
 

 

1. (a) An Ampere is a Coulomb per second, so 

 

84 84 3600 3 0 105 A h
C h

s

s

h
 C⋅ = ⋅F

HG
I
KJ
F
HG

I
KJ = ×. .  

 

(b) The change in potential energy is ∆U = q∆V = (3.0 × 10
5
 C)(12 V) = 3.6 × 10

6
 J. 



 

 

 

2. The magnitude is ∆U = e∆V = 1.2 × 10
9
 eV = 1.2 GeV. 



 

 

 

3. The electric field produced by an infinite sheet of charge has magnitude E = σ/2ε0, 

where σ is the surface charge density. The field is normal to the sheet and is uniform. 

Place the origin of a coordinate system at the sheet and take the x axis to be parallel to the 

field and positive in the direction of the field. Then the electric potential is 
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x

s= − = −z0 ,  

 

where Vs is the potential at the sheet. The equipotential surfaces are surfaces of constant x; 

that is, they are planes that are parallel to the plane of charge. If two surfaces are 

separated by ∆x then their potentials differ in magnitude by ∆V = E∆x = (σ/2ε0)∆x. Thus, 
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4. (a) VB – VA = ∆U/q = –W/(–e) = – (3.94 × 10
–19

 J)/(–1.60 × 10
–19

 C) = 2.46 V. 

 

(b) VC – VA = VB – VA = 2.46 V. 

 

(c) VC – VB = 0 (Since C and B are on the same equipotential line). 



 

 

 

5. (a)  E F e= = × × = ×− −3 9 10 160 10 2 4 1015 19 4. . . .N C N Cc h c h  

 

(b) ∆ ∆V E s= = × = ×2 4 10 012 2 9 104 3. . . .N C m Vc hb g  



 

 

 

6. (a) By Eq. 24-18, the change in potential is the negative of the “area” under the curve. 

Thus, using the area-of-a-triangle formula, we have 
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which yields V = 30 V. 

 

(b) For any region within 0 3< < − ⋅zx E dsm,  is positive, but for any region for which  

x > 3 m it is negative. Therefore, V = Vmax occurs at x = 3 m. 
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which yields Vmax = 40 V. 

 

(c) In view of our result in part (b), we see that now (to find V = 0) we are looking for 

some X > 3 m such that the “area” from x = 3 m to x = X is 40 V. Using the formula for a 

triangle (3 < x < 4) and a rectangle (4 < x < X), we require 
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Therefore, X = 5.5 m. 



 

 

 

7. (a) The work done by the electric field is (in SI units) 
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(b) Since V – V0 = –W/q0 = –σz/2ε0, with V0 set to be zero on the sheet, the electric 

potential at P is (in SI units) 
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8. We connect A to the origin with a line along the y axis, along which there is no change 

of potential (Eq. 24-18: E ds⋅ =z 0). Then, we connect the origin to B with a line along 

the x axis, along which the change in potential is 

 

∆V E ds x dx
x

= − ⋅ = − = −
F
HG
I
KJzz =

4 00 4 00
4

2

2

0

4

0

4

. .  

 

which yields VB – VA = –32.0 V. 



 

9. (a) The potential as a function of r is (in SI units) 
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(b) Since ∆V = V(0) – V(R) = q/8πε0R, we have (in SI units) 
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10. The charge is 
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11. (a) The charge on the sphere is 
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(b) The (uniform) surface charge density (charge divided by the area of the sphere) is 
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12. (a) The potential difference is 
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(b) Since V(r) depends only on the magnitude of r , the result is unchanged. 



 

 

 

13. First, we observe that V (x) cannot be equal to zero for x > d. In fact V (x) is always 

negative for x > d. Now we consider the two remaining regions on the x axis: x < 0 and  

0 < x < d.  

 

(a) For 0 < x < d we have d1 = x and d2 = d – x. Let 
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and solve: x = d/4. With d = 24.0 cm, we have x = 6.00 cm. 

 

(b) Similarly, for x < 0 the separation between q1 and a point on the x axis whose 

coordinate is x is given by d1 = –x; while the corresponding separation for q2 is d2 = d – x. 

We set 
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to obtain x = –d/2. With d = 24.0 cm, we have x = –12.0 cm. 



 

 

 

14. Since according to the problem statement there is a point in between the two charges 

on the x axis where the net electric field is zero, the fields at that point due to q1 and q2 

must be directed opposite to each other. This means that q1 and q2 must have the same 

sign (i.e., either both are positive or both negative). Thus, the potentials due to either of 

them must be of the same sign. Therefore, the net electric potential cannot possibly be 

zero anywhere except at infinity. 



 

 

 

15. A charge –5q is a distance 2d from P, a charge –5q is a distance d from P, and two 

charges +5q are each a distance d from P, so the electric potential at P is (in SI units) 
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The zero of the electric potential was taken to be at infinity. 



 

 

 

16. In applying Eq. 24-27, we are assuming V → 0 as r → ∞.  All corner particles are 

equidistant from the center, and since their total charge is  

 

2q1– 3q1+ 2 q1– q1 = 0, 

 

then their contribution to Eq. 24-27 vanishes.  The net potential is due, then, to the two 

+4q2 particles, each of which is a distance of a/2 from the center. In SI units,  it is 
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17. (a) The electric potential V at the surface of the drop, the charge q on the drop, and 

the radius R of the drop are related by V = q/4πε0R. Thus 
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(b) After the drops combine the total volume is twice the volume of an original drop, so 

the radius R' of the combined drop is given by (R')
3
 = 2R

3
 and R' = 2

1/3
R. The charge is 

twice the charge of original drop: q' = 2q. Thus, 
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18. When the charge q2 is infinitely far away, the potential at the origin is due only to the 

charge q1 : 
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04
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dπε
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−7 
V. 

 

Thus, q1/d = 6.41 × 10
−17 

C/m.  Next, we note that when q2 is located at x = 0.080 m, the 

net potential vanishes (V1 + V2 = 0).  Therefore,  
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Thus, we find q2 = 1( / )(0.08 m)q d− = –5.13 × 10
−18 

C =  –32 e. 



 

 

 

19. We use Eq. 24-20: 
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20. From Eq. 24-30 and Eq. 24-14, we have (for θi = 0º)  

 

Wa = q∆V =  e 
p cos θ
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2  −  
p cos θi

4πεo r
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e p
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2 (cos θ − 1) . 

 

where r = 20 × 10
−9 

m.  For θ = 180º the graph indicates Wa = −4.0 × 10
−30 

J, from which 

we can determine p.  The magnitude of the dipole moment is therefore 5.6 × 10
−37 

C
.
m. 



 

 

 

21. (a) From Eq. 24-35, in SI units, 
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(b) The potential at P is V = 0 due to superposition. 



 

 

 

22. The potential is (in SI units) 
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We note that the result is exactly what one would expect for a point-charge –Q at a 

distance R. This “coincidence” is due, in part, to the fact that V is a scalar quantity. 



 

 

 

23. (a) All the charge is the same distance R from C, so the electric potential at C is (in SI 

units) 

 
9 12

1 1 1

2

0 0

6 51 5(8.99 10 )(4.20 10 )
2.30 V,

4 4 8.20 10

Q Q Q
V

R R Rε ε

−

−

× ×= − = − = − = −
×π π

 

 

where the zero was taken to be at infinity. 

 

(b) All the charge is the same distance from P. That distance is 2 2 ,R D+  so the electric 

potential at P is (in SI units) 
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24. Since the charge distribution on the arc is equidistant from the point where V is 

evaluated, its contribution is identical to that of a point charge at that distance. We 

assume V → 0 as r → ∞ and apply Eq. 24-27: 
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25. The disk is uniformly charged. This means that when the full disk is present each 

quadrant contributes equally to the electric potential at P, so the potential at P due to a 

single quadrant is one-fourth the potential due to the entire disk. First find an expression 

for the potential at P due to the entire disk. We consider a ring of charge with radius r and 

(infinitesimal) width dr. Its area is 2πr dr and it contains charge dq = 2πσr dr. All the 

charge in it is a distance 2 2
r D+ from P, so the potential it produces at P is 
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The total potential at P is 
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The potential Vsq at P due to a single quadrant is (in SI units) 
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26. The dipole potential is given by Eq. 24-30 (with θ = 90º in this case)  

 

V =   
p cos θ
4πεo r

2   = 0 

 

since cos(90º) = 0 . The potential due to the short arc is 1 0 1/ 4q rπε   and that caused by the 

long arc is 2 0 2/ 4q rπε .  Since q1 = +2 µC, r1 = 4.0 cm, q2 = −3 µC, and r2 = 6.0 cm, the 

potentials of the arcs cancel.  The result is zero. 



 

 

 

27. Letting d denote 0.010 m, we have (in SI units) 
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28. Consider an infinitesimal segment of the rod, located between x and x + dx. It has 

length dx and contains charge dq = λ dx, where λ = Q/L is the linear charge density of the 

rod. Its distance from P1 is d + x and the potential it creates at P1 is 
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To find the total potential at P1, we integrate over the length of the rod and obtain (in SI 

units): 
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29. Consider an infinitesimal segment of the rod, located between x and x + dx. It has 

length dx and contains charge dq = λ dx = cx dx. Its distance from P1 is d + x and the 

potential it creates at P1 is 
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To find the total potential at P1, we integrate over the length of the rod and obtain (in SI 

units): 
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30. The magnitude of the electric field is given by 
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At any point in the region between the plates, E  points away from the positively charged 

plate, directly towards the negatively charged one. 



 

 

 

31. We use Eq. 24-41: 
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We evaluate at x = 3.0 m and y = 2.0 m to obtain  
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32. We use Eq. 24-41. This is an ordinary derivative since the potential is a function of 

only one variable. 
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(a) Thus, the magnitude of the electric field is E = 39 V/m. 

 

(b) The direction of E is î− , or toward plate 1. 



 

 

 

33. We apply Eq. 24-41: 
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which, at (x, y, z) = (3.00, –2.00, 4.00), gives (Ex, Ey, Ez) = (64.0, –96.0, 96.0) in SI units. 

The magnitude of the field is therefore 
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34. (a) According to the result of problem 28, the electric potential at a point with 

coordinate x is given by 
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At x = –d we obtain (in SI units)  
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(b) We differentiate the potential with respect to x to find the x component of the electric 

field (in SI units): 
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or 
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(c) Since 0
x

E < , its direction relative to the positive x axis is 180 .°  

 

(d) At x = –d we obtain (in SI units) 
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(e) Consider two points an equal infinitesimal distance on either side of P1, along a line 

that is perpendicular to the x axis. The difference in the electric potential divided by their 

separation gives the transverse component of the electric field. Since the two points are 

situated symmetrically with respect to the rod, their potentials are the same and the 

potential difference is zero. Thus, the transverse component of the electric field Ey is zero. 



 

 

 

35. The electric field (along some axis) is the (negative of the) derivative of the potential 

V with respect to the corresponding coordinate.  In this case, the derivatives can be read 

off of the graphs as slopes (since the graphs are of straight lines).  Thus, 
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These components imply the electric field has a magnitude of 2693 N/C and a direction 

of –21.8º (with respect to the positive x axis).  The force on the electron is given by 

F qE=  where q = –e.  The minus sign associated with the value of q has the implication 

that F  
→
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 (which is to say that its angle is found by 
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→

 ).  With e = 1.60 × 10
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36. (a) Consider an infinitesimal segment of the rod from x to x + dx. Its contribution to 

the potential at point P2 is 
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Thus, (in SI units) 
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(b) The y component of the field there is 
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(c) We obtained above the value of the potential at any point P strictly on the y-axis. In 

order to obtain Ex(x, y) we need to first calculate V(x, y). That is, we must find the 

potential for an arbitrary point located at (x, y). Then Ex(x, y) can be obtained from 

( , ) ( , ) /
x

E x y V x y x= −∂ ∂ . 



 

 

 

37. We choose the zero of electric potential to be at infinity. The initial electric potential 

energy Ui of the system before the particles are brought together is therefore zero. After 

the system is set up the final potential energy is 
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Thus the amount of work required to set up the system is given by (in SI units) 
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38. The work done must equal the change in the electric potential energy.  From Eq. 24-

14 and Eq. 24-26, we find (with r = 0.020 m) 
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39. (a) We use Eq. 24-43 with q1 = q2 = –e and r = 2.00 nm: 

 

U k
q q

r
k

e

r
= = =

× ×

×
= ×

⋅ −

−
−1 2

2 9 19

9

19
8 99 10 160 10

2 00 10
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C

22

2 C)
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d i
 

 

(b) Since U > 0 and U ∝ r
–1

 the potential energy U decreases as r increases. 



 

 

 

40. The work required is 

 

1 2 1 1( / 2)1 1
0.

4 2 4 2

q Q q Q q Q q Q
W U

d d d dε ε
−= ∆ = + = + =

0 0π π
 



 

 

 

41. (a) Let = 015. m  be the length of the rectangle and w = 0.050 m be its width. Charge 

q1 is a distance  from point A and charge q2 is a distance w, so the electric potential at A 

is 

 
6 6

9 2 21 2

0

4

1 5.0 10 C 2.0 10 C
(8.99 10 N m / C )

4 0.15m 0.050 m

6.0 10 V.

A

q q
V

wε

− −− × ×= + = × ⋅ +

= ×

π  

 

(b) Charge q1 is a distance w from point b and charge q2 is a distance ,  so the electric 

potential at B is 

 
6 6

9 2 21 2

0

5

1 5.0 10 C 2.0 10 C
(8.99 10 N m / C )

4 0.050 m 0.15m

7.8 10 V.

B

q q
V

wε

− −− × ×= + = × ⋅ +

= − ×

π  

 

(c) Since the kinetic energy is zero at the beginning and end of the trip, the work done by 

an external agent equals the change in the potential energy of the system. The potential 

energy is the product of the charge q3 and the electric potential. If UA is the potential 

energy when q3 is at A and UB is the potential energy when q3 is at B, then the work done 

in moving the charge from B to A is  

 

W = UA – UB = q3(VA – VB) = (3.0 × 10
–6

 C)(6.0 × 10
4
 V + 7.8 × 10

5
 V) = 2.5 J. 

 

(d) The work done by the external agent is positive, so the energy of the three-charge 

system increases. 

 

(e) and (f) The electrostatic force is conservative, so the work is the same no matter 

which path is used. 



 

 

 

42. Let r = 1.5 m, x = 3.0 m, q1 = –9.0 nC, and q2 = –6.0 pC. The work done by an 

external agent is given by 

 

W U
q q

r r x
= = −

+

F
HG

I
KJ

= − × − × × ⋅F
HG

I
KJ ⋅ −

+

L

N
M
M

O

Q
P
P

= ×

− −

−

∆ 1 2

2 2

9 12
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4

1
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π 0ε
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   J.
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.

c hc h
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43. We use the conservation of energy principle. The initial potential energy is Ui = 

q
2
/4πε0r1, the initial kinetic energy is Ki = 0, the final potential energy is Uf = q

2
/4πε0r2, 

and the final kinetic energy is K mvf = 1
2

2 , where v is the final speed of the particle. 

Conservation of energy yields 

 

q

r

q

r
mv

2

0 1

2

0 2

2

4 4

1

2π πε ε
= + .  

 

The solution for v is 

 

2 9 2 2 6 2

6 3 3

0 1 2

3

2 1 1 (8.99 10 N m C )(2)(3.1 10 C) 1 1

4 20 10 kg 0.90 10 m 2.5 10 m

2.5 10 m s.

q
v

m r rε

−

− − −

× ⋅ ×= − = −
× × ×

= ×

π

 



 

 

 

44. The change in electric potential energy of the electron-shell system as the electron 

starts from its initial position and just reaches the shell is ∆U = (–e)(–V) = eV. Thus from 

∆U K m ve i= = 1
2

2  we find the initial electron speed to be (in SI units) 

 
19

6

31

2 2 2(1.6 10 )(125)
6.63 10  m/s.

9.11 10
i

e e

U eV
v

m m

−

−

∆ ×= = = = ×
×

 



 

 

 

45. We use conservation of energy, taking the potential energy to be zero when the 

moving electron is far away from the fixed electrons. The final potential energy is then 
2

02 / 4
f

U e dπε= , where d is half the distance between the fixed electrons. The initial 

kinetic energy is K mvi = 1
2

2 ,   where m is the mass of an electron and v is the initial speed 

of the moving electron. The final kinetic energy is zero. Thus Ki = Uf or 
1
2

2 22 4mv e d= / .π 0ε  Hence 

 

v
e

dm
= =

× ⋅ ×

×
= ×

−

−

4

4

8 99 10 4 160 10

0 010
32 10

2 9 19

31

2

π 0ε
. .

.
.

 N m C  C

 m 9.11 10  kg
m s.

2 2
2c hb gc h

b gc h  



 

 

 

46. (a)  The electric field between the plates is leftward in Fig, 24-50 since it points 

towards lower values of potential.  The force (associated with the field, by Eq. 23-28) is 

evidently leftward, from the problem description (indicating deceleration of the rightward 

moving particle), so that q > 0 (ensuring that F  
→

is parallel to E  
→

); it is a proton. 

 

(b) We use conservation of energy: 

 

K0 + U0 =K + U      
1

2
 mpv

2
0  + qV1= 

1

2
 mpv

2
 + qV 2  . 

 

Using q = +1.6 × 10
−19

 C, mp = 1.67 × 10
−27

 kg, v0 = 90 × 10
3
 m/s, V1 = −70 V and 

2 50 VV = − , we obtain the final speed v = 6.53 × 10
4
 m/s.  We note that the value of d is 

not used in the solution. 



 

 

 

47. Let the distance in question be r. The initial kinetic energy of the electron is 

K m vi e i= 1
2

2 ,  where vi = 3.2 × 10
5
 m/s. As the speed doubles, K becomes 4Ki. Thus 

 

∆ ∆U
e

r
K K K K m vi i i e i= − = − = − − = − = −

2
2

4
4 3

3

2π 0ε
( ) ,  

 

or 

 

( )
( ) ( )
( )( )

2

2

2
19 9 N m2

C 9

22 19 5
0

2 1.6 10  C 8.99 10  2
1.6 10 m.

3 4 3 9.11 10  kg 3.2 10  m se i

e
r

m vπε

− ⋅
−

−

× ×
= = = ×

× ×
 



 

 

 

48. When particle 3 is at x = 0.10 m, the total potential energy vanishes.  Using Eq. 24-43, 

we have (with meters understood at the length unit) 

 

0 =  
q1 q2

4πεo d
   +  

q1 q3

4πεo (d + 0.10)
  + 

q3 q2

4πεo (0.10)
  . 

 

This leads to  

 

q3 
q1

(d + 0.10)
 + 

q2

0.10
  =  –  

q1 q2

d
  

 

which yields q3 = −5.7 µC.  



 

 

 

49. We apply conservation of energy for particle 3 (with q' = −15 × 10
-6

 C): 

 

K0 + U0  =  Kf  + Uf 

 

where (letting x = ±3 m and q1 = q2 = 50 × 10
−6

 C = q) 

 

U  =  
q1 q'

4πεo x
2
 + y

2 + 
q2 q'

4πεo x
2
 + y

2  =  
q q'

2πεo x
2
 + y

2  . 

 

(a) We solve for Kf (with y0 = 4 m): 

 

     Kf =K0  +  U0  −  Uf  = 1.2 J  +  
q q'

2πεo
  +  

1

x
2
 + y

2
0

 - 
1

|x|
 = 3.0 J   . 

 

(b) We set Kf  = 0 and solve for y (choosing the negative root, as indicated in the problem 

statement): 

 

K0 + U0 =  Uf       1.2 J  +  
q q'

2πεo x
2
 + y

2
0

 =  
q q'

2πεo x
2
 + y

2 

 

This yields y = −8.5 m. 



 

 

 

50. From Eq. 24-30 and Eq. 24-7, we have (for θ = 180º)  

 

U = qV =  –e 
p cos θ
4πεo r

2   =  
e p

4πεo r
2  

 

where r = 0.020 m.  Appealing to energy conservation, we set this expression equal to 

100 eV and solve for p.  The magnitude of the dipole moment is therefore 4.5 × 10
−12 

C
.
m. 



 

 

 

51. (a) Using U = qV we can “translate” the graph of voltage into a potential energy 

graph (in eV units).  From the information in the problem, we can calculate its kinetic 

energy (which is its total energy at x = 0) in those units: Ki = 284 eV.  This is less than 

the “height” of the potential energy “barrier” (500 eV high once we’ve translated the 

graph as indicated above).  Thus, it must reach a turning point and then reverse its motion. 

 

(b) Its final velocity, then, is in the negative x direction with a magnitude equal to that of 

its initial velocity.  That is, its speed (upon leaving this region) is 1.0 × 10
7 

m/s. 

                 



 

 

 

52. (a) The work done results in a potential energy gain: 

 

W = q ∆V  = (− e) 
Q

4πεo R
  =  + 2.16 × 10

−13 
J . 

 

With R = 0.0800 m, we find Q =  –1.20 × 10
−5 

C. 

 

(b) The work is the same, so the increase in the potential energy is ∆U =  + 2.16 × 10
−13 

J.   



 

 

 

53. If the electric potential is zero at infinity, then the potential at the surface of the 

sphere is given by V = q/4πε0r, where q is the charge on the sphere and r is its radius. 

Thus 

 

q rV= =
× ⋅

= × −4
015

8 99 10
2 5 10

9

8π 0ε
.

.
.

 m 1500 V

 N m C
C.

2 2

b gb g
 



 

 

 

54. Since the electric potential throughout the entire conductor is a constant, the electric 

potential at its center is also +400 V. 



 

 

 

55. (a) The electric potential is the sum of the contributions of the individual spheres. Let 

q1 be the charge on one, q2 be the charge on the other, and d be their separation. The point 

halfway between them is the same distance d/2 (= 1.0 m) from the center of each sphere, 

so the potential at the halfway point is 

 

( )( )9 2 2 8 8

21 2
8.99 10  N m C 1.0 10 C 3.0 10 C

1.8 10 V.
4 2 1.0 m

q q
V

dε

− −× ⋅ × − ×+= = = − ×
0π

 

 

(b) The distance from the center of one sphere to the surface of the other is d – R, where 

R is the radius of either sphere. The potential of either one of the spheres is due to the 

charge on that sphere and the charge on the other sphere. The potential at the surface of 

sphere 1 is 

 

( )
8 8

9 2 2 31 2
1

0

1 1.0 10 C 3.0 10 C
8.99 10 N m C 2.9 10 V.

4 0.030m 2.0m 0.030m

q q
V

R d Rπε

− −× ×= + = × ⋅ − = ×
− −

 

 

(c) The potential at the surface of sphere 2 is 

 

( )
8 8

9 2 2 31 2
2

0

1 1.0 10 C 3.0 10 C
8.99 10 N m C 8.9 10 V.

4 2.0m 0.030m 0.030m

q q
V

d R Rπε

− −× ×= + = × ⋅ − = − ×
− −



 

 

 

56. (a) Since the two conductors are connected V1 and V2 must be equal to each other. 

 

Let V1 = q1/4πε0R1 = V2 = q2/4πε0R2 and note that q1 + q2 = q and R2 = 2R1. We solve for 

q1 and q2:  q1 = q/3, q2 = 2q/3, or 

 

(b) q1/q = 1/3 = 0.333, 

 

(c) and q2/q = 2/3 = 0.667. 

 

(d) The ratio of surface charge densities is 

 
2

2

1 1 1 1 2

2

2 2 2 2 1

4
2.00.

4

q R q R

q R q R

σ
σ

= = =π
π

 



 

 

 

57. (a) The magnitude of the electric field is 

 

( )
( )

2
8 9

2

4

22

0

N m
3.0 10 C 8.99 10

C
1.2 10 N C.

4 0.15m

q
E

R

σ
ε

− ⋅× ×
= = = = ×

0πε
 

 

(b) V = RE = (0.15 m)(1.2 × 10
4
 N/C) = 1.8 × 10

3
 V. 

 

(c) Let the distance be x. Then 

 

∆V V x V
q

R x R
= − =

+
−F

HG
I
KJ = −b g

4

1 1
500

π 0ε
V,  

 

which gives 

 

x
R V

V V
=

− −
=

−
− +

= × −∆
∆
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58. Since the charge distribution is spherically symmetric we may write 

 

E r
q

r
b g = 1

4π 0ε
encl ,  

 

where qencl is the charge enclosed in a sphere of radius r centered at the origin.  

 

(a) For r = 4.00 m, R2 = 1.00 m and R1 = 0.500 m, with r > R2 > R1 we have (in SI units) 

 

( )
9 6 6

31 2

2 2

(8.99 10 )(2.00 10 1.00 10 )
1.69 10  V/m.

4 (4.00)

q q
E r

rε

− −+ × × + ×= = = ×
0π

 

 

(b) For R2 > r = 0.700 m > R2 

 

( )
9 6

41

2 2

(8.99 10 )(2.00 10 )
3.67 10  V/m.

4 (0.700)

q
E r

rε

−× ×= = = ×
0π

 

 

(c) For R2 > R1 > r, the enclosed charge is zero. Thus, E = 0. 

 

The electric potential may be obtained using Eq. 24-18: V r V r E r dr
r

rb g b g b g− ′ =
′z .   

 

(d) For r = 4.00 m > R2 > R1, we have 

 

( )
9 6 6

31 2 (8.99 10 )(2.00 10 1.00 10 )
6.74 10  V.

4 (4.00)

q q
V r

rε

− −+ × × + ×= = = ×
0π

 

 

(e) For r = 1.00 m = R2 > R1, we have 

 

( )
9 6 6

41 2 (8.99 10 )(2.00 10 1.00 10 )
2.70 10  V.

4 (1.00)

q q
V r

rε

− −+ × × + ×= = = ×
0π

 

 

(f) For R2 > r = 0.700 m > R2,  

 

( )
6 6

9 41 2

2

1 2.00 10 1.00 10
(8.99 10 ) 3.47 10  V.

4 0.700 1.00

q q
V r

r Rε

− −× ×= + = × + = ×
0π

 

 

(g) For R2 > r = 0.500 m = R2,  

 



 

( )
6 6

9 41 2

2

1 2.00 10 1.00 10
(8.99 10 ) 4.50 10  V.

4 0.500 1.00

q q
V r

r Rε

− −× ×= + = × + = ×
0π

 

 

(h) For R2 > R1 > r,  

 
6 6

9 41 2

1 2

1 2.00 10 1.00 10
(8.99 10 ) 4.50 10  V.
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q q
V

R Rε
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(i) At r = 0, the potential remains constant, 44.50 10  V.V = ×  

 

(j) The electric field and the potential as a function of r are depicted below: 

 

 



 

 

 

59. Using Gauss’ law, q = εοΦ = +495.8 nC.  Consequently, V = 
q

4πεo r
  =  37.1 kV. 



 

 

 

60. (a) We use Eq. 24-18 to find the potential: wall

R

r
V V Edr− = − , or 

 

( )2 2

0 0

0        .
2 4

R

r

r
V V R r

ρ ρ
ε ε

− = − − = − −  

 

Consequently, V = ρ(R
2
 – r

2
)/4ε0. 

 

(b) The value at r = 0 is 

 

Vcenter

3C m

C V m
m V.= − ×

× ⋅
− = − ×

−

−

11 10

4 885 10
0 05 0 7 8 10

3

12

2 4.

.
. .c h b ge j  

 

Thus, the difference is 4

center| | 7.8 10 V.V = ×  



 

 

 

61. The electric potential energy in the presence of the dipole is 

 

U = qVdipole= 
q p cos θ
4πεo r

2   =
(−e)( e d) cos θ

4πεo r
2   . 

 

Noting that θi = θf = 0º, conservation of energy leads to 

 

Kf + Uf  =  Ki + Ui       v = 
2 e

2

4πεo m d
 

1

25
 − 

1

49
   =  7.0 510×  m/s . 



 

 

 

62. (a) When the proton is released, its energy is K + U = 4.0 eV + 3.0 eV (the latter 

value is inferred from the graph).  This implies that if we draw a horizontal line at the 7.0 

Volt “height” in the graph and find where it intersects the voltage plot, then we can 

determine the turning point.  Interpolating in the region between 1.0 cm and 3.0 cm, we 

find the turning point is at roughly x = 1.7 cm. 

 

(b) There is no turning point towards the right, so the speed there is nonzero, and is given 

by energy conservation:  

 

v = 
2(7.0 eV)

m
  = 

2(7.0 eV)(1.6 x 10
-19 

J/eV)

1.67 x 10
-27

 kg
 = 20 km/s. 

 

(c) The electric field at any point P is the (negative of the) slope of the voltage graph 

evaluated at P. Once we know the electric field, the force on the proton follows 

immediately from F 
→

 = q E 
→

 , where q = +e for the proton. In the region just to the left of x 

= 3.0 cm, the field is E 
→

 = (+300 V/m) î  and the force is F = +4.8 × 10
−17 

N. 

 

(d) The force F  points in the +x direction, as the electric field E . 

 

(e) In the region just to the right of x = 5.0 cm, the field is E 
→

 =(–200 V/m) î  and the 

magnitude of the force is F = 3.2 × 10
−17 

N. 

 

(f) The force F  points in the −x direction, as the electric field E . 



 

 

 

63. Eq. 24-32 applies with dq = λ dx = bx dx (along 0 ≤ x ≤ 0.20 m). 

 

(a) Here r = x > 0, so that 

 

V
bx dx

x

b
= =z1

4

0 20

40

0 20

π π0 0ε ε
.. b g

 = 36 V. 

 

(b) Now r x d= +2 2  where d = 0.15 m, so that 

 

( )
0.20

0.20
2 2

2 20
0

1

4 4

bxdx b
V x d

x dε ε
= = +

+0 0π π
 = 18 V. 



 

 

 

64. (a)When the electron is released, its energy is  K + U = 3.0 eV − 6.0 eV (the latter 

value is inferred from the graph along with the fact that U = qV and q = − e).  Because of 

the minus sign (of the charge) it is convenient to imagine the graph multiplied by a minus 

sign so that it represents potential energy in eV.  Thus, the 2 V value shown at x = 0 

would become –2 eV, and the 6 V value at x = 4.5 cm becomes –6 eV, and so on.  The 

total energy (− 3.0 eV) is constant and can then be represented on our (imagined) graph as 

a horizontal line at − 3.0 V.  This intersects the potential energy plot at a point we 

recognize as the turning point.  Interpolating in the region between 1.0 cm and 4.0 cm, we 

find the turning point is at x = 1.75 cm 1.8 cm.≈  

 

(b) There is no turning point towards the right, so the speed there is nonzero.  Noting that 

the kinetic energy at x = 7.0 cm is − 3.0 eV − (− 5.0 eV) = 2.0 eV, we find the speed using 

energy conservation:  

 

v = 
2(2.0 eV)

m
  = 

2(2.0 eV)(1.6 x 10
-19 

J/eV)

9.11 x 10
-31

 kg
 = 58.4 10  m/s× . 

 

(c) The electric field at any point P is the (negative of the) slope of the voltage graph 

evaluated at P.  Once we know the electric field, the force on the electron follows 

immediately from F 
→

  = q E 
→

 , where q = −e for the electron. In the region just to the left 

of x = 4.0 cm, the field is E 
→

  = (−133 V/m) î  and the magnitude of the force is 
172.1 10  NF

−= × . 

 

(d) The force points in the +x direction. 

 

(e) In the region just to the right of x = 5.0 cm, the field is E 
→

 = +100 V/m î  and the force 

is F 
→

 = ( –1.6 x 10
−17 

N) î . Thus, the magnitude of the force is 171.6 10  NF
−= × . 

 

(f) The minus sign indicates that F 
→

 points in the –x direction. 



 

 

 

65. We treat the system as a superposition of a disk of surface charge density σ and 

radius R and a smaller, oppositely charged, disk of surface charge density –σ and radius r. 

For each of these, Eq 24-37 applies (for z > 0) 

 

V z R z z r z= + − + − + −σ
ε

σ
ε2 20

2 2

0

2 2e j e j.  
 

This expression does vanish as r → ∞, as the problem requires. Substituting r = 0.200R 

and z = 2.00R and simplifying, we obtain 

 
12

2

12

5 5 101 (6.20 10 )(0.130) 5 5 101
1.03 10  V.

10 8.85 10 10

R
V

σ
ε

−
−

−

− × −= = = ×
×0

 



 

 

 

66. Since the electric potential energy is not changed by the introduction of the third 

particle, we conclude that the net electric potential evaluated at P caused by the original 

two particles must be zero: 

        
q1

4πεo r1
  + 

q2

4πεo r2
  = 0 . 

 

Setting r1 = 5d/2 and r2 = 3d /2 we obtain q1 = – 5q2/3, or 1 2/ 5 / 3 1.7q q = − ≈ − . 



 

 

 

67. The electric field throughout the conducting volume is zero, which implies that the 

potential there is constant and equal to the value it has on the surface of the charged 

sphere: 

 

VA = VS = 
q

4πε0 R
  

 

where q = 30 × 10
−9

 C and R = 0.030 m.  For points beyond the surface of the sphere, the 

potential follows Eq. 24-26: 

 

VB =  
q

4πε0 r
  

 

where r = 0.050 m. 

 

(a) We see that 

 

VS – VB  =
0

1 1

4

q

R rπε
− = 3.6 × 10

3
 V. 

 

(b) Similarly,  

 

 VA – VB = 
0

1 1

4

q

R rπε
− = 3.6 × 10

3
 V. 



 

 

 

68. The escape speed may be calculated from the requirement that the initial kinetic 

energy (of launch) be equal to the absolute value of the initial potential energy (compare 

with the gravitational case in chapter 14).  Thus, 

 

1

2
 m v

2
 = 

e q

4πεo r
  

 

where  m = 9.11 × 10
−31 

kg, e = 1.60 × 10
−19 

C, q = 10000e, and r = 0.010 m.  This yields 

the answer v = 22490 m/s 42.2 10  m/s≈ × .   



 

 

 

69. We apply conservation of energy for the particle with q = 7.5 × 10
−6

 C (which has 

zero initial kinetic energy): 

 

U0  =  Kf  + Uf  where U  =  
q Q

4πεor
   . 

 

(a) The initial value of r is 0.60 m and the final value is (0.6 + 0.4) m = 1.0 m (since the 

particles repel each other).  Conservation of energy, then, leads to Kf  = 0.90 J. 

 

(b) Now the particles attract each other so that the final value of r is 0.60 − 0.40 = 0.20 m.  

Use of energy conservation yields Kf  = 4.5 J in this case. 



 

 

 

70. (a)  Using d = 2 m, we find the potential at P: 

 

VP  =  
1

4πε0
  
+2e

d
  +  

1

4πε0
  
-2e

2d
  =  

1

4πε0
  

e

d
   . 

 

Thus, with e = 1.60 × 10
−19

 C, we find VP = 7.19 × 10
−10

 V.  Note that we are implicitly 

assuming that V → 0 as r → ∞. 

 

(b) Since U = qV , then the movable particle's contribution of the potential energy when it 

is at r = ∞ is zero, and its contribution to Usystem when it is at P is (2e)VP = 2.30 × 10
−28

 J.  

Thus, we obtain Wapp = 2.30 × 10
−28

 J. 

 

(c) Now, combining the contribution to Usystem from part (b) and from the original pair of 

fixed charges 

 

Ufixed =  
1

4πε0
  
(2e)(-2e)

4
2
 + 2

2  = –2.1 × 10
−28

 J   , 

 

we obtain 

 

Usystem =  Upart (b) + Ufixed = 2.43 × 10
–29

 J   . 



 

 

 

71. The derivation is shown in the book (Eq. 24-33 through Eq. 24-35) except for the 

change in the lower limit of integration (which is now x = D instead of x = 0).  The result 

is therefore (cf. Eq. 24-35)  

                  

V =   
λ

4πεo
 ln

L + L
2
 + d

2

 D + D
2
 + d

2    =  
2.0 x 10

-6

4πεo
 ln

4 + 17

1 + 2
  = 2.18 × 10

4
 V. 



 

 

 

72. Using Eq. 24-18, we have 

 

V  =  
3

42

A
dr

r
−  =  

A

3
 

1

2
3 - 

1

3
3  = A(0.029/m

3
). 



 

 

 

73. The work done results in a change of potential energy: 

 

          W = ∆U = 
2(0.12 C)

2

4πεo 

1.7 m

2

 − 
2(0.12 C)

2

4πεo (1.7 m)
  =1.5 × 10

8 
J  . 

 

At a rate of P = 0.83 × 10
3 

Joules per second, it would take W/P = 1.8 × 10
5 

seconds or 

about 2.1 days to do this amount of work. 



 

 

 

74. The charges are equidistant from the point where we are evaluating the potential — 

which is computed using Eq. 24-27 (or its integral equivalent). Eq. 24-27 implicitly 

assumes V → 0 as r → ∞. Thus, we have 

 
9 12

1 1 1 12 3 21 1 1 1 2(8.99 10 )(4.52 10 )

4 4 4 4 0.0850

0.956 V.

Q Q Q Q
V

R R R Rε ε ε ε

−

0 0 0 0

+ − + × ×= + + = =
π π π π

=

 



 

 

 

75. The radius of the cylinder (0.020 m, the same as rB) is denoted R, and the field 

magnitude there (160 N/C) is denoted EB. The electric field beyond the surface of the 

sphere follows Eq. 23-12, which expresses inverse proportionality with r: 

 

E

E

R

r
r R

B

= ≥for .  

 

(a) Thus, if r = rC = 0.050 m, we obtain E = =160 0 020 0 050 64b gb g b g. . N C . 

 

(b) Integrating the above expression (where the variable to be integrated, r, is now 

denoted ρ) gives the potential difference between VB and VC. 

 

ln 2.9 V .
r

B
B C B

R

E R r
V V d E R

R
− = = =  

 

(c) The electric field throughout the conducting volume is zero, which implies that the 

potential there is constant and equal to the value it has on the surface of the charged 

cylinder: VA – VB = 0. 



 

 

 

76. We note that for two points on a circle, separated by angle θ (in radians), the direct-

line distance between them is r = 2R sin(θ/2). Using this fact, distinguishing between the 

cases where N = odd and N = even, and counting the pair-wise interactions very carefully, 

we arrive at the following results for the total potential energies. We use k = 1 4π 0ε .  For 

configuration 1 (where all N electrons are on the circle), we have 

 

( ) ( )

1
1

2 22 2

1, even 1, odd

1 1

1 1 1
,    

2 sin 2 2 2 sin 2

N N

N N

j j

Nke Nke
U U

R j R jθ θ

−−

= =
= =

= + =  

 

where θ = 2π
N

.  For configuration 2, we find 

 

U
N ke

R j

U
N ke

R j

N

j

N

N

j

N

2

2

1

2
1

2

2

1

3

2

1

2

1

2
2

1

2

1

2

5

2

,

,

sin

sin

=
=

−

=
=

−

=
−

′
+

F

H
G
G

I

K
J
J

=
−

′
+

F

H
G
G

I

K
J
J

even

odd

b g
b g

b g
b g

θ

θ

 

 

where ′ =
−

θ 2

1

π
N

.  The results are all of the form 

 

U
ke

R
1

2

2
or 2 a pure number.×  

 

In our table, below, we have the results for those “pure numbers” as they depend on N 

and on which configuration we are considering. The values listed in the U rows are the 

potential energies divided by ke
2
/2R. 

 

N 4 5 6 7 8 9 10 11 12 13 14 15 

U1 3.83 6.88 10.96 16.13 22.44 29.92 38.62 48.58 59.81 72.35 86.22 101.5 

U2 4.73 7.83 11.88 16.96 23.13 30.44 39.92 48.62 59.58 71.81 85.35 100.2 

 

We see that the potential energy for configuration 2 is greater than that for configuration 

1 for N < 12, but for N ≥ 12 it is configuration 1 that has the greatest potential energy. 

 

(a) N = 12 is the smallest value such that U2 < U1. 

 



 

(b) For N = 12, configuration 2 consists of 11 electrons distributed at equal distances 

around the circle, and one electron at the center. A specific electron e0 on the circle is R 

distance from the one in the center, and is 

 

r R R= F
HG
I
KJ ≈2 0 56sin .

π
11

 

 

distance away from its nearest neighbors on the circle (of which there are two — one on 

each side). Beyond the nearest neighbors, the next nearest electron on the circle is 

 

r R R= F
HG
I
KJ ≈2 11sin .

2π
11

 

 

distance away from e0. Thus, we see that there are only two electrons closer to e0 than the 

one in the center. 



 

 

 

77. We note that the net potential (due to the "fixed" charges) is zero at the first location 

("at ∞") being considered for the movable charge q (where q = +2e).  Thus, the work 

required is equal to the potential energy in the final configuration:  qV where 

 

V   =   
1

4πε0
  
(+2e)

2D
  +  

1

4πε0
  
+e

D
   . 

 

Using D = 4.00 m and e = 1.60 × 10
−19

 C, we obtain  

 

Wapp = qV = (2e)(7.20 × 10
−10

 V) = 2.30 × 10
−28

 J. 



 

 

 

78. Since the electric potential is a scalar quantity, this calculation is far simpler than it 

would be for the electric field.  We are able to simply take half the contribution that 

would be obtained from a complete (whole) sphere.  If it were a whole sphere (of the 

same density) then its charge would be qwhole = 8.00 µC.  Then  

 

V  =  
1

2
 Vwhole  =  

1

2
  

qwhole

4πεo r
  =   

1

2
  

8.00 x 10
-6 

C

4πεo(0.15 m)
  =  2.40 × 10

5
 V . 



 

 

 

79. The net potential at point P (the place where we are to place the third electron) due to 

the fixed charges is computed using Eq. 24-27 (which assumes V → 0 as r → ∞): 

 

VP  =  
1

4πε0
  
-e

d
  + 

1

4πε0
  
-e

d
  = 

-e

2πε0d
   . 

 

Thus, with d = 2.00 × 10
−6

 m and e = 1.60 × 10
−19

 C, we find VP = −1.438 × 10
−3

 V.  Then 

the required “applied” work is, by Eq. 24-14, 

 

Wapp = (−e) VP  = 2.30 × 10
−22

 J  . 



 

 

 

80. The work done is equal to the change in the (total) electric potential energy U of the 

system, where 

 

U  =  
q1 q2

4πεo r12

  +  
q3 q2

4πεo r23

  +  
q1 q3

4πεo r13

  

 

and the notation r13 indicates the distance between q1 and q3 (similar definitions apply to 

r12 and r23).   

 

(a) We consider the difference in U where initially r12 = b and r23 = a, and finally r12 = a 

and r23 = b  (r13 doesn’t change).  Converting the values given in the problem to SI units 

(µC to C, cm to m), we obtain ∆U =  – 24 J. 

 

(b) Now we consider the difference in U where initially r23 = a and r13 = a, and finally r23 

is again equal to a and r13 is also again equal to a  (and of course, r12 doesn’t change in 

this case).  Thus, we obtain ∆U = 0. 



 

 

 

81. (a)  Clearly, the net voltage 

 

V =  
q

4πεo | x|
   +  

2q

4πεo | d − x|
  

 

is not zero for any finite value of x. 

 

(b) The electric field cancels at a point between the charges: 

 

                 
q

4πεo x
2  =  

2q

4πεo (d − x)
2  

 

which has the solution:  x =  ( 2  − 1) d  =  0.41 m. 



 

 

 

82. (a) The potential on the surface is 

 

V
q

R
= =

× ×
= ×

− ⋅

4

4 0 10 8 99 10

010
36 10

0

6 9

5

2

2

πε

. .

.
.

C

m
V .

N m

C
c he j

 

 

(b) The field just outside the sphere would be 

 

E
q

R

V

R
= = = × = ×

4

36 10

010
36 10

2

5
6

π 0ε
.

.
. ,

V

m
V m  

 

which would have exceeded 3.0 MV/m. So this situation cannot occur. 



 

 

 

83. This can be approached more than one way, but the simplest is to observe that the net 

potential (using Eq. 24-27) due to q1 = +2e and q3 = –2e is zero at both the initial and 

final positions of the movable charge q2 = +5q. This implies that no work is necessary to 

effect its change of position, which, in turn, implies there is no resulting change in 

potential energy of the configuration. Hence, the ratio is unity. 



 

 

 

84. We use Ex = –dV/dx, where dV/dx is the local slope of the V vs. x curve depicted in 

Fig. 24-54. The results are:  

 

(a) Ex(ab) = –6.0 V/m,  

 

(b) Ex(bc) = 0,  

 

(c) Ex(cd) 3.0 V/m, 

 

(d) Ex(de) = 3.0 V/m,  

 

(e) Ex(ef) = 15 V/m,  

 

(f) Ex(fg) = 0,  

 

(g) Ex(gh) = –3.0 V/m.  

 

Since these values are constant during their respective time-intervals, their graph consists 

of several disconnected line-segments (horizontal) and is not shown here.  



 

 

 

85. (a) We denote the surface charge density of the disk as σ1 for 0 < r < R/2, and as σ2 

for R/2 < r < R. Thus the total charge on the disk is given by  

 

( )

( ) ( )

2
2

1 2disk 0 2

2
2 6 2 7 2

9

2 2 3

2.20 10 m 1.50 10 C m 3 8.00 10 C m

1.48 10 C .

R R

R
q dq r dr r dr Rσ σ σ σ1 2

− − −

−

π= = π + π = +
4

π= × × + ×
4

= ×

 

 

(b) We use Eq. 24-36: 

 

V z dV k
R dR

z R

R dR

z R

z
R

z z R z
R

R

R

Rb g b g b g= =
′ ′

+ ′
+

′ ′

+ ′

L
NM

O
QP

= + −
F
HG

I
KJ

+ + − +
F
HG

I
KJ

z z zdisk 0

2
1

2 2 2

2

2 2

1

0

2
2

2

0

2 2 2
2

2 2

2 4 2 4

σ σ

σ
ε

σ
ε

π π

.

 

 

Substituting the numerical values of σ1, σ2, R and z, we obtain V(z) = 7.95 × 10
2
 V. 



 

 

 

86. The net potential (at point A or B) is computed using Eq. 24-27. Thus, using k for 

1/4πε0, the difference is 

 

( ) ( ) 9 19
4

6

5 5 2 2(8.99 10 )(1.6 10 )
5.14 10  V.

5 2 2 5.60 10
A B

k e k eke ke ke
V V

d d d d d

−
−

−

− − × ×− = + − + = = = ×
×



 

 

 

87. We denote q = 25 × 10
–9

 C, y = 0.6 m, x = 0.8 m, with V = the net potential (assuming 

V → 0 as r → ∞). Then, 

 

V
q

y

q

x

V
q

x

q

y

A

B

= +
−

= +
−

1

4

1

4

1

4

1

4

π π

π π

0 0

0 0

ε ε

ε ε

b g

b g  

 

leads to 

 

V V
q

x

q

y

q

x y
B A− = − = −

F
HG
I
KJ

2

4

2

4 2

1 1

π π π0 0 0ε ε ε
 

 

which yields 187V.V∆ = −  



 

 

 

88. In the “inside” region between the plates, the individual fields (given by Eq. 24-13) 

are in the same direction ( −i ): 

 

Ein i i= − × + ×F
HG

I
KJ = − ×

− −50 10

2

25 10

2
4 2 10

9

0

9

0

3

ε ε
.  

 

in SI units (N/C or V/m). And in the “outside” region where x > 0.5 m, the individual 

fields point in opposite directions: 

 

Eout i i i .= − × + × = − ×
− −50 10

2

25 10

2
14 10

9

0

9

0

3

ε ε
.  

 

Therefore, by Eq. 24-18, we have 

 

( )( ) ( )( )0.8 0.5 0.8
3 3

0 0 in 0.5 out

3

4.2 10 0.5 1.4 10 0.3

2.5 10 V.

V E ds E dx E dx∆ = − ⋅ = − − = − × − ×

= ×
 



 

 

 

89. (a) The charges are equal and are the same distance from C. We use the Pythagorean 

theorem to find the distance r d d d= + =2 2 2
2 2b g b g .  The electric potential at C is 

the sum of the potential due to the individual charges but since they produce the same 

potential, it is twice that of either one: 

 

( )( ) ( )9 2 2 6

6
8.99 10 N m C 2 2 2.0 10 C2 22 2

2.5 10 V.
4 4 0.020 m

qq
V

d dε ε

−× ⋅ ×
= = = = ×

0 0π π
 

 

(b) As you move the charge into position from far away the potential energy changes 

from zero to qV, where V is the electric potential at the final location of the charge. The 

change in the potential energy equals the work you must do to bring the charge in: 

 

( )( )6 62.0 10 C 2.54 10 V 5.1 J.W qV
−= = × × =  

 

(c) The work calculated in part (b) represents the potential energy of the interactions 

between the charge brought in from infinity and the other two charges. To find the total 

potential energy of the three-charge system you must add the potential energy of the 

interaction between the fixed charges. Their separation is d so this potential energy is 

q d
2 4π 0ε .  The total potential energy is 

 

( )( )2
9 2 2 62 8.99 10 N m C 2.0 10 C

5.1 J 6.9 J.
4 0.020m

q
U W

dε

−× ⋅ ×
= + = + =

0π
 



 

 

 

90. The potential energy of the two-charge system is 

 

( ) ( )

( )( )
( ) ( )

2
6

2

1 2

2 2 2 2

1 2 1 2

N m
3.00 C 4.00 10 C

C1

4 3.50 2.00 0.500 1.50 cm

1.93 J.

q q
U

x x y yε

9 −6 −

0

⋅8.99×10 ×10 − ×
= =

π − + − + + −

= −

 

 

Thus, –1.93 J of work is needed. 



 

 

 

91. For a point on the axis of the ring the potential (assuming V → 0 as r → ∞) is 

 

V
q

z R
=

+4 2 2π 0ε
 

 

where q = 16 × 10
–6

 C and R = 0.0300 m. Therefore, 

 

V V
q

z R R
B A

B

− =
+

−
F
HG

I
KJ4

1 1

2 2π 0ε
 

 

where zB = 0.040 m. The result is –1.92 × 10
6
 V. 



 

 

 

92. The initial speed vi of the electron satisfies K m v e Vi e i= =1
2

2 ∆ ,  which gives 

 

v
e V

m
i

e

= =
×

×
= ×

−

−

2 2 160 10

9 11 10
148 10

19

31

7∆ .

.
.

 J 625 V

 kg
m s.

c hb g
 



 

 

 

93. (a) The potential energy is 

 

U
q

d
= =

× ⋅ ×
=

−2 9 6

4

8 99 10 50 10

100
0 225

π 0ε
. .

.
.

 N m C  C

 m
 J

2 2
2c hc h

 

 

relative to the potential energy at infinite separation. 

 

(b) Each sphere repels the other with a force that has magnitude 

 

F
q

d
= =

× ⋅ ×
=

−2

2

9 6

4

8 99 10 5 0 10
0 225

π 0ε
. .

.
 N m C  C

1.00 m
 N.

2 2
2

2

c hc h
b g

 

 

According to Newton’s second law the acceleration of each sphere is the force divided by 

the mass of the sphere. Let mA and mB be the masses of the spheres. The acceleration of 

sphere A is 

 

a
F

m
A

A

= =
×

=−

0 225
45 0

3

.
.

 N

5.0 10  kg
 m s2  

 

and the acceleration of sphere B is 

 

a
F

m
B

B

= =
×

=−

0 225
22 5

3

.
. .

 N

10 10  kg
 m s2  

 

(c) Energy is conserved. The initial potential energy is U = 0.225 J, as calculated in part 

(a). The initial kinetic energy is zero since the spheres start from rest. The final potential 

energy is zero since the spheres are then far apart. The final kinetic energy is 
1
2

2 1
2

2
m v m vA A B B+ ,  where vA and vB are the final velocities. Thus, 

 

U m v m vA A B B= +1

2

1

2

2 2 .  

 

Momentum is also conserved, so 

 
0 = +m v m vA A B B .  

 

These equations may be solved simultaneously for vA and vB. Substituting 

( / )
B A B A

v m m v= − , from the momentum equation into the energy equation, and collecting 

terms, we obtain U m m m m vA B A B A= +1
2

2( / )( ) .  Thus, 

 



 

3

3 3 3

2 2(0.225 J)(10 10  kg)
7.75 m/s.

( ) (5.0 10  kg)(5.0 10  kg 10 10  kg)

B
A

A A B

Um
v

m m m

−

− − −

×= = =
+ × × + ×

 

 

We thus obtain 

 
3

3

5.0 10  kg
 (7.75 m/s) 3.87 m/s,

10 10  kg

A
B A

B

m
v v

m

−

−

×= − = − = −
×

 

 

or | | 3.87 m/s.
B

v =  



 

 

 

94. The particle with charge –q has both potential and kinetic energy, and both of these 

change when the radius of the orbit is changed. We first find an expression for the total 

energy in terms of the orbit radius r. Q provides the centripetal force required for –q to 

move in uniform circular motion. The magnitude of the force is F = Qq/4πε0r
2
. The 

acceleration of –q is v
2
/r, where v is its speed. Newton’s second law yields 

 

Q

r

mv

r
mv

Qq

r

q

4 40

2

2
2

0π πε ε
= = ,  

 

and the kinetic energy is K mv Qq r= =1
2

2

08πε . The potential energy is U = –Qq/4πε0r, 

and the total energy is 

 

E K U
Qq

r

Qq

r

Qq

r
= + = − = −

8 4 80 0 0π π πε ε ε
.  

 

When the orbit radius is r1 the energy is E1 = –Qq/8πε0r1 and when it is r2 the energy is 

E2 = –Qq/8πε0r2. The difference E2 – E1 is the work W done by an external agent to 

change the radius: 

 

W E E
Qq

r r

Qq

r r
= − = − −

F
HG
I
KJ = −

F
HG
I
KJ2 1

2 1 1 28

1 1

8

1 1

π π0 0ε ε
.  



 

 

 

95. (a) The total electric potential energy consists of three equal terms: 

 

U = 
q1 q2

4πεo r
  +  

q2 q3

4πεo r
  + 

q1 q3

4πεo r
  

 

where q1 = q2 = q3 = − 
e

3
  , and r as given in the problem.  The result is U = 2.72 × 10

−14
 J. 

 

(b) Dividing by the square of the speed of light (roughly 3.0 × 10
8 
m/s), we obtain a value 

in kilograms (about a third of the correct electron mass value): 3.02 × 10
−31

 kg. 



 

 

 

96. A positive charge q is a distance r – d from P, another positive charge q is a distance r 

from P, and a negative charge –q is a distance r + d from P. Sum the individual electric 

potentials created at P to find the total: 

 

V
q

r d r r d
=

−
+ −

+
L
NM

O
QP4

1 1 1

0πε
.  

 

We use the binomial theorem to approximate 1/(r – d) for r much larger than d: 

 

1 11 1 2

2
r d

r d r r d
r

d

r−
= − ≈ − − = +− − −( ) ( ) ( ) ( ) .  

 

Similarly, 

 

1 1
2

r d r

d

r+
≈ − .  

 

Only the first two terms of each expansion were retained. Thus, 

 

V
q

r

d

r r r

d

r

q

r

d

r

q

r
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r
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O
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O
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O
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1 1 1

4

1 2

4
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2

0

2 2

0

2

0π π πε ε ε
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97. Assume the charge on Earth is distributed with spherical symmetry. If the electric 

potential is zero at infinity then at the surface of Earth it is V = q/4πε0R, where q is the 

charge on Earth and R = 6.37 × 10
6
 m is the radius of Earth. The magnitude of the electric 

field at the surface is E = q/4πε0R
2
, so  

 

V = ER = (100 V/m) (6.37 × 10
6
 m) = 6.4 × 10

8
 V. 



 

 

 

98. The net electric potential at point P is the sum of those due to the six charges: 
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99. In the sketches shown next, the lines with the arrows are field lines and those without 

are the equipotentials (which become more circular the closer one gets to the individual 

charges). In all pictures, q2 is on the left and q1 is on the right (which is reversed from the 

way it is shown in the textbook). 

 

(a) 

 

  

 

(b) 

  



 

 

 

100. (a) We use Gauss’ law to find expressions for the electric field inside and outside the 

spherical charge distribution. Since the field is radial the electric potential can be written 

as an integral of the field along a sphere radius, extended to infinity. Since different 

expressions for the field apply in different regions the integral must be split into two parts, 

one from infinity to the surface of the distribution and one from the surface to a point 

inside. Outside the charge distribution the magnitude of the field is E = q/4πε0r
2 

and the 

potential is V = q/4πε0r, where r is the distance from the center of the distribution. This is 

the same as the field and potential of a point charge at the center of the spherical 

distribution. To find an expression for the magnitude of the field inside the charge 

distribution, we use a Gaussian surface in the form of a sphere with radius r, concentric 

with the distribution. The field is normal to the Gaussian surface and its magnitude is 

uniform over it, so the electric flux through the surface is 4πr
2
E. The charge enclosed is 

qr
3
/R

3
. Gauss’ law becomes 

 

4 2
3

3
πε 0r E

qr

R
= ,  

so 

 

E
qr

R
=

4 0

3πε
.  

 

If Vs is the potential at the surface of the distribution (r = R) then the potential at a point 

inside, a distance r from the center, is 

 

V V E dr V
q

R
r dr V

qr

R

q

R
s

R

r

s
R

r

s= − = − = − +z z4 8 80

3

2

0

3

0π π πε ε ε
.  

 

The potential at the surface can be found by replacing r with R in the expression for the 

potential at points outside the distribution. It is Vs = q/4πε0R. Thus, 

 

V
q
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r

R R

q

R
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L
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O
QP
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2 8
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(b) The potential difference is 

 

0 0 0

2 3
,

8 8 8
s c

q q q
V V V

R R Rε ε ε
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π π π
 

 

or 0| | / 8V q Rπε∆ = . 



 

 

 

101. (a) For r > r2 the field is like that of a point charge and 

 

V
Q

r
= 1

4 0πε
,  

 

where the zero of potential was taken to be at infinity. 

 

(b) To find the potential in the region r1 < r < r2, first use Gauss’s law to find an 

expression for the electric field, then integrate along a radial path from r2 to r. The 

Gaussian surface is a sphere of radius r, concentric with the shell. The field is radial and 

therefore normal to the surface. Its magnitude is uniform over the surface, so the flux 

through the surface is Φ = 4πr
2
E. The volume of the shell is 4 3 2

3

1

3πb gc hr r− , so the 

charge density is 

 

ρ =
−

3

4 2

3

1

3

Q

r rπc h ,  

 

and the charge enclosed by the Gaussian surface is 

 

q r r Q
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r r
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−
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Gauss’ law yields 

 

4
4

0

2
3

1

3

2

3

1

3

0

3

1

3

2

2

3

1

3
π

π
ε

ε
r E Q

r r

r r
E

Q r r
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If Vs is the electric potential at the outer surface of the shell (r = r2) then the potential a 

distance r from the center is given by 

 

V V E dr V
Q

r r
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r
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The potential at the outer surface is found by placing r = r2 in the expression found in 

part (a). It is Vs = Q/4πε0r2. We make this substitution and collect terms to find 
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Q

r r

r r r

r
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F
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1 3

2 20 2

3

1

3

2

2 2

1

3

πε
.  

 

Since ρ = −3 4 2

3

1

3
Q r rπ c h  this can also be written 

 

V
r r r

r
= − −
F
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I
KJ

ρ
ε3
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2 20
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3

.  

 

(c) The electric field vanishes in the cavity, so the potential is everywhere the same inside 

and has the same value as at a point on the inside surface of the shell. We put r = r1 in the 

result of part (b). After collecting terms the result is 

 

V
Q r r

r r
=

−

−4

3

20

2

2

1

2

2

3

1

3πε
c h
c h ,  

 

or in terms of the charge density V r r= −ρ
ε2 0

2

2

1

2c h. 
 

(d) The solutions agree at r = r1 and at r = r2. 



 

 

 

102. The distance r being looked for is that where the alpha particle has (momentarily) 

zero kinetic energy.  Thus, energy conservation leads to 

 

K0 + U0 = K + U    (0.48 × 10
−12

 J) + 
(2e)(92e)

4πε0 r0
 =  0  +  

(2e)(92e)

4πε0 r
   . 

 

If we set r0 = ∞ (so U0 = 0) then we obtain r = 8.8 × 10
−14

 m. 



 

 

 

103. (a) The net potential is  

 

V = V1 + V2 =  
q1

4πεo r1
  + 

q2

4πεo r2
  

 

where r1 = x
2
 + y

2
  and r2 = (x− d)

2
 + y

2
.  The distance d is 8.6 nm. To find the locus 

of points resulting in V = 0, we set V1 equal to the (absolute value of) V2 and square both 

sides.  After simplifying and rearranging we arrive at an equation for a circle: 

 

          y
2
 + x + 

9d

16

2

  = 
225

256
  d 

2
 . 

 

From this form, we recognize that the center of the circle is –9d/16 =  – 4.8 nm. 

 

(b) Also from this form, we identify the radius as the square root of the right-hand side: R 

= 15d/16 = 8.1 nm. 

 

(c) If one uses a graphing program with “implicitplot” features, it is certainly possible to 

set V = 5 volts in the expression (shown in part (a)) and find its (or one of its) 

equipotential curves in the xy plane.  In fact, it will look very much like a circle.  

Algebraically, attempts to put the expression into any standard form for a circle will fail, 

but that can be a frustrating endeavor.  Perhaps the easiest way to show that it is not truly 

a circle is to find where its “horizontal diameter” Dx and its “vertical diameter” Dy (not 

hard to do); we find Dx = 2.582 nm and Dy = 2.598 nm.  The fact that Dx ≠ Dy is evidence 

that it is not a true circle. 



 

 

 

104. The electric field (along the radial axis) is the (negative of the) derivative of the 

voltage with respect to r.  There are no other components of E  
→

 in this case, so  (noting 

that the derivative of a constant is zero) we conclude that the magnitude of the field is 

 

E =  − 
dV

dr
  =  − 

Ze

4πεo
 

d r
 −1

dr
 + 0 + 

1

2R
3 

d r
2

dr
   =    

Ze

4πεo
 

1

r
 2 − 

r

R
3   

 

for r ≤ R.  This agrees with the Rutherford field expression shown in exercise 37 (in the 

textbook).  We note that he has designed his voltage expression to be zero at r = R.  Since 

the zero point for the voltage of this system (in an otherwise empty space) is arbitrary, 

then choosing  V = 0  at r = R is certainly permissible. 



 

 

 

105. If the electric potential is zero at infinity then at the surface of a uniformly charged 

sphere it is V = q/4πε0R, where q is the charge on the sphere and R is the sphere radius. 

Thus q = 4πε0RV and the number of electrons is 

 

N
q

e
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e
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×

× ⋅ ×
= ×
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−

4 10 10 400
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m V

N m C C

c hb g
c hc h  



 

 

 

106. We imagine moving all the charges on the surface of the sphere to the center of the 

the sphere. Using Gauss’ law, we see that this would not change the electric field outside 

the sphere. The magnitude of the electric field E of the uniformly charged sphere as a 

function of r, the distance from the center of the sphere, is thus given by E(r) = q/(4πε0r
2
) 

for r > R. Here R is the radius of the sphere. Thus, the potential V at the surface of the 

sphere (where r = R) is given by 

 

( ) ( ) ( ) ( )2
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9 8N m

C

2

2

8.99 10 1.50 10 C

4 4 0.160m

8.43 10 V.

R

r
R

q q
V R V E r dr dr

r Rε ε

⋅
∞

=∞ ∞
0 0

× ×
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π π
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107. On the dipole axis θ = 0 or π, so |cos θ| = 1. Therefore, magnitude of the electric 

field is 

 

E r
V

r

p d

dr r

p

r
b g = − ∂

∂
= F
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I
KJ =

4

1

22 3π π0 0ε ε
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108. The potential difference is  

 

∆V = E∆s = (1.92 × 10
5
 N/C)(0.0150 m) = 2.90 × 10

3
 V. 



 

 

 

109. (a) Using Eq. 24-26, we calculate the radius r of the sphere representing the 30 V 

equipotential surface: 

 

r
q

V
= =

4
4 5

π 0ε
. m. 

 

(b) If the potential were a linear function of r then it would have equally spaced 

equipotentials, but since V r∝1  they are spaced more and more widely apart as r 

increases. 



 

 

 

110. (a) Let the quark-quark separation be r. To “naturally” obtain the eV unit, we only 

plug in for one of the e values involved in the computation: 
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(b) The total consists of all pair-wise terms: 
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111. (a) At the smallest center-to-center separation 
p

d the initial kinetic energy Ki of the 

proton is entirely converted to the electric potential energy between the proton and the 

nucleus. Thus, 
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lead1 82
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4 4
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p p

eq e
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d dε ε
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0 0π π
 

 

In solving for 
p

d  using the eV unit, we note that a factor of e cancels in the middle line: 
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It is worth recalling that a volt is a newton·meter/coulomb, in making sense of the above 

manipulations. 

 

(b) An alpha particle has 2 protons (as well as 2 neutrons). Therefore, using ′rmin  for the 

new separation, we find 
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which leads to / 2.00
p
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112. (a) The potential would be 
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(b) The electric field is 
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(c) The minus sign in E indicates that E  is radially inward. 



 

 

 

113. The electric potential energy is 
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114. (a) The charge on every part of the ring is the same distance from any point P on the 

axis. This distance is r z R= +2 2 , where R is the radius of the ring and z is the distance 

from the center of the ring to P. The electric potential at P is 

 

V
dq

r

dq

z R z R
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(b) The electric field is along the axis and its component is given by 

 

2 2 1/ 2 2 2 3/ 2

2 2 3/ 2
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4 4 2 4 ( )

V q q q z
E z R z R z
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This agrees with Eq. 23-16. 



 

 

 

115. From the previous chapter, we know that the radial field due to an infinite line-

source is 

 

E
r

= λ
2π 0ε

 

 

which integrates, using Eq. 24-18, to obtain 

 

V V
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r
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r

r
i f

r

r
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f
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F
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KJzλ

2π
λ

2π0 0ε ε
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The subscripts i and f are somewhat arbitrary designations, and we let Vi = V be the 

potential of some point P at a distance ri = r from the wire and Vf = Vo be the potential 

along some reference axis (which intersects the plane of our figure, shown next, at the xy 

coordinate origin, placed midway between the bottom two line charges — that is, the 

midpoint of the bottom side of the equilateral triangle) at a distance rf = a from each of 

the bottom wires (and a distance a 3  from the topmost wire). Thus, each side of the 

triangle is of length 2a. Skipping some steps, we arrive at an expression for the net 

potential created by the three wires (where we have set Vo = 0): 
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x y a

x a y x a y
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+ −FH IK
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4π 0ε
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2
2

2

2 2 2 2

3d i
b ge j b ge j

 

 

which forms the basis of our contour plot shown below. On the same plot we have shown 

four electric field lines, which have been sketched (as opposed to rigorously calculated) 

and are not meant to be as accurate as the equipotentials. The ±2λ by the top wire in our 

figure should be –2λ (the ± typo is an artifact of our plotting routine). 

 

 



 

 
 
116. From the previous chapter, we know that the radial field due to an infinite line-
source is 
 

E
r

= λ
2π 0ε

 

 
which integrates, using Eq. 24-18, to obtain 
 

V V dr
r
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ri f r
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The subscripts i and f are somewhat arbitrary designations, and we let Vi = V be the 
potential of some point P at a distance ri = r from the wire and Vf = Vo be the potential 
along some reference axis (which will be the z axis described in this problem) at a 
distance rf = a from the wire. In the “end-view” presented here, the wires and the z axis 
appear as points as they intersect the xy plane. The potential due to the wire on the left 
(intersecting the plane at x = –a) is 
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aV V
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and the potential due to the wire on the right (intersecting the plane at x = +a) is 
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Since potential is a scalar quantity, the net potential at point P is the addition of V–λ and 
V+λ which simplifies to 
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where we have set the potential along the z axis equal to zero (Vo = 0) in the last step 
(which we are free to do). This is the expression used to obtain the equipotentials shown 
next. The center dot in the figure is the intersection of the z axis with the xy plane, and the 
dots on either side are the intersections of the wires with the plane. 
 



 

 



 

 

 

117.  (a) With V = 1000 V, we solve  

 

         V  =  
q

4πεo R
         where R = 0.010 m  

 

for the net charge on the sphere, and find q =  1.1 × 10
−9 

C.  Dividing this by e yields 6.95 

× 10
9 

electrons that entered the copper sphere.  Now, half of the 3.7 × 10
8 

decays per 

second resulted in electrons entering the sphere, so the time required is 

 

                       
6.95 x 10

9

1

2
 (3.7 x 10

8
)

  =  38 seconds. 

 

(b) We note that 100 keV is 1.6 × 10
−14

 J (per electron that entered the sphere).  Using the 

given heat capacity, we note that a temperature increase of ∆T = 5.0 K = 5.0 Cº required 

71.5 J of energy.  Dividing this by 1.6 × 10
−14

 J, we find the number of electrons needed 

to enter the sphere (in order to achieve that temperature change); since this is half the 

number of decays, we multiply to 2 and find 

 

          N = 8.94 × 10
15

 decays. 

 

We divide N  by 3.7 × 10
8
 to obtain the number of seconds.  Converting to days, this 

becomes roughly 280 days.  



 

 

 

 

V = 
q1

4πεo x
2 
+ y

2   + 
q2

4πεo x
2 
+ (y − d)

2   

 

where d = 0.50 m.  The values of q1 and q2 are given in the problem. 

 

(a)  We set V = 5.0 V and plotted (using MAPLE’s implicit plotting routine) those points 

in the xy plane which (when plugged into the above expression for V) yield 5.0 volts.  The 

result is 

 

 
 

 (b) In this case, the same procedure yields these two equipotential lines: 

 

 
 

(c) One way to search for the “crossover” case (from a single equipotential line, to two) is 

to “solve” for a point on the y axis (chosen here to be an absolute distance ξ below q1 – 

that is, the point is at a negative value of y, specifically at y = −ξ) in terms of V (or more 

conveniently, in terms of the parameter η = 4πεoV x 10
10

).  Thus, the above expression 

for V becomes simply 

 

118. The (implicit) equation for the pair (x,y) in terms of a specific V is 



 

η   =   
−12
 ξ    +    

25
d + ξ  . 

 
This leads to a quadratic equation with the (formal) solution 
 

ξ =  
13 − d η ± d2

 η2 + 169 − 74 d η
2 η   . 

 
Clearly there is the possibility of having two solutions (implying two intersections of 
equipotential lines with the –y axis) when the square root term is nonzero.  This suggests 
that we explore the special case where the square root term is zero; that is, 
 

d2
 η2 + 169 − 74 d η  = 0 . 

 
Squaring both sides, using the fact that d = 0.50 m and recalling how we have defined the 
parameter η, this leads to a “critical value” of the potential (corresponding to the 
crossover case, between one and two equipotentials): 
 

ηcritical =  
37 − 20 3

d     ⇒     Vcritical  =  
ηcritical

 4πεo x 1010  =  4.2 V. 
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