
 

 

1. (a) All the energy in the circuit resides in the capacitor when it has its maximum 

charge. The current is then zero. If Q is the maximum charge on the capacitor, then the 

total energy is 
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(b) When the capacitor is fully discharged, the current is a maximum and all the energy 

resides in the inductor. If I is the maximum current, then U = LI
2
/2 leads to 
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2. According to U LI Q C= =1
2

2 1
2

2 ,  the current amplitude is 
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3. We find the capacitance from U Q C= 1
2

2 : 
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4. (a) The period is T = 4(1.50 µs) = 6.00 µs. 

 

(b) The frequency is the reciprocal of the period: 

 

f
T

= = = ×1 1

6 00
167 105

.
.

µs
Hz. 

 

(c) The magnetic energy does not depend on the direction of the current (since UB ∝ i
2
), 

so this will occur after one-half of a period, or 3.00 µs. 



 

 

 

5. (a) We recall the fact that the period is the reciprocal of the frequency. It is helpful to 

refer also to Fig. 31-1. The values of t when plate A will again have maximum positive 

charge are multiples of the period: 

 

t nT
n

f

n
nA = = =

×
=

2 00 10
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. ,
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sµb g  

 

where n = 1, 2, 3, 4, . The earliest time is (n=1) 5.00 s.
A

t µ=  

 

(b) We note that it takes t T= 1
2

 for the charge on the other plate to reach its maximum 

positive value for the first time (compare steps a and e in Fig. 31-1). This is when plate A 

acquires its most negative charge. From that time onward, this situation will repeat once 

every period. Consequently, 

 

( ) ( ) ( )
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3
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where n = 1, 2, 3, 4, . The earliest time is (n=1) 2.50 s.t µ=  

 

(c) At t T= 1
4

, the current and the magnetic field in the inductor reach maximum values 

for the first time (compare steps a and c in Fig. 31-1). Later this will repeat every half-

period (compare steps c and g in Fig. 31-1). Therefore, 
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6. (a) The angular frequency is 
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×

=
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(b) The period is 1/f and f = ω/2π. Therefore, 

 

T = = = × −2 2
7 0 10 2π π
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(c) From ω = (LC)
–1/2

, we obtain 
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7. (a) The mass m corresponds to the inductance, so m = 1.25 kg. 

 

(b) The spring constant k corresponds to the reciprocal of the capacitance. Since the total 

energy is given by U = Q
2
/2C, where Q is the maximum charge on the capacitor and C is 

the capacitance, 
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and 
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×
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(c) The maximum displacement corresponds to the maximum charge, so 
4

max 1.75 10  m.x
−= ×  

 

(d) The maximum speed vmax corresponds to the maximum current. The maximum 

current is 
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Consequently, vmax = 3.02 × 10
–3

 m/s. 



 

 

 

8. We apply the loop rule to the entire circuit: 

 

( )
1 1 1total
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where we require εtotal = 0. This is equivalent to the simple LRC circuit shown in Fig. 31-

24(b). 



 

 

 

9. The time required is t = T/4, where the period is given by T LC= =2 2π π/ .ω  

Consequently, 
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10. We find the inductance from f LC= =
−

ω / .2 2
1

π πd i  
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11. (a) Q = CVmax = (1.0 × 10
–9

 F)(3.0 V) = 3.0 × 10
–9

 C. 

 

(b) From U LI Q C= =1
2

2 1
2

2 /  we get 
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(c) When the current is at a maximum, the magnetic field is at maximum: 
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12. The capacitors C1 and C2 can be used in four different ways: (1) C1 only; (2) C2 only; 

(3) C1 and C2 in parallel; and (4) C1 and C2 in series.  

 

(a) The smallest oscillation frequency is 
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(b) The second smallest oscillation frequency is 
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(c) The second largest oscillation frequency is 
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(d) The largest oscillation frequency is 
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13. (a) After the switch is thrown to position b the circuit is an LC circuit. The angular 

frequency of oscillation is ω = 1/ LC . Consequently, 
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(b) When the switch is thrown, the capacitor is charged to V = 34.0 V and the current is 

zero. Thus, the maximum charge on the capacitor is Q = VC = (34.0 V)(6.20 × 10
–6

 F) = 

2.11 × 10
–4

 C. The current amplitude is 

 

I Q fQ= = = × =−ω 2 2 275 2 11 10 0 3654π π Hz C A.b gc h. .  



 

 

 

14. For the first circuit ω = (L1C1)
–1/2

, and for the second one ω = (L2C2)
–1/2

. When the 

two circuits are connected in series, the new frequency is 
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where we use ω − = =1

1 1 2 2L C L C .  



 

 

 

15. (a) Since the frequency of oscillation f is related to the inductance L and capacitance 

C by f LC= 1 2/ ,π  the smaller value of C gives the larger value of f. Consequently,  

f LC f LCmax min min max/ , / ,= =1 2 1 2π π  and 
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(b) An additional capacitance C is chosen so the ratio of the frequencies is 

 

r = =160

0 54
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.

.
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Since the additional capacitor is in parallel with the tuning capacitor, its capacitance adds 

to that of the tuning capacitor. If C is in picofarads, then 

 

C

C

+
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The solution for C is 
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(c) We solve f LC= 1 2/ π  for L. For the minimum frequency C = 365 pF + 36 pF = 

401 pF and f = 0.54 MHz. Thus 
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16. The linear relationship between θ (the knob angle in degrees) and frequency f is 
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where f0 = 2 × 10
5
 Hz. Since f = ω/2π = 1/2π LC , we are able to solve for C in terms of 

θ : 
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with SI units understood. After multiplying by 10
12

 (to convert to picofarads), this is 

plotted, below. 

 

 



 

 

 

17. (a) The total energy U is the sum of the energies in the inductor and capacitor: 

 

( )
( )

( ) ( )2 2
6 3 32 2

6

6

3.80 10 C 9.20 10 A 25.0 10 H
1.98 10 J.

2 2 22 7.80 10 F
E B

q i L
U U U

C

− − −
−

−

× × ×
= + = + = + = ×

×
 

 

(b) We solve U = Q
2
/2C for the maximum charge: 
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(c) From U = I
2
L/2, we find the maximum current: 
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(d) If q0 is the charge on the capacitor at time t = 0, then q0 = Q cos φ and 
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F
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For φ = +46.9° the charge on the capacitor is decreasing, for φ = –46.9° it is increasing. 

To check this, we calculate the derivative of q with respect to time, evaluated for t = 0. 

We obtain –ωQ sin φ, which we wish to be positive. Since sin(+46.9°) is positive and 

sin(–46.9°) is negative, the correct value for increasing charge is φ = –46.9°. 

 

(e) Now we want the derivative to be negative and sin φ to be positive. Thus, we take 
46.9 .φ = + °  



 

 

 

18. (a) Since the percentage of energy stored in the electric field of the capacitor is  

(1 75.0%) 25.0%− = , then 

 

U

U

q C
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E = =
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2
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which leads to / 0.250 0.500.q Q = =  

 

(b) From 
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2
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/
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we find / 0.750 0.866.i I = =  



 

 

 

19. (a) The charge (as a function of time) is given by q = Q sin ωt, where Q is the 

maximum charge on the capacitor and ω is the angular frequency of oscillation. A sine 

function was chosen so that q = 0 at time t = 0. The current (as a function of time) is 

 

i
dq

dt
Q t= = ω ωcos ,  

 

and at t = 0, it is I = ωQ. Since ω = 1/ ,LC  

 

Q I LC= = × × = ×− − −2 00 300 10 2 70 10 180 103 6 4. . . .A H F C.b g c hc h  

 

(b) The energy stored in the capacitor is given by 

 

U
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C
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C
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2 2 2
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and its rate of change is 

 

dU
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Q t t

C

E =
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We use the trigonometric identity cos sin sinω ω ωt t t= 1
2

2b g  to write this as 

 

dU
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Q

C
tE = ω ω

2

2
2sin .b g  

 

The greatest rate of change occurs when sin(2ωt) = 1 or 2ωt = π/2 rad. This means 
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(c) Substituting ω = 2π/T and sin(2ωt) = 1 into dUE/dt = (ωQ
2
/2C) sin(2ωt), we obtain  
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We note that this is a positive result, indicating that the energy in the capacitor is indeed 

increasing at t = T/8. 



 

 

 

20. (a) We use U LI Q C= =1
2

2 1
2

2 /  to solve for L: 
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(b) Since f = ω/2π, the frequency is 

 

f
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(c) Referring to Fig. 31-1, we see that the required time is one-fourth of a period (where 

the period is the reciprocal of the frequency). Consequently, 
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21. (a) We compare this expression for the current with i = I sin(ωt+φ0). Setting (ωt+φ) = 

2500t + 0.680 = π/2, we obtain t = 3.56 × 10
–4

 s. 

 

(b) Since ω = 2500 rad/s = (LC)
–1/2

, 

 

L
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= ×
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(c) The energy is 
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22. (a)  From V = IXC we find ω = I/CV.  The period is then T = 2π/ω = 2πCV/I = 46.1 µs. 

 

(b) 
1

2
 CV

2
 = 6.88 nJ. 

 

(c) The answer is again 6.88 nJ (see Fig. 31-4). 

 

(d) We apply Eq. 30-35 as V = L(di/dt)max .  We can substitute L = CV
2
/I

2
 (combining 

what we found in part (a) with Eq. 31-4) into Eq. 30-35 (as written above) and solve for 

(di/dt)max .  Our result is 1.02 × 10
3
 A/s. 

 

(e) The derivative of U = 
1

2
 Li

2
 leads to dU/dt = LI

2ω sin(ωt)cos(ωt) = 
1

2
 LI

2ω sin(2ωt).  

Therefore, (dU/dt)max =  
1

2
 LI

2ω = 
1

2
 IV = 0.938 mW. 



 

 

 

23. The loop rule, for just two devices in the loop, reduces to the statement that the 

magnitude of the voltage across one of them must equal the magnitude of the voltage 

across the other.  Consider that the capacitor has charge q and a voltage (which we’ll 

consider positive in this discussion) V = q/C.  Consider at this moment that the current in 

the inductor at this moment is directed in such a way that the capacitor charge is 

increasing (so i = +dq/dt). Eq. 30-35 then produces a positive result equal to the V across 

the capacitor: V = −L(di/dt), and we interpret the fact that −di/dt > 0 in this discussion to 

mean that d(dq/dt)/dt = d
2
q/dt

2
 < 0 represents a “deceleration” of the charge-buildup 

process on the capacitor (since it is approaching its maximum value of charge).  In this 

way we can “check” the signs in Eq. 31-11 (which states q/C = − L d
2
q/dt

2
) to make sure 

we have implemented the loop rule correctly. 



 

 

 

24. The charge q after N cycles is obtained by substituting t = NT = 2πN/ω' into Eq.  

31-25: 

 

( ) ( )
( ) ( )

/ 2 / 2

2 / / 2

/

cos cos 2 /

cos 2

cos .

Rt L RNT L

RN L C L

N R C L
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Qe

ω φ ω ω φ

φ

φ
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− π

′ ′ ′= + = π +

= π +

=

 

 

We note that the initial charge (setting N = 0 in the above expression) is q0 = Q cos φ, 

where q0 = 6.2 µC is given (with 3 significant figures understood). Consequently, we 

write the above result as q q eN

N R C L= −
0

π / . 

 

(a) For N = 5,  

 

 ( ) ( )5 7.2 0.0000032 F/12H

5 6.2 C 5.85 C.q eµ µ− π Ω= =  

 

(b) For N = 10, 

 

( ) ( )10 7.2 0.0000032 F/12H

10 6.2 C 5.52 C.q eµ µ− π Ω= =  

 

(c) For N = 100, 

 

( ) ( )100 7.2 0.0000032 F/12H

100 6.2 C 1.93 C.q eµ µ− π Ω= =  



 

 

 

25. Since ω ≈ ω', we may write T = 2π/ω as the period and ω = 1/ LC  as the angular 

frequency. The time required for 50 cycles (with 3 significant figures understood) is 

 

( ) ( )( )( )3 62
50 50 50 2 50 2 220 10 H 12.0 10 F

0.5104s.

t T LC
ω

− −π= = = π = π × ×

=
 

 

The maximum charge on the capacitor decays according to q Qe
Rt L

max

/= − 2  (this is called 

the exponentially decaying amplitude in §31-5), where Q is the charge at time t = 0 (if we 

take φ = 0 in Eq. 31-25). Dividing by Q and taking the natural logarithm of both sides, we 

obtain 

 

ln maxq

Q

Rt

L

F
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I
KJ = −
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which leads to 
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R
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−
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×
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26. The assumption stated at the end of the problem is equivalent to setting φ = 0 in Eq. 

31-25. Since the maximum energy in the capacitor (each cycle) is given by q Cmax /2 2 , 

where qmax is the maximum charge (during a given cycle), then we seek the time for 

which 

 

q

C

Q

C
q

Qmax
max .

2 2

2

1

2 2 2
= =  

 

Now qmax (referred to as the exponentially decaying amplitude in §31-5) is related to Q 

(and the other parameters of the circuit) by 

 

q Qe
q

Q

Rt

L

Rt L
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/ maxln .=
F
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Setting q Qmax = / 2 , we solve for t: 
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q

Q

L

R

L

R
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F
HG
I
KJ = − F
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I
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2
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The identities ln ( / ) ln ln1 2 2 21
2

= − = −  were used to obtain the final form of the 

result. 



 

 

 

27. Let t be a time at which the capacitor is fully charged in some cycle and let qmax 1 be 

the charge on the capacitor then. The energy in the capacitor at that time is 

 

U t
q

C

Q

C
e

Rt L( ) max /= = −1

2 2

2 2
 

 

where 

 

q Qe
Rt L

max

/

1

2= −  

 

(see the discussion of the exponentially decaying amplitude in §31-5). One period later 

the charge on the fully charged capacitor is  

 

( )2 /

max 2

2
where = ,

'

R t T L
q Qe T

ω
− + π=  

 

and the energy is 

 
2 2
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R t T Lq Q
U t T e
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The fractional loss in energy is 

 

| | ( ) ( )
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.

/ ( )/

/

/∆U

U

U t U t T
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e e

e
e
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Rt L
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−
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Assuming that RT/L is very small compared to 1 (which would be the case if the 

resistance is small), we expand the exponential (see Appendix E). The first few terms are: 

 

e
RT

L

R T

L

RT L− ≈ − + +/ .1
2

2 2

2
 

 

If we approximate ω ≈ ω', then we can write T as 2π/ω. As a result, we obtain 

 

| | 2
1 1 .

U RT RT R

U L L Lω
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28. (a) We use I = ε/Xc = ωdCε: 

 
62 2 Hz)(1.50 10 F)(30.0 V)=0.283 A .d m d mI C f Cω ε ε 3 −= = π = π(1.00×10 ×  

 

(b) I = 2π(8.00 × 10
3
 Hz)(1.50 × 10

–6
 F)(30.0 V) = 2.26 A. 



 

 

 

29. (a) The current amplitude I is given by I = VL/XL, where XL = ωdL = 2πfdL. Since the 

circuit contains only the inductor and a sinusoidal generator, VL = εm. Therefore, 

 

3

30.0V
0.0955A 95.5 mA.

2 2 Hz)(50.0 10 H)

mL

L d

V
I

X f L

ε
3 −= = = = =

π π(1.00×10 ×
 

 

(b) The frequency is now eight times larger than in part (a), so the inductive reactance XL 

is eight times larger and the current is one-eighth as much. The current is now  

 

I = (0.0955 A)/8 = 0.0119 A = 11.9 mA. 



 

 

 

30. (a) The current through the resistor is 

 

30.0 V
0.600 A .

50.0

mI
R

ε= = =
Ω

 

 

(b) Regardless of the frequency of the generator, the current is the same, 0.600 A .I =  



 

 

 

31. (a) The inductive reactance for angular frequency ωd is given by XL = ωdL, and the 

capacitive reactance is given by XC = 1/ωdC. The two reactances are equal if ωdL = 1/ωdC, 

or 1/d LCω = . The frequency is 

 

2

6

1 1
6.5 10  Hz.

2 2 2 H)(10 10 F)

d
d

f
LC

ω
−3 −

= = = = ×
π π π (6.0×10 ×

 

 

(b) The inductive reactance is  

 

XL = ωdL = 2πfdL = 2π(650 Hz)(6.0 × 10
–3

 H) = 24 Ω. 

 

The capacitive reactance has the same value at this frequency. 

 

(c) The natural frequency for free LC oscillations is f LC= ω / 2π = 1/ 2π , the same as 

we found in part (a). 



 

 

 

32. (a) The circuit consists of one generator across one inductor; therefore, εm = VL. The 

current amplitude is  

 

325.0 V
5.22 10 A .

(377 rad/s)(12.7 H)

m m

L d

I
X L

ε ε
ω

−= = = = ×  

 

(b) When the current is at a maximum, its derivative is zero. Thus, Eq. 30-35 gives εL = 0 

at that instant. Stated another way, since ε(t) and i(t) have a 90° phase difference, then ε(t) 

must be zero when i(t) = I. The fact that φ = 90° = π/2 rad is used in part (c). 

 

(c) Consider Eq. 32-28 with ε ε= − 1
2 m . In order to satisfy this equation, we require 

sin(ωdt) = –1/2. Now we note that the problem states that ε is increasing in magnitude, 

which (since it is already negative) means that it is becoming more negative. Thus, 

differentiating Eq. 32-28 with respect to time (and demanding the result be negative) we 

must also require cos(ωdt) < 0. These conditions imply that ωt must equal (2nπ – 5π/6) [n 

= integer]. Consequently, Eq. 31-29 yields (for all values of n) 

 

i I n= −F
HG

I
KJ = ×

F
HG
I
KJ = ×− −sin ( . .2 522 10 4 51 103 3π − 5π

6
π
2

A)
3

2
A .  



 

 

 

33. (a) The generator emf is a maximum when sin(ωdt – π/4) = 1 or ωdt – π/4 = (π/2) ± 

2nπ [n = integer]. The first time this occurs after t = 0 is when ωdt – π/4 = π/2 (that is, n = 

0). Therefore, 

 

t
d

= = = × −3 3
6 73 10 3π

4
π

4(350ω  rad / s)
s ..  

 

(b) The current is a maximum when sin(ωdt – 3π/4) = 1, or ωdt – 3π/4 = (π/2) ± 2nπ [n = 

integer]. The first time this occurs after t = 0 is when ωdt – 3π/4 = π/2 (as in part (a), n = 

0). Therefore, 

 

t
d

= = = × −5 5
112 10 2π

4
π

4(350ω  rad / s)
s ..  

 

(c) The current lags the emf by / 2π+  rad, so the circuit element must be an inductor. 

 

(d) The current amplitude I is related to the voltage amplitude VL by VL = IXL, where XL is 

the inductive reactance, given by XL = ωdL. Furthermore, since there is only one element 

in the circuit, the amplitude of the potential difference across the element must be the 

same as the amplitude of the generator emf: VL = εm. Thus, εm = IωdL and 

 

L
I

m

d

= =
×

=−

ε
ω

30 0
0138

.
.

V

(620 10 A)(350 rad / s)
H.

3
 



 

 

 

34. (a) The circuit consists of one generator across one capacitor; therefore, εm = VC. 

Consequently, the current amplitude is 

 

I
X

Cm

C

m= = = × = ×− −ε ω ε (377 rad / s)(4.15 10 F)(25.0 V) 3.91 10 A .6 2  

 

(b) When the current is at a maximum, the charge on the capacitor is changing at its 

largest rate. This happens not when it is fully charged (±qmax), but rather as it passes 

through the (momentary) states of being uncharged (q = 0). Since q = CV, then the 

voltage across the capacitor (and at the generator, by the loop rule) is zero when the 

current is at a maximum. Stated more precisely, the time-dependent emf ε(t) and current 

i(t) have a φ = –90° phase relation, implying ε(t) = 0 when i(t) = I. The fact that φ = –90° 

= –π/2 rad is used in part (c). 

 

(c) Consider Eq. 32-28 with ε ε= − 1
2 m . In order to satisfy this equation, we require 

sin(ωdt) = –1/2. Now we note that the problem states that ε is increasing in magnitude, 

which (since it is already negative) means that it is becoming more negative. Thus, 

differentiating Eq. 32-28 with respect to time (and demanding the result be negative) we 

must also require cos(ωdt) < 0. These conditions imply that ωt must equal (2nπ – 5π/6) [n 

= integer]. Consequently, Eq. 31-29 yields (for all values of n) 

 

3 23
sin 2 (3.91 10 A) 3.38 10 A,

2
i I n

− −5π π= π − + = × − = − ×
6 2

 

 

or 2| | 3.38 10 A.i
−= ×  



 

 

 

35. (a) Now XC = 0, while R = 200 Ω and XL = ωL = 2πfdL = 86.7 Ω remain unchanged. 

Therefore, the impedance is  

 
2 2 2 2(200 ) (86.7 ) 218 .

L
Z R X= + = Ω + Ω = Ω  

 

 

(b) The phase angle is, from Eq. 31-65, 

 

1 1 86.7 0
tan tan 23.4 .

200

L C
X X

R
φ − −− Ω −= = = °

Ω
 

 

(c) The current amplitude is now found to be  

 

36.0 V
0.165 A .

218

mI
Z

ε= = =
Ω

 

 

(d) We first find the voltage amplitudes across the circuit elements: 

 

(0.165 A)(200 ) 33V

(0.165A)(86.7 ) 14.3V

R

L L

V IR

V IX

= = Ω ≈
= = Ω ≈

 

 

This is an inductive circuit, so εm leads I. The phasor diagram is drawn to scale below. 

 

 



 

 

 

36. (a) The graph shows that the resonance angular frequency is 25000 rad/s, which 

means (using Eq. 31-4)  

 

C = (ω2
L)

−1
 = [(25000)

2
 ×200 × 10

−6]
−1

 = 8.0 µF. 

 

(b) The graph also shows that the current amplitude at resonance is 4.0 A, but at 

resonance the impedance Z becomes purely resistive (Z = R) so that we can divide the 

emf amplitude by the current amplitude at resonance to find R: 8.0/4.0 = 2.0 Ω. 



 

 

 

37. (a) Now XL = 0, while R = 200 Ω and XC = 1/2πfdC = 177 Ω.  Therefore, the 

impedance is  

 

 2 2 2 2(200 ) (177 ) 267 .
C

Z R X= + = Ω + Ω = Ω  

 

(b) The phase angle is 

 

 1 1 0 177
=tan tan 41.5

200

L C
X X

R
φ − −− − Ω= = − °

Ω
 

 

(c) The current amplitude is  

 

36.0 V
0.135 A .

267

mI
Z

ε= = =
Ω

 

 

(d) We first find the voltage amplitudes across the circuit elements: 

 

(0.135A)(200 ) 27.0V

(0.135A)(177 ) 23.9V

R

C C

V IR

V IX

= = Ω ≈
= = Ω ≈

 

 

The circuit is capacitive, so I leads ε m . The phasor diagram is drawn to scale next. 

 

 



 

 

 

38. (a) The circuit has a resistor and a capacitor (but no inductor).  Since the capacitive 

reactance decreases with frequency, then the asymptotic value of Z must be the resistance: 

R = 500 Ω. 

 

(b) We describe three methods here (each using information from different points on the 

graph):   

 

method 1: At ωd = 50 rad/s, we have Z ≈ 700 Ω which gives C = (ωd Z
2 - R2 )

−1 
= 41 µF. 

 

method 2: At ωd = 50 rad/s, we have XC  ≈ 500 Ω which gives C = (ωd XC)
−1 

= 40 µF. 

 

method 3: At ωd = 250 rad/s, we have XC  ≈ 100 Ω which gives C = (ωd XC)
−1 

= 40 µF. 



 

 

 

39. (a) The capacitive reactance is 

 

6

1 1 1
37.9 .

2 2 z)(70.0 10 F)
C

d d

X
C f Cω −= = = = Ω

π π(60.0 Η ×
 

 

The inductive reactance 86.7 Ω is unchanged. The new impedance is 

 
2 2 2 2( ) (200 ) (37.9 86.7 ) 206 .

L C
Z R X X= + − = Ω + Ω − Ω = Ω  

 

(b) The phase angle is 

 

1 1 86.7 37.9
tan tan 13.7 .

200

L C
X X

R
φ − −− Ω − Ω= = = °

Ω
 

 

(c) The current amplitude is 

 

36.0 V
0.175A.

206

mI
Z

ε= = =
Ω

 

 

 

(d) We first find the voltage amplitudes across the circuit elements: 

 

(0.175 A)(200 ) 35.0 V

(0.175 A)(86.7 ) 15.2 V

(0.175 A)(37.9 ) 6.62V

R

L L

C C

V IR

V IX

V IX

= = Ω =
= = Ω =
= = Ω =

 

 

Note that X XL C> , so that ε m  leads I. The phasor diagram is drawn to scale below. 

 



 

 



 

 

 

40. (a) Since Z = R
2
 + XL

2
  and  XL = ωd L, then as ωd → 0 we find Z → R = 40 Ω. 

 

(b) L  =  XL /ωd  = slope = 60 mH. 



 

 

 

41. The resistance of the coil is related to the reactances and the phase constant by Eq. 

31-65. Thus, 

 

X X

R

L C

R

L C d d− = − =ω ω φ1/
tan ,  

 

which we solve for R: 

 

2

6

1 1 1 1
(2 Hz(8.8 10 H)

tan tan 75 (2 Hz)(0.94 10 F

89 .

d

d

R L
C

ω
φ ω

−
−= − = π)(930 × −

° π)(930 ×
= Ω

 



 

 

 

42. A phasor diagram very much like Fig. 31-11(c) leads to the condition: 

 

VL – VC = (6.00 V)sin(30º) = 3.00 V. 

 

With the magnitude of the capacitor voltage at 5.00 V, this gives a inductor voltage 

magnitude equal to 8.00 V. 



 

 

 

43. (a) Yes, the voltage amplitude across the inductor can be much larger than the 

amplitude of the generator emf. 

 

(b) The amplitude of the voltage across the inductor in an RLC series circuit is given by 

V IX I LL L d= = ω . At resonance, the driving angular frequency equals the natural angular 

frequency: ω ωd LC= = 1/ . For the given circuit 

 

6

1.0 H
1000 .

(1.0 H)(1.0 10 F)
L

L
X

LC −
= = = Ω

×
 

 

At resonance the capacitive reactance has this same value, and the impedance reduces 

simply: Z = R. Consequently, 

 

resonance

10 V
1.0 A .

10

m mI
Z R

ε ε= = = =
Ω

 

 

The voltage amplitude across the inductor is therefore 

 
3(1.0 A)(1000 ) 1.0 10 V

L L
V IX= = Ω = ×  

 

which is much larger than the amplitude of the generator emf. 



 

 

 

44. (a) With both switches closed (which effectively removes the resistor from the 

circuit), the impedance is just equal to the (net) reactance and is equal to (12 V)/(0.447 A) 

= 26.85 Ω.   With switch 1 closed but switch 2 open, we have the same (net) reactance as 

just discussed, but now the resistor is part of the circuit; using Eq. 31-65 we find 

 

R = Xnet /tanφ = 26.85/tan(15º) = 100 Ω. 

 

(b) For the first situation described in the problem (both switches open) we can reverse 

our reasoning of part (a) and find  Xnet first = R tan(–30.9º) = –59.96 Ω. We observe that 

the effect of switch 1 implies  

 

XC = Xnet – Xnet firsrt = 26.85 – (–59.96) = 86.81 Ω. 

 

Then Eq. 31-39 leads to C = 1/ωXC  = 30.6 µF. 

 

(c) Since Xnet = XL  – XC , then we find L = XL/ω = 301 mH 



 

 

 

45. (a) For a given amplitude εm of the generator emf, the current amplitude is given by 

 

2 2
.

( 1/ )

m m

d d

I
Z R L C

ε ε
ω ω

= =
+ −

 

 

We find the maximum by setting the derivative with respect to ω d  equal to zero: 

 

dI

d
E R L C L

C
L

Cd

m d d d

d dω
ω ω ω

ω ω
= − + − −

L
NM

O
QP

+
L
NM

O
QP

−( ) [ ( / ) ] ./2 2 3 2

2
1

1 1
 

 

The only factor that can equal zero is ω ωd dL C− ( / )1 ; it does so for ω ωd LC= =1/ . 

For this 

 

ω d
LC

= =
×

=
−

1 1

100
224

( .  H)(20.0 10 F)
 rad / s .

6
 

 

(b) When ω ωd = , the impedance is Z = R, and the current amplitude is 

 

30.0 V
6.00 A .

5.00

mI
R

ε= = =
Ω

 

 

(c) We want to find the (positive) values of ω d  for which / 2 :
m

I Rε=  

 

2 2
.

2( 1/ )

m m

d d
RR L C

ε ε
ω ω

=
+ −

 

 

This may be rearranged to yield 

 

ω
ωd

d

L
C

R−
F
HG

I
KJ =1

3

2

2 . 

 

Taking the square root of both sides (acknowledging the two ± roots) and multiplying by 

ω dC , we obtain 

 

ω ωd dLC CR
2 3 1 0( ) .± − =d i  

 

Using the quadratic formula, we find the smallest positive solution 

 



 

2 2 6

2 6

6 2 2 6

6

3 3 4 3(20.0 10 F)(5.00 )

2 2(1.00 H)(20.0 10 F)

3(20.0 10 F) (5.00 ) 4(1.00 H)(20.0 10 F)

2(1.00 H)(20.0 10 F)

219 rad/s ,

CR C R LC

LC
ω

−

−

− −

−

− + + − × Ω= =
×

× Ω + ×
+

×
=

 

 

(d) and the largest positive solution 

 
2 2 6

1 6

6 2 2 6

6

3 3 4 3(20.0 10 F)(5.00 )

2 2(1.00 H)(20.0 10 F)

3(20.0 10 F) (5.00 ) 4(1.00 H)(20.0 10 F)

2(1.00 H)(20.0 10 F)

228 rad/s .

CR C R LC

LC
ω

−

−

− −

−

+ + + + × Ω= =
×

× Ω + ×
+

×
=

 

 

(e) The fractional width is 

 

1 2

0

228rad/s 219rad/s
0.040.

224 rad/s

ω ω
ω
− −= =  



 

 

 

46. (a) The capacitive reactance is 

 

6

1 1
16.6 .

2 2  Hz)(24.0 10 F)
CX

fC
−= = = Ω

π π(400 ×
 

 

(b) The impedance is 

 
2 2 2 2

2 3 2

( ) (2 )

(220 ) [2 Hz)(150 10 H) 16.6 ] 422 .

L C CZ R X X R fL X

−

= + − = + π −

= Ω + π(400 × − Ω = Ω
 

 

(c) The current amplitude is 

 

I
Z

m= = =ε 220
0 521

V

422
A .

Ω
.  

 

(d) Now X CC ∝ −
eq

1 . Thus, XC increases as Ceq decreases. 

 

(e) Now Ceq = C/2, and the new impedance is 

 
2 3 2(220 ) [2 Hz)(150 10 H) 2(16.6 )] 408 422 .Z

−= Ω + π(400 × − Ω = Ω < Ω  

 

Therefore, the impedance decreases. 

 

(f) Since I Z∝ −1 , it increases. 



 

 

 

47. We use the expressions found in Problem 45: 

 

ω

ω

1

2 2

2

2 2

3 3 4

2

3 3 4

2

= + + +

= − + +

CR C R LC

LC

CR C R LC

LC

 

 

We also use Eq. 31-4. Thus, 

 

∆ω
ω

ω ω
ω

d CR LC

LC
R

C

L
= − = =1 2 2 3

2

3
. 

 

For the data of Problem 45, 

 

∆ Ωω
ω

d =
×

= ×
−

−5 00
3 20 0 10

100
387 10

6

2.
.

.
. .b g c hF

H
 

 

This is in agreement with the result of Problem 45. The method of Problem 45, however, 

gives only one significant figure since two numbers close in value are subtracted (ω1 – 

ω2). Here the subtraction is done algebraically, and three significant figures are obtained. 



 

 

 

48. (a) A sketch of the phasors would be very much like Fig. 31-10(c) but with the label 

“IL” on the green arrow replaced with “VR.” 

 

(b) We have VR = VL, which implies 

 

I R = I XL      R  = ωd L 

 

which yields  f = ωd/2π = R/2πL = 318 Hz. 

 

(c) φ = tan
−1

(VL /VR) = +45°. 

 

(d) ωd = R/L = 2.00×10
3 
rad/s. 

 

(e) I = (6 V)/ R
2
 + XL

2
  =  3/(40 2) ≈ 53.0 mA. 



 

 

 

49. (a) Since Leq = L1 + L2 and Ceq = C1 + C2 + C3 for the circuit, the resonant frequency 

is 

 

ω = =
+ + +

=
× × × × ×

=

− − − − −

1

2

1

2

1

2 170 10 4 00 10

796

1 2 1 2 3

3 6

π π

π

L C L L C C Ceq eq

3 6 6H + 2.30 10 H F + 2.50 10 F + 3.50 10 F

Hz.

b gb g

c hc h. .
 

 

(b) The resonant frequency does not depend on R so it will not change as R increases. 

 

(c) Since ω ∝ (L1 + L2)
–1/2

, it will decrease as L1 increases. 

 

(d) Since  ω ∝ −
Ceq

1/2   and Ceq decreases as C3 is removed, ω will increase. 



 

 

 

50. Since the impedance of the voltmeter is large, it will not affect the impedance of the 

circuit when connected in parallel with the circuit. So the reading will be 100 V in all 

three cases. 



 

 

 

51. The average power dissipated in resistance R when the current is alternating is given 

by P I Ravg rms

2= ,  where Irms is the root-mean-square current. Since I Irms = / 2 , where I is 

the current amplitude, this can be written Pavg = I
2
R/2. The power dissipated in the same 

resistor when the current id is direct is given by P i Rd= 2 .  Setting the two powers equal to 

each other and solving, we obtain 

 

i
I

d = = =
2

2 60
184

.
.

A

2
A.  



 

 

 

52. The amplitude (peak) value is 

 

V Vmax = = =2 2 100 141rms V V.b g  



 

 

 

53. (a) Using Eq. 31-61, the impedance is 

 

( ) ( )2 2
12.0 1.30 0 12.1 .Z = Ω + Ω − = Ω  

 

(b) We use the result of problem 54: 

 

( ) ( )
( )

22
3 3rms

avg 22

120V 12.0
1.186 10 W 1.19 10 W.

12.07

R
P

Z

ε Ω
= = = × ≈ ×

Ω
 



 

 

 

54. This circuit contains no reactances, so εrms = IrmsRtotal. Using Eq. 31-71, we find the 

average dissipated power in resistor R is 

 

P I R
r R

RR
m= =

+
F
HG
I
KJrms

2 ε 2

.  

 

In order to maximize PR we set the derivative equal to zero: 

 

dP

dR

r R r R R

r R

r R

r R
R rR

m

=
+ − +

+
=

−
+

= =
ε ε

2 2

4

2

3

2
0

b g b g
b g

b g
b g
m  



 

 

 

55. (a) The power factor is cos φ, where φ is the phase constant defined by the expression 

i = I sin(ωt – φ). Thus, φ = –42.0° and cos φ = cos(–42.0°) = 0.743. 

 

(b) Since φ < 0, ωt – φ > ωt. The current leads the emf. 

 

(c) The phase constant is related to the reactance difference by tan φ = (XL – XC)/R. We 

have tan φ = tan(–42.0°) = –0.900, a negative number. Therefore, XL – XC is negative, 

which leads to XC > XL. The circuit in the box is predominantly capacitive. 

 

(d) If the circuit were in resonance XL would be the same as XC, tan φ would be zero, and 

φ would be zero. Since φ is not zero, we conclude the circuit is not in resonance. 

 

(e) Since tan φ is negative and finite, neither the capacitive reactance nor the resistance 

are zero. This means the box must contain a capacitor and a resistor.  

 

(f) The inductive reactance may be zero, so there need not be an inductor. 

 

(g) Yes, there is a resistor. 

 

(h) The average power is 

 

P Imavg V A W.= = =1

2

1

2
75 0 120 0 743 33 4ε φcos . . . .b gb gb g  

 

(i) The answers above depend on the frequency only through the phase constant φ, which 

is given. If values were given for R, L and C then the value of the frequency would also 

be needed to compute the power factor. 



 

 

 

56. (a) The power consumed by the light bulb is P = I
2
R/2. So we must let Pmax/Pmin = 

(I/Imin)
2
 = 5, or 

 

I

I

Z

Z

Z

Z

R L

R

m

mmin

min

max

max

min

max/

/
.

F
HG
I
KJ =
F
HG

I
KJ =
F
HG
I
KJ =

+F

H
GG

I

K
JJ =

2 2 2 2 2
2

5
ε
ε

ωb g
 

 

We solve for Lmax: 

 

L
R

max

/

.
.= = = × −2 2 120 1000

2 60 0
7 64 10

2

2

ω
V W

Hz
H.

b g
b gπ

 

 

(b) Yes, one could use a variable resistor. 

 

(c) Now we must let 

 

R R

R

max ,
+F

HG
I
KJ =bulb

bulb

2

5  

or 

 

R Rmax . .= − = − =5 1 5 1
120

1000
17 8

2

d i d i b g
bulb

V

W
Ω  

 

(d) This is not done because the resistors would consume, rather than temporarily store, 

electromagnetic energy. 



 

 

 

57. We shall use 

 

( )

2 2

avg 2 22
.

2 2 1/

m m

d d

R R
P

Z R L C

ε ε
ω ω

= =
+ −

 

 

where Z R L Cd d= + −2 2
1ω ω/b g  is the impedance.  

 

(a) Considered as a function of C, Pavg has its largest value when the factor R
2
 + (ωdL – 

1/ωdC)
2
 has the smallest possible value. This occurs for ωdL = 1/ωdC, or 

 

C
Ld

= =
×

= ×
−

−1 1

2 60 0 60 0 10
117 10

2 2 2 3

4

ω πb g b g c h. .
.

Hz H
F.  

 

The circuit is then at resonance. 

 

(b) In this case, we want Z
2
 to be as large as possible. The impedance becomes large 

without bound as C becomes very small. Thus, the smallest average power occurs for C = 

0 (which is not very different from a simple open switch). 

 

(c) When ωdL = 1/ωdC, the expression for the average power becomes 

 
2

avg ,
2

mP
R

ε=  

 

so the maximum average power is in the resonant case and is equal to 

 

( )
( )

2

avg

30.0 V
90.0 W.

2 5.00
P = =

Ω
 

 

(d) At maximum power, the reactances are equal: XL = XC. The phase angle φ in this case 

may be found from 

 

tan ,φ = − =X X

R

L C 0  

 

which implies φ = 0° .  

 

(e) At maximum power, the power factor is cos φ = cos 0° = 1,  

 

(f) The minimum average power is Pavg = 0 (as it would be for an open switch). 



 

 

(g) On the other hand, at minimum power XC ∝ 1/C is infinite, which leads us to set 

tanφ = −∞ . In this case, we conclude that φ = –90°. 

 

(h) At minimum power, the power factor is cos φ = cos(–90°) = 0. 



 

 

 

58. The current in the circuit satisfies i(t) = I sin(ωdt – φ), where 

 

( )

( ) ( )( ) ( )( ){ }

22

22

1/

45.0 V

16.0 3000 rad/s 9.20 mH 1/ 3000 rad/s 31.2 F

1.93A

m m

d d

I
Z R L C

ε ε

ω ω

µ

= =
+ −

=
Ω + −

=

 

 

and 

 

( )( )
( )( )( )

1 1

1

1/
tan tan

3000 rad/s 9.20mH 1
tan

16.0 3000 rad/s 16.0 31.2 F

46.5 .

L C d dX X L C

R R

ω ωφ

µ

− −

−

− −= =

= −
Ω Ω

= °

 

 

(a) The power supplied by the generator is 

 

( ) ( ) ( )
( )( ) ( )( ) ( )( )

sin sin

1.93A 45.0V sin 3000 rad/s 0.442 ms sin 3000 rad/s 0.442 ms 46.5

41.4 W.

g d m dP i t t I t tε ω φ ε ω= = −

= − °

=

 

 

(b) The rate at which the energy in the capacitor changes is 

 

( ) ( ) ( )

( )
( )( ) ( )( ) ( )

2

2

2

6

2

sin cos sin 2
2

1.93A
sin 2 3000 rad/s 0.442 ms 2 46.5

2 3000 rad/s 31.2 10 F

17.0 W.

c c

d d d

d d

d q q
P i iV

dt C C

I I
I t t t

C C
ω φ ω φ ω φ

ω ω

−

= − = − = −

= − − − = − −

= − − °
×

= −

 

 

(c) The rate at which the energy in the inductor changes is 

 



 

( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

2 2

2

1 1
sin sin sin 2

2 2

1
3000 rad/s 1.93A 9.20 mH sin 2 3000 rad/s 0.442 ms 2 46.5

2

44.1 W.

L d d d d

d di d
P Li Li LI t I t LI t

dt dt dt
ω φ ω φ ω ω φ= = = − − = −

= − °

=

 

 

(d) The rate at which energy is being dissipated by the resistor is 

 

( ) ( ) ( ) ( )( )22 2 2 2sin 1.93A 16.0 sin 3000 rad/s 0.442 ms 46.5

14.4 W.

R d
P i R I R tω φ= = − = Ω − °

=
 

 

(e) Equal. 44.1W 17.0 W+14.4 W=41.5 W= .
L R c g

P P P P+ + = −   



 

 

 

59. (a) The rms current is 

 

( )

( ) ( )( ) ( )( ){ }

rms rms
rms

22

22

2 1/ 2

75.0V

15.0 2 550Hz 25.0mH 1/ 2 550Hz 4.70 F

2.59A.

I
Z R fL fC

ε ε

µ

= =
+ π − π

=
Ω + π − π

=

 

 

(b) The rms voltage across R is  

 

 ( )( )rms 2.59A 15.0 38.8V
ab

V I R= = Ω = . 

 

(c) The rms voltage across C is  

 

 ( )( )
rms

rms

2.59A
159V

2 2 550Hz 4.70 F
bc C

I
V I X

fC µ
= = = =

π π
. 

 

(d) The rms voltage across L is  

 

 ( )( )( )rms rms2 2 2.59A 550 Hz 25.0mH 224 V
cd L

V I X I fL= = π = π = . 

 

(e) The rms voltage across C and L together is  

 

 159.5V 223.7 V 64.2V
bd bc cd

V V V= − = − =  

 

(f) The rms voltage across R, C and L together is 

 

( ) ( )2 22 2 38.8V 64.2V 75.0V
ad ab bd

V V V= + = + =  

 

(g) For R,  

 

( )22 38.8V
100 W.

15.0

ab
R

V
P

R
= = =

Ω
 

 

(h) No energy dissipation in C. 

 

(i) No energy dissipation in L. 



 

 

 

60. We use Eq. 31-79 to find 

 

V V
N

N
s p

s

p

=
F
HG
I
KJ = F

HG
I
KJ = ×100

500

50
100 103V V.b g .  



 

 

 

61. (a) The stepped-down voltage is 

 

V V
N

N
s p

s

p

=
F
HG
I
KJ = F

HG
I
KJ =120

10

500
2 4V V.b g .  

 

(b) By Ohm’s law, the current in the secondary is 

 

I
V

R
s

s

s

= = =2 4

15
016

.
.

V
A.

Ω
 

 

We find the primary current from Eq. 31-80: 

 

I I
N

N
p s

s

p

=
F
HG
I
KJ = F

HG
I
KJ = × −016

10

500
3 2 10 3. .A A.b g  

 

(c) As shown above, the current in the secondary is 0.16A.
s

I =  



 

 

 

62. For step-up trasnformer: 

 

(a) The smallest value of the ratio /
s p

V V is achieved by using T2T3 as primary and T1T3 as 

secondary coil: V13/V23 = (800 + 200)/800 = 1.25. 

 

(b) The second smallest value of the ratio /
s p

V V is achieved by using T1T2 as primary and 

T2T3 as secondary coil: V23/V13 = 800/200 = 4.00. 

 

(c) The largest value of the ratio /
s p

V V is achieved by using T1T2 as primary and T1T3 as 

secondary coil: V13/V12 = (800 + 200)/200 = 5.00. 

 

For the step-down transformer, we simply exchange the primary and secondary coils in 

each of the three cases above.   

 

(d) The smallest value of the ratio /
s p

V V is 1/5.00 = 0.200. 

 

(e) The second smallest value of the ratio /
s p

V V is 1/4.00 = 0.250. 

 

(f) The largest value of the ratio /
s p

V V is 1/1.25 = 0.800. 



 

 

 

63. (a) The rms current in the cable is I P Vtrms

3W / 80 10 V A.= = × × =/ .250 10 31253 c h  

The rms voltage drop is then ∆ ΩV I R= = =rms A V3125 2 0 30 19. . .b gb gb g . 

 

(b) The rate of energy dissipation is P I Rd = = =rms

2 A W.3125 2 0 60 5 9. . .b gb gb gΩ  

 

(c) Now I rms

3W / 8.0 10 V A= × × =250 10 31253 c h . , so ( )( )31.25A 0.60 19V.V∆ = Ω =   

 

(d) Pd = = ×3125 0 60 59 10
2 2. . .A W.b g b gΩ  

 

(e) ( )3 3

rms 250 10 W/ 0.80 10 V 312.5 AI = × × = , so ( )( )312.5A 0.60V∆ = Ω = 21.9 10 V× .  

 

(f) ( ) ( )2 4312.5A 0.60 5.9 10 W.dP = Ω = ×   



 

 

 

64. (a) The amplifier is connected across the primary windings of a transformer and the 

resistor R is connected across the secondary windings.  

 

(b) If Is is the rms current in the secondary coil then the average power delivered to R is 

P I Rsavg = 2 . Using sI =  ( )/p s pN N I , we obtain 

 

P
I N

N
R

p p

s

avg =
F
HG
I
KJ

2

.  

 

Next, we find the current in the primary circuit. This is effectively a circuit consisting of 

a generator and two resistors in series. One resistance is that of the amplifier (r), and the 

other is the equivalent resistance Req of the secondary circuit. Therefore, 

 

I
r R r N N R

p

p s

=
+

=
+

ε εrms

eq

rms

/d i2
 

 

where Eq. 31-82 is used for Req. Consequently, 

 

P
N N R

r N N R

p s

p s

avg =
+

ε 2
2

2
2

/

/

.
d i
d i

 

 

Now, we wish to find the value of Np/Ns such that Pavg is a maximum. For brevity, let x = 

(Np/Ns)
2
. Then 

 

P
Rx

r xR
avg =

+
ε 2

2b g
,  

 

and the derivative with respect to x is 

 

dP

dx

R r xR

r xR

avg =
−

+
ε 2

3

b g
b g

.  

 

This is zero for x r R= = =/ /1000 10 100Ω Ωb g b g . We note that for small x, Pavg 

increases linearly with x, and for large x it decreases in proportion to 1/x. Thus x = r/R is 

indeed a maximum, not a minimum. Recalling x = (Np/Ns)
2
, we conclude that the 

maximum power is achieved for  

 

/ 10
p s

N N x= = . 



 

 

The diagram that follows is a schematic of a transformer with a ten to one turns ratio. An 

actual transformer would have many more turns in both the primary and secondary coils. 

 

 



 

 

 

65. (a) We consider the following combinations: ∆V12 = V1 – V2, ∆V13 = V1 – V3, and ∆V23 

= V2 – V3. For ∆V12, 

 

∆V A t A t A
t

A td d
d

d12 120 2
120

2

2 120

2
3 60= − − ° = °F

HG
I
KJ

− °F
HG

I
KJ = − °sin( ) sin ( ) sin cos cosω ω ω ωb g  

 

where we use sin α β α β α β− = − + °=sin sin cos .2 2 2 3 2b g b g  and sin 60  Similarly, 

 

( )

13

2 240240
sin( ) sin ( 240 ) 2 sin cos

2 2

3 cos 120

d
d d

d

t
V A t A t A

A t

ωω ω

ω

− °°∆ = − − ° =

= − °

 

and 

 

( )

23

2 360120
sin( 120 ) sin ( 240 ) 2 sin cos

2 2

3 cos 180

d
d d

d

t
V A t A t A

A t

ωω ω

ω

− °°∆ = − ° − − ° =

= − °

 

 

All three expressions are sinusoidal functions of t with angular frequency ωd. 

 

(b) We note that each of the above expressions has an amplitude of 3A . 



 

 

 

66. We start with Eq. 31-76: 

 
2

rms rms
avg rms rms rms 2

cos
.

RR
P I

Z Z Z

ε εε φ ε= = =  

 

For a purely resistive circuit, Z = R, and this result reduces to Eq. 27-23 (with V replaced 

with εrms). This is also the case for a series RLC circuit at resonance. The average rate for 

dissipating energy is, of course, zero if R = 0, as would be the case for a purely inductive 

circuit. 



 

 

 

67. (a) The effective resistance Reff satisfies I R Prms

2

eff mechanical= , or 

 

R
P

I
eff

mechanical

rms

2

hp W / hp

A
= = =

0100 746

0 650
177

2

.

.
.

b gb g
b g

Ω  

 

(b) This is not the same as the resistance R of its coils, but just the effective resistance for 

power transfer from electrical to mechanical form. In fact I Rrms

2  would not give Pmechanical 

but rather the rate of energy loss due to thermal dissipation. 



 

 

 

69. The rms current in the motor is  

 

( ) ( )
rms rms

rms
2 2 2 2

420 V
7.61A.

45.0 32.0L

I
Z R X

ε ε= = = =
+ Ω + Ω

 



 

 

 

70. (a) A sketch of the phasors would be very much like Fig. 31-9(c) but with the label 

“IC” on the green arrow replaced with “VR.”   

 

(b) We have I R = I XC, or 

 

I R = I XC     R =  
1

 ωd C
  

 

which yields  f = ωd/2π = 1/2πRC = 159 Hz. 

 

(c) φ = tan
−1

(−VC /VR) = – 45°. 

 

(d) ωd = 1/RC =1.00 ×10
3
 rad/s. 

 

(e) I = (12 V)/ R
2
 + XC

2
  =  6/(25 2) ≈170 mA. 



 

 

 

71. (a) The energy stored in the capacitor is given by U q CE = 2 2/ . Since q is a periodic 

function of t with period T, so must be UE. Consequently, UE will not be changed over 

one complete cycle. Actually, UE has period T/2, which does not alter our conclusion. 

 

(b) Similarly, the energy stored in the inductor is U i LB = 1
2

2 . Since i is a periodic 

function of t with period T, so must be UB.  

 

(c) The energy supplied by the generator is 

 

P T I T T Imavg rms rms= = FHG
I
KJε φ ε φcos cosb g 1

2
 

 

where we substitute I I mrms rmsand= =/ / .2 2ε ε  

 

(d) The energy dissipated by the resistor is 

 

P T I V T I I R T T I RRavg,resistor rms rms rms= = = FHG
I
KJb g b g 1

2

2 . 

 

(e) Since ε φ ε ε ε εm m R m m mI I V I IR I Rcos / / ,= = =b g b g 2  the two quantities are indeed the 

same. 



 

 

 

72. (a) Eq. 31-39 gives f = ω/2π = (2πCXC)
−1

 = 8.84 kHz. 

 

(b) Because of its inverse relationship with frequency, then the reactance will go down by 

a factor of 2 when f increases by a factor of 2.  The answer is XC = 6.00 Ω. 



 

 

 

73. (a) The impedance is 
125V

39.1 .
3.20 A

mZ
I

ε= = = Ω  

 

(b) From V IRR m= = ε φcos ,  we get 

 

R
I

m= = =ε φcos V rad

A

125 0 982

320
217

b g b gcos .

.
. .Ω  

 

(c) Since X XL C− ∝ = −sin sin . ,φ 0 982 radb g  we conclude that XL < XC. The circuit is 

predominantly capacitive. 



 

 

 

74. (a) Eq. 31-4 directly gives 1/ LC  ≈ 5.77×10
3
 rad/s. 

 

(b) Eq. 16-5 then yields T = 2π/ω = 1.09 ms. 

 

(c) Although we do not show the graph here, we describe it:  it is a cosine curve with 

amplitude 200 µC and period given in part (b). 



 

 

 

75. (a) The phase constant is given by 

 

φ = −F
HG

I
KJ = −F

HG
I
KJ = = °− − −tan tan

/ .

/ .
tan . . .1 1 12 00

2 00
100 450

V V

R

V V

V

L C L L

L

b g  

 

(b) We solve R from ε φm IRcos = :  

 

R
I

m= =
°

×
=−

ε φcos . cos
. .

30 0 45

300 10
70 7

3

V

A

b gb g Ω  



 

 

 

76. From Eq. 31-4, we have C = (ω2
L)

−1
 = ((2πf)

2
L)

−1
 = 1.59 µF. 



 

 

 

77. (a) We solve L from Eq. 31-4, using the fact that ω = 2πf: 

 

L
f C

= =
× ×

= ×
−

−1

4

1

4 10 4 10 340 10
689 10

2 2 2 3
2

6

7

π π .
.

Hz F
H.

c h c h
 

 

(b) The total energy may be figured from the inductor (when the current is at maximum): 

 

U LI= = × × = ×− − −1

2

1

2
6 89 10 7 20 10 179 102 7 3

2
11. . .H A J.c hc h  

 

(c) We solve for Q from  U Q C= 1
2

2 / :  

 

Q CU= = × × = ×− − −2 2 340 10 179 10 110 106 11 7F J C.c hc h. .  



 

 

 

78. (a) With a phase constant of 45º the (net) reactance must equal the resistance in the 

circuit, which means the circuit impedance becomes Z = R 2    R = Z/ 2  = 707 Ω. 

 

(b) Since f = 8000 Hz then ωd  = 2π(8000) rad/s.  The net reactance (which, as observed, 

must equal the resistance) is therefore XL – XC  = ωdL – (ωdC)
−1

 = 707 Ω.  We are also 

told that the resonance frequency is 6000 Hz, which (by Eq. 31-4) means C = (ω2
L)

−1
 = 

((2π(6000))
2
L)

−1
. Substituting this in for C in our previous expression (for the net 

reactance) we obtain an equation that can be solved for the self-inductance.  Our result is 

L = 32.2 mH. 

 

(c) C = ((2π(6000))
2
L)

−1 
 = 21.9 nF. 



 

 

 

79. (a) Let  ωt − =π π/ /4 2  to obtain t = = = × −3 4 3 4 350 6 73 10 3π π/ / .ω rad / s s.b g  

 

(b) Let  ωt + =π π/ /4 2  to obtain t = = = × −π π/ / .4 4 350 2 24 10 3ω rad / s s.b g  

 

(c) Since i leads ε in phase by π/2, the element must be a capacitor. 

 

(d) We solve C from X C IC m= =−ω εb g 1
/ : 

  

( )( )
3

56.20 10 A
5.90 10 F.

30.0 V 350 rad/sm

I
C

ε ω

−
−×= = = ×  



 

 

 

80. Resonance occurs when the inductive reactance equals the capacitive reactance.  

Reactances of a certain type add (in series) just like resistances did in Chapter 28.  Thus, 

since the resonance ω values are the same for both circuits, we have for each circuit: 

 

ω L1  =   
1

 ω C1
 ,     ω L2  =   

1

 ω C2
  

 

and adding these equations we find 

 

ω(L1 + L2)  =   
1

 ω
1

C1
 + 

1

C2
  

 

ω Leq =  
1

 ω Ceq
    resonance in the combined circuit. 



 

 

 

81. (a) From Eq. 31-4, we have L = (ω2
C)

−1
 = ((2πf)

2
C)

−1
 = 2.41 µH. 

 

(b) The total energy is the maximum energy on either device (see Fig. 31-4).  Thus, we 

have Umax = 
1

2
 LI

2
 = 21.4 pJ. 

 

(c) Of several methods available to do this part, probably the one most “in the spirit” of 

this problem (considering the energy that was calculated in part (b)) is to appeal to Umax = 
1

2
 Q

2
/C (from Chapter 26) to find the maximum charge: Q = 2CUmax  = 82.2 nC. 



 

 

 

 

φ = −F
HG

I
KJ = −F

HG
I
KJ

− −tan tan
( / . )

( / . )

1 1 150

2 00

V V

V

V V

V

L C

R

L L

L

 

 

which becomes tan
–1

 2/3 = 33.7° or 0.588 rad. 

 

(b) Since φ > 0, it is inductive (XL > XC). 

 

(c) We have VR = IR = 9.98 V, so that VL = 2.00VR = 20.0 V and VC = VL/1.50 = 13.3 V. 

Therefore, from Eq. 31-60. 

 

ε m R L CV V V= + −2 2( )  

 

we find ε m = 12 0. V .  

82. (a) From Eq. 31-65, we have 



 

 

 

83. When switch S1 is closed and the others are open, the inductor is essentially out of the 

circuit and what remains is an RC circuit. The time constant is  τC = RC. When switch S2 

is closed and the others are open, the capacitor is essentially out of the circuit. In this case, 

what we have is an LR circuit with time constant τL = L/R. Finally, when switch S3 is 

closed and the others are open, the resistor is essentially out of the circuit and what 

remains is an LC circuit that oscillates with period T LC= 2π . Substituting L = RτL and 

C = τC/R, we obtain T C L= 2π τ τ . 



 

 

 

84. (a) The impedance is  Z = (80.0 V)/(1.25 A) = 64.0 Ω. 

 

(b) We can write cos φ = R/Z     R = (64.0 Ω)cos(0.650 rad) = 50.9 Ω. 

 

(c) Since the “current leads the emf” the circuit is capacitive. 



 

 

 

85. (a) We find L from X L fLL = =ω 2π :  

 

f
X

L

L= = ×
×

= ×
−2

130 10

2 450 10
4 60 10

3

3

3

π π
.

.
.

Ω
H

Hz.c h  

 

(b) The capacitance is found from XC = (ωC)
–1

 = (2πfC)
–1

: 

 

C
fXC

= =
× ×

= × −1

2

1

2 4 60 10 130 10
2 66 10

3 3

8

π π . .
.

Hz
F.c hc hΩ

 

 

(c) Noting that XL ∝ f and XC ∝ f 
–1

, we conclude that when f is doubled, XL doubles and 

XC reduces by half. Thus, XL = 2(1.30 × 10
3
  Ω) = 2.60 × 10

3
 Ω . 

 

(d) XC = 1.30 × 10
3
 Ω/2 = 6.50 × 10

2
 Ω. 



 

 

 

86. (a) Using ω = 2πf , XL = ωL, XC = 1/ωC and tan(φ) = (XL -XC)/R, we find  

 

φ = tan
−1

[(16.022 – 33.157)/40.0] = –0.40473 ≈ –0.405 rad. 

 

(b) Eq. 31-63 gives I = 120/ 402 + (16-33)2   = 2.7576 ≈ 2.76 A. 

 

(c)  XC  > XL       capacitive. 



 

 

 

87. When the switch is open, we have a series LRC circuit involving just the one 

capacitor near the upper right corner. Eq. 31-65 leads to 

 

o

1

tan tan( 20 ) tan 20 .

d

d

L
C

R

ω
ω φ

−
= = − ° = − °  

 

Now, when the switch is in position 1, the equivalent capacitance in the circuit is 2C. In 

this case, we have 

 

1

1

2
tan tan10.0 .

d

d

L
C

R

ω
ω φ

−
= = °  

 

Finally, with the switch in position 2, the circuit is simply an LC circuit with current 

amplitude 

 

2
2 1

1

m m m

LC d
dd

d

I
Z L

CL
C

ε ε ε
ωωω ω

= = =
−

−

 

 

where we use the fact that 1( )
d d
C Lω ω− >  in simplifying the square root (this fact is 

evident from the description of the first situation, when the switch was open). We solve 

for L, R and C from the three equations above, and the results are 

 

(a) 
2 o

120V
165 .

tan (2.00 A) tan 20.0

mR
I

ε
φ

−= = = Ω
°

 

 

(b) 1

2 o

tan 120V tan10.0
1 2 1 2 0.313 H

tan 2 (60.0 Hz)(2.00 A) tan 20.0

m

d

L
I

ε φ
ω φ

°= − = + =
π °

. 

 

(c) ( ) ( )1

o

52

tan10.0tan

tan 20.0tan

2.00 A
1.49 10  F

2(2 )(60.0 Hz)(120 V) 1+2 1
d m

I
C

φ
φω ε

−
°
°

= = = ×
π−

 

 



 

 

 

88. From Umax = 
1

2
 LI

2
 we get I = 0.115 A. 



 

 

 

89. (a) At any time, the total energy U in the circuit is the sum of the energy UE in the 

capacitor and the energy UB in the inductor. When UE = 0.500UB (at time t), then UB = 

2.00UE and U = UE + UB = 3.00UE. Now, UE is given by q C
2 2/ , where q is the charge 

on the capacitor at time t. The total energy U is given by Q C
2 2/ , where Q is the 

maximum charge on the capacitor. Thus, Q C q C
2 22 300 2/ . /=  or / 3.00q Q= =  

0.577 .Q  

 

(b) If the capacitor is fully charged at time t = 0, then the time-dependent charge on the 

capacitor is given by q Q t= cosω . This implies that the condition q = 0.577Q is satisfied 

when cosωt =0.557, or ωt = 0.955 rad. Since ω = 2π / T  (where T is the period of 

oscillation), t T T= 0 955 2. / π = 0.152 , or t / T = 0.152. 



 

 

 

90. (a) The computations are as follows: 

 

XL = 2πfd L = 60.82 Ω 
 

XC = (2πfd C)
−1

 =  32.88 Ω 
 

     Z = 202 + (61-33)2  = 34.36 Ω 
 

                I = ε /Z = 2.62 A            Irms = I/ 2  = 1.85 A . 

     

Therefore, VR rms = Irms R = 37.0 V. 

 

(b) VC rms = Irms XC = 60.9 V. 

 

(c) VL rms = Irms XL = 113 V. 

 

(d) Pavg = (Irms)
2
R = 68.6 W. 



 

 

 

91. (a) Eqs. 31-4 and 31-14 lead to 

 

61
1.27 10 C .Q I LC

ω
−= = = ×  

 

(b) We choose the phase constant in Eq. 31-12 to be φ = −π / 2 , so that i0 = I in Eq.  

31-15). Thus, the energy in the capacitor is 

 

U
q

C

Q

C
tE = =

2 2
2

2 2
(sin ) .ω  

 

Differentiating and using the fact that 2 sin θ cos θ = sin 2θ, we obtain 

 

dU

dt

Q

C
tE =

2

2
2ω ωsin .  

 

We find the maximum value occurs whenever sin 2 1ωt = , which leads (with n = odd 

integer) to 

 

t
n n n

LC= = = = × ×− −1

2
8 31 10 5

ω ω
π
2

π
4

π
4

. .s, 2.49 10 s,4  

 

The earliest time is 58.31 10 s.t
−= ×  

 

(c) Returning to the above expression for dUE/dt with the requirement that sin 2 1ωt = , 

we obtain 

 

dU

dt

Q

C

I LC

C

I

LC

I L

C

EF
HG
I
KJ = = = = × −

max

. .
2

2
2

3

2 2 2
5 44 10ω

d i
J / s  



 

 

 

92. (a) We observe that ω = 6597 rad/s, and, consequently, XL = 594 Ω and XC = 303 Ω. 

Since XL > XC, the phase angle is positive: 60.0φ = + ° . 

 

From Eq. 31-65, we obtain R
X XL C= − =

tan
.

φ
168Ω  

 

(b) Since we are already on the “high side” of resonance, increasing f will only decrease 

the current further, but decreasing f brings us closer to resonance and, consequently, large 

values of I. 

 

(c) Increasing L increases XL, but we already have XL > XC. Thus, if we wish to move 

closer to resonance (where XL must equal XC), we need to decrease the value of L. 

 

(d) To change the present condition of XC < XL to something closer to XC = XL (resonance, 

large current), we can increase XC. Since XC depends inversely on C, this means 

decreasing C. 



 

 

 

93. (a) We observe that ωd = 12566 rad/s. Consequently, XL = 754 Ω and XC = 199 Ω. 

Hence, Eq. 31-65 gives 

 

φ = −F
HG

I
KJ =−tan .1 122

X X

R

L C  rad .  

 

(b) We find the current amplitude from Eq. 31-60: 

 

I
R X X

m

L C

=
+ −

=ε
2 2

0 288
( )

. A .  



 

 

 

94. From Eq. 31-60, we have 

 

220
69 3

2

2 2V

3.00A

F
HG

I
KJ = + =R X XL L . .Ω  



 

 

 

95. From Eq. 31-4, with ω = = ×2 4 49 103πf . rad / s,  we obtain 

 

L
C

= = × −1
7 08 10

2

3

ω
. H.  



 

 

 

96. (a) From Eq. 31-4, with  ω = 2πf , C = 2.00 nF and L = 2.00 mH, we have 

 

41
7.96 10 Hz.

2
f

LC
= = ×

π
 

 

(b) The maximum current in the oscillator is 

 

i I
V

X
CvC

C

C

max max .= = = = × −ω 4 00 10 3 A.  

 

(c) Using Eq. 30-49, we find the maximum magnetic energy: 

 

2 8

,max max

1
1.60 10 J.

2
B

U Li
−= = ×  

 

(d) Adapting Eq. 30-35 to the notation of this chapter, 

 

max

max

di
v L

dt
=  

 

which yields a (maximum) time rate of change (for i) equal to 2.00×10
3
 A/s. 



 

 

 

97. Reading carefully, we note that the driving frequency of the source is permanently set 

at the resonance frequency of the initial circuit (with switches open); it is set at ωd = 

1/ LC = 1.58 × 10
4
 rad/s and does not correspond to the resonance frequency once the 

switches are closed.  In our table, below, Ceq is in µF, f is in kHz, and Req and Z are in Ω.  

Steady state conditions are assumed in calculating the current amplitude (which is in 

amperes); this I is the current through the source (or through the inductor), as opposed to 

the (generally smaller) current in one of the resistors.  Resonant frequencies f are 

computed with ω = 2πf.  Reducing capacitor and resistor combinations is explained in 

chapters 26 and 28, respectively. 

 

 

switch 

(a) 

Ceq(µF) 

(b) 

f(kHz) 

(c) 

Req(Ω) 

(d) 

Z(Ω) 

(e) 

I (A) 

S1 4.00 1.78 12.0 19.8 0.605 

S2 5.00 1.59 12.0 22.4 0.535 

S3 5.00 1.59 6.0 19.9 0.603 

S4 5.00 1.59 4.0 19.4 0.619 

 



 

 

 

98. (a) We note that we obtain the maximum value in Eq. 31-28 when we set 

 

t
fd

= = = =π
2ω

1

4

1

4 60
0 00417

( )
. s  

 

or 4.17 ms. The result is ε εm msin( sin ( ) .π / 2) = 90 36 0° = V .  

 

(b) At t = 4.17 ms, the current is 

 

sin ( ) sin (90 ( 24.3 )) (0.164A) cos(24.3 ) 0.1495A 0.150 A.
d

i I t Iω φ= − = ° − − ° = ° = ≈  

 

using Eq. 31-29 and the results of the Sample Problem. Ohm’s law directly gives 

 

(0.1495A)(200 ) 29.9V.
R

v iR= = Ω =  

 

(c) The capacitor voltage phasor is 90° less than that of the current. Thus, at t = 4.17 ms, 

we obtain 

 

sin(90 ( 24.3 ) 90 ) sin(24.3 ) (0.164A)(177 )sin(24.3 ) 11.9V.
C C C

v I X IX= ° − − ° − ° = ° = Ω ° =
 

(d) The inductor voltage phasor is 90° more than that of the current. Therefore, at t =  

4.17 ms, we find 

 

sin(90 ( 24.3 ) 90 ) sin(24.3 ) (0.164A)(86.7 )sin(24.3 )

5.85V.

L L L
v I X IX= ° − − ° + ° = − ° = − Ω °

= −
 

 

(e) Our results for parts (b), (c) and (d) add to give 36.0 V, the same as the answer for 

part (a). 



 

 

 

99. (a) Since T LC= =2 2π π/ ,ω  we may rewrite the power on the exponential factor 

as 

 

− = − = −π π
π

R
C

L

t

T
R

C

L

t

LC

Rt

L2 2
. 

 

Thus e e
Rt L R C L t T− −=/ / /

.2 π b g  

 

(b) Since −πR C L t T/ /b g  must be dimensionless (as is t/T), R C L/  must also be 

dimensionless. Thus, the SI unit of  C L/  must be Ω–1
. In other words, the SI unit for  

L C/  is Ω. 

 

(c) Since the amplitude of oscillation reduces by a factor of e e
R C L T T R C L− −=π π/ / /b g  after 

each cycle, the condition is equivalent to πR C L/ ,<< 1  or R L C<< / .  



 

 

 

100. (a) The curves are shown in the graph below.  We have also included here the 

impedance curve (which is asked for later in the problem statement). The curve sloping 

towards zero at high frequencies is XC, and the linearly rising line is XL.  The vertical axis 

is in ohms.  For simplicity of notation, we have omitted the “d” subscript from f. 

 

 
 

(b) The reactance curves cross each other (to the extent that we can estimate from our 

graph) at a value near 60 Hz.  A more careful calculation (setting the reactances equal to 

each other) leads to the resonance value: f = 61.26 ≈ 61 Hz. 

 

(c) Z is at its lowest value at resonance: Zresonance = R = 90 Ω. 

 

(d) As noted in our solution of part (b), the resonance value is  f = 61.26 ≈ 61 Hz. 
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