
 

 

1. From the time dilation equation ∆t = γ∆t0 (where ∆t0 is the proper time interval, 

γ β= −1 1 2/ ,  and β = v/c), we obtain 

 

β = − FHG
I
KJ1 0

2∆
∆
t

t
.  

 

The proper time interval is measured by a clock at rest relative to the muon. Specifically, 

∆t0 = 2.2000 µs. We are also told that Earth observers (measuring the decays of moving 

muons) find ∆t = 16.000 µs. Therefore, 

 
2

2.2000 s
1 0.99050.

16.000 s

µβ
µ

= − =  



 

 

2. (a) We find β from γ β= −1 1 2/ :  

 

( )22

1 1
1 1 0.14037076.

1.0100000
β

γ
= − = − =  

 

(b) Similarly, ( ) 2
1 10.000000 0.99498744.β −= − =  

 

(c) In this case,  ( ) 2
1 100.00000 0.99995000.β −= − =  

 

(d) The result is ( ) 2
1 1000.0000 0.99999950.β −= − =   



 

 

 

3. We solve the time dilation equation for the time elapsed (as measured by Earth 

observers): 

 

∆ ∆
t

t=
−

0

21 0 9990( . )
 

 

where ∆t0 = 120 y. This yields ∆t = 2684 y 32.68 10  y.≈ ×  



 

 

4. Due to the time-dilation effect, the time between initial and final ages for the daughter 

is longer than the four years experienced by her father: 

 

tf daughter – ti daughter  =   γ(4.000 y) 

 

where γ is Lorentz factor (Eq. 37-8).  Letting T denote the age of the father, then the 

conditions of the problem require 

 

Ti  =  ti daughter +  20.00 y    and  Tf  =  tf daughter – 20.00 y  . 

 

Since Tf  − Ti  = 4.000 y, then these three equations combine to give a single condition 

from which γ can be determined (and consequently v): 

 

44 = γ 4         γ = 11          β  =  
2 30

11
 =0.9959. 



 

 

 

5. In the laboratory, it travels a distance d = 0.00105 m = vt, where v = 0.992c and t is the 

time measured on the laboratory clocks. We can use Eq. 37-7 to relate t to the proper 

lifetime of the particle t0: 

 

( )

2

20
0

2
    1 1 0.992

0.9921 /

t v d
t t t

c c
v c

= = − = −
−

 

 

which yields t0 = 4.46 × 10
–13

 s = 0.446 ps. 



 

 

6. From the value of ∆t in the graph when β = 0, we infer than ∆to in Eq. 37-9 is 8.0 s.  

Thus, that equation (which describes the curve in Fig. 37-23) becomes 

 

∆t  = 
∆to

1 - (v/c)
2  =   

8.0 s

1 − β2  

 

If we set β = 0.98 in this expression, we obtain approximately 40 s for ∆t. 



 

 

 

7. (a) The round-trip (discounting the time needed to “turn around”) should be one year 

according to the clock you are carrying (this is your proper time interval ∆t0) and 1000 

years according to the clocks on Earth which measure ∆t. We solve Eq. 37-7 for β : 
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0 1y
1 1 0.99999950.

1000y

t

t
β ∆= − = − =

∆
 

 

(b) The equations do not show a dependence on acceleration (or on the direction of the 

velocity vector), which suggests that a circular journey (with its constant magnitude 

centripetal acceleration) would give the same result (if the speed is the same) as the one 

described in the problem. A more careful argument can be given to support this, but it 

should be admitted that this is a fairly subtle question which has occasionally precipitated 

debates among professional physicists. 



 

 

8. The contracted length of the tube would be 

 

L L= − = − =0

2 21 3 00 1 0 999987 0 0153β . . .m m.b g  



 

 

 

9. (a) The rest length L0 = 130 m of the spaceship and its length L as measured by the 

timing station are related by Eq. 37-13. Therefore, L = − =130 1 0 740 87 4
2

m m.b g b g. .  

 

(b) The time interval for the passage of the spaceship is 

 

∆t
L

v
= =

×
= × −87 4

3 00 10
3 94 10

8

7.
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10. Only the “component” of the length in the x direction contracts, so its y component 

stays 

 

′ = = °=
y y

sin .30 05000m 

 

while its x component becomes 

 

′ = − = ° − =
x x

1 30 1 0 90 0 37752 2β cos . . m. 

 

Therefore, using the Pythagorean theorem, the length measured from S' is 

 

( ) ( )22
0.63m.

x y
′ ′ ′= + =  



 

 

 

11. The length L of the rod, as measured in a frame in which it is moving with speed v 

parallel to its length, is related to its rest length L0 by L = L0/γ, where γ β= −1 1 2/  and 

β = v/c. Since γ must be greater than 1, L is less than L0. For this problem, L0 = 1.70 m 

and β = 0.630, so L = − =170 1 0 630 132
2

. . .m m.b g b g  



 

 

12. (a) We solve Eq. 37-13 for v and then plug in: 

 
2 2

0

1
1 1 0.866.

2

L

L
β = − = − =  

 

 (b) The Lorentz factor in this case is 

( )2

1
2.00

1 /v c

γ = =
−

. 



 

 

 

13. (a) The speed of the traveler is v = 0.99c, which may be equivalently expressed as 

0.99 ly/y. Let d be the distance traveled. Then, the time for the trip as measured in the 

frame of Earth is  

 

∆t = d/v = (26 ly)/(0.99 ly/y) = 26.3 y  26 y. 

 

(b) The signal, presumed to be a radio wave, travels with speed c and so takes 26.0 y to 

reach Earth. The total time elapsed, in the frame of Earth, is  

 

26.3 y + 26.0 y = 52.3 y 52 y.≈  

 

(c) The proper time interval is measured by a clock in the spaceship, so ∆t0 = ∆t/γ. Now  

 

γ β= − = − =1 1 1 1 0 99 7 092 2
/ / . . .b g  

 

Thus, ∆t0 = (26.3 y)/(7.09) = 3.7 y. 



 

 

14. From the value of L in the graph when β = 0, we infer than Lo in Eq. 37-13 is 0.80 m.  

Thus, that equation (which describes the curve in Fig. 37-24) with SI units understood 

becomes 

L  = Lo 1 - (v/c)
2
  =  0.80 1 − β2

   . 

 

If we set β = 0.95 in this expression, we obtain approximately 0.25 m for L. 



 

 

 

15. (a) Let d = 23000 ly = 23000 c y, which would give the distance in meters if we 

included a conversion factor for years →  seconds. With ∆t0 = 30 y and ∆t = d/v (see Eq. 

37-10), we wish to solve for v from Eq. 37-7. Our first step is as follows: 

 

0

2 2

23000 y 30 y
   ,

1 1

td
t

v ββ β
∆∆ = = =
− −

 

 

at which point we can cancel the unit year and manipulate the equation to solve for the 

speed parameter β. This yields 

 

( )2

1
0.99999915.

1 30 / 23000
β = =

+
 

 

(b) The Lorentz factor is 21/ 1 766.6680752γ β= − = . Thus, the length of the galaxy 

measured in the traveler’s frame is  

 

0 23000 ly
29.99999 ly 30 ly.

766.6680752

L
L

γ
= = = ≈  



 

 

16. The “coincidence” of x = x' = 0 at t = t' = 0 is important for Eq. 37-21 to apply 

without additional terms. In part (a), we apply these equations directly with v = +0.400c = 

1.199 × 10
8
 m/s, and in part (c) we simply change v v→ −  and recalculate the primed 

values. 

 

(a) The position coordinate measured in the S' frame is 

 

( ) ( )( )
( )

8 8

2 2

5

3.00 10 m 1.199 10 m/s 2.50s

1 1 0.400

2.7 10 m/s 0,

x vt
x x vtγ

β

× − ×−′ = − = =
− −

= × ≈

 

 

where we conclude that the numerical result (2.7 × 10
5
 or 2.3 × 10

5
 depending on how 

precise a value of v is used) is not meaningful (in the significant figures sense) and should 

be set equal to zero (that is, it is “consistent with zero” in view of the statistical 

uncertainties involved).  

 

(b) The time coordinate measured in the S' frame is 

 

( )( )
( )

8 8

2 2 2

2.50s 0.400 3.00 10 m / 2.998 10 m/s/
2.29s.

1 1 0.400

vx t x c
t t

c

βγ
β

− × ×−′ = − = = =
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(c) Now, we obtain 

 

( )( )
( )

8 8

8

2 2

3.00 10 m+ 1.199 10 m/s 2.50 s
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1 1 0.400

x vt
x

β

× ×+′ = = = ×
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(d) Similarly,  
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2 2

2.50s 0.400 3.00 10 m / 2.998 10 m/s
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1 0.400
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c
γ
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17. The proper time is not measured by clocks in either frame S or frame S' since a single 

clock at rest in either frame cannot be present at the origin and at the event. The full 

Lorentz transformation must be used: 

 
' ( ) and ' ( / )x x vt t t x cγ γ β= − = −  

 

where β = v/c = 0.950 andγ β= − = − =1 1 1 1 0 950 3 202562 2/ ( . ) . . Thus, 

 

( )3 8 6

5

' (3.20256) 100 10 m (0.950)(2.998 10 m/s)(200 10 s)

1.38 10 m 138km.

x
−= × − × ×

= × =
 

 

(b) The temporal coordinate in S’ is  

 

t ' ( . )
.

.= × − ×
×

L
NM

O
QP

= − × = −− −320256 200 10
2 998 10

374 10 3746

8
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3
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18. The “coincidence” of x = x' = 0 at t = t' = 0 is important for Eq. 37-21 to apply 

without additional terms. We label the event coordinates with subscripts: (x1, t1) = (0, 0) 

and (x2, t2) = (3000, 4.0 × 10
–6

) with SI units understood.  

 

(a) We expect (x'1, t'1) = (0, 0), and this may be verified using Eq. 37-21.  

 

(b) We now compute (x'2, t'2), assuming v = +0.60c = +1.799 × 10
8
 m/s (the sign of v is 

not made clear in the problem statement, but the Figure referred to, Fig. 37-9, shows the 

motion in the positive x direction). 

 
8 6

3

2
2 2

6 8
6

2
2 2

3000 (1.799 10 )(4.0 10 )
2.85 10

1 1 (0.60)

4.0 10 (0.60)(3000) /(2.998 10 )
2.5 10

1 1 (0.60)

x vt
x

t x c
t

β

β
β

−

−
−

− − × ×′ = = = ×
− −

− × − ×′ = = = − ×
− −

 

 

(c) The two events in frame S occur in the order: first 1, then 2. However, in frame S' 

where 2 0t′ < , they occur in the reverse order: first 2, then 1. So the two observers see the 

two events in the reverse sequence. 

 

We note that the distances x2 – x1 and 2 1x x′ ′−  are larger than how far light can travel 

during the respective times 2 1 2 1( ( ) 1.2 km and | | 750m)c t t c t t′ ′− = − ≈ , so that no 

inconsistencies arise as a result of the order reversal (that is, no signal from event 1 could 

arrive at event 2 or vice versa). 



 

 

 

19. (a) We take the flashbulbs to be at rest in frame S, and let frame S' be the rest frame of 

the second observer. Clocks in neither frame measure the proper time interval between 

the flashes, so the full Lorentz transformation (Eq. 37-21) must be used. Let ts be the time 

and xs be the coordinate of the small flash, as measured in frame S. Then, the time of the 

small flash, as measured in frame S', is 

 

s

s s

x
t t

c

β′ = γ −  

 

where β = v/c = 0.250 and  

 

γ = − = − =1 1 1 1 0 250 103282 2/ / ( . ) .β . 

 

Similarly, let tb be the time and xb be the coordinate of the big flash, as measured in frame 

S. Then, the time of the big flash, as measured in frame S', is 

 

.b

b b

x
t t

c

β′ = γ −  

 

Subtracting the second Lorentz transformation equation from the first and recognizing 

that ts = tb (since the flashes are simultaneous in S), we find 

 
3

5

8

( ) (1.0328)(0.250)(30 10 m)
' 2.58 10 s

3.00 10 m/s

s b
x x

t
c

γβ −− ×∆ = = = ×
×

 

 

where ' ' '
b s

t t t∆ = − . 

 

(b) Since ∆t' is negative, t
b
' is greater than t

s
' . The small flash occurs first in S'. 



 

 

20. We refer to the solution of problem 18. We wish to adjust ∆t so that 

 
∆ ∆x v t' ( )= = − −0 720γ m  

 

in the limiting case of | |v c→ . Thus, 

 

∆t =
×

= × −720

10
2 40 10

8

6m

2.998 m / s
s ..  



 

 

 

21. (a) The Lorentz factor is 

 

γ =
−

=
−

=1

1

1

1 0 600
125

2 2β ( . )
. .  

 

(b) In the unprimed frame, the time for the clock to travel from the origin to x = 180 m is 

 

t
x

v
= =

×
= × −180

100 10 6m

(0.600)(3.00 10 m / s)
s .

8
.  

 

The proper time interval between the two events (at the origin and at x = 180 m) is 

measured by the clock itself. The reading on the clock at the beginning of the interval is 

zero, so the reading at the end is 

 

t
t

'
.

.
.= = × = ×

−
−

γ
100 10

125
8 00 10

6
7s
s .  



 

 

22. The time-dilation information in the problem (particularly, the 15 s on “his 

wristwatch… which takes 30.0 s according to you”) reveals Lorentz factor is γ = 2.00 

(see Eq. 37-9), which implies his speed is v = 0.866c. 

 

(a) With γ = 2.00, Eq. 37-13 implies the contracted length is 0.500 m. 

 

(b) There is no contraction along direction perpendicular to the direction of motion (or 

“boost” direction), so meter stick 2 still measures 1.00 m long. 

 

(c) As in part (b), the answer is 1.00 m. 

 

(d) Eq. 1′ in Table 37-2 gives 

 

x2′ − x1′ =  γ(∆x′ − v∆t′)  = (2.00)[20.0 − (0.866)(2.998 × 10
8
)(40.0 × 10

−9
)]  = 19.2 m . 

 

(e) Eq. 2′ in Table 37-2 gives 

 

t2′ − t1′ =  γ(∆t′ − v∆x′/c²)  = (2.00)[ 40.0×10
−9

 −(0.866)(20.0)/(2.998 ×10
8
)
2
] 

 

which yields −35.5 ns.  In absolute value, the two events are separated by 35.5 ns. 

 

(f) The negative sign obtained in part (e) implies event 2 occurred before event 1. 



 

 

 

23. (a) In frame S, our coordinates are such that x1 = +1200 m for the big flash, and x2 = 

1200 – 720 = 480 m for the small flash (which occurred later). Thus,  

 

∆x = x2 – x1 = –720 m. 

 

If we set ∆x' = 0 in Eq. 37-25, we find 

 

0 720 5 00 10 6= − = − − × −γ γ( ) ( .∆ ∆x v t vm s)c h  
 

which yields v = –1.44 × 10
8
 m/s, or / 0.480v cβ = = . 

 

(b) The negative sign in part (a) implies that frame S' must be moving in the –x direction.  

 

(c) Eq. 37-28 leads to 

 

∆ ∆ ∆
t t

v x

c
' .

( .

( .
= −FHG

I
KJ = × − − × −

×
F
HG

I
KJ

−γ γ
2

6
8
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500 10

144 10

2 998 10
s

m / s)( 720m)
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which turns out to be positive (regardless of the specific value of γ). Thus, the order of 

the flashes is the same in the S' frame as it is in the S frame (where ∆t is also positive). 

Thus, the big flash occurs first, and the small flash occurs later. 

 

(d) Finishing the computation begun in part (c), we obtain 

 
6 8 8 2

6

2

5.00 10 s ( 1.44 10 m/s)( 720 m)/(2.998 10 m/s)
' 4.39 10 s .

1 0.480
t

−
−× − − × − ×∆ = = ×

−
 



 

 

24. From Eq. 2 in Table 37-2, we have ∆t = v γ ∆x′/c²  +  γ ∆t′.  The coefficient of ∆x′ is 

the slope (4.0 µs / 400 m) of the graph, and the last term involving ∆t′ is the “y-intercept” 

of the graph.  From the first observation, we can solve for β = v/c = 0.949 and 

consequently γ = 3.16. Then, from the second observation, we find   
 

∆t′ = (2.0 µs)/γ = 0.63 µs. 



 

 

 

25. (a)  Eq. 2′ of Table 37-2, with time in microseconds, becomes 

 

∆t′   = γ(∆t − β∆x/c) = γ[1.00 − β(400/299.8)]  
 
where the Lorentz factor is itself a function of β (see Eq. 37-8).  

 

(b) A plot of ∆t′  as a function of β  in the range 0 0.01β< <  is shown below: 

 

 
 

Note the limits of the vertical axis are +2 µs and  –2 µs.  We note how “flat” the curve is 

in this graph; the reason is that for low values of β, Bullwinkle’s measure of the temporal 

separation between the two events is approximately our measure, namely +1.0 µs.  There 

are no non-intuitive relativistic effects in this case. 

 

(c) A plot of ∆t′  as a function of β  in the range 0.1 1β< <  is shown below: 

 

 
 

(d) Setting  

 
∆t′  = γ(∆t − β∆x/c) = γ[1.00 − β(400/299.8)] = 0, 



 

leads to β = 299.8/400  ≈ 0.750. 

 

(e) For the graph shown in part (c),  that as we increase the speed, the temporal separation 

according to Bullwinkle is positive for the lower values and then goes to zero and finally 

(as the speed approaches that of light) becomes progressively more negative.  For the 

lower speeds with ∆t′  > 0  tA′  <  tB′, or 0 0.750β< < , according to Bullwinkle event 

A occurs before event B just as we observe.  

 

(f) For the higher speeds with ∆t′  < 0      tA′  >  tB′,  or 0.750 1β< < , according to 

Bullwinkle event B occurs before event A (the opposite of what we observe).   

 

(g) No, event A cannot cause event B or vice versa. We note that  

 

∆x/∆t = (400 m)/(1.00 µs) = 4.00 ×10
8 
m/s > c. 

 

A signal cannot travel from event A to event B without exceeding c, so causal influences 

cannot originate at A and thus affect what happens at B, or vice versa. 



 

 

 

26. (a) From Table 37-2, we find 

 

∆x′ = γ(∆x – βc∆t) 
2

400 m (299.8 m)
[400 m (1.00 s)]

1
c

βγ β µ
β

−= − =
−

 

 

(b) A plot of 'x∆  as a function of β  with 0 0.01β< <  is shown below: 

 

 
 

(c) A plot of 'x∆  as a function of β  with 0.1 1β< <  is shown below: 

 

 
 

(d) To find the minimum, we can take a derivative of ∆x′ with respect to β, simplify, and 

then set equal to zero: 

 

d ∆x′
 d β   =  γ3

(β∆x − c∆t) = 0         β = 
c∆t

∆x
  =  0.7495 0.750.≈  

 



(e) Substituting this value of β into the part (a) expression yields ∆x′ = 264.8 m 

265 m≈ for its minimum value. 



 

 

 

27. We assume S' is moving in the +x direction. With u' = +0.40c and v = +0.60c, Eq. 37-

29 yields 

 

u
u v

u v c

c c

c c c
c= +

+
= +

+ +
='

' /

. .

( . )( . ) /
. .

1

0 40 0 60

1 0 40 0 60
081

2 2
 



 

 

28. Using the notation of Eq. 37-29 and taking “away” (from us) as the positive direction, 

the problem indicates v = +0.4c and u = +0.8c (with 3 significant figures understood). We 

solve for the velocity of Q2 relative to Q1 (in multiple of c): 

 

2

' / / 0.8 0.4
0.588

1 / 1 (0.8)(0.4)

u u c v c

c uv c

− −= = =
− −

 

 

in a direction away from Earth. 



 

 

 

29. (a) One thing Einstein’s relativity has in common with the more familiar (Galilean) 

relativity is the reciprocity of relative velocity. If Joe sees Fred moving at 20 m/s 

eastward away from him (Joe), then Fred should see Joe moving at 20 m/s westward 

away from him (Fred). Similarly, if we see Galaxy A moving away from us at 0.35c then 

an observer in Galaxy A should see our galaxy move away from him at 0.35c, or 0.35 in 

multiple of c.  

 

(b) We take the positive axis to be in the direction of motion of Galaxy A, as seen by us. 

Using the notation of Eq. 37-29, the problem indicates v = +0.35c (velocity of Galaxy A 

relative to Earth) and u = –0.35c (velocity of Galaxy B relative to Earth). We solve for 

the velocity of B relative to A: 

 

2

' / / ( 0.35) 0.35
0.62

1 / 1 ( 0.35)(0.35)

u u c v c

c uv c

− − −= = = −
− − −

, 

 

or | '/ | 0.62.u c =  



 

 

30. (a) We use Eq. 37-29: 

 

v
v u

uv c

c c
c= +

+
= +

+
='

'/

. .

( . )( . )
. ,

1

0 47 0 62

1 0 47 0 62
084

2
 

 

in the direction of increasing x (since v > 0). In unit-vector notation, we have 
ˆ(0.84 )iv c= . 

 

(b) The classical theory predicts that v = 0.47c + 0.62c = 1.1c, or ˆ(1.1 )iv c=  

 

(c) Now v' = –0.47c î  so 

 

v
v u

uv c

c c
c= +

+
= − +

+ −
='

'/

. .

( . )( . )
. ,

1

0 47 0 62

1 0 47 0 62
0 21

2
 

 

or ˆ(0.21 )iv c=  

 

(d) By contrast, the classical prediction is v = 0.62c – 0.47c = 0.15c, or ˆ(0.15 )iv c=  



 

 

 

31. Using the notation of Eq. 37-29 and taking the micrometeorite motion as the positive 

direction, the problem indicates v = –0.82c (spaceship velocity) and u = +0.82c 

(micrometeorite velocity). We solve for the velocity of the micrometeorite relative to the 

spaceship: 

 

u
u v

uv c

c c
c'

/

. ( . )

( . )( . )
.= −

−
= − −

− −
=

1

082 082

1 082 082
0 98

2
 

 

or 2.94 × 10
8
 m/s. Using Eq. 37-10, we conclude that observers on the ship measure a 

transit time for the micrometeorite (as it passes along the length of the ship) equal to 

 

∆t
d

u
= =

×
= × −

' .
.

350

2 94 10
12 10

8

6m

m / s
s .  



 

 

32. The Figure shows that u′ = 0.80c when v = 0.  We therefore infer (using the notation 

of Eq. 37-29) that u = 0.80c.  Now, u is a fixed value and v is variable, so u′ as a function 

of v is given by 

                                                 u′ =  
0.80c - v

1 - 0.80 v/c
   

 

which is Eq. 37-29 rearranged so that u′ is isolated on the left-hand side.  We use this 

expression to answer parts (a) and (b). 

 

(a) Substituting v = 0.90c in the expression above leads to u′ = −0.357c  ≈ −0.36c. 

 

(b) Substituting v = c in the expression above leads to u′ = −c (regardless of the value of 

u). 



 

 

 

33. (a) In the messenger’s rest system (called Sm), the velocity of the armada is 

 

v
v v

vv c

c c

c c c
c

m

m

'
/

. .

( . )( . ) /
. .= −

−
= −

−
= −

1

0 80 0 95

1 0 80 0 95
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The length of the armada as measured in Sm is 

 

20
1 (1.0 ly) 1 ( 0.625) 0.781 ly .

L
L

vγ
= = − − =

′
 

 

Thus, the length of the trip is 

 

t
L

v
'

'

| ' |

.
.= = =0 781

125
ly

0.625c
y .  

 

(b) In the armada’s rest frame (called Sa), the velocity of the messenger is 

 

v
v v

vv c

c c

c c c
c

a

a

'
/

. .

( . )( . ) /
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−
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−
=

1
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Now, the length of the trip is 

 

0 1.0 ly
' 1.60 y .

' 0.625

L
t

v c
= = =  

 

(c) Measured in system S, the length of the armada is 

 

L
L= = − =0 210 1 080 0 60
γ

. ( . ) . ,ly ly  

 

so the length of the trip is 

 

0.60 ly
4.00 y .

0.95 0.80
m a

L
t

v v c c
= = =

− −
 



 

 

34. (a) Eq. 37-34 leads to 

 

8 612.00nm
(2.998 10 m/s) 7.000 10 m/s.

513.0nm
v c

∆λ= = × = ×
λ

 

 

(b) The line is shifted to a larger wavelength, which means shorter frequency. Recalling 

Eq. 37-31 and the discussion that follows it, this means galaxy NGC is moving away 

from Earth. 



 

 

 

35. The spaceship is moving away from Earth, so the frequency received is given directly 

by Eq. 37-31. Thus, 

 

f f= −
+

= −
+

=0

1

1
100

0 9000

1 0 9000
22 9

β
β

(
.

.
.MHz)

1
MHz .  



 

 

36. (a) Eq. 37-34 leads to a speed of 

 

8 6 6(0.004)(3.0 10 m/s) 1.2 10 m/s 1 10 m/s.v c
∆λ= = × = × ≈ ×
λ

 

 

(b) The galaxy is receding. 



 

 

 

37. We obtain 

 

620 540
0.13 .

620
v c c c

∆λ −= = =
λ

 



 

 

38. We use the transverse Doppler shift formula, Eq. 37-37: f f= −0

21 β , or 

 

1 1
1 2

λ λ0

= − β .  

We solve for λ − λ0 : 

 

λ − λ λ0 0 2 2

1

1
1 589 00

1

1 0100
1 2 97=

−
−

F
HG

I
KJ

=
−

−
L
N
M
M

O
Q
P
P

= +
β

( .
( . )

. .mm) nm  



 

 

 

39. (a) The frequency received is given by 

 

0

1 1 0.20
      

1 1 0.20

c c
f f

β
β 0

− −= =
+ λ λ +

 

 

which implies 

 

λ = (450 nm)
1+ 0.20

1
nm .

−
=

0 20
550

.
 

 

(b) This is in the yellow portion of the visible spectrum. 



 

 

40. (a) The work-kinetic energy theorem applies as well to Einsteinian physics as to 

Newtonian; the only difference is the specific formula for kinetic energy. Thus, we use W 

= ∆K = mec
2
(γ – 1) (Eq. 37-52) and mec

2
 = 511 keV = 0.511 MeV (Table 37-3), and 

obtain 

 

2

2 2

1 1
1 (511keV) 1 79.1 keV .

1 1 (0.500)
e

W m c

β
= − = − =

− −
 

 

(b) W =
−

−F
HG

I
KJ

=0511
1

1 0 990
1 311

2
.

.
.MeV MeV.b g

b g
 

 

(c) W =
−

−F
HG

I
KJ

=0511
1

1 0 990
1 10 9

2
.

.
.MeV MeV.b g

b g
 



 

 

 

41. (a) From Eq. 37-52, γ = (K/mc
2
) + 1, and from Eq. 37-8, the speed parameter is 

β γ= −1 1
2

/ .b g  Table 37-3 gives mec
2
 = 511 keV = 0.511 MeV, so the Lorentz factor is 

 

100 MeV
1 196.695.

0.511MeV
γ = + =  

 

(b) The speed parameter is 

 

( )2

1
1 0.999987.

196.695
β = − =  

 

Thus, the speed of the electron is 0.999987c, or 99.9987% of the speed of light.  



 

 

42. The mass change is 

 

∆M = − = −4 002603 1007825 0 008712. . .u +15.994915u u +18.998405u u.b g b g  

 

Using Eq. 37-50 and Eq. 37-46, this leads to 

 

Q M c= − = − − =∆ 2 0 008712 9315 812. . .u MeV / u MeV.b gb g  



 

 

 

43. (a) The work-kinetic energy theorem applies as well to Einsteinian physics as to 

Newtonian; the only difference is the specific formula for kinetic energy. Thus, we use W 

= ∆K where K = mec
2
(γ – 1) (Eq. 37-52), and mec

2
 = 511 keV = 0.511 MeV (Table 37-3). 

Noting that ∆K = mec
2
(γf – γi), we obtain 

 

( )
( ) ( )

2

2 2 2 2

1 1 1 1
511keV

1 1 1 0.19 1 0.18

0.996  keV 1.0 keV.

e

f i

W m c

β β
= − = −

− − − −

= ≈

 

 

(b) Similarly, 

 

( )
( ) ( )2 2

1 1
511keV 1055keV 1.1 MeV.

1 0.99 1 0.98

W = − = ≈
− −

 

 

We see the dramatic increase in difficulty in trying to accelerate a particle when its initial 

speed is very close to the speed of light. 



 

 

44. From Eq. 28-37, we have 

 
2 2(3(4.00151u) 11.99671u) (0.00782u)(931.5MeV/u)

7.28Mev.

Q Mc c= −∆ = − − = −
= −

 

 

Thus, it takes a minimum of 7.28 MeV supplied to the system to cause this reaction. We 

note that the masses given in this problem are strictly for the nuclei involved; they are not 

the “atomic” masses which are quoted in several of the other problems in this chapter. 



 

 

 

45. (a) The strategy is to find the γ factor from E = 14.24 × 10
–9

 J and mpc
2
 = 1.5033 × 

10
–10

 J and from that find the contracted length. From the energy relation (Eq. 37-48), we 

obtain 

 

γ = =E

mc
2

94 73. .  

 

Consequently, Eq. 37-13 yields 

 

L
L= = = × −0 30 222 2 22 10
γ

. . cm  m. 

 

(b) The time dilation formula (Eq. 37-7) leads to 

 
10

0 7.01 10 st tγ −∆ = ∆ = ×  

 

which can be checked using ∆t = L0/v in our frame of reference. 

 

(c) From the γ factor, we find the speed: 

 

v c c= −
F
HG
I
KJ =1

1
0 99994

2

γ
. . 

 

Therefore, the trip (according to the proton) took  

 

∆t0 = 2.22 × 10
–3

/0.99994c = 7.40 × 10
–12

 s. 



 

 

46. (a) From the information in the problem, we see that each kilogram of TNT releases  

(3.40 × 10
6
 J/mol)/(0.227 kg/mol) = 1.50 × 10

7
 J.  Thus,  

 

(1.80 × 10
14

 J)/(1.50 × 10
7
 J/kg) = 1.20 × 10

7
  kg 

 

of TNT are needed.  This is equivalent to a weight of ≈ 1.2 × 10
8 

N.  

 

(b) This is certainly more than can be carried in a backpack.  Presumably, a train would 

be required. 

 

(c) We have 0.00080mc
2
 = 1.80 × 10

14
 J, and find m = 2.50 kg of fissionable material is 

needed.  This is equivalent to a weight of about 25 N, or 5.5 pounds. 

 

(d) This can be carried in a backpack. 



 

 

 

47. We set Eq. 37-55 equal to (3.00mc
2
)
2
, as required by the problem, and solve for the 

speed. Thus, 

 

( ) ( ) ( )2 22 2 29.00pc mc mc+ =  

 

leads to 8 2.83 .p mc mc= ≈  



 

 

48. (a) Using K = mec
2
 (γ – 1) (Eq. 37-52) and  

 

mec
2
 = 510.9989 keV = 0.5109989 MeV, 

 

we obtain 

 

2

1.0000000 keV
1 1 1.00195695 1.0019570.

510.9989 keV
e

K

m c
γ = + = + = ≈  

 

(b) Therefore, the speed parameter is 

 

2 2

1 1
1 1 0.062469542.

(1.0019570)
β

γ
= − = − =  

 

(c) For 1.0000000 MeVK = , we have 

 

2

1.0000000 MeV
1 1 2.956951375 2.9569514.

0.5109989 MeV
e

K

m c
γ = + = + = ≈  

 

(d) The corresponding speed parameter is  

 
21 0.941079236 0.94107924.β γ −= − = ≈  

 

(e) For K = 1.0000000 GeV, we have 

 

2

1000.0000 MeV
1 1 1957.951375 1957.9514.

0.5109989 MeV
e

K

m c
γ = + = + = ≈  

 

(f) The corresponding speed parameter is  

 
21 0.99999987β γ −= − =  



 

 

 

49. Since the rest energy E0 and the mass m of the quasar are related by E0 = mc
2
, the rate 

P of energy radiation and the rate of mass loss are related by P = dE0/dt = (dm/dt)c
2
. 

Thus, 

 

dm

dt

P

c
= = ×

×
= ×

2

41

8
2

241 10

2 998 10
111 10

W

m / s
kg / s.

.
.

c h
 

 

Since a solar mass is 2.0 × 10
30

 kg and a year is 3.156 × 10
7
 s, 

 

dm

dt
= × ×

×
F
HG

I
KJ ≈111 10

3156 10

2 0 10
1824

7

30
.

.

.
kg / s

s / y

kg / smu
smu / y.c h  



 

 

50. From Eq. 37-52, γ = (K/mc
2
) + 1, and from Eq. 37-8, the speed parameter is 

β γ= −1 1
2

/ .b g  

 

(a) Table 37-3 gives mec
2
 = 511 keV = 0.511 MeV, so the Lorentz factor is 

 

10.00 MeV
1 20.57,

0.5110 MeV
γ = + =  

 

(b) and the speed parameter is 

 

β = − =1
1

20 57
0 9988

2
.

. .
b g

 

 

(c) Using mpc
2
 = 938.272 MeV, the Lorentz factor is  

 
γ = 1 + 10.00 MeV/938.272 MeV = 1.01065 1.011≈ . 

 

(d) The speed parameter is 

 
21 0.144844 0.1448.β γ −= − = ≈  

 

(e) With mαc
2
 = 3727.40 MeV, we obtain  γ = 10.00/3727.4 + 1 = 1.00268 1.003≈ .  

 

(f) The speed parameter is  

 
21 0.0731037 0.07310β γ −= − = ≈ . 



 

 

 

51. (a) We set Eq. 37-41 equal to mc, as required by the problem, and solve for the speed. 

Thus, 

 

mv

v c

mc

1 2 2−
=

/
 

 

leads to 1/ 2 0.707.β = =  

 

(b) Substituting 1/ 2β =  into the definition of γ, we obtain 

 

γ =
−

=
−

= ≈1

1

1

1 1 2
2 141

2 2
v c/ /

. .
b g

 

 

(c) The kinetic energy is 

 

( ) ( )2 2 2

01 2 1 0.414 0.414 .K mc mc mc E= γ − = − = =  

 

which implies 0/ 0.414K E = . 



 

 

52. (a) We set Eq. 37-52 equal to 2mc
2
, as required by the problem, and solve for the 

speed. Thus, 

 

2 2

2

1
1 2

1
mc mc

β
− =

−
 

 

leads to 2 2 / 3 0.943.β = ≈  

 

(b) We now set Eq. 37-48 equal to 2mc
2
 and solve for the speed. In this case, 

 
2

2

2
2

1

mc
mc

β
=

−
 

 

leads to 3 / 2 0.866.β = ≈  



 

 

 

53. The energy equivalent of one tablet is  

 

mc
2
 = (320 × 10

–6
 kg) (3.00 × 10

8
 m/s)

2
 = 2.88 × 10

13
 J. 

 

This provides the same energy as  

 

(2.88 × 10
13

 J)/(3.65 × 10
7
 J/L) = 7.89 × 10

5
 L 

 

of gasoline. The distance the car can go is  

 

d = (7.89 × 10
5
 L) (12.75 km/L) = 1.01 × 10

7
 km. 

 

This is roughly 250 times larger than the circumference of Earth (see Appendix C). 



 

 

54. (a) Squaring Eq. 37-47 gives 

 

E mc mc K K
2 2

2
2 22= + +c h  

 

which we set equal to Eq. 37-55. Thus, 

 

mc mc K K pc mc m
pc K

Kc

2
2

2 2 2 2
2

2 2

2
2

2
c h b g c h b g+ + = + =

−
.  

 

(b) At low speeds, the pre-Einsteinian expressions p = mv and K mv= 1
2

2  apply. We note 

that pc K>>  at low speeds since c v>>  in this regime. Thus, 

 

m

mvc mv

mv c

mvc

mv c

m→
−

≈ =
b g c h
c h

b g
c h

2 1
2

2
2

1
2

2 2

2

1
2

2 22 2
.  

 

(c) Here, pc = 121 MeV, so 

 

m
c

= − =121 55

2 55
105 6

2 2

2b g . .MeV / c2  

 

Now, the mass of the electron (see Table 37-3) is me = 0.511 MeV/c
2
, so our result is 

roughly 207 times bigger than an electron mass, i.e., / 207
e

m m ≈ . The particle is a muon. 



 

 

 

55. The distance traveled by the pion in the frame of Earth is (using Eq. 37-12) d = v∆t. 

The proper lifetime ∆t0 is related to ∆t by the time-dilation formula: ∆t = γ∆t0. To use this 

equation, we must first find the Lorentz factor γ (using Eq. 37-48). Since the total energy 

of the pion is given by E = 1.35 × 10
5
 MeV and its mc

2
 value is 139.6 MeV, then 

 

γ = = × =E

mc
2

5135 10

139 6
967 05

.

.
. .

MeV

MeV
 

 

Therefore, the lifetime of the moving pion as measured by Earth observers is 

 

∆ ∆t t= = × = ×− −γ 0

9 5967 1 35 0 10 3 385 10. . .b gc hs s,  

 

and the distance it travels is 

 

d c t≈ = × × = ×−∆ 2 998 10 3 385 10 1015 108 5 4. . .m / s s m = 10.15kmc hc h  

 

where we have approximated its speed as c (note: its speed can be found by solving Eq. 

37-8, which gives v = 0.9999995c; this more precise value for v would not significantly 

alter our final result). Thus, the altitude at which the pion decays is 120 km – 10.15 km = 

110 km. 



 

 

56. (a) The binomial theorem tells us that, for x small, 

 

(1 + x)
ν
   ≈  1  +  ν x +  ½ ν(ν − 1) x² 

 

if we ignore terms involving x
3
 and higher powers (this is reasonable since if x is small, 

say x = 0.1, then x
3
 is much smaller: x

3
 = 0.001).  The relativistic kinetic energy formula, 

when the speed v is much smaller than c, has a term that we can apply the binomial 

theorem to; identifying –β² as x and –1/2 as ν, we have   

 

γ = ( )1 − β2 −1/2
  ≈  1  +  (–½)(–β²)  +  ½ (–½)((–½) − 1)(–β²)

2
. 

 

Substituting this into Eq. 37-52 leads to 

 

K  = mc²(γ – 1) ≈  mc²((–½)(–β²)  +  ½ (–½)((–½) − 1)(–β²)
2) 

 
which simplifies to  

 

   K  ≈  
1

2
 mc² β2

  + 
3

8
 mc² β4

 =   
1

2
 mv²  +  

3

8
 mv

4
/c² . 

 

(b) If we use the mc² value for the electron found in Table 37-3, then for β = 1/20, the 

classical expression for kinetic energy gives 

 

 Kclassical  =  
1

2
 mv²  = 

1

2
 mc² β2

 = 
1

2
 (8.19 × 10

−14 
J) (1/20)2

  = 1.0 × 10
−16 

J . 

 

(c) The first-order correction becomes 

 

 Kfirst-order  =  
3

8
 mv

4
/c²  = 

3

8
 mc² β4

 = 
3

8
 (8.19 × 10

−14 
J) (1/20)4

  = 1.9 × 10
−19 

J 

       

which we note is much smaller than the classical result. 

 

(d) In this case, β = 0.80 = 4/5, and the classical expression yields 

 

 Kclassical  =  
1

2
 mv²  = 

1

2
 mc² β2

 = 
1

2
 (8.19 ×  10

−14 
J) (4/5)2

  = 2.6 × 10
−14 

J . 

 

(e) And the first-order correction is 

 

 Kfirst-order  =  
3

8
 mv

4
/c²  = 

3

8
 mc² β4

 = 
3

8
 (8.19 ×  10

−14 
J) (4/5)4

  = 1.3 × 10
−14 

J 

 

which is comparable to the classical result.  This is a signal that ignoring the higher order 

terms in the binomial expansion becomes less reliable the closer the speed gets to c. 

 



 

(f) We set the first-order term equal to one-tenth of the classical term and solve for β: 

 

            
3

8
 mc² β4 

 = 
1

10
 ( 

1

2
 mc² β2 

) 

 

and obtain 2 /15 0.37β = ≈ .   



 

 

57. Using the classical orbital radius formula 0 / | |r mv q B= , the period is  

0 02 / 2 / | | .T r v m q Bπ π= =  In the relativistic limit, we must use 

 

0
| | | |

p mv
r r

q B q B

γ γ= = =  

which yields   

 

0

2 2

| |

r m
T T

v q B

π πγ γ= = =  

 

(b) The period T is not independent of v.  

 

(c) We interpret the given 10.0 MeV to be the kinetic energy of the electron. In order to 

make use of the mc
2
 value for the electron given in Table 37-3  

(511 keV = 0.511 MeV) we write the classical kinetic energy formula as 

 

K mv mc
v

c
mcclassical = =

F
HG
I
KJ =1

2

1

2

1

2

2 2
2

2

2 2c h c hβ .  

 

If Kclassical = 10.0 MeV, then 

 

β = = =2 2 10 0

0 511
6 256

2

K

mc

classical
MeV

MeV

.

.
. ,

b g
 

 

which, of course, is impossible (see the Ultimate Speed subsection of  §37-2). If we use 

this value anyway, then the classical orbital radius formula yields 

 

( ) ( ) ( )
( ) ( )

31 8

3

19

9.11 10 kg 6.256 2.998 10 m/s
4.85 10 m.

| | 1.6 10 C 2.20T

mv m c
r

q B eB

β −
−

−

× ×
= = = = ×

×
 

 

(d) Before using the relativistically correct orbital radius formula, we must compute β in 

a relativistically correct way: 

 

K mc= − = + =2 1
10 0

0 511
1 20 57( )

.

.
.γ γ MeV

MeV
 

 

which implies (from Eq. 37-8) 

 



 

β
γ

= − =1
1

0 99882
2

. .  

 

Therefore, 

 
31 8

19

2

(20.57) (9.11 10 kg)(0.99882)(2.998 10 m/s)

| | (1.6 10 C)(2.20T)

1.59 10 m.

mv m c
r

q B eB

γ γ β −

−

−

× ×= = =
×

= ×
 

 

(e) The classical period is 

 
3

11

8

2 2 (4.85 10 m)
1.63 10 s.

(6.256) (2.998 10 m/s)

r
T

c

π π
β

−
−×= = = ×

×
 

 

(f) The period obtained with relativistic correction is 

 

T
r

c
= =

×
= × −2 2 0 0159

0 99882 2 998 10
3 34 10

8

10π π
β

( .

( . ) ( .
.

m)

m / s)
s.  



 

 

58. (a) The proper lifetime ∆t0 is 2.20 µs, and the lifetime measured by clocks in the 

laboratory (through which the muon is moving at high speed) is ∆t = 6.90 µs. We use Eq. 

37-7 to solve for the speed parameter: 

 
2

01 0.948
t

t
β ∆= − =

∆
. 

 

 

(b) From the answer to part (a), we find γ = 3.136. Thus, with (see Table 37-3) 

 

mµc
2
 = 207mec

2
 = 105.8 MeV, 

 

Eq. 37-52 yields 

 

K m c= − =µ γ2 1 226b g MeV. 

 

(c) We write mµc = 105.8 MeV/c and apply Eq. 37-41: 

 

p m v m c c c= = = =γ γ βµ µ 3136 1058 0 9478 314. . .b gb gb gMeV / MeV /  

 

which can also be expressed in SI units (p = 1.7 × 10
–19

 kg·m/s). 



 

 

 

59. (a) Before looking at our solution to part (a) (which uses momentum conservation), it 

might be advisable to look at our solution (and accompanying remarks) for part (b) 

(where a very different approach is used). Since momentum is a vector, its conservation 

involves two equations (along the original direction of alpha particle motion, the x 

direction, as well as along the final proton direction of motion, the y direction). The 

problem states that all speeds are much less than the speed of light, which allows us to 

use the classical formulas for kinetic energy and momentum ( K mv= 1
2

2  and p mv= ,  

respectively). Along the x and y axes, momentum conservation gives (for the components 

of voxy ): 

 

m v m v v
m

m
v v

m v m v v
m

m
v v

x x

y p p y

p

p p

α α
α

α α= = ≈

= + = − ≈ −

oxy oxy, oxy,

oxy

oxy oxy, oxy,

oxy

4

17

0
1

17
.

 

 

To complete these determinations, we need values (inferred from the kinetic energies 

given in the problem) for the initial speed of the alpha particle (vα) and the final speed of 

the proton (vp). One way to do this is to rewrite the classical kinetic energy expression as 

K mc= 1
2

2 2( )β  and solve for β (using Table 37-3 and/or Eq. 37-46). Thus, for the proton, 

we obtain 

 

β
p

p

p

K

m c
= = =

2 2 4 44

938
0 0973

2

( .
. .

MeV)

MeV
 

 

This is almost 10% the speed of light, so one might worry that the relativistic expression 

(Eq. 37-52) should be used. If one does so, one finds βp = 0.969, which is reasonably 

close to our previous result based on the classical formula. For the alpha particle, we 

write  

 

mαc
2
 = (4.0026 u)(931.5 MeV/u) = 3728 MeV 

 

(which is actually an overestimate due to the use of the “atomic mass” value in our 

calculation, but this does not cause significant error in our result), and obtain 

 

βα
α

α

= = =2 2 7 70

3728
0 064

2

K

m c

( .
. .

MeV)

MeV
 

 

Returning to our oxygen nucleus velocity components, we are now able to conclude: 

 



v v

v v

x x

y p y p

oxy, oxy,

oxy, oxy,

≈ ≈ = =

≈ ≈ = =

4

17

4

17

4

17
0 064 0 015

1

17

1

17

1

17
0 097 0 0057

α αβ β

β β

( . ) .

| | ( . ) .

 

 

Consequently, with moxyc
2
 ≈ (17 u)(931.5 MeV/u) = 1.58 × 10

4
 MeV, we obtain 

 

2 2 2 4 2 2

oxy oxy oxy, oxy,

1 1
( ) ( ) (1.58 10 MeV)(0.015 0.0057 ) 2.08 MeV.

2 2
x y

K m c β β= + = × + ≈  

 

(b) Using Eq. 37-50 and Eq. 37-46, 

 
2(1.007825u 16.99914u 4.00260u 14.00307u)

(0.001295u)(931.5MeV/u)

Q c= − + − −
= −

 

 

which yields Q = –1.206 MeV 1.21 MeV≈ − . Incidentally, this provides an alternate way 

to obtain the answer (and a more accurate one at that!) to part (a). Eq. 37-49 leads to 

 

oxy 7.70MeV 1206MeV 4.44MeV

2.05MeV.

p
K K Q Kα= + − = − −

=
 

 

This approach to finding Koxy avoids the many computational steps and approximations 

made in part (a). 



 

 

 

60. (a) Eq. 2′ of Table 37-2, becomes 

 

∆t′ = γ(∆t − β∆x/c) = γ[1.00 µs − β(240 m)/(2.998 × 102 m/µs )]  
(1.00 0.800 ) sγ β µ= −  

 
where the Lorentz factor is itself a function of β (see Eq. 37-8).  

 

(b) A plot of ∆t′ is shown for the range 0 0.01β< < : 

 

 
 

(c) A plot of ∆t′ is shown for the range 0.1 1β< < : 

 

 
 

(d) The minimum for the ∆t′ curve can be found from by taking the derivative and 

simplifying and then setting equal to zero: 

 

d ∆t′
d β

  =  γ3(β∆t – ∆x/c) = 0 . 

 



Thus, the value of β for which the curve is minimum is β = ∆x/c∆t = 240/299.8, or 

0.801β = . 

 

(e) Substituting the value of β from part (d) into the part (a) expression yields the 

minimum value ∆t′ = 0.599 µs. 

 

(f) Yes. We note that ∆x/∆t = 2.4 ×10
8 
m/s < c.  A signal can indeed travel from event A 

to event B without exceeding c, so causal influences can originate at A and thus affect 

what happens at B.  Such events are often described as being “time-like separated” – and 

we see in this problem that it is (always) possible in such a situation for us to find a frame 

of reference (here with β ≈ 0.801) where the two events will seem to be at the same 

location (though at different times). 



 

 

 

61. (a) Eq. 1′ of Table 37-2 becomes ∆x′ = γ(∆x − β c∆t) = γ[(240 m) − β(299.8 m)] . 
 
(b) A plot of ∆x′ for 0 0.01β< <  is shown below: 

 

 
 

(c) A plot of ∆x′ for 0.1 1β< <  is shown below: 

 

 
 

We see that ∆x′ decreases from its β = 0 value (where it is equal to ∆x = 240 m) to its 

zero value (at β ≈ 0.8), and continues (without bound) downward in the graph (where it is 

negative – implying event B has a smaller value of x′ than event A!).  

 

(d) The zero value for ∆x′ is easily seen (from the expression in part (b)) to come from 

the condition  ∆x − β c∆t = 0.  Thus β = 0.801 provides the zero value of ∆x′.  



 

 

62. The line in the graph is described by Eq. 1 in Table 37-2: 

 

∆x = vγ∆t′ + γ∆x′ =  (“slope”)∆t′   +  “y-intercept” 

 

where the “slope” is 7.0 × 10
8
 m/s. Setting this value equal to vγ leads to v = 2.8 ×10

8
 m/s 

and γ = 2.54.  Since the “y-intercept” is 2.0 m, we see that dividing this by γ leads to ∆x′ 
= 0.79 m. 



 

 

 

63. (a) The spatial separation between the two bursts is vt. We project this length onto the 

direction perpendicular to the light rays headed to Earth and obtain Dapp = vt sin θ. 

 

(b) Burst 1 is emitted a time t ahead of burst 2. Also, burst 1 has to travel an extra 

distance L more than burst 2 before reaching the Earth, where L = vt cos θ (see Fig. 37-

30); this requires an additional time t' = L/c. Thus, the apparent time is given by 

 

T t t t
vt

c
t

v

c
app

cos
cos= − ′ = − = − FHG
I
KJ

L
NM

O
QP

θ θ1 .  

 

(c) We obtain 

 

V
D

T

v c

v c
c c capp

app

app

sin

cos

sin30.0

cos30.0
= =

−
L
NM

O
QP

= °
− °
L
NM

O
QP

=( / )

( / )

( . )

( . )
. .

θ
θ1

0 980

1 0 980
324  



 

 

64. By examining the value of u′ when v = 0 on the graph, we infer u = −0.20c. Solving 

Eq. 37-29 for u′ and inserting this value for u, we obtain 

 

u′ = 
u − v

 1 − uv/c²
  = 

−0.20c − v

 1 + 0.20v/c
  

 

for the equation of the curve shown in the figure. 

 

(a) With v = 0.80c, the above expression yields u′ = −0.86c. 

 

(b) As expected, setting v = c in this expression leads to u′ = −c. 



 

 

 

65. (a) From the length contraction equation, the length ′L
c

 of the car according to 

Garageman is 

 

′ = = − = − =L
L

L
c

c

cγ
β1 305 0 9980 1932 2( . ( . ) .m) 1 m. 

 

(b) Since the xg axis is fixed to the garage xg2 = Lg = 6.00 m.  

 

(c) As for tg2, note from Fig. 37-32 (b) that, at tg = tg1 = 0 the coordinate of the front 

bumper of the limo in the xg frame is ′L
c
,  meaning that the front of the limo is still a 

distance L L
g c

− ′  from the back door of the garage. Since the limo travels at a speed v, the 

time it takes for the front of the limo to reach the back door of the garage is given by 

 

∆t t t
L L

v
g g g

g c= − =
− ′

= −
×

= × −
2 1 8

86 00 193

0 9980 2 998 10
136 10

. .

. ( .
.

m m

m / s)
s.  

 

Thus tg2 = tg1 + ∆tg = 0 + 1.36 × 10
–8

 s = 1.36 × 10
–8

 s. 

 

(d) The limo is inside the garage between times tg1 and tg2, so the time duration is tg2 – tg1 

= 1.36 × 10
–8

 s. 

 

(e) Again from Eq. 37-13, the length ′L
g
 of the garage according to Carman is 

 

′ = = − = − =L
L

L
g

g

gγ
β1 6 00 0 9980 0 3792 2( . ( . ) .m) 1 m.  

 

(f) Again, since the xc axis is fixed to the limo xc2 = Lc = 30.5 m.  

 

(g) Now, from the two diagrams described in part (h) below, we know that at tc = tc2 

(when event 2 takes place), the distance between the rear bumper of the limo and the back 

door of the garage is given by L L
c

g

− ′ .  Since the garage travels at a speed v, the front 

door of the garage will reach the rear bumper of the limo a time ∆tc later, where ∆tc 

satisfies 

 

∆t t t
L L

v
c c c

c g= − =
− ′

= −
×

= × −
1 2 8

7305 0 379

0 9980 2 998 10
101 10

. .

. ( .
.

m m

m / s)
s.  

 

Thus tc2 = tc1 – ∆tc = 0 – 1.01 × 10
–7

 s = –1.01 × 10
–7

 s. 

 

(h) From Carman’s point of view, the answer is clearly no. 

 



(i) Event 2 occurs first according to Carman, since tc2 < tc1. 

 

(j) We describe the essential features of the two pictures. For event 2, the front of the 

limo coincides with the back door, and the garage itself seems very short (perhaps failing 

to reach as far as the front window of the limo). For event 1, the rear of the car coincides 

with the front door and the front of the limo has traveled a significant distance beyond the 

back door. In this picture, as in the other, the garage seems very short compared to the 

limo. 

 

(k) No, the limo cannot be in the garage with both doors shut.  

 

(l) Both Carman and Garageman are correct in their respective reference frames. But, in a 

sense, Carman should lose the bet since he dropped his physics course before reaching 

the Theory of Special Relativity! 



 

 

 

66. (a) According to ship observers, the duration of proton flight is ∆t' = (760 m)/0.980c 

= 2.59 µs (assuming it travels the entire length of the ship). 

 

(b) To transform to our point of view, we use Eq. 2 in Table 37-2. Thus, with ∆x' =  

–750 m, we have 

 

( )2(0.950 ) 0.572 s.t t c x c µ′ ′∆ = γ ∆ + ∆ =  

 

(c) For the ship observers, firing the proton from back to front makes no difference, and 

∆t' = 2.59 µs as before.  

 

(d) For us, the fact that now ∆x' = +750 m is a significant change. 

 

( )2(0.950 ) 16.0 s.t t c x c µ′ ′∆ = γ ∆ + ∆ =  



 

 

67. Interpreting vAB  as the x-component of the velocity of A relative to B, and defining 

the corresponding speed parameter βAB  = vAB /c, then the result of part (a) is a 

straightforward rewriting of Eq. 37-29 (after dividing both sides by c).  To make the 

correspondence with Fig. 37-11 clear, the particle in that picture can be labeled A, frame 

S′ (or an observer at rest in that frame) can be labeled B, and frame S (or an observer at 

rest in it) can be labeled C.  The result of part (b) is less obvious, and we show here some 

of the algebra steps: 

 

MAC   = MAB  MBC 

 

1 − βAC

1 + βAC

    =  
1 − βAB

1 + βAB

  
1 − βBC

1 + βBC

  

   

We multiply both sides by factors to get rid of the denominators 

 

(1 – βAC) (1 + βAB) (1 + βBC) = (1 – βAB) (1 – βBC) (1 + βAC) 

 

 and expand: 

 

1 – βAC + βAB + βBC – βAC βAB – βAC βBC + βAB βBC – βAB βBC βAC = 

    1 + βAC  – βAB – βBC – βAC βAB – βAC βBC + βAB βBC  + βAB βBC βAC 

 

We note that several terms are identical on both sides of the equals sign, and thus cancel, 

which leaves us with 

 

–βAC + βAB + βBC   – βAB βBC βAC =  βAC – βAB – βBC  + βAB βBC βAC 

 

which can be rearranged to produce 

    

 2βAB + 2βBC   =  2βAC + 2βAB βBC βAC 

 

The left-hand side can be written as  2βAC (1 + βAB βBC ) in which case it becomes clear 

how to obtain the result from part (a) [just divide both sides by 2(1 + βAB βBC )]. 



 

 

 

68. We note, because it is a pretty symmetry and because it makes the part (b) 

computation move along more quickly, that  

 

M = 
1 − β
1 + β      β = 

1 − M
1 + M

     . 

 

Here, with βAB  given as 1/2  (see problem statement), then MAB is seen to be  1/3 (which is 

(1 – 1/2)  divided by  (1 + 1/2) ). Similarly for βBC  .   

 

(a) Thus,  

 

MAC  = MAB  MBC  =  
1

3
 · 

1

3
  =  

1

9
   . 

 

(b) Consequently,  

 

βAC  = 
1 − MAC

1 + MAC

  = 
1 1/ 9

1 1/ 9

−
+

 =  
8

10
 =  

4

5
 = 0.80. 

 

(c) By the definition of the speed parameter, we finally obtain vAC   = 0.80c. 



 

 

69. We note, for use later in the problem, that  

 

M = 
1 − β
1 + β    β = 

1 − M
1 + M

     . 

 

Now, with βAB  given as 1/5 (see problem statement), then MAB is seen to be 2/3 (which is 

(1 – 1/5)  divided by  (1 + 1/5) ).  With βBC  = − 2/5  we similarly find MBC =  7/3,  and for 

βCD  = 3/5  we get MCD =  1/4 . Thus,  

   

MAD  = MAB MBC MCD  =  
2

3
 · 

7

3
  · 

1

4
 =  

7

18
   . 

 

Consequently,  

 

 βAD  = 
1 − MAD

1 + MAD

  = 
1 7 /18

1 7 /18

−
+

 =  
11

25
 = 0.44. 

   

By the definition of the speed parameter, we obtain vAD   = 0.44c. 



 

 

 

70. We are asked to solve Eq. 37-48 for the speed v.  Algebraically, we find 

 

β = 1 − 
mc²

E

2

  . 

 

Using E = 10.611×10
−9 

J and the very accurate values for c and m (in SI units) found in 

Appendix B, we obtain β = 0.99990. 



 

 

71. Using Appendix C, we find that the contraction is 

 

| |

( . )
.

.

.

∆L L L L L= − = −
F
HG
I
KJ = − −

= × − − ×
×

F
HG

I
KJ

F

H
GG

I

K
JJ

=

0 0 0

2

6
4

8

2

1
1

1 1

2 6 370 10 1 1
3 0 10

2 998 10

0 064

γ
βe j

 m
m s

m s

 m.

 



 

 

 

72. The speed of the spaceship after the first increment is v1 = 0.5c. After the second one, 

it becomes 

 

1
2 2 2 2

1

0.50 0.50
0.80 ,

1 ' 1 (0.50 )

v v c c
v c

v v c c c

′ + += = =
+ +

 

 

and after the third one, the speed is 

 

v
v v

v v c

c c

c c c
c3

2

2

2 21

0 50 0 50

1 0 50 0 80
0 929= +

+
= +

+
='

'

. .

( . ) ( . )
. .  

 

Continuing with this process, we get v4 = 0.976c, v5 = 0.992c, v6 = 0.997c and v7 = 0.999c. 

Thus, seven increments are needed. 



 

 

73. The mean lifetime of a pion measured by observers on the Earth is ∆ ∆t t= γ 0 , so the 

distance it can travel (using Eq. 37-12) is 

 

d v t v t= = = × ×
−

=
−

∆ ∆γ 0

8

2

0 99 2 998 10

1 0 99
55

( . )( .

( . )

m / s)(26 10 s)
m .

9

 



 

 

 

74. (a) For a proton (using Table 37-3), we have 

 

2

2

938MeV
6.65GeV

1 (0.990)
p

E m cγ= = =
−

 

 

which gives 
2 6.65GeV 938MeV 5.71GeV

p
K E m c= − = − = . 

 

(b) From part (a), 6.65GeVE = . 

 

(c) Similarly, we have 2

2

(938MeV)(0.990)/
( ) / 6.58GeV/

1 (0.990)
p p

c
p m v m c c cγ γ β= = = =

−
 

 

(d) For an electron, we have 

 

2

2

0.511MeV
3.62MeV

1 (0.990)
e

E m cγ= = =
−

 

 

which yields 

 
2 3.625MeV 0.511MeV 3.11MeV

e
K E m c= − = − = . 

 

(e) From part (d), 3.62MeVE = . 

 

(f) 2

2

(0.511MeV)(0.990)/
( ) / 3.59MeV/

1 (0.990)
e e

c
p m v m c c cγ γ β= = = =

−
. 



 

 

75. The strategy is to find the speed from E = 1533 MeV and mc
2
 = 0.511 MeV (see 

Table 37-3) and from that find the time. From the energy relation (Eq. 37-48), we obtain 

 

v c
mc

E
c c= −

F
HG
I
KJ = ≈1 0 99999994

2
2

.  

 

so that we conclude it took the electron 26 y to reach us. In order to transform to its own 

“clock” it’s useful to compute γ directly from Eq. 37-48: 

 

γ = =E

mc
2

3000  

 

though if one is careful one can also get this result from γ = −1 1 2/ ( / )v c . Then, Eq. 

37-7 leads to 

 

∆t0

26
0 0087= =y

y
γ

.  

 

so that the electron “concludes” the distance he traveled is 0.0087 light-years (stated 

differently, the Earth, which is rushing towards him at very nearly the speed of light, 

seemed to start its journey from a distance of 0.0087 light-years away). 



 

 

 

76. (a) Using Eq. 37-7, we expect the dilated time intervals to be 

 

τ γτ τ= =
−

0
0

21 ( / )
.

v c

 

 

(b) We rewrite Eq. 37-31 using the fact that period is the reciprocal of frequency 

( f
R R

= −τ 1  and f0 0

1= −τ ): 

 

τ β
β

τ β
β

τ
R

R
f

f
c v

c v
= = −

+
F
HG

I
KJ = +

−
= +

−

−
1 1

1

1

1
0

1

0 0 . 

 

(c) The Doppler shift combines two physical effects: the time dilation of the moving 

source and the travel-time differences involved in periodic emission (like a sine wave or 

a series of pulses) from a traveling source to a “stationary” receiver). To isolate the 

purely time-dilation effect, it’s useful to consider “local” measurements (say, comparing 

the readings on a moving clock to those of two of your clocks, spaced some distance 

apart, such that the moving clock and each of your clocks can make a close-comparison 

of readings at the moment of passage). 



 

 

77. We use the relative velocity formula (Eq. 37-29) with the primed measurements being 

those of the scout ship. We note that v = –0.900c since the velocity of the scout ship 

relative to the cruiser is opposite to that of the cruiser relative to the scout ship. 

 

u
u v

u v c

c c
c= +

+
= −

−
='

' /

. .

( . )( . )
. .

1

0 980 0 900

1 0 980 0 900
0 678

2
 



 

 

 

78. (a) The relative contraction is 

 
21

2 2 20

8

0 0

12

(1 )| | 1 1 1 630m/s
1 1 1 1

2 2 2 3.00 10 m/s

2.21 10 .

LL

L L

γ β β β
−

−

−∆ = = − − ≈ − − = =
×

= ×

 

 

(b) Letting | | ( ) .∆ ∆ ∆t t t− = − = =0 0 1 100γ τ µs , we solve for ∆t0 : 

 

∆t0 2 1 2 1
2

2 2

6

1 1 1 1 1

2

2 100 10

630

525

=
−

=
− −

≈
+ −

=

= ×
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=

−

−
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τ
β

τ
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( .
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.

/

s)(1d / 86400s)

m / s) / (2.998 10 m / s)]

d .

8 2
 



 

 

79. Let the reference frame be S in which the particle (approaching the South Pole) is at 

rest, and let the frame that is fixed on Earth be S'. Then v = 0.60c and u' = 0.80c (calling 

“downwards” [in the sense of Fig. 37-35] positive). The relative speed is now the speed 

of the other particle as measured in S: 

 

2 2

0.80 0.60
0.95 .

1 / 1 (0.80 )(0.60 ) /

u v c c
u c

u v c c c c

′ + += = =
′+ +

 



 

 

 

80. We refer to the particle in the first sentence of the problem statement as particle 2. 

Since the total momentum of the two particles is zero in S', it must be that the velocities 

of these two particles are equal in magnitude and opposite in direction in S'. Letting the 

velocity of the S' frame be v relative to S, then the particle which is at rest in S must have 

a velocity of  u v'1 = −  as measured in S', while the velocity of the other particle is given 

by solving Eq. 37-29 for u': 

 

2
2 2 2

2

( / 2)
.

1 / 1 ( / 2)( / )

u v c v
u

u v c c v c

− −′ = =
− −

 

 

Letting 2 1u u v′ ′= − = , we obtain 

 

2

( / 2)
   (2 3) 0.27

1 ( / 2)( / )

c v
v v c c

c v c

− = = ± ≈
−

 

 

where the  quadratic formula has been used (with the smaller of the two roots chosen so 

that v ≤ c). 



 

 

81. We use Eq. 37-54 with mc
2
 = 0.511 MeV (see Table 37-3): 

 

pc K Kmc= + = +2 2 22 2 00 2 2 00 0 511( . ) ( . )( . )  

 

This readily yields p = 2.46 MeV/c. 



 

 

 

82. (a) Our lab-based measurement of its lifetime is figured simply from  

 

t = L/v = 7.99 × 10
–13

 s. 

 

Use of the time-dilation relation (Eq. 37-7) leads to 

 

∆t0

13 2 137 99 10 1 0 960 2 24 10= × − = ×− −( . ) ( . ) . s  s.  

 

(b) The length contraction formula can be used, or we can use the simple speed-distance 

relation (from the point of view of the particle, who watches the lab and all its meter 

sticks rushing past him at 0.960c until he expires): L = v∆t0 = 6.44 × 10
–5

 m. 



 

 

83. When β = 0.9860, we have γ = 5.9972, and when β = 0.9850, we have γ = 5.7953. 

Thus, ∆γ = 0.202 and the change in kinetic energy (equal to the work) becomes (using Eq. 

37-52) 

 

W K mc= = =∆ ∆2 189γ  MeV 

 

where mc
2
 = 938 MeV has been used (see Table 37-3). 



 

 

 

84. (a) Eq. 37-37 yields 

 
2

0 0

2

0

1 ( / )1
     

1 1 ( / )

λ λ λβ β
λ β λ λ

−−= =
+ +

. 

 

With 0 / 434 / 462λ λ = , we obtain 0.062439β = , or v = 1.87 × 10
7
 m/s. 

 

(b) Since it is shifted “towards the red” (towards longer wavelengths) then the galaxy is 

moving away from us (receding). 



 

 

85. (a) ∆E = ∆mc
2
 = (3.0 kg)(0.0010)(2.998 × 10

8
 m/s)

2
 = 2.7 × 10

14
 J. 

 

(b) The mass of TNT is 

 

mTNT

 J  kg mol

J
 kg.=

×
×

= ×
2 7 10 0 227

3 10
18 10

14

6

7
. .

.4
.

c ha f
 

 

(c) The fraction of mass converted in the TNT case is 

 
∆m

m

TNT

TNT

kg)(0.0010)

 kg
=

×
= × −( .

.
. ,

3 0

18 10
1 6 10

7

9  

 

Therefore, the fraction is 0.0010/1.6 × 10
–9

 = 6.0 × 10
6
. 



 

 

 

86. (a) We assume the electron starts from rest. The classical formula for kinetic energy is 

Eq. 37-51, so if v = c then this (for an electron) would be 21 1
2 2

(511 ke V)mc = =  

255.5 ke V  (using Table 37-3). Setting this equal to the potential energy loss (which is 

responsible for its acceleration), we find (using Eq. 25-7) 

 

255.5 keV 255 keV
255.5 kV 256 keV.

| |
V

q e
= = = ≈  

 

(b) Setting this amount of potential energy loss (|∆U| = 255.5 keV) equal to the correct 

relativistic kinetic energy, we obtain (using Eq. 37-52) 

 

mc

v c

U v c
U mc

2

2 2

2

1

1
1 1

1

1−
−

F
H
GG

I
K
JJ = = +

−
F
HG

I
KJa f

| |∆
∆

 

 

which yields v = 0.745c = 2.23 × 10
8
 m/s. 



 

 

87. (a) vr = 2v = 2(27000 km/h) = 5.4 × 10
4 

 km/h. 

 

(b) We can express c in these units by multiplying by 3.6: c = 1.08 × 10
9
 km/h. The 

correct formula for vr is vr = 2v/(1 + v
2
/c

2
), so the fractional error is 

 

( ) ( )
10

22 2
9

1 1
1 1 6.3 10 .

1 1 27000 km h 1.08 10 km hv c

−− = − = ×
+ + ×

 



 

 

 

88. Using Eq. 37-10, 

 

/ 6.0 y
0.75.

2.0 y 6.0 y

v d c

c t
β = = = =

+
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