
 
 

1. (a) The cost is (100 W · 8.0 h/2.0 W · h) ($0.80) = $3.2 × 102. 
 
(b) The cost is (100 W · 8.0 h/103 W · h) ($0.06) = $0.048 = 4.8 cents. 



  

 
 

2. The chemical energy of the battery is reduced by ∆E = qε, where q is the charge that 

passes through in time ∆t = 6.0 min, and ε is the emf of the battery. If i is the current, 

then q = i ∆t and  
 

∆E = iε ∆t = (5.0 A)(6.0 V) (6.0 min) (60 s/min) = 1.1 × 104 J. 
 
We note the conversion of time from minutes to seconds. 



 

 
 

3. If P is the rate at which the battery delivers energy and ∆t is the time, then ∆E = P ∆t is 

the energy delivered in time ∆t. If q is the charge that passes through the battery in time 

∆t and ε is the emf of the battery, then ∆E = qε. Equating the two expressions for ∆E and 

solving for ∆t, we obtain 
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4. (a) The energy transferred is 
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(b) The amount of thermal energy generated is 
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(c) The difference between U and U', which is equal to 13 J, is the thermal energy that is 
generated in the battery due to its internal resistance. 



 

 
 
5. (a) Let i be the current in the circuit and take it to be positive if it is to the left in R1. 

We use Kirchhoff’s loop rule: ε1 – iR2 – iR1 – ε2 = 0. We solve for i: 
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A positive value is obtained, so the current is counterclockwise around the circuit. 
 
If i is the current in a resistor R, then the power dissipated by that resistor is given by 

2
P i R= .  

 

(b) For R1, P1 = (0.50 A)2(4.0 Ω) = 1.0 W,  
 

(c) and for R2, P2 = (0.50 A)2 (8.0 Ω) = 2.0 W. 
 

If i is the current in a battery with emf ε, then the battery supplies energy at the rate P =iε 
provided the current and emf are in the same direction. The battery absorbs energy at the 

rate P = iε if the current and emf are in opposite directions.  
 

(d) For ε1, P1 = (0.50 A)(12 V) = 6.0 W  
 

(e) and for ε2, P2 = (0.50 A)(6.0 V) = 3.0 W.  
 
(f) In battery 1 the current is in the same direction as the emf. Therefore, this battery 
supplies energy to the circuit; the battery is discharging.  
 
(g) The current in battery 2 is opposite the direction of the emf, so this battery absorbs 
energy from the circuit. It is charging. 



  

 
 
6. The current in the circuit is  
 

i = (150 V – 50 V)/(3.0 Ω + 2.0 Ω) = 20 A. 
 

So from VQ + 150 V – (2.0 Ω)i = VP, we get VQ = 100 V + (2.0 Ω)(20 A) –150 V = –10 V. 



 

 
 

7. (a) The potential difference is V = ε + ir = 12 V + (0.040 Ω)(50 A) = 14 V. 
 

(b) P = i
2
r = (50 A)2(0.040 Ω) = 1.0×102 W. 

 
(c) P' = iV = (50 A)(12 V) = 6.0×102 W. 
 

(d) In this case V = ε – ir = 12 V – (0.040 Ω)(50 A) = 10 V. 
 

(e) Pr = i
2
r = 1.0×102 W. 



  

 
 

8. (a) We solve i = (ε2 – ε1)/(r1 + r2 + R) for R: 
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(b) P = i
2
R = (1.0 × 10–3 A)2(9.9 × 102 Ω) = 9.9 × 10–4 W. 

 



9. (a) If i is the current and ∆V is the potential difference, then the power absorbed is 

given by P = i ∆V. Thus, 
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Since the energy of the charge decreases, point A is at a higher potential than point B; 
that is, VA – VB = 50 V. 
 

(b) The end-to-end potential difference is given by VA – VB = +iR + ε, where ε is the emf 
of element C and is taken to be positive if it is to the left in the diagram. Thus,  
 

ε = VA – VB – iR = 50 V – (1.0 A)(2.0 Ω) = 48 V. 
 

(c) A positive value was obtained for ε, so it is toward the left. The negative terminal is at 
B. 



 

 
 

10. (a) For each wire, Rwire = ρL/A where A = πr
2.  Consequently, we have  

 

Rwire =  (1.69 × 10−8 )(0.200)/π(0.00100)2 = 0.0011 Ω. 
 

The total resistive load on the battery is therefore 2Rwire + 6.00 Ω.  Dividing this into the 

battery emf gives the current i = 1.9993 A.  The voltage across the 6.00 Ω resistor is 

therefore (1.9993 A)(6.00 Ω) = 11.996 V ≈ 12 V. 
 
(b) Similarly, we find the voltage-drop across each wire to be 2.15 mV. 
 

(c) P = i2
R = (1.9993 A)(6 Ω)2 = 23.98 W ≈ 24.0 W. 

 
(d) Similarly, we find the power dissipated in each wire to be 4.30 mW. 



  

 
 

11. Let the emf be V. Then V = iR = i'(R + R'), where i = 5.0 A, i' = 4.0 A and R' = 2.0 Ω. 
We solve for R: 
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12. (a) Here we denote the battery emf’s as V1 and V2 .  The loop rule gives 
 

               V2 – ir2 + V1 – ir1 – iR  =  0        2 1
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The terminal voltage of battery 1 is V1T  and (see Fig. 27-4(a)) is easily seen to be equal to 

V1 − ir1 ; similarly for battery 2.  Thus,  
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The problem tells us that V1 and V2 each equal 1.20 V.  From the graph in Fig. 27-30(b) 

we see that V2T  = 0 and V1T  = 0.40 V for R = 0.10 Ω.  This supplies us (in view of the 
above relations for terminal voltages) with simultaneous equations, which, when solved, 

lead to r1 = 0.20 Ω. 
 

(b) The simultaneous solution also gives r2 = 0.30 Ω. 



  

 
 

13. To be as general as possible, we refer to the individual emf’s as ε1 and ε2 and wait 

until the latter steps to equate them (ε1 = ε2 = ε). The batteries are placed in series in such 
a way that their voltages add; that is, they do not “oppose” each other. The total 
resistance in the circuit is therefore Rtotal = R + r1 + r2 (where the problem tells us r1 > r2), 

and the “net emf” in the circuit is ε1 + ε2. Since battery 1 has the higher internal resistance, 
it is the one capable of having a zero terminal voltage, as the computation in part (a) 
shows. 
 
(a) The current in the circuit is 
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and the requirement of zero terminal voltage leads to 
 

2 1 1 2
1 1

1

(12.0)(0.016) (12.0)(0.012)
0.004 

12.0

r r
ir R

ε εε
ε
− −= = = = Ω  

 

Note that R = r1 – r2 when we set ε1 = ε2. 
 
(b) As mentioned above, this occurs in battery 1. 



 

 
 

14. (a) Let the emf of the solar cell be ε and the output voltage be V. Thus, 
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for both cases. Numerically, we get  
 

0.10 V = ε – (0.10 V/500 Ω)r 

   0.15 V = ε – (0.15 V/1000 Ω)r. 
 

We solve for ε and r.   
 

(a) r = 1.0×103 Ω. 
 

(b) ε = 0.30 V. 
 
(c) The efficiency is 
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15. The potential difference across each resistor is V = 25.0 V. Since the resistors are 

identical, the current in each one is i = V/R = (25.0 V)/(18.0 Ω) = 1.39 A. The total 
current through the battery is then itotal = 4(1.39 A) = 5.56 A. One might alternatively use 
the idea of equivalent resistance; for four identical resistors in parallel the equivalent 
resistance is given by 
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When a potential difference of 25.0 V is applied to the equivalent resistor, the current 
through it is the same as the total current through the four resistors in parallel. Thus  
 

itotal = V/Req = 4V/R = 4(25.0 V)/(18.0 Ω) = 5.56 A. 



 

 
 
16. Let the resistances of the two resistors be R1 and R2, with R1 < R2. From the 
statements of the problem, we have 
 

R1R2/(R1 + R2) = 3.0 Ω and R1 + R2 = 16 Ω. 
 

So R1 and R2 must be 4.0 Ω and 12 Ω, respectively. 
 

(a) The smaller resistance is R1 = 4.0 Ω. 
 
(b) The larger resistance is R2 = 12 Ω. 



  

 
 
17. We note that two resistors in parallel, R1 and R2, are equivalent to 
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This situation (Figure 27-32) consists of a parallel pair which are then in series with a 

single R3 = 2.50 Ω resistor. Thus, the situation has an equivalent resistance of 
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18. (a) Req (FH) = (10.0 Ω)(10.0 Ω)(5.00 Ω)/[(10.0 Ω)(10.0 Ω) + 2(10.0 Ω)(5.00 Ω)] = 

2.50 Ω. 
 

(b) Req (FG) = (5.00 Ω) R/(R + 5.00 Ω), where  
 

R = 5.00 Ω + (5.00 Ω)(10.0 Ω)/(5.00 Ω + 10.0 Ω) = 8.33 Ω. 
 

So Req (FG) = (5.00 Ω)(8.33 Ω)/(5.00 Ω + 8.33 Ω) = 3.13 Ω. 



  

 
 
19. Let i1 be the current in R1 and take it to be positive if it is to the right. Let i2 be the 
current in R2 and take it to be positive if it is upward.  
 
(a) When the loop rule is applied to the lower loop, the result is 
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(b) When it is applied to the upper loop, the result is 
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The equation yields 
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or 2| | 0.060 A.i = The negative sign indicates that the current in R2 is actually downward.  

 

(c) If Vb is the potential at point b, then the potential at point a is Va = Vb + ε3 + ε2, so Va 

– Vb = ε3 + ε2 = 4.0 V + 5.0 V = 9.0 V. 



 

 
 
20. The currents i1, i2 and i3 are obtained from Eqs. 27-18 through 27-20: 
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Vd – Vc can now be calculated by taking various paths. Two examples: from Vd – i2R2 = 
Vc we get  
 

Vd – Vc = i2R2 = (0.0250 A) (10 Ω) = +0.25 V; 
 

from Vd + i3R3 + ε2 = Vc we get  
 

Vd – Vc = i3R3 – ε2 = – (– 0.250 A) (5.0 Ω) – 1.0 V = +0.25 V. 



  

 
 
21. Let r be the resistance of each of the narrow wires. Since they are in parallel the 
resistance R of the composite is given by 
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or R = r/9. Now r d= 4 2ρ / π  and R D= 4 2ρ / π  , where ρ is the resistivity of copper. A 

= πd 
2/4 was used for the cross-sectional area of a single wire, and a similar expression 

was used for the cross-sectional area of the thick wire. Since the single thick wire is to 
have the same resistance as the composite, 
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22. Using the junction rule (i3 = i1 + i2) we write two loop rule equations: 
 

10.0 V – i1R1 – (i1 + i2) R3 = 0 
 

5.00 V – i2R2 – (i1 + i2) R3 = 0. 
 
(a) Solving, we find i2 = 0, and 
 
(b) i3 = i1 + i2 = 1.25 A (downward, as was assumed in writing the equations as we did). 



  

 
 
23. First, we note V4, that the voltage across R4 is equal to the sum of the voltages across 
R5 and R6:  
 

V4 = i6(R5 +R6)= (1.40 A)(8.00 Ω + 4.00 Ω) = 16.8 V. 
 

The current through R4 is then equal to i4 = V4/R4 = 16.8 V/(16.0 Ω) = 1.05 A. 
 
By the junction rule, the current in R2 is i2 = i4 + i6 =1.05 A+ 1.40 A= 2.45 A, so its 

voltage is V2 = (2.00 Ω)(2.45 A) = 4.90 V. 
 
The loop rule tells us the voltage across R3 is V3 = V2 + V4 = 21.7 V (implying that the 

current through it is i3 = V3/(2.00 Ω) = 10.85 A). 
 
The junction rule now gives the current in R1 as i1 = i2 + i3= 2.45 A + 10.85 A = 13.3 A, 

implying that the voltage across it is V1 = (13.3 A)(2.00 Ω) = 26.6 V. Therefore, by the 
loop rule,  
 

ε = V1 + V3 = 26.6 V + 21.7 V = 48.3 V. 



 

 
 
24. (a) By the loop rule, it remains the same.  This question is aimed at student 
conceptualization of voltage; many students apparently confuse the concepts of voltage 
and current and speak of “voltage going through” a resistor – which would be difficult to 
rectify with the conclusion of this problem. 
 
(b) The loop rule still applies, of course, but (by the junction rule and Ohm’s law) the 
voltages across R1 and R3 (which were the same when the switch was open) are no longer 
equal.  More current is now being supplied by the battery which means more current is in 
R3, implying its voltage-drop has increased (in magnitude).  Thus, by the loop rule (since 
the battery voltage has not changed) the voltage across R1 has decreased a corresponding 
amount.  When the switch was open, the voltage across R1 was 6.0 V (easily seen from 
symmetry considerations).  With the switch closed, R1 and R2 are equivalent (by Eq. 27-

24) to 3.0 Ω, which means the total load on the battery is 9.0 Ω.  The current therefore is 
1.33 A which implies the voltage-drop across R3 is 8.0 V.  The loop rule then tells us that 
voltage-drop across R1 is 12 V – 8.0 V =  4.0 V.  This is a decrease of 2.0 volts from the 
value it had when the switch was open. 



  

 
 

25. The voltage difference across R3 is V3 = εR' /(R' + 2.00 Ω), where  
 

R' = (5.00 ΩR)/(5.00 Ω + R3). 
 
Thus, 
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where we use the equivalence symbol ≡ to define the expression f(R3). To maximize P3 
we need to minimize the expression f(R3). We set 
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26. (a) The voltage across R3 = 6.0 Ω is V3 iR3= (6.0 A) (6.0 Ω) = 36 V.  Now, the voltage 

across R1 = 2.0 Ω is  
 

(VA – VB) – V3 = 78 − 36 = 42 V, 
 

which implies the current is i1 = (42 V)/(2.0 Ω) = 21 A.  By the junction rule, then, the 

current in R2 = 4.0 Ω is i2 = i1− i  = 21 − 6.0 = 15 A.  The total power dissipated by the 
resistors is (using Eq. 26-27) 
 

2

1i (2.0 Ω)  + 2

2i  (4.0 Ω)  + 2
i  (6.0 Ω)  = 1998 W  ≈  2.0 kW   . 

 
By contrast, the power supplied (externally) to this section is PA = iA (VA - VB) where iA = 
i1 = 21 A.  Thus, PA = 1638 W.  Therefore, the "Box" must be providing energy. 
 

(b) The rate of supplying energy is (1998 − 1638 )W = 3.6×102 W. 



  

 
 
27. (a) We note that the R1 resistors occur in series pairs, contributing net resistance 2R1 

in each branch where they appear. Since ε2 = ε3 and R2 = 2R1, from symmetry we know 

that the currents through ε2 and ε3 are the same: i2 = i3 = i. Therefore, the current through 

ε1 is i1 = 2i. Then from Vb – Va = ε2 – iR2 = ε1 + (2R1)(2i) we get 
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Therefore, the current through ε1 is i1 = 2i = 0.67 A. 
 
(b) The direction of i1 is downward.  
 

(c) The current through ε2 is i2 = 0.33 A. 
 
(d) The direction of i2 is upward. 
 
(e) From part (a), we have i3 = i2 = 0.33 A. 
 

(f) The direction of i3 is also upward. 
 

(g) Va – Vb = –iR2 + ε2 = –(0.333 A)(2.0 Ω) + 4.0 V = 3.3 V. 



 

 
 
28. (a) For typing convenience, we denote the emf of battery 2 as V2 and the emf of 
battery 1 as V1.   The loop rule (examining the left-hand loop) gives V2 + i1 R1  – V1 = 0.  
Since V1 is held constant while V2 and i1 vary, we see that this expression (for large 
enough V2) will result in a negative value for i1 – so the downward sloping line (the line 
that is dashed in Fig. 27-41(b)) must represent i1.  It appears to be zero when V2 = 6 V.  
With i1  = 0, our loop rule gives V1 = V2 which implies that V1 = 6.0 V. 
 
(b) At V2 = 2 V (in the graph) it appears that i1 = 0.2 A.  Now our loop rule equation (with 

the conclusion about V1 found in part (a)) gives R1 = 20 Ω. 
 
(c) Looking at the point where the upward-sloping i2 line crosses the axis (at V2 = 4 V), 
we note that i1 = 0.1 A there and that the loop rule around the right-hand loop should give 
 
        V1 – i1 R1 = i1 R2   when  i1 = 0.1 A  and i2 = 0. 
 

This leads directly to R2 = 40 Ω. 



  

 
 
29. Let the resistors be divided into groups of n resistors each, with all the resistors in the 
same group connected in series. Suppose there are m such groups that are connected in 
parallel with each other. Let R be the resistance of any one of the resistors. Then the 
equivalent resistance of any group is nR, and Req, the equivalent resistance of the whole 
array, satisfies 
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Since the problem requires Req = 10 Ω = R, we must select n = m. Next we make use of 
Eq. 27-16. We note that the current is the same in every resistor and there are n · m = n

2 
resistors, so the maximum total power that can be dissipated is Ptotal = n

2
P, where 

1.0 WP =  is the maximum power that can be dissipated by any one of the resistors. The 

problem demands Ptotal ≥ 5.0P, so n2 must be at least as large as 5.0. Since n must be an 
integer, the smallest it can be is 3. The least number of resistors is n2 = 9. 



 

 
 
30. (a) R2, R3 and R4 are in parallel. By finding a common denominator and simplifying, 
the equation 1/R = 1/R2 + 1/R3 + 1/R4 gives an equivalent resistance of 
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Thus, considering the series contribution of resistor R1, the equivalent resistance for the 

network is Req = R1 + R = 100 Ω + 18.8 Ω = 118.8 Ω ≈ 119 Ω. 
 

(b) i1 = ε/Req = 6.0 V/(118.8 Ω) = 5.05 × 10–2 A.  
 

(c) i2 = (ε – V1)/R2 = (ε – i1R1)/R2 = [6.0V – (5.05 × 10–2 A)(100Ω)]/50 Ω = 1.90 × 10–2 A.  
 

(d) i3 = (ε – V1)/R3 = i2R2/R3 = (1.90 × 10–2 A)(50.0 Ω/50.0 Ω) = 1.90 × 10–2 A.  
 

(e) i4 = i1 – i2 – i3 = 5.05 × 10–2 A – 2(1.90 × 10–2 A) = 1.25 × 10–2 A. 



  

 
 
31. (a) The batteries are identical and, because they are connected in parallel, the 
potential differences across them are the same. This means the currents in them are the 
same. Let i be the current in either battery and take it to be positive to the left. According 
to the junction rule the current in R is 2i and it is positive to the right. The loop rule 
applied to either loop containing a battery and R yields 
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The power dissipated in R is 
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We find the maximum by setting the derivative with respect to R equal to zero. The 
derivative is 
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The derivative vanishes (and P is a maximum) if R = r/2. With r = 0.300 Ω, we have 
0.150 R = Ω .  

 

(b) We substitute R = r/2 into P = 4ε 2R/(r + 2R)2 to obtain 
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32. (a) By symmetry, when the two batteries are connected in parallel the current i going 

through either one is the same. So from ε = ir + (2i)R with r = 0.200 Ω and R = 2.00r, we 
get  
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(b) When connected in series 2ε – iRr – iRr – iRR = 0, or iR = 2ε/(2r + R). 
 

2 2(12.0V)
2 30.0 A.

2 2(0.200 ) 0.400
R

i i
r R

ε= = = =
+ Ω + Ω

 

 
(c) In series, since R > r. 
 
(d) If R = r/2.00, then for parallel connection, 
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+ Ω + Ω

 

 
(e) For series connection, we have  
 

2 2(12.0V)
2 48.0 A.

2 2(0.200 ) 0.100
R

i i
r R

ε= = = =
+ Ω + Ω

 

 
(f) In parallel, since R < r. 



  

 
 
33. (a) We first find the currents. Let i1 be the current in R1 and take it to be positive if it 
is to the right. Let i2 be the current in R2 and take it to be positive if it is to the left. Let i3 
be the current in R3 and take it to be positive if it is upward. The junction rule produces 
 

i i i1 2 3 0+ + = .  

 
The loop rule applied to the left-hand loop produces 
 

1 1 1 3 3 0i R i Rε − + =  

 
and applied to the right-hand loop produces 
 

2 2 2 3 3 0.i R i Rε − + =  

 
We substitute i3 = –i2 – i1, from the first equation, into the other two to obtain 
 

1 1 1 2 3 1 3 0i R i R i Rε − − − =  

 
and 
 

2 2 2 2 3 1 3 0.i R i R i Rε − − − =  

 
Solving the above equations yield 
 

1 2 3 2 3
1

1 2 1 3 2 3

( ) (3.00 V)(2.00 5.00 ) (1.00 V)(5.00 )
0.421 A.

(4.00 )(2.00 ) (4.00 )(5.00 ) (2.00 )(5.00 )

R R R
i

R R R R R R

ε ε+ − Ω + Ω − Ω= = =
+ + Ω Ω + Ω Ω + Ω Ω

 
 

2 1 3 1 3
2

1 2 1 3 2 3

( ) (1.00 V)(4.00 5.00 ) (3.00 V)(5.00 )
0.158 A.

(4.00 )(2.00 ) (4.00 )(5.00 ) (2.00 )(5.00 )

R R R
i

R R R R R R

ε ε+ − Ω + Ω − Ω= = = −
+ + Ω Ω + Ω Ω + Ω Ω

 
 

2 1 1 2
3

1 2 1 3 2 3

(1.00 V)(4.00 ) (3.00 V)(2.00 )
0.263 A.

(4.00 )(2.00 ) (4.00 )(5.00 ) (2.00 )(5.00 )

R R
i

R R R R R R

ε ε+ Ω + Ω= − = − = −
+ + Ω Ω + Ω Ω + Ω Ω

 
Note that the current i3 in R3 is actually downward and the current i2 in R2 is to the right. 
The current i1 in R1 is to the right.  
 

(a) The power dissipated in R1 is ( ) ( )22

1 1 1 0.421A 4.00 0.709 W.P i R= = Ω =  

 

(b) The power dissipated in R2 is 2 2

2 2 2 ( 0.158A) (2.00 ) 0.0499 W 0.050 W.P i R= = − Ω = ≈  



 

 

(c) The power dissipated in R3 is ( ) ( )22

3 3 3 0.263A 5.00 0.346 W.P i R= = − Ω =  

 

(d) The power supplied by ε1 is i3ε1 = (0.421 A)(3.00 V) = 1.26 W. 
 

(e) The power “supplied” by ε2 is i2ε2 = (–0.158 A)(1.00 V) = –0.158 W. The negative 

sign indicates that ε2 is actually absorbing energy from the circuit. 



  

 
 
34. (a) When R3 = 0 all the current passes through R1 and R3 and avoids R2 altogether.  
Since that value of the current (through the battery) is 0.006 A (see Fig. 27-45(b)) for R3 

= 0 then (using Ohm’s law) R1 = (12 V)/(0.006 A) =  2.0×103 Ω. 
 

(b) When R3 = ∞  all the current passes through R1 and R2 and avoids R3 altogether.  Since 

that value of the current (through the battery) is 0.002 A (stated in problem) for R3 = ∞ 

then (using Ohm’s law) R2 = (12 V)/(0.002 A)  –  R1  =  4.0×103 Ω. 



 

 
 
35. (a) The copper wire and the aluminum sheath are connected in parallel, so the 
potential difference is the same for them. Since the potential difference is the product of 
the current and the resistance, iCRC = iARA, where iC is the current in the copper, iA is the 
current in the aluminum, RC is the resistance of the copper, and RA is the resistance of the 

aluminum. The resistance of either component is given by R = ρL/A, where ρ is the 
resistivity, L is the length, and A is the cross-sectional area. The resistance of the copper 

wire is RC = ρCL/πa
2, and the resistance of the aluminum sheath is RA = ρAL/π(b2 – a2). 

We substitute these expressions into iCRC = iARA, and cancel the common factors L and π 
to obtain 
 

2 2 2
.C C A Ai i

a b a

ρ ρ=
−

 

 
We solve this equation simultaneously with i = iC + iA, where i is the total current. We 
find 
 

i
r i

r r r
C

C C

A C C C A

=
− +

2

2 2 2

ρ
ρ ρc h  

 
and 
 

i
r r i

r r r
A

A C C

A C C C A

=
−

− +

2 2

2 2 2

c h
c h

ρ
ρ ρ

.  

 
The denominators are the same and each has the value 
 

b a aC A

2 2 2 3
2

3
2

8

3
2

8

15 3

0 380 10 0 250 10 169 10

0 250 10 2 75 10

310 10

− + = × − × × ⋅

+ × × ⋅

= × ⋅

− − −

− −

−

c h c h c h c h

c h c h

ρ ρ . . .

. .

. .

m m m

m m

m

Ω

Ω

Ω

 

 
Thus, 
 

iC =
× × ⋅

× ⋅
=

− −

−

0 250 10 2 75 10 2 00

310 10
111

3
2

8

15

. . .

.
.

m m A

m
A

3

c h c hb gΩ
Ω

 

 
(b) and 
 



  

( ) ( ) ( ) ( )2 2
3 3 8

15 3

0.380 10 m 0.250 10 m 1.69 10 m 2.00A
0.893A.

3.10 10 m
A

i

− − −

−

× − × × Ω⋅
= =

× Ω⋅
 

 
(c) Consider the copper wire. If V is the potential difference, then the current is given by 

V = iCRC = iCρCL/π a2, so 
 

L
a V

iC C

= =
×

× ⋅
=

−

−

π π2 3
2

8

0 250 10 12 0

111 169 10
126

ρ
b gc h b g
b gc h

. .

. .

m V

A m
m.

Ω
 



 

 
 

36. (a) We use P = ε 2/Req, where 
 

( )( )
( )( ) ( ) ( )eq

12.0 4.00
7.00 .

12.0 4.0 12.0 4.00

R
R

R R

Ω Ω
= Ω +

Ω Ω + Ω + Ω
 

 

Put P = 60.0 W and ε = 24.0 V and solve for R: R = 19.5 Ω. 
 

(b) Since P ∝ Req, we must minimize Req, which means R = 0. 
 

(c) Now we must maximize Req, or set R = ∞. 
 
 

(d) Since Req, min = 7.00 Ω, Pmax = ε 2/Req, min = (24.0 V)2/7.00 Ω = 82.3 W. 
 
(e) Since  
 

Req, max = 7.00 Ω + (12.0 Ω)(4.00 Ω)/(12.0 Ω + 4.00 Ω) = 10.0 Ω, 
 

Pmin = ε 2/Req, max = (24.0 V)2/10.0 Ω = 57.6 W.  



  

 
 
37. (a) The current in R1 is given by 
 

i
R R R R R

1

1 2 3 2 3

50

4 0 6 0 4 0 6 0
114=

+ +
=

+ +
=ε

/

.

( . ) ( . ) / ( . . )
.b g

V

2.0
A.

Ω Ω Ω Ω Ω
 

 
Thus 
 

i
V

R

i R

R
3

1

3

1 1

3

5 0 114 2 0

6 0
0 45= − = − = − =ε ε . ( . ( . )

.
.

V A)
A.

Ω
Ω

 

 
(b) We simply interchange subscripts 1 and 3 in the equation above. Now 
 

( )( ) ( )( ) ( )( )3

3 2 1 2 1

5.0V
0.6818A

/ 6.0 2.0 4.0 / 2.0 4.0
i

R R R R R

ε= = =
+ + Ω + Ω Ω Ω + Ω

 

 
and 
 

i1
50 0 6818

2 0
0 45=

−
=

. .

.
.

V A 6.0
A,

b gb gΩ
Ω

 

 
the same as before. 



 

 
 

38. (a) Since i = ε/(r + Rext) and imax = ε/r, we have Rext = R(imax/i – 1) where r = 1.50 

V/1.00 mA = 1.50 × 103 Ω. Thus,  
 

Rext = (1.5 × 103 Ω) (1/0.100 – 1) = 1.35 × 104 Ω. 
 

(b) Rext = (1.5 × 103 Ω) (1/0.500 – 1) = 1.50 × 103 Ω. 
 

(c) Rext = (1.5 × 103 Ω) (1/0.900 – 1) = 167 Ω. 
 

(d) Since r = 20.0 Ω + R, R = 1.50 × 103 Ω – 20.0 Ω = 1.48 × 103 Ω. 



  

 
 
39. The current in R2 is i. Let i1 be the current in R1 and take it to be downward. 
According to the junction rule the current in the voltmeter is i – i1 and it is downward. We 
apply the loop rule to the left-hand loop to obtain 
 

ε − − − =iR i R ir2 1 1 0.  

 
We apply the loop rule to the right-hand loop to obtain 
 

i R i i RV1 1 1 0− − =b g .  

 
The second equation yields 
 

i
R R

R
iV

V

= +1
1.  

 
We substitute this into the first equation to obtain 
 

ε −
+ +

+ =
R r R R

R
i R i

V

V

2 1

1 1 1 0
b gb g

.  

 
This has the solution 
 

i
R

R r R R R R

V

V V

1

2 1 1

=
+ + +

ε
b gb g .  

 
The reading on the voltmeter is 
 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
3

1
1 1 3 3

2 1 1

3.0V 5.0 10 250

300 100 250 5.0 10 250 5.0 10

1.12V.

V

V V

R R
i R

R r R R R R

ε × Ω Ω
= =

+ + + Ω + Ω Ω + × Ω + Ω × Ω

=
 

 
The current in the absence of the voltmeter can be obtained by taking the limit as RV 
becomes infinitely large. Then 
 

i R
R

R R r
1 1

1

1 2

30 250

250 300 100
115=

+ +
=

+ +
=ε .

.
V

V.
b gb gΩ
Ω Ω Ω

 

 
The fractional error is (1.12 – 1.15)/(1.15) = –0.030, or –3.0%. 



 

 
 

40. (a) ε = V + ir = 12 V + (10.0 A) (0.0500 Ω) = 12.5 V. 
 

(b) Now ε = V' + (imotor + 8.00 A)r, where V' = i'ARlight = (8.00 A) (12.0 V/10 A) = 9.60 V. 
Therefore, 
 

motor

12.5V 9.60V
8.00A 8.00A 50.0A.

0.0500

V
i

r

ε ′− −= − = − =
Ω

 



  

 
 
41. Since the current in the ammeter is i, the voltmeter reading is V’ =V+ i RA= i (R + 

RA), or R = V’/i – RA = R' – RA, where R' = V’/i is the apparent reading of the resistance. 
 
Now, from the lower loop of the circuit diagram, the current through the voltmeter is 

eq 0/( )
V
i R Rε= + , where 

  

( ) ( )( )
eq

eq

300 85.0 3.001 1 1
    68.0 .

300 85.0 3.00

V A

V A V A

R R R
R

R R R R R R R

+ Ω Ω + Ω
= + = = = Ω

+ + + Ω + Ω + Ω
 

 
The voltmeter reading is then  
 

 
eq

eq

eq 0

(12.0 V)(68.0 )
' 4.86 V.

68.0 100
V

R
V i R

R R

ε Ω= = = =
+ Ω + Ω

 

(a) The ammeter reading is  
 

' 4.86 V
0.0552 A.

85.0 3.00
A

V
i

R R
= = =

+ Ω + Ω
 

 
(b) As shown above, the voltmeter reading is ' 4.86 V.V =  

 

(c) R' = V’/i = 4.86 V/(5.52 × 10–2 A) = 88.0 Ω. 
 

(d) Since '
A

R R R= − , if RA is decreased, the difference between R’ and R decreases. In 

fact, when RA=0, R’=R.  



 

 
 
42. The currents in R and RV are i and i' – i, respectively. Since V = iR = (i' – i)RV we 
have, by dividing both sides by V, 1 = (i' /V – i/V)RV = (1/R' – 1/R)RV. Thus, 
 

1 1 1
   ' .V

V V

RR
R

R R R R R
= − =

′ +
 

 

The equivalent resistance of the circuit is eq 0 0' V

A A

V

RR
R R R R R R

R R
= + + = + +

+
. 

 
(a) The ammeter reading is 
 

( ) ( ) ( ) ( )eq 0

2

12.0V

3.00 100 300 85.0 300 85.0

7.09 10 A.

A V V

i
R R R R R R R

ε ε

−

′ = = =
+ + + Ω + Ω + Ω Ω Ω + Ω

= ×
 

 
(b) The voltmeter reading is  
 

V =ε – i' (RA + R0) = 12.0 V – (0.0709 A) (103.00 Ω) = 4.70 V. 
 

(c) The apparent resistance is R' = V/i' = 4.70 V/(7.09 × 10–2 A) = 66.3 Ω.  
 
(d) If RV is increased, the difference between R and R’ decreases. In fact, 'R R→  as 

V
R → ∞ . 



  

 
 
43. Let i1 be the current in R1 and R2, and take it to be positive if it is toward point a in R1. 
Let i2 be the current in Rs and Rx, and take it to be positive if it is toward b in Rs. The loop 
rule yields (R1 + R2)i1 – (Rx + Rs)i2 = 0. Since points a and b are at the same potential, 
i1R1 = i2Rs. The second equation gives i2 = i1R1/Rs, which is substituted into the first 
equation to obtain 
 

R R i R R
R

R
i R

R R

R
x s

s

x
s

1 2 1
1

1
2

1

+ = + =b g b g .  



 

 
 

44. (a) We use q = q0e
–t/τ, or t = τ ln (q0/q), where τ = RC is the capacitive time constant. 

Thus, t1/3 = τ ln[q0/(2q0/3)] = τ ln(3/2) = 0.41τ, or t1/3/τ = 0.41. 
 

(b) t2/3 = τ ln[q0/(q0/3)] = τ ln 3 = 1.1τ, or t2/3/τ = 1.1. 



  

 
 
45. During charging, the charge on the positive plate of the capacitor is given by 
 

q C e
t= − −ε τ1c h,  

 

where C is the capacitance, ε is applied emf, and τ = RC is the capacitive time constant. 

The equilibrium charge is qeq = Cε. We require q = 0.99qeq = 0.99Cε, so 
 

0 99 1. .= − −
e

t τ  
 

Thus, e
t− =τ 0 01. .  Taking the natural logarithm of both sides, we obtain t/τ = – ln 0.01 = 

4.61 or t = 4.61τ. 



 

 
 

46. (a) τ = RC = (1.40 × 106 Ω)(1.80 × 10–6 F) = 2.52 s. 
 

(b) qo = εC = (12.0 V)(1.80 µ F) = 21.6 µC. 
 
(c) The time t satisfies q = q0(1 – e–t/RC), or 
 

( )0

0

21.6 C
ln 2.52s ln 3.40s.

21.6 C 16.0 C

q
t RC

q q

µ
µ µ

= = =
− −

 



  

 
 

47. (a) The voltage difference V across the capacitor is V(t) = ε(1 – e–t/RC). At t = 1.30 µs 

we have V(t) = 5.00 V, so 5.00 V = (12.0 V)(1 – e–1.30 µs/RC), which gives  
 

τ = (1.30 µ s)/ln(12/7) = 2.41 µs. 
 

(b) C = τ/R = 2.41 µs/15.0 kΩ = 161 pF. 



 

 
 
48. Here we denote the battery emf as V.  Then the requirement stated in the problem that 
the resistor voltage be equal to the capacitor voltage becomes iR = Vcap, or 

 

Ve−t /RC = V(1 − e−t/RC) 

 
where Eqs. 27-34 and 27-35 have been used.  This leads to t = RC ln2, or  t =  0.208 ms. 



  

 
 
49. (a) The potential difference V across the plates of a capacitor is related to the charge q 
on the positive plate by V = q/C, where C is capacitance. Since the charge on a 

discharging capacitor is given by q = q0 e
–t/τ, this means V = V0 e

–t/τ where V0 is the initial 

potential difference. We solve for the time constant τ by dividing by V0 and taking the 
natural logarithm: 
 

τ = − = − =t

V Vln

s

ln V V
s.

0

10 0

100 100
217b g b g b g

.

.
.    

 

(b) At t = 17.0 s, t/τ = (17.0 s)/(2.17 s) = 7.83, so 
 

V V e e
t= = = ×− − −

0

7 83 2100 3 96 10τ V Vb g . . .  



 

 
 
50. The potential difference across the capacitor varies as a function of time t as 

/

0( ) t RC
V t V e

−= . Using V = V0/4 at t = 2.0 s, we find 

 

R
t

C V V
= =

×
= ×

−ln

s

2.0 10 F ln 40
6

52 0
7 2 10b g c h

.
. .Ω  



  

 
 

51. (a) The initial energy stored in a capacitor is given by 2

0 / 2 ,
C

U q C= where C is the 

capacitance and q0 is the initial charge on one plate. Thus 
 

q CUC0

6 32 2 10 10 050 10 10= = × = ×− −. . .F J C .c hb g  

 

(b) The charge as a function of time is given by q q e
t= −

0

τ , where τ is the capacitive time 

constant. The current is the derivative of the charge 
 

i
dq

dt

q
e

t= − = −0

τ
τ ,  

 

and the initial current is i0 = q0/τ. The time constant is  
 

RCτ = = ( )( )6 61.0 10 F 1.0 10 1.0s−× × Ω = . 

 

Thus i0

3 310 10 10 10 10= × = ×− −. . .C s Ac h b g . 

 

(c) We substitute 0

t
q q e

τ−=  into VC = q/C to obtain 

 

( )
3

1.0 s 3 1.00

6

1.0 10 C
1.0 10 V ,

1.0 10 F

t t t

C

q
V e e e

C

τ
−

− − −
−

×= = = ×
×

 

 
where t is measured in seconds.  
 

(d) We substitute i q e
t= −

0 τ τb g  into VR = iR to obtain  

 

( )( ) ( )
3 6

1.0 s 3 1.00
1.0 10 C 1.0 10

1.0 10 V ,
1.0s

t t t

R

q R
V e e e

τ

τ

−
− − −

× × Ω
= = = ×  

 
where t is measured in seconds. 
 

(e) We substitute  i q e
t= −

0 τ τb g  into P i R= 2  to obtain 

 

( ) ( )
( )

( )
2

3 62
2 2 1.0 s 2.00

22

1.0 10 C 1.0 10
1.0 W ,

1.0s

t t tq R
P e e e

τ

τ

−
− − −

× × Ω
= = =  

 
where t is again measured in seconds. 



 

 
 
52. The time it takes for the voltage difference across the capacitor to reach VL is given 

by V eL

t RC= − −ε 1c h . We solve for R: 

 

R
t

C VL

=
−

=
× −

= ×
−ln

.

. ln . . .
.

ε εb g c h b g
0 500

0150 10 95 0 95 0 72 0
2 35 10

6

6s

F V V V
Ω  

 
where we used t = 0.500 s given (implicitly) in the problem. 



  

 
 
53. At t = 0 the capacitor is completely uncharged and the current in the capacitor branch 
is as it would be if the capacitor were replaced by a wire. Let i1 be the current in R1 and 
take it to be positive if it is to the right. Let i2 be the current in R2 and take it to be 
positive if it is downward. Let i3 be the current in R3 and take it to be positive if it is 
downward. The junction rule produces i i i1 2 3= + ,  the loop rule applied to the left-hand 

loop produces 
 

ε − − =i R i R1 1 2 2 0 ,  

 
and the loop rule applied to the right-hand loop produces 
 

i R i R2 2 3 3 0− = .  

 
Since the resistances are all the same we can simplify the mathematics by replacing R1, 
R2, and R3 with R.  
 
(a) Solving the three simultaneous equations, we find 
 

i
R

1

3

6

32

3

2 12 10

3 0 73 10
11 10= =

×

×
= × −ε .

.
.

V
A

c h
c hΩ

 

 

(b) ( )
3

4

2 6

1.2 10 V
5.5 10 A.

3 3 0.73 10
i

R

ε −×= = = ×
× Ω

 

 

(c) 4

3 2 5.5 10 A.i i
−= = ×  

 

At t = ∞ the capacitor is fully charged and the current in the capacitor branch is 0. Thus, 
i1 = i2, and the loop rule yields 
 

ε − − =i R i R1 1 1 2 0 . 

 
(d) The solution is 
 

( )
3

4

1 6

1.2 10 V
8.2 10 A.

2 2 0.73 10
i

R

ε −×= = = ×
× Ω

 

 

(e) 4

2 1 8.2 10 A.i i
−= = ×  

 
(f) As stated before, the current in the capacitor branch is i3 = 0. 
 



 

We take the upper plate of the capacitor to be positive. This is consistent with current 
flowing into that plate. The junction equation is i1 = i2 + i3, and the loop equations are 
 

ε − − = − − + =i R i R
q

C
i R i R1 2 3 20 0and .  

 

We use the first equation to substitute for i1 in the second and obtain ε – 2i2R – i3R = 0. 

Thus i2 = (ε – i3R)/2R. We substitute this expression into the third equation above to 

obtain –(q/C) – (i3R) + (ε/2) – (i3R/2) = 0. Now we replace i3 with dq/dt to obtain 
 

3

2 2

R dq

dt

q

C
+ = ε

.  

 

This is just like the equation for an RC series circuit, except that the time constant is τ = 

3RC/2 and the impressed potential difference is ε/2. The solution is 
 

q
C

e
t RC= − −ε

2
1 2 3c h .  

 
The current in the capacitor branch is 
 

2 3

3 ( ) .
3

t RCdq
i t e

dt R

ε −= =  

 
The current in the center branch is 
 

( )2 3 2 33
2 ( ) 3

2 2 2 6 6

t RC t RCi
i t e e

R R R R

ε ε ε ε− −= − = − = −  

 
and the potential difference across R2 is 
 

( )2 3

2 2( ) 3 .
6

t RC
V t i R e

ε −= = −  

 

(g) For t e
t RC= −0 2 3,  is 1 and  ( )3 2

2 3 1.2 10 V 3 4.0 10 VV ε= = × = × . 

 

(h) For t e
t RC= ∞ −, 2 3  is 0 and ( )3 2

2 2 1.2 20 V 2 6.0 10 VV ε= = × = × . 

 
(i) A plot of V2 as a function of time is shown in the following graph. 
 



  

 



 

 
 
54. In the steady state situation, the capacitor voltage will equal the voltage across R2 = 
 

15 kΩ: 
 

( )0 2

1 2

20.0V
15.0k 12.0V.

10.0k 15.0k
V R

R R

ε= = Ω =
+ Ω + Ω

 

 
Now, multiplying Eq. 27-39 by the capacitance leads to V = V0e

–t/RC describing the 

voltage across the capacitor (and across R2 = 15.0 kΩ) after the switch is opened (at t = 0). 
Thus, with t = 0.00400 s, we obtain 
 

V e= =− × −

12 616
0 004 15000 0 4 10 6

b g b ge j. .
. V.  

 

Therefore, using Ohm’s law, the current through R2 is 6.16/15000 = 4.11 × 10–4 A. 



  

 
 
55. (a) The charge on the positive plate of the capacitor is given by 
 

q C e
t= − −ε τ1c h,  

 

where ε is the emf of the battery, C is the capacitance, and τ is the time constant. The 

value of τ is  
 

τ = RC = (3.00 × 106 Ω)(1.00 × 10–6 F) = 3.00 s. 
 

At t = 1.00 s, t/τ = (1.00 s)/(3.00 s) = 0.333 and the rate at which the charge is increasing 
is 
 

dq

dt

C
e e

t= =
×

= ×−
−

− −ε
τ

τ 100 10 4 00

300
9 55 10

6

0 333 7
. .

.
..

c hb gV

s
C s. 

 

(b) The energy stored in the capacitor is given by 
2

,
2

C

q
U

C
=   and its rate of change is 

 

dU

dt

q

C

dq

dt

C = .  

 
Now 
 

q C e e
t= − = × − = ×− − − −ε τ1 100 10 4 00 1 113 106 0 333 6c h c hb gc h. . ..V C,  

 
so 
 

dU

dt

C = ×
×

F
HG

I
KJ × = ×

−

−
− −113 10

100 10
9 55 10 108 10

6

6

7 6.

.
. .

C

F
C s W.c h  

 
(c) The rate at which energy is being dissipated in the resistor is given by P = i

2
R. The 

current is 9.55 × 10–7 A, so 
 

P = × × = ×− −9 55 10 300 10 2 74 107
2

6 6. . .A W.c h c hΩ  

 
(d) The rate at which energy is delivered by the battery is 
 

iε = × = ×− −9 55 10 4 00 382 107 6. . .A V W.c hb g  

 



 

The energy delivered by the battery is either stored in the capacitor or dissipated in the 

resistor. Conservation of energy requires that iε = (q/C) (dq/dt) + i2
R. Except for some 

round-off error the numerical results support the conservation principle. 



  

 
 
56. We apply Eq. 27-39 to each capacitor, demand their initial charges are in a ratio of 
3:2 as described in the problem, and solve for the time:  we obtain 
 

t = 

ln
3
2

1
R2C2

 - 
1

R1C1

  = 162 µs . 



 

 
 
57. We use the result of problem 50: R = t/[C ln(V0/V)].  
 

(a) Then, for tmin = 10.0 µs 
 

( ) ( )min

10.0 s
24.8 .

0.220 F ln 5.00 0.800
R

µ
µ

= = Ω  

 
(b) For tmax = 6.00 ms, 
 

Rmax

.

.
. . ,=

F
HG

I
KJ = ×6 00

10 0
24 8 149 104ms

sµ
Ω Ωb g  

 

where in the last equation we used τ = RC. 



  

 
 

58. (a) We denote L = 10 km and α = 13 Ω/km. Measured from the east end we have  
 

R1 = 100 Ω = 2α(L – x) + R, 
 

and measured from the west end R2 = 200 Ω = 2αx + R. Thus,  
 

x
R R L= − + = − + =2 1

4 2

200 100

4 13

10

2
6 9

α
Ω Ω

Ω km

km
km.b g .  

 
(b) Also, we obtain 
 

R
R R

L= + − = + − =1 2

2

100 200

2
13 10 20α Ω Ω Ω Ωkm kmb gb g . 



 

 
 

59. (a) From symmetry we see that the current through the top set of batteries (i) is the 
same as the current through the second set. This implies that the current through the R = 

4.0 Ω resistor at the bottom is iR = 2i. Thus, with r denoting the internal resistance of each 

battery (equal to 4.0 Ω) and ε denoting the 20 V emf, we consider one loop equation (the 
outer loop), proceeding counterclockwise: 
 

3 2 0ε − − =ir i Rb g b g .  

 
This yields i = 3.0 A. Consequently, iR = 6.0 A. 
 

(b) The terminal voltage of each battery is ε – ir = 8.0 V. 
 

(c) Using Eq. 27-17, we obtain P = iε = (3)(20) = 60 W. 
 
(d) Using Eq. 26-27, we have P = i

2
r = 36 W. 



  

 
 
60. The equivalent resistance in Fig. 27-59 (with n parallel resistors) is  
 

Req = R  +  
R

n
 = 

(n + 1)R
n

 . 

 

The current in the battery in this case should be  in =  
Vbattery

Req
  =  

n Vbattery

 (n + 1)R
  .  If there were 

n +1 parallel resistors, then  
 

in+ 1 =   
(n + 1)Vbattery

 (n + 2)R
  . 

 
For the relative increase to be 0.0125 ( =  1/80 ), we require 
 

in+ 1 – in

 in 
 =  

 in+ 1 
 in 

  – 1 = 

 
n + 1
n + 2

 

 
n

n + 1
 
 – 1 =  

1
80

  . 

 
This leads to the second-degree equation  n2 + 2n – 80  = (n + 10)(n – 8) = 0.   Clearly the 
only physically interesting solution to this is n = 8.  Thus, there are eight resistors in 
parallel (as well as that resistor in series shown towards the bottom) in Fig. 27-59. 



 

 
 
61. (a) The magnitude of the current density vector is 
 

( ) ( )
( )

( )( )2
3

1 2 1 2

27

4 60.0V4V

0.127 0.729 2.60 10 m

1.32 10 A m .

A

i V
J

A R R A R R D
2 −

= = = =
+ + π π Ω + Ω ×

= ×

 

 

(b) VA = V R1/(R1 + R2) = (60.0 V)(0.127 Ω)/(0.127 Ω + 0.729 Ω) = 8.90 V,  
 
(c) The resistivity for A is  
 

( )( ) ( )2
2 3 84 0.127 2.60 10 m 4 40.0m 1.69 10 m.

A A A A A
R A L R D Lρ − −= = π = π Ω × = × Ω⋅

 
So A is made of copper. 
 

(d) 
271.32 10 A m .

B A
J J= = ×  

 
(e) VB = V – VA = 60.0 V – 8.9 V = 51.1 V. 
 

(f) The resistivity for B is ρ B = × ⋅−9 68 10 8. Ω m, so B is made of iron. 



  

 
 

62. Line 1 has slope R1 = 6 kΩ.  Line 2 has slope R2 = 4 kΩ.  Line 3 has slope R3 = 2 kΩ.  

The parallel pair equivalence is R12 = R1R2/(R1+R2) = 2.4 kΩ.  That in series with R3 gives 

an equivalence of 4.4 kΩ.  The current through the battery is therefore (6 V)/(4.4 kΩ) and 

the voltage drop across R3 is (6 V)(2 kΩ)/(4.4 kΩ) = 2.73 V.  Subtracting this (because of 
the loop rule) from the battery voltage leaves us with the voltage across R2.  Then Ohm’s 

law gives the current through R2: (6 V – 2.73 V)/(4 kΩ) = 0.82 mA 



 

 
 

63. (a) Since ( ) 2

tank 140 , 12V 10 140 8.0 10 AR i
−= Ω = Ω + Ω = × . 

 

(b) Now, Rtank = (140 Ω + 20 Ω)/2 = 80 Ω, so i = 12 V/(10 Ω + 80 Ω) = 0.13 A. 
 

(c) When full, Rtank = 20 Ω so i = 12 V/(10 Ω + 20 Ω) = 0.40 A. 



  

 
 
64. (a) The loop rule leads to a voltage-drop across resistor 3 equal to 5.0 V (since the 
total drop along the upper branch must be 12 V).  The current there is consequently  

i = (5.0 V)/(200 Ω) = 25 mA.  Then the resistance of resistor 1 must be (2.0 V)/i  = 80 Ω. 
 

(b) Resistor 2 has the same voltage-drop as resistor 3; its resistance is 200 Ω, also. 



 

 
 

65. (a) Here we denote the battery emf as V.  See Fig. 27-4(a): VT  = V − ir. 
 
(b) Doing a least squares fit for the VT  versus i values listed, we obtain  
 

VT = 13.61  − 0.0599i 

 

which implies V = 13.6 volts. 
 

(c) It also implies the internal resistance is 0.060 Ω. 



  

 
 

66. (a) The loop rule (proceeding counterclockwise around the right loop) leads to ε2 – 
i1R1 = 0 (where i1 was assumed downward). This yields i1 = 0.0600 A. 
 
(b) The direction of i1 is downward. 
 
(c) The loop rule (counterclockwise around the left loop) gives 
 

( ) ( ) ( )1 1 1 2 2 0i R i Rε+ + + + − =  

 
where i2 has been assumed leftward. This yields i3 = 0.180 A. 
 
(d) A positive value of i3 implies that our assumption on the direction is correct, i.e., it 
flows leftward. 
 
(e) The junction rule tells us that the current through the 12 V battery is 0.180 + 0.0600 = 
0.240 A. 
 
(f) The direction is upward. 



 

 
 

67. (a) The charge q on the capacitor as a function of time is q(t) = (εC)(1 – e–t/RC), so the 

charging current is i(t) = dq/dt = (ε/R)e–t/RC. The energy supplied by the emf is then 
 

U i dt
R

e dt C U
t RC

C= = = =−∞∞ zz ε ε ε
2

0

2

0
2  

 

where U CC = 1

2

2ε  is the energy stored in the capacitor. 

 
(b) By directly integrating i2

R we obtain 
 

U i Rdt
R

e dt CR

t RC= = =−∞∞ zz 2
2

2

00

21

2

ε ε .  



  

 
 
68. (a) Using Eq. 27-4, we take the derivative of the power P = i

2
R with respect to R and 

set the result equal to zero: 
 

dP

dR

d

dR

R

R r

r R

R r
=

+
F
HG

I
KJ = −

+
=ε ε2

2

2

3
0

( )

( )

( )
 

 
which clearly has the solution R = r. 
 
(b) When R = r, the power dissipated in the external resistor equals 
 

P
R

R r r
R r

max
( )

.=
+

=
=

ε ε2

2

2

4
 



 

 
 
69. Here we denote the battery emf as V.  Eq. 27-30 leads to 
 

i = 
V
R

 – 
q

RC
 = 

12
4

 –  
8

(4)(4)
 = 2.5 A . 



  

 
 

70. The equivalent resistance of the series pair of R3 = R4 = 2.0 Ω is R34= 4.0 Ω, and the 

equivalent resistance of the parallel pair of R1 = R2 = 4.0 Ω is R12= 2.0 Ω. Since the 
voltage across R34 must equal that across R12:  
 

34 12 34 34 12 12 34 12

1
          

2
V V i R i R i i= = =  

 

This relation, plus the junction rule condition 12 34 6.00 AI i i= + =  leads to the solution 

12 4.0 Ai = . It is clear by symmetry that 1 12 / 2 2.00 Ai i= = . 



 

 
 
71. (a) The work done by the battery relates to the potential energy change: 
 

( )12.0V 12.0 eV.q V eV e∆ = = =  

 

(b) P = iV = neV = (3.40 × 1018/s)(1.60 × 10–19 C)(12.0 V) = 6.53 W. 



  

 
 

72. (a) Since P = ε 2/Req, the higher the power rating the smaller the value of Req. To 
achieve this, we can let the low position connect to the larger resistance (R1), middle 
position connect to the smaller resistance (R2), and the high position connect to both of 
them in parallel. 
 

(b) For P = 300 W, Req = R1R2/(R1 + R2) = (144 Ω)R2/(144 Ω + R2) = (120 V)2/300 W. 

We obtain R2 = 72 Ω. 
 

(c) For P = 100 W, Req = R1 = ε 2/P = (120 V)2/100 W = 144 Ω;  



 

 
 

73. The internal resistance of the battery is r = (12 V –11.4 V)/50 A = 0.012 Ω < 0.020 Ω, 
so the battery is OK. The resistance of the cable is  
 

R = 3.0 V/50 A = 0.060 Ω > 0.040 Ω, 
 
so the cable is defective. 



  

 
 

74. (a) If S1 is closed, and S2 and S3 are open, then  ia = ε/2R1 = 120 V/40.0 Ω = 3.00 A. 
 
(b) If S3 is open while  S1 and S2 remain closed, then   
 

Req = R1 + R1 (R1 + R2) /(2R1 + R2) = 20.0 Ω + (20.0 Ω) × (30.0 Ω)/(50.0 Ω) = 32.0 Ω, 
 

so ia = ε/Req = 120 V/32.0 Ω = 3.75 A. 
 
(c) If all three switches S1, S2 and S3 are closed, then Req = R1 + R1 R'/(R1 + R') where  
 

R' = R2 + R1 (R1 + R2)/(2R1 + R2) = 22.0 Ω, 
i.e.,  
 

Req = 20.0 Ω + (20.0 Ω) (22.0 Ω)/(20.0 Ω + 22.0 Ω) = 30.5 Ω, 
 

so ia = ε/Req = 120 V/30.5 Ω = 3.94 A. 



 

 
 

75. (a)  Reducing the bottom two series resistors to a single R’ = 4.00 Ω (with current i1 
through it), we see we can make a path (for use with the loop rule) that passes through R, 

the ε4 = 5.00 V battery,  the ε1 = 20.0 V battery, and the ε3= 5.00 V.  This leads to 
 

i1 = 1 3 4

4.0 

ε ε ε+ +
Ω

 = 
30.0 V

 4.0 Ω  =  7.50 A. 

 
(b) The direction of i1 is leftward. 
 
(c) The voltage across the bottom series pair is i1R’ = 30.0 V.  This must be the same as 
the voltage across the two resistors directly above them, one of which has current i2 

through it and the other (by symmetry) has current 
1
2 i2 through it.  Therefore, 

 

30.0 V = i2 (2.00 Ω) + 
1
2 i2 (2.00 Ω) 

 
leads to i2 = 10.0 A. 
 
(d) The direction of  i2 is also leftward. 
 

(e) We use Eq. 27-17:  P4 = (i1 + i2)ε4 = 87.5 W. 
 
(f) The energy is being supplied to the circuit since the current is in the "forward" 
direction through the battery. 



  

 
 
76. The bottom two resistors are in parallel, equivalent to a 2.0R resistance.  This, then, is 
in series with resistor R on the right, so that their equivalence is R' = 3.0R.  Now, near the 
top left are two resistors (2.0R and 4.0R) which are in series, equivalent to R'' = 6.0R.  
Finally, R' and R'' are in parallel, so the net equivalence is 
 

Req = 
(R') (R'')
R' + R''

 = 2.0R = 20 Ω 

 

where in the final step we use the fact that R = 10 Ω. 



 

 
 
77. (a)  The four resistors R1, R2, R3 and R4 on the left reduce to  
 

 3 41 2
eq 12 34

1 2 3 4

7.0 3.0 10
R RR R

R R R
R R R R

= + = + = Ω + Ω = Ω
+ +

 

 
With 30 Vε = across Req the current there is i2 = 3.0 A. 

 
(b) The three resistors on the right reduce to  
 

' 5 6
eq 56 7 7

5 6

(6.0 )(2.0 )
1.5 3.0

6.0 2.0

R R
R R R R

R R

Ω Ω= + = + = + Ω = Ω
+ Ω + Ω

. 

 

With 30 Vε =  across '

eqR the current there is i4 = 10 A. 

 
(c) By the junction rule, i1 = i2 + i4 = 13 A. 
 

(d) By symmetry, i3 = 
1
2 i2 = 1.5 A. 

 
(e) By the loop rule (proceeding clockwise), 
 

30V – i4(1.5 Ω) – i5(2.0 Ω)  =  0 
 
readily yields i5 = 7.5 A. 



  

 
 

78. (a)  We analyze the lower left loop and find i1 = ε1/R = (12.0 V)/(4.00 Ω) = 3.00 A. 
 
(b) The direction of  i1 is downward. 
 

(c) Letting R = 4.00 Ω, we apply the loop rule to the tall rectangular loop in the center of 
the figure (proceeding clockwise): 
 

ε2 + (+i1R) + (– i2R) + - 
i2

2
 R  + (– i2R)   =   0  . 

 
Using the result from part (a), we find i2 = 1.60 A. 
 
(d) The direction of  i2 is downward (as was assumed in writing the equation as we did). 
 
(e) Battery 1 is supplying this power since the current is in the "forward" direction 
through the battery. 
 

(f) We apply Eq. 27-17: The current through the 1ε = 12.0 V battery is, by the junction 

rule, 1.60 + 3.00 = 4.60 A and P = (4.60)(12.0 V) = 55.2 W.  
 
(g) Battery 2 is supplying this power since the current is in the "forward" direction 
through the battery. 
 
(h) P = i2(4.00 V) = 6.40 W. 



 

 
 
79. (a)  We reduce the parallel pair of resistors (at the bottom of the figure) to a single R’ 

=1.00 Ω resistor and then reduce it with its series ‘partner’ (at the lower left of the figure) 

to obtain an equivalence of R” = 2.00 Ω +1.00Ω =3.00 Ω.  It is clear that the current 
through R” is the i1 we are solving for.  Now, we employ the loop rule, choose a path that 
includes R” and all the batteries (proceeding clockwise).  Thus, assuming i1 goes leftward 
through R”, we have 
 

5.00 V  +  20.0 V  − 10.0 V  −  i1R”   =   0 
 

which yields i1 = 5.00 A. 
 
(b) Since i1 is positive, our assumption regarding its direction (leftward) was correct. 
 

(c) Since the current through the ε1 = 20.0 V battery is “forward”, battery 1 is supplying 
energy. 
 
(d) The rate is P1 = (5.00 A)(20.0 V) = 100 W.  
 

(e) Reducing the parallel pair (which are in parallel to the ε2 = 10.0 V battery) to a single 

R' = 1.00 Ω resistor (and thus with current i' = (10.0 V)/(1.00 Ω) = 10.0 A downward 
through it), we see that the current through the battery (by the junction rule) must be i = i' 

− i1 = 5.00 A upward (which is the "forward" direction for that battery). Thus, battery 2 is 
supplying energy. 
 
(f) Using Eq. 27-17, we obtain P2 = 50.0 W.  
 

(g) The set of resistors that are in parallel with the ε3 = 5 V battery is reduced to R'’' = 

0.800 Ω (accounting for the fact that two of those resistors are actually reduced in series, 

first, before the parallel reduction is made), which has current i''’ = (5.00 V)/(0.800 Ω) = 
6.25 A downward through it.  Thus, the current through the battery (by the junction rule) 
must be i = i''’ + i1 = 11.25 A upward (which is the "forward" direction for that battery). 
Thus, battery 3 is supplying energy. 
 
(h) Eq. 27-17 leads to P3 = 56.3 W.  



  

 
 

80. (a)  The parallel set of three identical R2 = 18 Ω resistors reduce to R= 6.0 Ω, which is 

now in series with the R1 = 6.0 Ω resistor at the top right, so that the total resistive load 

across the battery is R’ = R1 + R = 12 Ω.  Thus, the current through R' is (12V)/R' = 1.0 A, 
which is the current through R.  By symmetry, we see one-third of that passes through 

any one of those 18 Ω resistors; therefore, i1 = 0.333 A. 
 
(b) The direction of  i1 is clearly rightward. 
 
(c) We use Eq. 26-27:  P = i

2
R' = (1.0)2(12) = 12 W.  Thus, in 60 s, the energy dissipated 

is (12 J/s)(60 s) = 720 J. 



 

 
 
81. We denote silicon with subscript s and iron with i. Let T0 = 20°. If  
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )

0 0 0 0

00

1 1

temperature independent terms

s i s i i

s s i i

R T R T R T R T T T R T T T

R T R T

α α

α α

= + = + − + + −

= + +
 

 

is to be temperature-independent, we must require that Rs(T0)αs + Ri(T0)αi = 0. Also note 

that Rs(T0) + Ri(T0) = R = 1000 Ω. We solve for Rs(T0) and Ri(T0) to obtain 
 

( ) ( ) ( )3

0 3 3

1000 6.5 10
85.0 .

6.5 10 70 10

i

s

i s

R
R T

α
α α

−

− −

Ω ×
= = = Ω

− × + ×
 

 

(b) Ri(T0) = 1000 Ω – 85.0 Ω = 915 Ω. 



  

 
 

82. (a) Since Req < R, the two resistors (R = 12.0 Ω and Rx) must be connected in parallel: 
 

R
R R

R R

R

R

x

x

x

x

eq = =
+

=
+

300
12 0

12 0
.

.

.
.Ω

Ω
Ω
b g

 

 

We solve for Rx: Rx = ReqR/(R – Req) = (3.00 Ω)(12.0 Ω)/(12.0 Ω – 3.00 Ω) = 4.00 Ω. 
 
(b) As stated above, the resistors must be connected in parallel. 



 

 
 

83. Consider the lowest branch with the two resistors R4 = 3.00 Ω and R5 = 5.00 Ω. The 
voltage difference across R5 is 
 

( )( )5
5 5

4 5

120V 5.00
7.50V.

3.00 5.00

R
V i R

R R

ε Ω
= = = =

+ Ω + Ω
 



  

 
 

84. When connected in series, the rate at which electric energy dissipates is Ps = ε2/(R1 + 

R2). When connected in parallel, the corresponding rate is Pp = ε2(R1 + R2)/R1R2. Letting 

Pp/Ps = 5, we get (R1 + R2)
2/R1R2 = 5, where R1 = 100 Ω. We solve for R2: R2 = 38 Ω or 

260 Ω. 
 

(a) Thus, the smaller value of R2 is 38 Ω. 
 
(b) The larger value of R2 is 260 Ω. 



 

 
 

85. (a) We reduce the parallel pair of identical 2.0 Ω resistors (on the right side) to R' = 

1.0 Ω, and we reduce the series pair of identical 2.0 Ω resistors (on the upper left side) to 

R'' = 4.0 Ω. With R denoting the 2.0 Ω resistor at the bottom (between V2 and V1), we 
now have three resistors in series which are equivalent to  
 

7.0R R R′ ′′+ + = Ω  

 
across which the voltage is 7.0 V (by the loop rule, this is 12 V – 5.0 V), implying that 

the current is 1.0 A (clockwise). Thus, the voltage across R' is (1.0 A)(1.0 Ω) = 1.0 V, 
which means that (examining the right side of the circuit) the voltage difference between 
ground and V1 is 12 – 1 = 11 V. Noting the orientation of the battery, we conclude 

1 11 VV = − . 

 

(b) The voltage across R'' is (1.0 A)(4.0 Ω) = 4.0 V, which means that (examining the left 
side of the circuit) the voltage difference between ground and V2 is 5.0 + 4.0 = 9.0 V. 
Noting the orientation of the battery, we conclude V2 = –9.0 V. This can be verified by 
considering the voltage across R and the value we obtained for V1. 



  

 
 

86. (a) From P = V 
2/R we find V PR= = =10 010 10W V.b gb g. .Ω  

 

(b) From i = V/R = (ε – V)/r we find 
 

r R
V

V
= −F
HG
I
KJ = −F

HG
I
KJ =ε

010
15 10

10
0 050.

. .

.
. .Ω Ωb g V V

V
 



 

 
 

87. (a) Req(AB) = 20.0 Ω/3 = 6.67 Ω (three 20.0 Ω resistors in parallel). 
 

(b) Req(AC) = 20.0 Ω/3 = 6.67 Ω (three 20.0 Ω resistors in parallel). 
 
(c) Req(BC) = 0 (as B and C are connected by a conducting wire). 



  

 
 
88. Note that there is no voltage drop across the ammeter. Thus, the currents in the 
bottom resistors are the same, which we call i (so the current through the battery is 2i and 
the voltage drop across each of the bottom resistors is iR). The resistor network can be 
reduced to an equivalence of 
 

R
R R

R R

R R

R R
Req =

+
+

+
=

2

2

7

6

b gb g b gb g
 

 
which means that we can determine the current through the battery (and also through 
each of the bottom resistors): 
 

2
3

7
i

R
i

R
= =ε ε

eq

.  

 
By the loop rule (going around the left loop, which includes the battery, resistor 2R and 
one of the bottom resistors), we have 
 

ε ε− − = = −
i R iR i

iR

R
R R2 22 0

2
b g .  

 

Substituting i = 3ε/7R, this gives i2R = 2ε/7R. The difference between i2R and i is the 
current through the ammeter. Thus, 
 

ammeter
ammeter 2

3 2 1
     0.143.

7 7 7 / 7
R

i
i i i

R R R R

ε ε ε
ε

= − = − = = =  



 

 
 

89. When S is open for a long time, the charge on C is qi = ε2C. When S is closed for a 
long time, the current i in R1 and R2 is  
 

i = (ε2 – ε1)/(R1 + R2) = (3.0 V – 1.0 V)/(0.20 Ω + 0.40 Ω) = 3.33 A. 
 
The voltage difference V across the capacitor is then  
 

V = ε2 –  iR2 = 3.0 V – (3.33 A) (0.40 Ω) = 1.67 V. 
 
Thus the final charge on C is qf = VC. So the change in the charge on the capacitor is  
 

∆q = qf – qi = (V – ε2)C = (1.67 V – 3.0 V) (10 µ F) = – 13 µ C. 



  

 
 
90. Using the junction and the loop rules, we have 
 

 

1 1 3 3

1 1 2 2

2 3 1

20.0 0

20.0 50 0

i R i R

i R i R

i i i

− − =
− − − =

+ =
 

 
Requiring no current through the battery 1 means that i1=0, or i2 = i3. Solving the above 

equations with 1 10.0R = Ω  and 2 20.0R = Ω , we obtain  

 

 3
1 3

3

40 3 40
0      13.3

20 3 3

R
i R

R

−= = = = Ω
+

 



 

 
 
91. (a) The capacitor is initially uncharged, which implies (by the loop rule) that there is 

zero voltage (at t = 0) across the R2 = 10 kΩ resistor, and that 30 V is across the R1 =20 

kΩ resistor. Therefore, by Ohm;s law, i10 = (30 V)/(20 kΩ) = 1.5 × 10–3 A. 
 
(b) i20 = 0, 
 

(c) As t → ∞  the current to the capacitor reduces to zero and the 20 kΩ and 10 kΩ 

resistors behave more like a series pair (having the same current), equivalent to 30 kΩ. 
The current through them, then, at long times, is  
 

i = (30 V)/(30 kΩ) = 1.0 × 10–3 A. 



  

 
 

92. (a) The six resistors to the left of ε1 = 16 V battery can be reduced to a single resistor 

R = 8.0 Ω, through which the current must be iR = ε1/R = 2.0 A. Now, by the loop rule, 

the current through the 3.0 Ω and 1.0 Ω resistors at the upper right corner is 
 

′ = −
+

=i
16 0 8 0

10
2 0

. .

.
.

V V

3.0
A

Ω Ω
 

 

in a direction that is “backward” relative to the ε2 = 8.0 V battery. Thus, by the junction 
rule, 
 

i i iR1 4 0= + ′ = . A . 

 

(b) The direction of i1 is upward (that is, in the “forward” direction relative to ε1). 
 
(c) The current i2 derives from a succession of symmetric splittings of iR (reversing the 
procedure of reducing those six resistors to find R in part (a)). We find 
 

i iR2

1

2

1

2
0 50= FHG
I
KJ = . A . 

 
(d) The direction of i2 is clearly downward. 
 

(e) Using our conclusion from part (a) in Eq. 27-17, we have P = i1ε1 = (4.0)(16) = 64 W. 
 

(f) Using results from part (a) in Eq. 27-17, we obtain P = i'ε2 = (2.0)(8.0) = 16 W. 
 
(g) Energy is being supplied in battery 1. 
 
(h) Energy is being absorbed in battery 2. 



 

 
 

93. With the unit Ω understood, the equivalent resistance for this circuit is 
 

3
eq

3

20 100
.

10

R
R

R

+=
+

 

 
Therefore, the power supplied by the battery (equal to the power dissipated in the 
resistors) is 
 

2
2 3

3 3

10

20 100

RV
P V

R R

+= =
+

 

 
where V = 12 V. We attempt to extremize the expression by working through the dP/dR3 
= 0 condition and do not find a value of R3 that satisfies it.  
 
(a) We note, then, that the function is a monotonically decreasing function of R3, with R3 
= 0 giving the maximum possible value (since R3 < 0 values are not being allowed).  
 
(b) With the value R3 = 0, we obtain P = 14.4 W. 



  

 
 
94. (a) The symmetry of the problem allows us to use i2 as the current in both of the R2 
resistors and i1 for the R1 resistors. We see from the junction rule that i3 = i1 – i2. There 
are only two independent loop rule equations: 
 

( )
2 2 1 1

1 1 1 2 3

0

2 0

i R i R

i R i i R

ε
ε

− − =
− − − =

 

 
where in the latter equation, a zigzag path through the bridge has been taken. Solving, we 
find i1 = 0.002625 A, i2 = 0.00225 A and i3 = i1 – i2 = 0.000375 A. Therefore, VA – VB = 

i1R1 = 5.25 V. 
 
(b) It follows also that VB – VC = i3R3 = 1.50 V. 
 
(c) We find VC – VD = i1R1 = 5.25 V. 
 
(d) Finally, VA – VC = i2R2 = 6.75 V. 



 

 
 
95. (a) Using the junction rule (i1 = i2 + i3) we write two loop rule equations: 
 

ε
ε

1 2 2 2 3 1

2 3 3 2 3 1

0

0

− − + =

− − + =

i R i i R

i R i i R

b g
b g .

 

 
Solving, we find i2 = 0.0109 A (rightward, as was assumed in writing the equations as we 
did), i3 = 0.0273 A (leftward), and i1 = i2 + i3 = 0.0382 A (downward). 
 
(b) downward. See the results in part (a). 
 
(c) i2 = 0.0109 A . See the results in part (a). 
 
(d) rightward. See the results in part (a). 
 
(e) i3 = 0.0273 A. See the results in part (a). 
 
(f) leftward. See the results in part (a). 
 

(g) The voltage across R1 equals VA: (0.0382 A)(100 Ω) = +3.82 V. 



  

 
 
96. (a) R2 and R3 are in parallel; their equivalence is in series with R1. Therefore, 
 

2 3
eq 1

2 3

300 .
R R

R R
R R

= + = Ω
+

 

 

(b) The current through the battery is ε/Req = 0.0200 A, which is also the current through 

R1. Hence, the voltage across R1 is V1 = (0.0200 A)(100 Ω) = 2.00 V. 
 
(c) From the loop rule, 
 

ε − − =V i R1 3 3 0  

 

which yields i3 = 6.67 × 10–3 A. 



 

 
 

97. From Va – ε1 = Vc – ir1 – iR and i = (ε1 – ε2)/(R + r1 + r2), we get 
 

( )1 2
1 1 1 1

1 2

( )

4.4V 2.1V
4.4V (2.3 5.5 )
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98. The potential difference across R2 is 
 

V iR
R

R R R
2 2

2
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12 4 0
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99. (a) By symmetry, we see that i3 is half the current that goes through the battery. The 

battery current is found by dividing ε by the equivalent resistance of the circuit, which is 

easily found to be 6.00 Ω. Thus, 
 

3 bat

1 1 12V
1.00A

2 2 6.0
i i= = =

Ω
 

 
and is clearly downward (in the figure). 
 

(b) We use Eq. 27-17: P = ibatε = 24.0 W. 



  

 
 

100. The current in the ammeter is given by iA = ε/(r + R1 + R2 + RA). The current in R1 

and R2 without the ammeter is i = ε/(r + R1 + R2). The percent error is then 
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101. When all the batteries are connected in parallel, each supplies a current i; thus, iR = 

Ni. Then from ε = ir + iRR = ir + Nir, we get iR = Nε/[(N + 1)r]. When all the batteries 
are connected in series, ir = iR and  
 

εtotal = Nε = Nirr + iRR = NiRr + iRr, 
 

so iR = Nε/[(N + 1)r]. 



  

 
 
102. (a) Dividing Eq. 27-39 by capacitance turns it into an equation that describes the 

dependence of the voltage on time: VC = V0 
/t

e
τ− ; 

 
(b) Taking logarithms of this equation produces a form amenable to a least squares fit: 
 

ln(VC) = – 
1

τ
  t + ln(V0) 

 

ln(VC) = –1.2994 t + 2.525 

 
Thus, we have the emf equal to V0 = e2.525 = 12.49 V 12 V≈ ; 

 

(c) This also tells us that the time constant is τ =  1/1.2994 = 0.77 s. 
 

(d) Since τ = RC then we find C = 3.8 µF. 



 

 
 
103. Here we denote the supply emf as V (understood to be in volts).  The situation is 
much like that shown in Fig. 27-4, with r now interpreted as the resistance of the 
transmission line and R interpreted as the resistance of the “consumer” (the reason the 
circuit has been turned on in the first place – to supply power to some resistive load R).   
From Eq. 27-4 and Eq. 26-27 (remembering that we are asked to find the power 
dissipated in the transmission line) we obtain 
 

Pline = 
V2

(R + r)2  r . 

 
Now r is considered constant, certainly, but what about R?  The load will not be the same 
in the two cases (where V = 110000 and V' =110) because the problem requires us to 
consider the total power supplied to be constant, so 
 

Ptotal = 
V2

(R + r)2  (R + r)   =   P'total = 
V' 

2

(R' + r)2  (R' + r) 

 
which implies (taking ratio of Ptotal to P'total ) 
 

1 = 
V2 (R' + r)
V' 

2 (R + r)
  . 

 
Now, as the problem directs, we take ratio of Pline to P'line  and obtain  
 

Pline 
 P'line

  =  
V2 (R' + r)2

V' 
2 (R + r)2   =    

V' 
2

V2     =  1.00 ×10−6 . 



  

 
 
104. The resistor by the letter i is above three other resistors; together, these four resistors 

are equivalent to a resistor R = 10 Ω (with current i). As if we were presented with a 
maze, we find a path through R that passes through any number of batteries (10, it turns 
out) but no other resistors, which — as in any good maze — winds “all over the place.” 

Some of the ten batteries are opposing each other (particularly the ones along the outside), 

so that their net emf is only ε = 40 V.  
 

(a) The current through R is then i = ε/R = 4.0 A. 
 
(b) The direction is upward in the figure. 



 

 
 
105. The maximum power output is (120 V)(15 A) = 1800 W. Since 1800 W/500 W = 
3.6, the maximum number of 500 W lamps allowed is 3. 



  

 
 
106. The part of R0 connected in parallel with R is given by R1 = R0x/L, where L = 10 cm. 

The voltage difference across R is then VR = εR'/Req, where R' = RR1/(R + R1) and Req = 
R0(1 – x/L) + R'. Thus 
 

( )
( ) ( )

( )
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= = =

− + + + −
 

 
where x is measured in cm. 



 

 
 
107. The power delivered by the motor is P = (2.00 V)(0.500 m/s) = 1.00 W. From P = 

i
2
Rmotor and ε = i(r + Rmotor) we then find i2

r –iε + P = 0 (which also follows directly from 
the conservation of energy principle). We solve for i: 
 

i
rP

r
= ± − =

± −ε ε 2
2

4

2

2 00 4 0 500 100

2 0 500

. . .

.
.

V 2.00 V Wb g b gb g
b g

Ω
Ω

 

 
The answer is either 3.41 A or 0.586 A. 
 
(a) The larger i is 3.41 A. 
 

(b) We use V = ε – ir = 2.00 V – i(0.500 Ω). We substitute value of i obtained in part (a) 
into the above formula to get V = 0.293 V. 
 
(c) The smaller i is 0.586 A. 
 
(d) The corresponding V is 1.71 V. 



  

 
 
108. (a) Placing a wire (of resistance r) with current i running directly from point a to 
point b in Fig. 27-51 divides the top of the picture into a left and a right triangle. If we 
label the currents through each resistor with the corresponding subscripts (for instance, is 
goes toward the lower right through Rs and ix goes toward the upper right through Rx), 
then the currents must be related as follows: 
 

0 1 1 2

2 0

and

and

s

s x x

i i i i i i

i i i i i i

= + = +
+ = + =

 

 
where the last relation is not independent of the previous three. The loop equations for the 
two triangles and also for the bottom loop (containing the battery and point b) lead to 
 

i R i R ir

i R i R ir

i R i R i R

s s

s x x

s s x x

− − =
− − =

− − − =

1 1

2

0 0

0

0

0ε .

 

 
We incorporate the current relations from above into these loop equations in order to 
obtain three well-posed “simultaneous” equations, for three unknown currents (is, i1 and 
i): 
 

i R i R ir

i R i R i r R R

i R R R i R iR

s s

s x x

s s x x

− − =
− − + + =

− + + − − =

1 1

1 2 2

0 1 0

0

0

0

b g
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The problem statement further specifies R1 = R2 = R and R0 = 0, which causes our 
solution for i to simplify significantly. It becomes 
 

i
R R

rR R R R R rR R R

s x

s x s s x x

=
−

+ + + +
ε b g

2 2 2
 

 
which is equivalent to the result shown in the problem statement. 
 
(b) Examining the numerator of our final result in part (a), we see that the condition for i 
= 0 is Rs = Rx. Since R1 = R2 = R, this is equivalent to Rx = RsR2/R1, consistent with the 
result of Problem 43. 



 

 
 
109. (a) They are in parallel and the portions of A and B between the load and their 
respective sliding contacts have the same potential difference. It is clearly important not 
to “short” the system (particularly if the load turns out to have very little resistance) by 
having the sliding contacts too close to the load-ends of A and B to start with. Thus, we 
suggest putting the contacts roughly in the middle of each. Since RA > RB, larger currents 
generally go through B (depending on the position of the sliding contact) than through A. 
Therefore, B is analogous to a “coarse” control, as A is to a “fine control.” Hence, we 
recommend adjusting the current roughly with B, and then making fine adjustments with 
A. 
 
(b) Relatively large percentage changes in A cause only small percentage charges in the 
resistance of the parallel combination, thus permitting fine adjustment; any change in A 
causes half as much change in this combination. 



  

 
 
110. (a) In the process described in the problem, no charge is gained or lost. Thus, q = 
constant. Hence,  
 

( ) 31
1 1 2 2 2 1

2

150
200 3.0 10 V.

10

C
q C V C V V V

C
= = = = = ×  

 

(b) Eq. 27-39, with τ = RC, describes not only the discharging of q but also of V. Thus, 
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which yields t = 10 s. This is a longer time than most people are inclined to wait before 
going on to their next task (such as handling the sensitive electronic equipment). 
 

(c) We solve  V V e
t RC= −

0 for R with the new values V0 = 1400 V and t = 0.30 s. Thus, 

 

R
t

C V V
= =

×
= ×

−ln

.

ln
. .

0
12

100 30

10 10 1400 100
11 10b g c h b g

s

F
Ω  



 

 
 
111. In the steady state situation, there is no current going to the capacitors, so the 
resistors all have the same current.  By the loop rule, 
 

20.0 V  =  (5.00 Ω)i + (10.0 Ω)i + (15.0 Ω)i 
 

which yields i = 
2
3 A.  Consequently, the voltage across the R1 = 5.00 Ω resistor is (5.00 

Ω)(2/3 A) = 10/3 V, and is equal to the voltage V1 across the C1 = 5.00 µF capacitor.  
Using Eq. 26-22, we find the stored energy on that capacitor: 
 

U1  =   
1
2
C1(V1)

2  =  
1
2
 (5.00 × 10−6) 

10
3

2  =   2.78 × 10−5 J  . 

 

Similarly, the voltage across the R2 = 10.0 Ω resistor is (10.0 Ω)(2/3 A) = 20/3 V and is 

equal to the voltage V2 across the C2 = 10.0 µF capacitor. Hence, 
 

U2   =   
1
2
C2(V2)2  =  

1
2
 (10 × 10−6) 

20
3

2  =   2.22 × 10−4 J  . 

 

Therefore, the total capacitor energy is U1  + U2  = 2.50 × 10−4 J. 



  

 
 
112. (a) Applying the junction rule twice and the loop rule three times, we obtain 
 

                           i1 – i2  +  i4 + i5 = 0 
                                    i3 + i4 + i5 = 0, 

–16 V + 4 V  + (7 Ω)i1 + (5 Ω)i2 = 0, 
 

10 V – 4 V –(5 Ω)i2 +(8 Ω)i3 –(9 Ω)i4  = 0, 

               12 V + (9 Ω)i4 – (4 Ω)i5 = 0; 
 
(b) Examining the coefficients of the currents in the above relations, we find 
 
 

 [ ] [ ]

1  1   0      1    1    0  

0    0    1      1    1    0  

7     5    0     0    0   ohms,      12   volts;

0  5   8  9    0  6 

0     0    0     9 4 12

A C

−

= =
− − −

− −

 

 

(c)    i1 = 306/427 ≈  0.717 A,  

         i2 = 426/305  ≈ 1.40 A, 

         i3 = −1452/2135 ≈ −0.680 A, 

         i4 = −1524/2135 ≈ −0.714 A, 

         i5 = 2976/2135 ≈ 1.39 A 



 

 
 

113. (a) V9 = (9.00 Ω)(|i4|) =  6.43 V; 

 

(b) P7 = (i1)
2(7.00 Ω) = 3.60 W; 

 
(c) (12.0 V)(i5) = 16.7 W; 
 
(d) –(4.00 V)(i2) = –5.60 W; 
 
(e) a (see the true direction of the current labeled i4) 



  

 
 

114. (a) Next, we graph Eq. 27-4 (scaled by a factor of 100) for ε = 2.0 V and r = 100 Ω 

over the range 0 ≤ R ≤ 500 Ω. We multiplied the SI output of Eq. 27-4 by 100 so that this 
graph would not be vanishingly small with the other graph (see part (b)) when they are 
plotted together. 
 
(b) In the same graph, we show VR = iR over the same range. The graph of current i is the 
one that starts at 2 (which corresponds to 0.02 A in SI units) and the graph of voltage VR 
is the one that starts at 0 (when R = 0). The value of VR are in SI units (not scaled by any 
factor). 
 

 
 
(c) In our final graph, we show the dependence of power P = iVR (dissipated in resistor R) 
as a function of R. The units of the vertical axis are Watts. We note that it is maximum 
when R = r. 
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