
 

 

1. In air, light travels at roughly c = 3.0 × 10
8
 m/s. Therefore, for t = 1.0 ns, we have a 

distance of 

 

d ct= = × × =−( . .30 10 0 308 9m / s) (1.0 10 s) m.  



 

 

 

2. (a) From Fig. 33-2 we find the smaller wavelength in question to be about 515 nm, 

 

(b) and the larger wavelength to be approximately 610 nm. 

 

(c) From Fig. 33-2 the wavelength at which the eye is most sensitive is about 555 nm.  

 

(d) Using the result in (c), we have 
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3. (a) The frequency of the radiation is 
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(b) The period of the radiation is 
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4. Since ∆λ << λ , we find ∆f is equal to 
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5. If f is the frequency and λ is the wavelength of an electromagnetic wave, then fλ = c. 

The frequency is the same as the frequency of oscillation of the current in the LC circuit 

of the generator. That is, f LC= 1 2/ π , where C is the capacitance and L is the 

inductance. Thus 
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This is exceedingly small. 



 

 

 

6. The emitted wavelength is 
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7. The amplitude of the magnetic field in the wave is 
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8. (a) The amplitude of the magnetic field is 
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(b) Since the -waveE oscillates in the z direction and travels in the x direction, we have Bx 

= Bz = 0. So, the oscillation of the magnetic field is parallel to the y axis. 

 

(c) The direction (+x) of the electromagnetic wave propagation is determined by E B× . If 

the electric field points in +z, then the magnetic field must point in the –y direction. 

 

With SI units understood, we may write 
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9. If P is the power and ∆t is the time interval of one pulse, then the energy in a pulse is 

 

E P t= = × × = ×−∆ 100 10 10 10 10 1012 9 5W s J.c hc h. .  



 

 

 

10. The intensity of the signal at Proxima Centauri is 
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11. The intensity is the average of the Poynting vector: 
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12. (a) The amplitude of the magnetic field in the wave is 
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(b) The intensity is the average of the Poynting vector: 
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13. (a) We use I = 
2

m
E /2µ0c to calculate Em: 
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(b) The magnetic field amplitude is therefore 
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14. (a) The power received is 
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(b) The power of the source would be 
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15. (a) The magnetic field amplitude of the wave is 
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(b) The intensity is 
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(c) The power of the source is 
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16. From the equation immediately preceding Eq. 33-12, we see that the maximum value 

of ∂B/∂t is ωBm . We can relate Bm to the intensity: Bm = Em /c = 2 cµoI  /c, and relate the 

intensity to the power P (and distance r) using Eq. 33-27.   Finally, we relate ω to 

wavelength λ using ω = kc = 2πc/λ.  Putting all this together, we obtain 

 

∂B

 ∂t max
  =  

2 µo P

4 π c
   

2 π c

 λ r 
  = 3.44 × 10

6 
T/s. 



 

 

 

17. (a) The average rate of energy flow per unit area, or intensity, is related to the electric 

field amplitude Em by I E c
m

= 2

02/ µ , so 
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(b) The amplitude of the magnetic field is given by 
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(c) At a distance r from the transmitter, the intensity is 2/ 2 ,I P r= π  where P is the power 

of the transmitter over the hemisphere having a surface area 22 rπ . Thus 
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18. (a) The expression Ey = Em sin(kx – ωt) it fits the requirement “at point P … [it] is 

decreasing with time” if we imagine P is just to the right (x > 0) of the coordinate origin 

(but at a value of x less than π/2k = λ/4 which is where there would be a maximum, at t = 

0).  It is important to bear in mind, in this description, that the wave is moving to the right.   

Specifically, xP =  
1

k
 sin

−1
(1/4)  so that Ey = (1/4) Em   at t = 0, there.  Also, Ey = 0 with 

our choice of expression for Ey .  Therefore, part (a) is answered simply by solving for xP. 

Since k = 2πf/c we find  
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(b) If we proceed to the right on the x axis (still studying this “snapshot” of the wave at t 

= 0) we find another point where Ey = 0 at a distance of one-half wavelength from the 

previous point where Ey = 0.  Thus (since λ = c/f ) the next point is at x = 
1

2
 λ = 
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2
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consequently a distance  c/2f  − xP  = 345 nm to the right of P. 



 

 

 

19. The plasma completely reflects all the energy incident on it, so the radiation pressure 

is given by pr = 2I/c, where I is the intensity. The intensity is I = P/A, where P is the 

power and A is the area intercepted by the radiation. Thus 
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20. The radiation pressure is 
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21. Since the surface is perfectly absorbing, the radiation pressure is given by pr = I/c, 

where I is the intensity. Since the bulb radiates uniformly in all directions, the intensity a 

distance r from it is given by I = P/4πr
2
, where P is the power of the bulb. Thus 
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22. (a) The radiation pressure produces a force equal to 

 

( ) ( ) ( ) ( )2
2 6

2 2 8

8

W/m 6.37 10 m
6.0 10 N.

2.998 10 m/s
r r e e

I
F p R R

c

3π 1.4×10 ×
= π = π = = ×

×
 

 

(b) The gravitational pull of the Sun on Earth is 
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which is much greater than Fr. 



 

 

 

23. (a) Since c f= λ ,  where λ is the wavelength and f is the frequency of the wave, 
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(b) The angular frequency is 
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(c) The angular wave number is 
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(d) The magnetic field amplitude is 
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(e) B  must be in the positive z direction when E  is in the positive y direction in order for 

E B×  to be in the positive x direction (the direction of propagation). 

 

(f) The intensity of the wave is 
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(g) Since the sheet is perfectly absorbing, the rate per unit area with which momentum is 

delivered to it is I/c, so 
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(h) The radiation pressure is 
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24. (a) We note that the cross section area of the beam is πd 
2
/4, where d is the diameter 

of the spot (d = 2.00λ). The beam intensity is 
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(b) The radiation pressure is 
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(c) In computing the corresponding force, we can use the power and intensity to eliminate 

the area (mentioned in part (a)). We obtain 
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(d) The acceleration of the sphere is 
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25. Let f be the fraction of the incident beam intensity that is reflected. The fraction 

absorbed is 1 – f. The reflected portion exerts a radiation pressure of 
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and the absorbed portion exerts a radiation pressure of 
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where I0 is the incident intensity. The factor 2 enters the first expression because the 

momentum of the reflected portion is reversed. The total radiation pressure is the sum of 

the two contributions: 
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To relate the intensity and energy density, we consider a tube with length  and cross-

sectional area A, lying with its axis along the propagation direction of an electromagnetic 

wave. The electromagnetic energy inside is U uA= ,  where u is the energy density. All 

this energy passes through the end in time t c= / ,  so the intensity is 
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Thus u = I/c. The intensity and energy density are positive, regardless of the propagation 

direction. For the partially reflected and partially absorbed wave, the intensity just outside 

the surface is I = I0 + f I0 = (1 + f )I0, where the first term is associated with the incident 

beam and the second is associated with the reflected beam. Consequently, the energy 

density is 
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the same as radiation pressure. 



 

 

 

26. The mass of the cylinder is ( / 4) ,m D Hρ π 2=  where D is the diameter of the cylinder. 

Since it is in equilibrium 
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We solve for H: 
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27. If the beam carries energy U away from the spaceship, then it also carries momentum 

p = U/c away. Since the total momentum of the spaceship and light is conserved, this is 

the magnitude of the momentum acquired by the spaceship. If P is the power of the laser, 

then the energy carried away in time t is U = Pt. We note that there are 86400 seconds in 

a day. Thus, p = Pt/c and, if m is mass of the spaceship, its speed is 
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28. We require Fgrav = Fr or 
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and solve for the area A: 
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29. Eq. 33-27 suggests that the slope in an intensity versus inverse-square-distance graph 

(I plotted versus r 
−2 

) is P/4π.  We estimate the slope to be about 20 (in SI units) which 

means the power is P = 4π(30) ≈  2.5 ×10
2
 W. 



 

 

 

30. (a) The upward force supplied by radiation pressure in this case (Eq. 33-32) must be 

equal to the magnitude of the pull of gravity (mg).  For a sphere, the “projected” area 

(which is a factor in Eq. 33-32) is that of a circle A = πr
2
 (not the entire surface area of 

the sphere) and the volume (needed because the mass is given by the density multiplied 

by the volume: m = ρV) is V = 
4

3
 πr

3
.   Finally, the intensity is related to the power P of the 

light source and another area factor 4πR
2
, given by Eq. 33-27.  In this way, with ρ = 

19000 in SI units, equating the forces leads to 
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(b) Any chance disturbance could move the sphere from being directly above the source, 

and then the two force vectors would no longer be along the same axis. 



 

 

 

31. The angle between the direction of polarization of the light incident on the first 

polarizing sheet and the polarizing direction of that sheet is θ1 = 70°. If I0 is the intensity 

of the incident light, then the intensity of the light transmitted through the first sheet is 
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The direction of polarization of the transmitted light makes an angle of 70° with the 

vertical and an angle of θ2 = 20° with the horizontal. θ2 is the angle it makes with the 

polarizing direction of the second polarizing sheet. Consequently, the transmitted 

intensity is 
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32. In this case, we replace I0 cos
2
 70° by 1

2 0I  as the intensity of the light after passing 

through the first polarizer. Therefore, 
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33. Let I0 be the intensity of the unpolarized light that is incident on the first polarizing 

sheet. The transmitted intensity is I I1
1
2 0= ,  and the direction of polarization of the 

transmitted light is θ1 = 40° counterclockwise from the y axis in the diagram. The 

polarizing direction of the second sheet is θ2 = 20° clockwise from the y axis, so the angle 

between the direction of polarization that is incident on that sheet and the polarizing 

direction of the sheet is 40° + 20° = 60°. The transmitted intensity is 
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and the direction of polarization of the transmitted light is 20° clockwise from the y axis. 

The polarizing direction of the third sheet is θ3 = 40° counterclockwise from the y axis. 

Consequently, the angle between the direction of polarization of the light incident on that 

sheet and the polarizing direction of the sheet is 20° + 40° = 60°. The transmitted 

intensity is 
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Thus, 3.1% of the light’s initial intensity is transmitted. 



 

 

 

34. After passing through the first polarizer the initial intensity I0 reduces by a factor of 

1/2. After passing through the second one it is further reduced by a factor of cos
2
 (π – 

θ1 – θ2) = cos
2
 (θ1 + θ2). Finally, after passing through the third one it is again reduced by 

a factor of cos
2
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2
 (θ2 + θ3). Therefore, 
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Thus, 0.045% of the light’s initial intensity is transmitted. 



 

 

 

35. (a) Since the incident light is unpolarized, half the intensity is transmitted and half is 

absorbed. Thus the transmitted intensity is I = 5.0 mW/m
2
. The intensity and the electric 

field amplitude are related by I E c
m

= 2

02/ ,µ so  
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(b) The radiation pressure is pr = Ia/c, where Ia is the absorbed intensity. Thus 
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36. We examine the point where the graph reaches zero: θ 2 = 160º.  Since the polarizers 

must be “crossed” for the intensity to vanish, then θ1 = 160º – 90º  = 70º.  Now we 

consider the case θ 2 = 90º (which is hard to judge from the graph).  Since θ1 is still equal 

to 70º, then the angle between the polarizers is now ∆θ  =20º.  Accounting for the 

“automatic” reduction (by a factor of one-half) whenever unpolarized light passes 

through any polarizing sheet, then our result is  
1

2
 cos

2
(∆θ) = 0.442 ≈ 44%. 



 

 

 

37. As the polarized beam of intensity I0 passes the first polarizer, its intensity is reduced 

to 2

0 cos .I θ  After passing through the second polarizer which makes a 90° angle with the 

first filter, the intensity is 2 2

0 0( cos )sin /10I I Iθ θ= =  which implies sin
2
 θ cos

2
 θ = 1/10, 

or sinθ cosθ = sin2θ /2 =1/ 10 . This leads to θ = 70° or 20°. 



 

 

 

38. We note the points at which the curve is zero (θ2 = 0° and 90°) in Fig. 33-44(b).  We 

infer that sheet 2 is perpendicular to one of the other sheets at θ2 = 0°, and that it is 

perpendicular to the other of the other sheets when θ2 = 90°.  Without loss of generality, 

we choose θ1 = 0°, θ3 = 90°.   Now, when θ2 = 30°, it will be ∆θ = 30° relative to sheet 1 

and ∆θ′ = 60° relative to sheet 3.  Therefore, 
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39. Let I0 be the intensity of the incident beam and f be the fraction that is polarized. Thus, 

the intensity of the polarized portion is f I0. After transmission, this portion contributes 

f I0 cos
2
 θ to the intensity of the transmitted beam. Here θ is the angle between the 

direction of polarization of the radiation and the polarizing direction of the filter. The 

intensity of the unpolarized portion of the incident beam is (1– f )I0 and after transmission, 

this portion contributes (1 – f )I0/2 to the transmitted intensity. Consequently, the 

transmitted intensity is 
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As the filter is rotated, cos
2
 θ varies from a minimum of 0 to a maximum of 1, so the 

transmitted intensity varies from a minimum of 
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to a maximum of 
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The ratio of Imax to Imin is 

 

I

I

f

f

max

min

.= +
−

1

1
 

 

Setting the ratio equal to 5.0 and solving for f, we get f = 0.67. 



 

 

 

40. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain 
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2
 I0 cos

2
 θ2cos

2
 (90° – θ2)  . 

 

Using trig identities, we rewrite this as 

 

I

I0
   =   

1

8
 sin

2
 (2θ2)   . 

 

(a) Therefore we find θ2 = 
1

2
 sin

–1
 0.40 = 19.6°.   

 

(b) Since the first expression we wrote is symmetric under the exchange: θ2 ↔ 90° – θ2, 

then we see that the angle's complement, 70.4°, is also a solution. 



 

 

 

41. (a) The fraction of light which is transmitted by the glasses is 

 

I

I

E

E

E

E E

E

E E

f f v

v h

v

v v0

2

0

2

2

2 2

2

2 22 3
016= =

+
=

+
=

( . )
. . 

 

(b) Since now the horizontal component of E  will pass through the glasses, 

 

I

I

E

E E

E

E E

f h

v h

v

v v0

2

2 2

2

2 2

2 3

2 3
084=

+
=

+
=( . )

( . )
. .  



 

 

 

42. We note the points at which the curve is zero (θ2 = 60° and 140°) in Fig. 33-44(b).  

We infer that sheet 2 is perpendicular to one of the other sheets at θ2 = 60°, and that it is 

perpendicular to the other of the other sheets when θ2 = 140°.  Without loss of generality, 

we choose θ1 = 150°, θ3 = 50°.   Now, when θ2 = 90°, it will be |∆θ | = 60° relative to 

sheet 1 and |∆θ′ | = 40° relative to sheet 3.  Therefore, 

 

If

 Ii

  = 
1

2
 (cos(∆θ))

2
 (cos(∆θ′ ))2

  =  7.3% . 



 

 

 

43. (a) The rotation cannot be done with a single sheet. If a sheet is placed with its 

polarizing direction at an angle of 90° to the direction of polarization of the incident 

radiation, no radiation is transmitted. It can be done with two sheets. We place the first 

sheet with its polarizing direction at some angle θ, between 0 and 90°, to the direction of 

polarization of the incident radiation. Place the second sheet with its polarizing direction 

at 90° to the polarization direction of the incident radiation. The transmitted radiation is 

then polarized at 90° to the incident polarization direction. The intensity is I0 cos
2
 θ cos

2
 

(90° – θ) = I0 cos
2
 θ sin

2
 θ, where I0 is the incident radiation. If θ is not 0 or 90°, the 

transmitted intensity is not zero. 

 

(b) Consider n sheets, with the polarizing direction of the first sheet making an angle of θ 

= 90°/n relative to the direction of polarization of the incident radiation. The polarizing 

direction of each successive sheet is rotated 90°/n in the same sense from the polarizing 

direction of the previous sheet. The transmitted radiation is polarized, with its direction of 

polarization making an angle of 90° with the direction of polarization of the incident 

radiation. The intensity is  

 

I = I0 cos
2n

 (90°/n). 

 

We want the smallest integer value of n for which this is greater than 0.60I0. We start 

with n = 2 and calculate cos
2n

 (90°/n). If the result is greater than 0.60, we have obtained 

the solution. If it is less, increase n by 1 and try again. We repeat this process, increasing 

n by 1 each time, until we have a value for which cos
2n

 (90°/n) is greater than 0.60. The 

first one will be n = 5. 



 

 

 

44. The angle of incidence for the light ray on mirror B is 90° – θ. So the outgoing ray r' 

makes an angle 90° – (90° – θ) = θ with the vertical direction, and is antiparallel to the 

incoming one. The angle between i and r' is therefore 180°. 



 

 

 

45. The law of refraction states 

 
n n1 2sin sin1 2θ θ= .  

 

We take medium 1 to be the vacuum, with n1 = 1 and θ1 = 32.0°. Medium 2 is the glass, 

with θ2 = 21.0°. We solve for n2: 

 

n n2 1
1

2

100
32 0

210
148= = °

°
F
HG

I
KJ =sin

sin
( . )

sin .

sin .
. .

θ
θ

 



 

 

 

46. (a) For the angles of incidence and refraction to be equal, the graph in Fig. 33-48(b) 

would consist of a “y = x” line at 45º in the plot.  Instead, the curve for material 1 falls 

under such a “y = x” line, which tells us that all refraction angles are less than incident 

ones.  With θ2 < θ1 Snell’s law implies n2 > n1 . 

 

(b) Using the same argument as in (a), the value of n2 for material 2 is also greater than that 

of water (n1). 

 

(c) It’s easiest to examine the right end-point of each curve. With θ1 = 90º and θ2 = 

¾(90º), and with n1 = 1.33 (Table 33-1) we find, from Snell’s law, n2 = 1.4 for material 1. 

 

(d) Similarly, with θ1 = 90º and θ2 = ½(90º), we obtain  n2 = 1.9. 



 

 

 

47. Note that the normal to the refracting surface is vertical in the diagram. The angle of 

refraction is θ2 = 90° and the angle of incidence is given by tan θ1 = L/D, where D is the 

height of the tank and L is its width. Thus 

 

1 1

1

1.10 m
tan tan 52.31 .

0.850 m

L

D
θ − −= = = °  

 

The law of refraction yields 

 

n n1 2
2

1

100
90

52 31
126= = °

°
F
HG

I
KJ =sin

sin
( . )

sin

sin .
. ,

θ
θ

 

 

where the index of refraction of air was taken to be unity. 



 

 

 

48. (a) For the angles of incidence and refraction to be equal, the graph in Fig. 33-48(b) 

would consist of a “y = x” line at 45º in the plot. Instead, the curve for material 1 falls 

under such a “y = x” line, which tells us that all refraction angles are less than incident 

ones.  With θ2 < θ1 Snell’s law implies n2 > n1 . 

 

(b) Using the same argument as in (a), the value of n2 for material 2 is also greater than that 

of water (n1). 

 

(c) It’s easiest to examine the topmost point of each curve.  With θ2 = 90º and θ1 = ½(90º), 

and with n2 = 1.33 (Table 33-1) we find  n1 = 1.9 from Snell’s law. 

 

(d) Similarly, with θ2 = 90º and θ1 = ¾(90º), we obtain  n1 = 1.4. 



 

 

 

49. Consider a ray that grazes the top of the pole, as shown in the diagram that follows.  

 

 
 

Here θ1 = 90° – θ = 35°, 1 0 50= . m,  and 2 150= . m. The length of the shadow is x + L. 

x is given by  

 
x = = ° =1 1 0 50 0 35tan ( . .θ m) tan 35 m. 

 

According to the law of refraction, n2 sin θ2 = n1 sin θ1. We take n1 = 1 and n2 = 1.33 

(from Table 33-1). Then, 

 

θ θ
2

1 1

2

1 350

133
2555=

F
HG
I
KJ = °F

HG
I
KJ = °− −sin

sin
sin

sin .

.
. .

n
 

 

L is given by 

 
L = = ° =2 2 150 0 72tan ( . .θ m) tan 25.55 m. 

 

The length of the shadow is 0.35 m + 0.72 m = 1.07 m. 



 

 

 

50. (a) A simple implication of Snell’s law is that θ2 = θ1 when n1 = n2.  Since the angle of 

incidence is shown in Fig. 33-52(a) to be 30º, then we look for a point in Fig. 33-52(b) 

where θ2 = 30º.  This seems to occur when n2 = 1.7.  By inference, then, n1 = 1.7. 

 

(b) From 1.7sin(60º) = 2.4sin(θ2) we get θ2 = 38°.  



 

 

 

51. (a) Approximating n = 1 for air, we have 

 
n1 1 5 51 56 9sin ( ) sin .θ θ θ= ° =  

 

and with the more accurate value for nair in Table 33-1, we obtain 56.8°. 

 

(b) Eq. 33-44 leads to 

 
n n n n1 1 2 2 3 3 4 4sin sin sin sinθ θ θ θ= = =  

 

so that 

 

1 1
4 1

4

sin sin 35.3 .
n

n
θ θ−= = °  



 

 

 

52. (a) We use subscripts b and r for the blue and red light rays.  Snell’s law gives  

 

θ2b = sin
−1 1

1.343
 sin(70°)  = 44.403° 

θ2r = sin
−1 1

1.331
 sin(70°)  = 44.911° 

 

for the refraction angles at the first surface (where the normal axis is vertical).  These rays 

strike the second surface (where A is) at complementary angles to those just calculated 

(since the normal axis is horizontal for the second surface).  Taking this into 

consideration, we again use Snell’s law to calculate the second refractions (with which 

the light re-enters the air):  

 

θ3b = sin
−1

[1.343sin(90°− θ2b)] = 73.636° 

θ3r = sin
−1

[1.331sin(90°− θ2r)] = 70.497° 

 

which differ by 3.1° (thus giving a rainbow of angular width 3.1°). 

 

(b) Both of the refracted rays emerges from the bottom side with the same angle (70°) 

with which they were incident on the topside (the occurrence of an intermediate reflection 

[from side 2] does not alter this overall fact: light comes into the block at the same angle 

that it emerges with from the opposite parallel side).  There is thus no difference (the 

difference is 0°) and thus there is no rainbow in this case. 



 

 

 

53. We label the light ray’s point of entry A, the vertex of the prism B, and the light ray’s 

exit point C. Also, the point in Fig. 33-55 where ψ is defined (at the point of intersection 

of the extrapolations of the incident and emergent rays) is denoted D. The angle indicated 

by ADC is the supplement of ψ, so we denote it ψs = 180° – ψ. The angle of refraction in 

the glass is θ θ2
1=
n

sin .  The angles between the interior ray and the nearby surfaces is the 

complement of θ2, so we denote it θ2c = 90° – θ2. Now, the angles in the triangle ABC 

must add to 180°: 

 

180 2
2

2 2° = + =θ φ θ φ
c

.  

 

Also, the angles in the triangle ADC must add to 180°: 

 

( )2 s 2 s

1
180 2 90

2
θ θ ψ θ θ ψ° = − + = ° + −  

 

which simplifies to θ θ ψ= +2
1
2

.  Combining this with our previous result, we find 

θ φ ψ= +1
2 b g.  Thus, the law of refraction yields 

 

n = =
+sin

sin

sin

sin
.

θ
θ

φ ψ
φ

b g
b g

b gc h
b g2

1
2

1
2

 



 

 

 

54. The critical angle is θ
c

n
= F
HG
I
KJ = F

HG
I
KJ = °− −sin sin

.
.1 11 1

18
34  



 

 

 

55. Reference to Fig. 33-24 may help in the visualization of why there appears to be a 

“circle of light” (consider revolving that picture about a vertical axis). The depth and the 

radius of that circle (which is from point a to point f in that figure) is related to the 

tangent of the angle of incidence. Thus, the diameter D of the circle in question is 

 

D h h
n

c

w

= =
F
HG
I
KJ

L
NM

O
QP

= F
HG
I
KJ

L
NM

O
QP

=− −2 2
1

2 80 0
1

133
1821 1tan tan sin . tan sin

.
θ cm cm.b g  



 

 

 

56. (a) We note that the complement of the angle of refraction (in material 2) is the 

critical angle.  Thus, 

 

n1 sin θ = n2 cos θc = n2 1 - 
n3

n2

2

  =  (n2)
2
 - (n3)

2
 

 

leads to θ = 26.8°. 

 

(b) Increasing θ leads to a decrease of the angle with which the light strikes the interface 

between materials 2 and 3, so it becomes greater than the critical angle; therefore, there 

will be some transmission of light into material 3. 



 

 

 

57. (a) In the notation of this problem, Eq. 33-47 becomes 

 

θ
c

n

n
= −sin 1 3

2

 

 

which yields n3 =  1.39 for θc = φ = 60°. 

 

(b) Applying Eq. 33-44 law to the interface between material 1 and material 2, we have 

 
n n2 130sin sin° = θ  

 

which yields θ = 28.1°. 

 

(c) Decreasing θ will increase φ and thus cause the ray to strike the interface (between 

materials 2 and 3) at an angle larger than θc. Therefore, no transmission of light into 

material 3 can occur. 



 

 

 

58. (a) The angle of incidence θB,1 at B is the complement of the critical angle at A; its 

sine is 

 

sin θB,1 = cos θc = 1 - 
n3

n2

2

 

 

so that the angle of refraction θB,2 at B becomes 

 

θB,2 = sin
−1

 
n2

n3
 1 - 

n3

n2

2

 = sin
−1 n2

n3

2

 - 1  =35.1° . 

 

(b)  From n1 sin θ = n2 sin θc = n2(n3/n2), we find 

 

θ  = sin
−1

 
n3

n1
  = 49.9° . 

 

(c)  The angle of incidence θA,1 at A is the complement of the critical angle at B; its sine is 

 

sin θA,1= cos θc  =  1 - 
n3

n2

2
 

 

so that the angle of refraction θA,2 at A becomes 

 

θA,2 = sin
−1

 
n2

n3
 1 - 

n3

n2

2
 = sin

−1
 

n2

n3

2
 - 1 = 35.1° . 

 

(d)  From 

 

n1 sin θ  =  n2 sin θA,1 = n2 1 - 
n3

n2

2
 = (n2)

2
 - (n3)

2
 

 

we find 

 

θ  = sin
−1

 
(n2)

2
 - (n3)

2

n1
  = 26.1°  . 

 

(e) The angle of incidence θB,1 at B is the complement of the Brewster angle at A; its sine 

is 

 

sin θB,1  = 
n2

(n2)
2
 + (n3)

2 

 



 

so that the angle of refraction θB,2 at B becomes 

 

θB,2 =  sin
−1

 
(n2)

2

n3 (n2)
2
 + (n3)

2  = 60.7°  . 

 

(f) From 

 

n1 sin θ  =  n2 sin θBrewster  =  n2 
n3

(n2)
2
 + (n3)

2 

 

we find 

 

θ  = sin
−1

 
n2n3

n1 (n2)
2
 + (n3)

2  = 35.3°  . 



 

 

 

59. When examining Fig. 33-59, it is important to note that the angle (measured from the 

central axis) for the light ray in air, θ, is not the angle for the ray in the glass core, which 

we denote θ ' . The law of refraction leads to 

 

1

1
sin sin

n
θ θ′ =  

 

assuming air 1.n = The angle of incidence for the light ray striking the coating is the 

complement of θ ', which we denote as θ'comp and recall that 

 

sin cos sin .′ = ′ = − ′θ θ θcomp 1 2  

 

In the critical case, θ'comp must equal θc specified by Eq. 33-47. Therefore, 

 

n

n n

2

1

2

1

2

1 1
1= ′ = − ′ = −
F
HG

I
KJsin sin sinθ θ θcomp  

 

which leads to the result:  sin .θ = −n n1

2

2

2  With n1 = 1.58 and n2 = 1.53, we obtain 

 

θ = − = °−sin . . . .1 2 2158 153 23 2c h  



 

 

 

60. (a) We note that the upper-right corner is at an angle (measured from the point where 

the light enters, and measured relative to a normal axis established at that point [the 

normal at that point would be horizontal in Fig. 33-60) is at tan
−1

(2/3) = 33.7º.  The angle 

of refraction is given by 

nair sin 40º = 1.56 sin θ2 

 

which yields θ2 = 24.33º if we use the common approximation nair = 1.0, and yields θ2 = 

24.34º if we use the more accurate value for nair found in Table 33-1. The value is less 

than 33.7º which means that the light goes to side 3. 

 

(b) The ray strikes a point on side 3 which is 0.643 cm below that upper-right corner, and 

then (using the fact that the angle is symmetrical upon reflection) strikes the top surface 

(side 2) at a point 1.42 cm to the left of that corner.  Since 1.42 cm is certainly less than 3 

cm we have a self-consistency check to the effect that the ray does indeed strike side 2 as 

its second reflection (if we had gotten 3.42 cm instead of 1.42 cm, then the situation 

would be quite different). 

 

(c) The normal axes for sides 1 and 3 are both horizontal, so the angle of incidence (in the 

plastic) at side 3 is the same as the angle of refraction was at side 1.  Thus,  



 

 

 

1.56 sin 24.3º = nair sin θair         θair = 40° . 

 

(d) It strikes the top surface (side 2) at an angle (measured from the normal axis there, 

which in this case would be a vertical axis) of  90º  − θ2 = 66º which is much greater than 

the critical angle for total internal reflection (sin
−1

(nair /1.56 ) = 39.9º).  Therefore, no 

refraction occurs when the light strikes side 2. 

 

(e) In this case, we have nair sin 70º = 1.56 sin θ2 which yields θ2 = 37.04º if we use the 

common approximation nair = 1.0, and yields θ2 = 37.05º if we use the more accurate 

value for nair found in Table 33-1.  This is greater than the 33.7º mentioned above 

(regarding the upper-right corner), so the ray strikes side 2 instead of side 3. 

 

(f) After bouncing from side 2 (at a point fairly close to that corner) to goes to side 3. 

 

(g) When it bounced from side 2, its angle of incidence (because the normal axis for side 

2 is orthogonal to that for side 1) is 90º  − θ2 = 53º which is much greater than the critical 

angle for total internal reflection (which, again, is sin
−1

(nair /1.56 ) = 39.9º).  Therefore, no 

refraction occurs when the light strikes side 2.  

 

(h) For the same reasons implicit in the calculation of part (c), the refracted ray emerges 

from side 3 with the same angle (70°) that it entered side 1 at (we see that the occurrence 

of an intermediate reflection [from side 2] does not alter this overall fact: light comes into 

the block at the same angle that it emerges with from the opposite parallel side. 



 

 

 

61. (a) No refraction occurs at the surface ab, so the angle of incidence at surface ac is 

90° – φ. For total internal reflection at the second surface, ng sin (90° – φ) must be greater 

than na. Here ng is the index of refraction for the glass and na is the index of refraction for 

air. Since sin (90° – φ) = cos φ, we want the largest value of φ for which ng cos φ ≥ na. 

Recall that cos φ decreases as φ increases from zero. When φ has the largest value for 

which total internal reflection occurs, then ng cos φ = na, or 

 

φ =
F
HG
I
KJ = F

HG
I
KJ = °− −cos cos

.
. .1 1 1

152
48 9

n

n

a

g

 

 

The index of refraction for air is taken to be unity. 

 

(b) We now replace the air with water. If nw = 1.33 is the index of refraction for water, 

then the largest value of φ for which total internal reflection occurs is 

 

φ =
F
HG
I
KJ = F

HG
I
KJ = °− −cos cos

.

.
. .1 1 133

152
29 0

n

n

w

g

 



 

 

 

62. (a) We refer to the entry point for the original incident ray as point A (which we take 

to be on the left side of the prism, as in Fig. 33-55), the prism vertex as point B, and the 

point where the interior ray strikes the right surface of the prism as point C. The angle 

between line AB and the interior ray is β (the complement of the angle of refraction at the 

first surface), and the angle between the line BC and the interior ray is α (the complement 

of its angle of incidence when it strikes the second surface). When the incident ray is at 

the minimum angle for which light is able to exit the prism, the light exits along the 

second face. That is, the angle of refraction at the second face is 90°, and the angle of 

incidence there for the interior ray is the critical angle for total internal reflection. Let θ1 

be the angle of incidence for the original incident ray and θ2 be the angle of refraction at 

the first face, and let θ3 be the angle of incidence at the second face. The law of refraction, 

applied to point C, yields n sin θ3 = 1, so  

 

sin θ3 = 1/n = 1/1.60 = 0.625  θ3 = 38.68°. 

 

The interior angles of the triangle ABC must sum to 180°, so α + β = 120°. Now, α = 

90° – θ3 = 51.32°, so β = 120° – 51.32° = 69.68°. Thus, θ2 = 90° – β = 21.32°. The law of 

refraction, applied to point A, yields  

 

sin θ1 = n sin θ2 = 1.60 sin 21.32° = 0.5817. 

 

Thus θ1 = 35.6°. 

 

(b) We apply the law of refraction to point C. Since the angle of refraction there is the 

same as the angle of incidence at A, n sin θ3 = sin θ1. Now, α + β = 120°, α = 90° – θ3, 

and β = 90° – θ2, as before. This means θ2 + θ3 = 60°. Thus, the law of refraction leads to 

 

sin sin sin sin cos cos sinθ θ θ θ θ1 2 1 2 260 60 60= °− = ° − °n n nb g  

 

where the trigonometric identity sin (A – B) = sin A cos B – cos A sin B is used. Next, we 

apply the law of refraction to point A: 

 

sin sin sin / sinθ θ θ θ1 2 2 11= =n nb g  

 

which yields  cos sin / sin .θ θ θ2

2

2

2 2

11 1 1= − = − nc h  Thus, 

 

sin sin / sin cos sinθ θ θ1

2 2

1 160 1 1 60= ° − − °n nb g  

or 

 

1 60 601

2 2

1+ ° = ° −cos sin sin sin .b g θ θn  

 



 

Squaring both sides and solving for sin θ1, we obtain 

 

sin
sin

cos sin

. sin

cos sin
.θ 1 2 2 2 2

60

1 60 60

160 60

1 60 60
0 80= °

+ ° + °
= °

+ ° + °
=n

b g b g
 

 

and θ1 = 53.1°. 



 

 

 

63. (a) A ray diagram is shown below.  

 

 
 

Let θ1 be the angle of incidence and θ2 be the angle of refraction at the first surface. Let 

θ3 be the angle of incidence at the second surface. The angle of refraction there is θ4 = 

90°. The law of refraction, applied to the second surface, yields n sin θ3 = sin θ4 = 1. As 

shown in the diagram, the normals to the surfaces at P and Q are perpendicular to each 

other. The interior angles of the triangle formed by the ray and the two normals must sum 

to 180°, so θ3 = 90° – θ2 and  

 

sin sin cos sin .θ θ θ θ3 2 2

2

290 1= °− = = −b g  

 

According to the law of refraction, applied at Q, n 1 12

2− =sin .θ  The law of refraction, 

applied to point P, yields sin θ1 = n sin θ2, so sin θ2 = (sin θ1)/n and 

 

n
n

1 1
2

1

2
− =sin

.
θ

 

 

Squaring both sides and solving for n, we get 

 

n = +1 2

1sin .θ  

 

(b) The greatest possible value of sin
2
 θ1 is 1, so the greatest possible value of n is 

nmax . .= =2 141  

 

(c) For a given value of n, if the angle of incidence at the first surface is greater than θ1, 

the angle of refraction there is greater than θ2 and the angle of incidence at the second 

face is less than θ3 (= 90° – θ2). That is, it is less than the critical angle for total internal 

reflection, so light leaves the second surface and emerges into the air. 

 



 

(d) If the angle of incidence at the first surface is less than θ1, the angle of refraction there 

is less than θ2 and the angle of incidence at the second surface is greater than θ3. This is 

greater than the critical angle for total internal reflection, so all the light is reflected at Q. 



 

 

 

64. (a) We use Eq. 33-49: θ
B w

n= = = °− −tan tan1 1 133 531( . ) . .  

 

(b) Yes, since nw depends on the wavelength of the light. 



 

 

 

65. The angle of incidence θB for which reflected light is fully polarized is given by Eq. 

33-48 of the text. If n1 is the index of refraction for the medium of incidence and n2 is the 

index of refraction for the second medium, then  

 
1 1

2 1tan ( / ) tan (1.53/1.33) 49.0 .
B

n nθ − −= = = °  



 

 

 

66. Since the layers are parallel, the angle of refraction regarding the first surface is the 

same as the angle of incidence regarding the second surface (as is suggested by the 

notation in Fig. 33-63). We recall that as part of the derivation of Eq. 33-49 (Brewster’s 

angle), the refracted angle is the complement of the incident angle: 

 
θ θ θ2 1 190= = °−( ) .

c
 

 

We apply Eq. 33-49 to both refractions, setting up a product: 

 

3 32
B1 2 B 2 3 1 2

1 2 1

(tan ) (tan )      (tan )(tan ).
n nn

n n n
θ θ θ θ→ →= =  

 

Now, since θ2 is the complement of θ1 we have 

 

tan tan ( )
tan

.θ θ
θ2 1

1

1= =
c

 

 

Therefore, the product of tangents cancel and we obtain n3/n1 = 1. Consequently, the third 

medium is air: n3 = 1.0. 



 

 

 

67. Since some of the angles in Fig. 33-64 are measured from vertical axes and some are 

measured from horizontal axes, we must be very careful in taking differences.  For 

instance, the angle difference between the first polarizer struck by the light and the 

second is 110º (or 70º depending on how we measure it; it does not matter in the final 

result whether we put ∆θ1 = 70º or put ∆θ1 = 110º).  Similarly, the angle difference 

between the second and the third is ∆θ2 = 40º, and between the third and the fourth is ∆θ3 

= 40º, also.  Accounting for the “automatic” reduction (by a factor of one-half) whenever 

unpolarized light passes through any polarizing sheet, then our result is the incident 

intensity multiplied by 

 
1

2
 cos

2
(∆θ1) cos

2
(∆θ2) cos

2
(∆θ3). 

 

Thus, the light that emerges from the system has intensity equal to 0.50 W/m
2
. 



 

 

 

68. (a) Suppose there are a total of N transparent layers (N = 5 in our case). We label 

these layers from left to right with indices 1, 2, …, N. Let the index of refraction of the air 

be n0. We denote the initial angle of incidence of the light ray upon the air-layer boundary 

as θi and the angle of the emerging light ray as θf. We note that, since all the boundaries 

are parallel to each other, the angle of incidence θj at the boundary between the j-th and 

the (j + 1)-th layers is the same as the angle between the transmitted light ray and the 

normal in the j-th layer. Thus, for the first boundary (the one between the air and the first 

layer) 

 
n

n

i1

0 1

= sin

sin
,

θ
θ

 

 

for the second boundary 

 
n

n

2

1

1

2

= sin

sin
,

θ
θ

 

 

and so on. Finally, for the last boundary 

 
n

n
N

N

f

0 = sin

sin
,

θ
θ

 

 

Multiplying these equations, we obtain 

 

n

n

n

n

n

n

n

n
N

i N

f

1

0

2

1

3

2

0

1
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2
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3
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I
KJ
F
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I
KJ
F
HG
I
KJ
F
HG
I
KJ =
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ

sin

sin

sin

sin

sin

sin

sin

sin
.

θ
θ

θ
θ

θ
θ

θ
θ

 

 

We see that the L.H.S. of the equation above can be reduced to n0/n0 while the R.H.S. is 

equal to sinθi/sinθf. Equating these two expressions, we find 

 

sin sin sin ,θ θ θ
f i i

n

n
=
F
HG
I
KJ =0

0

 

 

which gives θi = θf. So for the two light rays in the problem statement, the angle of the 

emerging light rays are both the same as their respective incident angles. Thus, θf = 0 for 

ray a, 

 

(b) and θf = 20° for ray b. 

 

(c) In this case, all we need to do is to change the value of n0 from 1.0 (for air) to 1.5 (for 

glass). This does not change the result above. That is, we still have θf = 0 for ray a, 

 



 

(d) and θf = 20° for ray b. 

 

Note that the result of this problem is fairly general. It is independent of the number of 

layers and the thickness and index of refraction of each layer. 



 

 

 

69. (a) The Sun is far enough away that we approximate its rays as “parallel” in this 

Figure. That is, if the sunray makes angle θ from horizontal when the bird is in one 

position, then it makes the same angle θ when the bird is any other position. Therefore, 

its shadow on the ground moves as the bird moves: at 15 m/s. 

 

(b) If the bird is in a position, a distance x > 0 from the wall, such that its shadow is on 

the wall at a distance 0 ≥ y ≥ h from the top of the wall, then it is clear from the Figure 

that tanθ = y/x. Thus, 

 

dy

dt

dx

dt
= = − ° = −tan ( .θ 15 8 7m / s) tan 30 m / s,  

 

which means that the distance y (which was measured as a positive number downward 

from the top of the wall) is shrinking at the rate of 8.7 m/s. 

 

(c) Since tanθ grows as 0 ≤ θ < 90° increases, then a larger value of |dy/dt| implies a 

larger value of θ. The Sun is higher in the sky when the hawk glides by. 

 

(d) With |dy/dt| = 45 m/s, we find 

 

v
dx

dt

dy

dt

hawk = =
tanθ

 

 

so that we obtain θ = 72° if we assume vhawk = 15 m/s. 



 

 

 

70. (a) From  n1sinθ1 = n2sinθ2  and  n2sinθ2 = n3sinθ3, we find n1sinθ1 = n3sinθ3. This has 

a simple implication: that θ1 =θ3 when n1 = n3. Since we are given θ1 = 40º in Fig. 33-

67(a) then we look for a point in Fig. 33-67(b) where θ3 = 40º.  This seems to occur at n3 

=  1.6, so we infer that n1 = 1.6. 

 

(b) Our first step in our solution to part (a) shows that information concerning n2 

disappears (cancels) in the manipulation.  Thus, we cannot tell; we need more 

information. 

 

(c) From 1.6sin70° = 2.4sinθ3 we obtain θ3 = 39°. 



 

 

 

71. (a) Reference to Fig. 33-24 may help in the visualization of why there appears to be a 

“circle of light” (consider revolving that picture about a vertical axis). The depth and the 

radius of that circle (which is from point a to point f in that figure) is related to the 

tangent of the angle of incidence. The diameter of the circle in question is given by d = 

2h tan θc. For water n = 1.33, so Eq. 33-47 gives sin θc = 1/1.33, or θc = 48.75°. Thus, 

 

2 tan 2(2.00 m)(tan 48.75 ) 4.56 m.
c

d h θ= = ° =  

 

(b) The diameter d of the circle will increase if the fish descends (increasing h). 



 

 

 

72. (a) Snell’s law gives   nair sin(50º) = n2b sin θ2b and nair sin(50º) = n2r sin θ2r where we 

use subscripts b and r for the blue and red light rays.  Using the common approximation 

for air’s index (nair = 1.0) we find the two angles of refraction to be 30.176° and 30.507°.  

Therefore, ∆θ = 0.33°. 

 

(b) Both of the refracted rays emerges from the other side with the same angle (50°) with 

which they were incident on the first side (generally speaking, light comes into a block at 

the same angle that it emerges with from the opposite parallel side).  There is thus no 

difference (the difference is 0°) and thus there is no dispersion in this case. 



 

 

 

73. (a) The wave is traveling in the –y direction (see §16-5 for the significance of the 

relative sign between the spatial and temporal arguments of the wave function). 

 

(b) Figure 33-5 may help in visualizing this. The direction of propagation (along the y 

axis) is perpendicular to B  (presumably along the x axis, since the problem gives Bx and 

no other component) and both are perpendicular to E  (which determines the axis of 

polarization). Thus, the wave is z-polarized. 

 

(c) Since the magnetic field amplitude is Bm = 4.00 µT, then (by Eq. 33-5) Em = 1199 

V/m 31.20 10  V/m≈ × . Dividing by 2  yields Erms = 848 V/m. Then, Eq. 33-26 gives 

 

I
I

c
E= = ×

µ0

3191 10rms

2 2W / m. .  

 

(d) Since kc = ω (equivalent to c = f λ), we have 

 

k
c

= × = × −2 00 10
6 67 10

15
6.

. .m 1  

 

Summarizing the information gathered so far, we have (with SI units understood) 

 

( ) ( )( )3 6 15(1.2 10 )sin 6.67 10 2.00 10 .
z

E y t= × × + ×  

 

(e) λ = 2π/k = 942 nm. 

 

(f) This is an infrared light. 



 

 

 

74. (a) The condition (in Eq. 33-44) required in the critical angle calculation is θ3 = 90°. 

Thus (with θ2 = θc, which we don’t compute here), 

 
n n n1 1 2 2 3 3sin sin sinθ θ θ= =  

 

leads to θ1 = θ = sin
–1

 n3/n1 = 54.3°. 

 

(b) Yes. Reducing θ leads to a reduction of θ2 so that it becomes less than the critical 

angle; therefore, there will be some transmission of light into material 3. 

 

(c) We note that the complement of the angle of refraction (in material 2) is the critical 

angle. Thus, 

 

n n n
n

n
n n

c1 2 2
3

2

2

2

2

3

21sin =θ θcos = −
F
HG
I
KJ = −  

 

leads to θ = 51.1°. 

 

(d) No. Reducing θ leads to an increase of the angle with which the light strikes the 

interface between materials 2 and 3, so it becomes greater than the critical angle. 

Therefore, there will be no transmission of light into material 3. 



 

 

 

75. Let θ1 = 45° be the angle of incidence at the first surface and θ2 be the angle of 

refraction there. Let θ3 be the angle of incidence at the second surface. The condition for 

total internal reflection at the second surface is n sin θ3 ≥ 1. We want to find the smallest 

value of the index of refraction n for which this inequality holds. The law of refraction, 

applied to the first surface, yields n sin θ2 = sin θ1. Consideration of the triangle formed 

by the surface of the slab and the ray in the slab tells us that θ3 = 90° – θ2. Thus, the 

condition for total internal reflection becomes 1 ≤ n sin(90° – θ2) = n cos θ2. Squaring 

this equation and using sin
2
 θ2 + cos

2
 θ2 = 1, we obtain 1 ≤ n

2
 (1 – sin

2
 θ2). Substituting 

sin θ2 = (1/n) sin θ1 now leads to 

 

1 12
2

1

2

2 2

1≤ −
F
HG

I
KJ = −n

n
n

sin
sin .

θ θ  

 

The largest value of n for which this equation is true is given by 1 = n
2
 – sin

2
 θ1. We 

solve for n: 

 

n = + = + ° =1 1 45 1222

1

2sin sin . .θ  



 

 

 

76. We write m = ρς  where ς = 4 33πR  is the volume. Plugging this into F = ma and 

then into Eq. 33-32 (with A = πR
2
, assuming the light is in the form of plane waves), we 

find 

 

ρ 4

3

3 2π πR
a

I R

c
= . 

 

This simplifies to 

 

a
I

cR
= 3

4ρ
 

 

which yields a = 1.5 × 10
–9

 m/s
2
. 



 

 

 

77. (a) The first contribution to the overall deviation is at the first refraction: 

δθ θ θ1 = −
i r

.  The next contribution to the overall deviation is the reflection. Noting that 

the angle between the ray right before reflection and the axis normal to the back surface 

of the sphere is equal to θr, and recalling the law of reflection, we conclude that the angle 

by which the ray turns (comparing the direction of propagation before and after the 

reflection) is δθ θ2 180 2= °−
r
.  The final contribution is the refraction suffered by the ray 

upon leaving the sphere: δθ θ θ3 = −
i r

 again. Therefore, 

 

dev 1 2 3 180 2 4 .
i r

θ δθ δθ δθ θ θ= + + = ° + −  

 

(b) We substitute θ θ
r n i

= −sin ( sin )1 1  into the expression derived in part (a), using the two 

given values for n. The higher curve is for the blue light. 

 

 
 

(c) We can expand the graph and try to estimate the minimum, or search for it with a 

more sophisticated numerical procedure. We find that the θdev minimum for red light is 

137.63° ≈ 137.6°, and this occurs at θi = 59.52°. 

 

(d) For blue light, we find that the θdev minimum is 139.35° ≈ 139.4°, and this occurs at θi 

= 59.52°. 

 

(e) The difference in θdev in the previous two parts is 1.72°. 



 

 

 

78. (a) The first contribution to the overall deviation is at the first refraction: 

δθ θ θ1 = −
i r

.  The next contribution(s) to the overall deviation is (are) the reflection(s). 

Noting that the angle between the ray right before reflection and the axis normal to the 

back surface of the sphere is equal to θr, and recalling the law of reflection, we conclude 

that the angle by which the ray turns (comparing the direction of propagation before and 

after [each] reflection) is 180 2 .
r r

δθ θ= ° −  Thus, for k reflections, we have δθ θ2 = k
r
 to 

account for these contributions. The final contribution is the refraction suffered by the ray 

upon leaving the sphere: δθ θ θ3 = −
i r

 again. Therefore, 

 

dev 1 2 3 2( ) (180 2 ) (180 ) 2 2( 1) .
i r r i r

k k kθ δθ δθ δθ θ θ θ θ θ= + + = − + ° − = ° + − +  

 

(b) For k = 2 and n = 1.331 (given in problem 67), we search for the second-order 

rainbow angle numerically. We find that the θdev minimum for red light is 230.37° 

230.4≈ ° , and this occurs at θi = 71.90°. 

 

(c) Similarly, we find that the second-order θdev minimum for blue light (for which n = 

1.343) is 233.48° 233.5≈ ° , and this occurs at θi = 71.52°. 

 

(d) The difference in θdev in the previous two parts is approximately 3.1°. 

 

(e) Setting k = 3, we search for the third-order rainbow angle numerically. We find that 

the θdev minimum for red light is 317.5°, and this occurs at θi = 76.88°. 

 

(f) Similarly, we find that the third-order θdev minimum for blue light is 321.9°, and this 

occurs at θi = 76.62°. 

 

(g) The difference in θdev in the previous two parts is 4.4°. 



 

 

 

79. (a) and (b) At the Brewster angle, θincident + θrefracted = θB + 32.0° = 90.0°, so θB = 

58.0° and nglass = tan θB = tan 58.0° = 1.60. 



 

 

 

80. We take the derivative with respect to x of both sides of Eq. 33-11: 

 
2 2

2
.

E E B B

x x x x t x t

∂ ∂ ∂ ∂ ∂ ∂= = − = −
∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 

Now we differentiate both sides of Eq. 33-18 with respect to t: 

 

∂
∂

− ∂
∂
F
HG
I
KJ = − ∂

∂ ∂
= ∂

∂
∂
∂

F
HG

I
KJ = ∂

∂t

B

x

B

x t t

E

t

E

t

2

0 0 0 0

2

2
ε µ ε µ .  

 

Substituting 2 2 2
E x B x t∂ ∂ = −∂ ∂ ∂  from the first equation above into the second one, we 

get 

 
2 2 2 2 2

2

0 0 2 2 2 2 2

0 0

1
        .

E E E E E
c

t x t x x
ε µ

ε µ
∂ ∂ ∂ ∂ ∂= = =
∂ ∂ ∂ ∂ ∂

  

 

Similarly, we differentiate both sides of Eq. 33-11 with respect to t 

 
2 2

2
,

E B

x t t

∂ ∂= −
∂ ∂ ∂

 

 

and differentiate both sides of Eq. 33-18 with respect to x 

 

− ∂
∂

= − ∂
∂ ∂

2

2 0 0

2
B

x

E

x t
ε µ . 

 

Combining these two equations, we get 

 

∂
∂

= ∂
∂

= ∂
∂

2

2

0 0

2

2

2
2

2

1B

t

B

x
c

B

xε µ
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81. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain 

 

 2 ' 2 '

0 1 2

1
cos cos

2
I I θ θ=  

 

where '

1 190 60θ θ= ° − = °  and '

2 290 60θ θ= ° − = ° . This yields I/I0 = 0.031. 



 

 

 

82. (a) An incident ray which is normal to the water surface is not refracted, so the angle 

at which it strikes the first mirror is θ1 = 45°. According to the law of reflection, the angle 

of reflection is also 45°. This means the ray is horizontal as it leaves the first mirror, and 

the angle of incidence at the second mirror is θ2 = 45°. Since the angle of reflection at the 

second mirror is also 45° the ray leaves that mirror normal again to the water surface. 

There is no refraction at the water surface, and the emerging ray is parallel to the incident 

ray. 

 

(b) We imagine that the incident ray makes an angle θ1 with the normal to the water 

surface. The angle of refraction θ2 is found from sin θ1 = n sin θ2, where n is the index of 

refraction of the water. The normal to the water surface and the normal to the first mirror 

make an angle of 45°. If the normal to the water surface is continued downward until it 

meets the normal to the first mirror, the triangle formed has an interior angle of 180° – 

45° = 135° at the vertex formed by the normal. Since the interior angles of a triangle must 

sum to 180°, the angle of incidence at the first mirror satisfies θ3 + θ2 + 135° = 180°, so 

θ3 = 45° – θ2. Using the law of reflection, the angle of reflection at the first mirror is also 

45° – θ2. We note that the triangle formed by the ray and the normals to the two mirrors 

is a right triangle. Consequently,  

 

 θ3 + θ4 + 90° = 180°    θ4 = 90° – θ3 = 90° – 45° + θ2 = 45° + θ2. 

 

The angle of reflection at the second mirror is also 45° + θ2. Now, we continue the 

normal to the water surface downward from the exit point of the ray to the second mirror. 

It makes an angle of 45° with the mirror. Consider the triangle formed by the second 

mirror, the ray, and the normal to the water surface. The angle at the intersection of the 

normal and the mirror is 180° – 45° = 135°. The angle at the intersection of the ray and 

the mirror is  

 

90° – θ4 = 90° – (45° + θ2) = 45° – θ2. 

 

The angle at the intersection of the ray and the water surface is θ5. These three angles 

must sum to 180°, so 135° + 45° – θ2 + θ5 = 180°. This means θ5 = θ2. Finally, we use the 

law of refraction to find θ6: 

 
sin sin sin sin ,θ θ θ θ6 5 6 2= =n n  

 

since θ5 = θ2. Finally, since sin θ1 = n sin θ2, we conclude that sin θ6 = sin θ1 and θ6 = θ1. 

The exiting ray is parallel to the incident ray. 



 

 

 

83. We use the result of problem 33-53 to solve for ψ. Note that φ = 60.0° in our case. 

Thus, from 

 

n = +sin ( )

sin
,

1
2

1
2

ψ φ
φ

 

 

we get 

 

sin ( ) sin ( . )sin
.

. ,
1

2

1

2
131

60 0

2
0 655ψ φ φ+ = = °F

H
I
K =n  

 

which gives 1
2

1 0 655 40 9( ) sin ( . ) . .ψ φ+ = = °−  Thus,  

 

ψ = 2(40.9°) – φ 2(40.9°) – 60.0° = 21.8°. 



 

 

 

84. The law of refraction requires that sin θ1/sin θ2 = nwater = const. We can check that 

this is indeed valid for any given pair of θ1 and θ2. For example sin 10° / sin 8° = 1.3, and 

sin 20° / sin 15°30' = 1.3, etc. Therefore, the index of refraction of water is nwater = 1.3. 



 

 

 

85. Let θ be the angle of incidence and θ2 be the angle of refraction at the left face of the 

plate. Let n be the index of refraction of the glass. Then, the law of refraction yields sin θ 

= n sin θ2. The angle of incidence at the right face is also θ2. If θ3 is the angle of 

emergence there, then n sin θ2 = sin θ3. Thus sin θ3 = sin θ and θ3 = θ.  

 

 
 

The emerging ray is parallel to the incident ray. We wish to derive an expression for x in 

terms of θ. If D is the length of the ray in the glass, then D cos θ2 = t and D = t/cos θ2. 

The angle α in the diagram equals θ – θ2 and x = D sin α = D sin (θ – θ2). Thus 

 

x
t= −sin ( )

cos
.

θ θ
θ

2

2

 

 

If all the angles θ, θ2, θ3, and θ – θ2 are small and measured in radians, then sin θ ≈ θ, sin 

θ2 ≈ θ2, sin(θ – θ2) ≈ θ – θ2, and cos θ2 ≈ 1. Thus x ≈ t(θ – θ2). The law of refraction 

applied to the point of incidence at the left face of the plate is now θ ≈ nθ2, so θ2 ≈ θ/n 

and 

 

x t
n

n t

n
≈ −FHG

I
KJ =

−
θ θ θ1b g

.  



 

 

 

86. (a)  Setting v = c in the wave relation kv = ω = 2πf, we find f = 1.91 × 10
8 

Hz. 

 

(b) Erms = Em/ 2  = Bm/c 2  = 18.2 V/m. 

 

(c) I = (Erms)
2
/cµo = 0.878 W/m

2
. 



 

 

 

87. From Fig. 33-19 we find nmax = 1.470 for λ = 400 nm and nmin = 1.456 for λ = 700 nm.  

(a) The corresponding Brewster’s angles are  

 
θB,max = tan

–1
 nmax = tan

–1
 (1.470) = 55.8°, 

 

(b) and θB,min = tan
–1

 (1.456) = 55.5°. 



 

 

 

88. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain 

 

2 ' 2 '

0 1 2

1
cos cos

2
I I θ θ=  

 

where '

1 1 2(90 ) 110θ θ θ= ° − + = °  is the relative angle between the first and the second 

polarizing sheets, and '

2 290 50θ θ= ° − = °  is the relative angle between the second and the 

third polarizing sheets. Thus, we have I/I0 = 0.024. 



 

 

 

89. The time for light to travel a distance d in free space is t = d/c, where c is the speed of 

light (3.00 × 10
8
 m/s). 

 

(a) We take d to be 150 km = 150 × 10
3
 m. Then, 

 

t
d

c
= = ×

×
= × −150 10

300 10
500 10

3

8

4m

m / s
s.

.
.  

 

(b) At full moon, the Moon and Sun are on opposite sides of Earth, so the distance 

traveled by the light is  

 

d = (1.5 × 10
8
 km) + 2 (3.8 × 10

5
 km) = 1.51 × 10

8
 km = 1.51 × 10

11
 m. 

 

The time taken by light to travel this distance is 

 
11

8

1.51 10 m
500 s 8.4 min.

3.00 10 m/s

d
t

c

×= = = =
×

 

 

(c) We take d to be 2(1.3 × 10
9
 km) = 2.6 × 10

12
 m. Then, 

 

t
d

c
= = ×

×
= × =2 6 10

8 7 10 2 4
12

3.
. .

m

3.00 10 m / s
s  h.

8
 

 

(d) We take d to be 6500 ly and the speed of light to be 1.00 ly/y. Then, 

 

t
d

c
= = =6500

6500
 ly

1.00 ly / y
 y.  

 

The explosion took place in the year 1054 – 6500 = –5446 or 5446 b.c. 



 

 

 

90. (a) At r = 40 m, the intensity is 

 

( )( )

3
2

22 2

4(3.0 10 W)
83W m .

4 ) 4 rad 40 m

P P
I

d rθ

−

−3

×= = = =
π π( π 0.17×10

 

 

(b) ′ = = = ×P r I4 4 1 7 102 2 6π π(40m) W m W.2 (83 ) .  



 

 

 

91. Since intensity is power divided by area (and the area is spherical in the isotropic 

case), then the intensity at a distance of r = 20 m from the source is 

 

I
P

r
= =

4
0 040

2π
. .W m2  

 

as illustrated in Sample Problem 33-2. Now, in Eq. 33-32 for a totally absorbing area A, 

we note that the exposed area of the small sphere is that on a flat circle A = π(0.020 m)
2
 = 

0.0013 m
2
. Therefore,  

 

F
IA

c
= =

×
= × −( . )( . )

.
0 040 0 0013

3 10
1 7 10

8

13 N. 



 

 

 

92. (a) Assuming complete absorption, the radiation pressure is 

 

p
I

c
r

= = ×
×

= × −1 10

3 0 10
4 7 10

3

8

6.4

.
. .

W m

m s
N m

2
2  

 

(b) We compare values by setting up a ratio: 

 

p

p

r

0

6

5

114 7 10

1 0 10
4 7 10= ×

×
= ×

−
−.

.
. .

N m

N m

2

2
 



 

 

 

93. (a) From kc = ω where k = 1.00 × 10
6
 m

–1
, we obtain ω = 3.00 × 10

14
 rad/s. The 

magnetic field amplitude is, from Eq. 33-5, B = (5.00 V/m)/c = 1.67 × 10
–8

 T. From the 

fact that k̂−  (the direction of propagation), E E
y

= ,j  and B  are mutually perpendicular, 

we conclude that the only non-zero component of B  is Bx, so that we have (in SI units) 

 

B z t
x

= × × + ×−1 67 10 1 00 10 3 00 108 6 14. sin . . .c h c hd i  
 

(b) The wavelength is λ = 2π/k = 6.28 × 10
–6

 m. 

 

(c) The period is T = 2π/ω = 2.09 × 10
–14

 s. 

 

(d) The intensity is 

 

I
c

= F
HG

I
KJ =1 5 00

2
0 0332

0

2

µ
.

. .
V m

W m2  

 

(e) As noted in part (a), the only nonzero component of B  is Bx. The magnetic field 

oscillates along the x axis. 

 

(f) The wavelength found in part (b) places this in the infrared portion of the spectrum. 



 

 

 

94. It’s useful to look back at the beginning of section 20-4 (particularly the steps leading 

up to Eq. 20-18) when considering “pressure due to collisions” (although using that term 

with light-interactions might be considered a little misleading).  The vx that occurs in that 

discussion in section 19-4 would correspond to the component vcosθ in this problem 

because the angle is here being measured from the “normal axis” (instead of from the 

surface).  Since it is the square of vx that occurs in the section 20-4 discussion, we see 

therefore how the cos
2θ factor comes about in this final result:  pr(θ) = pr⊥ cos

2θ.  



 

 

 

95. (a) The area of a hemisphere is A = 2πr
2
, and we get I =  P/A = 3.5 µW/m

2
. 

 

(b) Our part (a) result multiplied by 0.22 m
2
 gives 0.78 µW. 

 

(c) The part (b) answer divided by the A of part (a) leads to1.5 × 10
−17 

W/m
2
. 

 

(d) Then Eq. 33-26 gives Erms = 76 nV/m    Emax = 2 Erms = 1.1 × 10
−7

 nV/m. 

 

(e) Brms = Erms/c = 2.5 × 10
−16 

 T = 0.25 fT. 



 

 

 

96. (a) The electric field amplitude is rms2 70.7 V/m,
m

E E= =  so that the magnetic field 

amplitude is B
m

= × −2 36 10 7. T  by Eq. 33-5. Since the direction of propagation, E ,  and 

B  are mutually perpendicular, we infer that the only non-zero component of B  is Bx, and 

note that the direction of propagation being along the –z axis means the spatial and 

temporal parts of the wave function argument are of like sign (see §16-5). Also, from λ = 

250 nm, we find that f c= ×/ λ = 1.20 1015 Hz,  which leads to 2 fω = π =  
157.53 10 rad/s.×  Also, we note that k = × −2 1π / λ = 2.51 107 m .  Thus, assuming some 

“initial condition” (that, say the field is zero, with its derivative positive, at z = 0 when t = 

0), we have 

 
7 7 152.36 10 sin [(2.51 10 ) (7.53 10 ) ]

x
B z t

−= × × + ×  

 

in SI units. 

 

(b) The exposed area of the triangular chip is A = 3 82 / ,  where = × −2 00 10 6. m.  The 

intensity of the wave is 

 

I
c

E= =1
6 64

0µ rms

2 2W / m. .  

 

Thus, Eq. 33-33 leads to 

 

F
IA

c
= = × −2

383 10 20. N.  



 

 

 

97. Accounting for the “automatic” reduction (by a factor of one-half) whenever 

unpolarized light passes through any polarizing sheet, then our result is  
1

2
 (cos

2
(30º))

3
 = 

0.21. 



 

 

 

98. The result is  

 

Bz = (2.50 × 10
−14 

T) sin[(1.40 × 10
7 
m

−1
)y + (4.19 × 10

15 
s

−1
)t], 

 

and we briefly indicate our reasoning as follows: the amplitude Bm is equal to Em/c = 2 

Erms/c .  The wavenumber k is 2π/λ = 2π (450 × 10
−9 

m)
−1

. The fact that it travels in the 

negative x direction accounts for the + sign between terms in the sine argument.  Finally, 

ω = kc gives the angular frequency. 



 

 

 

99. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain 

 

2 2

0

1
cos cos .

2
I I θ θ′ ′′=  

 

With 2 1θ θ θ′ = −  = 60° – 20° = 40° and 3 2( / 2 )θ θ π θ′′ = + −  = 40° + 30° = 70°, this 

yields I/I0 = 0.034. 



 

 

 

100. We remind ourselves that when the unpolarized light passes through the first sheet, 

its intensity is reduced by a factor of 2.  Thus, to end up with an overall reduction of one-

third, the second sheet must cause a further decrease by a factor of two-thirds (since 

(1/2)(2/3) = 1/3).  Thus, cos
2θ = 2/3       θ = 35°.  



 

 

 

101. (a) The magnitude of the magnetic field is 

 

B
E

c
= =

×
= × −100

3 0 10
3 3 10

8

7V m

m s
T.

.
.  

 

(b) With E B S× = µ 0 ,  where ˆ ˆk and ( j)E E S S= = − , one can verify easily that since 

( ) ,k i j× − = − B  has to be in the negative x direction.  



 

 

 

102. We use Eq. 33-33 for the force, where A is the area of the reflecting surface (4.0 m
2
).  

The intensity is gotten from Eq. 33-27 where P = PS  is in Appendix C (see also Sample 

Problem 33-2) and r = 3.0 × 10
11 

m (given in the problem statement).  Our result for the 

force is 9.2 µN. 



 

 

 

103. From Eq. 33-26, we have E cIrms V / m,= =µ 0 1941  which implies (using Eq. 33-5) 

that Brms = 1941/c = 6.47 × 10
–6

 T. Multiplying by 2  yields the magnetic field 

amplitude Bm = 9.16 × 10
–6

 T. 



 

 

 

104. Eq. 33-5 gives B = E/c, which relates the field values at any instant — and so relates 

rms values to rms values, and amplitude values to amplitude values, as the case may be. 

Thus, the rms value of the magnetic field is 0.2/3 × 10
8
 = 6.67 × 10

–10
 T, which (upon 

multiplication by 2 ) yields an amplitude value of magnetic field equal to 9.43 × 10
–10

 T. 



 

 

 

105. (a) From Eq. 33-1, 

 

∂
∂

= ∂
∂

− = − −
2

2

2

2

2E

t t
E kx t E kx t

m m
sin( ) sin ( ),ω ω ω  

 

and 

 

c
E

x
c

x
E kx t k c kx t E kx t

m m

2
2

2

2
2

2

2 2 2∂
∂

= ∂
∂

− = − − = − −sin( ) sin( ) sin ( ).ω ω ω ω  

 

Consequently, 

 

∂
∂

= ∂
∂

2

2

2
2

2

E

t
c

E

x
 

 

is satisfied. Analogously, one can show that Eq. 33-2 satisfies 

 
2 2

2

2 2
.

B B
c

t x

∂ ∂=
∂ ∂

 

 

(b) From E E f kx t
m

= ±( ),ω  

 

∂
∂

= ∂ ±
∂

=
= ±

2

2

2

2

2
2

2

E

t
E

f kx t

t
E

d f

du
m m

u kx t

( )ω ω
ω

 

 

and 

 

c
E

x
c E

f kx t

t
c E k

d f

du
m m

u kx t

2
2

2

2
2

2

2 2
2

2

∂
∂

= ∂ ±
∂

=
= ±

( )ω

ω

 

 

Since ω = ck the right-hand sides of these two equations are equal. Therefore, 

 
2 2

2

2 2
.

E E
c

t x

∂ ∂=
∂ ∂

 

 

Changing E to B and repeating the derivation above shows that B B f kx t
m

= ±( )ω  

satisfies  

 
2 2

2

2 2
.

B B
c

t x

∂ ∂=
∂ ∂

 



 

 

 

106. (a) Let r be the radius and ρ be the density of the particle. Since its volume is 

(4π/3)r
3
, its mass is m = (4π/3)ρr

3
. Let R be the distance from the Sun to the particle and 

let M be the mass of the Sun. Then, the gravitational force of attraction of the Sun on the 

particle has magnitude 

 

F
GMm

R

GM r

R
g

= =
2

3

2

4

3

π ρ
.  

 

If P is the power output of the Sun, then at the position of the particle, the radiation 

intensity is I = P/4πR
2
, and since the particle is perfectly absorbing, the radiation pressure 

on it is 

 

p
I

c

P

R c
r

= =
4 2π

.  

 

All of the radiation that passes through a circle of radius r and area A r= π 2 ,  

perpendicular to the direction of propagation, is absorbed by the particle, so the force of 

the radiation on the particle has magnitude 

 

F p A
Pr

R c

Pr

R c
r r

= = =π
π

2

2

2

24 4
.  

 

The force is radially outward from the Sun. Notice that both the force of gravity and the 

force of the radiation are inversely proportional to R
2
. If one of these forces is larger than 

the other at some distance from the Sun, then that force is larger at all distances. The two 

forces depend on the particle radius r differently: Fg is proportional to r
3
 and Fr is 

proportional to r
2
. We expect a small radius particle to be blown away by the radiation 

pressure and a large radius particle with the same density to be pulled inward toward the 

Sun. The critical value for the radius is the value for which the two forces are equal. 

Equating the expressions for Fg and Fr, we solve for r: 

 

r
P

GM c
= 3

16π ρ
.  

 

(b) According to Appendix C, M = 1.99 × 10
30

 kg and P = 3.90 × 10
26

 W. Thus, 

 

r = ×
× ⋅ × × ×

= × −

3 3 90 10

16 199 10 3 00 10

58 10

26

30 8

7

( .

/ )( . )( .

.

W)

N m kg kg)(1.0 10 kg / m m / s)

m.

2 2 3 3π(6.67 10−11
 



 

 

 

107. (a) The polarization direction is defined by the electric field (which is perpendicular 

to the magnetic field in the wave, and also perpendicular to the direction of wave travel).  

The given function indicates the magnetic field is along the x axis (by the subscript on B) 

and the wave motion is along –y axis (see the argument of the sine function).  Thus, the 

electric field direction must be parallel to the  z axis. 

 

(b) Since k is given as 1.57 × 10
7
/m, then λ = 2π/k = 4.0 × 10

−7 
m, which means f = c/λ = 

7.5 × 10
14 

Hz. 

 

(c) The magnetic field amplitude is given as Bm =  4.0 × 10
−6 

T.  The electric field 

amplitude Em is equal to Bm divided by the speed of light c.  The rms value of the electric 

field is then Em divided by 2 .  Eq. 33-26 then gives I = 1.9 kW/m
2
. 



 

 

 

108. Using Eqs. 33-40 and 33-42, we obtain 

 

( )( ) ( )2 21
02final

0 0

cos 45 cos 45 1
0.125.

8

II

I I

° °
= = =  



 

 

 

109. With the index of refraction n = 1.456 at the red end, since sin θc = 1/n, the critical 

angle is θc = 43.38° for red. 

 

(a) At an angle of incidence of θ1 = 42.00° < θc, the refracted light is white.  

 

(b) At an angle of incidence of θ1 = 43.10° which is slightly less than θc, the refracted 

light is white but dominated by red end.  

 

(c) At an angle of incidence of θ1 = 44.00° > θc, there is no refracted light.  



 

 

 

110. (a) The diagram below shows a cross section, through the center of the cube and 

parallel to a face. L is the length of a cube edge and S labels the spot. A portion of a ray 

from the source to a cube face is also shown.  

 

 
 

Light leaving the source at a small angle θ is refracted at the face and leaves the cube; 

light leaving at a sufficiently large angle is totally reflected. The light that passes through 

the cube face forms a circle, the radius r being associated with the critical angle for total 

internal reflection. If θc is that angle, then 

 

sinθ
c

n
= 1

 

 

where n is the index of refraction for the glass. As the diagram shows, the radius of the 

circle is given by r = (L/2) tan θc. Now, 

 

tan
sin

cos

sin

sin

/

/
θ θ

θ
θ

θ
c

c

c

c

c

n

n n

= =
−

=
−

=
−1

1

1 1

1

12 2 2b g
 

 

and the radius of the circle is 

 

r
L

n

=
−

=
−

=
2 1

10

1
4 47

2 2

mm

2 1.5
mm.

b g
.  

 

If an opaque circular disk with this radius is pasted at the center of each cube face, the 

spot will not be seen (provided internally reflected light can be ignored). 

 

(b) There must be six opaque disks, one for each face. The total area covered by disks is 

6πr
2
 and the total surface area of the cube is 6L

2
. The fraction of the surface area that 

must be covered by disks is 

 



 

f
r

L

r

L
= = = =6

6

4 47

10
0 63

2

2

2

2

2

2

π π π .
. .

mm

mm

b g
b g

 



 

 

 

111. (a) Suppose that at time t1, the moon is starting a revolution (on the verge of going 

behind Jupiter, say) and that at this instant, the distance between Jupiter and Earth is 1 . 

The time of the start of the revolution as seen on Earth is t t c1 1 1

* /= + . Suppose the 

moon starts the next revolution at time t2 and at that instant, the Earth-Jupiter distance is 

2 . The start of the revolution as seen on Earth is t t c2 2 2

* /= + . Now, the actual period 

of the moon is given by T = t2 – t1 and the period as measured on Earth is 

 

2 1 2 1
2 1 2 1 .T t t t t T

c c c

∗ ∗ ∗ −= − = − + − = +  

 

The period as measured on Earth is longer than the actual period. This is due to the fact 

that Earth moves during a revolution, and light takes a finite time to travel from Jupiter to 

Earth. For the situation depicted in Fig. 33-80, light emitted at the end of a revolution 

travels a longer distance to get to Earth than light emitted at the beginning. Suppose the 

position of Earth is given by the angle θ, measured from x. Let R be the radius of Earth’s 

orbit and d be the distance from the Sun to Jupiter. The law of cosines, applied to the 

triangle with the Sun, Earth, and Jupiter at the vertices, yields 2 2 2 2= + −d R dR cos .θ  

This expression can be used to calculate 1  and 2 . Since Earth does not move very far 

during one revolution of the moon, we may approximate 2 1−  by d dt T/b g  and T 
*
 by  

T d dt T c+ / /b gb g .  Now 

 

d

dt

Rd

d R dR

d

dt

vd

d R dR

=
+ −

=
+ −

2

2

2

22 2 2 2

sin

cos

sin

cos
,

θ
θ

θ θ
θ

 

 

where v = R (dθ/dt) is the speed of Earth in its orbit. For θ = =0 0, /d dtb g  and T 
*
 = T. 

Since Earth is then moving perpendicularly to the line from the Sun to Jupiter, its 

distance from the planet does not change appreciably during one revolution of the moon. 

On the other hand, when θ = ° = +90 2 2, / /d dt vd d R  and 

 

2 2
1 .

vd
T T

c d R

∗ = +
+

 

 

The Earth is now moving parallel to the line from the Sun to Jupiter, and its distance from 

the planet changes during a revolution of the moon. 

 

(b) Our notation is as follows: t is the actual time for the moon to make N revolutions, 

and t
*
 is the time for N revolutions to be observed on Earth. Then, 

 

t t
c

∗ = + −2 1 ,  



 

 

where 1  is the Earth-Jupiter distance at the beginning of the interval and 2  is the Earth-

Jupiter distance at the end. Suppose Earth is at position x at the beginning of the interval, 

and at y at the end. Then, 1  = d – R and  2

2 2= +d R .  Thus, 

 

t t
d R d R

c

∗ = +
+ − −2 2 b g

.  

 

A value can be found for t by measuring the observed period of revolution when Earth is 

at x and multiplying by N. We note that the observed period is the true period when Earth 

is at x. The time interval as Earth moves from x to y is t
*
. The difference is 

 

t t
d R d R

c

∗ − =
+ − −2 2 b g

.  

 

If the radii of the orbits of Jupiter and Earth are known, the value for t
*
 – t can be used to 

compute c. Since Jupiter is much further from the Sun than Earth, d R
2 2+  may be 

approximated by d and t
*
 – t may be approximated by R/c. In this approximation, only the 

radius of Earth’s orbit need be known. 
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