
 

 

1. (a) For a given value of the principal quantum number n, the orbital quantum number 

 ranges from 0 to n –  1. For n = 3, there are three possible values: 0, 1, and 2. 

 

(b) For a given value of , the magnetic quantum number m  ranges from − to + . For 

= 1, there are three possible values: – 1, 0, and +1. 



 

 

 

2. For a given quantum number there are (2 + 1) different values of m . For each 

given m  the electron can also have two different spin orientations. Thus, the total 

number of electron states for a given  is given by N = 2(2 + 1). 

 

(a) Now  = 3, so N  = 2(2 × 3 + 1) = 14. 

 

(b) In this case, = 1, which means N  = 2(2 × 1 + 1) = 6. 

 

(c) Here  = 1, so N  = 2(2 × 1 + 1) = 6. 

 

(d) Now = 0, so N  = 2(2 × 0 + 1) = 2. 



 

 

 

 

3. (a) We use Eq. 40-2: 

 

( ) ( ) ( )34 341 3 3 1 1.055 10 J s 3.65 10 J s.L
− −= + = + × ⋅ = × ⋅  

 

(b) We use Eq. 40-7: 
z

L m= . For the maximum value of Lz set m  = . Thus 

 

[ ] ( )34 34

max
3 1.055 10 J s 3.16 10 J s.

z
L

− −= = × ⋅ = × ⋅  



 

 

 

4. For a given quantum number n there are n possible values of , ranging from 0 to  

n – 1. For each  the number of possible electron states is N  = 2(2  + 1) . Thus, the 

total number of possible electron states for a given n is 

 

( )
1 1

2

0 0

2 2 1 2 .
n n

n

l l

N N n

− −

= =

= = + =  

 

(a) In this case n = 4, which implies Nn = 2(4
2
) = 32. 

 

(b) Now n = 1, so Nn = 2(1
2
) = 2. 

 

(c) Here n = 3, and we obtain Nn = 2(3
2
) = 18. 

 

(d) Finally, n N
n

= → = =2 2 2 82c h . 



 

 

 

 

5. The magnitude L of the orbital angular momentum L  is given by Eq. 40-2: 

( 1)L = + . On the other hand, the components 
z

L are 
z

L m= , where ,...m = − + . 

Thus, the semi-classical angle is cos /
z

L Lθ = . The angle is the smallest when m = , or 

 

 1cos     cos
( 1) ( 1)

θ θ −= =
+ +

 

  

With 5= , we have 24.1 .θ = °  



 

 

 

6. (a) For 3= , the greatest value of m  is 3m = . 

 

(b) Two states ( m
s

= ± 1
2

) are available for 3m = . 

 

(c) Since there are 7 possible values for m  :  +3, +2, +1, 0, – 1, – 2, – 3, and two possible 

values for 
s

m , the total number of state available in the subshell 3=  is 14.  



 

 

 

 

7. (a) Using Table 40-1, we find  = [ m ]max = 4. 

 

(b) The smallest possible value of n is n = max +1 ≥  + 1 = 5.  

 

(c) As usual, m
s

= ± 1
2

, so two possible values. 



 

 

 

8. For a given quantum number n there are n possible values of , ranging from 0 to 1n − . 

For each  the number of possible electron states is N = 2(2  + 1). Thus the total 

number of possible electron states for a given n is 

 

( )
1 1

2

0 0

2 2 1 2 .
n n

n
N N n

− −

= =

= = + =  

 

Thus, in this problem, the total number of electron states is Nn = 2n
2
 = 2(5)

2
 = 50. 



 

 

 

 

9. (a) For = 3 , the magnitude of the orbital angular momentum is ( )1L = + =  

( )3 3 1 12+ = . So the multiple is 12 3.46.≈  

 

 (b) The magnitude of the orbital dipole moment is µ µ µorb = + =1 12b g B B
. So the 

multiple is 12 3.46.≈  

  

(c) The largest possible value of m  is 3m = = . 

 

(d) We use L m
z

=  to calculate the z component of the orbital angular momentum. The 

multiple is 3m = . 

 

(e) We use µ µ
z B

m= −  to calculate the z component of the orbital magnetic dipole 

moment. The multiple is 3m− = − . 

 

(f) We use cosθ = +m 1b g  to calculate the angle between the orbital angular 

momentum vector and the z axis. For = 3  and 3m = , we have cos 3/ 12 3 / 2θ = = , 

or 30.0θ = ° . 

 

(g) For = 3  and 2m = , we have cos 2 / 12 1/ 3θ = = , or 54.7θ = ° . 

 

(h) For = 3  and 3m = − , cos 3/ 12 3 / 2θ = − = − , or 150θ = ° . 



 

 

 

10. (a) For n = 3 there are 3 possible values of : 0, 1, and 2. 

 

(b) We interpret this as asking for the number of distinct values for m  (this ignores the 

multiplicity of any particular value). For each  there are 2  + 1 possible values of m . 

Thus the number of possible sm′  for  = 2 is (2  + 1) = 5. Examining the  = 1 and 

0=  cases cannot lead to any new (distinct) values for m , so the answer is 5. 

 

(c) Regardless of the values of n, and m , for an electron there are always two possible 

values of m
s
:± 1

2
. 

 

(d) The population in the n = 3 shell is equal to the number of electron states in the shell, 

or 2n
2
 = 2(3

2
) = 18. 

 

(e) Each subshell has its own value of . Since there are three different values of  for n 

= 3, there are three subshells in the n = 3 shell. 



 

 

 

 

11. Since L L L L L L L L
x y z x y z

2 2 2 2 2 2 2 2= + + + = −, . Replacing L
2
 with +1 2b g  and Lz 

with m , we obtain L L m
x y

2 2 21+ = + −b g .  For a given value of , the greatest that 

m  can be is , so the smallest that L L
x y

2 2+  can be is + − =1 2b g . The 

smallest possible magnitude of m  is zero, so the largest L L
x y

2 2+  can be is +1b g . 
Thus, 

 

≤ + ≤ +L L
x y

2 2 1b g .  



 

 

 

12. (a) From Fig. 40-10 and Eq. 40-18, 

 

∆E B
B

= =
×

×
=

−

−2
2 9 27 10 050

160 10
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24
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µ µ

. .
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J T T
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eV

c hb g
 

 

(b) From ∆E = hf we get 

 
24

10

34

9.27 10 J
1.4 10 Hz 14 GHz .

6.63 10 J s

E
f

h

−

−

∆ ×= = = × =
× ⋅

 

 

(c) The wavelength is 

 
8

10

2.998 10 m s
2.1cm.

1.4 10 Hz

c

f

×λ = = =
×

 

 

(d) The wave is in the short radio wave region. 



 

 

 

 

13. The magnitude of the spin angular momentum is S s s= + =1 3 2b g d i , where 

s = 1
2

 is used. The z component is either S
z

= 2  or − 2 .  

 

(a) If S
z

= + 2  the angle θ between the spin angular momentum vector and the positive 

z axis is 

 

θ = F
HG
I
KJ = F

HG
I
KJ = °− −cos cos . .1 1 1

3
54 7

S

S

z  

 

(b) If S
z

= − 2 , the angle is θ = 180° –  54.7° = 125.3° 125 .≈ °  



 

 

 

14. (a) From Eq. 40-19, 

 

F
dB

dz
B

= = × × = ×− −µ 9 27 10 16 10 15 1024 2 21. . . .J T T m Nc hc h  

 

(b) The vertical displacement is 

 
22 21

2 5

27 5

1 1 1 1.5 10 N 0.80m
2.0 10 m.

2 2 2 1.67 10 kg 1.2 10 m s

F l
x at

m v

−
−

−

×∆ = = = = ×
× ×

 



 

 

 

 

15. The acceleration is 

 

a
F

M

dB dz

M
= =

µ θcos
,

b gb g
 

 

where M is the mass of a silver atom, µ is its magnetic dipole moment, B is the magnetic 

field, and θ is the angle between the dipole moment and the magnetic field. We take the 

moment and the field to be parallel (cos θ = 1) and use the data given in Sample Problem 

40-1 to obtain 

 

( )( )24 3

24

25

9.27 10 J T 1.4 10 T m
7.2 10 m s .

1.8 10 kg
a

−

−

× ×
= = ×

×
 



 

 

 

16. We let ∆E = 2µBBeff (based on Fig. 40-10 and Eq. 40-18) and solve for Beff: 

 

B
E hc

B B

eff

nm eV

nm eV T
mT= = = ⋅

× ×
=

− −

∆
2 2

1240

2 21 10 5 788 10
51

7 5µ µλ c hc h.
.  



 

 

 

 

17. The energy of a magnetic dipole in an external magnetic field B  is 

U B B
z

= − ⋅ = −µ µ , where µ  is the magnetic dipole moment and µz is its component 

along the field. The energy required to change the moment direction from parallel to 

antiparallel is ∆E = ∆U = 2µzB. Since the z component of the spin magnetic moment of 

an electron is the Bohr magneton ,
B

µ  

 

( )( )242 2 9.274 10 J T 0.200T
B

E Bµ −∆ = = × =  243.71 10 J−×  . 

 

The photon wavelength is 

 

λ = = =
× ⋅ ×

×
= ×

−

−
−c

f

hc

E∆
6 63 10 300 10

371 10
536 10

34 8

24

2
. .

.
. .

J s m s

J
m

c hc h
 



 

 

 

18. The total magnetic field, B = Blocal + Bext, satisfies ∆E = hf = 2µB (see Eq. 40-22). 

Thus, 

 

B
hf

Blocal ext

J s Hz

J T
T mT= − =

× ⋅ ×

×
− =

−

−2

6 63 10 34 10

2 141 10
0 78 19

34 6

26µ
.

.
. .

c hc h
c h  



 

 

 

 

19. Because of the Pauli principle (and the requirement that we construct a state of lowest 

possible total energy), two electrons fill the n = 1, 2, 3 levels and one electron occupies 

the n = 4 level. Thus, using Eq. 39-4, 
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Thus, the multiple of 2 2/ 8h mL  is 44.  



 

 

 

20. Using Eq. 39-20 we find that the lowest four levels of the rectangular corral (with this 

specific “aspect ratio”) are non-degenerate, with energies E1,1 = 1.25, E1,2 = 2.00, E1,3 = 

3.25, and E2,1 = 4.25 (all of these understood to be in “units” of h
2
/8mL

2
). Therefore, 

obeying the Pauli principle, we have 

 

E E E E Eground = + + + = + + +2 2 2 2 125 2 2 00 2 3 25 4 251 1 1 2 1 3 2 1, , , , . . . .b g b g b g  

 

which means (putting the “unit” factor back in) that the lowest possible energy of the 

system is Eground = 17.25(h
2
/8mL

2
). Thus, the multiple of 2 2/ 8h mL  is 17.25.  



 

 

 

 

21. (a) Promoting one of the electrons (described in problem 19) to a not-fully occupied 

higher level, we find that the configuration with the least total energy greater than that of 

the ground state has the n = 1 and 2 levels still filled, but now has only one electron in the 

n = 3 level; the remaining two electrons are in the n = 4 level. Thus, 
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Thus, the multiple of 2 2/ 8h mL  is 51.  

 

(b) Now, the configuration which provides the next higher total energy, above that found 

in part (a), has the bottom three levels filled (just as in the ground state configuration) and 

has the seventh electron occupying the n = 5 level: 
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Thus, the multiple of 2 2/ 8h mL  is 53.  

 

(c) The third excited state has the n = 1, 3, 4 levels filled, and the n = 2 level half-filled: 
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Thus, the multiple of 2 2/ 8h mL  is 56.  

 

(d) The energy states of this problem and problem 19 are suggested in the sketch below: 

 

_______________________ third excited 56(h
2
/8mL

2
) 

 



 

_______________________ second excited 53(h
2
/8mL

2
) 

 

_______________________ first excited 51(h
2
/8mL

2
) 

 

 

 

_______________________ ground state 44(h
2
/8mL

2
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22. (a) Using Eq. 39-20 we find that the lowest five levels of the rectangular corral (with 

this specific “aspect ratio”) have energies E1,1 = 1.25, E1,2 = 2.00, E1,3 = 3.25, E2,1 = 4.25, 

and E2,2 = 5.00 (all of these understood to be in “units” of h
2
/8mL

2
). It should be noted 

that the energy level we denote E2,2 actually corresponds to two energy levels (E2,2 and 

E1,4; they are degenerate), but that will not affect our calculations in this problem. The 

configuration which provides the lowest system energy higher than that of the ground 

state has the first three levels filled, the fourth one empty, and the fifth one half-filled: 

 

E E E E Efirst excited = + + + = + + +2 2 2 2 125 2 2 00 2 3 25 5 001 1 1 2 1 3 2 2, , , , . . . .b g b g b g  

 

which means (putting the “unit” factor back in) the energy of the first excited state is  

Efirst excited = 18.00(h
2
/8mL

2
). Thus, the multiple of 2 2/ 8h mL  is 18.00.  

 

(b) The configuration which provides the next higher system energy has the first two 

levels filled, the third one half-filled, and the fourth one filled: 

 

( ) ( ) ( )second excited 1,1 1,2 1,3 2,12 2 2 2 1.25 2 2.00 3.25 2 4.25E E E E E= + + + = + + +  

 

which means (putting the “unit” factor back in) the energy of the second excited state is 

Esecond excited = 18.25(h
2
/8mL

2
). Thus, the multiple of 2 2/ 8h mL  is 18.25.  

 

(c) Now, the configuration which provides the next higher system energy has the first two 

levels filled, with the next three levels half-filled: 

 

( ) ( )third excited 1,1 1,2 1,3 2,1 2,22 2 2 1.25 2 2.00 3.25 4.25 5.00E E E E E E= + + + + = + + + +  

 

which means (putting the “unit” factor back in) the energy of the third excited state is 

Ethird excited = 19.00(h
2
/8mL

2
). Thus, the multiple of 2 2/ 8h mL  is 19.00.  

 

(d) The energy states of this problem and problem 20 are suggested in the sketch below: 

 

__________________ third excited 19.00(h
2
/8mL

2
) 

 

 

 

__________________ second excited 18.25(h
2
/8mL

2
) 

 

__________________ first excited 18.00(h
2
/8mL

2
) 

 

 

 

__________________ ground state 17.25(h
2
/8mL

2
) 



 

 

 

23. In terms of the quantum numbers nx, ny, and nz, the single-particle energy levels are 

given by 

 

E
h

mL
n n n

n n n x y z
x y z

, , .= + +
2

2

2 2 2

8
d i  

 

The lowest single-particle level corresponds to nx = 1, ny = 1, and nz = 1 and is E1,1,1 = 

3(h
2
/8mL

2
). There are two electrons with this energy, one with spin up and one with spin 

down. The next lowest single-particle level is three-fold degenerate in the three integer 

quantum numbers. The energy is  

 

E1,1,2 = E1,2,1 = E2,1,1 = 6(h
2
/8mL

2
). 

 

Each of these states can be occupied by a spin up and a spin down electron, so six 

electrons in all can occupy the states. This completes the assignment of the eight 

electrons to single-particle states. The ground state energy of the system is  

 

Egr = (2)(3)(h
2
/8mL

2
) + (6)(6)(h

2
/8mL

2
) = 42(h

2
/8mL

2
). 

 

Thus, the multiple of 2 2/ 8h mL  is 42. 



 

 

 

 

24. We use the results of problem 22 in Chapter 39. The Pauli principle requires that no 

more than two electrons be in the lowest energy level (at E1,1,1 = 3(h
2
/8mL

2
)), but — due 

to their degeneracies — as many as six electrons can be in the next three levels  

 

E' = E1,1,2 = E1,2,1 = E2,1,1 = 6(h
2
/8mL

2
) 

 

E'' = E1,2,2 = E2,2,1 = E2,1,2 = 9(h
2
/8mL

2
) 

  

E''' = E1,1,3 = E1,3,1 = E3,1,1 = 11(h
2
/8mL

2
).  

 

Using Eq. 39-21, the level above those can only hold two electrons:  

 

E2,2,2 = (2
2
 + 2

2
 + 2

2
)(h

2
/8mL

2
) = 12(h

2
/8mL

2
). 

 

And the next higher level can hold as much as twelve electrons (see part (e) of problem 

22 in Chapter 39) and has energy E'''' = 14(h
2
/8mL

2
). 

 

(a) The configuration which provides the lowest system energy higher than that of the 

ground state has the first level filled, the second one with one vacancy, and the third one 

with one occupant: 

 

E E E Efirst excited = + ′ + ′′ = + +2 5 2 3 5 6 91 1 1, , b g b g  

 

which means (putting the “unit” factor back in) the energy of the first excited state is  

Efirst excited = 45(h
2
/8mL

2
). Thus, the multiple of 2 2/ 8h mL  is 45. 

 

(b) The configuration which provides the next higher system energy has the first level 

filled, the second one with one vacancy, the third one empty, and the fourth one with one 

occupant: 

 

E E E Esecond excited = + ′ + ′′ = + +2 5 2 3 5 6 111 1 1, , b g b g  

 

which means (putting the “unit” factor back in) the energy of the second excited state is 

Esecond excited = 47(h
2
/8mL

2
). Thus, the multiple of 2 2/ 8h mL  is 47. 

 

(c) Now, there are a couple of configurations which provide the next higher system 

energy. One has the first level filled, the second one with one vacancy, the third and 

fourth ones empty, and the fifth one with one occupant: 

 

E E E Ethird excited = + ′ + ′′′ = + +2 5 2 3 5 6 121 1 1, , b g b g  

 

which means (putting the “unit” factor back in) the energy of the third excited state is 

Ethird excited = 48(h
2
/8mL

2
). Thus, the multiple of 2 2/ 8h mL  is 48. The other configuration 



 

with this same total energy has the first level filled, the second one with two vacancies, 

and the third one with one occupant. 

 

(d) The energy states of this problem and problem 23 are suggested in the following 

sketch: 

 

__________________ third excited 48(h
2
/8mL

2
) 

 

__________________ second excited 47(h
2
/8mL

2
) 

 

 

 

__________________ first excited 45(h
2
/8mL

2
) 

 

 

 

__________________ ground state 42(h
2
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2
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25. The first three shells (n = 1 through 3), which can accommodate a total of 2 + 8 + 18 

= 28 electrons, are completely filled. For selenium (Z = 34) there are still 34 –  28 = 6 

electrons left. Two of them go to the 4s subshell, leaving the remaining four in the 

highest occupied subshell, the 4p subshell. Thus, 

 

(a) the highest occupied subshell is 4p, 

 

(b) and there are four electrons in the subshell. 

 

For bromine (Z = 35) the highest occupied subshell is also the 4p subshell, which 

contains five electrons.  

 

(c) Thus, the highest occupied subshell is 4p, and 

 

(d) there are five electrons in the subshell. 

 

For krypton (Z = 36) the highest occupied subshell is also the 4p subshell, which now 

accommodates six electrons.  

 

(e) Thus, the highest occupied subshell is 4p, and 

 

(f) there are six electrons in the subshell. 



 

 

 

26. When a helium atom is in its ground state, both of its electrons are in the 1s state. 

Thus, for each of the electrons, n = 1,  = 0, and m  = 0. One of the electrons is spin up 

m
s

= + 1
2b g  while the other is spin down m

s
= − 1

2b g . Thus,  

 

(a) the quantum numbers ( , , , )
s

n m m  for the spin-up electron is (1,0,0,+1/2), and  

 

(b) the quantum numbers ( , , , )
s

n m m  for the spin-down electron is (1,0,0,−1/2). 



 

 

 

 

27. (a) All states with principal quantum number n = 1 are filled. The next lowest states 

have n = 2. The orbital quantum number can have the values = 0  or 1 and of these, the 

= 0  states have the lowest energy. The magnetic quantum number must be m = 0  since 

this is the only possibility if = 0 . The spin quantum number can have either of the 

values m
s

= − 1
2

 or + 1
2

. Since there is no external magnetic field, the energies of these 

two states are the same. Therefore, in the ground state, the quantum numbers of the third 

electron are either 1 1
2 2

2, 0, 0,  or 2, 0, 0,
s s

n m m n m m= = = = − = = = = + . That is, 

( , , , )
s

n m m = (2,0,0, +1/2) and (2,0,0, −1/2). 

 

(b) The next lowest state in energy is an n = 2, = 1 state. All n = 3 states are higher in 

energy. The magnetic quantum number can be m = − +1 0 1, , ;or  the spin quantum 

number can be m
s

= − +1
2

1
2

or . Thus, ( , , , )
s

n m m = (2,1,1, +1/2) and (2,1,1, −1/2), 

(2,1,0, 1/ 2)+ , (2,1,0, 1/ 2)− , (2,1, 1, 1/ 2)− +  and (2,1, 1, 1/ 2)− − .  



 

 

 

28. (a) The number of different 's is 2 1 3,m + =  ( 1,0, 1m = − ) and the number of 

different 's
s

m  is 2, which we denote as +1/2 and −1/2. The allowed states are 

1 1 2 2( , , , )
s s

m m m m =(1,+ 1/2,1,−1/2), (1,+ 1/2,0,+ 1/2), (1,+ 1/2,0,−1/2), (1,+ 1/2, −1,+ 

1/2), (1,+ 1/2, −1, −1/2), (1, −1/2,0,+ 1/2), (1, −1/2,0, −1/2), (1, −1/2, −1,+ 1/2), 

(1, −1/2, −1, −1/2), (0,+ 1/2,0, −1/2), (0,+ 1/2, −1,+ 1/2), (0,+ 1/2, −1, −1/2), 

(0, −1/2, −1,+ 1/2), (0, −1/2, −1, −1/2), ( −1,+ 1/2, −1, −1/2). So, there are 15 states. 

 

(b) There are six states disallowed by the exclusion principle, in which both electrons 

share the quantum numbers: 1 1 2 2( , , , )
s s

m m m m =(1,+ 1/2,1,+1/2), (1,−1/2,1, −1/2), (0,+ 

1/2,0,+1/2), (0, −1/2, 0, −1/2), (−1,+ 1/2, −1, +1/2), (−1, −1/2, −1, −1/2). So, if Pauli 

exclusion principle is not applied, then there would be 15 + 6 = 21 allowed states. 



 

 

 

 

29. For a given value of the principal quantum number n, there are n possible values of 

the orbital quantum number , ranging from 0 to n – 1. For any value of , there are 

2 1+  possible values of the magnetic quantum number m , ranging from  to − + . 

Finally, for each set of values of  and m , there are two states, one corresponding to the 

spin quantum number m
s

= − 1
2

 and the other corresponding to m
s

= + 1
2

. Hence, the total 

number of states with principal quantum number n is 

 

N

n

= +
−

2 2 1
0

1

( ).  

Now 

 

2 2 2
2

1 1
0

1

0

1n n
n

n n n

− −

= = − = −( ) ( ),  

 

since there are n terms in the sum and the average term is (n –  1)/2. Furthermore, 

 

0

1

1
n

n

−

= .  

 

Thus N n n n n= − + =2 1 2 2b g  . 



 

 

 

30. The kinetic energy gained by the electron is eV, where V is the accelerating potential 

difference. A photon with the minimum wavelength (which, because of E = hc/λ, 

corresponds to maximum photon energy) is produced when all of the electron’s kinetic 

energy goes to a single photon in an event of the kind depicted in Fig. 40-15. Thus, using 

the result of problem 83 in Chapter 38, 

 

eV
hc= = ⋅ = ×

λmin .
. .

1240

010
124 104eV nm

nm
eV  

 

Therefore, the accelerating potential difference is V = 1.24 × 10
4
 V = 12.4 kV. 



 

 

 

 

31. The initial kinetic energy of the electron is K0 = 50.0 keV. After the first collision, the 

kinetic energy is K1 = 25 keV; after the second, it is K2 = 12.5 keV; and after the third, it 

is zero.  

 

(a) The energy of the photon produced in the first collision is 50.0 keV – 25.0 keV =  

25.0 keV. The wavelength associated with this photon is 

 

λ = ⋅
×

= × =−1240

25 0 10
4 96 10 49 6

3

2eV nm

eV
nm pm

.
. .  

 

where the result of problem 83 of Chapter 38 is used.  

 

(b) The energies of the photons produced in the second and third collisions are each 

12.5 keV  and their wavelengths are 

 

λ = ⋅
×

= × =−1240

12 5 10
9 92 10 99 2

3

2eV nm

eV
nm pm

.
. . .  



 

 

 

32. (a) and (b) Let the wavelength of the two photons be λ1 and λ λ +12 = ∆λ . Then, 

 

1 1

  
hc hc

eV = +
λ λ + ∆λ

 λ
λ λ0 0

1

2
2 4

2
=

− − ± +∆λ ∆λ
∆λ

b g b g
.  

 

Here, ∆λ = 130 pm and λ0 = hc/eV = 1240 keV·pm/20 keV = 62 pm. The result of 

problem 83 in Chapter 38 is adapted to these units (hc = 1240 eV·nm = 1240 keV·pm). 

We choose the plus sign in the expression for λ1 (since λ1 > 0) and obtain 

 

( ) ( )2

1

130pm 62pm 2 130pm 62pm 4
87 pm

2 62pm

− − + +
λ = = . 

 

The energy of the electron after its first deceleration is 

 

K K
hc

i
= − = − ⋅ =

λ1

20
1240

87
5 7keV

keV pm

pm
keV. . 

 

(c) The energy of the first photon is 

 

E
hc

1

1240

87
14= = ⋅ =

λ1

keV pm

pm
keV . 

 

(d) The wavelength associated with the second photon is 

 

λ λ = 87 +13012 = + ×∆λ pm pm = 2.2 10 pm2 .  

 

(e) The energy of the second photon is 

 

2 2

2

1240keV pm
5.7keV.

2.2 10 pm

hc
E

⋅= = =
λ ×

 



 

 

 

 

33. (a) The cut-off wavelength λmin is characteristic of the incident electrons, not of the 

target material. This wavelength is the wavelength of a photon with energy equal to the 

kinetic energy of an incident electron. According to the result of problem 83 of Chapter 

38, 

 

λmin . . .= ⋅
×

= × =−1240

35 10
354 10 35 4

3

2eV nm

eV
nm pm  

 

(b) A Kα photon results when an electron in a target atom jumps from the L-shell to the 

K-shell. The energy of this photon is 25.51 keV – 3.56 keV = 21.95 keV and its 

wavelength is  

 
λKα = (1240 eV·nm)/(21.95 × 10

3
 eV) = 5.65 × 10

– 2
 nm = 56.5 pm. 

 

(c) A Kβ photon results when an electron in a target atom jumps from the M-shell to the 

K-shell. The energy of this photon is 25.51 keV – 0.53 keV = 24.98 keV and its 

wavelength is  

 
λKβ = (1240 eV·nm)/(24.98 × 10

3
 eV) = 4.96 × 10

– 2
 nm = 49.6 pm. 



 

 

 

34. The result of problem 83 in Chapter 38 is adapted to these units (hc = 1240 eV·nm = 

1240 keV·pm). For the Kα line from iron 

 

1240keV pm
6.42 keV.

193pm

hc
E

⋅∆ = = =
λ

 

 

We remark that for the hydrogen atom the corresponding energy difference is 

 

∆E12 2 1
13 6

1

2

1

1
10= − −FHG
I
KJ =. .eV eVb g  

 

That this difference is much greater in iron is due to the fact that its atomic nucleus 

contains 26 protons, exerting a much greater force on the K- and L-shell electrons than 

that provided by the single proton in hydrogen. 



 

 

 

 

35. Suppose an electron with total energy E and momentum p spontaneously changes into 

a photon. If energy is conserved, the energy of the photon is E and its momentum has 

magnitude E/c. Now the energy and momentum of the electron are related by 

E pc mc
2 2 2

2

= +b g c h , so pc E mc= −2 2
2c h . Since the electron has non-zero mass, E/c 

and p cannot have the same value. Hence, momentum cannot be conserved. A third 

particle must participate in the interaction, primarily to conserve momentum. It does, 

however, carry off some energy. 



 

 

 

36. (a) We use eV hc= λmin  (see Eq. 40-23 and Eq. 38-4). The result of problem 83 in 

Chapter 38 is adapted to these units (hc = 1240 eV·nm = 1240 keV·pm). 

 

λmin . .= = ⋅ =hc

eV

1240
24 8

keV pm

50.0 keV
pm  

 

(b) The values of λ for the Kα and Kβ lines do not depend on the external potential and are 

therefore unchanged. 



 

 

 

 

37. Since the frequency of an x-ray emission is proportional to (Z – 1)
2
, where Z is the 

atomic number of the target atom, the ratio of the wavelength λNb for the Kα line of 

niobium to the wavelength λGa for the Kα line of gallium is given by 

λ λNb Ga Ga Nb= − −Z Z1 1
2 2b g b g , where ZNb is the atomic number of niobium (41) and ZGa 

is the atomic number of gallium (31). Thus  ( ) ( )2 2

Nb Ga 30 40 9 16 0.563λ λ = = ≈ . 



 

 

 

38. The result of problem 83 in Chapter 38 is adapted to these units (hc = 1240 eV·nm = 

1240 keV·pm). The energy difference EL – EM for the x-ray atomic energy levels of 

molybdenum is 

 

∆E E E
hc hc

L M

L M

= − = − = ⋅ − ⋅ =
λ λ

1240

63 0

1240

710
2 2

keV pm

pm

keV pm

pm
keV

. .
. .  



 

 

 

 

39. (a) An electron must be removed from the K-shell, so that an electron from a higher 

energy shell can drop. This requires an energy of 69.5 keV. The accelerating potential 

must be at least 69.5 kV. 

 

(b) After it is accelerated, the kinetic energy of the bombarding electron is 69.5 keV. The 

energy of a photon associated with the minimum wavelength is 69.5 keV, so its 

wavelength is 

 

λmin . .= ⋅
×

= × =−1240
178 10 17 82eV nm

69.5 10 eV
nm pm .

3
 

 

(c) The energy of a photon associated with the Kα line is 69.5 keV – 11.3 keV = 58.2 keV 

and its wavelength is  

 
λKα = (1240 eV·nm)/(58.2 × 10

3
 eV) = 2.13 × 10

– 2
 nm = 21.3 pm. 

 

(d) The energy of a photon associated with the Kβ line is 69.5 keV –  2.30 keV = 67.2 

keV and its wavelength is  

 

λKβ = (1240 eV·nm)/(67.2 × 10
3
 eV) = 1.85 × 10

– 2
 nm = 18.5 pm. 

 

The result of problem 83 of Chapter 38 is used. 



 

 

 

40. From the data given in the problem, we calculate frequencies (using Eq. 38-1), take 

their square roots, look up the atomic numbers (see Appendix F), and do a least-squares 

fit to find the slope: the result is 5.02 × 10
7
 with the odd-sounding unit of a square root of 

a Hertz. We remark that the least squares procedure also returns a value for the y-

intercept of this statistically determined “best-fit” line; that result is negative and would 

appear on a graph like Fig. 40-17 to be at about – 0.06 on the vertical axis. Also, we can 

estimate the slope of the Moseley line shown in Fig. 40-17: 

 

( . . )
. ./195 050 10

40 11
50 10

9
7 1 2−

−
≈ ×Hz

Hz
1/2

 

 

These are in agreement with the discussion in § 40-10. 



 

 

 

 

41. We use Eq. 36-31, Eq. 39-6, and the result of problem 83 in Chapter 38, adapted to 

these units (hc = 1240 eV·nm = 1240 keV·pm). Letting 2d m mhc Esin /θ = =λ ∆ , where 

θ = 74.1°, we solve for d: 

 

d
mhc

E
= = ⋅

− °
=

2

1 1240

0 951 74 1
80 3

∆ sin

( )(

. )(sin . )
. .

θ
keV nm)

2(8.979 keV keV
pm  



 

 

 

42. (a) According to Eq. 40-26, f Z∝ −( ) ,1 2  so the ratio of energies is (using Eq. 38-2) 

f f Z Z/ ' [( ) / ( ' )]= − −1 1 2 . 

 

(b) We refer to Appendix F. Applying the formula from part (a) to Z = 92 and Z' = 13, we 

obtain 

 

E

E

f

f

Z

Z' ' '
. .= = −

−
F
HG
I
KJ = −

−
F
HG
I
KJ =1

1

92 1

13 1
57 5

2 2

 

 

(c) Applying this to Z = 92 and Z' = 3, we obtain 

 
2

392 1
2.07 10 .

n 3 1

E

E

−= = ×
−

 



 

 

 

 

43. The transition is from n = 2 to n = 1, so Eq. 40-26 combined with Eq. 40-24 yields 

 

f
m e

h
Z

e=
F
HG
I
KJ −FHG

I
KJ −

4

0

2 3 2 2

2

8

1

1

1

2
1

ε
( )  

 

so that the constant in Eq. 40-27 is 

 

C
m e

h

e= = ×3

32
4 9673 10

4

0

2 3

7 1 2

ε
. /Hz  

 

using the values in the next-to-last column in the Table in Appendix B (but note that the 

power of ten is given in the middle column). 

 

We are asked to compare the results of Eq. 40-27 (squared, then multiplied by the 

accurate values of h/e found in Appendix B to convert to x-ray energies) with those in the 

table of Kα energies (in eV) given at the end of the problem. We look up the 

corresponding atomic numbers in Appendix F.  

 

(a) For Li, with Z=3, we have  

 

( )
34

2
2 2 7 1/2 2

theory 19

6.6260688 10 J s
( 1) 4.9673 10 Hz (3 1) 40.817eV.

1.6021765 10 J/eV

h
E C Z

e

−

−

× ⋅= − = × − =
×

 

 

The percentage deviation is 

 

 
theory exp

exp

40.817 54.3
percentage deviation 100 100 24.8% 25%.

54.3

E E

E

− −= = = − ≈ −  

 

(b) For Be, with Z = 4, using the steps outlined in (b), the percentage deviation is –15%. 

 

(c) For B, with Z = 5, using the steps outlined in (b), the percentage deviation is –11%. 

 

(d) For C, with Z = 6, using the steps outlined in (b), the percentage deviation is –7.9%. 

 

(e) For N, with Z = 7, using the steps outlined in (b), the percentage deviation is –6.4%. 

 

(f) For O, with Z = 8, using the steps outlined in (b), the percentage deviation is –4.7%. 

 

(g) For F, with Z = 9, using the steps outlined in (b), the percentage deviation is –3.5%. 

 

(h) For Ne, with Z = 10, using the steps outlined in (b), the percentage deviation is –2.6%. 



 

 

(i) For Na, with Z = 11, using the steps outlined in (b), the percentage deviation is –2.0%. 

 

(j) For Mg, with Z = 12, using the steps outlined in (b), the percentage deviation is –1.5%. 

 

Note that the trend is clear from the list given above: the agreement between theory and 

experiment becomes better as Z increases. One might argue that the most questionable 

step in §40-10 is the replacement e Z e
4 2 41→ −b g  and ask why this could not equally well 

be e Z e
4 2 49→ −.b g  or e Z e

4 2 48→ −. ?b g  For large Z, these subtleties would not matter so 

much as they do for small Z, since Z – ξ ≈ Z for Z >> ξ. 



 

 

 

 

44. According to Sample Problem 40-6, Nx/N0 = 1.3 × 10
– 38

. Let the number of moles of 

the lasing material needed be n; then N0 = nNA, where NA is the Avogadro constant. Also 

Nx = 10. We solve for n: 

 

n
N

N

x

A

=
×

=
× ×

= ×
− −13 10

10

13 10 6 02 10
13 10

38 38 23

15

. . .
. .c h c hc h mol  



 

 

 

45. (a) If t is the time interval over which the pulse is emitted, the length of the pulse is  

 

L = ct = (3.00 × 10
8
 m/s)(1.20 × 10

– 11
 s) = 3.60 × 10

– 3
 m. 

 

(b) If Ep is the energy of the pulse, E is the energy of a single photon in the pulse, and N 

is the number of photons in the pulse, then Ep = NE. The energy of the pulse is  

 

Ep = (0.150 J)/(1.602 × 10
– 19

 J/eV) = 9.36 × 10
17

 eV 

 

and the energy of a single photon is E = (1240 eV·nm)/(694.4 nm) = 1.786 eV. Hence, 

 

N
E

E

p= = × = ×9 36 10

1786
524 10

17
17.

.
. .

eV

eV
photons  



 

 

 

 

46. From Eq. 40-29, N2/N1 = 
( )2 1E E kT

e
− −

. We solve for T: 

 

( ) ( ) ( )
42 1

23 15 13
1 2

3.2eV
1.0 10 K.

ln 1.38 10 J K ln 2.5 10 6.1 10

E E
T

k N N
−

−= = = ×
× × ×

 



 

 

 

47. The number of atoms in a state with energy E is proportional to e
– E/kT

, where T is the 

temperature on the Kelvin scale and k is the Boltzmann constant. Thus the ratio of the 

number of atoms in the thirteenth excited state to the number in the eleventh excited state 

is 13 11/ ,E kT
n n e

−∆=  where ∆E is the difference in the energies: ∆E = E13 –  E11 = 2(1.2 eV) 

= 2.4 eV. For the given temperature, kT = (8.62 × 10
– 2

 eV/K)(2000 K) = 0.1724 eV. 

Hence, 

 

n

n
e

13

11

2 4 0 1724 79 0 10= = ×− −. . . .  



 

 

 

 

48. Consider two levels, labeled 1 and 2, with E2 > E1. Since T = – |T | < 0, 

 

N

N
e e e

E E kT E E k T E E k T2

1

2 1 2 1 2 1 1= = = >− − − − − −b g c h
.  

 

Thus, N2 > N1; this is population inversion. We solve for T: 

 

T T
E E

k N N
= − = − − = −

× +
= − ×

−
2 1

2 1
5

52 26

1 0100
2 75 10

ln

.

ln .
.b g c h b g

eV

8.62 10 eV K
K.  



 

 

 

49. Let the power of the laser beam be P and the energy of each photon emitted be E. 

Then, the rate of photon emission is 

 

( ) ( )
( ) ( )

3 9

15 1

34 8

2.3 10 W 632.8 10 m
7.3 10 s .

6.63 10 J s 2.998 10 m s

P P P
R

E hc hc

− −
−

−

× ×λ= = = = = ×
λ × ⋅ ×

 



 

 

 

 

50. The Moon is a distance R = 3.82 × 10
8
 m from Earth (see Appendix C). We note that 

the “cone” of light has apex angle equal to 2θ. If we make the small angle approximation 

(equivalent to using Eq. 37-14), then the diameter D of the spot on the Moon is 

 

( ) ( ) ( )8 9

3
2 3.82 10 m 1.22 600 10 m1.22

2 2 4.7 10 m 4.7km.
0.12m

D R R
d

θ
−× ×λ= = = = × =  



 

 

 

51. Let the range of frequency of the microwave be ∆f. Then the number of channels that 

could be accommodated is 

 

N
f= =

× −
= ×

− −

∆
10

2 998 10 450 650

10
2 1 10

8 1 1

7

MHz

m s nm nm

MHz

.
. .

c h b g b g
 

 

The higher frequencies of visible light would allow many more channels to be carried 

compared with using the microwave. 



 

 

 

 

52. Let the power of the laser beam be P and the energy of each photon emitted be E. 

Then, the rate of photon emission is 

 

( ) ( )
( ) ( )

3 6

16 1

34 8

5.0 10 W 0.80 10 m
2.0 10 s .

6.63 10 J s 2.998 10 m s

P P P
R

E hc hc

− −
−

−

× ×λ= = = = = ×
λ × ⋅ ×

 



 

 

 

53. (a) If both mirrors are perfectly reflecting, there is a node at each end of the crystal. 

With one end partially silvered, there is a node very close to that end. We assume nodes 

at both ends, so there are an integer number of half-wavelengths in the length of the 

crystal. The wavelength in the crystal is λc = λ/n, where λ is the wavelength in a vacuum 

and n is the index of refraction of ruby. Thus N(λ/2n) = L, where N is the number of 

standing wave nodes, so 

 

N
nL= =

×
= ×−

2 2 175 0 0600

694 10
303 10

9

5

λ
. .

. .
b gb gm

m
 

 

(b) Since λ = c/f, where f is the frequency, N = 2nLf/c and ∆N = (2nL/c)∆f. Hence, 

 

∆ ∆
f

c N

nL
= =

×
= ×

2

2 998 10 1

2 175 0 0600
143 10

8

9
.

. .
.

m s

m
Hz.

c hb g
b gb g  

 

(c) The speed of light in the crystal is c/n and the round-trip distance is 2L, so the round-

trip travel time is 2nL/c. This is the same as the reciprocal of the change in frequency. 

 

(d) The frequency is f = c/λ = (2.998 × 10
8
 m/s)/(694 × 10

– 9
 m) = 4.32 × 10

14
 Hz and the 

fractional change in the frequency is  

 

∆f/f = (1.43 × 10
9
 Hz)/(4.32 × 10

14
 Hz) = 3.31 × 10

– 6
. 



 

 

 

 

54. For the nth harmonic of the standing wave of wavelength λ in the cavity of width L 

we have nλ = 2L, so n∆λ + λ∆n = 0. Let ∆n = ±1 and use λ = 2L/n to obtain 

 

∆λ
∆

= = = FHG
I
KJ =

×
= × =−λ λ λ λn

n n L2

533

2 8 0 10
18 10 18

2

7

12
nm

nm
m pm

b g
c h.

. . .  



 

 

 

55. (a) We denote the upper level as level 1 and the lower one as level 2. From N1/N2 =  
( )2 1E E kT

e
− −

 we get (using the result of problem 83 in Chapter 38) 

 
( ) ( ) 5

1 2 20 (1240 eV nm)/[(580nm)(8.62 10 eV/K)(300K)]

1 2 2

16

4.0 10

5.0 10 1,

E E kT hc kT
N N e N e e

−− − − λ − ⋅ ×

−

= = = ×

= × <<
 

  

so practically no electron occupies the upper level. 

 

(b) With N1 = 3.0 × 10
20

 atoms emitting photons and N2 = 1.0 × 10
20

 atoms absorbing 

photons, then the net energy output is 

 

( ) ( ) ( ) ( ) ( )34 8

20

1 2 photon 1 2 9

6.63 10 J s 2.998 10 m s
2.0 10

580 10 m

68J.

hc
E N N E N N

−

−

× ⋅ ×
= − = − = ×

λ ×
=

 



 

 

 

 

56. (a) The radius of the central disk is 

 

1.22 (1.22)(3.50 cm)(515 nm)
7.33 m.

3.00 mm

f
R

d
µλ= = =  

 

(b) The average power flux density in the incident beam is 

 

5 2

2 2

4(5.00W)
7.07 10 W/m .

/ 4 (3.00mm)

P

d
= = ×

π π
 

 

(c) The average power flux density in the central disk is 

 

10 2

2 2

(0.84) (0.84)(5.00W)
2.49 10 W/m .

m)

P

R µ
= = ×

π π(7.33
 



 

 

 

57. (a) Using the result of problem 83 in Chapter 38, 

 

∆E hc= −
F
HG

I
KJ = ⋅ −

F
HG

I
KJ =1 1

1240
1

588 995

1

589 592
213

1 2λ λ
eV nm

nm nm
meVb g

. .
. .  

 

(b) From ∆E = 2µBB (see Fig. 40-10 and Eq. 40-18), we get 

 

B
E

B

= = ×
×

=
−

−

∆
2

213 10

2 5788 10
18

3

5µ
.

.
.

eV

eV T
Tc h  



 

 

 

 

58. (a) In the lasing action the molecules are excited from energy level E0 to energy level 

E2. Thus the wavelength λ of the sunlight that causes this excitation satisfies 

 

∆E E E
hc= − =2 0 λ

,  

 

which gives (using the result of problem 83 in Chapter 38) 

 

λ = hc

E E2 0

31240

0 289 0
4 29 10

−
= ⋅

−
= ×eV nm

eV
nm = 4.29 m.

.
. µ  

 

(b) Lasing occurs as electrons jump down from the higher energy level E2 to the lower 

level E1. Thus the lasing wavelength λ' satisfies 

 

∆ ′ = − =
′

E E E
hc

2 1 λ
,  

 

which gives 

 

′ =
−

= ⋅
−

= × =λ hc

E E2 1

41240

0 289 0165
100 10 10 0

eV nm

eV eV
nm m.

. .
. . µ  

 

(c) Both λ and λ' belong to the infrared region of the electromagnetic spectrum. 



 

 

 

59. (a) The intensity at the target is given by I = P/A, where P is the power output of the 

source and A is the area of the beam at the target. We want to compute I and compare the 

result with 10
8
 W/m

2
. The beam spreads because diffraction occurs at the aperture of the 

laser. Consider the part of the beam that is within the central diffraction maximum. The 

angular position of the edge is given by sin θ = 1.22λ/d, where λ is the wavelength and d 

is the diameter of the aperture (see Exercise 61). At the target, a distance D away, the 

radius of the beam is r = D tan θ. Since θ is small, we may approximate both sin θ and 

tan θ by θ, in radians. Then, r = Dθ = 1.22Dλ/d and 

 

( )
( ) ( )

( ) ( )

262
25

2 22
3 6

5.0 10 W 4.0m
2.1 10 W m ,

1.22 1.22 3000 10 m 3.0 10 m

P Pd
I

r D −

×
= = = = ×

π π λ π × ×
 

 

not great enough to destroy the missile. 

 

(b) We solve for the wavelength in terms of the intensity and substitute I = 1.0 × 10
8
 

W/m
2
: 

 
6

7

3 8 2

4.0m 5.0 10 W
1.40 10 m 140nm.

1.22 1.22(3000 10 m) (1.0 10 W/m )

d P

D I

−×λ = = = × =
π × π ×

 



 

 

 

 

60. (a) The energy difference between the two states 1 and 2 was equal to the energy of 

the photon emitted. Since the photon frequency was f = 1666 MHz, its energy was given 

by hf = (4.14 × 10
– 15

 eV·s)(1666 MHz) = 6.90 × 10
– 6

 eV. Thus, 

 

E E hf2 1

66 9 10− = = × −. eV = 6.9 eV.µ  

 

(b) The emission was in the radio region of the electromagnetic spectrum. 



 

 

 

61. Letting eV = hc/λmin (see Eq. 40-23 and Eq. 38-4), we get 

 

λmin = = ⋅ = ⋅ =hc

eV eV eV V

1240 1240 1240nm eV pm keV pm
 

 

where V is measured in kV. 



 

 

 

 

62. (a) From Fig. 40-14 we estimate the wavelengths corresponding to the Kβ line to be 

λβ = 63.0 pm. Using the result of problem 83 in Chapter 38, adapted to these units (hc = 

1240 eV·nm = 1240 keV·pm), 

 

Eβ = (1240 keV·nm)/(63.0 pm) = 19.7 keV 20 keV≈ . 

 

(b) For Kα,  with λα = 70.0 pm,  

 

1240keV pm
17.7keV 18 keV

70.0pm

hc
Eα

α

⋅= = = ≈
λ

. 

 

(c) Both Zr and Nb can be used, since Eα < 18.00 eV < Eβ and Eα < 18.99 eV < Eβ. 

According to the hint given in the problem statement, Zr is the best choice. 

 

(d) Nb is the second best choice. 



 

 

 

63. (a) The length of the pulse’s wave train is given by  

 

L = c∆t = (2.998 × 10
8
 m/s)(10 × 10

– 15
 s) = 3.0 × 10

– 6
 m. 

 

Thus, the number of wavelengths contained in the pulse is 

 

N
L= = ×

×
=

−

−λ
30 10

500 10
6 0

6

9

.
. .

m

m
 

 

(b) We solve for X from 10 fm/1 m = 1 s/X: 

 

X =
×

=
× ×

= ×− −

1 1

10 10

1

10 10 315 10
32 10

15 15 7

6
s m

m

s

s y
y

b gb g
c hc h.

. .  



 

 

 

 

64. (a) The distance from the Earth to the Moon is dem = 3.82 × 10
8
 m (see Appendix C). 

Thus, the time required is given by 

 

t
d

c

em= =
×

×
=2 2 382 10

2 998 10
2 55

8

8

.

.
. .

m

m s
s

c h
 

 

(b) We denote the uncertainty in time measurement as δt and let 2δdes = 15 cm. Then, 

since dem ∝ t, δt/t = δdem/dem. We solve for δt: 

 

δ δ
t

t d

d

em

em

= =
×

= × −2 55 015

2 382 10
50 10

8

10
. .

.
. .

s m

m
s

b gb g
c h  

 

(c) The angular divergence of the beam is 

 

 
3 3

1 1 4

8

1.5 10 1.5 10
2 tan 2 tan (4.5 10 )

3.82 10
em

d
θ − − −× ×= = = × °

×
 



 

 

 

65. We use eV = hc/λmin (see Eq. 40-23 and Eq. 38-4): 

 

h
eV

c
= =

× × ×
×

= × ⋅
− −

−λmin
. . .

.
. .

160 10 40 0 10 311 10

2 998 10
6 63 10

19 3 12

8

34
C eV m

m s
J s

c hc hc h
 



 

 

 

 

66. For a given shell with quantum number n the total number of available electron states 

is 2n
2
. Thus, for the first four shells (n = 1 through 4) the number of available states are 2, 

8, 18, and 32 (see Appendix G). Since 2 + 8 + 18 + 32 = 60 < 63, according to the 

“logical” sequence the first four shells would be completely filled in an europium atom, 

leaving 63 –  60 = 3 electrons to partially occupy the n = 5 shell. Two of these three 

electrons would fill up the 5s subshell, leaving only one remaining electron in the only 

partially filled subshell (the 5p subshell). In chemical reactions this electron would have 

the tendency to be transferred to another element, leaving the remaining 62 electrons in 

chemically stable, completely filled subshells. This situation is very similar to the case of 

sodium, which also has only one electron in a partially filled shell (the 3s shell). 



 

 

 

67. Without the spin degree of freedom the number of available electron states for each 

shell would be reduced by half. So the values of Z for the noble gas elements would 

become half of what they are now: Z = 1, 5, 9, 18, 27, and 43. Of this set of numbers, the 

only one which coincides with one of the familiar noble gas atomic numbers (Z = 2, 10, 

18, 36, 54, and 86) is 18. Thus, argon would be the only one that would remain “noble.” 



 

 

 

 

68. (a) The value of  satisfies ( ) 21 L+ ≈ = = , so  743 10L− − × . 

 

(b) The number is 2 + 1 ≈ 2(3 × 10
74

) = 6 × 10
74

. 

 

(c) Since 

 

( ) ( ) ( )
max

min 74

1 1 1
cos 1 1

2 2 3 101 1

m
θ = = ≈ − = −

×+ +
 

 

or cos ~
min minθ θ− − ≈ − −1 2 1 10 62 74 , we have θ min

~− = × 0− −10 3 6 174 38 rad . The 

correspondence principle requires that all the quantum effects vanish as → 0. In this 

case L  is extremely small so the quantization effects are barely existent, with 

θ min
~ ~− −−10 038 rad . 



 

 

 

69. The principal quantum number n must be greater than 3. The magnetic quantum 

number m  can have any of the values – 3, – 2, – 1, 0, +1, +2, or +3. The spin quantum 

number can have either of the values − 1
2

or + 1
2

. 



 

 

 

 

70. One way to think of the units of h is that, because of the equation E = hf and the fact 

that f is in cycles/second, then the “explicit” units for h should be J·s/cycle. Then, since 

2π rad/cycle is a conversion factor for cycles radians→ , = h 2π  can be thought of as 

the Planck constant expressed in terms of radians instead of cycles. Using the precise 

values stated in Appendix B, 

 
34 34

34

19

16

6.62606876 10 J s 1.05457 10 J s
1.05457 10 J s

2 2 1.6021765 10 J eV

6.582 10 eV s.

h
− −

−
−

−

× ⋅ × ⋅= = = × ⋅ =
π π ×

= × ⋅
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