
 

 

1. The condition for a minimum of a single-slit diffraction pattern is 

 
a msinθ = λ  

 

where a is the slit width, λ is the wavelength, and m is an integer. The angle θ is 

measured from the forward direction, so for the situation described in the problem, it is 

0.60° for m = 1. Thus 
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2. (a) θ = sin
–1

 (1.50 cm/2.00 m) = 0.430°. 

 

(b) For the mth diffraction minimum a sin θ = mλ. We solve for the slit width: 
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3. (a) The condition for a minimum in a single-slit diffraction pattern is given by a sin θ = 

mλ, where a is the slit width, λ is the wavelength, and m is an integer. For λ = λa and m = 

1, the angle θ is the same as for λ = λb and m = 2. Thus λa = 2λb = 2(350 nm) = 700 nm. 

 

(b) Let ma be the integer associated with a minimum in the pattern produced by light with 

wavelength λa, and let mb be the integer associated with a minimum in the pattern 

produced by light with wavelength λb. A minimum in one pattern coincides with a 

minimum in the other if they occur at the same angle. This means maλa = mbλb. Since λa 

= 2λb, the minima coincide if 2ma = mb. Consequently, every other minimum of the λb 

pattern coincides with a minimum of the λa pattern. With ma =2, we have mb = 4. 

 

(c) With ma =3, we have mb = 6. 



 

 

 

4. (a) Eq. 36-3 and Eq. 36-12 imply smaller angles for diffraction for smaller wavelengths. 

This suggests that diffraction effects in general would decrease. 

 

(b) Using Eq. 36-3 with m = 1 and solving for 2θ (the angular width of the central 

diffraction maximum), we find 
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(c) A similar calculation yields 0.23° for λ = 0.010 m. 



 

 

 

5. (a) A plane wave is incident on the lens so it is brought to focus in the focal plane of 

the lens, a distance of 70 cm from the lens. 

 

(b) Waves leaving the lens at an angle θ to the forward direction interfere to produce an 

intensity minimum if a sin θ = mλ, where a is the slit width, λ is the wavelength, and m is 

an integer. The distance on the screen from the center of the pattern to the minimum is 

given by y = D tan θ, where D is the distance from the lens to the screen. For the 

conditions of this problem, 
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This means θ = 1.475 × 10
–3

 rad and  

 

y = (70 × 10
–2

 m) tan (1.475 × 10
–3

 rad) = 1.0 × 10
–3

 m. 



 

 

 

6. (a) We use Eq. 36-3 to calculate the separation between the first (m1 = 1) and fifth 

2( 5)m = minima: 
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Solving for the slit width, we obtain 
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(b) For m = 1, 
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The angle is θ = sin
–1

 (2.2 × 10
–4

) = 2.2 × 10
–4

 rad. 



 

 

 

7. The condition for a minimum of intensity in a single-slit diffraction pattern is a sin θ = 

mλ, where a is the slit width, λ is the wavelength, and m is an integer. To find the angular 

position of the first minimum to one side of the central maximum, we set m = 1: 
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If D is the distance from the slit to the screen, the distance on the screen from the center 

of the pattern to the minimum is 
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To find the second minimum, we set m = 2: 
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The distance from the center of the pattern to this second minimum is  

 

y2 = D tan θ2 = (3.00 m) tan (1.178 × 10
–3

 rad) = 3.534 × 10
–3

 m. 

 

The separation of the two minima is  

 

∆y = y2 – y1 = 3.534 mm – 1.767 mm = 1.77 mm. 



 

 

 

8. From y = mλL/a we get 
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9. We note that nm = 10
–9

 m = 10
–6

 mm. From Eq. 36-4, 
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This is equivalent to 266.7 – 84π = 2.8 rad = 160°. 



 

 

 

10. (a) The slope of the plotted line is 12, and we see from Eq. 36-6 that this slope should 

correspond to 

 

πa

λ    =   12       a = 2330 nm = 2.33 µm . 

 

(b) Consider Eq. 36-3 with “continuously variable” m (of course, m should be an integer 

for diffraction minima, but for the moment we will solve for it as if it could be any real 

number): 

                                            mmax = 
a

λ (sin θ)max  ≈ 3.8    

 

which suggests that, on each side of the central maximum (θcentr = 0), there are three 

minima; considering both sides then implies there are six minima in the pattern.  

 

(c) Setting m = 1 in Eq. 36-3 and solving for θ yields 15.2°. 

 

(d) Setting m = 3 in Eq. 36-3 and solving for θ yields 51.8°. 



 

 

 

11. (a) θ = sin
–1

 (0.011 cm/3.5 m) = 0.18°. 

 

(b) We use Eq. 36-6: 

 

α θ= FHG
I
KJ =

°
×

=−

π
λ

πa
sin

. sin .
. .

0 025 018

538 10
0 46

6

mm

mm
rad

b g
 

 

(c) Making sure our calculator is in radian mode, Eq. 36-5 yields 
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12. We will make use of arctangents and sines in our solution, even though they can be 

“shortcut” somewhat since the angles are small enough to justify the use of the small 

angle approximation. 

 

(a) Given y/D = 15/300 (both expressed here in centimeters), then θ = tan
−1

(y/D) = 2.86°.  

Use of Eq. 36-6 (with a = 6000 nm and λ = 500 nm) leads to 
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λ  sin θ = 1.883 rad 

 

Thus,  
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(b) Consider Eq. 36-3 with “continuously variable” m (of course, m should be an integer 

for diffraction minima, but for the moment we will solve for it as if it could be any real 

number): 

m = 
a

λ sinθ  ≈  0.6 

 

which suggests that the angle takes us to a point between the central maximum (θcentr = 0) 

and the first minimum (which corresponds to m = 1 in Eq. 36-3). 



 

 

 

13. (a) The intensity for a single-slit diffraction pattern is given by 
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where α = (πa/λ) sin θ, a is the slit width and λ is the wavelength. The angle θ is 

measured from the forward direction. We require I = Im/2, so 
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(b) We evaluate sin
2
 α and α 2 2  for α = 1.39 rad and compare the results. To be sure 

that 1.39 rad is closer to the correct value for α than any other value with three significant 

digits, we could also try 1.385 rad and 1.395 rad. 

 

(c) Since α = (πa/λ) sin θ, 
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Now α/π = 1.39/π = 0.442, so 
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The angular separation of the two points of half intensity, one on either side of the center 

of the diffraction pattern, is 
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(d) For a/λ = 1.0, 

 

( )12sin 0.442 1.0 0.916 rad 52.5θ −∆ = = = ° . 

 

(e) For a/λ = 5.0, 

 

( )12sin 0.442 5.0 0.177 rad 10.1θ −∆ = = = ° . 

 

(f) For a/λ = 10, ∆θ = = = °−2 0 442 10 0 0884 5 061sin . . . .b g rad  



 

 

 

14. Consider Huygens’ explanation of diffraction phenomena. When A is in place only 

the Huygens’ wavelets that pass through the hole get to point P. Suppose they produce a 

resultant electric field EA. When B is in place, the light that was blocked by A gets to P 

and the light that passed through the hole in A is blocked. Suppose the electric field at P 

is now E
B

. The sum E E
A B

+  is the resultant of all waves that get to P when neither A nor 

B are present. Since P is in the geometric shadow, this is zero. Thus E E
A B

= − , and since 

the intensity is proportional to the square of the electric field, the intensity at P is the 

same when A is present as when B is present. 



 

 

 

15. (a) The intensity for a single-slit diffraction pattern is given by 
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where α is described in the text (see Eq. 36-6). To locate the extrema, we set the 

derivative of I with respect to α equal to zero and solve for α. The derivative is 
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The derivative vanishes if 0α ≠  but sin α = 0. This yields α = mπ, where m is a nonzero 

integer. These are the intensity minima: I = 0 for α = mπ. The derivative also vanishes for 

α cos α – sin α = 0. This condition can be written tan α = α. These implicitly locate the 

maxima. 

 

(b) The values of α that satisfy tan α = α can be found by trial and error on a pocket 

calculator or computer. Each of them is slightly less than one of the values m + 1
2b gπ rad , 

so we start with these values. They can also be found graphically. As in the diagram that 

follows, we plot y = tan α and y = α on the same graph. The intersections of the line with 

the tan α curves are the solutions.  

 

 
 

The smallest α is 0α = . 

 

(c) We write α = +m
1
2b gπ  for the maxima. For the central maximum, α = 0 and 

1/ 2 0.500m = − = − . 

 

(d) The next one can be found to be α = 4.493 rad. 

 

(e) For α = 4.4934, m = 0.930. 



 

 

(f) The next one can be found to be α = 7.725 rad. 

 

(g) For α = 7.7252, m = 1.96. 



 

 

 

16. We use Eq. 36-12 with θ = 2.5°/2 = 1.25°. Thus, 

 

d = =
°

=122 122 550

125
31

.

sin

.

sin .
.

λ
θ

µ
nm

m
b g

 



 

 

 

17. (a) We use the Rayleigh criteria. Thus, the angular separation (in radians) of the 

sources must be at least θR = 1.22λ/d, where λ is the wavelength and d is the diameter of 

the aperture. For the headlights of this problem, 
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or 41.3 10 rad−× , in two significant figures. 

 

(b) If L is the distance from the headlights to the eye when the headlights are just 

resolvable and D is the separation of the headlights, then D = LθR, where the small angle 

approximation is made. This is valid for θR in radians. Thus, 
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18. (a) Using the notation of Sample Problem 36-3 (which is in the textbook supplement), 

the minimum separation is 
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(b) The Rayleigh criterion suggests that the astronaut will not be able to discern the Great 

Wall (see the result of part (a)). 

 

(c) The signs of intelligent life would probably be, at most, ambiguous on the sunlit half 

of the planet. However, while passing over the half of the planet on the opposite side 

from the Sun, the astronaut would be able to notice the effects of artificial lighting. 



 

 

 

19. Using the notation of Sample Problem 36-3 (which is in the textbook supplement), 

the minimum separation is 
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20. Using the notation of Sample Problem 36-3 (which is in the textbook supplement), 

the maximum distance is 

 

( )( )
( )
3 3

9
R

5.0 10 m 4.0 10 m
30m .

1.22 1.22 550 10 m

D D
L

dθ

− −

−

× ×
= = = =

λ ×
 



 

 

 

21. (a) We use the Rayleigh criteria. If L is the distance from the observer to the objects, 

then the smallest separation D they can have and still be resolvable is D = LθR, where θR 

is measured in radians. The small angle approximation is made. Thus, 
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This distance is greater than the diameter of Mars; therefore, one part of the planet’s 

surface cannot be resolved from another part. 

 

(b) Now d = 5.1 m and 
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22. Using the notation of Sample Problem 36-3 (which is in the textbook supplement), 

the minimum separation is 
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23. (a) Using the notation of Sample Problem 36-3, 

 

L
D

d
=

λ /122

2 50 10

122 650 10
019

6 3

9.

(

. (
.= × ×

×
=

− −

−

m)(1.5 10 m)

m)
m .  

 

(b) The wavelength of the blue light is shorter so Lmax ∝ λ–1
 will be larger. 



 

 

 

24. Eq. 36-14 gives the Rayleigh angle (in radians):  

 

θR = 
1.22λ

d
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 L
  

 

where the rationale behind the second equality is given in Sample Problem 36-3.   

 

(a) We are asked to solve for D and are given λ = 1.40 × 10
−9 

m, d = 0.200 × 10
−3 

m, and 
32000 10  mL = × .  Consequently, we obtain D = 17.1 m. 

 

(b) Intensity is power over area (with the area assumed spherical in this case, which 

means it is proportional to radius-squared), so the ratio of intensities is given by the 

square of a ratio of distances:   (d/D)
2
 = 1.37 × 10

−10
. 



 

 

 

25. (a) The first minimum in the diffraction pattern is at an angular position θ, measured 

from the center of the pattern, such that sin θ = 1.22λ/d, where λ is the wavelength and d 

is the diameter of the antenna. If f is the frequency, then the wavelength is 
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The angular width of the central maximum is twice this, or 6.04 × 10
–3

 rad (0.346°). 

 

(b) Now λ = 1.6 cm and d = 2.3 m, so 
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The angular width of the central maximum is 1.7 × 10
–2

 rad (0.97°). 



 

 

 

26. Eq. 36-14 gives θR = 1.22λ/d, where in our case θR ≈ D/L, with D = 60 µm being the 

size of the object your eyes must resolve, and L being the maximum viewing distance in 

question. If d = 3.00 mm = 3000 µm is the diameter of your pupil, then 
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27. (a) Using Eq. 36-14, the angular separation is 
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(b) Using the notation of Sample Problem 36-3 (which is in the textbook supplement), the 

distance between the stars is 
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(c) The diameter of the first dark ring is 
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28. (a) Since θ = 1.22λ/d, the larger the wavelength the larger the radius of the first 

minimum (and second maximum, etc). Therefore, the white pattern is outlined by red 

lights (with longer wavelength than blue lights). 

 

(b) The diameter of a water drop is 
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29. Bright interference fringes occur at angles θ given by d sin θ = mλ, where m is an 

integer. For the slits of this problem, d = 11a/2, so a sin θ = 2mλ/11 (see Sample Problem 

36-5). The first minimum of the diffraction pattern occurs at the angle θ1 given by a sin 

θ1 = λ, and the second occurs at the angle θ2 given by a sin θ2 = 2λ, where a is the slit 

width. We should count the values of m for which θ1 < θ < θ2, or, equivalently, the values 

of m for which sin θ1 < sin θ < sin θ2. This means 1 < (2m/11) < 2. The values are m = 6, 

7, 8, 9, and 10. There are five bright fringes in all. 



 

 

 

30. In a manner similar to that discussed in Sample Problem 36-5, we find the number is 

2(d/a) – 1 = 2(2a/a) – 1 = 3. 



 

 

 

31. (a) In a manner similar to that discussed in Sample Problem 36-5, we find the ratio 

should be d/a = 4. Our reasoning is, briefly, as follows: we let the location of the fourth 

bright fringe coincide with the first minimum of diffraction pattern, and then set sin θ = 

4λ/d = λ/a (so d = 4a). 

 

(b) Any bright fringe which happens to be at the same location with a diffraction 

minimum will vanish. Thus, if we let  

 

sin θ = m1λ/d = m2λ/a = m1λ/4a, 

 

or m1 = 4m2 where m2 1 2 3= , , , . The fringes missing are the 4th, 8th, 12th, and so on. 

Hence, every fourth fringe is missing. 



 

 

 

32. The angular location of the mth bright fringe is given by d sin θ = mλ, so the linear 

separation between two adjacent fringes is 
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33. (a) The angular positions θ of the bright interference fringes are given by d sin θ = mλ, 

where d is the slit separation, λ is the wavelength, and m is an integer. The first 

diffraction minimum occurs at the angle θ1 given by a sin θ1 = λ, where a is the slit width. 

The diffraction peak extends from –θ1 to +θ1, so we should count the number of values of 

m for which –θ1 < θ < +θ1, or, equivalently, the number of values of m for which – sin θ1 

< sin θ < + sin θ1. This means – 1/a < m/d < 1/a or –d/a < m < +d/a. Now  

 

d/a = (0.150 × 10
–3

 m)/(30.0 × 10
–6

 m) = 5.00, 

 

so the values of m are m = –4, –3, –2, –1, 0, +1, +2, +3, and +4. There are nine fringes. 

 

(b) The intensity at the screen is given by 
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where α = (πa/λ) sin θ, β = (πd/λ) sin θ, and Im is the intensity at the center of the pattern. 

For the third bright interference fringe, d sin θ = 3λ, so β = 3π rad and cos
2
 β = 1. 

Similarly, α = 3πa/d = 3π/5.00 = 0.600π rad and 
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The intensity ratio is I/Im = 0.255. 



 

 

 

34. (a) We note that the slope of the graph is 80, and that Eq. 36-20 implies that the slope 

should correspond to 

 

πd

λ    =  80        d = 11077 nm = 11.1 µm . 

 

(b) Consider Eq. 36-25 with “continuously variable” m (of course, m should be an integer 

for interference maxima, but for the moment we will solve for it as if it could be any real 

number): 

mmax = 
d

λ (sin θ)max  ≈  25.5 

 

which indicates (on one side of the interference pattern) there are 25 bright fringes.  Thus 

on the other side there are also 25 bright fringes.  Including the one in the middle, then, 

means there are a total of 51 maxima in the interference pattern (assuming, as the 

problem remarks, that none of the interference maxima have been eliminated by 

diffraction minima). 

 

(c) Clearly, the maximum closest to the axis is the middle fringe at θ = 0°. 

 

(d) If we set m = 25 in Eq. 36-25, we find 

 

                                   mλ = d sin θ                      θ  =  79.0° .  



 

 

 

35. (a) The first minimum of the diffraction pattern is at 5.00°, so 
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(b) Since the fourth bright fringe is missing, d = 4a = 4(5.05 µm) = 20.2 µm. 

 

(c) For the m = 1 bright fringe, 
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Consequently, the intensity of the m = 1 fringe is 
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which agrees with Fig. 36-43. Similarly for m = 2, the intensity is I = 2.9 mW/cm
2
, also 

in agreement with Fig. 36-43. 



 

 

 

36. We will make use of arctangents and sines in our solution, even though they can be 

“shortcut” somewhat since the angles are [almost] small enough to justify the use of the 

small angle approximation. 

 

(a) Given y/D = 70/400 (both expressed here in centimeters), then  

 
θ = tan

−1
(y/D) = 0.173 rad. 

 

With d and λ in micrometers, Eq. 36-20 then gives 

 

                               β = 
πd

λ  sinθ  =  
π(24)
0.60  sin(0.173 rad)  = 21.66 rad . 

 

Thus, use of Eq. 36-21 (with a = 12 µm and λ = 0.60 µm) leads to 

 

α = 
πa

λ  sin θ  =10.83 rad  . 

Thus,  

         
IP

 Im

  = 
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2

 (cos β)
2
 = 0.00743  . 

 

(b) Consider Eq. 36-25 with “continuously variable” m (of course, m should be an integer 

for interference maxima, but for the moment we will solve for it as if it could be any real 

number): 

m = 
d

λ sin θ  ≈  6.9 

 

which suggests that the angle takes us to a point between the sixth minimum (which 

would have m = 6.5) and the seventh maximum (which corresponds to m = 7). 

 

(c) Similarly, consider Eq. 36-3 with “continuously variable” m (of course, m should be 

an integer for diffraction minima, but for the moment we will solve for it as if it could be 

any real number): 

m = 
a

λ sinθ  ≈  3.4 

 
which suggests that the angle takes us to a point between the third diffraction minimum 

(m = 3) and the fourth one (m = 4).  The maxima (in the smaller peaks of the diffraction 

pattern) are not exactly midway between the minima; their location would make use of 

mathematics not covered in the prerequisites of the usual sophomore-level physics course. 



 

 

 

37. The distance between adjacent rulings is  

 

d = 20.0 mm/6000 = 0.00333 mm = 3.33 µm. 

 

(a) Let ( )sin 0, 1, 2,d m mθ = λ = ± ± . Since |m|λ/d > 1 for |m| ≥ 6, the largest value of θ 

corresponds to | m | = 5, which yields  

 

( )1 1 5(0.589 m)
sin | | / sin 62.1

3.33 m
m d

µθ
µ

− −= λ = = °  

 

(b) The second largest value of θ corresponds to |m| = 4, which yields  

 

( )1 1 4(0.589 m)
sin | | / sin 45.0

3.33 m
m d

µθ
µ

− −= λ = = °  

 

(c) The third largest value of θ corresponds to | m | = 3, which yields  

 

( )1 1 3(0.589 m)
sin | | / sin 32.0

3.33 m
m d

µθ
µ

− −= λ = = °  



 

 

 

38. The angular location of the mth order diffraction maximum is given by mλ = d sin θ. 

To be able to observe the fifth-order maximum, we must let sin θ|m=5 = 5λ/d < 1, or 

 

λ < = =d

5

100

5
635

.
.

nm / 315
nm  

 

Therefore, the longest wavelength that can be used is λ = 635 nm.  



 

 

 

39. The ruling separation is d = 1/(400 mm
–1

) = 2.5 × 10
–3

 mm. Diffraction lines occur at 

angles θ such that d sin θ = mλ, where λ is the wavelength and m is an integer. Notice 

that for a given order, the line associated with a long wavelength is produced at a greater 

angle than the line associated with a shorter wavelength. We take λ to be the longest 

wavelength in the visible spectrum (700 nm) and find the greatest integer value of m such 

that θ is less than 90°. That is, find the greatest integer value of m for which mλ < d. 

Since  

 

d/λ = (2.5 × 10
–6

 m)/(700 × 10
–9

 m) = 3.57, 

 

that value is m = 3. There are three complete orders on each side of the m = 0 order. The 

second and third orders overlap. 



 

 

 

40. We use Eq. 36-25 for diffraction maxima: d sin θ = mλ. In our case, since the angle 

between the m = 1 and m = –1 maxima is 26°, the angle θ corresponding to m = 1 is θ = 

26°/2 = 13°. We solve for the grating spacing: 

 

( )( )1 550nm
2.4 m 2 m.

sin sin13

m
d µ µ

θ
λ= = = ≈

°
 



 

 

 

41. (a) Maxima of a diffraction grating pattern occur at angles θ given by d sin θ = mλ, 

where d is the slit separation, λ is the wavelength, and m is an integer. The two lines are 

adjacent, so their order numbers differ by unity. Let m be the order number for the line 

with sin θ = 0.2 and m + 1 be the order number for the line with sin θ = 0.3. Then, 0.2d = 

mλ and 0.3d = (m + 1)λ. We subtract the first equation from the second to obtain 0.1d = λ, 

or  

 

d = λ/0.1 = (600 × 10
–9

m)/0.1 = 6.0 × 10
–6

 m. 

 

(b) Minima of the single-slit diffraction pattern occur at angles θ given by a sin θ = mλ, 

where a is the slit width. Since the fourth-order interference maximum is missing, it must 

fall at one of these angles. If a is the smallest slit width for which this order is missing, 

the angle must be given by a sin θ = λ. It is also given by d sin θ = 4λ, so  

 

a = d/4 = (6.0 × 10
–6

 m)/4 = 1.5 × 10
–6

 m. 

 

(c) First, we set θ = 90° and find the largest value of m for which mλ < d sin θ. This is the 

highest order that is diffracted toward the screen. The condition is the same as m < d/λ 

and since  

 

d/λ = (6.0 × 10
–6

 m)/(600 × 10
–9

 m) = 10.0, 

 

the highest order seen is the m = 9 order. The fourth and eighth orders are missing, so the 

observable orders are m = 0, 1, 2, 3, 5, 6, 7, and 9. Thus, the largest value of the order 

number is m = 9. 

 

(d) Using the result obtained in (c), the second largest value of the order number is m = 7. 

 

(e) Similarly, the third largest value of the order number is m = 6. 



 

 

 

42. (a) For the maximum with the greatest value of m (= M) we have Mλ = a sin θ < d, so 

M < d/λ = 900 nm/600 nm = 1.5, or M = 1. Thus three maxima can be seen, with m = 0, 

±1. 

 

(b) From Eq. 36-28 

 

∆θ λ
θ

θ
θ

θ λ
hw

nm

900nm

= = = = F
HG
I
KJ

L
NM

O
QP

=
F
HG

I
KJ

L
N
M

O
Q
P = °

−

−

N d

d

N d N N dcos

sin

cos

tan
tan sin

tan sin . .

1

1

1000

600
0 051

1

1

 



 

 

 

43. The angular positions of the first-order diffraction lines are given by d sin θ = λ. Let 

λ1 be the shorter wavelength (430 nm) and θ be the angular position of the line associated 

with it. Let λ2 be the longer wavelength (680 nm), and let θ + ∆θ be the angular position 

of the line associated with it. Here ∆θ = 20°. Then, d sin θ = λ1 and d sin (θ + ∆θ) = λ2. 

We write  

 

sin (θ + ∆θ) as sin θ cos ∆θ + cos θ sin ∆θ, 

 

then use the equation for the first line to replace sin θ with λ1/d, and cos θ with 

1 1

2 2− λ d .  After multiplying by d, we obtain 

 

λ θ λ θ λ1

2

1

2

2cos sin .∆ ∆+ − =d  

 

Solving for d, we find 

 

d =
− +

=
− ° + °

°
= = × −

λ λ θ λ θ
θ

2 1

2

1

2

2

2 2

2

4

680 430 20 430 20

20

914 9 14 10

cos sin

sin

cos sin

sin

.

∆ ∆
∆

b g b g

b g b g b g nm  nm  nm

 nm mm.

 

 

There are 1/d = 1/(9.14 × 10
–4

 mm) = 1.09 × 10
3
 rulings per mm. 



 

 

 

44. We use Eq. 36-25. For m = ±1 

 

λ θ µ= = ± °
±

=d

m

sin ( .173

1
523

m)sin( 17.6 )
 nm,  

 

and for m = ±2 

 

λ µ= ± °
±

=( .173

2
524

m) sin( 37.3 )
nm.  

 

Similarly, we may compute the values of λ corresponding to the angles for m = ±3. The 

average value of these λ’s is 523 nm. 



 

 

 

45. At the point on the screen where we find the inner edge of the hole, we have tan θ = 

5.0 cm/30 cm, which gives θ = 9.46°. We note that d for the grating is equal to  

1.0 mm/350 = 1.0 × 10
6
 nm/350.  

 

(a) From mλ = d sin θ, we find 

 

m
d= = =

×
sin .

.

.

θ
λ λ λ

1 0 10

350

6

01644 470
nm

nme jb g
 

 

Since for white light λ > 400 nm, the only integer m allowed here is m = 1. Thus, at  

one edge of the hole, λ = 470 nm. This is the shortest wavelength of the light that passes 

through the hole. 

 

(b) At the other edge, we have tan θ ' = 6.0 cm/30 cm, which gives θ ' = 11.31°. This 

leads to 

′ = ′ = ×F
HG

I
KJ °=λ θd sin

.
sin .

10 10

350
1131 560

6 nm
nm. 

 

This corresponds to the longest wavelength of the light that passes through the hole. 



 

 

 

46. We are given the “number of lines per millimeter” (which is a common way to 

express 1/d for diffraction gratings); thus, 

 

1

d
  =  160

 
lines/mm     d = 6.25 × 10

−6 
m . 

 

(a) We solve Eq. 36-25 for θ with various values of m and λ.  We show here the m = 2 

and λ = 460 nm calculation: 

 

  θ = sin
-1 mλ

d
  =  sin

-1 2(460 x 10
-9 

m)

6.25 x 10
-6 

m
  = 8.46° 

 

Similarly, we get 11.81° for m = 2 and λ = 640 nm, 12.75° for m = 3 and λ = 460 nm, 

and 17.89° for m = 3 and λ = 640 nm.  The first indication of overlap occurs when we 

compute the angle for m = 4 and λ = 460 nm; the result is 17.12° which clearly shows 

overlap with the large-wavelength portion of the m = 3 spectrum. 

 

(b) We solve Eq. 36-25 for m with θ = 90° and λ = 640 nm.  In this case, we obtain m = 

9.8 which means the largest order in which the full range (which must include that largest 

wavelength) is seen is ninth order. 

 

(c) Now with m = 9, Eq. 36-25 gives θ = 41.5° for λ = 460 nm. 

 

(d) It similarly gives θ = 67.2° for λ = 640 nm. 

 

(e) We solve Eq. 36-25 for m with θ = 90° and λ = 460 nm.  In this case, we obtain m = 

13.6 which means the largest order in which that wavelength is seen is thirteenth order. 

Now with m = 13, Eq. 36-25 gives θ = 73.1° for λ = 460 nm. 



 

 

 

47. Since the slit width is much less than the wavelength of the light, the central peak of 

the single-slit diffraction pattern is spread across the screen and the diffraction envelope 

can be ignored. Consider three waves, one from each slit. Since the slits are evenly 

spaced, the phase difference for waves from the first and second slits is the same as the 

phase difference for waves from the second and third slits. The electric fields of the 

waves at the screen can be written as  

 

E1 = E0 sin (ω t),  
E2 = E0 sin (ω t + φ),  

E3 = E0 sin (ω t + 2φ),  

 

where φ = (2πd/λ) sin θ. Here d is the separation of adjacent slits and λ is the wavelength. 

The phasor diagram is shown below.  

 

 
 

It yields 

 

E E E E= + = +0 0 0 1 2cos cos cos .φ φ φb g  
 

for the amplitude of the resultant wave. Since the intensity of a wave is proportional to 

the square of the electric field, we may write I AE= +0

2 2
1 2cosφb g , where A is a constant 

of proportionality. If Im is the intensity at the center of the pattern, for which φ = 0, then  

I AE
m

= 9 0

2 .  We take A to be I E
m

/ 9 0

2  and obtain 

 

I
I I

m m= + = + +
9

1 2
9

1 4 4
2 2cos cos cos .φ φ φb g c h  



 

 

 

48. (a) From R Nm= =λ ∆λ  we find 

 

N
m

= =
+
−

=λ
λ∆

415 496 415 487 2

2 415 96 415 487
23100

. .

. .
.

nm nm

nm nm

b g
b g  

 

(b) We note that d = (4.0 × 10
7
 nm)/23100 = 1732 nm. The maxima are found at 

 

θ = F
HG
I
KJ =

L
NM

O
QP

= °− −sin sin
.

. .1 1
2 4155

1732
28 7

m

d

λ b gb gnm

nm
 



 

 

 

49. (a) We note that d = (76 × 10
6
 nm)/40000 = 1900 nm. For the first order maxima λ = 

d sin θ, which leads to 

 

θ = F
HG
I
KJ =

F
HG

I
KJ = °− −sin sin .1 1 589

1900
18

λ
d

nm

nm
 

 

Now, substituting m = d sin θ/λ into Eq. 36-30 leads to  

 

D = tan θ/λ = tan 18°/589 nm = 5.5 × 10
–4

 rad/nm = 0.032°/nm. 

 

(b) For m = 1, the resolving power is R = Nm = 40000 m = 40000 = 4.0 × 10
4
. 

 

(c) For m = 2 we have θ = 38°, and the corresponding value of dispersion is 0.076°/nm. 

 

(d) For m = 2, the resolving power is R = Nm = 40000 m = (40000)2 = 8.0 × 10
4
. 

 

(e) Similarly for m = 3, we have θ = 68°, and the corresponding value of dispersion is 

0.24°/nm. 

 

(f) For m = 3, the resolving power is R = Nm = 40000 m = (40000)3 = 1.2 × 10
5
. 



 

 

 

50. Letting R = λ/∆λ = Nm, we solve for N: 

 

N
m

= =
−

=λ
∆λ

589 6 2

2 589 6 589 0
491

. /

. .
.

nm +589.0 nm

nm nm

b g
b g  



 

 

 

51. If a grating just resolves two wavelengths whose average is λavg and whose separation 

is ∆λ, then its resolving power is defined by R = λavg/∆λ. The text shows this is Nm, 

where N is the number of rulings in the grating and m is the order of the lines. Thus 

λavg/∆λ = Nm and 

 

( )( )
avg 3656.3nm

3.65 10 rulings.
1 0.18nm

N
m

λ
= = = ×

∆λ
 



 

 

 

52. (a) We find ∆λ from R = λ/∆λ = Nm: 

 

∆λ = = =λ
Nm

500

50 3
0 056

nm

600 / mm mm
nm = 56pm.b gb gb g.

.  

 

(b) Since sin θ = mmaxλ/d < 1, 

 

m
d

max
/

. .< =
×

=
−λ

1

600 500 10
3 3

6mm mmb gc h
 

 

Therefore, mmax = 3. No higher orders of maxima can be seen. 



 

 

 

53. (a) From d sin θ = mλ we find 

 

d
m

= =
°

= ×
λavg

sin

nm
nm = 10 m.

θ
µ

3 589 3

10
10 104

.

sin
.

b g
 

 

(b) The total width of the ruling is 

 

L Nd
R

m
d

d

m
= = FHG

I
KJ = =

−
= ×

λavg nm m

nm nm
m = 3.3 mm.

∆λ
589 3 10

3 589 59 589 00
3 3 103

.

. .
.

b gb g
b g

µ
µ  



 

 

 

54. (a) From the expression for the half-width ∆θ hw (given by Eq. 36-28) and that for the 

resolving power R (given by Eq. 36-32), we find the product of ∆θ hw and R to be 

 

∆θ
θ θ

θ
θ

θhw R
N d

Nm
m

d

d

d
=
F
HG

I
KJ = = =λ λ

cos cos

sin

cos
tan ,  

 

where we used mλ = d sin θ (see Eq. 36-25). 

 

(b) For first order m = 1, so the corresponding angle θ1 satisfies d sin θ1 = mλ = λ. Thus 

the product in question is given by 

 

( ) ( )

( )

1 1
1

2 2 2
1 1 1

2

sin sin 1 1
tan

cos 1 sin 1/ sin 1 / 1

1
0.89.

900nm/600nm 1

d

θ θθ
θ θ θ

= = = =
− − λ −

= =
−

 



 

 

 

55. Bragg’s law gives the condition for a diffraction maximum: 

 
2d msinθ = λ  

 

where d is the spacing of the crystal planes and λ is the wavelength. The angle θ is 

measured from the surfaces of the planes. For a second-order reflection m = 2, so 

 

( )9

10
2 0.12 10 m

2.56 10 m 0.26 nm.
2sin 2sin 28

m
d

λ
θ

−
−

×
= = = × ≈

°
 



 

 

 

56. For x-ray (“Bragg”) scattering, we have 2d sin θm = m λ.  This leads to 

 

2d sin θ2

 2d sin θ1
   = 

2 λ
1 λ            sin θ2 = 2 sin θ1 . 

 

Thus, with θ1= 3.4°, this yields θ2 = 6.8°.  The fact that θ2 is very nearly twice the value 

of θ1 is due to the small angles involved (when angles are small, sin θ2 / sin θ1  = θ2/θ1). 



 

 

 

57. We use Eq. 36-34.  

 

(a) From the peak on the left at angle 0.75° (estimated from Fig. 36-44), we have 

 

λ1 = = ° = =2 2 0 94 0 75 0 025 251d sin . sin . .θ  nm nm pm.b g b g  

 

This is the shorter wavelength of the beam. Notice that the estimation should be viewed 

as reliable to within ±2 pm.  

 

(b) We now consider the next peak: 

 

λ2 = = °= =2 2 0 94 115 0 038 382d sin . sin . .θ  nm nm pm.b g  

 

This is the longer wavelength of the beam. One can check that the third peak from the left 

is the second-order one for λ1. 



 

 

 

58. The x-ray wavelength is λ = 2d sin θ = 2(39.8 pm) sin 30.0° = 39.8 pm. 



 

 

 

59. (a) For the first beam 2d sin θ1 = λA and for the second one 2d sin θ2 = 3λB. The 

values of d and λA can then be determined: 

 

d
B= =

°
= ×3

2

3 97

2 60
17 10

2

2λ
sin sin

.
θ

pm
pm.

b g
 

 

(b) λ
A

d= = × ° = ×2 2 17 10 23 13 101

2 2sin . sin .θ pm pm.c hb g  



 

 

 

60. The angle of incidence on the reflection planes is θ = 63.8° – 45.0° = 18.8°, and the 

plane-plane separation is d a= 0 2 .  Thus, using 2d sin θ = λ, we get 

 

a d0 2
2 0 260

2 188
0570= = =

°
=λ

2 sin

.

sin .
.

θ
nm

nm. 



 

 

 

61. The sets of planes with the next five smaller interplanar spacings (after a0) are shown 

in the diagram that follows. 

 

 
 

(a) In terms of a0, the second largest interplanar spacing is 0 02 0.7071a a= . 

 

(b) The third largest interplanar spacing is 0 05 0.4472a a= . 

 

(c)  The fourth largest interplanar spacing is 0 010 0.3162a a= . 

 

(d) The fifth largest interplanar spacing is 0 013 0.2774a a= . 

 

(e) The sixth largest interplanar spacing is 0 017 0.2425a a= . 

 

(f) Since a crystal plane passes through lattice points, its slope can be written as the ratio 

of two integers. Consider a set of planes with slope m/n, as shown in the diagram that 

follows. The first and last planes shown pass through adjacent lattice points along a 

horizontal line and there are m – 1 planes between. If h is the separation of the first and 

last planes, then the interplanar spacing is d = h/m. If the planes make the angle θ with 

the horizontal, then the normal to the planes (shown dashed) makes the angle φ = 90° – θ. 

The distance h is given by h = a0 cos φ and the interplanar spacing is d = h/m = (a0/m) 

cos φ. Since tan θ = m/n, tan φ = n/m and   

 

cos tan .φ φ= + = +1 1 2 2 2
m n m  

 

Thus, 

 



 

d
h

m

a

m

a

n m

= = =
+

0 0

2 2

cos
.

φ
 

 

 



 

 

 

62. The wavelengths satisfy  

 

mλ = 2d sin θ = 2(275 pm)(sin 45°) = 389 pm. 

 

In the range of wavelengths given, the allowed values of m are m = 3, 4. 

 

(a) The longest wavelength is 389 pm/3 = 130 pm. 

 

(b) The associated order number is m = 3. 

 

(c) The shortest wavelength is 389 pm/4 = 97.2 pm. 

 

(d) The associated order number is m = 4. 



 

 

 

63. We want the reflections to obey the Bragg condition 2d sin θ = mλ, where θ is the 

angle between the incoming rays and the reflecting planes, λ is the wavelength, and m is 

an integer. We solve for θ: 

 

θ = F
HG
I
KJ =

×

×

F
HG

I
KJ

=− −
−

−
sin sin

.

.
. .1 1

9

9

0125 10

2 0 252 10
0 2480

m

d

m

m
λ

2
m

m

c h
c h

 

 

(a) For m = 2 the above equation gives θ = 29.7°. The crystal should be turned φ = 45° – 

29.7° = 15.3° clockwise.  

 

(b) For m = 1 the above equation gives θ = 14.4°. The crystal should be turned φ = 45° – 

14.4° = 30.6° clockwise.  

 

(c) For m = 3 the above equation gives θ = 48.1°. The crystal should be turned φ = 48.1° 

– 45° = 3.1° counterclockwise.  

 

(d) For m = 4 the above equation gives θ = 82.8°. The crystal should be turned φ = 82.8° 

– 45° = 37.8° counterclockwise.  

 

Note that there are no intensity maxima for m > 4 as one can verify by noting that mλ/2d 

is greater than 1 for m greater than 4. 



 

 

 

64. Following the method of Sample Problem 36-5, we find 

 

d

a
  =  

0.30 x 10
-3 

m

46 x 10
-6 

m
  =  6.52 

 

which we interpret to mean that the first diffraction minimum occurs slightly farther 

“out” than the m = 6 interference maximum.  This implies that the central diffraction 

envelope includes the central (m = 0) interference maximum as well as six interference 

maxima on each side of it.  Therefore, there are 6 + 1 + 6 = 13 bright fringes (interference 

maxima) in the central diffraction envelope. 



 

 

 

65. Let the first minimum be a distance y from the central axis which is perpendicular to 

the speaker. Then  

 

sinθ = + = =y D y m a a
2 2

1 2c h λ λ  (for m = 1). 

 

Therefore, 

 

( ) ( ) ( )( ) ( )2 2 2

100 m
41.2 m .

1 1 0.300 m 3000 Hz 343m s 1s

D D
y

a af v

= = = =
λ − − −

 



 

 

 

66. (a) We use Eq. 36-14: 

 

( )( )6

4

R

1.22 540 10 mm
1.22 1.3 10 rad .

5.0mmd
θ

−
−

×λ= = = ×  

 

(b) The linear separation is D = LθR = (160 × 10
3
 m) (1.3 × 10

–4
 rad) = 21 m. 



 

 

 

67. Since we are considering the diameter of the central diffraction maximum, then we 

are working with twice the Rayleigh angle. Using notation similar to that in Sample 

Problem 36-3 (which is in the textbook supplement), we have 2(1.22λ/d) = D/L. 

Therefore, 

 

d
L

D
= =

× ×
=

−

2
122

2
122 500 10 354 10

91
0 047

9 5
. . .

.
. .

λ b gc hc hm m

m
m  



 

 

 

68. We denote the Earth-Moon separation as L. The energy of the beam of light which is 

projected onto the moon is concentrated in a circular spot of diameter d1, where d1/L = 

2θR = 2(1.22λ/d0), with d0 the diameter of the mirror on Earth. The fraction of energy 

picked up by the reflector of diameter d2 on the Moon is then η' = (d2/d1)
2
. This reflected 

light, upon reaching the Earth, has a circular cross section of diameter d3 satisfying  

 

d3/L = 2θR = 2(1.22λ/d2). 

 

The fraction of the reflected energy that is picked up by the telescope is then η'' = (d0/d3)
2
. 

Consequently, the fraction of the original energy picked up by the detector is 

 

( )( )

( )( )
( )( )

22 42
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69. Consider two of the rays shown in Fig. 36-48, one just above the other. The extra 

distance traveled by the lower one may be found by drawing perpendiculars from where 

the top ray changes direction (point P) to the incident and diffracted paths of the lower 

one. Where these perpendiculars intersect the lower ray’s paths are here referred to as 

points A and C. Where the bottom ray changes direction is point B. We note that angle 

∠ APB is the same as ψ, and angle BPC is the same as θ (see Fig. 36-48). The difference 

in path lengths between the two adjacent light rays is ∆x = |AB| + |BC| = d sin ψ + d sin θ. 

The condition for bright fringes to occur is therefore 

 
∆x d m= + =(sin sin )ψ θ λ  

 

where m = 0, 1, 2, …. If we set ψ = 0 then this reduces to Eq. 36-25. 



 

 

 

70. Following Sample Problem 36-3, we use Eq. 36-17: 

 

L
Dd= =

122
164

. λ
m .  



 

 

 

71. (a) Employing Eq. 36-3 with the small angle approximation (sin θ ≈ tan θ = y/D 

where y locates the minimum relative to the middle of the pattern), we find (with m = 1 

and all lengths in mm) 

 

D
ya

m
= =

×
=−λ

( . )( . )

.

0 9 0 4

4 5 10
800

4
 

 

which places the screen 80 cm away from the slit. 

 

(b) The above equation gives for the value of y (for m = 3) 

 

(3)
2.7 mm .

D
y

a

λ= =  

 

Subtracting this from the first minimum position y = 0.9 mm, we find the result 

1.8 mmy∆ = . 



 

 

 

72. (a) We require that sin θ = mλ1,2/d ≤ sin 30°, where m = 1, 2 and λ1 = 500 nm. This 

gives 

 

2 2(600nm)
2400nm 2.4 m.

sin 30 sin 30

s
d µλ≥ = = =

° °
 

 

For a grating of given total width L we have N L d d= ∝ −/ 1 , so we need to minimize d 

to maximize R mN d= ∝ −1 . Thus we choose d = 2400 nm = 2.4 µm. 

 

(b) Let the third-order maximum for λ2 = 600 nm be the first minimum for the single-slit 

diffraction profile. This requires that d sin θ = 3λ2 = a sin θ, or  

 

a = d/3 = 2400 nm/3 = 800 nm = 0.80 µm. 

 

(c) Letting sin θ = mmaxλ2/d ≤ 1, we obtain 

 

m
d

max .≤ = =
λ2

2400

800
3

nm

nm
 

 

Since the third order is missing the only maxima present are the ones with m = 0, 1 and 2. 

Thus, the largest order of maxima produced by the grating is m = 2. 



 

 

 

73. Letting d sin θ = mλ, we solve for λ: 

 

λ = d

m m m

sin ( .θ = ° =10 2500mm / 200)(sin30 ) nm
 

 

where 1, 2, 3 .m =  In the visible light range m can assume the following values: m1 = 4, 

m2 = 5 and m3 = 6.  

 

(a) The longest wavelength corresponds to m1 = 4 with λ1 = 2500 nm/4 = 625 nm. 

 

(b) The second longest wavelength corresponds to m2 = 5 with λ2 = 2500 nm/5 = 500 nm. 

 

(c) The third longest wavelength corresponds to m3 = 6 with λ3 = 2500 nm/6 = 416 nm. 



 

 

 

74. Using the notation of Sample Problem 36-3, 

 
2 3

6 3

9

R

(5.0 10 m)(4.0 10 m)
1.6 10 m 1.6 10 km .

1.22 / 1.22(0.10 10 m)

D D
L

dθ

− −

−

× ×= = = = × = ×
λ ×

 



 

 

 

75. The condition for a minimum in a single-slit diffraction pattern is given by Eq. 36-3, 

which we solve for the wavelength: 

 

4sin (0.022 mm)sin 1.8
6.91 10 mm 691 nm .

1

a

m

θ −°λ = = = × =  



 

 

 

76. (a) We express all lengths in mm, and since 1/d = 180, we write Eq. 36-25 as 

 

θ = F
HG
I
KJ =− −sin sin ( )( )1 11

180 2
d

mλ λ  

 

where λ1 = × −4 10 4  and λ2 = × −5 10 4  (in mm). Thus, ∆θ θ θ= − = °2 1 2 1. . 

 

(b) Use of Eq. 36-25 for each wavelength leads to the condition 

 
m m1 1 2 2λ λ=  

 

for which the smallest possible choices are m1 = 5 and m2 = 4. Returning to Eq. 36-25, 

then, we find 

 

θ = F
HG

I
KJ = °−sin .1

1 1

1
21

d
m λ  

 

(c) There are no refraction angles greater than 90°, so we can solve for “mmax” (realizing 

it might not be an integer): 

 

m
d

max

sin= ° =90
11

2λ
 

 

where we have rounded down. There are no values of m (for light of wavelength λ2) 

greater than m = 11. 



 

 

 

77. For λ = 0.10 nm, we have scattering for order m, and for λ' = 0.075 nm, we have 

scattering for order m'. From Eq. 36-34, we see that we must require 

 
m mλ = λ' '  

 

which suggests (looking for the smallest integer solutions) that m = 3 and m' = 4. 

Returning with this result and with d = 0.25 nm to Eq. 36-34, we obtain 

 

θ = = °−sin .1 37
m

d

λ
2

 

 

Studying Figure 36-28, we conclude that the angle between incident and scattered beams 

is 180° – 2θ = 106°. 



 

 

 

78. Letting d sin θ = (L/N) sin θ = mλ, we get 

 

λ = (L N

m

/ ) sin ( .

( )( )

θ = × ° =10 10

1 10000
500

7 nm)(sin 30 )
nm .  



 

 

 

79. As a slit is narrowed, the pattern spreads outward, so the question about “minimum 

width” suggests that we are looking at the lowest possible values of m (the label for the 

minimum produced by light λ = 600 nm) and m' (the label for the minimum produced by 

light λ' = 500 nm). Since the angles are the same, then Eq. 36-3 leads to 

 
m mλ = λ' '  

 

which leads to the choices m = 5 and m' = 6. We find the slit width from Eq. 36-3: 

 

a
m m= ≈λ λ
sinθ θ

 

 

which yields a = 3.0 mm. 



 

 

 

80. The central diffraction envelope spans the range − < < +θ θ θ1 1  where 

 

θ 1

1= −sin
λ
a

.  

 

The maxima in the double-slit pattern are at 

 

θ
m

m

d
= −sin ,1 λ

 

 

so that our range specification becomes 

 

− < < +− − −sin sin sin ,1 1 1λ λ λ
a

m

d a
 

 

which we change (since sine is a monotonically increasing function in the fourth and first 

quadrants, where all these angles lie) to 

 

− < < +λ λ λ
a

m

d a
.  

 

Rewriting this as − < < +d a m d a/ /  we arrive at the result m d a mmax max/< ≤ +1. Due to 

the symmetry of the pattern, the multiplicity of the m values is 2mmax + 1 = 17 so that 

mmax = 8, and the result becomes 

 

8 9< ≤d

a
 

 

where these numbers are as accurate as the experiment allows (that is, “9” means “9.000” 

if our measurements are that good). 



 

 

 

81. (a) Use of Eq. 36-25 for the limit-wavelengths (λ1 = 700 nm and λ2 = 550 nm) leads 

to the condition 

 
m m1 2λ λ1 2≥  

 

for m1 + 1 = m2 (the low end of a high-order spectrum is what is overlapping with the 

high end of the next-lower-order spectrum). Assuming equality in the above equation, we 

can solve for “m1” (realizing it might not be an integer) and obtain m1 ≈ 4 where we have 

rounded up. It is the fourth order spectrum that is the lowest-order spectrum to overlap 

with the next higher spectrum. 

 

(b) The problem specifies d = 1/200 using the mm unit, and we note there are no 

refraction angles greater than 90°. We concentrate on the largest wavelength λ = 700 nm 

= 7 × 10
–4

 mm and solve Eq. 36-25 for “mmax” (realizing it might not be an integer): 

 

m
d

max = ° =
×

≈
−

sin 90 1

200 7 10
7

4λ b gc h
 

 

where we have rounded down. There are no values of m (for the appearance of the full 

spectrum) greater than m = 7. 



 

 

 

82. From Eq. 36-3, 

 

a m

λ
= =

°
=

sin sin .
. .

θ
1

45 0
141  



 

 

 

83. (a) We use Eq. 36-12: 

 

θ = F
HG
I
KJ =

L
NM

O
QP

=
×

L
N
M
M

O
Q
P
P

= °

− −

−

sin
.

sin
.

sin
.

.
. .

1 1

1

122 122

122 1450

0 60
68

λ
d

v f

d

sb g

b gb g
c hb g

m s

25 10 Hz m3

 

 

(b) Now f = 1.0 × 10
3
 Hz so 

 

122 122 1450

0 60
2 9 1

. .

.
. .

λ
d

=
×

= >b gb g
c hb g

m s

1.0 10 Hz m3
 

 

Since sin θ cannot exceed 1 there is no minimum. 



 

 

 

84. We use Eq. 36-34. For smallest value of θ, we let m = 1. Thus, 

 

θ min sin
pm

pm
= F
HG
I
KJ =

×

L
N
M
M

O
Q
P
P

= °− −1 1

3

1 30

2 0 30 10
2 9

m

d

λ
2

sin
.

. .
b gb g
c h

 



 

 

 

85. Employing Eq. 36-3, we find (with m = 3 and all lengths in µm) 

 

θ = =− −sin sin
( )( . )1 1 3 0 5

2

m

a

λ
 

 

which yields θ = 48.6°. Now, we use the experimental geometry (tanθ = y/D where y 

locates the minimum relative to the middle of the pattern) to find 

 
y D= =tan .θ 2 27 m. 



 

 

 

86. The central diffraction envelope spans the range –θ1 < θ < + θ1 where 

 

θ 1

1= −sin .
λ
a

 

 

The maxima in the double-slit pattern are located at 

 

θ
m

m

d
= −sin ,1 λ

 

 

so that our range specification becomes 

 

  − < < +− − −sin sin sin ,1 1 1λ λ λ
a

m

d a
 

 

which we change (since sine is a monotonically increasing function in the fourth and first 

quadrants, where all these angles lie) to 

 

− < < +λ λ λ
a

m

d a
.  

 

Rewriting this as –d/a < m < +d/a, we find –6 < m < +6, or, since m is an integer, –5 ≤ m 

≤ +5. Thus, we find eleven values of m that satisfy this requirement. 



 

 

 

87. Assuming all N = 2000 lines are uniformly illuminated, we have 

 

λ
λ
av

∆
= Nm  

 

from Eq. 36-31 and Eq. 36-32. With λav = 600 nm and m = 2, we find ∆λ = 0.15 nm. 



 

 

 

88. Using the same notation found in Sample Problem 36-3, 

 

D

L d
= =θ R 122.

λ
 

 

where we will assume a “typical” wavelength for visible light: λ ≈ 550 × 10
–9

 m. 

 

(a) With L = 400 × 10
3
 m and D = 0.85 m, the above relation leads to d = 0.32 m. 

 

(b) Now with D = 0.10 m, the above relation leads to d = 2.7 m. 

 

(c) The military satellites do not use Hubble Telescope-sized apertures. A great deal of 

very sophisticated optical filtering and digital signal processing techniques go into the 

final product, for which there is not space for us to describe here. 



 

 

 

89. Although the angles in this problem are not particularly big (so that the small angle 

approximation could be used with little error), we show the solution appropriate for large 

as well as small angles (that is, we do not use the small angle approximation here).  Eq. 

36-3 gives 

 

      mλ =  a sinθ       θ  = sin
–1

(mλ/a) = sin
–1

[2(0.42 µm)/(5.1 µm)] = 9.48°. 

 

The geometry of Figure 35-8(a) is a useful reference (even though it shows a double slit 

instead of the single slit that we are concerned with here).  We see in that figure the 

relation between y, D and θ: 

 

y = D tan θ  = (3.2 m) tan(9.48°) = 0.534 m . 



 

 

 

90. The problem specifies d = 12/8900 using the mm unit, and we note there are no 

refraction angles greater than 90°.  We convert λ = 500 nm to 5 × 10
−4

 mm and solve Eq. 

36-25 for "mmax" (realizing it might not be an integer): 

 

mmax =  
d sin 90°

λ  = 
12

(8900)(5 × 10
-4

)
  ≈  2 

 

where we have rounded down.  There are no values of m (for light of wavelength λ) 

greater than m = 2. 



 

 

 

91. (a)  The central diffraction envelope spans the range – θ1 < θ < +θ1 where 

 

θ1 = sin
–1 λ

a
 

 

which could be further simplified if the small-angle approximation were justified (which 

it is not, since a is so small).  The maxima in the double-slit pattern are at 

 

θm   =   sin
–1 mλ

d
 

 

so that our range specification becomes 

 

– sin
–1 λ

a
   <   sin

–1 mλ
d

   <   +sin
–1 λ

a
 

 

which we change (since sine is a monotonically increasing function in the fourth and first 

quadrants, where all these angles lie) to 

 

– 
λ
a

   <   
mλ
d

   <  +
λ
a

  . 

 

Rewriting this as -d/a < m < +d/a we arrive at the result mmax < d/a < mmax + 1.  Due to 

the symmetry of the pattern, the multiplicity of the m values is 2mmax + 1 = 17 so that 

mmax = 8, and the result becomes 

 

8 < 
d

a
 < 9 

 

where these numbers are as accurate as the experiment allows (that is, "9" means "9.000" 

if our measurements are that good). 



 

 

 

92. We see that the total number of lines on the grating is (1.8 cm)(1400/cm) = 2520 = N.  

Combining Eq. 36-31 and Eq. 36-32, we find 

 

∆λ = 
λavg

Nm
  = 

450 nm

(2520)(3)
 = 0.0595 nm = 59.5 pm. 



 

 

 

93. (a)  The central diffraction envelope spans the range –θ1 < θ < +θ1 where 

 

θ1 = sin
–1 λ

a
 

 

which could be further simplified if the small-angle approximation were justified (which 

it is not, since a is so small).  The maxima in the double-slit pattern are at 

 

θm = sin
–1 mλ

d
 

 

so that our range specification becomes 

 

– sin
–1 λ

a
   <   sin

–1 mλ
d

   <   + sin
–1 λ

a
 

 

which we change (since sine is a monotonically increasing function in the fourth and first 

quadrants, where all these angles lie) to 

 

– 
λ
a

   <   
mλ
d

   <  +  
λ
a

  . 

 

Rewriting this as -d/a < m < +d/a we arrive at the result –7 < m < +7 which implies (since 

m must be an integer) –6 < m < +6 which amounts to 13 distinct values for m.  Thus, 

thirteen maxima are within the central envelope. 

 

(b)  The range (within one of the first-order envelopes) is now 

 

– sin
–1 λ

a
   <   sin

–1 mλ
d

   <   + sin
–1 2λ

a
 

 

which leads to d/a < m < 2d/a or 7 < m < 14.  Since m is an integer, this means 8 < m < 

13 which includes ^ distinct values for m in that one envelope.  If we were to include the 

total from both first-order envelopes, the result would be twelve, but the wording of the 

problem implies six should be the answer (just one envelope). 



 

 

 

94. Use of Eq. 36-21 leads to: 

 

D   =   
1.22λL

d
   =  6.1 mm. 



 

 

 

95. We refer (somewhat sloppily) to the 400 nm wavelength as “blue” and the 700 nm 

wavelength as “red.”  Consider Eq. 36-25 (mλ = d sinθ), for the 3
rd

 order blue, and also 

for the 2
nd

 order red: 

 

                                    (3) λblue  = 1200 nm =  d sin(θblue)   
      

(2) λred   = 1400 nm =  d sin(θred) . 
 

Since sine is an increasing function of angle (in the first quadrant) then the above set of 

values make clear that  θred (second order) > θblue (third order)  which shows that the spectrums 

overlap (regardless of the value of d). 



 

 

 

96. We note that the central diffraction envelope contains the central bright interference 

fringe (corresponding to m = 0 in Eq. 36-25) plus ten on either side of it.  Since the 

eleventh order bright interference fringe is not seen in the central envelope, then we 

conclude the first diffraction minimum (satisfying sinθ = λ/a) coincides with the m = 11 

instantiation of Eq. 36-25: 

 

d = 
mλ

sin θ  =  
11 λ
 λ/a

  = 11 a . 

 

Thus, the ratio d/a is equal to 11. 



 

 

 

97. Following the method of Sample Problem 36-3, we have 

 

1.22λ
d

  =  
D

L
  

 

where λ = 550 × 10
−9 

m, D = 0.60 m, and d = 0.0055 m.  Thus we get L = 4.9 × 10
3 

m. 



 

 

 

98. We use Eq. 36-3 for m  = 2: 

 

mλ = a sin θ              
a

λ  =  
m

 sin θ   =  
2

 sin 37°
  = 3.3 . 



 

 

 

99. We solve Eq. 36-25 for d: 

 

  d = 
mλ

sin θ  =  
2(600 x 10

-9 
m)

sin(33°)
  = 2.203 × 10

−6 
m = 2.203 × 10

−4 
cm 

 

which is typically expressed in reciprocal form as the “number of lines per centimeter” 

(or per millimeter, or per inch): 

 

1

d
  = 4539

 
lines/cm . 

 

The full width is 3.00 cm, so the number of lines is (4539 /cm)(3.00 cm) = 1.36 × 10
4
. 



 

 

 

100. We combine Eq. 36-31 (R = λavg /∆λ) with Eq. 36-32 (R = Nm) and solve for N: 

 

N = 
λavg

m ∆λ  =  
590.2 nm

2 (0.061 nm)
  = 4.84 × 10

3 
. 



 

 

 

101. Eq. 36-14 gives the Rayleigh angle (in radians):  

 

θR = 
1.22λ

d
   =   

D

 L
  

 

where the rationale behind the second equality is given in Sample Problem 36-3.  We are 

asked to solve for d and are given λ = 550 × 10
−9 

m, D = 30 × 10
−2 

m, and  

L = 160 × 10
3 

m.  Consequently, we obtain d = 0.358 m 36 cm≈ . 



 

 

 

102. Eq. 36-14 gives the Rayleigh angle (in radians):  

 

θR = 
1.22λ

d
   =   

D

 L
  

 

where the rationale behind the second equality is given in Sample Problem 36-3.  We are 

asked to solve for D and are given λ = 500 × 10
−9 

m, d = 5.00 × 10
−3 

m, and L = 0.250 m.  

Consequently, we obtain D = 3.05 ×10
−5 

m. 



 

 

 

103. The dispersion of a grating is given by D = dθ/dλ, where θ is the angular position of 

a line associated with wavelength λ. The angular position and wavelength are related by 

d sin θ = mλ, where d is the slit separation (which we made boldfaced in order not to 

confuse it with the d used in the derivative, below) and m is an integer. We differentiate 

this expression with respect to θ to obtain 

 

d

d
m

θ θ
λ

dcos ,=  

 

or 

 

D
d

d

m= =θ
θλ dcos

.  

 

Now m = (d/λ) sin θ, so 

 

D = =d

d

sin tan
.

θ
θ

θ
λ λcos

 



 

 

 

104. One strategy is to divide Eq. 36-25 by Eq. 36-3, assuming the same angle (a point 

we’ll come back to, later) and the same light wavelength for both: 

 

 
sin

' ' sin

m m d d

m m a a

λ θ
λ θ

= = = . 

 

We recall that d is measured from middle of transparent strip to the middle of the next 

transparent strip, which in this particular setup means d = 2a.  Thus, m/m′ = 2, or m  = 

2m′ . 
 

Now we interpret our result.  First, the division of the equations is not valid when m = 0 

(which corresponds to θ = 0), so our remarks do not apply to the m = 0 maximum.  

Second, Eq. 36-25 gives the “bright” interference results, and Eq. 36-3 gives the “dark” 

diffraction results (where the latter overrules the former in places where they coincide – 

see Figure 36-16 in the textbook).  For m′ = any nonzero integer, the relation m  = 2m′ 
implies that m = any nonzero even integer.  As mentioned above, these are occurring at 

the same angle, so the even integer interference maxima are eliminated by the diffraction 

minima. 



 

 

 

105. We imagine dividing the original slit into N strips and represent the light from each 

strip, when it reaches the screen, by a phasor. Then, at the central maximum in the 

diffraction pattern, we would add the N phasors, all in the same direction and each with 

the same amplitude. We would find that the intensity there is proportional to N
2
. If we 

double the slit width, we need 2N phasors if they are each to have the amplitude of the 

phasors we used for the narrow slit. The intensity at the central maximum is proportional 

to (2N)
2
 and is, therefore, four times the intensity for the narrow slit. The energy reaching 

the screen per unit time, however, is only twice the energy reaching it per unit time when 

the narrow slit is in place. The energy is simply redistributed. For example, the central 

peak is now half as wide and the integral of the intensity over the peak is only twice the 

analogous integral for the narrow slit. 



 

 

 

106. The problem specifies d = 1/500 using the mm unit, and we note there are no 

refraction angles greater than 90°.  We concentrate on the largest wavelength λ = 700 nm 

= 7 × 10
-4

 mm and solve Eq. 36-25 for "mmax" (realizing it might not be an integer): 

 

mmax =  
d sin 90°

λ  =  
1

(500)(7 × 10
-4

)
 ≈  2 

 

where we have rounded down.  There are no values of m (for appearance of the full 

spectrum) greater than m = 2. 



 

 

 

107. The derivation is similar to that used to obtain Eq. 36-27. At the first minimum 

beyond the mth principal maximum, two waves from adjacent slits have a phase 

difference of ∆φ = 2πm + (2π/N), where N is the number of slits. This implies a 

difference in path length of  

 

∆L = (∆φ/2π)λ = mλ + (λ/N). 

 

If θm is the angular position of the mth maximum, then the difference in path length is 

also given by ∆L = d sin(θm + ∆θ). Thus  

 

d sin (θm + ∆θ) = mλ + (λ/N). 

 

We use the trigonometric identity  

 

sin(θm + ∆θ) = sin θm cos ∆θ + cos θm sin ∆θ. 

 

Since ∆θ is small, we may approximate sin ∆θ by ∆θ in radians and cos ∆θ by unity. 

Thus,  

 

d sin θm + d ∆θ cos θm = mλ + (λ/N). 

 

We use the condition d sin θm = mλ to obtain d ∆θ cos θm = λ/N and 

 

∆θ
θ

= λ
N d

m
cos

.  



 

 

 

108. Referring to problem 69, we note that the angular deviation of a diffracted ray (the 

angle between the forward extrapolation of the incident ray and its diffracted ray) is 

'ψ ψ θ= + . For m = 1, this becomes 

 

1' sin sin
d

ψ ψ θ ψ ψ− λ= + = + −  

 

where the ratio λ/d = 0.40 using the values given in the problem statement. The graph of 

this is shown below (with radians used along both axes). 

 

 



 

 

 

109.  (a) Since the resolving power of a grating is given by R = λ/∆λ and by Nm, the 

range of wavelengths that can just be resolved in order m is ∆λ = λ/Nm. Here N is the 

number of rulings in the grating and λ is the average wavelength. The frequency f is 

related to the wavelength by f λ = c, where c is the speed of light. This means f ∆λ + λ∆f 

= 0, so 

 

∆λ ∆ ∆= − = −λ λ
f

f
c

f

2

 

 

where f = c/λ is used. The negative sign means that an increase  in frequency corresponds 

to a decrease in wavelength. We may interpret ∆f as the range of frequencies that can be 

resolved and take it to be positive. Then, 

 

λ λ2

c
f

Nm
∆ =  

 

and 

 

∆f
c

Nm
=

λ
.  

 

(b) The difference in travel time for waves traveling along the two extreme rays is ∆t = 

∆L/c, where ∆L is the difference in path length. The waves originate at slits that are 

separated by (N – 1)d, where d is the slit separation and N is the number of slits, so the 

path difference is ∆L = (N – 1)d sin θ and the time difference is 

 

∆t
N d

c
=

−1b g sin
.

θ
 

 

If N is large, this may be approximated by ∆t = (Nd/c) sin θ. The lens does not affect the 

travel time. 

 

(c) Substituting the expressions we derived for ∆t and ∆f, we obtain 

 

∆ ∆f t
c

Nm

N d

c

d

m
= FHG

I
KJ
F
HG

I
KJ = =

λ λ
sin sin

.
θ θ

1  

 

The condition d sin θ = mλ for a diffraction line is used to obtain the last result. 



 

 

 

110. There are two unknowns, the x-ray wavelength λ and the plane separation d, so data 

for scattering at two angles from the same planes should suffice. The observations obey 

Bragg’s law, so 

 
2 1 1d msinθ = λ  

and 

 
2 2 2d msinθ = λ.  

 

However, these cannot be solved for the unknowns. For example, we can use the first 

equation to eliminate λ from the second. We obtain 

 
m m2 1 1 2sin sin ,θ θ=  

 

an equation that does not contain either of the unknowns. 



 

 

 

111. The key trigonometric identity used in this proof is sin(2θ) = 2sinθ cosθ.  Now, we 

wish to show that Eq. 36-19 becomes (when d = a) the pattern for a single slit of width 2a 

(see Eq. 36-5 and Eq. 36-6): 

 

    I(θ) = Im 
sin(2πasinθ/λ)

 2πasinθ/λ

2

 . 

 

We note from Eq. 36-20 and Eq. 36-21, that the parameters β and α are identical in this 

case (when d = a), so that Eq. 36-19 becomes  

 

I(θ) = Im 
cos(πasinθ/λ)sin(πasinθ/λ)

 πasinθ/λ

2

 . 

 

Multiplying numerator and denominator by 2 and using the trig identity mentioned above, 

we obtain 

 

I(θ) = Im 
2cos(πasinθ/λ)sin(πasinθ/λ)

 2πasinθ/λ

2

 = Im 
sin(2πasinθ/λ)

 2πasinθ/λ

2

  

 

which is what we set out to show. 



 

 

 

112. When the speaker phase difference is π rad (180°), we expect to see the “reverse” of 

Fig. 36-14 [translated into the acoustic context, so that “bright” becomes “loud” and 

“dark” becomes “quiet”].  That is, with 180° phase difference, all the peaks in Fig. 36-14 

become valleys and all the valleys become peaks.  As the phase changes from zero to 

180° (and similarly for the change from 180° back to 360° = original pattern), the peaks 

should shift (and change height) in a continuous fashion – with the most dramatic feature 

being a large “dip” in the center diffraction envelope which deepens until it seems to split 

the central maximum into smaller diffraction maxima which (once the phase difference 

reaches π rad) will be located at angles given by  a sinθ = ± λ.  How many interference 

fringes would actually “be inside” each of these smaller diffraction maxima would, of 

course, depend on the particular values of  a, λ and d. 



 

 

 

113. We equate Eq. 36-29 (D = ∆θ/∆λ) and Eq. 36-30 (D = m/dcosθ), and use the fact 

that sin²θ + cos²θ = 1, to obtain 

 

∆θ
∆λ  =  

m

d 1 - sin²θ
    =    

m

 d² - d²sin²θ
     =    

m

 d² - m²λ²
  

 

where we use Eq. 36-25 in that last step.  Multiplying through by ∆λ and “simplifying” 

the right-hand side readily yields the final formula shown in the problem statement. 



 

 

 

114. Among the many computer-based approaches that could be shown here, we chose a 

simple MAPLE program, where the details of searching for the maximum near 0.35 rad 

are given in the last step: 

 

> restart: 

> Digits:=20; 

> lambda:=500;  a:=5000;    #nanometers 

> N:=200;   Delta[x]:=a/(N-1);   phi:=2*Pi/lambda*Delta[x]*sin(theta); 

> E[h]:=Sum(cos(i*phi),i= 1 .. N);    E[v]:=Sum(sin(i*phi),i= 1 .. N); 

> plot((E[h]^2 + E[v]^2)/N^2,theta= 0 .. .4); 

> for inc to 9 do [theta = .35 + inc/1000,evalf(subs(theta = .35 + inc/1000,E[h]^2 +   

   E[v]^2)/N^2)] od; 

 

This seemed to give the maximum at θ = 0.353 rad with an intensity ratio of I/Im = 

0.00835.  A more exact treatment would give θ = 0.354 rad and of I/Im = 0.00834.  Other 

maxima found in the computer-search manner indicated above were:  I/Im = 0.0472 at θ = 

0.143 rad, and I/Im = 0.0165 at θ = 0.247 rad. 
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