
 

 

 

1. Charge flows until the potential difference across the capacitor is the same as the 

potential difference across the battery. The charge on the capacitor is then q = CV, and 

this is the same as the total charge that has passed through the battery. Thus,  

 

q = (25 × 10
–6

 F)(120 V) = 3.0 × 10
–3

 C. 



  

 

 

2. (a) The capacitance of the system is 

 

C
q

V
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(b) The capacitance is independent of q; it is still 3.5 pF. 

 

(c) The potential difference becomes 
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3. (a) The capacitance of a parallel-plate capacitor is given by C = ε0A/d, where A is the 

area of each plate and d is the plate separation. Since the plates are circular, the plate area 

is A = πR
2
, where R is the radius of a plate. Thus, 
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(b) The charge on the positive plate is given by q = CV, where V is the potential 

difference across the plates. Thus,  

 

q = (1.44 × 10
–10

 F)(120 V) = 1.73 × 10
–8

 C = 17.3 nC. 



  

 

 

4. We use C = Aε0/d.  

 

(a) Thus, 
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(b) Since d is much less than the size of an atom (∼ 10
–10

 m), this capacitor cannot be 

constructed. 



 

 

 

5. Assuming conservation of volume, we find the radius of the combined spheres, then 

use C = 4πε0R to find the capacitance. When the drops combine, the volume is doubled. It 

is then V = 2(4π/3)R
3
. The new radius R' is given by 

 

( )3 34 4
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R R′ =π π
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The new capacitance is 
1 3

0 0 04 4 2 5.04 .C R R Rε ε ε′ ′= = =π π π  

 

With R = 2.00 mm, we obtain ( )( )12 3 135.04 8.85 10 F m 2.00 10 m 2.80 10 FC π − − −= × × = × . 



  

 

 

6. (a) We use Eq. 25-17: 
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(b) Let the area required be A. Then C = ε0A/(b – a), or 
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7. The equivalent capacitance is given by Ceq = q/V, where q is the total charge on all the 

capacitors and V is the potential difference across any one of them. For N identical 

capacitors in parallel, Ceq = NC, where C is the capacitance of one of them. Thus, 

/NC q V=  and 
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8. The equivalent capacitance is 
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9. The equivalent capacitance is 
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10. The charge that passes through meter A is 

 

q C V CV= = = =eq F V C.3 3 250 4200 0 315. .µb gb g  



 

 

 

11. (a) and (b) The original potential difference V1 across C1 is 
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Thus ∆V1 = 100.0 V – 21.1 V = 78.9 V and  

 

∆q1 = C1∆V1 = (10.0 µF)(78.9 V) = 7.89 × 10
–4

 C. 



  

 

 

12. (a) The potential difference across C1 is V1 = 10.0 V. Thus,  

 

q1 = C1V1 = (10.0 µF)(10.0 V) = 1.00 × 10
–4

 C. 

 

(b) Let C = 10.0 µF. We first consider the three-capacitor combination consisting of C2 

and its two closest neighbors, each of capacitance C. The equivalent capacitance of this 

combination is 

 

2
eq

2

1 50 
C C

C C . C.
C C

= + =
+

 

 

Also, the voltage drop across this combination is 
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Since this voltage difference is divided equally between C2 and the one connected in 

series with it, the voltage difference across C2 satisfies V2 = V/2 = V1/5. Thus 
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13. The charge initially on the charged capacitor is given by q = C1V0, where C1 = 100 pF 

is the capacitance and V0 = 50 V is the initial potential difference. After the battery is 

disconnected and the second capacitor wired in parallel to the first, the charge on the first 

capacitor is q1 = C1V, where V = 35 V is the new potential difference. Since charge is 

conserved in the process, the charge on the second capacitor is q2 = q – q1, where C2 is 

the capacitance of the second capacitor. Substituting C1V0 for q and C1V for q1, we obtain 

q2 = C1 (V0 – V). The potential difference across the second capacitor is also V, so the 

capacitance is 
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14. The two 6.0 µF capacitors are in parallel and are consequently equivalent to 

eq 12 FC µ= .  Thus, the total charge stored (before the squeezing) is  

 

qtotal  =  CeqVbattery =120 µC . 

 

(a) and (b)  As a result of the squeezing, one of the capacitors is now 12 µF (due to the 

inverse proportionality between C and d in Eq. 25-9) which represents an increase of 

6.0 Fµ  and thus a charge increase of  

 

∆qtotal  =  ∆CeqVbattery = (6.0 µF)(10 V) = 60 µC . 



 

 

 

15. (a) First, the equivalent capacitance of the two 4.00 µF capacitors connected in series 

is given by 4.00 µF/2 = 2.00 µF. This combination is then connected in parallel with two 

other 2.00-µF capacitors (one on each side), resulting in an equivalent capacitance C = 

3(2.00 µF) = 6.00 µF. This is now seen to be in series with another combination, which 

consists of the two 3.0-µF capacitors connected in parallel (which are themselves 

equivalent to C' = 2(3.00 µF) = 6.00 µF). Thus, the equivalent capacitance of the circuit 

is 
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(b) Let V = 20.0 V be the potential difference supplied by the battery. Then  

 

q = CeqV = (3.00 µF)(20.0 V) = 6.00 × 10
–5

 C. 

 

(c) The potential difference across C1 is given by 
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(d) The charge carried by C1 is q1 = C1V1= (3.00 µF)(10.0 V) = 3.00 × 10
–5

 C. 

 

(e) The potential difference across C2 is given by V2 = V – V1 = 20.0 V – 10.0 V = 10.0 V.  

 

(f) The charge carried by C2 is q2 = C2V2 = (2.00 µF)(10.0 V) = 2.00 × 10
–5

 C. 

 

(g) Since this voltage difference V2 is divided equally between C3 and the other 4.00-µF 

capacitors connected in series with it, the voltage difference across C3 is given by V3 = 

V2/2 = 10.0 V/2 = 5.00 V.  

 

(h) Thus, q3 = C3V3 = (4.00 µF)(5.00 V) = 2.00 × 10
–5

 C. 



  

 

 

16. We determine each capacitance from the slope of the appropriate line in the graph.  

Thus, C1 = (12 µC)/(2.0 V) = 6.0 µF.  Similarly, C2 = 4.0 µF and C3 = 2.0 µF.  The total 

equivalent capacitance is  

 

C123 = ((C1)
−1 + (C3 + C2)

−1)
−1

 = 3.0 µF. 

 

This implies that the charge on capacitor 1 is (3.0 µF)(6.0 V) = 18 µC.  The voltage 

across capacitor 1 is therefore (18 µC)/( 6.0 µF) = 3.0 V.  From the discussion in section 

25-4, we conclude that the voltage across capacitor 2 must be 6.0 V – 3.0 V = 3.0 V.  

Consequently, the charge on capacitor 2 is (4.0 µF)( 3.0 V) = 12 µC.   



 

 

 

17. (a) After the switches are closed, the potential differences across the capacitors are 

the same and the two capacitors are in parallel. The potential difference from a to b is 

given by Vab = Q/Ceq, where Q is the net charge on the combination and Ceq is the 

equivalent capacitance. The equivalent capacitance is Ceq = C1 + C2 = 4.0 × 10
–6

 F. The 

total charge on the combination is the net charge on either pair of connected plates. The 

charge on capacitor 1 is 
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and the charge on capacitor 2 is 

 

q C V2 2
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so the net charge on the combination is 3.0 × 10
–4

 C – 1.0 × 10
–4

 C = 2.0 × 10
–4

 C. The 

potential difference is 
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(b) The charge on capacitor 1 is now q1 = C1Vab = (1.0 × 10
–6

 F)(50 V) = 5.0 × 10
–5

 C. 

 

(c) The charge on capacitor 2 is now q2 = C2Vab = (3.0 × 10
–6

 F)(50 V) = 1.5 × 10
–4

 C. 



  

 

 

18. Eq. 23-14 applies to each of these capacitors.  Bearing in mind that σ = q/A, we find 

the total charge to be 

 

qtotal  = q1 + q2 =  σ 1 A1  + σ 2 A2 =   εo E1 A1  + εo E2 A2  =  3.6 pC 

 

where we have been careful to convert cm
2
 to m

2
 by dividing by 10

4
. 



 

 

 

19. (a) and (b) We note that the charge on C3 is q3 = 12 µC – 8.0 µC = 4.0 µC.  Since the 

charge on C4 is q4 = 8.0 µC, then the voltage across it is q4/C4 = 2.0 V.  Consequently, the 

voltage V3 across C3 is 2.0 V  C3 = q3/V3 = 2.0 µF.   

 

Now C3 and C4  are in parallel and are thus equivalent to 6 µF capacitor which would then 

be in series with C2 ; thus, Eq 25-20 leads to an equivalence of  2.0 µF which is to be 

thought of as being in series with the unknown C1 .  We know that the total effective 

capacitance of the circuit (in the sense of what the battery “sees” when it is hooked up) is 

(12 µC)/Vbattery = 4µF/3.  Using Eq 25-20 again, we find 
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2 µF
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3
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20. We note that the total equivalent capacitance is C123 = [(C3)
−1 + (C1 + C2)

−1]
−1

 = 6 µF.   

 

(a) Thus, the charge that passed point a is C123 Vbatt = (6 µF)(12 V) = 72 µC.  Dividing this 

by the value e = 1.60 × 10
−19 

C gives the number of electrons: 4.5 × 10
14

, which travel to 

the left – towards the positive terminal of the battery.   

 

(b) The equivalent capacitance of the parallel pair is C12 = C1 + C2 = 12 µF.  Thus, the 

voltage across the pair (which is the same as the voltage across C1 and C2 individually) is 

 

72 µC

12 µF
  = 6 V . 

 

Thus, the charge on C1 is (4 µF)(6 V) = 24 µC, and dividing this by e gives the number of 

electrons (1.5 × 10
14

) which have passed (upward) though point b.  

 

(c) Similarly, the charge on C2 is (8 µF)(6 V) = 48 µC, and dividing this by e gives the 

number of electrons (3.0 × 10
14

) which have passed (upward) though point c. 

 

(d) Finally, since C3 is in series with the battery, its charge is the same that passed through 

the battery (the same as passed through the switch).  Thus, 4.5 × 10
14

 electrons passed 

rightward though point d.  By leaving the rightmost plate of C3, that plate is then the 

positive plate of the fully charged capacitor – making its leftmost plate (the one closest to 

the negative terminal of the battery) the negative plate, as it should be.  

 

(e) As stated in (b), the electrons travel up through point b. 

 

(f) As stated in (c), the electrons travel up through point c. 



 

 

 

21. The charges on capacitors 2 and 3 are the same, so these capacitors may be replaced 

by an equivalent capacitance determined from 

 

1 1 1

2 3

2 3

2 3C C C

C C

C Ceq

= + = +
.  

 

Thus, Ceq = C2C3/(C2 + C3). The charge on the equivalent capacitor is the same as the 

charge on either of the two capacitors in the combination and the potential difference 

across the equivalent capacitor is given by q2/Ceq. The potential difference across 

capacitor 1 is q1/C1, where q1 is the charge on this capacitor. The potential difference 

across the combination of capacitors 2 and 3 must be the same as the potential difference 

across capacitor 1, so q1/C1 = q2/Ceq. Now some of the charge originally on capacitor 1 

flows to the combination of 2 and 3. If q0 is the original charge, conservation of charge 

yields q1 + q2 = q0 = C1 V0, where V0 is the original potential difference across capacitor 1.  

 

(a) Solving the two equations 

 

q
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q
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eq
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for q1 and q2, we obtain 
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With V0 = 12.0 V, C1= 4.00 µF, C2= 6.00 µF and C3 =3.00 µF, we find Ceq = 2.00 µF and 

q1 = 32.0 µC. 

 

(b) The charge on capacitors 2 is 

 

2 1 0 1 (4.00 F)(12.0V) 32.0 F 16.0 Fq C V q µ µ µ= − = − =  

 

(c) The charge on capacitor 3 is the same as that on capacitor 2: 

 

3 1 0 1 (4.00 F)(12.0V) 32.0 F 16.0 Fq C V q µ µ µ= − = − =  



  

 

 

22. Initially the capacitors C1, C2, and C3 form a combination equivalent to a single 

capacitor which we denote C123. This obeys the equation 

 

1

 C1
  +  

1

 C2 + C3
   =   

1

 C123
 . 

 

Hence, using q = C123V and the fact that q = q1 = C1 V1 , we arrive at 

 

V1   =  
C2 + C3

 C1 + C2 + C3
 V . 

 

(a) As C3 → ∞ this expression becomes V1 = V.  Since the problem states that V1 

approaches 10 volts in this limit, so we conclude V = 10 V. 

 

(b) and (c)   At C3 = 0, the graph indicates V1 = 2.0 V.  The above expression 

consequently implies C1 = 4C2 .  Next we note that the graph shows that, at C3 = 6.0 µF, 

the voltage across C1 is exactly half of the battery voltage.  Thus, 

 

1

2
   =  

C2 + 6.0 µF

 C1 + C2 + 6.0 µF
    =   

C2 + 6.0 µF

 4C2 + C2 + 6.0 µF
  

 

which leads to C2 = 2.0 µF.  We conclude, too, that C1  = 8.0 µF.  



 

 

 

23. (a) In this situation, capacitors 1 and 3 are in series, which means their charges are 

necessarily the same: 

 

( ) ( ) ( )1 3
1 3

1 3

1.00 F 3.00 F 12.0V
9.00 C.

1.00 F+3.00 F

C C V
q q

C C

µ µ
µ

µ µ
= = = =

+
 

 

(b) Capacitors 2 and 4 are also in series: 
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2 4
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16.0 C.
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C C V
q q
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µ µ
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(c) 3 1 9.00 C.q q µ= =  

 

(d) 4 2 16.0 C.q q µ= =  

 

(e) With switch 2 also closed, the potential difference V1 across C1 must equal the 

potential difference across C2 and is 

 

( )( )3 4
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Thus, q1 = C1V1 = (1.00 µF)(8.40 V) = 8.40 µC.  

 

(f) Similarly, q2 = C2V1 = (2.00 µF)(8.40 V) = 16.8 µC. 

 

(g) q3 = C3(V – V1) = (3.00 µF)(12.0 V – 8.40 V) = 10.8 µC. 

 

(h) q4 = C4(V – V1) = (4.00 µF)(12.0 V – 8.40 V) = 14.4 µC. 



  

 
 
24. Let ν = 1.00 m3. Using Eq. 25-25, the energy stored is 
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25. The energy stored by a capacitor is given by U CV= 1
2

2 , where V is the potential 

difference across its plates. We convert the given value of the energy to Joules. Since a 

Joule is a watt·second, we multiply by (10
3
 W/kW) (3600 s/h) to obtain 

710 kW h 3.6 10  J⋅ = × . Thus, 
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26. (a) The capacitance is 
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(b) q = CV = (35 pF)(600 V) = 2.1 × 10
–8

 C = 21 nC. 

 

(c) U CV= = = × −1
2

2 1
2

2 635 21 6 3 10pF nC J = 6.3 J.b gb g . µ  

 

(d) E = V/d = 600 V/1.0 × 10
–3

 m = 6.0 × 10
5
 V/m. 

 

(e) The energy density (energy per unit volume) is 
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27. The total energy is the sum of the energies stored in the individual capacitors. Since 

they are connected in parallel, the potential difference V across the capacitors is the same 

and the total energy is  

 

( ) ( )( )22 6 6
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28. (a) The potential difference across C1 (the same as across C2) is given by 
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Also, V3 = V – V1 = V – V2 = 100 V – 50.0 V = 50.0 V. Thus, 
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(b) The potential difference V3 was found in the course of solving for the charges in part 

(a). Its value is V3 = 50.0 V. 

 

(c) The energy stored in C3 is 

 

( )( )22 2

3 3 3
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15.0 F 50.0V 1.88 10 J.

2 2
U C V µ −= = = ×  

 

(d) From part (a), we have 4

1 5.00 10 Cq
−= × , and 

 

(e) V1 = 50.0 V. 

 

(f) The energy stored in C1 is 

 

 ( )( )22 2
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10.0 F 50.0V 1.25 10 J.

2 2
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(g) Again, from part (a), 4

2 2.50 10 Cq
−= × , and  

 

(h) V2 = 50.0 V. 

 

(i) The energy stored in C2 is 

 

( )( )22 3

2 2 2

1 1
5.00 F 50.0V 6.25 10 J.

2 2
U C V µ −= = = ×  



 

 

 

29. The energy per unit volume is 
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(a) At 31.00 10 mr
−= × , with 191.60 10 Ce

−= ×  and 12 2 2

0 8.85 10  C /N mε −= × ⋅ , we have  
18 39.16 10  J/mu

−= × . 

 

(b) Similarly, at 61.00 10 mr
−= × , 6 39.16 10  J/mu

−= × , 

 

(c) at 91.00 10 mr
−= × , 6 39.16 10  J/mu = × , and  

 

(d) at 121.00 10 mr
−= × , 18 39.16 10  J/mu = × . 

 

(e) From the expression above u ∝ r
–4

. Thus, for r → 0, the energy density u → ∞. 



  

 

 

30. (a) The charge q3 in the Figure is 4

3 3 (4.00 F)(100 V) 4.00 10 Cq C V µ −= = = × . 

 

(b) V3 = V = 100 V. 

 

(c) Using U CVi i i= 1
2

2 , we have 2 21
3 3 32

2.00 10 JU C V
−= = × . 

 

(d) From the Figure,  
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(e) V1 = q1/C1 = 3.33 × 10
–4

 C/10.0 µF = 33.3 V. 

 

(f)  2 31
1 1 12

5.55 10 JU C V
−= = × .  

 

(g) From part (d), we have 4

2 1 3.33 10 C.q q
−= = ×  

 

(h) V2 = V – V1 = 100 V – 33.3 V = 66.7 V. 

 

(i) 2 21
2 2 22

1.11 10 JU C V
−= = × . 



 

 

 

31. (a) Let q be the charge on the positive plate. Since the capacitance of a parallel-plate 

capacitor is given by 0 i
A dε , the charge is 0 i i

q CV AV dε= = . After the plates are 

pulled apart, their separation is fd and the potential difference is Vf. Then 

0 2f f
q AV dε=  and 

 

0

0 0

.
f f f

f i i

i i

d d dA
V q V V

A A d d

ε
ε ε

= = =  

 

With 33.00 10 mid
−= × , 6.00 ViV = and 38.00 10 mfd

−= × , we have 16.0 VfV = . 

 

(b) The initial energy stored in the capacitor is (in SI units) 
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(c) The final energy stored is 

 
2

2
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f f fi
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d d d d d d
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With / 8.00 / 3.00f id d = , we have 101.20 10  J.fU
−= ×  

 

(d) The work done to pull the plates apart is the difference in the energy:  

 

W = Uf – Ui = 117.52 10  J.−×  



  

 

 

32. We use E q R V R= =/ /4 0

2πε . Thus 

 
2 22

2 12 3

0 0 2

1 1 1 C 8000V
8.85 10 0.11 J/m .

2 2 2 N m 0.050 m

V
u E

R
ε ε −= = = × =

⋅
 



 

 

 

33. (a) They each store the same charge, so the maximum voltage is across the smallest 

capacitor. With 100 V across 10 µF, then the voltage across the 20 µF capacitor is 50 V 

and the voltage across the 25 µF capacitor is 40 V. Therefore, the voltage across the 

arrangement is 190 V. 

 

(b) Using Eq. 25-21 or Eq. 25-22, we sum the energies on the capacitors and obtain Utotal 

= 0.095 J. 



  

 

 

34. If the original capacitance is given by C = ε0A/d, then the new capacitance is 

0' / 2C A dε κ= . Thus C'/C = κ/2 or  

 

κ = 2C'/C = 2(2.6 pF/1.3 pF) = 4.0. 



 

 

 

35. The capacitance with the dielectric in place is given by C = κC0, where C0 is the 

capacitance before the dielectric is inserted. The energy stored is given by 

U CV C V= =1
2

2 1
2 0

2κ , so 

 
6

2 12 2

0

2 2(7.4 10 J)
4.7.

(7.4 10 F)(652V)

U

C V
κ

−

−

×= = =
×

 

 

According to Table 25-1, you should use Pyrex. 



  

 

 

36. (a) We use C = ε0A/d to solve for d: 

 

( )2

2

12 2C

N m 20

12

8.85 10 (0.35 m )
6.2 10 m.

50 10 F

A
d

C

ε
−

⋅ −
−

×
= = = ×

×
 

 

(b) We use C ∝ κ. The new capacitance is C' = C(κ/κair) = (50 pf)(5.6/1.0) = 2.8×10
2
 pF. 



 

 

 

37. The capacitance of a cylindrical capacitor is given by 

 

C C
L

b a
= =κ 0

02πκε
ln( / )

,  

 

where C0 is the capacitance without the dielectric, κ is the dielectric constant, L is the 

length, a is the inner radius, and b is the outer radius. The capacitance per unit length of 

the cable is 

 
12

1102 2 F/m)
8.1 10 F/m 81 pF/m.

ln( / ) ln[(0.60 mm)/(0.10 mm)]

C

L b a

−
−πκε π(2.6)(8.85×10= = = × =  



  

 

 

38. Each capacitor has 12.0 V across it, so Eq. 25-1 yields the charge values once we 

know C1 and C2.  From Eq. 25-9, 

 

C2 =  
ε0 A

d
  =  2.21 × 10

−11
 F  , 

 

and from Eq. 25-27, 

 

C1 =  
κε0 A

d
  =  6.64 × 10

−11
 F  . 

 

This leads to q1 = C1V1 = 8.00 × 10
−10

 C and q2 = C2V2 = 2.66 × 10
−10

 C.  The addition of 

these gives the desired result: qtot = 1.06 × 10
−9

 C.  Alternatively, the circuit could be 

reduced to find the qtot. 



 

 

 

39. The capacitance is given by C = κC0 = κε0A/d, where C0 is the capacitance without 

the dielectric, κ is the dielectric constant, A is the plate area, and d is the plate separation. 

The electric field between the plates is given by E = V/d, where V is the potential 

difference between the plates. Thus, d = V/E and C = κε0AE/V. Thus, 

 

A
CV

E
=

κε 0

.  

 

For the area to be a minimum, the electric field must be the greatest it can be without 

breakdown occurring. That is, 

 

A = × ×
× ×

=
−

−

( .

. ( .
. .

7 0 10

2 8 885 10
0 63

8

12

2F)(4.0 10 V)

F / m)(18 10 V / m)
m

3

6
 



  

 

 

40. (a) We use Eq. 25-14: 

 

( )2

2

9 N m

C

(4.7)(0.15 m)
2 0.73 nF.

ln( / ) 2 8.99 10 ln(3.8 cm/3.6 cm)

L
C

b a
0 ⋅

= πε κ = =
×

 

 

(b) The breakdown potential is (14 kV/mm) (3.8 cm – 3.6 cm) = 28 kV. 



 

 

 

41. Using Eq. 25-29, with σ = q/A, we have 

 

E
q

A
= = ×

κε 0

3200 10 N C  

 

which yields q = 3.3 × 10
–7

 C. Eq. 25-21 and Eq. 25-27 therefore lead to 

 

U
q

C

q d

A
= = = × −

2 2

0

5

2 2
6 6 10

κε
. .J  



  

 

 

42. The capacitor can be viewed as two capacitors C1 and C2 in parallel, each with 

surface area A/2 and plate separation d, filled with dielectric materials with dielectric 

constants κ1 and κ2, respectively. Thus, (in SI units), 

 

0 1 0 2 0 1 2
1 2

12 4
12

3

( / 2) ( / 2)

2

(8.85 10 )(5.56 10 ) 7.00 12.00
8.41 10  F.

5.56 10 2

A A A
C C C

d d d

ε κ ε κ ε κ κ

− −
−

−

+= + = + =

× × += = ×
×

 



 

 

 

43. We assume there is charge q on one plate and charge –q on the other. The electric 

field in the lower half of the region between the plates is 

 

E
q

A
1

1 0

=
κ ε

,  

 

where A is the plate area. The electric field in the upper half is 

 

E
q

A
2

2 0

=
κ ε

.  

 

Let d/2 be the thickness of each dielectric. Since the field is uniform in each region, the 

potential difference between the plates is 

 

V
E d E d qd

A

qd

A
= + = +

L
NM

O
QP

= +1 2

0 1 2 0

1 2

1 22 2 2

1 1

2ε κ κ ε
κ κ
κ κ

,  

 

so 

 

C
q

V

A

d
= =

+
2 0 1 2

1 2

ε κ κ
κ κ

.  

 

This expression is exactly the same as that for Ceq of two capacitors in series, one with 

dielectric constant κ1 and the other with dielectric constant κ2. Each has plate area A and 

plate separation d/2. Also we note that if κ1 = κ2, the expression reduces to C = κ1ε0A/d, 

the correct result for a parallel-plate capacitor with plate area A, plate separation d, and 

dielectric constant κ1. 

 

With 4 27.89 10 mA
−= × , 34.62 10 md

−= × , 1 11.0κ = and 2 12.0κ = , the capacitance is, (in 

SI units) 

 
12 4

11

3

2(8.85 10 )(7.89 10 ) (11.0)(12.0)
1.73 10 F.

4.62 10 11.0 12.0
C

− −
−

−

× ×= = ×
× +

 



  

 

 

44. Let C1 = ε0(A/2)κ1/2d = ε0Aκ1/4d, C2 = ε0(A/2)κ2/d = ε0Aκ2/2d, and C3 = ε0Aκ3/2d. 

Note that C2 and C3 are effectively connected in series, while C1 is effectively connected 

in parallel with the C2-C3 combination. Thus, 

 

( ) ( ) ( )0 2 32 3 0 1 0 2 3
1 1

2 3 2 3 2 3

2 2 2
.

4 2 2 4

A dC C A A
C C

C C d d

ε κ κε κ ε κ κκ
κ κ κ κ

= + = + = +
+ + +

 

 

With 3 21.05 10 mA
−= × , 33.56 10 md

−= × , 1 21.0κ = , 2 42.0κ = and 3 58.0κ = , the 

capacitance is, (in SI units) 

 
12 3

11

3

(8.85 10 )(1.05 10 ) 2(42.0)(58.0)
21.0 4.55 10 F.

4(3.56) 10 42.0 58.0
C

− −
−

−

× ×= + = ×
× +

 



 

 

 

45. (a) The electric field in the region between the plates is given by E = V/d, where V is 

the potential difference between the plates and d is the plate separation. The capacitance 

is given by C = κε0A/d, where A is the plate area and κ is the dielectric constant, so 

0 /d A Cκε=  and 

  

E
VC

A
= =

×

× ×
= ×

−

− −κε 0

12

12 4 2

4
50 100 10

54 885 10 100 10
10 10

V F

F m m
V m

b gc h
c hc h. .

. .  

 

(b) The free charge on the plates is qf = CV = (100 × 10
–12

 F)(50 V) = 5.0 × 10
–9

 C. 

 

(c) The electric field is produced by both the free and induced charge. Since the field of a 

large uniform layer of charge is q/2ε0A, the field between the plates is 

 

E
q

A

q

A

q

A

q

A

f f i i= + − −
2 2 2 20 0 0 0ε ε ε ε

,  

 

where the first term is due to the positive free charge on one plate, the second is due to 

the negative free charge on the other plate, the third is due to the positive induced charge 

on one dielectric surface, and the fourth is due to the negative induced charge on the other 

dielectric surface. Note that the field due to the induced charge is opposite the field due to 

the free charge, so they tend to cancel. The induced charge is therefore 

 

( )( )( )9 12 4 2 4

0

9

5.0 10 C 8.85 10 F m 100 10 m 1.0 10 V m

4.1 10 C 4.1nC.

i fq q AEε − − −

−

= − = × − × × ×

= × =
 



  

 

 

46. (a) The electric field E1 in the free space between the two plates is E1 = q/ε0A while 

that inside the slab is E2 = E1/κ = q/κε0A. Thus, 

 

V E d b E b
q

A
d b

b
0 1 2= − + =

F
HG
I
KJ − +F
HG

I
KJb g

ε κ0

,  

 

and the capacitance is 

 

( )
( ) ( ) ( )

( )( ) ( )

2

2

12 4 2C

N m0

0

8.85 10 115 10 m 2.61
13.4pF.

2.61 0.0124m 0.00780m 0.00780m

Aq
C

V d b b

ε κ
κ

− −
⋅

× ×
= = = =

− + − +
 

 

(b) q = CV = (13.4 × 10
–12

 F)(85.5 V) = 1.15 nC. 

 

(c) The magnitude of the electric field in the gap is 

 

E
q

A
1

0

9

12 4 2

4115 10

8 85 10 115 10
113 10= = ×

× ×
= ×

−

−
⋅

−ε
.

.
. .

C

m
N C

C

N m

2

2d ic h
 

 

(d) Using Eq. 25-34, we obtain 

 

E
E

2
1

4
3113 10

2 61
4 33 10= = × = ×

κ
.

.
. .

N C
N C  



 

 

 

47. (a) According to Eq. 25-17 the capacitance of an air-filled spherical capacitor is given 

by  

 

0 04 .
ab

C
b a

ε=
−

π  

 

When the dielectric is inserted between the plates the capacitance is greater by a factor of 

the dielectric constant κ. Consequently, the new capacitance is 

 

0 9

23.5 (0.0120)(0.0170)
4 0.107 nF.

8.99 10 0.0170 0.0120

ab
C

b a
κε= = =

− × −
π  

 

(b) The charge on the positive plate is 

 
(0.107 nF)(73.0 V) 7.79 nC.q CV= = =  

 

(c) Let the charge on the inner conductor be –q. Immediately adjacent to it is the induced 

charge q'. Since the electric field is less by a factor 1/κ than the field when no dielectric is 

present, then –q + q' = –q/κ. Thus, 

 

( ) 0

1
4 1

23.5 1.00
(7.79 nC) 7.45 nC.

23.5

ab
q q V

b a

κ κ ε
κ
−′ = = −

−
−= =

π
 



  

 

 

48. (a) We apply Gauss’s law with dielectric: q/ε0 = κEA, and solve for κ: 

 

κ
ε

= = ×
× × ×

=
−

−
⋅

− −

q

EA0

7

12 6 4

8 9 10

8 85 10 14 10 100 10
7 2

.

. .
. .

C

V m mC

N m

22

2d ic hc h
 

 

(b) The charge induced is 

 

′ = −FHG
I
KJ = × −FHG

I
KJ = ×− −

q q 1
1

8 9 10 1
1

7 2
7 7 107 7

κ
.

.
.C C.c h  



 

 

 

49. (a) Initially, the capacitance is 

 

C
A

d
0

0

12

2

8 85 10 012

12 10
89= =

×

×
=

−
⋅

−

ε . ( . )

.

C

N m

22

2 m

m
pF.

d i
 

 

(b) Working through Sample Problem 25-7 algebraically, we find: 

 

( )2

2

12 2C

N m 20

2 3

8.85 10 (0.12m )(4.8)
1.2 10 pF.

( ) (4.8)(1.2 0.40)(10 m) (4.0 10 m)

A
C

d b b

ε κ
κ

−
⋅

− −

×
= = = ×

− + − + ×
 

 

(c) Before the insertion, q = C0V (89 pF)(120 V) = 11 nC.  

 

(d) Since the battery is disconnected, q will remain the same after the insertion of the slab, 

with q = 11 nC. 

 

(e) E q A= = × × =− −
⋅

/ ) ( . )ε 0

9 1211 10 10 012 10C / (8.85 m kV / m.C

N m

22

2  

 

(f) E' = E/κ = (10 kV/m)/4.8 = 2.1 kV/m. 

 

(g) V = E(d – b) + E'b = (10 kV/m)(0.012 m – 0.0040 m) + (2.1 kV/m)(0.40 × 10
–3

 m) = 

88 V. 

 

(h) The work done is 

 
2 9 2

7

ext 12 12

0

1 1 (11 10 C) 1 1
1.7 10 J.

2 2 89 10 F 120 10 F

q
W U

C C

−
−

− −

×= ∆ = − = − = − ×
× ×

 



  

 

 

50. (a) Eq. 25-22 yields 

 

U CV= = × × = ×− −1

2

1

2
200 10 7 0 10 4 9 102 12 3

2
3F V Jc hc h. . .  

 

(b) Our result from part (a) is much less than the required 150 mJ, so such a spark should 

not have set off an explosion. 



 

 

 

51.One way to approach this is to note that – since they are identical – the voltage is 

evenly divided between them.  That is, the voltage across each capacitor is V = (10/n) volt.  

With C = 2.0 × 10
−6

 F, the electric energy stored by each capacitor is 
1

2
 CV

2
.  The total 

energy stored by the capacitors is n times that value, and the problem requires the total be 

equal to 25 × 10
−6

 J.  Thus, 

 

n

2
 (2.0 × 10

−6
) 

10

n

2

  =  25 × 10
−6

 

 

leads to n = 4. 



  

 

 

52. Initially the capacitors C1, C2, and C3 form a series combination equivalent to a single 

capacitor which we denote C123. Solving the equation 

 

1

 C1
  +  

1

 C2
  +  

1

 C3
  =   

1

 C123
  , 

 

we obtain C123 = 2.40 µF.  With V = 12.0 V, we then obtain q = C123V = 28.8 µC.  In the 

final situation, C2 and C4  are in parallel and are thus effectively equivalent to 

24 12.0 FC µ= .  Similar to the previous computation, we use   

 

1

 C1
  +  

1

 C24
  +  

1

 C3
  =   

1

 C1234
  

 

and find C1234 = 3.00 µF.  Therefore, the final charge is q = C1234V = 36.0 µC.   

 

(a) This represents a change (relative to the initial charge) of ∆q = 7.20 µC. 

 

(b) The capacitor C24 which we imagined to replace the parallel pair C2 and C4 is in series 

with C1 and C3 and thus also has the final charge q =36.0 µC found above.  The voltage 

across C24 would be V24 =  q/C24 =  36.0/12.0 = 3.00 V.  This is the same voltage across 

each of the parallel pair.  In particular, V4 = 3.00 V implies that q4 = C4 V4 = 18.0 µC.  

 

(c) The battery supplies charges only to the plates where it is connected. The charges on 

the rest of the plates are due to electron transfers between them, in accord with the new 

distribution of voltages across the capacitors. So, the battery does not directly supply the 

charge on capacitor 4. 



 

 

 

53. In series, their equivalent capacitance (and thus their total energy stored) is smaller 

than either one individually (by Eq. 25-20).  In parallel, their equivalent capacitance (and 

thus their total energy stored) is larger than either one individually (by Eq. 25-19).  Thus, 

the middle two values quoted in the problem must correspond to the individual capacitors.  

We use Eq. 25-22 and find 

 

(a) 100 µJ  = 
1

2
 C1 (10 V)

2
           C1  = 2.0 µF 

 

(b) 300 µJ  = 
1

2
 C2 (10 V)

2
           C2  = 6.0 µF  . 



  

 

 

54. We note that the voltage across C3 is V3 = (12 V – 2 V – 5 V ) = 5 V.  Thus, its charge 

is q3  = C3 V3 = 4 µC.  

 

(a) Therefore, since C1, C2 and C3 are in series (so they have the same charge), then 

 

C1 =  
4 µC

2 V
   =  2.0 µF . 

 

(b) Similarly, C2 = 4/5 = 0.80 µF. 



 

 

 

55. (a) The number of (conduction) electrons per cubic meter is n = 8.49 × 10
28 

m
3
.  The 

volume in question is the face area multiplied by the depth: A·d. The total number of 

electrons which have moved to the face is 

 

        

N =  
−3.0 x 10

-6 
C

 −1.6 x 10
-19 

C
   ≈ 1.9 × 10

13 
 . 

 

Using the relation N = nAd, we obtain d = 1.1 × 10
−12 

m, a remarkably small distance! 



  

 

 

56. Initially, the total equivalent capacitance is C12 = [(C1)
−1 + (C2)

 −1]
−1

 = 3.0 µF, and the 

charge on the positive plate of each one is (3.0 µF)(10 V) = 30 µC.  Next, the capacitor 

(call is C1) is squeezed as described in the problem, with the effect that the new value of 

C1 is 12 µF (see Eq. 25-9). The new total equivalent capacitance then becomes  

 

C12 = [(C1)
 −1 + (C2)

 −1]
−1

 = 4.0 µF, 

 

and the new charge on the positive plate of each one is (4.0 µF)(10 V) = 40 µC. 

 

(a) Thus we see that the charge transferred from the battery as a result of the squeezing is 

40 µC − 30 µC = 10 µC. 

 

(b) The total increase in positive charge (on the respective positive plates) stored on the 

capacitors is twice the value found in part (a) (since we are dealing with two capacitors in 

series): 20 µC.  



 

 

 

57. (a) Put five such capacitors in series. Then, the equivalent capacitance is 2.0 µF/5 = 

0.40 µF. With each capacitor taking a 200-V potential difference, the equivalent capacitor 

can withstand 1000 V. 

 

(b) As one possibility, you can take three identical arrays of capacitors, each array being a 

five-capacitor combination described in part (a) above, and hook up the arrays in parallel. 

The equivalent capacitance is now Ceq = 3(0.40 µF) = 1.2 µF. With each capacitor taking 

a 200-V potential difference the equivalent capacitor can withstand 1000 V. 



  

 

 

58. Equation 25-14 leads to C1 = 2.53 pF and C1 = 2.17 pF. Initially, the total equivalent 

capacitance is  

 

C12 = [(C1)
−1 + (C2)

−1]
−1

 = 1.488 pF, 

 

and the charge on the positive plate of each one is (1.488 pF )(10 V) = 14.88 pC.  Next, 

capacitor 2 is modified as described in the problem, with the effect that the new value of 

C2 is 2.17 pF (again using Eq. 25-14). The new total equivalent capacitance is  

 

C12 = [(C1)
−1 + (C2)

−1]
−1

 = 1.170 pF, 

 

and the new charge on the positive plate of each one is (1.170 pF)(10 V) = 11.70 pC.  

Thus we see that the charge transferred from the battery (considered in absolute value) as 

a result of the modification is 14.88 pC – 11.70 pC = 3.18 pC.  

 

(a) This charge, divided by e gives the number of electrons that pass point P.  Thus,  

 

3.18 × 10
-12

1.6 × 10
-19   = 2.0 × 10

7
 . 

 

(b) These electrons move rightwards in the figure (that is, away from the battery) since 

the positive plates (the ones closest to point P) of the capacitors have suffered a decease 

in their positive charges.  The usual reason for a metal plate to be positive is that it has 

more protons than electrons.  Thus, in this problem some electrons have “returned” to the 

positive plates (making them less positive).  



 

 

 

59. (a) We do not employ energy conservation since, in reaching equilibrium, some 

energy is dissipated either as heat or radio waves. Charge is conserved; therefore, if Q = 

C1Vbat = 40 µC, and q1 and q2 are the charges on C1 and C2 after the switch is thrown to 

the right and equilibrium is reached, then 

 
Q q q= +1 2 .  

 

Reducing the right portion of the circuit (the C3, C4 parallel pair which are in series with 

C2) we have an equivalent capacitance of C' = 8.0 µF which has charge q' = q2 and 

potential difference equal to that of C1. Thus, 1 'V V= , or  

 

1 2

1 '

q q

C C
=  

 

which yields 4q1 = q2. Therefore, Q q q= +1 14 . This leads to q1 = 8.0 µC and consequently 

to q2 = 32 µC. 

 

(b) From Eq. 25-1, we have V2 = (32 µC)(16 µF) = 2.0 V. 



  

 

 

60. (a) We calculate the charged surface area of the cylindrical volume as follows: 

 

A rh r= + = + =2 2 0 252π π π(0.20 π(0.20m)(0.10 m) m) m2 2.  

 

where we note from the figure that although the bottom is charged, the top is not. 

Therefore, the charge is q = σA = –0.50 µC on the exterior surface, and consequently 

(according to the assumptions in the problem) that same charge q is induced in the 

interior of the fluid. 

 

(b) By Eq. 25-21, the energy stored is 

 

U
q

C
= = ×

×
= ×

−

−
−

2 7

12

3

2

50 10

2 35 10
36 10

( .

(
.

C)

F)
J.

2

 

 

(c) Our result is within a factor of three of that needed to cause a spark. Our conclusion is 

that it will probably not cause a spark; however, there is not enough of a safety factor to 

be sure. 



 

 

 

61. (a)  In the top right portion of the circuit is a pair of 4.00 µF which we reduce to a 

single 8.00 µF capacitor (which is then in series with the bottom capacitor that the 

problem is asking about).  The further reduction with the bottom 4.00 µF capacitor results 

in an equivalence of  8
3
 µF, which clearly has the battery voltage across it -- and therefore 

has charge ( 8
3
 µF)(9.00 V) = 24.0 µC.  This is seen to be the same as the charge on the 

bottom capacitor.  

 

(b) The voltage across the bottom capacitor is 

 

V = 
q

C
  =

24.0 C

4.00 F

µ
µ

= 6.00 V   . 



  

 

 

62. We do not employ energy conservation since, in reaching equilibrium, some energy is 

dissipated either as heat or radio waves. Charge is conserved; therefore, if Q = C1Vbat = 

100 µC, and q1, q2 and q3 are the charges on C1, C2 and C3 after the switch is thrown to 

the right and equilibrium is reached, then 

 

Q = q1 + q2 + q3  . 

 

Since the parallel pair C2 and C3 are identical, it is clear that q2 = q3.  They are in parallel 

with C1 so that V1=V3, or 

 

q1

C1
 = 

q3

C3
 

 

which leads to q1 =  q3/2.  Therefore, 

 

Q = 
1

2
 q3 + q3 +q3 

 

which yields q3 = 40 µC and consequently q1 = 20 µC. 



 

 

 

63. The pair C3 and C4 are in parallel and consequently equivalent to 30 µF.  Since this 

numerical value is identical to that of the others (with which it is in series, with the 

battery), we observe that each has one-third the battery voltage across it.  Hence, 3.0 V is 

across C4, producing a charge 

 

q4  = C4V4  = (15 µF)(3.0 V) = 45 µC  . 



  

 

 

64. (a)  We reduce the parallel group C2, C3 and C4, and the parallel pair C5 and C6, 

obtaining equivalent values C' = 12 µF and C'' = 12 µF, respectively. We then reduce the 

series group C1, C' and C'' to obtain an equivalent capacitance of Ceq = 3 µF hooked to 

the battery. Thus, the charge stored in the system is 

 

qsys = CeqVbat = 36 µC  . 

 

(b)  Since qsys = q1 then the voltage across C1 is 

 

V1 =  
q1

C1
 =  

36 µC

6.0 µF
  =  6.0 V  . 

 

The voltage across the series-pair C' and C'' is consequently Vbat - V1 = 6.0 V.  Since C' = 

C'', we infer V' = V'' = 6.0/2 = 3.0 V, which, in turn, is equal to V4, the potential across 

C4.  Therefore, 

 

q4 = C4V4 = (4.0 µF)(3.0 V) = 12 µC  . 



 

 

 

65. (a)  The potential across C1 is 10 V, so the charge on it is 

 

q1 = C1V1 = (10.0 µF)(10.0 V) = 100 µC. 

 

(b) Reducing the right portion of the circuit produces an equivalence equal to 6.00 µF, 

with 10.0 V across it.  Thus, a charge of 60.0 µC is on it -- and consequently also on the 

bottom right capacitor.  The bottom right capacitor has, as a result, a potential across it 

equal to 

 

V  = 
q

C
 =  

60 µC

10 µF
 = 6.00 V 

 

which leaves 10.0 V − 6.00 V = 4.00 V across the group of capacitors in the upper right 

portion of the circuit.  Inspection of the arrangement (and capacitance values) of that 

group reveals that this 4.00 V must be equally divided by C2 and the capacitor directly 

below it (in series with it).  Therefore, with 2.00 V across C2 we find 

 

q2 = C2V2 = (10.0 µF)(2.00 V) = 20.0 µC  . 



  

 

 

66. The pair C1 and C2 are in parallel, as are the pair C3 and C4; they reduce to equivalent 

values 6.0 µF and 3.0 µF, respectively.  These are now in series and reduce to 2.0 µF, 

across which we have the battery voltage. Consequently, the charge on the 2.0 µF 

equivalence is (2.0 µF)(12 V) = 24 µC.  This charge on the 3.0 µF equivalence (of C3 and 

C4) has a voltage of 

 

V = 
q

C
 = 

24 µC

3 µF
 = 8.0 V   . 

 

Finally, this voltage on capacitor C4 produces a charge (2.0 µF)(8.0 V) = 16 µC. 



 

 

 

67. For maximum capacitance the two groups of plates must face each other with 

maximum area. In this case the whole capacitor consists of (n – 1) identical single 

capacitors connected in parallel. Each capacitor has surface area A and plate separation d 

so its capacitance is given by C0 = ε0A/d. Thus, the total capacitance of the combination is 

(in SI units) 

 

( ) ( ) 12 4
0 12

0 3

1 (8 1)(8.85 10 )(1.25 10 )
1 2.28 10 F.

3.40 10

n A
C n C

d

ε − −
−

−

− − × ×= − = = = ×
×

 



  

 

 

68. (a) Here D is not attached to anything, so that the 6C and 4C capacitors are in series 

(equivalent to 2.4C). This is then in parallel with the 2C capacitor, which produces an 

equivalence of 4.4C. Finally the 4.4C is in series with C and we obtain 

 

C
C C

C C
Ceq F=

+
= =b gb g4 4

4 4
082 41

.

.
. µ  

 

where we have used the fact that C = 50 µF. 

 

(b) Now, B is the point which is not attached to anything, so that the 6C and 2C 

capacitors are now in series (equivalent to 1.5C), which is then in parallel with the 4C 

capacitor (and thus equivalent to 5.5C). The 5.5C is then in series with the C capacitor; 

consequently, 

 

C
C C

C C
Ceq F=

+
= =b gb g55

55
085 42

.

.
. .µ  



 

 

 

69. (a) In the first case the two capacitors are effectively connected in series, so the 

output potential difference is Vout = CVin/2C = Vin/2 = 50.0 V.  

 

(b) In the second case the lower diode acts as a wire so Vout = 0. 



  

 

 

70. The voltage across capacitor 1 is 

 

V
q

C
1

1

1

30

10
3 0= = =µ

µ
C

F
V. .  

 

Since V1 = V2, the total charge on capacitor 2 is 

 

q C V2 2 2 20 2 60= = =µ µF V Cb gb g ,  

 

which means a total of 90 µC of charge is on the pair of capacitors C1 and C2. This 

implies there is a total of 90 µC of charge also on the C3 and C4 pair. Since C3 = C4, the 

charge divides equally between them, so q3 = q4 = 45 µC. Thus, the voltage across 

capacitor 3 is 

 

V
q

C
3

3

3

45

20
2 3= = =µ

µ
C

F
V. .  

 

Therefore, |VA – VB| = V1 + V3 =  5.3 V.



 

 

 

71. (a) The equivalent capacitance is 

 

C
C C

C C
eq

F F

F F
F=

+
=

+
=1 2

1 2

6 00 4 00

6 00 4 00
2 40

. .

. .
. .

µ µ
µ µ

µb gb g
 

 

(b) q1 = CeqV = (2.40 µF)(200 V) = 4.80 × 10
−4

 C. 

 

(c) V1 = q1/C1 = 4.80 × 10
−4

 C/6.00 µF = 80.0 V. 

 

(d) q2 = q1 = 4.80 × 10
−4

 C. 

 

(e) V2 = V – V1 = 200 V – 80.0 V = 120 V. 



  

 

 

72. (a) Now Ceq = C1 + C2 = 6.00 µF + 4.00 µF = 10.0 µF. 

 

(b) q1 = C1V = (6.00 µF)(200 V) = 1.20 × 10
–3

 C. 

 

(c) V1=200 V. 

 

(d) q2 = C2V = (4.00 µF)(200 V) = 8.00 × 10
–4

 C. 

 

(e) V2 = V1 = 200 V. 



 

 

 

73. We cannot expect simple energy conservation to hold since energy is presumably 

dissipated either as heat in the hookup wires or as radio waves while the charge oscillates 

in the course of the system “settling down” to its final state (of having 40 V across the 

parallel pair of capacitors C and 60 µF). We do expect charge to be conserved. Thus,  if 

Q is the charge originally stored on C and q1, q2 are the charges on the parallel pair after 

“settling down,” then 

 

Q q q

C C

= +
= +

1 2

100 40 60 40V V F Vb g b g b gb gµ
 

 

which leads to the solution C = 40 µF. 



  

 
 
74. We first need to find an expression for the energy stored in a cylinder of radius R and 
length L, whose surface lies between the inner and outer cylinders of the capacitor (a < R 
< b). The energy density at any point is given by u E= 1

2 0
2ε , where E is the magnitude of 

the electric field at that point. If q is the charge on the surface of the inner cylinder, then 
the magnitude of the electric field at a point a distance r from the cylinder axis is given 
by 
 

E q
Lr

=
2 0πε

 

 
(see Eq. 25-12), and the energy density at that point is given by 
 

u E q
L r

= =1
2 80

2
2

2
0

2 2ε
επ

.  

 
The energy in the cylinder is the volume integral 
 

.RU udv= ∫  
 
Now, 2d rLdrv = π , so 
 

U q
L r

rLdr q
L

dr
r

q
L

R
aR a

R

a

R
= = =z z2

2
0

2 2

2

0

2

08
2

4 4π
π

π πεε ε
ln .  

 
To find an expression for the total energy stored in the capacitor, we replace R with b: 
 

U q
L

b
ab =

2

04πε
ln .  

 
We want the ratio UR/Ub to be 1/2, so 
 

ln lnR
a

b
a

= 1
2

 

 
or, since 1

2 ln / ln / , ln / ln /b a b a R a b ab g d i b g d i= = . This means / /R a b a= or 

R ab= . 



 

 

 

75. (a) Since the field is constant and the capacitors are in parallel (each with 600 V 

across them) with identical distances (d = 0.00300 m) between the plates, then the field in 

A is equal to the field in B: 

 

E
V

d
= = ×2 00 105. .V m  

 

(b) 5| | 2.00 10 V m .E = × See the note in part (a). 

 

(c) For the air-filled capacitor, Eq. 25-4 leads to 

 

σ ε= = = × −q

A
E0

6 2177 10. .C m  

 

(d) For the dielectric-filled capacitor, we use Eq. 25-29: 

 

σ κε= = × −
0

6 24 60 10E . .C m  

 

(e) Although the discussion in the textbook (§25-8) is in terms of the charge being held 

fixed (while a dielectric is inserted), it is readily adapted to this situation (where 

comparison is made of two capacitors which have the same voltage and are identical 

except for the fact that one has a dielectric). The fact that capacitor B has a relatively 

large charge but only produces the field that A produces (with its smaller charge) is in 

line with the point being made (in the text) with Eq. 25-34 and in the material that 

follows. Adapting Eq. 25-35 to this problem, we see that the difference in charge 

densities between parts (c) and (d) is due, in part, to the (negative) layer of charge at the 

top surface of the dielectric; consequently, 

 

′ = × − × = − ×− − −σ 177 10 4 60 10 2 83 106 6 6. . . .c h c h C m2  



  

 

 

76. (a) The equivalent capacitance is Ceq = C1C2/(C1 + C2). Thus the charge q on each 

capacitor is 

 

41 2
1 2 eq

1 2

(2.00 F)(8.00 F)(300V)
4.80 10 C.

2.00 F 8.00 F

C C V
q q q C V

C C

µ µ
µ µ

−= = = = = = ×
+ +

 

 

(b) The potential difference is V1 = q/C1 = 4.80 × 10
–4

 C/2.0 µF = 240 V. 

 

(c) As noted in part (a), 4

2 1 4.80 10 C.q q
−= = ×  

 

(d) V2 = V – V1 = 300 V – 240 V = 60.0 V. 

 

Now we have q'1/C1 = q'2/C2 = V' (V' being the new potential difference across each 

capacitor) and q'1 + q'2 = 2q. We solve for q'1, q'2 and V: 

 

(e) 
4

41
1

1 2

2 2(2.00 F)(4.80 10 )
' 1.92 10 C.

2.00 F 8.00 F

C q C
q

C C

µ
µ µ

−
−×= = = ×

+ +
 

 

(f) 
4

1
1

1

1.92 10
96.0V.

2.00 F

q C
V

C µ

−′ ×′= = =  

 

(g) 4

2 1' 2 7.68 10 .q q q C
−= − = ×  

 

(h) 2 1 96.0V.V V′ ′= =  

 

(i) In this circumstance, the capacitors will simply discharge themselves, leaving q1 =0, 

 

(j) V1=0,  

 

(k) q2 = 0, 

 

(l) and V2 = V1 = 0. 



 

 

 

77. We use U CV= 1
2

2 . As V is increased by ∆V, the energy stored in the capacitor 

increases correspondingly from U to U + ∆U: U U C V V+ = +∆ ∆1
2

2( ) . Thus,  

(1 + ∆V/V)
2
 = 1 + ∆U/U, or 

 

∆ ∆V

V

U

U
= + − = + − =1 1 1 10% 1 4 9%. .  



  

 

 

78. (a) The voltage across C1 is 12 V, so the charge is 

 
q CV1 1 1 24= = µC .  

 

(b) We reduce the circuit, starting with C4 and C3 (in parallel) which are equivalent to 

4 Fµ . This is then in series with C2, resulting in an equivalence equal to 4
3

Fµ  which 

would have 12 V across it. The charge on this 4
3

Fµ  capacitor (and therefore on C2) is 

4
3

( F)(12V) 16 C.µ µ=  Consequently, the voltage across C2 is 

 

2
2

2

16 C
8 V.

2 F

q
V

C

µ
µ

= = =  

 

This leaves 12 – 8 = 4 V across C4 (similarly for C3). 



 

 

 

79. We reduce the circuit, starting with C1 and C2 (in series) which are equivalent to 4 µF. 

This is then parallel to C3 and results in a total of 8 µF, which is now in series with C4 

and can be further reduced. However, the final step in the reduction is not necessary, as 

we observe that the 8 µF equivalence from the top 3 capacitors has the same capacitance 

as C4 and therefore the same voltage; since they are in series, that voltage is then 12/2 = 

6.0 V. 



  

 

 

80. We use C = ε0κA/d ∝ κ/d. To maximize C we need to choose the material with the 

greatest value of κ/d. It follows that the mica sheet should be chosen. 



 

 

 

81. We may think of this as two capacitors in series C1 and C2, the former with the κ1 = 

3.00 material and the latter with the κ2 = 4.00 material.  Upon using Eq. 25-9, Eq. 25-27 

and then reducing C1 and C2 to an equivalent capacitance (connected directly to the 

battery) with Eq. 25-20, we obtain 

 

Ceq  =  
κ1 κ2

 κ1 + κ2
 
ε0 A

d
  =  1.52 × 10

−10
 F   . 

 

Therefore, q = CeqV = 1.06 × 10
−9

 C. 



  

 

 

82. (a) The length d is effectively shortened by b so C' = ε0A/(d – b) = 0.708 pF. 

  

(b) The energy before, divided by the energy after inserting the slab is 

 
2

0

2

0

/( )/ 2 5.00
1.67.

/ 2 / 5.00 2.00

A d bU q C C d

U q C C A d d b

ε
ε

′ −= = = = = =
′ ′ − −

 

 

(c) The work done is 

 
2 2 2

0 0

1 1
( ) 5.44 J.

2 2 2

q q q b
W U U U d b d

C C A Aε ε
′= ∆ = − = − = − − = − = −

′
 

 

(d) Since W < 0 the slab is sucked in. 



 

 

 

83. (a) C' = ε0A/(d – b) = 0.708 pF, the same as part (a) in problem 82. 

 

(b) Now, 

 
21

02

21
02

/ 5.00 2.00
0.600.

/( ) 5.00

CV A dU C d b

U C V C A d b d

ε
ε

− −= = = = = =
′ ′ ′ −

 

 

(c) The work done is 

 
2

2 2 90 01 1 1
' ( ) 1.02 10 J.

2 2 2 ( )

A AbV
W U U U C C V V

d b d d d b

ε ε −′= ∆ = − = − = − = = ×
− −

 

 

(d) In Problem 82 where the capacitor is disconnected from the battery and the slab is 

sucked in, F is certainly given by −dU/dx. However, that relation does not hold when the 

battery is left attached because the force on the slab is not conservative. The charge 

distribution in the slab causes the slab to be sucked into the gap by the charge distribution 

on the plates. This action causes an increase in the potential energy stored by the battery 

in the capacitor. 



  

 

 

84. We do not employ energy conservation since, in reaching equilibrium, some energy is 

dissipated either as heat or radio waves. Charge is conserved; therefore, if Q = 48 µC, and 

q1 and q3 are the charges on C1 and C3 after the switch is thrown to the right (and 

equilibrium is reached), then 

 
Q q q= +1 3.  

 

We note that V1 and 2 = V3 because of the parallel arrangement, and V V1
1
2 1=   and  2  since 

they are identical capacitors. This leads to 

 

2

2

2

1 3

1

1

3

3

1 3

V V

q

C

q

C

q q

=

=

=

 

 

where the last step follows from multiplying both sides by 2.00 µF. Therefore, 

 
Q q q= +1 12( )  

 

which yields q1 = 16.0 µC and q3 = 32.0 µC. 
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