
 

 

1. (a) Let E = 1240 eV·nm/λmin = 0.6 eV to get λ = 2.1 × 10
3
 nm = 2.1 µm.  

 

(b) It is in the infrared region. 



 

 

 

2. The energy of a photon is given by E = hf, where h is the Planck constant and f is the 

frequency. The wavelength λ is related to the frequency by λf = c, so E = hc/λ. Since h = 

6.626 × 10
–34

 J·s and c = 2.998 × 10
8
 m/s, 
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Thus, 

 

E = ⋅1240eV nm

λ
.  

 

With 589 nmλ = , we obtain 
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3. Let R be the rate of photon emission (number of photons emitted per unit time) of the 

Sun and let E be the energy of a single photon. Then the power output of the Sun is given 

by P = RE. Now E = hf = hc/λ, where h is the Planck constant, f is the frequency of the 

light emitted, and λ is the wavelength. Thus P = Rhc/λ and 
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4. We denote the diameter of the laser beam as d. The cross-sectional area of the beam is 

A = πd 
2
/4. From the formula obtained in problem 3, the rate is given by 
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5. Since  

 

λ = (1, 650, 763.73)
–1

 m = 6.0578021 × 10
–7

 m = 605.78021 nm, 

 

the energy is (using the fact that 1240eV nmhc = ⋅ ),  
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6. Let 

 

1
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2
m v E
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and solve for v: 
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Since v c<< ,  the non-relativistic formula K mv= 1
2

2  may be used. The mec
2
 value of 

Table 38-3 and 1240eV nmhc = ⋅  are used in our calculation. 



 

 

 

7. The total energy emitted by the bulb is E = 0.93Pt, where P = 60 W and  

 

t = 730 h = (730 h)(3600 s/h) = 2.628 × 10
6 

s. 

 

The energy of each photon emitted is Eph = hc/λ. Therefore, the number of photons 

emitted is 
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8. Following Sample Problem 38-1, we have 
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9. (a) Let R be the rate of photon emission (number of photons emitted per unit time) and 

let E be the energy of a single photon. Then, the power output of a lamp is given by P = 

RE if all the power goes into photon production. Now, E = hf = hc/λ, where h is the 

Planck constant, f is the frequency of the light emitted, and λ is the wavelength. Thus P = 

Rhc/λ and R = λP/hc. The lamp emitting light with the longer wavelength (the 700 nm 

lamp) emits more photons per unit time. The energy of each photon is less, so it must 

emit photons at a greater rate. 

 

(b) Let R be the rate of photon production for the 700 nm lamp. Then, 
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10. (a) The rate at which solar energy strikes the panel is 

 

P = =139 2 60 3 61. . .kW / m m kW.2 2c hc h  

 

(b) The rate at which solar photons are absorbed by the panel is 
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(c) The time in question is given by 
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11. (a) We assume all the power results in photon production at the wavelength 

589 nmλ = . Let R be the rate of photon production and E be the energy of a single 

photon. Then, P = RE = Rhc/λ, where E = hf and f = c/λ are used. Here h is the Planck 

constant, f is the frequency of the emitted light, and λ is its wavelength. Thus, 
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(b) Let I be the photon flux a distance r from the source. Since photons are emitted 

uniformly in all directions, R = 4πr
2
I and 
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(c) The photon flux is 
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12. The rate at which photons are emitted from the argon laser source is given by R = 

P/Eph, where P = 1.5 W is the power of the laser beam and Eph = hc/λ is the energy of 

each photon of wavelength λ. Since α = 84% of the energy of the laser beam falls within 

the central disk, the rate of photon absorption of the central disk is 
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13. The energy of an incident photon is E = hf = hc/λ, where h is the Planck constant, f is 

the frequency of the electromagnetic radiation, and λ is its wavelength. The kinetic 

energy of the most energetic electron emitted is  

 

Km = E – Φ = (hc/λ) – Φ, 

 

where Φ is the work function for sodium. The stopping potential V0 is related to the 

maximum kinetic energy by eV0 = Km, so eV0 = (hc/λ) – Φ and 
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Here eV0 = 5.0 eV and hc = 1240 eV·nm are used. 



 

 

 

14. The energy of the most energetic photon in the visible light range (with wavelength of 

about 400 nm) is about E = (1240 eV·nm/400 nm) = 3.1 eV (using the fact that hc = 1240 

eV·nm). Consequently, barium and lithium can be used, since their work functions are 

both lower than 3.1 eV. 



 

 

 

15. The speed v of the electron satisfies  
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Using Table 38-3, we find 
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16. We use Eq. 38-5 to find the maximum kinetic energy of the ejected electrons: 
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17. (a) We use Eq. 38-6: 
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(b) We use the formula obtained in the solution of problem 15: 
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18. To find the longest possible wavelength λmax (corresponding to the lowest possible 

energy) of a photon which can produce a photoelectric effect in platinum, we set Kmax = 0 

in Eq. 38-5 and use hf = hc/λ. Thus hc/λmax = Φ. We solve for λmax: 
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19. (a) The kinetic energy Km of the fastest electron emitted is given by  

 

Km = hf – Φ = (hc/λ) – Φ, 

 

where Φ is the work function of aluminum, f is the frequency of the incident radiation, 

and λ is its wavelength. The relationship f = c/λ was used to obtain the second form. 

Thus, 
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Where we have used hc = 1240 eV·nm.  

 

(b) The slowest electron just breaks free of the surface and so has zero kinetic energy. 

 

(c) The stopping potential V0 is given by Km = eV0, so V0 = Km/e = (2.00 eV)/e = 2.00 V. 

 

(d) The value of the cutoff wavelength is such that Km = 0. Thus hc/λ = Φ or  

 

λ = hc/Φ = (1240 eV·nm)/(4.2 eV) = 295 nm. 

 

If the wavelength is longer, the photon energy is less and a photon does not have 

sufficient energy to knock even the most energetic electron out of the aluminum sample. 



 

 

 

20. We use Eq. 38-6 and the fact that hc = 1240 eV·nm: 

 

K E
hc hc

max

max

.= − = − = ⋅ − ⋅ =photon

eV nm

nm

eV nm

nm
eV.Φ

λ λ
1240

254

1240

325
107  



 

 

 

21. (a) We use the photoelectric effect equation (Eq. 38-5) in the form hc/λ = Φ + Km. 

The work function depends only on the material and the condition of the surface, and not 

on the wavelength of the incident light. Let λ1 be the first wavelength described and λ2 be 

the second. Let Km1 = 0.710 eV be the maximum kinetic energy of electrons ejected by 

light with the first wavelength, and Km2 = 1.43 eV be the maximum kinetic energy of 

electrons ejected by light with the second wavelength. Then, 
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The first equation yields Φ = (hc/λ1) – Km1. When this is used to substitute for Φ in the 

second equation, the result is  

 

(hc/λ2) = (hc/λ1) – Km1 + Km2. 

 

The solution for λ2 is 
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Here hc = 1240 eV·nm has been used.  

 

(b) The first equation displayed above yields 
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22. (a) For the first and second case (labeled 1 and 2) we have eV01 = hc/λ1 – Φ and eV02 

= hc/λ2 – Φ, from which h and Φ can be determined. Thus, 
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(b) The work function is 
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(c) Let Φ = hc/λmax to obtain 
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23. (a) Find the speed v of the electron from r = mev/eB: v = rBe/me. Thus 
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(b) Using the fact that hc = 1240 eV·nm, the work done is 
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24. Using the fact that hc = 1240 eV·nm, the number of photons emitted from the laser 

per unit time is 
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of which (1.0 × 10
–16

)(6.05 × 10
15

/s) = 0.605/s actually cause photoelectric emissions. 

Thus the current is  

 

i = (0.605/s)(1.60 × 10
–19

 C) = 9.68 × 10
–20

 A. 



 

 

 

25. (a) When a photon scatters from an electron initially at rest, the change in wavelength 

is given by ∆λ = (h/mc)(1 – cos φ), where m is the mass of an electron and φ is the 

scattering angle. Now, h/mc = 2.43 × 10
–12

 m = 2.43 pm, so  

 

∆λ = (2.43 pm)(1 – cos 30°) = 0.326 pm. 

 

The final wavelength is  

 

λ' = λ + ∆λ = 2.4 pm + 0.326 pm = 2.73 pm. 

 

(b) Now, ∆λ = (2.43 pm)(1 – cos 120°) = 3.645 pm and  

 

λ' = 2.4 pm + 3.645 pm = 6.05 pm. 



 

 

 

26. (a) The rest energy of an electron is given by E = mec
2
. Thus the momentum of the 

photon in question is given by 
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(b) From Eq. 38-7, 
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(c) Using Eq. 38-1, 
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27. (a) The x-ray frequency is 
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(b) The x-ray photon energy is 
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(c) From Eq. 38-7, 
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28. (a) Eq. 38-11 yields 

 

∆λ = h
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(b) Using the fact that hc = 1240 eV·nm, the change in photon energy is 
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(c) From conservation of energy, ∆K = – ∆E = 40.6 keV. 

 

(d) The electron will move straight ahead after the collision, since it has acquired some of 

the forward linear momentum from the photon. Thus, the angle between +x and the 

direction of the electron’s motion is zero. 



 

 

 

29. (a) Since the mass of an electron is m = 9.109 × 10
–31

 kg, its Compton wavelength is 
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(b) Since the mass of a proton is m = 1.673 × 10
–27

 kg, its Compton wavelength is 
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(c) We use the formula hc = 1240 eV·nm, which gives E = (1240 eV·nm)/λ, where E is 

the energy and λ is the wavelength. Thus for the electron,  

 

E = (1240 eV·nm)/(2.426 × 10
–3

 nm) = 5.11 × 10
5
 eV = 0.511 MeV. 

 

(d) For the proton,  

 

E = (1240 eV·nm)/(1.321 × 10
–6

 nm) = 9.39 × 10
8
 eV = 939 MeV. 



 

 

 

30. (a) Using the fact that hc = 1240 eV·nm, we find 
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(b) Now, Eq. 38-11 leads to 
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(c) The scattered photons have energy equal to 
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31. (a) The fractional change is 
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If λ = 3.0 cm = 3.0 × 10
10

 pm and φ = 90°, the result is 
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(b) Now λ = 500 nm = 5.00 × 10
5
 pm and φ = 90°, so 
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(c) With λ = 25 pm and φ = 90°, we find 
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(d) In this case, λ = hc/E = 1240 nm·eV/1.0 MeV = 1.24 × 10
–3

 nm = 1.24 pm, so 
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(e) From the calculation above, we see that the shorter the wavelength the greater the 

fractional energy change for the photon as a result of the Compton scattering. Since ∆E/E 

is virtually zero for microwave and visible light, the Compton effect is significant only in 

the x-ray to gamma ray range of the electromagnetic spectrum. 



 

 

 

32. The (1 – cos φ) factor in Eq. 38-11 is largest when φ = 180°. Thus, using Table 38-3, 

we obtain 
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where we have used that fact that hc = 1240 eV·nm =1240 MeV·fm. 



 

 

 

33. If E is the original energy of the photon and E' is the energy after scattering, then the 

fractional energy loss is 
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using the result from Sample Problem 38-4. Thus 
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A 300% increase in the wavelength leads to a 75% decrease in the energy of the photon. 



 

 

 

34. The initial wavelength of the photon is (using hc = 1240 eV·nm) 
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or 70.86 pm. The maximum Compton shift occurs for φ = 180°, in which case Eq. 38-11 

(applied to an electron) yields 
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where Table 38-3 is used. Therefore, the new photon wavelength is  

 

λ' = 0.07086 nm + 0.00485 nm = 0.0757 nm. 

 

Consequently, the new photon energy is 
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By energy conservation, then, the kinetic energy of the electron must equal  

 

E' – E = 17.5 keV – 16.4 keV = 1.1 keV. 



 

 

 

35. (a) From Eq. 38-11 
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(b) The fractional shift should be interpreted as ∆λ divided by the original wavelength: 
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(c) The change in energy for a photon with λ = 590 nm is given by 
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(d) For an x-ray photon of energy Eph = 50 keV, ∆λ remains the same (2.43 pm), since it 

is independent of Eph.  

 

(e) The fractional change in wavelength is now 
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(f) The change in photon energy is now 
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where α = ∆λ/λ. With Eph = 50 keV and α = 9.78 × 10
–2

 , we obtain ∆Eph =  –4.45 keV. 

(Note that in this case α ≈ 0.1 is not close enough to zero so the approximation ∆Eph ≈ 

hc∆λ/λ2
 is not as accurate as in the first case, in which α = 4.12 × 10

–6
. In fact if one were 

to use this approximation here, one would get ∆Eph ≈ –4.89 keV, which does not amount 

to a satisfactory approximation.) 



 

 

 

36. Referring to Sample Problem 38-4, we see that the fractional change in photon energy 

is 
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E hc E h mc

φ
φ

− ∆λ −= =
λ + ∆λ + −

 

 

Energy conservation demands that E – E' = K, the kinetic energy of the electron. In the 

maximal case, φ = 180°, and we find 

 

( / )(1 cos180 ) 2 /
.

( / ) ( / )(1 cos180 ) ( / ) (2 / )

K h mc h mc

E hc E h mc hc E h mc

− °= =
+ − ° +

 

 

Multiplying both sides by E and simplifying the fraction on the right-hand side leads to 

 

K E
mc

c E mc

E

mc E
=

+
F
HG

I
KJ =

+
2

2 2

2

2

/

/ / /
.  



 

 

 

37. (a) From Eq. 38-11, ∆λ = (h/mec)(1 – cos φ). In this case φ = 180° (so cos φ = –1), and 

the change in wavelength for the photon is given by ∆λ = 2h/mec. The energy E' of the 

scattered photon (whose initial energy is E = hc/λ) is then 

 

E
hc E E

h m c E hc

E

E m c
e e

'
/ ( / )( / ) /

.

( .
.

=
+

=
+

=
+

=
+

=
+

=

λ λ∆λ ∆λ1 1 2 1 2

50 0

1 2 50 0
418

2

keV

keV) / 0.511MeV
keV .

 

 

(b) From conservation of energy the kinetic energy K of the electron is given by  

 

K = E – E' = 50.0 keV – 41.8 keV = 8.2 keV. 



 

 

 

38. The magnitude of the fractional energy change for the photon is given by 

 

∆ ∆
∆λ

∆λ
∆λ

E

E

hc

hc

ph

ph

= = F
HG
I
KJ = −FHG

I
KJ = =( /

/

λ)
λ

λ∆ 1
λ

λ 1
λ λ + λ +

1 β  

 

where β = 0.10. Thus ∆λ = λβ/(1 – β). We substitute this expression for ∆λ in Eq. 38-11 

and solve for cos φ: 

 

cos
( )

( )

( )

( . )(

( . )(
. .

φ β
β

β
β

= −
−

= −
−

= −
−

=

1
1

1
1

1
010 511

1 010 200
0 716

2
mc

h

mc

h

mc

E
∆λ = 1− λ

ph

keV)

keV)

 

 

This leads to an angle of φ = 44°. 



 

 

 

39. We start with the result of Exercise 49: λ = h mK/ 2 . Replacing K with eV, where V 

is the accelerating potential and e is the fundamental charge, we obtain 

 
34

31 19 3

12

J s

2 2(9.109 10 kg)(1.602 10 C)(25.0 10 V)

7.75 10 m 7.75pm.

h

meV

−

− −

−

6.626×10 ⋅λ = =
× × ×

= × =

 



 

 

 

40. (a) Using Table 38-3 and the fact that hc = 1240 eV·nm, we obtain 

 

2

1240eV nm
0.0388nm.

2 2(511000eV)(1000eV)2e e

h h hc

p m K m c K

⋅λ = = = = =  

 

(b) A photon’s de Broglie wavelength is equal to its familiar wave-relationship value. 

Using the fact that hc = 1240 eV·nm, 

 

λ = hc

E
= ⋅ =1240

100
124

eV nm

keV
nm .

.
.  

 

(c) The neutron mass may be found in Appendix B. Using the conversion from 

electronvolts to Joules, we obtain 

 
34

13

27 16

6.63 10 J s
9.06 10 m.

2 2(1.675 10 kg)(1.6 10 J)n

h

m K

−
−

− −

× ⋅λ = = = ×
× ×

 



 

 

 

41. If K is given in electron volts, then 

 
34 9 1/2 1/2

31 19

J s 1.226 10 m eV 1.226nm eV
,

2(9.109 10 kg)(1.602 10 J/eV) K KK

− −

− −

6.626×10 ⋅ × ⋅ ⋅λ = = =
× ×

 

 

where K is the kinetic energy. Thus 

 

K = ⋅F
HG

I
KJ = ⋅F
HG

I
KJ = × −1226 1226

590
4 32 10

2 2

6. .
.

nm eV nm eV

nm
eV.

1/2 1/2

λ
 



 

 

 

42. (a) We solve v from λ = h/p = h/(mpv): 

 

v
h

m
p

= = × ⋅
× ×

= ×
−

− −λ
6 63 10

1675 10 0100 10
396 10

34

27 12

6.

. .
.

J s

kg m
m / s.c hc h  

 

(b) We set eV K m v
p

= = 1
2

2  and solve for the voltage: 

 

( )( )
( )

2
27 62

4

19

1.67 10 kg 3.96 10 m/s
8.18 10 V 81.8 kV.

2 2 1.60 10 C

p
m v

V
e

−

−

× ×
= = = × =

×
 



 

 

 

43. (a) The momentum of the photon is given by p = E/c, where E is its energy. Its 

wavelength is 

 

λ = = = ⋅ =h

p

hc

E

1240

100
1240

eV nm

eV
nm.

.
 

 

(b) The momentum of the electron is given by p mK= 2 ,  where K is its kinetic energy 

and m is its mass. Its wavelength is 

 

λ = =h

p

h

mK2
.  

 

If K is given in electron volts, then 

 
34 9 1/2 1/2

31 19

J s 1.226 10 m eV 1.226nm eV
.

2(9.109 10 kg)(1.602 10 J/eV) K KK

− −

− −

6.626×10 ⋅ × ⋅ ⋅λ = = =
× ×

 

 

For 1.00 eVK = , we have 

 
1/21.226nm eV

1.23 nm.
1.00eV

⋅λ = =  

 

(c) For the photon, 

 

6

9

1240eV nm
1.24 10 nm 1.24 fm.

1.00 10 eV

hc

E

−⋅λ = = = × =
×

 

 

(d) Relativity theory must be used to calculate the wavelength for the electron. According 

to Eq. 38-51, the momentum p and kinetic energy K are related by (pc)
2
 = K

2
 + 2Kmc

2
. 

Thus, 

 

( ) ( )( )2
2 2 9 9 6

9

2 1.00 10 eV 2 1.00 10 eV 0.511 10 eV

1.00 10 eV.

pc K Kmc= + = × + × ×

= ×
 

 

The wavelength is 

 

6

9

1240eV nm
1.24 10 nm 1.24 fm.

1.00 10 eV

h hc

p pc

−⋅λ = = = = × =
×

 



 

 

 

44. (a) The momentum of the electron is  

 

p
h= = × ⋅

×
= × ⋅

−

−
−

λ
6 63 10

0 20 10
33 10

34

9

24.

.
.

J s

m
kg m / s.  

 

(b) The momentum of the photon is the same as that of the electron: 
243.3 10 kg m/s.p

−= × ⋅  

 

(c) The kinetic energy of the electron is 

 

( )
( )

2
242

18

31

3.3 10 kg m/s
6.0 10 J=38eV.

2 2 9.11 10 kg
e

e

p
K

m

−
−

−

× ⋅
= = = ×

×
 

 

(d) The kinetic energy of the photon is 

 

K pcph kg m / s m / s J = 6.2 keV.= = × ⋅ × = ×− −3 3 10 2 998 10 9 9 1024 8 16. . .c hc h  



 

 

 

45. (a) The kinetic energy acquired is K = qV, where q is the charge on an ion and V is 

the accelerating potential. Thus  

 

K = (1.60 × 10
–19

 C)(300 V) = 4.80 × 10
–17

 J. 

 

The mass of a single sodium atom is, from Appendix F,  

 

m = (22.9898 g/mol)/(6.02 × 10
23

 atom/mol) = 3.819 × 10
–23

 g = 3.819 × 10
–26

 kg. 

 

Thus, the momentum of an ion is 

 

p mK= = × × = × ⋅− − −2 2 3819 10 4 80 10 191 1026 17 21. . .kg J kg m / s.c hc h  

 

(b) The de Broglie wavelength is 

 
34

13

21

6.63 10 J s
3.46 10 m.

1.91 10 kg m/s

h

p

−
−

−

× ⋅λ = = = ×
× ⋅

 



 

 

 

46. (a) We use the fact that 1240nm eVhc = ⋅ : 

 

E
hc

photon

nm eV

nm
keV= = ⋅ =

λ
1240

100
124

.
. . 

 

(b) For the electron, we have 

 

K
p

m

h

m

hc

m c
e e e

= = = = ⋅F
HG

I
KJ =

2 2 2

2

2

2 2 2

1

2 0 511

1240

100
150

/ /

. .
.

λ λb g b g
b gMeV

eV nm

nm
eV.  

 

(c) In this case, we find 

 

9

photon 6

1240nm eV
1.24 10 eV 1.24GeV.

1.00 10 nm
E −

⋅= = × =
×

 

 

(d) For the electron (recognizing that 1240 eV·nm = 1240 MeV·fm) 

 

K p c m c m c hc m c m c
e e e e

= + − = + −

= ⋅F
HG

I
KJ + −

×

2 2 2
2

2 2 2
2

2

2

21240

100
0511 0511

c h b g c h

b g

/

.
. .

λ

MeV fm

fm
MeV MeV

= 1.24 10 MeV = 1.24GeV.3

 

 

We note that at short λ (large K) the kinetic energy of the electron, calculated with the 

relativistic formula, is about the same as that of the photon. This is expected since now K 

≈ E ≈ pc for the electron, which is the same as E = pc for the photon. 



 

 

 

47. (a) We need to use the relativistic formula ( )2 2 2/ / /
e

p E c m c E c K c= − ≈ ≈  

( )2since .
e

E m c>>  So 

 

8

9

1240eV nm
2.5 10 nm 0.025 fm.

50 10 eV

h hc

p K

−⋅λ = ≈ = = × =
×

 

 

(b) With 5.0 fmR = , we obtain 2/ 2.0 10R λ = × .  



 

 

 

48. (a) Since K m c= =7 5 4 9322. ,MeV << MeVα b g  we may use the non-relativistic 

formula p m K= 2 α .  Using Eq. 38-43 (and noting that 1240 eV·nm = 1240 MeV·fm), 

we obtain 

 

λ = = = ⋅ =h

p

hc

m c K2

1240

9315 7 5
52

2

α

MeV fm

2 4u MeV / u MeV
fm.

b gb gb g. .
.  

 

(b) Since λ = 5 2. fm << 30 fm,  to a fairly good approximation, the wave nature of the α 

particle does not need to be taken into consideration. 



 

 

 

49. The wavelength associated with the unknown particle is λp = h/pp = h/(mpvp), where 

pp is its momentum, mp is its mass, and vp is its speed. The classical relationship pp = 

mpvp was used. Similarly, the wavelength associated with the electron is λe = h/(meve), 

where me is its mass and ve is its speed. The ratio of the wavelengths is λp/λe = 

(meve)/(mpvp), so 

 

m
v

v
m

p

e e

p p

e
= = ×

×
= ×

−

−
−λ

λ
9109 10

3 1813 10
1675 10

31

4

27.

.
.

kg
kg.c h  

 

According to Appendix B, this is the mass of a neutron. 



 

 

 

50. (a) Setting λ = = −h p h E c m c
e

/ / / ,b g2 2 2  we solve for K = E – mec
2
:  

 

( )
22

22 4 2

3

1240eV nm
0.511MeV 0.511MeV

10 10 nm

0.015MeV 15keV.

e e

hc
K m c m c −

⋅= + − = + −
λ ×

= =

 

 

(b) Using the fact that 1240eV nmhc = ⋅  

 

E
hc= = ⋅

×
= ×−λ

1240

10 10
12 10

3

5eV nm

nm
eV = 120 keV..  

  

(c) The electron microscope is more suitable, as the required energy of the electrons is 

much less than that of the photons. 



 

 

 

51. The same resolution requires the same wavelength, and since the wavelength and 

particle momentum are related by p = h/λ, we see that the same particle momentum is 

required. The momentum of a 100 keV photon is  

 

p = E/c = (100 × 10
3
 eV)(1.60 × 10

–19
 J/eV)/(3.00 × 10

8
 m/s) = 5.33 × 10

–23
 kg·m/s. 

 

This is also the magnitude of the momentum of the electron. The kinetic energy of the 

electron is 

 

K
p

m
= =

× ⋅

×
= ×

−

−
−

2 23
2

31

15

2

533 10

2 911 10
156 10

.

.
.

kg m / s

kg
J.

c h
c h  

 

The accelerating potential is 

 

V
K

e
= = ×

×
= ×

−

−

156 10

160 10
9 76 10

15

19

3.

.
.

J

C
V.  



 

 

 

52. (a) 

 

nn a ib a ib a ib a i b a ib a ib

a iba iab ib ib a b

∗ ∗ ∗ ∗ ∗= + + = + + = + −

= + − + − = +

b gb g b gc h b gb g
b gb g2 2 2 ,

 

 

which is always real since both a and b are real. 

 

(b) 

 

( ) ( )

2

2 2 2 2 2 2 2 2 2 2

| | | ( )( ) | | ( ) | | ( ) ( ) |

.

nm a ib c id ac iad ibc i bd ac bd i ad bc

ac bd ad bc a c b d a d b c

= + + = + + + − = − + +

= − + + = + + +
 

 

However, since  

 

n m a ib c id a b c d

a c b d a d b c

= + + = + +

= + + +

2 2 2 2

2 2 2 2 2 2 2 2 ,

 

 

we conclude that |nm| = |n| |m|. 



 

 

 

53. We plug Eq. 38-17 into Eq. 38-16, and note that 

 

d

dx

d

dx
Ae Be ikAe ikBe

ikx ikx ikx ikxψ = + = −− −c h .  

 

Also, 

 

d

dx

d

dx
ikAe ikBe k Ae k Be

ikx ikx ikx ikx

2

2

2 2ψ = − = − −−c h .  

 

Thus, 

 

d

dx
k k Ae k Be k Ae Be

ikx ikx ikx ikx

2

2

2 2 2 2 0
ψ ψ+ = − − + + =−c h .  



 

 

 

54. (a) We use Euler’s formula e
iφ

 = cos φ + i sin φ to re-write ψ(x) as 

 

( ) ( ) ( ) ( )0 0 0 0cos sin cos sin ,ikx
x e kx i kx kx i kx a ibψ ψ ψ ψ ψ= = + = + = +  

 

where a =ψ0 cos kx and b = ψ0 sin kx are both real quantities. 

 

(b) 

ψ ψ ψ ψ
ψ ω ψ ω

ω ω ω( , ) ( )

[ )] [ sin )]

( )
x t x e e e e

kx t i kx t

i t ikx i t i kx t= = =
= − + −

− − −
0 0

0 0cos( ( .
 



 

 

 

55. The angular wave number k is related to the wavelength λ by k = 2π/λ and the 

wavelength is related to the particle momentum p by λ = h/p, so k = 2πp/h. Now, the 

kinetic energy K and the momentum are related by K = p
2
/2m, where m is the mass of the 

particle. Thus p mK= 2  and 

 

k
mK

h
= 2π 2

.  



 

 

 

56. The wave function is now given by 

 

Ψ( , ) .( )
x t e

i kx t= − +ψ ω
0  

 

This function describes a plane matter wave traveling in the negative x direction. An 

example of the actual particles that fit this description is a free electron with linear 

momentum p hk= −( / )2π i  and kinetic energy K p m h k m
e e

= =2 2 2 22 8/ / .π  



 

 

 

57. For U = U0, Schrödinger’s equation becomes 

 
2 2

02 2

8
[ ] 0.

d m
E U

dx h

ψ ψπ+ − =  

 

We substitute ψ ψ= 0e
ikx .  The second derivative is d dx k e k

ikx2 2 2

0

2ψ ψ ψ/ .= − = −  The 

result is 

 
2

2

02

8
[ ] 0.

m
k E U

h
ψ ψπ− + − =  

 

Solving for k, we obtain 

 
2

0 02

8 2
[ ] 2 [ ].

m
k E U m E U

h h

π π= − = −  



 

 

 

58. (a) The wave function is now given by 

 

Ψ( , ) ( ).( ) ( )
x t e e e e e

i kx t i kx t i t ikx ikx= + = +− − + − −ψ ψω ω ω
0 0  

 

Thus, 

 
2 2 2 2

2 2

0 0 0

2 2 2 2

0 0

2

0

| ( , ) | ( )

              | (cos sin ) (cos sin ) | 4 (cos )

              2 (1 cos2 ).

i t ikx ikx i t ikx ikx ikx ikx
x t e e e e e e e e

kx i kx kx i kx kx

kx

ω ωψ ψ ψ

ψ ψ
ψ

− − − − −Ψ = + = + = +

= + + − =

= +

 

 

(b) Consider two plane matter waves, each with the same amplitude ψ 0 2/  and 

traveling in opposite directions along the x axis. The combined wave Ψ is a standing 

wave: 

 
( ) ( )

0 0 0 0( , ) ( ) (2 cos ) .i kx t i kx t ikx ikx i t i t
x t e e e e e kx e

ω ω ω ωψ ψ ψ ψ− − + − − −Ψ = + = + =  

 

Thus, the squared amplitude of the matter wave is 

 

| ( , )| ( cos ) ( ),Ψ x t kx e kx
i t2

0

2
2

0

22 2 1= = +−ψ ψω cos2  

 

which is shown below. 

 

 
 

(c) We set Ψ x t kx, cosb g b g2

0

22 1 2 0= + =ψ  to obtain cos(2kx) = –1. This gives 

 

( ) ( )2
2 2 2 1 0,1, 2, 3,kx n n

π= = + π, =
λ

 

 



 

We solve for x: 

 

x n= +1

4
2 1b gλ .  

 

(d) The most probable positions for finding the particle are where ( ) ( ), 1 cos 2x t kxΨ ∝ +  

reaches its maximum. Thus cos 2kx = 1, or 

 

( )2
2 2 2 , 0,1, 2, 3,kx n n

π= = π =
λ

 

 

We solve for x: 

 

x n= 1

2
λ .  



 

 

 

59. If the momentum is measured at the same time as the position, then 

 

∆
∆

p
x

≈ = × ⋅ = × ⋅
−

−6 63 10

2 50
2 1 10

34
24.

. .
J s

pm
kg m s

πb g  



 

 

 

60. (a) Using the fact that 1240nm eVhc = ⋅ , we have 

 

E
hc= = ⋅

×
=−λ

1240

10 0 10
124

3

nm eV

nm
keV

.
. 

 

(b) The kinetic energy gained by the electron is equal to the energy decrease of the 

photon: 

 

( ) ( )( )
10.0pm

1 cos 2.43pm 1 cos180

1 1

1

124keV

1 1

40.5keV.

C

hc hc E
E hc

E

φ
λ

λ − − °

∆λ∆ = ∆ = − = = λλ λ λ + ∆λ λ λ + ∆λ +
∆λ

= =
+ +

=

 

 

(c) It is impossible to “view” an atomic electron with such a high-energy photon, because 

with the energy imparted to the electron the photon would have knocked the electron out 

of its orbit. 



 

 

 

61. We use the uncertainty relationship ∆ ∆x p ≥ . Letting ∆x = λ, the de Broglie 

wavelength, we solve for the minimum uncertainty in p: 

 

∆
∆

p
x

h p= = =
2 2πλ π

 

 

where the de Broglie relationship p = h/λ is used. We use 1/2π = 0.080 to obtain ∆p = 

0.080p. We would expect the measured value of the momentum to lie between 0.92p and 

1.08p. Measured values of zero, 0.5p, and 2p would all be surprising. 



 

 

 

62. With 

 

( )2

2

2

8
exp 2 ,

bbL
m U E

T e L
h

− π −
≈ = −  

 

we have 

 

( )
( )( )

( )

22
1240eV nm ln 0.0011 ln 1

6.0eV
2 4 2 0.511MeV 4 0.70nm

5.1eV.

b

h T
E U

m Lπ π
⋅

= − = −

=

 



 

 

 

63. (a) The transmission coefficient T for a particle of mass m and energy E that is 

incident on a barrier of height Ub and width L is given by 

 
2 ,bL

T e
−=  

 

where 

 

( )2

2

8
.

b
m U E

b
h

π −
=  

 

For the proton, we have 

 

( )( )( )
( )

2 27 13

2
34

14 1

8 1.6726 10 kg 10MeV 3.0MeV 1.6022 10 J MeV

6.6261 10 J s

5.8082 10 m .

b

− −

−

−

π × − ×
=

× ⋅

= ×

 

 

This gives ( )( )14 1 155.8082 10 m 10 10 m 5.8082,bL
− −= × × = and 

 
2(5.8082) 69.02 10 .T e

− −= = ×  

 

The value of b was computed to a greater number of significant digits than usual because 

an exponential is quite sensitive to the value of the exponent.  

 

(b) Mechanical energy is conserved. Before the proton reaches the barrier, it has a kinetic 

energy of 3.0 MeV and a potential energy of zero. After passing through the barrier, the 

proton again has a potential energy of zero, thus a kinetic energy of 3.0 MeV. 

 

(c) Energy is also conserved for the reflection process. After reflection, the proton has a 

potential energy of zero, and thus a kinetic energy of 3.0 MeV. 

 

(d) The mass of a deuteron is 2.0141 u = 3.3454 × 10
–27

 kg, so 

 

( )( )( )
( )

2 27 13

2
34

14 1

8 3.3454 10 kg 10MeV 3.0MeV 1.6022 10 J MeV

6.6261 10 J s

8.2143 10 m .

b

− −

−

−

π × − ×
=

× ⋅

= ×

 

 

This gives ( )( )14 1 158.2143 10 m 10 10 m 8.2143,bL
− −= × × = and 

 



 

2(8.2143) 87.33 10 .T e
− −= = ×  

 

(e) As in the case of a proton, mechanical energy is conserved. Before the deuteron 

reaches the barrier, it has a kinetic energy of 3.0 MeV and a potential energy of zero. 

After passing through the barrier, the deuteron again has a potential energy of zero, thus a 

kinetic energy of 3.0 MeV. 

 

(f) Energy is also conserved for the reflection process. After reflection, the deuteron has a 

potential energy of zero, and thus a kinetic energy of 3.0 MeV. 



 

 

 

64. (a) The rate at which incident protons arrive at the barrier is  

 
19 231.0kA 1.60 10 C 6.25 10 sn

−= × = × . 

 

Letting nTt = 1, we find the waiting time t: 

 

( ) ( )

( ) ( )( )

2
1

2

23

111 104

81
exp 2

2 0.70nm1
exp 8 938MeV 6.0eV 5.0eV

6.25 10 s 1240eV nm

3.37 10 s 10 y,

p b
m U E

t nT L
n h

− π −
= =

π
= −

× ⋅

= × ≈

 

 

which is much longer than the age of the universe. 

 

(b) Replacing the mass of the proton with that of the electron, we obtain the 

corresponding waiting time for an electron: 

 

( ) ( )

( ) ( )( )

1

2

23

9

81
exp 2

2 0.70nm1
exp 8 0.511MeV 6.0eV 5.0eV

6.25 10 s 1240eV nm

2.1 10 s.

e b
m U E

t nT L
n h

2
−

−

π −
= =

π
= −

× ⋅

= ×

 

 

The enormous difference between the two waiting times is the result of the difference 

between the masses of the two kinds of particles. 



 

 

 

65. (a) If m is the mass of the particle and E is its energy, then the transmission 

coefficient for a barrier of height Ub and width L is given by 

 
2 ,bL

T e
−=  

 

where 

 

( )2

2

8
.

b
m U E

b
h

π −
=  

 

If the change ∆Ub in Ub is small (as it is), the change in the transmission coefficient is 

given by 

 

2 .
b b

b b

dT db
T U LT U

dU dU
∆ = ∆ = − ∆  

Now, 

 

( )
( )

( )
22

2 2

81 8 1
.

2 22

b

b b bb

m U Edb m b

dU h U E h U EU E

π −π= = =
− −−

 

 

Thus, 

 

.b

b

U
T LTb

U E

∆∆ = −
−

 

 

For the data of Sample Problem 38-7, 2bL = 10.0, so bL = 5.0 and 

 

( ) ( )( )0.010 6.8eV
5.0 0.20 .

6.8eV 5.1eV

b

b

UT
bL

T U E

∆∆ = − = − = −
− −

 

 

There is a 20% decrease in the transmission coefficient. 

 

(b) The change in the transmission coefficient is given by 

 

22 2bLdT
T L be L bT L

dL

−∆ = ∆ = − ∆ = − ∆  

 

and 

 



 

( )( )( )9 1 122 2 6.67 10 m 0.010 750 10 m 0.10 .
T

b L
T

− −∆ = − ∆ = − × × = −  

 

There is a 10% decrease in the transmission coefficient. 

 

(c) The change in the transmission coefficient is given by 

 

22 2 .bLdT db db
T E Le E LT E

dE dE dE

−∆ = ∆ = − ∆ = − ∆  

 

Now, ( )2
b b

db dE db dU b U E= − = − − , so 

 

( ) ( )( )0.010 5.1eV
5.0 0.15 .

6.8eV 5.1eV
b

T E
bL

T U E

∆ ∆= = =
− −

 

 

There is a 15% increase in the transmission coefficient. 



 

 

 

66. (a) We calculate frequencies from the wavelengths (expressed in SI units) using Eq. 

38-1. Our plot of the points and the line which gives the least squares fit to the data is 

shown below. The vertical axis is in volts and the horizontal axis, when multiplied by 

10
14

, gives the frequencies in Hertz. 

 

From our least squares fit procedure, we determine the slope to be 4.14 × 10
–15

 V·s, 

which is in very good agreement with the value given in Eq. 38-3 (once it has been 

multiplied by e). 

 

 
 

(b) Our least squares fit procedure can also determine the y-intercept for that line. The y-

intercept is the negative of the photoelectric work function. In this way, we find Φ =  

2.31 eV. 



 

 

 

67. Using the fact that 1240eV nmhc = ⋅ , we obtain 

 

E
hc= = ⋅

×
= × −

λ
1240

21 10
5 9 10

7

6eV nm

nm
eV = 5.9 eV.. µ  



 

 

 

68. (a) Since Eph = h/λ = 1240 eV·nm/680 nm = 1.82 eV < Φ = 2.28 eV, there is no 

photoelectric emission.  

 

(b) The cutoff wavelength is the longest wavelength of photons which will cause 

photoelectric emission. In sodium, this is given by Eph = hc/λmax = Φ, or  

 

λmax = hc/Φ = (1240 eV·nm)/2.28 eV = 544 nm. 

 

(c) This corresponds to the color green. 



 

 

 

69. (a) The average de Broglie wavelength is 

 

λavg

avg avg

eV nm

3 4 MeV eV / K K

m = 73pm.

= = = =

= ⋅

×

= ×

−

−

h

p

h

mK

h

m kT

hc

mc kT2 2 3 2 2

1240

938 8 62 10 300

7 3 10

2

5

11

/

.

.

b g c h

b gb gc hb g
 

 

(b) The average separation is 

 

( )( )23

3
avg 53 3

1.38 10 J/K 300K1 1
3.4nm.

1.01 10 Pa/
d

n p kT

−×
= = = =

×
 

 

(c) Yes, since λavg avg<< d .  



 

 

 

70. (a) The average kinetic energy is 

 

K kT= = × = × ×− − −3

2

3

2
138 10 300 6 21 1023 21. . . J / K K J = 3.88 10 eV2c hb g  

 

(b) The de Broglie wavelength is 

 

( )( )
34

10

27 21

6.63 10 J s
1.46 10 m.

2 2 1.675 10 kg 6.21 10 Jn

h

m K

−
−

− −

× ⋅λ = = = ×
× ×

 



 

 

 

71. We rewrite Eq. 38-9 as 

 

h

m

h

m

v

v cλ λ
− =

−'
cos

( / )
cos ,φ θ

1 2
 

 

and Eq. 38-10 as 

 

h

m

v

v cλ'
sin

( / )
sin .φ θ=

−1 2
 

 

We square both equations and add up the two sides: 

 
2 2 2 2

2

1 1 1
cos sin ,

' ' 1 ( / )

h v

m v c
φ φ− + =

λ λ λ −
 

 

where we use sin
2
 θ + cos

2
 θ = 1 to eliminate θ. Now the right-hand side can be written as 

 

v

v c
c

v c

2

2

2

21
1

1

1−
= − −

−
L
NM

O
QP( / ) ( / )

,  

 

so 

 

1

1

1 1 1
1

2

2 2 2

−
= FHG
I
KJ −FHG

I
KJ + FHG

I
KJ

L
N
MM

O
Q
PP

+
( / ) '

cos
'
sin .

v c

h

mc λ λ λ
φ φ  

 

Now we rewrite Eq. 38-8 as 

 

h

mc v c

1 1
1

1

1 2λ λ
−FHG
I
KJ + =

−' ( / )
.  

 

If we square this, then it can be directly compared with the previous equation we obtained 

for [1 – (v/c)
2
]
–1

. This yields 

 
2 2 2 2

1 1 1 1 1
1 cos sin 1 .

h h

mc mc
φ φ− + = − + +

′ ′ ′λ λ λ λ λ
 

 

We have so far eliminated θ and v. Working out the squares on both sides and noting that 

sin
2
 φ + cos

2
 φ = 1, we get 

 



 

λ λ = =' ( cos ) .− −∆λ h

mc
1 φ  



 

 

 

72. The kinetic energy of the car of mass m moving at speed v is given by E mv= 1
2

2 , 

while the potential barrier it has to tunnel through is Ub = mgh, where h = 24 m. 

According to Eq. 38-21 and 38-22 the tunneling probability is given by 2bL
T e

−≈ , where 

 

( ) ( )

( ) ( )( ) ( )

2 22 1
2

2 2

22

34

38 1

88

1500kg 1
2 9.8 m s 24m 20 m s

6.63 10 J s 2

1.2 10 m .

b
m mgh mvm U E

b
h h

−

−

π −π −
= =

2π
= −

× ⋅

= ×

 

 

Thus, ( )( )38 1 392 2 1.2 10 m 30m 7.2 10bL
−= × = × . One can see that 2bL

T e
−≈  is essentially 

zero. 



 

 

 

73. The uncertainty in the momentum is  

 

∆p = m ∆v = (0.50 kg)(1.0 m/s) = 0.50 kg·m/s, 

 

where ∆v is the uncertainty in the velocity. Solving the uncertainty relationship ∆ ∆x p ≥  

for the minimum uncertainty in the coordinate x, we obtain 

 

∆
∆

x
p

= = ⋅
⋅

=0 60

2 050
019

.

.
. .

J s

kg m s
m

πb g  



 

 

 

74. (a) Since p p p p
x y x y

= = = =0 0, ∆ ∆ . Thus from Eq. 38-20 both ∆x and ∆y are 

infinite. It is therefore impossible to assign a y or z coordinate to the position of an 

electron. 

 

(b) Since it is independent of y and z the wave function Ψ(x) should describe a plane 

wave that extends infinitely in both the y and z directions. Also from Fig. 38-12 we see 

that |Ψ(x)|
2
 extends infinitely along the x axis. Thus the matter wave described by Ψ(x) 

extends throughout the entire three-dimensional space. 



 

 

 

75. The de Broglie wavelength for the bullet is 

 

λ = h

p

h

mv
= = ×

×
= ×

−

−
−6 63 10

40 10
17 10

34

3

35.

(
.

J.s

kg)(1000m / s)
m .  



 

 

 

76. We substitute the classical relationship between momentum p and velocity v, v = p/m 

into the classical definition of kinetic energy, K mv= 1
2

2  to obtain K = p
2
/2m. Here m is 

the mass of an electron. Thus p mK= 2 . The relationship between the momentum and 

the de Broglie wavelength λ is λ = h/p, where h is the Planck constant. Thus, 

 

λ = h

mK2
. 

 

If K is given in electron volts, then 

 

λ = 6.626 10−× ⋅
× ×

= × ⋅

= ⋅

− −

−34

31 19

9

2 9109 10

1226 10

1226

J s

kg)(1.602 10 J / eV)

m eV

nm eV

1/2

1/2

( .

.

.
.

K K

K

 



 

 

 

77. We note that  

 

| | ( ) ( ) .e e e e e
ikx ikx ikx ikx ikx2 1= = =∗ −  

 

Referring to Eq. 38-14, we see therefore that | | | | .ψ 2 2= Ψ  



 

 

 

78. From Sample Problem 38-4, we have 

 

2

( / )(1 cos )
(1 cos )

E h mc hf

E mc

φ φ′∆ ∆λ −= = = −
′λ + ∆λ λ

 

 

where we use the fact that λ + ∆λ = λ' = c/f '. 



 

 

 

79. With no loss of generality, we assume the electron is initially at rest (which simply 

means we are analyzing the collision from its initial rest frame). If the photon gave all its 

momentum and energy to the (free) electron, then the momentum and the kinetic energy 

of the electron would become 

 

p
hf

c
K hf= =and ,  

 

respectively. Plugging these expressions into Eq. 38-51 (with m referring to the mass of 

the electron) leads to 

 

( )

( ) ( )

pc K Kmc

hf hf hfmc

2 2 2

2 2 2

2

2

= +

= +
 

 

which is clearly impossible, since the last term (2hfmc
2
) is not zero. We have shown that 

considering total momentum and energy absorption of a photon by a free electron leads to 

an inconsistency in the mathematics, and thus cannot be expected to happen in nature. 



 

 

 

80. The difference between the electron-photon scattering process in this problem and the 

one studied in the text (the Compton shift, see Eq. 38-11) is that the electron is in motion 

relative with speed v to the laboratory frame. To utilize the result in Eq. 38-11, shift to a 

new reference frame in which the electron is at rest before the scattering. Denote the 

quantities measured in this new frame with a prime (' ), and apply Eq. 38-11 to yield 

 

∆λ' ' ' ( cos ,= − = −λ λ π) = 2
0 1

h

m c

h

m c
e e

 

 

where we note that φ = π (since the photon is scattered back in the direction of incidence). 

Now, from the Doppler shift formula (Eq. 38-25) the frequency f '0 of the photon prior to 

the scattering in the new reference frame satisfies 

 

f
c

f'
'

,0

0

0

1

1
= = +

−λ
β
β

 

 

where β = v/c. Also, as we switch back from the new reference frame to the original one 

after the scattering 

 

1 1
.

1 1

c
f f

β β
β β

− −′= =
′+ λ +

 

 

We solve the two Doppler-shift equations above for λ' and λ'0 and substitute the results 

into the Compton shift formula for ∆λ': 

 

∆λ' .= −
+

− −
+

=1 1

1

1 1

1

2

0

2
f f

h

m c
e

β
β

β
β

 

 

Some simple algebra then leads to 

 

E hf hf
h

m c
e

= = + +
−

F
HG

I
KJ

−

0 2

1

1
2 1

1

β
β

.  



 

 

 

81. (a) For λ = 565 nm 

 

hf
hc= = ⋅ =
λ

1240

565
2 20

eV nm

nm
eV..  

 

Since Φpotassium > hf > Φcesium, the photoelectric effect can occur in cesium but not in 

potassium at this wavelength. The result hc = 1240 eV·nm is used in our calculation. 

 

(b) Now λ = 518 nm so 

 

hf
hc= = ⋅ =
λ

1240

518
2 40

eV nm

m
eV..  

 

This is greater than both Φcesium and Φpotassium, so the photoelectric effect can now occur 

for both metals. 



 

 

 

82. Eq. 38-3 gives h = 4.14 × 10
–15

 eV·s, but the metric prefix which stands for 10
–15

 is 

femto (f). Thus, h = 4.14 eV·fs. 



 

 

 

83. The energy of a photon is given by E = hf, where h is the Planck constant and f is the 

frequency. The wavelength λ is related to the frequency by λf = c, so E = hc/λ. Since h = 

6.626 × 10
–34

 J·s and c = 2.998 × 10
8
 m/s, 

 

hc =
× ⋅ ×

×
= ⋅

−

− −

6 626 10 2 998 10

1602 10 10
1240

34 8

19 9

. .

.

J s m / s

J / eV m / nm
eV nm.

c hc h
c hc h  

 

Thus, 

 

E = ⋅1240eV nm

λ
.  
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