
 

 

1. (a) The charge that passes through any cross section is the product of the current and 

time. Since 4.0 min = (4.0 min)(60 s/min) = 240 s, q = it = (5.0 A)(240 s) = 1.2× 10
3
 C. 

 

(b) The number of electrons N is given by q = Ne, where e is the magnitude of the charge 

on an electron. Thus, 

 

N = q/e = (1200 C)/(1.60 × 10
–19

 C) = 7.5 × 10
21

. 



 

 

2. We adapt the discussion in the text to a moving two-dimensional collection of charges. 

Using σ for the charge per unit area and w for the belt width, we can see that the transport 

of charge is expressed in the relationship i = σvw, which leads to 

 

σ = = ×
×
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100 10

30 50 10
6 7 10

6

2

6A

m s m
C m

2

b gc h . .  



 

 

 

3. Suppose the charge on the sphere increases by ∆q in time ∆t. Then, in that time its 

potential increases by 

 

∆ ∆
V

q

r
=

4 0πε
,  

 

where r is the radius of the sphere. This means 

 
∆ ∆q r V= 4 0πε .  

 

Now, ∆q = (iin – iout) ∆t, where iin is the current entering the sphere and iout is the current 

leaving. Thus, 
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4. We express the magnitude of the current density vector in SI units by converting the 

diameter values in mils to inches (by dividing by 1000) and then converting to meters (by 

multiplying by 0.0254) and finally using 

 

J
i

A

i

R

i

D
= = =

π π2 2

4
.  

 

For example, the gauge 14 wire with D = 64 mil = 0.0016 m is found to have a 

(maximum safe) current density of J = 7.2 × 10
6
 A/m

2
. In fact, this is the wire with the 

largest value of J allowed by the given data. The values of J in SI units are plotted below 

as a function of their diameters in mils. 

 

 



 

 

 

5. (a) The magnitude of the current density is given by J = nqvd, where n is the number of 

particles per unit volume, q is the charge on each particle, and vd is the drift speed of the 

particles. The particle concentration is n = 2.0 × 10
8
/cm

3
 = 2.0 × 10

14
 m

–3
, the charge is  

 

q = 2e = 2(1.60 × 10
–19

 C) = 3.20 × 10
–19

 C, 

 

and the drift speed is 1.0 × 10
5
 m/s. Thus, 

 

J = × × × =−2 10 3 2 10 10 10 6 414 19 5/ . . . .m C m / s A / m2c hc hc h  

 

(b) Since the particles are positively charged the current density is in the same direction 

as their motion, to the north. 

 

(c) The current cannot be calculated unless the cross-sectional area of the beam is known. 

Then i = JA can be used. 



 

 

6. (a) The magnitude of the current density vector is 
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(b) The drift speed of the current-carrying electrons is 

 

v
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7. The cross-sectional area of wire is given by A = πr
2
, where r is its radius (half its 

thickness). The magnitude of the current density vector is J i A i r= =/ / π 2 , so 
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The diameter of the wire is therefore d = 2r = 2(1.9 × 10
–4

 m) = 3.8 × 10
–4

 m. 



 

 

8. (a) Since 1 cm
3
 = 10

–6
 m

3
, the magnitude of the current density vector is 
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F
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(b) Although the total surface area of Earth is 4 2πRE  (that of a sphere), the area to be used 

in a computation of how many protons in an approximately unidirectional beam (the solar 

wind) will be captured by Earth is its projected area. In other words, for the beam, the 

encounter is with a “target” of circular area πRE

2 . The rate of charge transport implied by 

the influx of protons is 

 

i AJ R JE= = = × × = ×−π π2 6
2
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9. We use vd = J/ne = i/Ane. Thus, 
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10. We note that the radial width ∆r = 10 µm is small enough (compared to r = 1.20 mm) 

that we can make the approximation 

 

    Br 2πr dr   ≈   Br 2πr ∆r . 

 

Thus, the enclosed current is 2πBr
2∆r = 18.1 µA.  Performing the integral gives the same 

answer. 



 

 

 

11. (a) The current resulting from this non-uniform current density is 
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(b) In this case, 
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(c) The result is different from that in part (a) because Jb is higher near the center of the 

cylinder (where the area is smaller for the same radial interval) and lower outward, 

resulting in a lower average current density over the cross section and consequently a 

lower current than that in part (a). So, Ja has its maximum value near the surface of the 

wire. 



 

 

12. Assuming J  is directed along the wire (with no radial flow) we integrate, starting 

with Eq. 26-4, 

 

( )2 4 4

9 /10

1
| | ( )2 0.656

2

R

R
i J dA kr rdr k R R= = π = π −  

 

where k = 3.0 × 10
8
 and SI units understood. Therefore, if R = 0.00200 m, we 

obtain 32.59 10 Ai
−= × . 



 

 

 

13. We find the conductivity of Nichrome (the reciprocal of its resistivity) as follows: 
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14. We use R/L = ρ/A = 0.150 Ω/km. 

 

(a) For copper J = i/A = (60.0 A)(0.150 Ω/km)/(1.69 × 10
–8

 Ω·m) = 5.32 × 10
5
 A/m

2
. 

 

(b) We denote the mass densities as ρm. For copper,  

 

(m/L)c = (ρmA)c = (8960 kg/m
3
) (1.69 × 10

–8
 Ω· m)/(0.150 Ω/km) = 1.01 kg/m. 

 

(c) For aluminum J = (60.0 A)(0.150 Ω/km)/(2.75 × 10
–8

 Ω·m) = 3.27 × 10
5
 A/m

2
. 

 

(d) The mass density of aluminum is 

 

(m/L)a = (ρmA)a = (2700 kg/m
3
)(2.75 × 10

–8
 Ω·m)/(0.150 Ω/km) = 0.495 kg/m. 



 

 

 

15. The resistance of the wire is given by R L A= ρ / , where ρ is the resistivity of the 

material, L is the length of the wire, and A is its cross-sectional area. In this case, 

 

A r= = × = ×− −π π2 3
2
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16. (a) i = V/R = 23.0 V/15.0 × 10
–3

 Ω = 1.53 × 10
3
 A. 

 

(b) The cross-sectional area is A r D= =π π2 1
4

2 . Thus, the magnitude of the current 

density vector is 
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(c) The resistivity is 

 

ρ = = × × = × ⋅− −
RA L/ . . m / [ ( . m)] .  m.150 10 6 00 10 4 4 00 10 6 103 3

2
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(d) The material is platinum. 



 

 

 

17. Since the potential difference V and current i are related by V = iR, where R is the 

resistance of the electrician, the fatal voltage is V = (50 × 10
–3

 A)(2000 Ω) = 100 V. 



 

 

18. The thickness (diameter) of the wire is denoted by D. We use R ∝ L/A (Eq. 26-16) 

and note that A D D= ∝1
4

2 2π .  The resistance of the second wire is given by 
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19. The resistance of the coil is given by R = ρL/A, where L is the length of the wire, ρ is 

the resistivity of copper, and A is the cross-sectional area of the wire. Since each turn of 

wire has length 2πr, where r is the radius of the coil, then  

 

L = (250)2πr = (250)(2π)(0.12 m) = 188.5 m. 

 

If rw is the radius of the wire itself, then its cross-sectional area is A = πr
2
w = π(0.65 × 

10
–3

 m)
2
 = 1.33 × 10

–6
 m

2
. According to Table 26-1, the resistivity of copper is 

169 10 8. × ⋅− Ω m. Thus, 

 

R
L

A
= =

× ⋅
×

=
−

−

ρ 169 10 1885

133 10
2 4

8

6 2

. .

.
. .

Ω
Ω

m m

m

c hb g
 



 

 

20. (a)  Since the material is the same, the resistivity ρ is the same, which implies (by Eq. 

26-11) that the electric fields (in the various rods) are directly proportional to their 

current-densities.  Thus,  J1: J2: J3 are in the ratio 2.5/4/1.5  (see Fig. 26-24).  Now the 

currents in the rods must be the same (they are “in series”) so  

 

J1 A1  = J3 A3       and     J2 A2  = J3 A3   . 

 

Since A = πr
2
  this leads (in view of the aforementioned ratios) to  

 

4r2
2
  = 1.5r3

2
       and     2.5r1

2
  = 1.5r3

2
   . 

 

Thus, with r3 = 2 mm, the latter relation leads to r1 = 1.55 mm. 

 

(b) The 4r2
2
  = 1.5r3

2
 relation leads to r2 = 1.22 mm. 



 

 

 

21. Since the mass density of the material do not change, the volume remains the same. If 

L0 is the original length, L is the new length, A0 is the original cross-sectional area, and A 

is the new cross-sectional area, then L0A0 = LA and A = L0A0/L = L0A0/3L0 = A0/3. The 

new resistance is 

 

R
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A

L

A

L

A
R= = = =ρ ρ ρ3

3
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0

0

0
/

,  

 

where R0 is the original resistance. Thus, R = 9(6.0 Ω) = 54 Ω. 



 

 

22. The cross-sectional area is A = πr
2
  =  π(0.002 m)

2
.  The resistivity from Table 26-1 is   

ρ = 1.69 × 10
−8 Ω·m.  Thus, with L = 3 m, Ohm’s Law leads to V = iR = iρL/A, or 

 

   12 × 10
−6 

V  =  i (1.69 × 10
−8 Ω·m)(3.0 m)/ π(0.002 m)

2
 

 

which yields i = 0.00297 A or roughly 3.0 mA. 



 

 

 

23. The resistance of conductor A is given by 

 

R
L

r
A

A

= ρ
π 2

,  

 

where rA is the radius of the conductor. If ro is the outside diameter of conductor B and ri 

is its inside diameter, then its cross-sectional area is π(ro
2
 – ri

2
), and its resistance is 
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24. The absolute values of the slopes (for the straight-line segments shown in the graph of 

Fig. 26-26(b)) are equal to the respective electric field magnitudes.  Thus, applying Eq. 

26-5 and Eq. 26-13 to the three sections of the resistive strip, we have 

 

   J1  =  
i

A
  =  σ1 E1  =  σ1 (0.50 × 10

3
 V/m) 

 

   J2  =  
i

A
  =  σ2 E2 =  σ2 (4.0 × 10

3
 V/m) 

 

   J3  =  
i

A
  =  σ3 E3  =  σ3 (1.0 × 10

3
 V/m)  . 

 

We note that the current densities are the same since the values of i and A are the same 

(see the problem statement) in the three sections, so J1  = J2  = J3 .   

 

(a) Thus we see that   

 

σ1 = 2σ3  = 2 (3.00 × 10
7
(Ω·m)

−1 
) = 6.00 × 10

7
  (Ω·m)

−1
. 

 

(b) Similarly, σ2 = σ3/4  =  (3.00 × 10
7
(Ω·m)

−1 
)/4 = 7.50 × 10

6
 (Ω·m)

−1
 . 



 

 

 

25. The resistance at operating temperature T is R = V/i = 2.9 V/0.30 A = 9.67 Ω. Thus, 

from R – R0 = R0α (T – T0), we find 

 

3

0 3

0

1 1 9.67
1 20 C 1 1.9 10  C

4.5 10 K 1.1

R
T T

Rα −

Ω= + − = ° + − = × °
× Ω

. 

 

Since a change in Celsius is equivalent to a change on the Kelvin temperature scale, the 

value of α used in this calculation is not inconsistent with the other units involved. Table 

26-1 has been used. 



 

 

26. First we find R = ρL/A = 2.69 x 10
−5 Ω.  Then i = V/R = 1.115 x 10

−4 
A.  Finally,  

∆Q = i ∆t = 3.35 × 10
−7 

C.  



 

 

 

27. We use J = E/ρ, where E is the magnitude of the (uniform) electric field in the wire, J 

is the magnitude of the current density, and ρ is the resistivity of the material. The 

electric field is given by E = V/L, where V is the potential difference along the wire and L 

is the length of the wire. Thus J = V/Lρ and 
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28. We use J = σ E = (n++n–)evd, which combines Eq. 26-13 and Eq. 26-7. 

 

(a) J = σ E = (2.70 × 10
–14

 / Ω·m) (120 V/m) = 3.24 × 10
–12

 A/m
2
. 

 

(b) The drift velocity is 
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29. (a) i = V/R = 35.8 V/935 Ω = 3.83 × 10
–2

 A. 

 

(b) J = i/A = (3.83 × 10
–2

 A)/(3.50 × 10
–4

 m
2
) = 109 A/m

2
. 

 

(c) vd = J/ne = (109 A/m
2
)/[(5.33 × 10

22
/m

3
) (1.60 × 10

–19
 C)] = 1.28 × 10

–2
 m/s. 

 

(d) E = V/L = 35.8 V/0.158 m = 227 V/m. 



 

 

30. We use R ∝ L/A. The diameter of a 22-gauge wire is 1/4 that of a 10-gauge wire. 

Thus from R = ρL/A we find the resistance of 25 ft of 22-gauge copper wire to be  

 

R = (1.00 Ω) (25 ft/1000 ft)(4)
2
 = 0.40 Ω. 



 

 

 

31. (a) The current in each strand is i = 0.750 A/125 = 6.00 × 10
–3

 A. 

 

(b) The potential difference is V = iR = (6.00 × 10
–3

 A) (2.65 × 10
–6

 Ω) = 1.59 × 10
–8

 V. 

 

(c) The resistance is Rtotal = 2.65 × 10
–6

 Ω/125 = 2.12 × 10
–8

 Ω. 



 

 

32. The number density of conduction electrons in copper is n = 8.49 × 10
28 

/m
3
.  The 

electric field in section 2 is (10.0 µV)/(2.00 m) = 5.00 µV/m.  Since ρ = 1.69 × 10
−8 Ω·m 

for copper (see Table 26-1) then Eq. 26-10 leads to a current density vector of magnitude 

J2 = (5.00 µV/m)/(1.69 × 10
−8 Ω·m) = 296 A/m

2
 in section 2.  Conservation of electric 

current from section 1 into section 2 implies 

 

J1 A1  = J2 A2 

 

J1 (4πR
2
) = J2 (πR

2
) 

 

(see Eq. 26-5).   This leads to J1  = 74 A/m
2
.  Now, Eq. 26-7 immediately yields  

 

vd =  
J1

ne
  =  5.44 ×10

−9 
m/s 

 

for the drift speed of conduction-electrons in section 1. 



 

 

 

33. (a) The current i is shown in Fig. 26-29 entering the truncated cone at the left end and 

leaving at the right. This is our choice of positive x direction. We make the assumption 

that the current density J at each value of x may be found by taking the ratio i/A where A 

= πr
2
 is the cone’s cross-section area at that particular value of x. The direction of J  is 

identical to that shown in the figure for i (our +x direction). Using Eq. 26-11, we then 

find an expression for the electric field at each value of x, and next find the potential 

difference V by integrating the field along the x axis, in accordance with the ideas of 

Chapter 25. Finally, the resistance of the cone is given by R = V/i. Thus, 

 

J
i

r

E= =
π 2 ρ

 

 

where we must deduce how r depends on x in order to proceed. We note that the radius 

increases linearly with x, so (with c1 and c2 to be determined later) we may write 

 
r c c x= +1 2 .  

 

Choosing the origin at the left end of the truncated cone, the coefficient c1 is chosen so 

that r = a (when x = 0); therefore, c1 = a. Also, the coefficient c2 must be chosen so that 

(at the right end of the truncated cone) we have r = b (when x = L); therefore, c2 =  

(b – a)/L. Our expression, then, becomes 

 

r a
b a

L
x= + −F

HG
I
KJ .  

 

Substituting this into our previous statement and solving for the field, we find 

 

E
i

a
b a

L
x= + −F

HG
I
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−ρ
π

2

.  

 

Consequently, the potential difference between the faces of the cone is 
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The resistance is therefore 
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Note that if b = a, then R = ρL/πa
2
 = ρL/A, where A = πa

2
 is the cross-sectional area of 

the cylinder. 



 

 

 

34. From Eq. 26-25, ρ ∝ τ–1
 ∝ veff. The connection with veff is indicated in part (b) of 

Sample Problem 26-6, which contains useful insight regarding the problem we are 

working now. According to Chapter 20, v Teff ∝ .  Thus, we may conclude that ρ ∝ T .  



 

 

35. (a) Electrical energy is converted to heat at a rate given by 

 

P
V

R
=

2

,  

 

where V is the potential difference across the heater and R is the resistance of the heater. 

Thus, 

 

P = = × =(
. .

120

14
10 10 103V)

W kW.
2

Ω
 

 

(b) The cost is given by (1.0kW)(5.0h)(5.0cents/kW h) US$0.25.⋅ =  



 

 

 

36. Since P = iV, q = it = Pt/V = (7.0 W) (5.0 h) (3600 s/h)/9.0 V = 1.4 × 10
4
 C. 



 

 

37. The relation P = V 
2
/R implies P ∝ V 

2
. Consequently, the power dissipated in the 

second case is 

 

P =
F
HG

I
KJ =150

0 540 0135

2

.
( . .

V

3.00 V
W) W.  



 

 

 

38. The resistance is R = P/i
2
 = (100 W)/(3.00 A)

2
 = 11.1 Ω. 



 

 

39. (a) The power dissipated, the current in the heater, and the potential difference across 

the heater are related by P = iV. Therefore, 

 

i
P

V
= = =1250

10 9
W

115 V
A..  

 

(b) Ohm’s law states V = iR, where R is the resistance of the heater. Thus, 

 

R
V

i
= = =115

10 6
V

10.9 A
. .Ω  

 

(c) The thermal energy E generated by the heater in time t = 1.0 h = 3600 s is 

 
6(1250W)(3600s) 4.50 10 J.E Pt= = = ×  



 

 

 

40. (a) From P = V 
2
/R we find R = V 

2
/P = (120 V)

2
/500 W = 28.8 Ω. 

 

(b) Since i = P/V, the rate of electron transport is 

 

i

e

P

eV
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×
= ×−
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41. (a) From P = V 
2
/R = AV 

2
 / ρL, we solve for the length: 

 

L
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P
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× ⋅
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−

−
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(b) Since L ∝ V 
2
 the new length should be 

 

′ = ′F
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I
KJ =

F
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I
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42. The slopes of the lines yield P1 = 8 mW and P2 = 4 mW.  Their sum (by energy 

conservation) must be equal to that supplied by the battery: Pbatt = ( 8 + 4 ) mW = 12 mW. 



 

 

43. (a) The monthly cost is (100 W) (24 h/day) (31 day/month) (6 cents/kW h)⋅ =  

446 cents US$4.46,=  assuming a 31-day month. 

 

(b) R = V 
2
/P = (120 V)

2
/100 W = 144 Ω. 

 

(c) i = P/V = 100 W/120 V = 0.833 A. 



 

 

 

44. Assuming the current is along the wire (not radial) we find the current from Eq. 26-4: 

 

i  =  | J  
→

| dA  = 2

0
2

R

kr rdrπ   =  
1

2
 kπR

4
  =  3.50 A 

 

where k = 2.75 × 10
10

 A/m
4
 and R = 0.00300 m.  The rate of thermal energy generation is 

found from Eq. 26-26:  P = iV = 210 W.  Assuming a steady rate, the thermal energy 

generated in 40 s is (210 J/s)(3600 s) = 7.56 × 10
5
 J. 



 

 

45. (a) Using Table 26-1 and Eq. 26-10 (or Eq. 26-11), we have 

 

( )8 2

6 2

2.00A
| | | | 1.69 10 m 1.69 10 V/m.

2.00 10 m
E Jρ − −

−= = × Ω⋅ = ×
×

 

 

(b) Using L = 4.0 m, the resistance is found from Eq. 26-16: R = ρL/A = 0.0338 Ω. The 

rate of thermal energy generation is found from Eq. 26-27:  

 

P = i
2
 R = (2.00 A)

2
(0.0338 Ω)=0.135 W. 

 

Assuming a steady rate, the thermal energy generated in 30 minutes is (0.135 J/s)(30 × 

60s) = 2.43 × 10
2
 J. 



 

 

 

46. From P = V
2
/R, we have R = (5.0 V)

2
/(200 W) = 0.125 Ω.  To meet the conditions of 

the problem statement, we must therefore set 

 

0
5.00  

L

x dx = 0.125 Ω   

 

Thus, 

 

     
5

2
 L

2
  =  0.125                L = 0.224 m. 



 

 

47. (a) We use Eq. 26-16 to compute the resistances in SI units: 

 

6

2 2

1
(2 10 ) 2.5 .C

C C

C

L
R

r
ρ −= = × = Ω

π π(0.0005)
 

 

The voltage follows from Ohm’s law: 

 

1 2| | 5.1V.
C C

V V V iR− = = =  

 

(b) Similarly, 

 

6

2 2

1
(1 10 ) 5.1D

D D

D

L
R

r
ρ −= = × = Ω

π π(0.00025)
 

 

and 2 3| | 10V
D D

V V V iR− = = = . 

 

(c) The power is calculated from Eq. 26-27: 2 10W
C C

P i R= = . 

 

(d) Similarly, 2 20W 
D D

P i R= = . 



 

 

 

48. (a) Current is the transport of charge; here it is being transported “in bulk” due to the 

volume rate of flow of the powder. From Chapter 14, we recall that the volume rate of 

flow is the product of the cross-sectional area (of the stream) and the (average) stream 

velocity. Thus, i = ρAv where ρ is the charge per unit volume. If the cross-section is that 

of a circle, then i = ρπR
2
v. 

 

(b) Recalling that a Coulomb per second is an Ampere, we obtain 

 

i = × = ×− −11 10 2 0 17 103 3 2 5. . .C / m m m / s A.c h b g b gπ 0.050  

 

(c) The motion of charge is not in the same direction as the potential difference computed 

in problem 57 of Chapter 25. It might be useful to think of (by analogy) Eq. 7-48; there, 

the scalar (dot) product in P F v= ⋅  makes it clear that P = 0 if F v⊥ . This suggests that 

a radial potential difference and an axial flow of charge will not together produce the 

needed transfer of energy (into the form of a spark). 

 

(d) With the assumption that there is (at least) a voltage equal to that computed in 

problem 60 of Chapter 24, in the proper direction to enable the transference of energy 

(into a spark), then we use our result from that problem in Eq. 26-26: 

 

P iV= = × × =−17 10 7 8 10 135 4. . . .A V Wc hc h  

 

(e) Recalling that a Joule per second is a Watt, we obtain (1.3 W)(0.20 s) = 0.27 J for the 

energy that can be transferred at the exit of the pipe. 

 

(f) This result is greater than the 0.15 J needed for a spark, so we conclude that the spark 

was likely to have occurred at the exit of the pipe, going into the silo. 



 

 

49. (a) We are told that r rB A= 1
2

 and LB = 2LA. Thus, using Eq. 26-16, 

 

R
L

r

LA

r
RB

B

B A

A= = = =ρ ρ
π π2 1

4

2

2
8 64Ω.  

 

(b) The current densities are assumed uniform. 

 
2 2

2 2

/ /
0.25.

/ 4 /

A A A

B B A

J i r i r

J i r i r

π π
π π

= = =  



 

 

 

50. (a) Circular area depends, of course, on r
2
, so the horizontal axis of the graph in Fig. 

26-33(b) is effectively the same as the area (enclosed at variable radius values), except 

for a factor of π.  The fact that the current increases linearly in the graph means that i/A = 

J = constant.   Thus, the answer is “yes, the current density is uniform.” 

 

(b) We find  i/(πr
2
) = (0.005 A)/(π × 4 × 10

−6 
m

2
) = 398 ≈ 4.0 × 10

2
 A/m

2
. 



 

 

51. Using A = πr
2
 with r = 5 × 10

–4
 m with Eq. 26-5 yields 

 

6 2| | 2.5 10 A/m .
i

J
A

= = ×  

 

Then, with | | .E = 53 V / m , Eq. 26-10 leads to 

 

ρ =
×

= × ⋅−5 3

2 5 10
2 1 10

6

6.

.
.

V / m

A / m
m.

2
Ω  



 

 

 

52. We find the drift speed from Eq. 26-7: 

 

v
J

ne
d = = × −| |

. .15 10 4 m / s  

 

At this (average) rate, the time required to travel L = 5.0 m is 

 

t
L

vd

= = ×34 104. s.  



 

 

53. (a) Referring to Fig. 26-34, the electric field would point down (towards the bottom 

of the page) in the strip, which means the current density vector would point down, too 

(by Eq. 26-11).  This implies (since electrons are negatively charged) that the conduction-

electrons would be “drifting” upward in the strip. 

 

(b) Eq. 24-6 immediately gives 12 eV, or (using e = 1.60 × 10
−19 

C) 1.9 × 10
−18 

J for the 

work done by the field (which equals, in magnitude, the potential energy change of the 

electron). 

 

(c) Since the electrons don’t (on average) gain kinetic energy as a result of this work done, 

it is generally dissipated as heat.  The answer is as in part (b): 12 eV or 1.9 × 10
−18 

J. 



 

 

 

54. Since 100 cm = 1 m, then 10
4
 cm

2
 = 1 m

2
. Thus, 

 

R
L

A
= =

× ⋅ ×
×

=
−

−

ρ 300 10 10 0 10

56 0 10
0536

7 3

4 2

. .

.
. .

Ω
Ω

m m

m

c hc h
 



 

 

55. (a) The charge that strikes the surface in time ∆t is given by ∆q = i ∆t, where i is the 

current. Since each particle carries charge 2e, the number of particles that strike the 

surface is 

 

N
q

e

i t

e
= = =

×

×
= ×

−

−

∆ ∆
2 2

0 25 10 30

2 16 10
2 3 10

6

19

12
. .

.
. .

A s

C

c hb g
c h  

 

(b) Now let N be the number of particles in a length L of the beam. They will all pass 

through the beam cross section at one end in time t = L/v, where v is the particle speed. 

The current is the charge that moves through the cross section per unit time. That is, i = 

2eN/t = 2eNv/L. Thus N = iL/2ev. To find the particle speed, we note the kinetic energy 

of a particle is 

 

K = = × × = ×− −20 20 10 160 10 3 2 106 19 12MeV eV J / eV J .c hc h. .  

 

Since K mv= 1
2

2 ,then the speed is v K m= 2 . The mass of an alpha particle is (very 

nearly) 4 times the mass of a proton, or m = 4(1.67 × 10
–27

 kg) = 6.68 × 10
–27

 kg, so 

 

v =
×

×
= ×

−

−

2 3 2 10
31 10

12

27

7
.

.
J

6.68 10 kg
m / s

c h
 

 

and 

 

N
iL

ev
= =

× ×

× ×
= ×

− −

−2

0 25 10 20 10

2 160 10 31 10
50 10

6 2

19 7

3
.

. .
. .

c hc h
c hc h

m

C m / s
 

 

(c) We use conservation of energy, where the initial kinetic energy is zero and the final 

kinetic energy is 20 MeV = 3.2 × 10
–12

 J. We note, too, that the initial potential energy is 

Ui = qV = 2eV, and the final potential energy is zero. Here V is the electric potential 

through which the particles are accelerated. Consequently, 

 

( )
12

7

19

3.2 10 J
2     1.0 10 V.

2 2 1.60 10 C

f

f i

K
K U eV V

e

−

−

×= = = = = ×
×

 



 

 

 

56. (a) Since P = i
2
 R = J 

2
 A

2
 R, the current density is 

 

J
A

P

R A

P

L A

P

LA
= = =

=
× ⋅ × ×

= ×
− − −

1 1

10

2 0 10 50 10
13 10

5 2 3
2

5 2

ρ ρ/

.

. .
. .

W

3.5 10 m m m
A / m

π Ωc hc hc h

 

 

(b) From P = iV = JAV we get 

 

V
P

AJ

P

r J
= = =

× ×
= ×

−

−

π π
2 3

2
5 2

210

50 10 13 10
9 4 10

.

. .
.

W

m A / m
V.

c h c h
 



 

 

57. Let RH be the resistance at the higher temperature (800°C) and let RL be the resistance 

at the lower temperature (200°C). Since the potential difference is the same for the two 

temperatures, the power dissipated at the lower temperature is PL = V 
2
/RL, and the power 

dissipated at the higher temperature is PH = V 
2
 / RH, so PL = (RH/RL)PH. Now 

L H H
R R R Tα= + ∆ , where ∆T is the temperature difference TL – TH = –600 C° = –600 K. 

Thus, 

 

P
R

R R T
P

P

T
L

H

H H

H
H=

+
=

+
=

+ × −
=−α α∆ ∆1

500

4 0 10 600
660

4

W

1 K)( K)
W.

( . /
 



 

 

 

58. (a) We use P = V 
2
/R ∝ V 

2
, which gives ∆P ∝ ∆V 

2
 ≈ 2V ∆V. The percentage change 

is roughly  

 

∆P/P = 2∆V/V = 2(110 – 115)/115 = –8.6%. 

 

(b) A drop in V causes a drop in P, which in turn lowers the temperature of the resistor in 

the coil. At a lower temperature R is also decreased. Since P ∝ R
–1

 a decrease in R will 

result in an increase in P, which partially offsets the decrease in P due to the drop in V. 

Thus, the actual drop in P will be smaller when the temperature dependency of the 

resistance is taken into consideration. 



 

 

59. (a) The current is 

 
2

2 2

8

/ 4

V)[(0.0400in.)(2.54 10 m/in.)]
1.74 A.

4(1.69 10 m)(33.0m)

V V Vd
i

R L A Lρ ρ
−

−

π= = =

π(1.20 ×= =
× Ω⋅

 

 

(b) The magnitude of the current density vector is 

 

6 2

2 2 2

4 4(1.74 A)
| | 2.15 10 A/m .

in.)(2.54 10 m/in.)]

i i
J

A d
−= = = = ×

π π[(0.0400 ×
 

 

(c) E = V/L = 1.20 V/33.0 m = 3.63 × 10
–2

 V/m. 

 

(d) P = Vi = (1.20 V)(1.74 A) = 2.09 W. 



 

 

 

60. (a) Since  

 

ρ = RA/L = πRd 
2
/4L = π(1.09 ×  10

–3
 Ω)(5.50 × 10

–3
 m)

2
/[4(1.60 m)] = 1.62 × 10

–8
 Ω·m,  

 

the material is silver. 

 

(b) The resistance of the round disk is 

 

R
L

A

L

d
= = = × ⋅ ×

×
= ×

− −
−ρ ρ4 4 162 10

516 10
2

8
8

π π(2.00 10−2

( .
. .

Ω Ωm)(1.00 10 m)

m)

3

2
 



 

 

61. Eq. 26-26 gives the rate of thermal energy production: 

 
(10.0A)(120V) 1.20kW.P iV= = =  

 

Dividing this into the 180 kJ necessary to cook the three hot-dogs leads to the result 
150 s.t =  



 

 

 

62. (a) We denote the copper wire with subscript c and the aluminum wire with subscript 

a. 

 

R
L

A
a= =

× ⋅

×
= ×

−

−

−ρ
2 75 10 13

52 10
13 10

8

3
2

3
. .

.
. .

Ω
Ω

m m

m

c hb g
c h

 

 

(b) Let R = ρcL/(πd 
2
/4) and solve for the diameter d of the copper wire: 

 

d
L

R

c= =
× ⋅

×
= ×

−
−4 4 169 10 13

4 6 10

8

3ρ
π π 1.3 10−3

. .
.

Ω

Ω

m m
m.

c hb g
c h  



 

 

63. We use P = i
2 

R = i
2ρL/A, or L/A = P/i

2ρ.  

 

(a) The new values of L and A satisfy 

 

L

A

P

i

P

i

L

A

F
HG
I
KJ =
F
HG
I
KJ =

F
HG
I
KJ = F

HG
I
KJ

new new old old

2 2 2

30

4

30

16ρ ρ
.  

 

Consequently, (L/A)new = 1.875(L/A)old, and   

 

 new
new old old

old

1.875 1.37       1.37
L

L L L
L

= = = . 

 

(b) Similarly, we note that (LA)new = (LA)old, and   

 

new
new old old

old

1/1.875 0.730     0.730
A

A A A
A

= = = . 



 

 

 

64. The horsepower required is 

 

(10A)(12 V)
0.20 hp.

0.80 (0.80)(746 W/hp)

iV
P = = =  



 

 

65. We find the current from Eq. 26-26:  i = P/V = 2.00 A.  Then, from Eq. 26-1 (with 

constant current), we obtain 

 

∆q =  i∆t = 2.88 × 10
4
 C   . 



 

 

 

66. We find the resistance from A = πr
2
 and Eq. 26-16: 

 

R = ρ 
L

A
  = (1.69 × 10

−8
) 

45

1.3 × 10
-5  = 0.061 Ω   . 

 

Then the rate of thermal energy generation is found from Eq. 26-28:  P = V
2
/R = 2.4 kW.  

Assuming a steady rate, the thermal energy generated in 40 s is (2.4)(40) = 95 kJ. 



 

 

67. We find the rate of energy consumption from Eq. 26-28: 

 

P = 
V

2

R
  =  

90
2

400
  = 20.3 W   . 

 

Assuming a steady rate, the energy consumed is (20.3 J/s)(2.00 × 3600 s) = 1.46 × 10
5
 J. 



 

 

 

68. We use Eq. 26-28: 

 

R = 
V

2

P
  =  

200
2

3000
  = 13.3 Ω   . 



 

 

69. The slope of the graph is P = 5.0 × 10
−4 

W.  Using this in the P = V
2
/R relation leads 

to V = 0.10 Vs. 



 

 

 

70. The rate at which heat is being supplied is P = iV = (5.2 A)(12 V) = 62.4 W.  

Considered on a one-second time-frame, this means 62.4 J of heat are absorbed the liquid 

each second.  Using Eq. 18-16, we find the heat of transformation to be 

 

L= 
Q

m
  = 

62.4 J

21 x 10
-6 

kg
 = 3.0 × 10

6 
J/kg . 



 

 

71. (a) The current is 4.2 × 10
18 

e divided by 1 second.  Using e = 1.60 × 10
−19 

C we 

obtain 0.67 A for the current. 

 

(b) Since the electric field points away from the positive terminal (high potential) and 

towards the negative terminal (low potential), then the current density vector (by Eq. 26-

11) must also point towards the negative terminal.  



 

 

 

72. Combining Eq. 26-28 with Eq. 26-16 demonstrates that the power is inversely 

proportional to the length (when the voltage is held constant, as in this case).  Thus, a 

new length equal to 7/8 of its original value leads to 

 

P  =  
8

7
  (2.0 kW)  =  2.4 kW   . 



 

 

73. (a) Since the field is considered to be uniform inside the wire, then its magnitude is, 

by Eq. 24-42, 

 

| |
| |

.E
V

L
= = =∆ 50

200
0 25 V / m.  

 

Using Eq. 26-11, with ρ = 1.7 × 10
–8

 Ω·m, we obtain 

 

E J J= = ×ρ 15 107. i  

 

in SI units (A/m
2
). 

 

(b) The electric field points towards lower values of potential (see Eq. 24-40) so E  is 

directed towards point B (which we take to be the î  direction in our calculation). 



 

 

 

74. We use Eq. 26-17: ρ – ρ0 = ρα(T – T0), and solve for T: 

 

T T= + −
F
HG
I
KJ = ° +

×
−

F
HG

I
KJ = °−0

0

3

1
1 20

1

4 3 10

58

50
1 57

α
ρ
ρ

C
K

C
. /

.
Ω
Ω

 

 

We are assuming that ρ/ρ0 = R/R0. 



 

 

75. (a) With ρ = 1.69 × 10
−8

 Ω·m (from Table 26-1) and L = 1000 m, Eq. 26-16 leads to 

 

A  =  ρ 
L

R
  =  (1.69 × 10

−8
) 

1000

33
   =  5.1 × 10

−7
 m

2
   . 

 

Then, A = πr
2
 yields r = 4.0 × 10

-4
 m; doubling that gives the diameter as 8.1 × 10

−4
 m. 

 

(b) Repeating the calculation in part (a) with ρ = 2.75 × 10
−8

 Ω·m leads to a diameter of 

1.0 × 10
−3

 m. 



 

 

 

76. (a) The charge q that flows past any cross section of the beam in time ∆t is given by q 

= i∆t, and the number of electrons is N = q/e = (i/e) ∆t. This is the number of electrons 

that are accelerated. Thus 

 

N = ×
×

= ×
−

−

( .

.
. .

050

160 10
31 10

6

19

11A)(0.10 10 s)

C
 

 

(b) Over a long time t the total charge is Q = nqt, where n is the number of pulses per unit 

time and q is the charge in one pulse. The average current is given by iavg = Q/t = nq. 

Now q = i∆t = (0.50 A) (0.10 × 10
–6

 s) = 5.0 × 10
–8

 C, so 

 

iavg s)(5.0 10 C) A.= × = ×− −( / .500 2 5 108 5  

 

(c) The accelerating potential difference is V = K/e, where K is the final kinetic energy of 

an electron. Since K = 50 MeV, the accelerating potential is V = 50 kV = 5.0 × 10
7
 V. The 

average power is 

 

P i Vavg avg

7A)(5.0 10 V) W.= = × × = ×−( . .2 5 10 13 105 3  

 

(d) During a pulse the power output is 

 

P iV= = × = ×( . .050 2 5 107A)(5.0 10 V) W.7  

 

This is the peak power.  



 

 

77. The power dissipated is given by the product of the current and the potential 

difference: P iV= = × × =−( .7 0 10 5603 A)(80 10 V) W.3  



 

 

 

78. (a) Let ∆T be the change in temperature and κ be the coefficient of linear expansion 

for copper. Then ∆L = κL ∆T and 

 

∆ ∆L

L
T= = × ° = ×− −κ ( . / . .17 10 17 105 5K)(1.0 C)  

 

This is equivalent to 0.0017%. Since a change in Celsius is equivalent to a change on the 

Kelvin temperature scale, the value of κ used in this calculation is not inconsistent with 

the other units involved. Incorporating a factor of 2 for the two-dimensional nature of A, 

the fractional change in area is 

 

∆ ∆A

A
T= = × ° = ×− −2 2 17 10 3 4 105 5κ ( . / .K)(1.0 C)  

 

which is 0.0034%. For small changes in the resistivity ρ, length L, and area A of a wire, 

the change in the resistance is given by 

 

∆ ∆ ∆ ∆R
R R

L
L

R

A
A= ∂

∂
+ ∂

∂
+ ∂

∂ρ
ρ .  

 

Since R = ρL/A, ∂R/∂ρ = L/A = R/ρ, ∂R/∂L = ρ/A = R/L, and ∂R/∂A = –ρL/A
2
 = –R/A. 

Furthermore, ∆ρ/ρ = α∆T, where α is the temperature coefficient of resistivity for copper 

(4.3 × 10
–3

/K = 4.3 × 10
–3

/C°, according to Table 26-1). Thus, 

 

3 5 3

( 2 ) ( )

(4.3 10 / C 1.7 10 / C )(1.0C ) 4.3 10 .

R L A
T T

R L A

ρ α κ κ α κ
ρ

− − −

∆ ∆ ∆ ∆= + − = + − ∆ = − ∆

= × ° − × ° ° = ×
 

 

This is 0.43%, which we note (for the purposes of the next part) is primarily determined 

by the ∆ρ/ρ term in the above calculation. 

 

(b) As shown in part (a), the percentage change in L is 0.0017%. 

 

(c) As shown in part (a), the percentage change in A is 0.0034%. 

 

(d) The fractional change in resistivity is much larger than the fractional change in length 

and area. Changes in length and area affect the resistance much less than changes in 

resistivity. 



 

 

79. (a) In Eq. 26-17, we let ρ = 2ρ0 where ρ0 is the resistivity at T0 = 20°C: 

 

ρ ρ ρ ρ ρ α− = − = −0 0 0 0 02 T Tb g,  

 

and solve for the temperature T: 

 

T T= + = ° +
×

≈ °−0 3

1
20

1

4 3 10
250

α
C

K
C.

. /
 

 

(b) Since a change in Celsius is equivalent to a change on the Kelvin temperature scale, 

the value of α used in this calculation is not inconsistent with the other units involved. It 

is worth noting that this agrees well with Fig. 26-10. 



 

 

 

80. Since values from the referred-to graph can only be crudely estimated, we do not 

present a graph here, but rather indicate a few values. Since R = V/i then we see R = ∞ 

when i = 0 (which the graph seems to show throughout the range –∞ < V < 2 V) and 

V ≠ 0 . For voltages values larger than 2 V, the resistance changes rapidly according to 

the ratio V/i. For instance, R ≈ 3.1/0.002 = 1550 Ω when V = 3.1 V, and R ≈ 3.8/0.006 = 

633 Ω when V = 3.8 V. 



 

 

81. (a) V iR i
L

A
= = =

× ⋅ ×

×
= ×

− −

−

−ρ
12 169 10 4 0 10

52 10
38 10

8 2

3
2

4
A m m

m / 2
V.

b gc hc h
c h

. .

.
.

Ω

π
 

 

(b) Since it moves in the direction of the electron drift which is against the direction of 

the current, its tail is negative compared to its head. 

 

(c) The time of travel relates to the drift speed: 

 

t
L

v

lAne

i

Ld ne

id

= = =

=
× × × ×

= =

− − −

π

π

2

2 3
2

28 3 19

4

10 10 52 10 8 47 10 160 10

4 12

238 3 58

. . . / .

(

min

m m m C

A)

s s.

c hc h c hc h
 



 

 

 

82. Using Eq. 7-48 and Eq. 26-27, the rate of change of mechanical energy of the piston-

Earth system, mgv, must be equal to the rate at which heat is generated from the coil: mgv 

= i
2
R. Thus 

 

v
i R

mg
= = =

2 2

2

0 240 550

12 9 8
0 27

.

.
.

A

kg m / s
m / s.

b g b g
b gc h

Ω
 



 

 

83. (a) i = (nh + ne)e = (2.25 × 10
15

/s + 3.50 × 10
15

/s) (1.60 × 10
–19

 C) = 9.20 × 10
–4

 A. 

 

(b) The magnitude of the current density vector is 

 
4

4 2

2

9.20 10 A
| J | 1.08 10 A/m .

m)

i

A

−

−3

×= = = ×
π(0.165×10
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