.52 10  N/C

x
E
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(e) For a particle of charge 154.23 10  C,q
−− = − × the electric field at a distance a = 50 m 

away has a magnitude 8| | 1.52 10  N/C
x

E
−= × . 



 

 

 

28. First, we need a formula for the field due to the arc.  We use the notation λ for the 

charge density, λ = Q/L.  Sample Problem 22-4 illustrates the simplest approach to 

circular arc field problems.  Following the steps leading to Eq. 22-21, we see that the 

general result (for arcs that subtend angle θ) is 

 

Earc = 
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   . 

 

Now, the arc length is L = rθ if θ  is expressed in radians. Thus, using R instead of r, we 

obtain 
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Thus, with θ = π, the problem asks for the ratio  Eparticle / Earc  where Eparticle is given by Eq. 

22-3.  We obtain 
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on an element dx of the rod contains charge dq = λ dx. By symmetry, we conclude that all 

horizontal field components (due to the dq’s) cancel and we need only “sum” (integrate) 

the vertical components. Symmetry also allows us to integrate these contributions over 

only half the rod (0 ≤ x ≤ L/2) and then simply double the result. In that regard we note 

that sin θ = R/r where 2 2
r x R= + .  

 

(a) Using Eq. 22-3 (with the 2 and sin θ factors just discussed) the magnitude is 
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where the integral may be evaluated by elementary means or looked up in Appendix E 

(item #19 in the list of integrals). With 127.81 10  Cq
−= × , 0.145 mL = and R = 0.0600 m, 

we have | | 12.4 N/CE = .  

 

(b) As noted above, the electric field E  points in the +y direction, or 

90+ ° counterclockwise from the +x axis. 

29. We assume q > 0. Using the notation λ = q/L we note that the (infinitesimal) charge 



 

 

 

30. From Eq. 22-26 
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31. At a point on the axis of a uniformly charged disk a distance z above the center of the 

disk, the magnitude of the electric field is 
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where R is the radius of the disk and σ is the surface charge density on the disk. See Eq. 

22-26. The magnitude of the field at the center of the disk (z = 0) is Ec = σ/2ε0. We want 

to solve for the value of z such that E/Ec = 1/2. This means 
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Squaring both sides, then multiplying them by z
2
 + R

2
, we obtain z

2
 = (z

2
/4) + (R

2
/4). 

Thus, z
2
 = R

2
/3, or z R= 3 . With R = 0.600 m, we have z = 0.346 m. 



 

 

 

32. We write Eq. 22-26 as  
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)
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and note that this ratio is 
1

2
  (according to the graph shown in the figure) when z = 4.0 cm.  

Solving this for R we obtain R = z 3  = 6.9 cm. 



 

 

 

disk in figure (a) plus a concentric smaller disk (of radius R/2) with the opposite value of 

σ. That is, 

     

E(b) = E(a) – 
σ

2εo
 1 − 

2R

(2R)
2
 + (R/2)

2   

where 

    

E(a) =  
σ

2εo
 1 − 

2R

(2R)
2
 + R

2   . 

 

We find the relative difference and simplify: 

 

E(a) – E(b)

 E(a)
   =   

1 − 
2

4 + ¼

1 − 
2

4 + 1

   =   0.283 

 

or approximately 28%. 

33. We use Eq. 22-26, noting that the disk in figure (b) is effectively equivalent to the 



 

 

 

 

q E mg E
mg

e
= =

2
. 

 

Using the mass given in the problem, we obtain E = × −2 03 10 7. N C .  

 

(b) Since the force of gravity is downward, then qE  must point upward. Since q > 0 in 

this situation, this implies E  must itself point upward. 

34. (a) Vertical equilibrium of forces leads to the equality 



 

 

 

35. The magnitude of the force acting on the electron is F = eE, where E is the magnitude 

of the electric field at its location. The acceleration of the electron is given by Newton’s 

second law: 

 

a
F

m

eE

m
= = =

× ×

×
= ×

−

−

160 10

9 11 10
351 10

19

31

15
.

.
. .

C 2.00 10 N C

kg
m s

4

2c hc h
 



 

 

 

36. Eq. 22-28 gives 

 

E
F

q

ma

e

m

e
a= =

−
= −FHG
I
KJb g  

 

using Newton’s second law.  

 

(a) With east being the i  direction, we have 

 

E = − ×
×

F
HG

I
KJ × = −

−

−

911 10

160 10
180 10 0 0102

31

19

9.

.
. .

kg

C
m s i N C i

2e j  

 

which means the field has a magnitude of 0.0102 N/C  

 

(b) The result shows that the field E  is directed in the –x direction, or westward. 



 

 

 

37. We combine Eq. 22-9 and Eq. 22-28 (in absolute values). 

 

F q E q
p

z

kep

z
= =

F
HG

I
KJ =

2

2

0

3 3πε
 

 

where we have used Eq. 21-5 for the constant k in the last step. Thus, we obtain 

 

F =
× ⋅ × × ⋅

×

− −

−

2 8 99 10

25 10

9 29

9

. N m C 1.60 10 C 3.6 10 C m

m

2 2 19

3

c hc hc h
c h

 

 

which yields a force of magnitude 6.6 × 10
–15

 N. If the dipole is oriented such that p  is in 

the +z direction, then F  points in the –z direction. 



 

 

 

38. (a) Fe = Ee = (3.0 × 10
6
 N/C)(1.6 × 10

–19
 C) = 4.8 × 10 

– 13
 N. 

 

(b) Fi = Eqion = Ee = 4.8 × 10 
– 13

 N. 



 

 

 

39. (a) The magnitude of the force on the particle is given by F = qE, where q is the 

magnitude of the charge carried by the particle and E is the magnitude of the electric field 

at the location of the particle. Thus, 

 

E
F

q
= = ×

×
= ×

−

−

30 10

2 0 10
15 10

6

9

3.

.
.

N

C
N C.  

 

The force points downward and the charge is negative, so the field points upward. 

 

(b) The magnitude of the electrostatic force on a proton is 

 

( ) ( )19 3 161.60 10 C 1.5 10 N C 2.4 10 N.
el

F eE
− −= = × × = ×  

 

(c) A proton is positively charged, so the force is in the same direction as the field, 

upward. 

 

(d) The magnitude of the gravitational force on the proton is 

 

( ) ( )227 261.67 10 kg 9.8 m s 1.6 10 N.
g

F mg
− −= = × = ×  

 

The force is downward. 

 

(e) The ratio of the forces is 

 
16

10

26

2.4 10 N
1.5 10 .

1.64 10 N

el

g

F

F

−

−

×= = ×
×

 



 

 

 

40. (a) The initial direction of motion is taken to be the +x direction (this is also the 

direction of E ). We use v v a x
f i

2 2 2− = ∆  with vf = 0 and a F m eE m
e

= = −  to solve for 

distance ∆x: 

 

∆x
v

a

m v

eE

i e i=
−

=
−
−

=
− × ×

− × ×
= ×

−

−
−

2 2 31

19
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2 2
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2 160 10
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.
.
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6
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c hc h
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(b) Eq. 2-17 leads to 

 

t
x

v

x

v
i

= = =
×

×
= ×

−
−∆ ∆

avg

m

m s
s.

2 2 712 10
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2 85 10
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c h
 

 

(c) Using ∆v
2
 = 2a∆x with the new value of ∆x, we find 

 

( )

( )( )( )
( )( )

21 2
2

2 2 2 21
2

19 3 3

2
31 6

2 2

2 1.60 10 C 1.00 10 N C 8.00 10 m
      0.112.

9.11 10 kg 5.00 10 m s

e

i e i i i e i

m vK v a x eE x

K m v v v m v

− −

−

∆∆ ∆ ∆ − ∆= = = =

− × × ×
= = −

× ×

 

 

Thus, the fraction of the initial kinetic energy lost in the region is 0.112 or 11.2%. 



 

 

 

41. (a) The magnitude of the force acting on the proton is F = eE, where E is the 

magnitude of the electric field. According to Newton’s second law, the acceleration of the 

proton is a = F/m = eE/m, where m is the mass of the proton. Thus, 

 

a =
× ×

×
= ×

−

−

160 10

167 10
192 10

19

27
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.
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C 2.00 10 N C

kg
m s

4

2c hc h
 

 

(b) We assume the proton starts from rest and use the kinematic equation v v ax
2

0

2 2= +  

(or else x at= 1

2

2  and v = at) to show that 

 

v ax= = × = ×2 2 192 10 0 0100 196 1012 5. . .m s m m s.
2d ib g  



 

 

 

42. When the drop is in equilibrium, the force of gravity is balanced by the force of the 

electric field: mg = −qE, where m is the mass of the drop, q is the charge on the drop, and 

E is the magnitude of the electric field. The mass of the drop is given by m = (4π/3)r
3ρ, 

where r is its radius and ρ is its mass density. Thus, 

 

( ) ( )( )
( )

3 3 26
3

19

5

4 1.64 10 m 851kg m 9.8m s4
8.0 10 C

3 3 1.92 10 N C

mg r g
q

E E

ρ
−

−
π ×π= − = − = − = − ×

×
 

 

and q/e = (−8.0 × 10
–19

 C)/(1.60 × 10
–19

 C) = −5, or 5q e= − . 



 

 

 

43. (a) We use ∆x = vavgt = vt/2: 

 

v
x

t
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×
×

= ×
−

−

2 2 2 0 10
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(b) We use ∆x at= 1
2

2  and E = F/e = ma/e: 

 

E
ma

e

xm

et
= = =

× ×

× ×
= ×

− −

− −

2 2 2 0 10
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2

2 31

19 8
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44. We assume there are no forces or force-components along the x direction. We 

combine Eq. 22-28 with Newton’s second law, then use Eq. 4-21 to determine time t 

followed by Eq. 4-23 to determine the final velocity (with –g replaced by the ay of this 

problem); for these purposes, the velocity components given in the problem statement are 

re-labeled as v0x and v0y respectively. 

 

(a) We have / ( / )a qE m e m E= = −  which leads to 

 
19

213

31

1.60 10 C N ˆ ˆ120 j (2.1 10 m s ) j.
9.11 10 kg C

a

−

−

×= − = − ×
×

 

 

(b) Since vx = v0x in this problem (that is, ax = 0), we obtain 

 

  
m

1.5 10 m s
s

m s m s 1.3 10 s

5

2

t
x

v

v v a t
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y y y
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= + = × + − × ×
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which leads to vy = –2.8 × 10
6
 m/s. Therefore, the final velocity is 

 
5 6ˆ ˆ(1.5 10  m/s) i (2.8 10  m/s) j.v = × − ×  



 

 

 

45. We take the positive direction to be to the right in the figure. The acceleration of the 

proton is ap = eE/mp and the acceleration of the electron is ae = –eE/me, where E is the 

magnitude of the electric field, mp is the mass of the proton, and me is the mass of the 

electron. We take the origin to be at the initial position of the proton. Then, the coordinate 

of the proton at time t is x a t
p

= 1
2

2  and the coordinate of the electron is x L a t
e

= + 1
2

2 .  

They pass each other when their coordinates are the same, or 1
2

2 1
2

2
a t L a t

p e
= + .  This 

means t
2
 = 2L/(ap – ae) and 

 

( ) ( )

( )
31

31 27
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p e e pp e

a eE m m
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a a m meE m eE m

−

− −

−

= = =
− ++

×=
× + ×

= ×

 



 

 

 

46. Due to the fact that the electron is negatively charged, then (as a consequence of Eq. 

22-28 and Newton’s second law) the field E  
→

  pointing in the +y direction (which we will 

call “upward”) leads to a downward acceleration.  This is exactly like a projectile motion 

problem as treated in Chapter 4 (but with g replaced with a = eE/m = 8.78 × 10
11 

m/s
2
).  

Thus, Eq. 4-21 gives 

       

t = 
x

vo cos 40º
  = 

3.00 m

 1.53 x 107 m/s
  = 1.96 × 10

− 6 
s. 

 

This leads (using Eq. 4-23) to  

 

vy = vo sin 40º − a t = − 4.34 × 10
5 
 m/s . 

 

Since the x component of velocity does not change, then the final velocity is  

 

 v  
→

  = (1.53 × 10
6
 m/s) i

^
 − (4.34 × 10

5
 m/s) j

^
  . 
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= −
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Therefore, the force has magnitude equal to 

 

( ) ( )2 2
0.240N 0.0480N 0.245N.F = + =  

 

(b) The angle the force F makes with the +x axis is  

 

1 1 0.0480N
tan tan 11.3

0.240N

y

x

F

F
θ − − −= = = − °  

 

measured counterclockwise from the +x axis. 

 

(c) With m = 0.0100 kg, the (x, y) coordinates at t = 3.00 s can be found by combining 

Newton’s second law with the kinematics equations of Chapters 2–4. The x coordinate is 

 

( )( )
( )

22
2

0.240 3.001
108m.

2 2 2 0.0100

x

x

F t
x a t

m
= = = =  

 

(d) Similarly, the y coordinate is 

 
( )( )

( )

22

2
0.0480 3.001

21.6m.
2 2 2 0.0100

y

y

F t
y a t

m

−
= = = = −  

47. (a) Using Eq. 22-28, we find 



 

 

 

48. We are given σ = 4.00 × 10
−6 

C/m
2
 and various values of z (in the notation of Eq. 22-

26 which specifies the field E of the charged disk). Using this with F = eE (the magnitude 

of Eq. 22-28 applied to the electron) and F = ma, we obtain 

 

(a) The magnitude of the acceleration at a distance R is  

 

a = 
e σ (2 − 2 )

4 m εo
 = 1.16 × 10

16
 m/s

2 
 . 

 

(b) At a distance R/100, a=  
e σ (10001 − 10001 )

20002 m εo
 = 3.94 × 10

16 
m/s

2 
 . 

  

(c) At a distance R/1000, a  =  
e σ (1000001 − 1000001 )

2000002 m εo
 = 3.97 × 10

16 
m/s

2 
 . 

 

(d) The field due to the disk becomes more uniform as the electron nears the center point.  

One way to view this is to consider the forces exerted on the electron by the charges near 

the edge of the disk; the net force on the electron caused by those charges will decrease 

due to the fact that their contributions come closer to canceling out as the electron 

approaches the middle of the disk. 



 

 

 

Eq. 22-28 and Newton’s second law) the field E  
→

  pointing in the same direction as the 

velocity leads to deceleration.  Thus, with t = 1.5 × 10
− 9 

s, we find  

 

v = vo − |a| t = vo − 
eE

m
 t = 2.7 × 10

4 
 m/s . 

 

(b) The displacement is equal to the distance since the electron does not change its 

direction of motion.  The field is uniform, which implies the acceleration is constant.  

Thus, 

 

50 5.0 10 m.
2

v v
d t

−+= = ×  

49. (a) Due to the fact that the electron is negatively charged, then (as a consequence of 



 

 

 

50. (a) Eq. 22-33 leads to τ = ° =pE sin0 0. 

 

(b) With θ = °90 ,  the equation gives 

 

τ = = × × × = × ⋅− − −
pE 2 16 10 85 1019 9 22. .C 0.78 10 m 3.4 10 N C N m.6c hc he jc h  

 

(c) Now the equation gives τ = ° =pE sin180 0.  



 

 

 

51. (a) The magnitude of the dipole moment is 

 

p qd= = × × = × ⋅− − −150 10 9 30 109 6 15. .C 6.20 10 m C m.c hc h  

 

(b) Following the solution to part (c) of Sample Problem 22-6, we find 

 

U U pE180 0 2 2 9 30 10 2 05 1015 11° − = = × = ×− −b g b g c hb g. .1100 J.  



 

 

 

52. Using Eq. 22-35, considering θ as a variable, we note that it reaches its maximum 

value when θ  = −90°: τmax = pE.  Thus, with E = 40 N/C and τmax = 100 × 10
−28 

N·m 

(determined from the graph), we obtain the dipole moment: p = 2.5 × 10
−28 

C·m.   



 

 

 

53. Following the solution to part (c) of Sample Problem 22-6, we find 

 

( ) ( ) ( ) ( )( )0 0 0 0 0

25

23

cos cos 2 cos

2(3.02 10 C m)(46.0 N/C)cos64.0

1.22 10  J.

W U U pE pEθ θ θ θ θ
−

−

= + π − = − + π − =

= × ⋅ °
= ×

 



 

 

 

54. We make the assumption that bead 2 is in the lower half of the circle, partly because 

it would be awkward for bead 1 to “slide through” bead 2 if it were in the path of bead 1 

(which is the upper half of the circle) and partly to eliminate a second solution to the 

problem (which would have opposite angle and charge for bead 2).  We note that the net 

y component of the electric field evaluated at the origin is negative (points down) for all 

positions of bead 1, which implies (with our assumption in the previous sentence) that 

bead 2 is a negative charge.  

 

(a) When bead 1 is on the +y axis, there is no x component of the net electric field, which 

implies bead 2 is on the –y axis, so its angle is –90°. 

 

(b) Since the downward component of the net field, when bead 1 is on the +y axis, is of 

largest magnitude, then bead 1 must be a positive charge (so that its field is in the same 

direction as that of bead 2, in that situation).  Comparing the values of Ey at 0° and at 90° 

we see that the absolute values of the charges on beads 1 and 2 must be in the ratio of 5 to 

4.  This checks with the 180° value from the Ex graph, which further confirms our belief 

that bead 1 is positively charged.  In fact, the 180° value from the Ex graph allows us to 

solve for its charge (using Eq. 22-3): 

 

      q1 = 4πεor²E = 4π( 8.854 × 10
−12 C2

N m2 )(0.60 m)
2 

(5.0 × 10
4  N

C
 ) = 2.0 × 10

− 6 
C . 

 

(c) Similarly, the 0° value from the Ey graph allows us to solve for the charge of bead 2: 

 

 q2 = 4πεor²E = 4π( 8.854 × 10
−12 C2

N m2 )(0.60 m)
2 

(– 4.0 × 10
4 N

C
 ) = –1.6 × 10

− 6 
C . 



 

 

 

55. Consider an infinitesimal section of the rod of length dx, a distance x from the left end, 

as shown in the following diagram.  

 

 
 

It contains charge dq = λ dx and is a distance r from P. The magnitude of the field it 

produces at P is given by 

 

 
2

0

1
.

4

dx
dE

rε
= λ

π
 

 

The x and the y components are 

 

2

1
sin

4
x
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r
θ

ε0
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π

 

and  

 

2

1
cos

4
y

dx
dE

r
θ

ε0

λ= −
π

, 

 

respectively. We use θ as the variable of integration and substitute r = R/cos θ, 

tanx R θ= and dx =  (R/cos
2
 θ) dθ. The limits of integration are 0 and π/2 rad. Thus, 

 

0
00 0 0

sin cos
4 4 4

x
E d

R R R
θ θ θ

ε ε ε
π 2 π 2λ λ λ= − = = −

π π π
 

 

and 

 

/ 2

0
00 0 0

cos sin .
4 4 4

y
E d

R R R

πθ θ θ
ε ε ε

π 2λ λ λ= − = − = −
π π π

 

 



 

We notice that Ex = Ey no matter what the value of R. Thus, E  makes an angle of 45° 

with the rod for all values of R. 



 

 

 

56. From dA = 2πr dr (which can be thought of as the differential of A = πr²) and dq = σ 

dA (from the definition of the surface charge density σ), we have 

 

dq = 
Q

πR
2  2πr dr 

 

where we have used the fact that the disk is uniformly charged to set the surface charge 

density equal to the total charge (Q) divided by the total area (πR
2
).  We next set r = 

0.0050 m and make the approximation dr ≈ 30 × 10
− 6 

m. Thus we get dq ≈ 2.4 × 10
−16 

C. 



 

 

 

57. Our approach (based on Eq. 22-29) consists of several steps. The first is to find an 

approximate value of e by taking differences between all the given data. The smallest 

difference is between the fifth and sixth values:  

 

18.08 × 10 
–19

 C – 16.48 × 10 
– 19

 C = 1.60 × 10
–19

 C 

 

which we denote eapprox. The goal at this point is to assign integers n using this 

approximate value of e: 
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19

6

appeox

19

7

approx
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8

approx

19

9

approx

18.08 10 C
datum6 11.30 11

19.71 10 C
datum7 12.32 12

22.89 10 C
datum8 14.31 14
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datum9 16.33 16

n
e

n
e

n
e

n
e

−

−

−

−

× = =

× = =

× = =
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Next, we construct a new data set (e1, e2, e3 …) by dividing the given data by the 

respective exact integers ni (for i = 1, 2, 3 …): 

 

e e e
n n n

1 2 3

19

1

19

2

19

3

6563 10 8 204 10 1150 10
, ,

.
,

.
,

.b g = × × ×F
HG

I
KJ

− − −C C C
 

 

which gives (carrying a few more figures than are significant) 

 

164075 10 19 19 19. × × ×− − −C,  1.6408 10 C,  1.64286 10 Cc h  
 

as the new data set (our experimental values for e). We compute the average and standard 

deviation of this set, obtaining 

 

e e eexptal avg C= ± = ± × −∆ 1641 0 004 10 19. .b g  

 

which does not agree (to within one standard deviation) with the modern accepted value 

for e. The lower bound on this spread is eavg – ∆e = 1.637 × 10
–19

 C which is still about 

2% too high. 



 

 

 

58. (a) It is clear from symmetry (also from Eq. 22-16) that the field vanishes at the 

center. 

 

(b) The result (E = 0) for points infinitely far away can be reasoned directly from Eq. 22-

16 (it goes as 1/z² as z → ∞) or by recalling the starting point of its derivation (Eq. 22-11, 

which makes it clearer that the field strength decreases as 1/r² at distant points). 

 

(c) Differentiating Eq. 22-16 and setting equal to zero (to obtain the location where it is 

maximum) leads to 

 

dE

dz
  = 

q(R
2
 − 2 z

2
)

4πεo (R
2
 + z

2
)
5/2   = 0          z  = + 

R

2
  = 0.707 R. 

 

(d) Plugging this value back into Eq. 22-16 with the values stated in the problem, we find 

Emax = 3.46 × 10
7 

N/C.  



 

 

 

59. The distance from Q to P is 5a, and the distance from q to P is 3a. Therefore, the 

magnitudes of the individual electric fields are, using Eq. 22-3 (writing 1/4πε0 = k), 

 

E
k Q

a
E

k q

a
Q q

= =
25 92 2  

, .  

 

We note that E
q
 is along the y axis (directed towards ±y in accordance with the sign of q), 

and E
Q

 has x and y components, with  E E
Q x Q = ± 4

5
 and E E

Q y Q = ± 3
5

 (signs 

corresponding to the sign of Q). Consequently, we can write the addition of components 

in a simple way (basically, by dropping the absolute values): 

 

E
k Q

a

E
k Q

a

k q

a

x

y

net 

net 

  

125 

  

125 

 

9 

=

= +

4

3

2

2 2

 

 

(a) Equating E
x net  and E

y net , it is straightforward to solve for the relation between Q 

and q. We obtain / 125 / 9 14.Q q = ≈  

 

(b) We set E
y net = 0  and find the necessary relation between Q and q. We obtain 

/ 125 / 27 4.6.Q q = − ≈ −  



 

 

 

60. First, we need a formula for the field due to the arc.  We use the notation λ for the 

charge density, λ = Q/L.  Sample Problem 22-4 illustrates the simplest approach to 

circular arc field problems.  Following the steps leading to Eq. 22-21, we see that the 

general result (for arcs that subtend angle θ) is 

 

Earc = 
λ

4πεo r
 [sin(θ/2) − sin(−θ/2) ]  = 

λ sin(θ/2)
2πεo r

   . 

 

Now, the arc length is L = rθ if θ is expressed in radians.  Thus, using R instead of r, we 

obtain 

 

Earc = 
Q/L sin(θ/2)

2πεo R
 = 

Q sin(θ/2)
2πεo θ R2   . 

 

Thus, the problem requires Earc = 
1

2
  Eparticle  where Eparticle is given by Eq. 22-3.  Hence, 

 

      
Q sin(θ/2)
2πεo θ R2  = 

1

2
  

Q

4πεo R
2           sin 

θ
2

 = 
θ
4

   

 

where we note, again, that the angle is in radians.  The approximate solution to this 

equation is θ = 3.791 rad ≈ 217°. 



 

 

 

except for the pair that lie on the x axis passing through the center.  This pair of charges 

produces a field pointing to the right  

 

E = 
3 q

4πεo d 
2 î  =  

3 e

4πεo (0.020 m) 
2  = (1.08 × 10

−5 
 N/C) î . 

61. Most of the individual fields, caused by diametrically opposite charges, will cancel, 



 

 

 

 

Q z

4πεo(z
2
+ R

2 
)
3/2   +   

q z

4πεo(z
2
+ (3R)

2 
)
3/2  = 0            q = − Q 

13 13

5 5
  

 

which gives q ≈ −4.19Q.  Note: we set z = 2R in the above calculation. 

62. We use Eq. 22-16, with “q” denoting the charge on the larger ring: 



 

 

 

symmetry, we see the net field component along the x axis is zero; the net field 

component along the y axis points upward. With θ = 60°,   

 

Enet y  =  2 
Q sin θ
4πεoa

2  . 

 

Since  sin(60°) = 3 /2 , we can write this as Enet  = kQ 3 /a
2
 (using the notation of the 

constant k defined in Eq. 21-5).  Numerically, this gives roughly 47 N/C. 

 

(b) From symmetry, we see in this case that the net field component along the y axis is 

zero; the net field component along the x axis points rightward. With θ = 60°,   

 

Enet x  =  2 
Q cos θ
4πεoa

2   . 

 

Since cos(60°) = 1/2, we can write this as Enet  = kQ/a
2
 (using the notation of Eq. 21-5).  

Thus, Enet ≈ 27 N/C. 

63. (a) We refer to the same figure to which problem 63 refers (but without “q”).  From 



 

 

 

1 1 /2 = πR/2; the middle-sized arc has length 

2 2 / 2 (2 ) / 2L r R Rπ π π= = = ; and, the largest arc has L3 = π(3R)/2.  The charge per unit 

length for each arc is λ = q/L where each charge q is specified in the figure.  Following 

the steps that lead to Eq. 22-21 in Sample Problem 22-4, we find  

 

Enet = 
λ1 [2 sin(45o)]

4πεo r1

 + 
λ2 [2 sin(45o)]

4πεo r2

 + 
λ3 [2 sin(45o)]

4πεo r3

    =    
Q 

2 π2 εo R
 2  

 

which yields Enet = 1.62 × 10
6 

 N/C . 

 

(b) The direction is – 45º, measured counterclockwise from the +x axis. 

64. The smallest arc is of length  L  = πr



 

 

 

should be located in between them (so that the field vectors point in the opposite 

direction). Let the coordinate of the second particle be x' (x' > 0). Then, the magnitude of 

the field due to the charge –q1 evaluated at x is given by E = q1/4πε0x
2
, while that due to 

the second charge –4q1 is E' = 4q1 /4πε0(x' – x)
2
. We set the net field equal to zero: 

 

E E Enet   = = ′0  

 

so that 

 

q

x

q

x x

1

0

2

1

0

2
4

4

4π πε ε
=

′ −b g
.  

 

Thus, we obtain x' = 3x = 3(2.0 mm) = 6.0 mm. 

 

(b) In this case, with the second charge now positive, the electric field vectors produced 

by both charges are in the negative x direction, when evaluated at x = 2.0 mm. Therefore, 

the net field points in the negative x direction, or 180°, measured counterclockwise from 

the +x axis. 

65. (a) Since the two charges in question are of the same sign, the point x = 2.0 mm 



 

 

 

66. (a) The electron ec is a distance r = z = 0.020 meter away.  Thus, 

 

Ec = 
e

4πεo r
2   = 3.60 × 10

− 6 
N/C . 

 

(b) The horizontal components of the individual fields (due to the two es charges) cancel, 

and the vertical components add to give 

 

Es, net = 
2 e z

4πεo (R
2
 + z

2
)
3/2   = 2.55 × 10

− 6 
N/C . 

 

(c) Calculation similar to that shown in part (a) now leads to a stronger field 
43.60 10  N/C

c
E

−= ×  from the central charge. 

 

(d) The field due to the side charges may be obtained from calculation similar to that 

shown in part (b). The result is Es, net = 7.09 × 10
−7 

N/C. 

 

(e) Since Ec is inversely proportional to z
2
, this is a simple result of the fact that z is now 

much smaller than in part (a).  For the net effect due to the side charges, it is the 

“trigonometric factor” for the y component (here expressed as  z/ r  ) which shrinks 

almost linearly (as z decreases) for very small z, plus the fact that the x components 

cancel, which leads to the decreasing value of Es, net . 



 

 

 

we can relate it to the magnitude of the field).  Sample Problem 22-4 illustrates the 

simplest approach to circular arc field problems.  Following the steps leading to Eq. 22-

21, we see that the general result (for arcs that subtend angle θ) is 

 

E = 
λ

4πεo r
 [sin(θ/2) − sin(−θ/2) ]  = 

λ sin(θ/2)
2πεo r

   . 

 

Now, the arc length is L = rθ if θ is expressed in radians.  Thus, using R instead of r, we 

obtain 

 

E =  
|Q|/L sin(θ/2)

2πεo R
   =   

|Q| sin(θ/2)
2πεo θ R2    

 

With 12| | 6.25 10  CQ
−= × , 2.40 rad 137.5θ = = ° and 29.00 10  mR

−= × , the magnitude of 

the electric field is 5.39 N/CE = . 

67. We interpret the linear charge density, λ =| |Q L/ , to indicate a positive quantity (so 



 

 

 

 

U = −  p  
→

 · E  
→

 = − 1.00 × 10
−28 

J. 

 

If E = 20 N/C, we find p = 5.0 × 10
−28 

C·m.  

68. Examining the lowest value on the graph, we have (using Eq. 22-38)  



 

 

 

69. From symmetry, we see the net force component along the y axis is zero; the net force 

component along the x axis points rightward. With θ = 60°,   

 

F3  =  3 1

2

0

cos
2

4

q q

a

θ
πε

. 

 

Since  cos(60°) =1/2, we can write this as  

 

 
9 12 12

123 1
3 2 2

(8.99 10 )(5.00 10 )(2.00 10 )
9.96 10 N.

(0.0950)

kq q
F

a

− −
−× × ×= = = ×  



 

 

 

70. The two closest charges produce fields at the midpoint which cancel each other out.  

Thus, the only significant contribution is from the furthest charge, which is a distance 

3 / 2r d=  away from that midpoint.  Plugging this into Eq. 22-3 immediately gives the 

result: 

E = 
Q

4πεo r
2   =  

Q

3πεo d
2  . 



 

 

 

on the x axis. A line passing through (3.0, 3.0) with slope 1tan (3 4)−  will intersect the x 

axis at x = –1.0. Thus, the location of the particle is specified by the coordinates (in cm): 

(–1.0, 0). 

 

(a) Thus, the x coordinate is x = –1.0 cm. 

 

(b) Similarly, the y coordinate is y = 0. 

 

(c) Using k = 1 4 0πε ,  the field magnitude measured at (2.0, 0) (which is r = 0.030 m 

from the charge) is 

 

E k
q

r
= =

2
100 N C.  

 

Therefore, q = 1.0 × 10
–11

 C. 

71. From the second measurement (at (2.0, 0)) we see that the charge must be somewhere 



 

 

 

72. We denote the electron with subscript e and the proton with p. From the figure below 

we see that 

 

E E
e

d
e p

= =
4 0

2πε
 

 

where d = 2.0 × 10
–6

 m. We note that the components along the y axis cancel during the 

vector summation. With k = 1/4πε0 and 60θ = ° , the magnitude of the net electric field is 

obtained as follows: 

 

 
 

( )
( )

net 2 2

0

192
9

22 6

2

| | 2 cos 2 cos 2   cos
4

1.6 10  CN m
2 8.99 10   cos 60

C 2.0 10  m
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x e

e e
E E E k

d d

−

−

= = = =

×⋅= × °
×

= ×

π
θ θ θ

ε

 



 

 

 

73. On the one hand, the conclusion (that Q = +1.00 µC) is clear from symmetry. If a 

more in-depth justification is desired, one should use Eq. 22-3 for the electric field 

magnitudes of the three charges (each at the same distance r a= 3 from C) and then 

find field components along suitably chosen axes, requiring each component-sum to be 

zero. If the y axis is vertical, then (assuming Q > 0) the component-sum along that axis 

leads to 2 22 sin 30 / /kq r kQ r° =  where q refers to either of the charges at the bottom 

corners. This yields Q = 2q sin 30° = q and thus to the conclusion mentioned above. 



 

 

 

74. (a) Let E = σ/2ε0 = 3 × 10
6
 N/C. With σ = |q|/A, this leads to 

 

q R R E
R E

k
= = = =

× ×

×
= ×

−

⋅

−π π2
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2
2 2

2
6

9
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2
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. .
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2 8.99
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N m

C

c h c h
d i

 

 

(b) Setting up a simple proportionality (with the areas), the number of atoms is estimated 

to be 

 

N =
×
×

= ×
−

−

π 2 5 10

0 015 10
13 10

2
2

18

17
.

.
. .

m

m2

c h
 

 

(c) Therefore, the fraction is 

 

( ) ( )
7

6

17 19

1.0 10 C
5.0 10 .

1.3 10 1.6 10 C

q

Ne

−
−

−

×= ≈ ×
× ×

 



 

 

 

75. (a) Using the density of water (ρ = 1000 kg/m
3
), the weight mg of the spherical drop 

(of radius r = 6.0 × 10
–7

 m) is 

 

W Vg= = ×F
HG

I
KJ = ×− −ρ 1000

4

3
6 0 10 9 8 8 87 103 7

3
2 15kg m m m s Nc h c h c hπ

. . . .  

 

(b) Vertical equilibrium of forces leads to mg = qE = neE, which we solve for n, the 

number of excess electrons: 

 

n
mg

eE
= = ×

×
=

−

−

887 10

462
120

15

19

.
.

N

1.60 10 C N Cc hb g  



 

 

 

76. Eq. 22-38 gives U p E pE= − ⋅ = − cosθ . We note that θi = 110° and θf = 70.0°. 

Therefore, 

 

( ) 21cos 70.0 cos110 3.28 10 J.U pE
−∆ = − ° − ° = − ×  



 

 

 

77. A small section of the distribution that has charge dq is λ dx, where λ = 9.0 × 10
–9

 

C/m. Its contribution to the field at xP = 4.0 m is 

 

dE
dq

x x
P

=
−4 0

2πε b g
 

 

pointing in the +x direction. Thus, we have 

 

( )
3.0m

20
0

î
4

P

dx
E

x xε
=

−
λ

π
 

 

which becomes, using the substitution u = x – xP, 

 

E
du

u
= = −

−
− −

−
F
HG

I
KJ−

−zλ
π

λ
π4 4

1

10

1

4 00

24 0

1 0

0ε ε
 i

m m
i

m

m

.

.

. .
 

 

which yields 61 N/C in the +x direction. 



 

 

 

78. Studying Sample Problem 22-4, we see that the field evaluated at the center of 

curvature due to a charged distribution on a circular arc is given by 

 

E
r

= −

λ
π4 0

2

2

ε
θ θ

θ
sin along the symmetry axis  

 

where λ = =q q rθ  with θ in radians. Here  is the length of the arc, given as 

= 4 0. m . Therefore, θ = = =r 4 0 2 0 2 0. . . rad . Thus, with q = 20 × 10
–9

 C, we obtain 

 

E
q

r
= =−

1

4
38

0
1 0

1 0

πε
θsin .

.

.

rad

rad
N C  



 

 

 

79. (a) We combine Eq. 22-28 (in absolute value) with Newton’s second law: 

 

a
q E

m
= = ×

×
F
HG

I
KJ ×F
HG

I
KJ = ×

−

−

| | .

.
. . .

160 10

911 10
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6 17 2C
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(b) With v
c= = ×

10
3 00 107. m s, we use Eq. 2-11 to find 

 

t
v v

a
= − = ×

×
= × −o s.

300 10

2 46 10
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7

17
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.
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(c) Eq. 2-16 gives 

 

∆x
v v

a
= − =

×

×
= × −

2 2 7
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c h
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80. Let q1 denote the charge at y = d and q2 denote the charge at y = –d. The individual 

magnitudes E1  and E2  are figured from Eq. 22-3, where the absolute value signs for q 

are unnecessary since these charges are both positive. The distance from q1 to a point on 

the x axis is the same as the distance from q2 to a point on the x axis: r x d= +2 2 . By 

symmetry, the y component of the net field along the x axis is zero. The x component of 

the net field, evaluated at points on the positive x axis, is 

 

E
q

x d

x

x d
x

=
F
HG
I
KJ +
F
HG

I
KJ +

F
HG

I
KJ2

1

4 0

2 2 2 2πε
 

 

where the last factor is cosθ = x/r with θ being the angle for each individual field as 

measured from the x axis. 

 

(a) If we simplify the above expression, and plug in x = αd, we obtain 

 

E
q

d
x

=
+

F

H
GG

I

K
JJ2 10

2 2
3 2πε

α
αc h

.  

 

(b) The graph of E = Ex versus α is shown below. For the purposes of graphing, we set d 

= 1 m and q = 5.56 × 10
–11

 C. 

 

 
 

(c) From the graph, we estimate Emax occurs at about α = 0.71. More accurate 

computation shows that the maximum occurs at α = 1 2 .  

 

(d) The graph suggests that “half-height” points occur at α ≈ 0.2 and α ≈ 2.0. Further 

numerical exploration leads to the values: α = 0.2047 and α = 1.9864. 



 

 

 

81. (a) From Eq. 22-38 (and the facts that i i = 1⋅  and j i = 0⋅ ), the potential energy is 

 

( )( ) ( )30

26

ˆ ˆ ˆ3.00i 4.00j 1.24 10 C m 4000 N C i

1.49 10 J.

U p E
−

−

= − ⋅ = − + × ⋅ ⋅

= − ×
 

 

(b) From Eq. 22-34 (and the facts that i i 0× =  and j i = k× − ), the torque is 

 

τ = × = + × ⋅ ×

= − × ⋅

−

−
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(c) The work done is 

 

W U p E p p E
i f

= = − ⋅ = − ⋅
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82. We consider pairs of diametrically opposed charges. The net field due to just the 

charges in the one o’clock (–q) and seven o’clock (–7q) positions is clearly equivalent to 

that of a single –6q charge sitting at the seven o’clock position. Similarly, the net field 

due to just the charges in the six o’clock (–6q) and twelve o’clock (–12q) positions is the 

same as that due to a single –6q charge sitting at the twelve o’clock position. Continuing 

with this line of reasoning, we see that there are six equal-magnitude electric field vectors 

pointing at the seven o’clock, eight o’clock … twelve o’clock positions. Thus, the 

resultant field of all of these points, by symmetry, is directed toward the position midway 

between seven and twelve o’clock. Therefore, Eresultant  points towards the nine-thirty 

position. 



 

 

 

83. (a) For point A, we have (in SI units) 

 

( )
( ) ( )

( ) ( ) ( )
( ) ( )

1 2

2 2

0 1 0 2
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2 2
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4 4
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ˆ( 1.80 N C)i .

A

q q
E

r rπε πε
− −

− −

= + −

× × × − ×
= − +

× × ×

= −

 . 

 

(b) Similar considerations leads to  
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( )
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9 12 9 12

1 2

2 22 2
2 2

0 1 0 2

8.99 10 1.00 10 C 8.99 10 | 2.00 10 C|| | ˆ ˆ ˆi i i
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q q
E
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− −

− −

× × × − ×
= + = +

× × × ×

=

 

 

(c) For point C, we have 

 

( ) ( )
( )

( )
( )

9 12 9 12

1 2

2 22 2
2 2

0 1 0 2

8.99 10 1.00 10 C 8.99 10 | 2.00 10 C|| | ˆ ˆ ˆi i i
4 4 2.00 5.00 10 5.00 10
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C

q q
E

r rπε πε

− −

− −

× × × − ×
= − = −

× × ×

= −

 

 

(d) Although a sketch is not shown here, it would be somewhat similar to Fig. 22-5 in the 

textbook except that there would be twice as many field lines “coming into” the negative 

charge (which would destroy the simple up/down symmetry seen in Fig. 22-5).  



 

 

E
qz

z R

=
+4 0

2 2
3 2

πε c h /
 

 

where q is the charge on the ring and R is the radius of the ring (see Eq. 22-16). For q 

positive, the field points upward at points above the ring and downward at points below 

the ring. We take the positive direction to be upward. Then, the force acting on an 

electron on the axis is 

 

F
eqz

z R

= −
+4 0

2 2
3 2

πε c h /
.  

 

For small amplitude oscillations z R<<  and z can be neglected in the denominator. Thus, 

 

F
eqz

R
= −

4 0

3πε
.  

 

The force is a restoring force: it pulls the electron toward the equilibrium point z = 0. 

Furthermore, the magnitude of the force is proportional to z, just as if the electron were 

attached to a spring with spring constant k = eq/4πε0R
3
. The electron moves in simple 

harmonic motion with an angular frequency given by 

 

ω
ε

= =k

m

eq

mR4 0

3π
 

 

where m is the mass of the electron. 

the ring center, is given by 
 

84. The electric field at a point on the axis of a uniformly charged ring, a distance z from 



 

 

 

85. (a) Since E  points down and we need an upward electric force (to cancel the 

downward pull of gravity), then we require the charge of the sphere to be negative. The 

magnitude of the charge is found by working with the absolute value of Eq. 22-28: 

 

4.4N
| | 0.029C

150 N C

F mg
q

E E
= = = = , 

 

or 0.029 C.q = −  

 

(b) The feasibility of this experiment may be studied by using Eq. 22-3 (using k for 

1/4πε0). We have 2| | /E k q r=  with 

 

3

sulfur sphere

4

3
r mρ π =  

 

Since the mass of the sphere is 4.4/9.8 ≈ 0.45 kg and the density of sulfur is about 

2.1 × 10
3
 kg/m

3
 (see Appendix F), then we obtain 

 

r
m

E k
q

r
=
F
HG

I
KJ = = ≈ ×

3
0 037 2 10

1 3

2
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sulfur4
m N C

πρ
.  

 

which is much too large a field to maintain in air. 



 

 

 

86. (a) The electric field is upward in the diagram and the charge is negative, so the force 

of the field on it is downward. The magnitude of the acceleration is a = eE/m, where E is 

the magnitude of the field and m is the mass of the electron. Its numerical value is 

 

a =
× ×

×
= ×

−

−

160 10

911 10
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We put the origin of a coordinate system at the initial position of the electron. We take 

the x axis to be horizontal and positive to the right; take the y axis to be vertical and 

positive toward the top of the page. The kinematic equations are 

 

2

0 0 0

1
cos , sin , and sin .

2
y

x v t y v t at v v atθ θ θ= = − = −  

 

First, we find the greatest y coordinate attained by the electron. If it is less than d, the 

electron does not hit the upper plate. If it is greater than d, it will hit the upper plate if the 

corresponding x coordinate is less than L. The greatest y coordinate occurs when vy = 0. 

This means v0 sin θ – at = 0 or t = (v0/a) sin θ and 

 

( )
( )

2
6 22 2 2 2 2 2
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6.00 10 m s sin 45sin sin sin1 1
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v v v
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θ θ θ −
× °

= − = = = ×
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Since this is greater than d = 2.00 cm, the electron might hit the upper plate. 

 

(b) Now, we find the x coordinate of the position of the electron when y = d. Since 

 

v0

6 66 00 10 4 24 10sin m s sin 45 m sθ = × ° = ×. .c h  

 

and 

 

2 2 351 10 0 0200 140 1014 13 2
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the solution to d v t at= −0
1
2

2sinθ  is 
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The negative root was used because we want the earliest time for which y = d. The x 

coordinate is  

 

( )( )6 9 2

0 cos 6.00 10 m s 6.43 10 s cos45 2.72 10 m.x v t
− −= = × × ° = ×θ  

 

This is less than L so the electron hits the upper plate at x = 2.72 cm. 



 

 

 

87. Eq. 22-35 τ θ= − pE sinb g  captures the sense as well as the magnitude of the effect. 

That is, this is a restoring torque, trying to bring the tilted dipole back to its aligned 

equilibrium position. If the amplitude of the motion is small, we may replace sin θ with θ 

in radians. Thus, τ θ≈ − pE .  Since this exhibits a simple negative proportionality to the 

angle of rotation, the dipole oscillates in simple harmonic motion, like a torsional 

pendulum with torsion constant κ = pE.  The angular frequency ω is given by 

 

ω κ2 = =
I

pE

I
 

 

where I is the rotational inertia of the dipole. The frequency of oscillation is 

 

f
pE

I
= =ω

2

1

2π π
.  



 

 

 

88. (a) If we subtract each value from the next larger value in the table, we find a set of 

numbers which are suggestive of a basic unit of charge: 1.64 × 10
−19

, 3.3 × 10
−19

, 

1.63 × 10
−19

, 3.35 × 10
−19

, 1.6 × 10
−19

, 1.63 × 10
−19

, 3.18 × 10
−19

, 3.24 ×10
−19

, where the 

SI unit Coulomb is understood.  These values are either close to a common 
191.6 10 Ce

−≈ ×  value or are double that.  Taking this, then, as a crude approximation to 

our experimental e we divide it into all the values in the original data set and round to the 

nearest integer, obtaining n = 4,5,7,8,10,11,12,14, and 16. 

 

(b) When we perform a least squares fit of the original data set versus these values for n 

we obtain the linear equation: 

 

                                                    q = 7.18 × 10
−21

 + 1.633 × 10
−19

n . 

 

If we dismiss the constant term as unphysical (representing, say, systematic errors in our 

measurements) then we obtain e = 1.63 × 10
−19 

when we set n = 1 in this equation. 
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(b) The field described by Eq. 22-3 is nonuniform. 

 

(c) As the positively charged bee approaches the grain, a concentration of negative charge 

is induced on the closest side of the grain, leading to a force of attraction which makes 

the grain jump to the bee. Although in physical contact, it is not in electrical contact with 

the bee, or else it would acquire a net positive charge causing it to be repelled from the 

bee. As the bee (with grain) approaches the stigma, a concentration of negative charge is 

induced on the closest side of the stigma which is presumably highly nonuniform. In 

some configurations, the field from the stigma (acting on the positive side of the grain) 

will overcome the field from the bee acting on the negative side, and the grain will jump 

to the stigma. 

89. (a) Using k = 1/4πε , we estimate the field at r = 0.02 m using Eq. 22-3: 



 

 

 

90. Since both charges are positive (and aligned along the z axis) we have 

 

E
q

z d

q

z d
net =

−
+

+

L
N
M
M

O
Q
P
P

1

4 2 20

2 2πε / /
.

b g b g
 

 

For z d>>  we have (z ± d/2)
–2

 ≈ z
–2

, so 

 

E
q

z

q

z

q

z
net ≈ +FHG

I
KJ =1

4

2

40

2 2

0

2π πε ε
.  



 

 

 

91. (a) Suppose the pendulum is at the angle θ with the vertical. The force diagram is 

shown below. T  is the tension in the thread, mg is the magnitude of the force of gravity, 

and qE is the magnitude of the electric force. The field points upward and the charge is 

positive, so the force is upward. Taking the angle shown to be positive, then the torque on 

the sphere about the point where the thread is attached to the upper plate is 

( ) sinmg qE Lτ θ= − − .  If mg > qE then the torque is a restoring torque; it tends to pull 

the pendulum back to its equilibrium position. 

 

 
 

If the amplitude of the oscillation is small, sinθ can be replaced by θ in radians and the 

torque is ( )mg qE Lτ θ= − − . The torque is proportional to the angular displacement and 

the pendulum moves in simple harmonic motion. Its angular frequency is 

( )mg qE L Iω = − , where I is the rotational inertia of the pendulum. Since 2
I mL=  for 

a simple pendulum, 

 

( )
2

mg qE L g qE m

mL L
ω

− −= =  

 

and the period is 
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If qE > mg the torque is not a restoring torque and the pendulum does not oscillate. 

 

(b) The force of the electric field is now downward and the torque on the pendulum is 

( )mg qE Lτ θ= − +  if the angular displacement is small. The period of oscillation is 
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