
 

 

1. According to Eq. 39-4 En ∝ L
– 2

. As a consequence, the new energy level E'n satisfies 

 

′ = ′F
HG
I
KJ =

′
F
HG
I
KJ =

−
E

E

L

L

L

L

n

n

2 2
1

2
,  

 

which gives ′ =L L2 .  Thus, the ratio is / 2 1.41.L L′ = =  



 

 

 

2. (a) The ground-state energy is 
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(b) With mp = 1.67 × 10
– 27 

kg, we obtain 
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3. To estimate the energy, we use Eq. 39-4, with n = 1, L equal to the atomic diameter, 

and m equal to the mass of an electron: 

 

( ) ( )
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4. With mp = 1.67 × 10
– 27

 kg, we obtain 
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Alternatively, we can use the mc
2
 value for a proton from Table 37-3 (938 × 10

6
 eV) and 

the hc = 1240 eV · nm value developed in problem 83 of Chapter 38 by writing Eq. 39-4 

as 
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This alternative approach is perhaps easier to plug into, but it is recommended that both 

approaches be tried to find which is most convenient. 



 

 

 

5. We can use the mc
2
 value for an electron from Table 37-3 (511 × 10

3
 eV) and the hc = 

1240 eV · nm value developed in problem 83 of Chapter 38 by writing Eq. 39-4 as 

 

E
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For n = 3, we set this expression equal to 4.7 eV and solve for L: 
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6. We can use the mc
2
 value for an electron from Table 37-3 (511 × 10

3
 eV) and the hc = 

1240 eV · nm value developed in problem 83 of Chapter 38 by writing Eq. 39-4 as 

 

E
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The energy to be absorbed is therefore 
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7. Since En ∝ L
– 2

 in Eq. 39-4, we see that if L is doubled, then E1 becomes (2.6 eV)(2)
– 2

 

= 0.65 eV. 



 

 

 

8. Let the quantum numbers of the pair in question be n and n + 1, respectively. We note 

that  
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Therefore, En+1 – En = (2n + 1)E1. Now 

 

E E E E E n E
n n+ − = = = = +1 5

2

1 1 15 25 2 1b g ,  

 

which leads to 2n + 1 = 25, or n = 12. Thus, 

 

(a) the higher quantum number is n+1 = 12+1 = 13, and 

 

(b) the lower quantum number is n = 12.  

 

(c) Now let 

 

E E E E E n E
n n+ − = = = = +1 6

2

1 1 16 36 2 1b g ,  

 

which gives 2n + 1 = 36, or n = 17.5. This is not an integer, so it is impossible to find the 

pair that fits the requirement. 



 

 

 

9. The energy levels are given by En = n
2
h

2
/8mL

2
, where h is the Planck constant, m is the 

mass of an electron, and L is the width of the well. The frequency of the light that will 

excite the electron from the state with quantum number ni to the state with quantum 

number nf is f E h h mL n n
f i

= = −∆ 8 2 2 2c hd i  and the wavelength of the light is 

 

λ = =
−

c

f

mL c

h n n
f i

8 2

2 2d i
.  

 

We evaluate this expression for ni = 1 and nf = 2, 3, 4, and 5, in turn. We use h = 6.626 × 

10
– 34

 J · s, m = 9.109 × 10
– 31

kg, and L = 250 × 10
– 12

 m, and obtain the following results: 

 

(a) 6.87 × 10
– 8

 m for nf = 2, (the longest wavelength).  

 

(b) 2.58 × 10
– 8

 m for nf = 3, (the second longest wavelength).  

 

(c) 1.37 × 10
– 8

 m for nf = 4, (the third longest wavelength).  



 

 

 

10. Let the quantum numbers of the pair in question be n and n + 1, respectively. Then 

En+1 – En = E1 (n + 1)
2
 – E1n

2
 = (2n + 1)E1. Letting 
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we get 2n + 1 = 21, or n = 10. Thus, 

 

(a) the higher quantum number is n + 1 = 10 + 1 = 11, and 

 

(b) the lower quantum number is n = 10. 

 

(c) Now letting 
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2
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we get 2n + 1 = 14, which does not have an integer-valued solution. So it is impossible to 

find the pair of energy levels that fits the requirement. 



 

 

 

11. We can use the mc
2
 value for an electron from Table 37-3 (511 × 10

3
 eV) and the hc = 

1240 eV · nm value developed in problem 83 of Chapter 38 by rewriting Eq. 39-4 as 

 

E
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(a) The first excited state is characterized by n = 2, and the third by n' = 4. Thus, 
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which yields ∆E = 72.2 eV. 

 

Now that the electron is in the n' = 4 level, it can “drop” to a lower level (n'') in a variety 

of ways. Each of these drops is presumed to cause a photon to be emitted of wavelength 
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=
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For example, for the transition n' = 4 to n'' = 3, the photon emitted would have 

wavelength 
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and once it is then in level n'' = 3 it might fall to level n''' = 2 emitting another photon. 

Calculating in this way all the possible photons emitted during the de-excitation of this 

system, we obtain the following results: 

 

(b) The shortest wavelength that can be emitted is 4 1 13.7nm.→ =λ  

 

(c) The second shortest wavelength that can be emitted is 4 2 17.2nm.→ =λ  

 

(d) The longest wavelength that can be emitted is 2 1 68.7 nm.→ =λ  

 

(e) The second longest wavelength that can be emitted is 3 2 41.2nm.→ =λ  

 

(f) The possible transitions are shown next. The energy levels are not drawn to scale. 

 



 

 
 

(g) A wavelength of 29.4 nm corresponds to 4 3→  transition. Thus, it could make either 

the 3 1→  transition or the pair of transitions: 3 2→  and 2 1→ . The longest wavelength 

that can be emitted is 2 1 68.7 nm.→ =λ  

 

(h) The shortest wavelength that can next be emitted is 3 1 25.8nm.→ =λ  



 

 

 

12. The frequency of the light that will excite the electron from the state with quantum 

number ni to the state with quantum number nf is f E h h mL n n
f i

= = −∆ 8 2 2 2c hd i  and the 

wavelength of the light is 
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−
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The width of the well is  
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The longest wavelength shown in Figure 39-28 is 80.78 nmλ = which corresponds to a 

jump from 2
i

n =  to 3
f

n = . Thus, the width of the well is  
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13. The probability that the electron is found in any interval is given by P dx= z ψ 2
,  

where the integral is over the interval. If the interval width ∆x is small, the probability 

can be approximated by P = |ψ|
2
 ∆x, where the wave function is evaluated for the center 

of the interval, say. For an electron trapped in an infinite well of width L, the ground state 

probability density is 

 

ψ 2 22= F
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so 
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(a) We take L = 100 pm, x = 25 pm, and ∆x = 5.0 pm. Then, 
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(b) We take L = 100 pm, x = 50 pm, and ∆x = 5.0 pm. Then, 
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(c) We take L = 100 pm, x = 90 pm, and ∆x = 5.0 pm. Then, 
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14. We follow Sample Problem 39-3 in the presentation of this solution. The integration 

result quoted below is discussed in a little more detail in that Sample Problem. We note 

that the arguments of the sine functions used below are in radians. 

 

(a) The probability of detecting the particle in the region 0
4

≤ ≤x
L  is 
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(b) As expected from symmetry, 
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(c) For the region L L
x

4
3
4

≤ ≤ , we obtain 
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which we could also have gotten by subtracting the results of part (a) and (b) from 1; that 

is, 1 – 2(0.091) = 0.82. 



 

 

 

15. According to Fig. 39-9, the electron’s initial energy is 109 eV. After the additional 

energy is absorbed, the total energy of the electron is 109 eV + 400 eV = 509 eV. Since it 

is in the region x > L, its potential energy is 450 eV (see Section 39-5), so its kinetic 

energy must be 509 eV – 450 eV = 59 eV. 



 

 

 

16. From Fig. 39-9, we see that the sum of the kinetic and potential energies in that 

particular finite well is 280 eV. The potential energy is zero in the region 0 < x < L. If the 

kinetic energy of the electron is detected while it is in that region (which is the only 

region where this is likely to happen), we should find K = 280 eV. 



 

 

 

17. Schrödinger’s equation for the region x > L is 
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This is zero provided 

 

k
h

m U E= −π
2 0b g.  

 

The proposed function satisfies Schrödinger’s equation provided k has this value. Since 

U0 is greater than E in the region x > L, the quantity under the radical is positive. This 

means k is real. If k is positive, however, the proposed function is physically unrealistic. 

It increases exponentially with x and becomes large without bound. The integral of the 

probability density over the entire x axis must be unity. This is impossible if ψ is the 

proposed function. 



 

 

 

18. We can use the mc
2
 value for an electron from Table 37-3 (511 × 10

3
 eV) and the hc = 

1240 eV · nm value developed in problem 83 of Chapter 38 by writing Eq. 39-20 as 
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For nx = ny = 1, we obtain 
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19. We can use the mc
2
 value for an electron from Table 37-3 (511 × 10

3
 eV) and the hc = 

1240 eV · nm value developed in problem 83 of Chapter 38 by writing Eq. 39-21 as 
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For nx = ny = nz = 1, we obtain 
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20. We are looking for the values of the ratio 
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and the corresponding differences. 

 

(a) For nx = ny = 1, the ratio becomes 1 1251
4

+ = . .  

 

(b) For nx = 1 and ny = 2, the ratio becomes 1 4 2 001
4

+ =b g . .  One can check (by computing 

other (nx, ny) values) that this is the next to lowest energy in the system. 

 

(c) The lowest set of states that are degenerate are (nx, ny) = (1, 4) and (2, 2). Both of 

these states have that ratio equal to 1 16 5001
4

+ =b g . .  

 

(d) For nx = 1 and ny = 3, the ratio becomes 1 9 3251
4

+ =b g . .  One can check (by computing 

other (nx, ny) values) that this is the lowest energy greater than that computed in part (b). 

The next higher energy comes from (nx, ny) = (2, 1) for which the ratio is 4 1 4 251
4

+ =b g . .  

The difference between these two values is 4.25 – 3.25 = 1.00. 



 

 

 

21. The energy levels are given by 
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where the substitutions Lx = L and Ly = 2L were made. In units of h
2
/8mL

2
, the energy 

levels are given by 2 2 / 4
x y

n n+ . The lowest five levels are E1,1 = 1.25, E1,2 = 2.00, E1,3 = 

3.25, E2,1 = 4.25, and E2,2 = E1,4 = 5.00. It is clear that there are no other possible values 

for the energy less than 5. The frequency of the light emitted or absorbed when the 

electron goes from an initial state i to a final state f is f = (Ef – Ei)/h, and in units of 

h/8mL
2
 is simply the difference in the values of 2 2 / 4

x y
n n+  for the two states. The 

possible frequencies are as follows: ( ) ( ) ( )0.75 1,2 1,1 ,2.00 1,3 1,1 ,3.00 2,1 1,1 ,→ → →  

( ) ( ) ( ) ( ) ( )3.75 2,2 1,1 ,1.25 1,3 1,2 ,2.25 2,1 1,2 ,3.00 2,2 1,2 ,1.00 2,1 1,3 ,→ → → → →

( ) ( )1.75 2,2 1,3 ,0.75 2,2 2,1 ,→ →  all in units of h/8mL
2
.  

 

(a) From the above, we see that there are 8 different frequencies. 

 

(b) The lowest frequency is, in units of h/8mL
2
, 0.75 (2, 2 → 2,1). 

 

(c) The second lowest frequency is, in units of h/8mL
2
, 1.00 (2, 1 → 1,3). 

 

(d) The third lowest frequency is, in units of h/8mL
2
, 1.25 (1, 3 → 1,2). 

 

(e) The highest frequency is, in units of h/8mL
2
, 3.75 (2, 2 → 1,1). 

 

(f) The second highest frequency is, in units of h/8mL
2
, 3.00 (2, 2 → 1,2) or (2, 1 → 1,1). 

 

(g) The third highest frequency is, in units of h/8mL
2
, 2.25 (2, 1 → 1,2). 



 

 

 

22. We are looking for the values of the ratio 
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and the corresponding differences. 

 

(a) For nx = ny = nz = 1, the ratio becomes 1 + 1 + 1 = 3.00. 

 

(b) For nx = ny = 2 and nz = 1, the ratio becomes 4 + 4 + 1 = 9.00. One can check (by 

computing other (nx, ny, nz) values) that this is the third lowest energy in the system. One 

can also check that this same ratio is obtained for (nx, ny, nz) = (2, 1, 2) and (1, 2, 2). 

 

(c) For nx = ny = 1 and nz = 3, the ratio becomes 1 + 1 + 9 = 11.00. One can check (by 

computing other (nx, ny, nz) values) that this is three “steps” up from the lowest energy in 

the system. One can also check that this same ratio is obtained for (nx, ny, nz) = (1, 3, 1) 

and (3, 1, 1). If we take the difference between this and the result of part (b), we obtain 

11.0 – 9.00 = 2.00. 

 

(d) For nx = ny = 1 and nz = 2, the ratio becomes 1 + 1 + 4 = 6.00. One can check (by 

computing other (nx, ny, nz) values) that this is the next to the lowest energy in the system. 

One can also check that this same ratio is obtained for (nx, ny, nz) = (2, 1, 1) and (1, 2, 1). 

Thus, three states (three arrangements of (nx, ny, nz) values) have this energy. 

 

(e) For nx = 1, ny = 2 and nz = 3, the ratio becomes 1 + 4 + 9 = 14.0. One can check (by 

computing other (nx, ny, nz) values) that this is five “steps” up from the lowest energy in 

the system. One can also check that this same ratio is obtained for (nx, ny, nz) = (1, 3, 2), 

(2, 3, 1), (2, 1, 3), (3, 1, 2) and (3, 2, 1). Thus, six states (six arrangements of (nx, ny, nz) 

values) have this energy. 



 

 

 

23. The ratios computed in problem 22 can be related to the frequencies emitted using f = 

∆E/h, where each level E is equal to one of those ratios multiplied by h
2
/8mL

2
. This 

effectively involves no more than a cancellation of one of the factors of h. Thus, for a 

transition from the second excited state (see part (b) of problem 22) to the ground state 

(treated in part (a) of that problem), we find 

 

f
h

mL

h

mL
= − F

HG
I
KJ = F

HG
I
KJ9 00 3 00

8
6 00

82 2
. . . .b g b g  

 

In the following, we omit the h/8mL
2
 factors. For a transition between the fourth excited 

state and the ground state, we have f = 12.00 – 3.00 = 9.00. For a transition between the 

third excited state and the ground state, we have f = 11.00 – 3.00 = 8.00. For a transition 

between the third excited state and the first excited state, we have f = 11.00 – 6.00 = 5.00. 

For a transition between the fourth excited state and the third excited state, we have f = 

12.00 – 11.00 = 1.00. For a transition between the third excited state and the second 

excited state, we have f = 11.00 – 9.00 = 2.00. For a transition between the second excited 

state and the first excited state, we have f = 9.00 – 6.00 = 3.00, which also results from 

some other transitions. 

 

(a) From the above, we see that there are 7 frequencies. 

 

(b) The lowest frequency is, in units of h/8mL
2
, 1.00. 

 

(c) The second lowest frequency is, in units of h/8mL
2
, 2.00. 

 

(d) The third lowest frequency is, in units of h/8mL
2
, 3.00. 

 

(e) The highest frequency is, in units of h/8mL
2
, 9.00. 

 

(f) The second highest frequency is, in units of h/8mL
2
, 8.00. 

 

(g) The third highest frequency is, in units of h/8mL
2
, 6.00. 



 

 

 

24. The difference between the energy absorbed and the energy emitted is 

 

E E
hc hc

photon absorbed photon emitted

absorbed emitted

− = −
λ λ

.  

 

Thus, using the result of problem 83 in Chapter 38 (hc = 1240 eV · nm), the net energy 

absorbed is 
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25. The energy E of the photon emitted when a hydrogen atom jumps from a state with 

principal quantum number u to a state with principal quantum number  is given by 

 

E A
u

= −FHG
I
KJ

1 1
2 2

 

 

where A = 13.6 eV. The frequency f of the electromagnetic wave is given by f = E/h and 

the wavelength is given by λ = c/f. Thus, 

 

1 1 1
2 2λ

= = = −FHG
I
KJ

f

c

E

hc

A

hc u
.  

 

The shortest wavelength occurs at the series limit, for which u = ∞. For the Balmer series, 

= 2  and the shortest wavelength is λB = 4hc/A. For the Lyman series, = 1 and the 

shortest wavelength is λL = hc/A. The ratio is λB/λL = 4.0. 



 

 

 

26. From Eq. 39-6, 

 

∆E hf= = × ⋅ × =−4 14 10 6 2 10 2 615 14. . . .eV s Hz eVc hc h  



 

 

 

27. (a) Since energy is conserved, the energy E of the photon is given by E = Ei – Ef, 

where Ei is the initial energy of the hydrogen atom and Ef is the final energy. The electron 

energy is given by (– 13.6 eV)/n
2
, where n is the principal quantum number. Thus, 

 

E E E
i f

= − = − − − =136

3

136

1
121

2 2

. .
. .

eV eV
eV

b g b g
 

 

(b) The photon momentum is given by 

 

p
E

c
= =

×
×

= × ⋅
−

−
121 160 10

300 10
6 45 10

19

8

27
. .

.
. .

eV J eV

m s
kg m s

b gc h
 

 

(c) Using the result of problem 83 in Chapter 38 (hc = 1240 eV · nm), the wavelength is 

 

λ = ⋅ =1240

121
102

eV nm

eV
nm

.
.  



 

 

 

28. (a) The energy level corresponding to the probability density distribution shown in 

Fig. 39-22 is the n = 2 level. Its energy is given by 

 

E2 2

13 6

2
3 4= − = −.
. .

eV
eV  

 

(b) As the electron is removed from the hydrogen atom the final energy of the proton-

electron system is zero. Therefore, one needs to supply at least 3.4 eV of energy to the 

system in order to bring its energy up from E2 = – 3.4 eV to zero. (If more energy is 

supplied, then the electron will retain some kinetic energy after it is removed from the 

atom.) 



 

 

 

29. If kinetic energy is not conserved, some of the neutron’s initial kinetic energy is used 

to excite the hydrogen atom. The least energy that the hydrogen atom can accept is the 

difference between the first excited state (n = 2) and the ground state (n = 1). Since the 

energy of a state with principal quantum number n is –(13.6 eV)/n
2
, the smallest 

excitation energy is 13.6 eV – (13.6 eV)/(2)
2
 = 10.2 eV. The neutron does not have 

sufficient kinetic energy to excite the hydrogen atom, so the hydrogen atom is left in its 

ground state and all the initial kinetic energy of the neutron ends up as the final kinetic 

energies of the neutron and atom. The collision must be elastic. 



 

 

 

30. (a) We use Eq. 39-44. At r = 0, P(r) ∝ r
2
 = 0. 

 

(b) At r = a 

 

P r
a

a e
e

a

ea ab g = = =
×

=−
− −

−
−4 4 4

529 10
10 2

3

2 2
2 2

2

1

.
. .

nm
nm  

 

(c) At r = 2a 

 

P r
a

a e
e

a

ea ab g b g= = =
×

=−
− −

−
−4

2
16 16

529 10
554

3

2 4
4 4

2

1

.
. .

nm
nm  



 

 

 

31. (a) We use Eq. 39-39. At r = a 

 

ψ 2

3 2

2

3

2

2
3

2 31 1 1

5 29 10
291r

a
e

a
e e

a ab g
c h

= FHG
I
KJ = =

×
=− −

−

− −

π π π .
.

nm
nm  

 

(b) We use Eq. 39-44. At r = a 

 

P r
a

a e
e

a

ea ab g = = =
×

=−
− −

−
−4 4 4

529 10
10 2

3

2 2
2 2

2

1

.
. .

nm
nm  



 

 

 

32. (a) ∆E = – (13.6 eV)(4
– 2

 – 1
– 2

) = 12.8 eV. 

 

(b) There are 6 possible energies associated with the transitions 4 →  3, 4 →  2, 4 →  1, 3 

→  2, 3 →  1 and 2 → 1.  

 

(c) The greatest energy is 4 1 12.8eV.E → =  

 

(d) The second greatest energy is ( )( )2 2

3 1 13.6eV 3 1 12.1eVE
− −

→ = − − = . 

 

(e) The third greatest energy is ( )( )2 2

2 1 13.6eV 2 1 10.2eVE
− −

→ = − − = . 

 

(f) The smallest energy is ( )( )2 2

4 3 13.6eV 4 3 0.661 eVE
− −

→ = − − = . 

 

(g) The second smallest energy is ( )( )2 2

3 2 13.6eV 3 2 1.89eVE
− −

→ = − − = . 

 

(h) The third smallest energy is ( )( )2 2

4 2 13.6eV 4 2 2.55eV.E
− −

→ = − − =  



 

 

 

33. (a) We take the electrostatic potential energy to be zero when the electron and proton 

are far removed from each other. Then, the final energy of the atom is zero and the work 

done in pulling it apart is W = – Ei, where Ei is the energy of the initial state. The energy 

of the initial state is given by Ei = (–13.6 eV)/n
2
, where n is the principal quantum 

number of the state. For the ground state, n = 1 and W = 13.6 eV. 

 

(b) For the state with n = 2, W = (13.6 eV)/(2)
2
 = 3.40 eV. 



 

 

 

34. Conservation of linear momentum of the atom-photon system requires that 

 

p p m v
hf

c
precoil photon recoil= =  

 

where we use Eq. 39-7 for the photon and use the classical momentum formula for the 

atom (since we expect its speed to be much less than c). Thus, from Eq. 39-6 and Table 

38-3, 

 

( )
( )( )

( ) ( )
2 2

4 1
recoil 2 6 8

13.6eV 4 1
4.1 m s .

938 10 eV 2.998 10 m sp p

E EE
v

m c m c c

− −− −−∆= = = =
× ×

 



 

 

 

35. (a) and (b) Letting a = 5.292 × 10
– 11

 m be the Bohr radius, the potential energy 

becomes 

 

U
e

a
= − =

× ⋅ ×
×

= − × = −
−

−
−

2 9 2 19
2

11

18

4

8 99 10 1602 10

5292 10
4 36 10 27 2

πε0

. .

.
. . .

N m C C

m
J eV

2c hc h
 

 

The kinetic energy is K = E – U = (– 13.6 eV) – (– 27.2 eV) = 13.6 eV. 



 

 

 

36. (a) The calculation is shown in Sample Problem 39-6. The difference in the values 

obtained in parts (a) and (b) of that Sample Problem is 122 nm – 91.4 nm ≈ 31 nm. 

 

(b) We use Eq. 39-1. For the Lyman series, 

 

∆f = ×
×

− ×
×

= ×− −

2 998 10

914 10

2 998 10

122 10
8 2 10

8

9

8

9

14.

.

.
.

m s

m

m s

m
Hz . 

 

(c) Fig. 39-19 shows that the width of the Balmer series is 656.3 nm – 364.6 nm ≈  

292 nm 0.29 mµ≈ .  

 

(d) The series limit can be obtained from the ∞ → 2  transition: 

 
8 8

14 14

9 9

2.998 10 m s 2.998 10 m s
3.65 10 Hz 3.7 10 Hz.

364.6 10 m 656.3 10 m
f − −

× ×∆ = − = × ≈ ×
× ×

 



 

 

 

37. The proposed wave function is 

 

ψ = −1
3 2πa

e
r a  

 

where a is the Bohr radius. Substituting this into the right side of Schrödinger’s equation, 

our goal is to show that the result is zero. The derivative is 

 

d

dr a
e

r aψ = − −1
5 2π

 

 

so 

 

r
d

dr

r

a
e

r a2
2

5 2

ψ = − −

π
 

 

and 

 

1 1 2 1 1 2 1
2

2

5 2
r

d

dr
r

d

dr a r a
e

a r a

r aψ ψF
HG
I
KJ = − +LNM

O
QP = − +LNM

O
QP

−

π
.  

 

The energy of the ground state is given by E me h= − 4

0

2 28ε  and the Bohr radius is given 

by a h me E e a= = −2

0

2 2 8ε π πε0, . so  The potential energy is given by U e r= − 2 4πε0 , 

so 

 

8 8

8 4

8

8

1 2

1 2 1 1 2

2 2

2 2

2

2

2

2

π π
πε πε

π
πε

π
ε

2 2

0 0

2

0

0

m

h
E U

m

h

e

a

e

r

m

h

e

a r

me

h a r a a r

− = − +
L
NM

O
QP

= − +LNM
O
QP

= − +LNM
O
QP = − +LNM

O
QP

ψ ψ ψ

ψ ψ .

 

 

The two terms in Schrödinger’s equation cancel, and the proposed function ψ satisfies 

that equation. 



 

 

 

38. Using Eq. 39-6 and the result of problem 83 in Chapter 38 (hc = 1240 eV · nm), we 

find 

 

∆E E
hc= = = ⋅ =photon

eV nm

nm
eV

λ
1240

1216
10 2

.
. .  

 

Therefore, nlow = 1, but what precisely is nhigh? 

 

lowhigh 2 2

13.6eV 13.6eV
    10.2eV

1
E E E

n
= + ∆ − = − +  

 

which yields n = 2 (this is confirmed by the calculation found from Sample Problem 39-

6). Thus, the transition is from the n = 2 to the n = 1 state. 

 

(a) The higher quantum number is n = 2. 

 

(b) The lower quantum number is n = 1. 

 

(c) Referring to Fig. 39-18, we see that this must be one of the Lyman series transitions. 



 

 

 

39. According to Sample Problem 39-8, the probability the electron in the ground state of 

a hydrogen atom can be found inside a sphere of radius r is given by 

 

p r e x x
x( ) = − + +−1 1 2 22 2c h  

 

where x = r/a and a is the Bohr radius. We want r = a, so x = 1 and 

 

p a e e( ) ( ) . .= − + + = − =− −1 1 2 2 1 5 0 3232 2  

 

The probability that the electron can be found outside this sphere is 1 – 0.323 = 0.677. It 

can be found outside about 68% of the time. 



 

 

 

40. (a) Since E2 = – 0.85 eV and E1 = – 13.6 eV + 10.2 eV = – 3.4 eV, the photon energy 

is  Ephoton = E2 – E1 = – 0.85 eV – (– 3.4 eV) = 2.6 eV. 

 

(b) From 

 

E E
n n

2 1

2

2

1

2
136

1 1
2 6− = − −

F
HG

I
KJ =( . ) .eV  eV  

 

we obtain 

 

1 1 2 6

13 6

3

16

1

4

1

22

2

1

2 2 2
n n

− = ≈ − = −.

.
.

 eV

eV
 

 

Thus, n2 = 4 and n1 = 2. So the transition is from the n = 4 state to the n = 2 state. One can 

easily verify this by inspecting the energy level diagram of Fig. 39-18. Thus, the higher 

quantum number is n2 = 4. 

 

(c) The lower quantum number is n1 = 2. 



 

 

 

41. The radial probability function for the ground state of hydrogen is P(r) =  

(4r
2
/a

3
)e

– 2r/a
, where a is the Bohr radius. (See Eq. 39-44). We want to evaluate the 

integral 
0

∞z P r dr( ) .  Eq. 15 in the integral table of Appendix E is an integral of this form. 

We set n = 2 and replace a in the given formula with 2/a and x with r. Then 

 

0 3 0

2 2

3 3

4 4 2

2
1

∞ ∞ −z z= = =P r dr
a

r e dr
a a

r a( )
( )

./
 



 

 

 

42. From Sample Problem 39-8, we know that the probability of finding the electron in 

the ground state of the hydrogen atom inside a sphere of radius r is given by 

 

p r e x x
x( ) = − + +−1 1 2 22 2c h  

 

where x = r/a. Thus the probability of finding the electron between the two shells 

indicated in this problem is given by 

 

( ) ( )2 2 2 2

2 1
( 2 ) (2 ) ( ) 1 1 2 2 1 1 2 2

                     0.439.

x x

x x

p a r a p a p a e x x e x x
− −

= =
< < = − = − + + − − + +

=
 



 

 

 

43. (a) ψ210 is real. Squaring it, we obtain the probability density: 

 
2 4

2 2 / 2 2 / 2

210 210 5 5
( ) | | (4 ) cos (4 ) cos .

32

r a r ar r
P r r e r e

a a
ψ π θ π θ− −= = =

π 8
 

 

(b) Each of the other functions is multiplied by its complex conjugate, obtained by 

replacing i with – i in the function. Since e
iφ

 e
– iφ

 = e
0
 = 1, the result is the square of the 

function without the exponential factor: 

 

| | sin/ψ θ21 1

2
2

5

2

64
+

−= r

a
e

r a

π
 

 

and 

 
2

2 / 2

21 1 5
| | sin .

64

r ar
e

a
ψ θ−

− =
π

 

 

The last two functions lead to the same probability density: 

 
2 4

2 2 / 2 2 / 2

21 1 21 1 5 5
( ) | | (4 ) sin (4 ) sin .

16

r a r ar r
P r r e r e

a a
ψ π θ π θ− −

± ±= = =
64π

 

 

(c) The total probability density for the three states is the sum: 

 

( )2 2 2 2

210 21 1 21 1 210 21 1 21 1

4 4
/ 2 2 2 /

5 5

( ) ( ) ( ) | | | | | | (4 )

1 1
                      cos sin sin .

2 2 8

r a r a

P r P r P r r

r r
e e

a a

ψ ψ ψ π

θ θ θ

+ − + −

− −

+ + = + +

= + + =
8

 

 

The trigonometric identity cos
2
 θ + sin

2
 θ = 1 is used. We note that the total probability 

density does not depend on θ or φ; it is spherically symmetric. 



 

 

 

44. Using Eq. 39-6 and the result of problem 83 in Chapter 38 (hc = 1240 eV · nm), we 

find 

 

photon

1240 eV nm
12.09 eV.

106.6 nm

hc
E E

λ
⋅∆ = = = =  

 

Therefore, nlow = 1, but what precisely is nhigh? 

 

lowhigh 2 2

13.6eV 13.6eV
    12.09eV

1
E E E

n
= + ∆ − = − +  

 

which yields n = 3. Thus, the transition is from the n = 3 to the n = 1 state. 

 

(a) The higher quantum number is n = 3. 

 

(b) The lower quantum number is n = 1. 

 

(c) Referring to Fig. 39-18, we see that this must be one of the Lyman series transitions. 



 

 

 

45. Since ∆r is small, we may calculate the probability using p = P(r) ∆r, where P(r) is 

the radial probability density. The radial probability density for the ground state of 

hydrogen is given by Eq. 39-44: 

 

P r
r

a
e

r a( ) /=
F
HG
I
KJ

−4 2

3

2  

 

where a is the Bohr radius. 

 

(a) Here, r = 0.500a and ∆r = 0.010a. Then, 

 
2

2 / 2 1 3 3

3

4
4(0.500) (0.010) 3.68 10 3.7 10 .r ar r

P e e
a

− − − −∆= = = × ≈ ×  

 

(b) We set r = 1.00a and ∆r = 0.010a. Then, 

 
2

2 / 2 2 3 3

3

4
4(1.00) (0.010) 5.41 10 5.4 10 .r ar r

P e e
a

− − − −∆= = = × ≈ ×  



 

 

 

46. According to Fig. 39-25, the quantum number n in question satisfies r = n
2
a. Letting r 

= 1.0 mm, we solve for n: 

n
r

a
= = ×

×
≈ ×

−

−

10 10

529 10
4 3 10

3

11

3.

.
. .

m

m
 



 

 

 

47. The radial probability function for the ground state of hydrogen is P(r) =  

(4r
2
/a

3
)e

– 2r/a
, where a is the Bohr radius. (See Eq. 39-44.) The integral table of Appendix 

E may be used to evaluate the integral r rP r dravg =
∞z0 ( ) .  Setting n = 3 and replacing a in 

the given formula with 2/a (and x with r), we obtain 

 

r rP r dr
a

r e dr
a a

a
r a

avg = = = =
∞ ∞ −z z0 3 0

3 2

3 4

4 4 6

2
15( ) . ./

b g
 



 

 

 

48. (a) The plot shown below for |ψ200(r)|
2
 is to be compared with the dot plot of Fig.  

39-22. We note that the horizontal axis of our graph is labeled “r,” but it is actually r/a 

(that is, it is in units of the parameter a). Now, in the plot below there is a high central 

peak between r = 0 and r ∼ 2a, corresponding to the densely dotted region around the 

center of the dot plot of Fig. 39-22. Outside this peak is a region of near-zero values 

centered at r = 2a, where ψ200 = 0. This is represented in the dot plot by the empty ring 

surrounding the central peak. Further outside is a broader, flatter, low peak which reaches 

its maximum value at r = 4a. This corresponds to the outer ring with near-uniform dot 

density which is lower than that of the central peak. 

 

 
 

(b) The extrema of ψ2
(r) for 0 < r < ∞ may be found by squaring the given function, 

differentiating with respect to r, and setting the result equal to zero: 

 

− − − =−1

32

2 4
0

6

( ) ( ) /r a r a

a
e

r a

π
 

 

which has roots at r = 2a and r = 4a. We can verify directly from the plot above that r = 

4a is indeed a local maximum of ψ 200

2 ( ).r  As discussed in part (a), the other root (r = 2a) 

is a local minimum. 

 

(c) Using Eq. 39-43 and Eq. 39-41, the radial probability is 

 

P r r r
r

a

r

a
e

r a

200

2

200

2
2

3

2

4
8

2( ) ( ) ./= = −FHG
I
KJ

−π ψ  

 

(d) Let x = r/a. Then 

 



 

22
/ 2 2 4 3 2

200 30 0 0 0

1
( ) 2 (2 ) ( 4 4 )

8 8

1
[4! 4(3!) 4(2!)] 1

8

r a x xr r
P r dr e dr x x e dx x x x e dx

a a

∞ ∞ ∞ ∞− − −= − = − = − +

= − + =
 

 

where we have used the integral formula 
0

∞ −z =x e dx n
n x ! . 



 

 

 

49. From Eq. 39-4, 

 

E E
h

mL
n

h

mL
n

h

mL
n

n n+ − =
F
HG
I
KJ + −

F
HG
I
KJ =
F
HG
I
KJ +2

2

2

2
2

2

2
2

28
2

8 2
1b g b g.  



 

 

 

50. We can use the mc
2
 value for an electron from Table 37-3 (511 × 10

3
 eV) and the hc = 

1240 eV · nm value developed in problem 83 of Chapter 38 by writing Eq. 39-4 as 

 

E
n h

mL

n hc

mc L
n

= =
2 2

2

2 2

2 28 8

b g
c h .  

 

(a) With L = 3.0 × 10
9
 nm, the energy difference is 

 

E E2 1

2

3 9
2

2 2 191240

8 511 10 30 10
2 1 13 10− =

× ×
− = × −

c hc h
c h

.
. eV.  

 

(b) Since (n + 1)
2
 – n

2
 = 2n + 1, we have 

 

∆E E E
h

mL
n

hc

mc L
n

n n
= − = + = ++1

2

2

2

2 28
2 1

8
2 1b g b gc h b g.  

 

Setting this equal to 1.0 eV, we solve for n: 

 

( )
( )

( ) ( ) ( )
( )

2
2 2 3 9

19

2 2

4 4 511 10 eV 3.0 10 nm 1.0eV1 1
1.2 10 .

2 21240eV nm

mc L E
n

hc

∆ × ×
= − = − ≈ ×

⋅
 

 

(c) At this value of n, the energy is 

 

E
n

=
× ×

× ≈ ×1240

8 511 10 30 10
6 10 6 10

2

3 9
2

18
2

18

c hc h
c h

.
eV.  

 

Thus 

 
18

13

2 3

6 10 eV
1.2 10 .

511 10 eV

n
E

mc

×= = ×
×

 

 

(d) Since 2/ 1
n

E mc , the energy is indeed in the relativistic range. 



 

 

 

51. (a) The allowed values of  for a given n are 0, 1, 2, ..., n – 1. Thus there are n 

different values of . 

 

(b) The allowed values of m  for a given  are – , –  + 1, ..., . Thus there are 2  + 1 

different values of m . 

 

(c) According to part (a) above, for a given n there are n different values of . Also, each 

of these ’s can have 2  + 1 different values of m  [see part (b) above]. Thus, the total 

number of m ’s is 

 
1

2

0

(2 1) .
n

n

−

=

+ =  



 

 

 

52. (a) and (b) In the region 0 < x < L, U0 = 0, so Schrödinger’s equation for the region is 

 

d

dx

m

h
E

2

2

2

2

8
0

ψ ψ+ =π
 

 

where E > 0. If ψ2
 (x) = B sin

2
 kx, then ψ (x) = B' sin kx, where B' is another constant 

satisfying B' 
2
 = B. Thus d 

2ψ/dx
2
 = – k

2
 B' sin kx = – k

2
 ψ(x) and  

 

d

dx

m

h
E k

m

h
E

2

2

2

2

2
2

2

8 8ψ ψ ψ ψ+ = − +π π
.  

 

This is zero provided that 

 

k
mE

h

2
2

2

8= π
.  

 

The quantity on the right-hand side is positive, so k is real and the proposed function 

satisfies Schrödinger’s equation. In this case, there exists no physical restriction as to the 

sign of k. It can assume either positive or negative values. Thus, k
h

mE= ± 2
2

π
.  



 

 

 

53. (a) and (b) Schrödinger’s equation for the region x > L is 

 

d

dx

m

h
E U

2

2

2

2 0

8
0

ψ ψ+ − =π
,  

 

where E – U0 < 0. If ψ2
 (x) = Ce

– 2kx
, then ψ(x) = C'e

– kx
, where C' is another constant 

satisfying C' 
2
 = C. Thus d 

2ψ/dx
2
 = 4k

2
C'e

– kx
 = 4k

2
 ψ and 

 

d

dx

m

h
E U k

m

h
E U

2

2

2

2 0

2
2

2 0

8 8ψ ψ ψ ψ+ − = + −π π
.  

 

This is zero provided that k
m

h
U E

2
2

2 0

8= −π
.  

 

The quantity on the right-hand side is positive, so k is real and the proposed function 

satisfies Schrödinger’s equation. If k is negative, however, the proposed function would 

be physically unrealistic. It would increase exponentially with x. Since the integral of the 

probability density over the entire x axis must be finite, ψ diverging as x → ∞  would be 

unacceptable. Therefore, we choose 

 

k
h

m U E= − >2
2 00

π b g .  



 

 

 

54. (a) The allowed energy values are given by En = n
2
h

2
/8mL

2
. The difference in energy 

between the state n and the state n + 1 is 

 

∆E E E n n
h

mL

n h

mL
n nadj = − = + − =

+
+1

2 2
2

2

2

2
1

8

2 1

8
b g b g

 

 

and 

 

∆E

E

n h

mL

mL

n h

n

n

adj =
+L

NM
O
QP
F
HG
I
KJ = +2 1

8

8 2 1
2

2

2

2 2 2

b g
.  

 

As n becomes large, 2 1 2n n+ →  and 2 1 2 22 2
n n n n n+ → =b g .  

 

(b) No. As n E→ ∞,∆ adj  and E do not approach 0, but ∆Eadj/E does. 

 

(c) No. See part (b). 

 

(d) Yes. See part (b). 

 

(e) ∆Eadj/E is a better measure than either ∆Eadj or E alone of the extent to which the 

quantum result is approximated by the classical result. 



 

 

 

55. (a) We recall that a derivative with respect to a dimensional quantity carries the 

(reciprocal) units of that quantity. Thus, the first term in Eq. 39-18 has dimensions of ψ 

multiplied by dimensions of x
– 2

. The second term contains no derivatives, does contain ψ, 

and involves several other factors that turn out to have dimensions of x
– 2

: 

 

8 2

2

π m

h
E U x−

⋅
b g b g

kg

J s
J

2
 

 

assuming SI units. Recalling from Eq. 7-9 that J = kg·m
2
/s

2
, then we see the above is 

indeed in units of m
– 2

 (which means dimensions of x
– 2

). 

 

(b) In one-dimensional Quantum Physics, the wavefunction has units of m
– 1/2

 as Sample 

Problem 39-2 shows. Thus, since each term in Eq. 39-18 has units of ψ multiplied by 

units of x
– 2

, then those units are m
– 1/2

·m
– 2

 = m
– 2.5

. 



 

 

 

56. For n = 1 

 

( )( )
( ) ( ) ( )

4
31 194

1 2 22 2 12 34 19
0

9.11 10 kg 1.6 10 C
13.6eV .

8 8 8.85 10 F m 6.63 10 J s 1.60 10 J eV

e
m e

E
hε

− −

− − −

× ×
= − = − = −

× × ⋅ ×
 



 

 

 

57. (a) and (b) Using Eq. 39-6 and the result of problem 83 in Chapter 38 (hc = 1240 eV · 

nm), we find 

 

∆E E
hc= = = ⋅ =photon

eV nm

nm
eV .

λ
1240

4861
2 55

.
.  

 

Therefore, nlow = 2, but what precisely is nhigh? 

 

high low 2 2

13.6eV 13.6eV
    2.55eV

2
E E E

n
= + ∆ − = − +  

 

which yields n = 4. Thus, the transition is from the n = 4 to the n = 2 state. 

 

(a) The higher quantum number is n = 4. 

 

(b) The lower quantum number is n = 2.  

 

(c) Referring to Fig. 39-18, we see that this must be one of the Balmer series transitions 

(this fact could also be found from Fig. 39-19). 



 

 

 

58. (a) The “home-base” energy level for the Balmer series is n = 2. Thus the transition 

with the least energetic photon is the one from the n = 3 level to the n = 2 level. The 

energy difference for this transition is 

 

∆E E E= − = − −FHG
I
KJ =3 2 2 2

13 6
1

3

1

2
1889. . .eV eVb g  

 

Using the result of problem 83 in Chapter 38 (hc = 1240 eV · nm), the corresponding 

wavelength is 

 

λ = hc

E∆
= ⋅ =1240

1889
658

eV nm

eV
nm

.
. 

 

(b) For the series limit, the energy difference is 

 

∆E E E= − = −
∞

−FHG
I
KJ =∞ 2 2 2

13 6
1 1

2
3 40. . .eV eVb g  

 

The corresponding wavelength is then λ = = ⋅ =hc

E∆
1240

3 40
366

eV nm

eV
nm

.
. 



 

 

 

59. The wavelength λ of the photon emitted in a transition belonging to the Balmer series 

satisfies 

 

E
hc

E E
n

n
nph eV  where = = − = − −FHG

I
KJ =

λ 2 2 2
13 6

1 1

2
3 4 5( . ) , , ,...  

 

Using the result of problem 83 in Chapter 38 (hc = 1240 eV · nm), we find 

 
2 2

2 2

4 4(1240 eV nm)
.

(13.6 eV)( 4) 13.6 eV 4

hcn n

n n
λ ⋅= =

− −
 

 

Plugging in the various values of n, we obtain these values of the wavelength: λ = 656 

nm (for n = 3), λ = 486 nm (for n = 4), λ = 434 nm (for n = 5), λ = 410 nm (for n = 6), λ 

= 397 nm (for n = 7), λ = 389 nm (for n = 8), etc. Finally for n = ∞, λ = 365 nm. These 

values agree well with the data found in Fig. 39-19. [One can also find λ beyond three 

significant figures by using the more accurate values for me, e and h listed in Appendix B 

when calculating En in Eq. 39-33. Another factor that contributes to the error is the 

motion of the atomic nucleus. It can be shown that this effect can be accounted for by 

replacing the mass of the electron me by memp/(mp + me) in Eq. 39-33, where mp is the 

mass of the proton. Since m m
p e

>> , this is not a major effect.] 
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