
 

 

1. The number of atoms per unit volume is given by n d M= / , where d is the mass 

density of copper and M is the mass of a single copper atom. Since each atom contributes 

one conduction electron, n is also the number of conduction electrons per unit volume. 

Since the molar mass of copper is 63.54g / mol,A =   

 
23 1 22/ (63.54g / mol)/(6.022 10 mol ) 1.055 10 g

A
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Thus, 
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2. We note that n = 8.43 × 10
28

 m
– 3

 = 84.3 nm
– 3

. From Eq. 41-9, 
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where the result of problem 83 in Chapter 38 is used. 



 

 

 

3. (a) Eq. 41-5 gives 
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for the density of states associated with the conduction electrons of a metal. This can be 

written 

 
1/ 2( )n E CE=  

where 
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(b) Now, 2 21 J 1kg m / s= ⋅  (think of the equation for kinetic energy K mv= 1
2

2 ), so 1 kg =  

1 J·s
2
·m

– 2
. Thus, the units of C can be written ( ) ( )/ /J s m J s J m2 2 3 3/2⋅ ⋅ ⋅ ⋅ = ⋅− − − − −3 2 3 2 3 3 . 

This means 

 

C = × ⋅ × = × ⋅− − − − −( . )( . . ./1062 10 1602 10 681 1056 3 19 27 3 3 2J m J / eV) m eV3/2 3/2  

 

(c) If E = 5.00 eV, then 

 

n E( ) ( . )( . ) . ./= × ⋅ = × ⋅− − − −681 10 500 152 1027 3 1 2 28 1 3m eV eV eV m3/2  



 

 

 

4. We note that there is one conduction electron per atom and that the molar mass of gold 

is 197 g mol/ . Therefore, combining Eqs. 41-2, 41-3 and 41-4 leads to 
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5. (a) At absolute temperature T = 0, the probability is zero that any state with energy 

above the Fermi energy is occupied. 

 

(b) The probability that a state with energy E is occupied at temperature T is given by 
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where k is the Boltzmann constant and EF is the Fermi energy. Now, E –  EF = 0.0620 eV 

and  

 
5( ) / (0.0620eV) /(8.62 10 eV / K)(320K) 2.248

F
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so 

 

2.248

1
( ) 0.0955.

1
P E

e
= =

+
 

 

See Appendix B or Sample Problem 41-1 for the value of k. 



 

 

 

6. We use the result of problem 3: 

 

n E CE( ) . ( ) ( . . ./ /= = × ⋅ = × ⋅− − − −1 2 27 3 2 3 28 36 81 10 8 0 19 10m eV eV) m eV1/2 1  

 

This is consistent with Fig. 41-5. 



 

 

 

7. According to Eq. 41-9, the Fermi energy is given by 
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where n is the number of conduction electrons per unit volume, m is the mass of an 

electron, and h is the Planck constant. This can be written EF = An
2/3

, where 
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Since 1 1 2 2J kg m s= ⋅ / , the units of A can be taken to be m
2
·J. Dividing by 

1602 10 19. × − J / eV , we obtain A = × ⋅−365 10 19. m eV2 . 



 

 

 

8. Let E1 = 63 meV + EF and E2 = – 63 meV + EF. Then according to Eq. 41-6, 
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where we use E2 –  EF = – 63 meV = EF –  E1 = – (E1 –  EF). 



 

 

 

9. The Fermi-Dirac occupation probability is given by P e
E kT

FD = +1 1/ /∆c h , and the 

Boltzmann occupation probability is given by P e
B

E kT= −∆ / . Let f be the fractional 

difference. Then 
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Using a common denominator and a little algebra yields 
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The solution for e
– ∆E/kT

 is 
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We take the natural logarithm of both sides and solve for T. The result is 
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(a) Letting f equal 0.01, we evaluate the expression for T: 
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(b) We set f equal to 0.10 and evaluate the expression for T: 
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10. We reproduce the calculation of Problem 4: Combining Eqs. 41-2, 41-3 and 41-4, the 

number density of conduction electrons in gold is 

 

n = × = × =− −( . / )( . / )
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Now, using the result of Problem 83 in Chapter 38, Eq. 41-9 leads to 
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11. (a) Eq. 41-6 leads to 

 

1 5 1
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(b) ( )1/ 2 27 3 3/ 2 1/2 28 3 1( ) 6.81 10 m eV (6.81eV) 1.77 10 m eV .n E CE
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(c) 28 3 1 28 3 1
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12. (a) The volume per cubic meter of sodium occupied by the sodium ions is 
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so the fraction available for conduction electrons is 1 100 1 0100 0 900− = − =( / . ) . .VNa

3m , 

or 90.0%. 

 

(b) For copper, 
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Thus, the fraction is 1 100 1 0876 0124− = − =( / . ) . .VCu

3m , or 12.4%. 

 

(c) Sodium, because the electrons occupy a greater portion of the space available. 



 

 

 

13. We use  

 

N N E P E CE e
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where C is given in problem 3(b).  

 

(a) At E = 4.00 eV, 
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(b) At E = 6.75 eV, 
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(c) Similarly, at E = 7.00 eV, the value of n0(E) is 9.01 × 10
27

 m
– 3

·eV
– 1

. 

 

(d) At E = 7.25 eV, the value of n0(E) is 9.56 × 10
26

 m
– 3

·eV
– 1

. 

 

(e) At E = 9.00 eV, the value of n0(E) is 1.71 × 10
18

 m
– 3

·eV
– 1
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14. The probability Ph that a state is occupied by a hole is the same  as the probability the 

state is unoccupied by an electron. Since the total probability that a state is either 

occupied or unoccupied is 1, we have Ph + P = 1. Thus, 
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15. (a) We evaluate P(E) =  
( )( )1 1FE E kT

e
− +  for the given value of E, using 
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For E = 4.4 eV, (E –  EF)/kT = (4.4 eV –  5.5 eV)/(0.02353 eV) = – 46.25 and 

 

46.25

1
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(b) Similarly, for E = 5.4 eV, P(E) = 0.986 0.99≈ . 

 

(c) For E = 5.5 eV, P(E) = 0.50. 

 

(d) For E = 5.6 eV, P(E) = 0.014. 

 

(e) For E = 6.4 eV, P(E) = 2.447 × 10
– 17 ≈ 2.4 × 10

– 17
. 

 

(f) Solving P = 1/(e
∆E/kT

 + 1) for e
∆E/kT

, we get 
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Now, we take the natural logarithm of both sides and solve for T. The result is 
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16. The molar mass of carbon is m = 12.01115 g/mol and the mass of the Earth is Me = 

5.98 × 10
24

 kg. Thus, the number of carbon atoms in a diamond as massive as the Earth is 

N = (Me/m)NA, where NA is the Avogadro constant. From the result of Sample Problem 

41-1, the probability in question is given by 
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17. Let N be the number of atoms per unit volume and n be the number of free electrons 

per unit volume. Then, the number of free electrons per atom is n/N. We use the result of 

Exercise 11 to find n: EF = An
2/3

, where A = 3.65 × 10
–19

 m
2
 · eV. Thus, 
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If M is the mass of a single aluminum atom and d is the mass density of aluminum, then 

N = d/M. Now,  

 

M = (27.0 g/mol)/(6.022 × 10
23

 mol
–1

) = 4.48 × 10
–23

 g, 

 

so  

 

N = (2.70 g/cm
3
)/(4.48 × 10

– 23
 g) = 6.03 × 10
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 cm

– 3
 = 6.03 × 10

28
 m

– 3
. 

 

Thus, the number of free electrons per atom is 
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18. (a) The ideal gas law in the form of Eq. 20-9 leads to p = NkT/V = nkT. Thus, we 

solve for the molecules per cubic meter: 
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(b) Combining Eqs. 41-2, 41-3 and 41-4 leads to the conduction electrons per cubic meter 

in copper: 

 
3 3

28 3
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(c) The ratio is (8.43 × 10
28

 m
– 3

)/(2.7 × 10
25

 m
– 3

) = 3.1 × 10
3
. 

 

(d) We use davg = n
– 1/3

. For case (a), davg = (2.7 × 10
25

 m
– 3

)
– 1/3

 which equals 3.3 nm.  

 

(e) For case (b), davg = (8.43 × 10
28

 m
– 3

)
– 1/3

 = 0.23 nm. 



 

 

 

19. (a) According to Appendix F the molar mass of silver is 107.870 g/mol and the 

density is 10.49 g/cm
3
. The mass of a silver atom is 
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We note that silver is monovalent, so there is one valence electron per atom (see Eq.  

41-2). Thus, Eqs. 41-4 and 41-3 lead to 
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(b) The Fermi energy is 
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(d) The de Broglie wavelength is 
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20. Let the energy of the state in question be an amount ∆E above the Fermi energy EF. 

Then, Eq. 41-6 gives the occupancy probability of the state as 

 

F F( ) / /

1 1
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We solve for ∆E to obtain 

 

∆E kT
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1
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which is equivalent to 5.7 × 10
– 2

 eV = 57 meV. 



 

 

 

21. The average energy of the conduction electrons is given by 

 

E
n

EN E P E dEavg =
∞z1 0

( ) ( )  

 

where n is the number of free electrons per unit volume, N(E) is the density of states, and 

P(E) is the occupation probability. The density of states is proportional to E
1/2

, so we may 

write N(E) = CE
1/2

, where C is a constant of proportionality. The occupation probability 

is one for energies below the Fermi energy and zero for energies above. Thus, 
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We substitute this expression into the formula for the average energy and obtain 
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22. (a) Combining Eqs. 41-2, 41-3 and 41-4 leads to the conduction electrons per cubic 

meter in zinc: 
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(b) From Eq. 41-9, 
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(c) Equating the Fermi energy to 1
2

2
m v

e F
 we find (using the mec

2
 value in Table 37-3) 
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(d) The de Broglie wavelength is 
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23. Let the volume be v = 1.00 × 10
– 6

 m
3
. Then, 
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24. (a) At T = 300 K 
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(b) At T = 1000 K, 
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(c) Many calculators and most math software packages (here we use MAPLE) have built-

in numerical integration routines. Setting up ratios of integrals of Eq. 41-7 and canceling 

common factors, we obtain 
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E e dE
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where k = 8.62 × 10
– 5

 eV/K. We use the Fermi energy value for copper (EF = 7.0 eV) and 

evaluate this for T = 300 K and T = 1000 K; we find frac = 0.00385 and frac = 0.0129, 

respectively. 



 

 

 

25. The fraction f of electrons with energies greater than the Fermi energy is 

(approximately) given in Problem 41-24: 

 

f
kT

E
F

= 3 2/
 

 

where T is the temperature on the Kelvin scale, k is the Boltzmann constant, and EF is the 

Fermi energy. We solve for T: 
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26. (a) Using Eq. 41-4, the energy released would be 
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(b) Keeping in mind that a Watt is a Joule per second, we have 

 
41.97 10 J

197s.
100J/s

× =  



 

 

 

27. (a) Since the electron jumps from the conduction band to the valence band, the energy 

of the photon equals the energy gap between those two bands. The photon energy is given 

by hf = hc/λ, where f is the frequency of the electromagnetic wave and λ is its 

wavelength. Thus, Eg = hc/λ and 

 

λ = = × ⋅ ×
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Photons from other transitions have a greater energy, so their waves have shorter 

wavelengths. 

 

(b) These photons are in the ultraviolet portion of the electromagnetic spectrum. 



 

 

 

28. Each Arsenic atom is connected (by covalent bonding) to four Gallium atoms, and 

each Gallium atom is similarly connected to four Arsenic atoms.  

 

 
 

The “depth” of their very non-trivial lattice structure is, of course, not evident in a 

flattened-out representation such as shown for Silicon in Fig. 41-9. Still we try to convey 

some sense of this (in the [1, 0, 0] view shown — for those who might be familiar with 

Miller indices) by using letters to indicate the depth: A for the closest atoms (to the 

observer), b for the next layer deep, C for further into the page, d for the last layer seen, 

and E (not shown) for the atoms that are at the deepest layer (and are behind the A’s) 

needed for our description of the structure. The capital letters are used for the Gallium 

atoms, and the small letters for the Arsenic.  

 

Consider the Arsenic atom (with the letter b) near the upper left; it has covalent bonds 

with the two A’s and the two C’s near it. Now consider the Arsenic atom (with the letter 

d) near the upper right; it has covalent bonds with the two C’s which are near it and with 

the two E’s (which are behind the A’s which are near :+). 

 

(a) The 3p, 3d and 4s subshells of both Arsenic and Gallium are filled. They both have 

partially filled 4p subshells. An isolated, neutral Arsenic atom has three electrons in the 

4p subshell, and an isolated, neutral Gallium atom has one electron in the 4p subshell. To 

supply the total of eight shared electrons (for the four bonds connected to each ion in the 

lattice), not only the electrons from 4p must be shared but also the electrons from 4s. The 

core of the Gallium ion has charge q = +3e (due to the “loss” of its single 4p and two 4s 

electrons). 

 

(b) The core of the Arsenic ion has charge q = +5e (due to the “loss” of the three 4p and 

two 4s electrons). 

 

(c) As remarked in part (a), there are two electrons shared in each of the covalent bonds. 

This is the same situation that one finds for Silicon (see Fig. 41-9). 



 

 

 

29. (a) At the bottom of the conduction band E = 0.67 eV. Also EF = 0.67 eV/2 =  

0.335 eV. So the probability that the bottom of the conduction band is occupied is 

 

( ) ( ) ( ) ( )( )5
F

6

0.67 eV 0.335eV 8.62 10 eV K 290 K

1 1
1.5 10 .

1 1
E E kT

P E
e

e

−

−
− − ×

= = = ×
+ +

 

 

(b) At the top of the valence band E = 0, so the probability that the state is unoccupied is 

given by 

 

( ) ( ) ( ) ( ) ( )( )5
F F 0 0.335eV 8.62 10 eV K 290K

6

1 1 1
1 1

1 1 1

1.5 10 .

E E kT E E kT
P E

e e e
−− − − − − ×

−

− = − = =
+ + +

= ×

 



 

 

 

30. (a) The number of electrons in the valence band is 

 

N N P E
N

e
v v

v

E E kTv
ev

F

= =
+−b g b g 1

.  

 

Since there are a total of Nv states in the valence band, the number of holes in the valence 

band is 

 

( ) ( )F F
hv ev

1
1 .

1 1v v

v

v v E E kT E E kT

N
N N N N

e e
− − −= − = − =

+ +
 

 

Now, the number of electrons in the conduction band is 

 

N N P E
N

e
c c

c

E E kTc
ec

F

= =
+−b g b g 1

,  

 

Hence, from Nev = Nhc, we get 

 

N

e

N

e

v

E E kT

c

E E kTv c− − −+
=

+F Fb g b g1 1
.  

 

(b) In this case, F( )
1cE E kT

e
− >>  and e

E E kTv− − >>( )F 1. Thus, from the result of part (a), 

 

( ) ( ) ,
E E E Ec F v F

c v

kT kT

N N

e e
− − −≈  

 

or 
( )2v c FE E E kT

v c
e N N

− + ≈ . We solve for EF: 

 

E E E kT
N

N
F v

v

c

c

≈ + +
F
HG
I
KJ

1

2

1

2
d i ln .  



 

 

 

31. Sample Problem 41-6 gives the fraction of silicon atoms that must be replaced by 

phosphorus atoms. We find the number the silicon atoms in 1.0 g, then the number that 

must be replaced, and finally the mass of the replacement phosphorus atoms. The molar 

mass of silicon is 28.086 g/mol, so the mass of one silicon atom is  

 

(28.086 g/mol)/(6.022 × 10
23

 mol
– 1

) = 4.66 × 10
– 23

 g 

 

and the number of atoms in 1.0 g is (1.0 g)/(4.66 × 10
– 23

 g) = 2.14 × 10
22

. According to 

Sample Problem 41-6 one of every 5 × 10
6
 silicon atoms is replaced with a phosphorus 

atom. This means there will be (2.14 × 10
22

)/(5 × 10
6
) = 4.29 × 10

15
 phosphorus atoms in 

1.0 g of silicon. The molar mass of phosphorus is 30.9758 g/mol so the mass of a 

phosphorus atom is  

 

(30.9758 g/mol)/(6.022 × 10
– 23

 mol
– 1

) = 5.14 × 10
– 23

 g. 

 

The mass of phosphorus that must be added to 1.0 g of silicon is  

 

(4.29 × 10
15

)(5.14 × 10
– 23

 g) = 2.2 × 10
– 7

 g. 



 

 

 

32. (a) n-type, since each phosphorus atom has one more valence electron than a silicon 

atom. 

 

(b) The added charge carrier density is  

 

nP = 10
– 7

 nSi = 10
– 7

 (5 × 10
28

 m
– 3

) = 5 × 10
21

 m
– 3

. 

 

(c) The ratio is (5 × 10
21

 m
– 3

)/[2(5 × 10
15

 m
– 3

)] = 5 × 10
5
. Here the factor of 2 in the 

denominator reflects the contribution to the charge carrier density from both the electrons 

in the conduction band and the holes in the valence band. 



 

 

 

33. (a) The probability that a state with energy E is occupied is given by 

 

P E
e

E E kTF

b g b g=
+−

1

1
 

 

where EF is the Fermi energy, T is the temperature on the Kelvin scale, and k is the 

Boltzmann constant. If energies are measured from the top of the valence band, then the 

energy associated with a state at the bottom of the conduction band is E = 1.11 eV. 

Furthermore,  

 

kT = (8.62 × 10
– 5

 eV/K)(300 K) = 0.02586 eV. 

 

For pure silicon,  

 

EF = 0.555 eV and (E – EF)/kT = (0.555 eV)/(0.02586 eV) = 21.46. 

 

Thus, 

 

P E
e

b g =
+

= × −1

1
4 79 10

21 46

10

.
. .  

 

(b) For the doped semiconductor, (E – EF)/kT = (0.11 eV)/(0.02586 eV) = 4.254 and 

 

P E
e

b g =
+

= × −1

1
140 10

4 254

2

.
. .  

 

(c) The energy of the donor state, relative to the top of the valence band, is 1.11 eV – 0.15 

eV = 0.96 eV. The Fermi energy is 1.11 eV – 0.11 eV = 1.00 eV. Hence,  

 

(E – EF)/kT = (0.96 eV – 1.00 eV)/(0.02586 eV) = – 1.547 

 

and 

 

P E
e

b g =
+

=−

1

1
0 824

1 547.
. .  



 

 

 

34. (a) Measured from the top of the valence band, the energy of the donor state is E = 

1.11 eV – 0.11 eV = 1.0 eV. We solve EF from Eq. 41-6: 

 

( ) ( ) ( ) 1
1 5 5ln 1 1.0eV 8.62 10 eV K 300K ln 5.00 10 1

0.744eV.

F
E E kT P

−− − −= − − = − × × −

=
 

 

(b) Now E = 1.11 eV, so 

 

( ) ( ) ( ) ( )( )5

7

1.11eV 0.744eV 8.62 10 eV K 300K

1 1
7.13 10 .

1 1
F

E E kT
P E

e
e

−

−
− − ×

= = = ×
+ +

 



 

 

 

35. The energy received by each electron is exactly the difference in energy between the 

bottom of the conduction band and the top of the valence band (1.1 eV). The number of 

electrons that can be excited across the gap by a single 662-keV photon is  

 

N = (662 × 10
3
 eV)/(1.1 eV) = 6.0 × 10

5
. 

 

Since each electron that jumps the gap leaves a hole behind, this is also the number of 

electron-hole pairs that can be created. 



 

 

 

36. (a) The vertical axis in the graph below is the current in nanoamperes: 

 

 
 

(b) The ratio is 
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37. The valence band is essentially filled and the conduction band is essentially empty. If 

an electron in the valence band is to absorb a photon, the energy it receives must be 

sufficient to excite it across the band gap. Photons with energies less than the gap width 

are not absorbed and the semiconductor is transparent to this radiation. Photons with 

energies greater than the gap width are absorbed and the semiconductor is opaque to this 

radiation. Thus, the width of the band gap is the same as the energy of a photon 

associated with a wavelength of 295 nm. We use the result of Problem 83 of Chapter 38 

to obtain 

 

Egap

eV nm eV nm

nm
eV= ⋅ = ⋅ =1240 1240

295
4 20

λ
. .  



 

 

 

38. Since (using the result of problem 83 in Chapter 38) 

 

E
hc

photon

eV nm

nm
eV eV= = ⋅ = >

λ
1240

140
8 86 7 6. . ,  

 

the light will be absorbed by the KCI crystal. Thus, the crystal is opaque to this light. 



 

 

 

39. We denote the maximum dimension (side length) of each transistor as max , the size of 

the chip as A, and the number of transistors on the chip as N. Then 2

max .A N=  Therefore, 

 

( )( )2
2

5

max 6

1.0in. 0.875in. 2.54 10 m in.
1.3 10 m 13 m.

3.5 10

A

N
µ

−
−

× ×
= = = × =

×
 



 

 

 

40. (a) According to Chapter 25, the capacitance is C = κε0A/d. In our case κ = 4.5, A = 

(0.50 µm)
2
, and d = 0.20 µm, so 

 

C
A

d
= =

×
= ×

−
−κε µ

µ
0

12 2

17
4 5 8 85 10 0 50

0 20
5 0 10

. . .

.
.

b gc hb gF m m

m
F. 

 

(b) Let the number of elementary charges in question be N. Then, the total amount of 

charges that appear in the gate is q = Ne. Thus, q = Ne = CV, which gives 

 

N
CV

e
= =

×
×

= ×
−

−

50 10 10

16 10
31 10
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2
. .
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. .

F V

C
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41. (a) Setting E = EF (see Eq. 41-9), Eq. 41-5 becomes 

 

N E
m m

h

h

m
n

F
( ) .

/

/= F
HG

I
KJ

8 2 3

16 2
3

1 3

1 3π
π

 

 

Noting that 16 2 2 2 24 1 2 9 2= =/ /  so that the cube root of this is 2 2 23 2/ = , we are able to 

simplify the above expression and obtain 

 

N E
m

h
n

F
( ) = 4

3
2

23 π  

 

which is equivalent to the result shown in the problem statement. Since the desired 

numerical answer uses eV units, we multiply numerator and denominator of our result by 

c
2
 and make use of the mc

2
 value for an electron in Table 38-3 as well as the hc value 

found in problem 83 of Chapter 38: 

 

N E
mc

hc
n n n

F
( )

( )

(

(
( . )/ / /=

F
HG

I
KJ = ×

⋅
F
HG

I
KJ = ⋅− −4

3
4 511 10

1240
3 411

2

2

23 1 3
3

23 1 3 2 1 1 3π πeV)

eV nm)
nm eV

2
 

 

which is equivalent to the value indicated in the problem statement. 

 

(b) Since there are 10
27

 cubic nanometers in a cubic meter, then the result of problem 1 

may be written 

 

n = × =− −8 49 10 84 928 3 3. . .m nm  

 

The cube root of this is n
1/3

 ≈ 4.4/nm. Hence, the expression in part (a) leads to 

 
2 1 1 3 1 28 3 1( ) (4.11nm eV )(4.4nm ) 18nm eV 1.8 10 m eV .

F
N E

− − − − − − −= ⋅ = ⋅ = × ⋅  

 

If we multiply this by 10
27

 m
3
/nm

3
, we see this compares very well with the curve in Fig. 

41-5 evaluated at 7.0 eV. 



 

 

 

42. If we use the approximate formula discussed in problem 41-24, we obtain 

 

frac = × + ≈
−3 8 62 10 273

2 55
0 03

5( . /

( . )
. .

eV K)(961 K)

eV
 

 

The numerical approach is briefly discussed in part (c) of problem 32. Although the 

problem does not ask for it here, we remark that numerical integration leads to a fraction 

closer to 0.02. 



 

 

 

43. The description in the problem statement implies that an atom is at the center point C 

of the regular tetrahedron, since its four neighbors are at the four vertices. The side length 

for the tetrahedron is given as a = 388 pm. Since each face is an equilateral triangle, the 

“altitude” of each of those triangles (which is not to be confused with the altitude of the 

tetrahedron itself) is h a'= 1
2

3  (this is generally referred to as the “slant height” in the 

solid geometry literature). At a certain location along the line segment representing “slant 

height” of each face is the center C' of the face. Imagine this line segment starting at atom 

A and ending at the midpoint of one of the sides. Knowing that this line segment bisects 

the 60° angle of the equilateral face, then it is easy to see that C' is a distance 

AC a' /= 3 . If we draw a line from C' all the way to the farthest point on the 

tetrahedron (this will land on an atom we label B), then this new line is the altitude h of 

the tetrahedron. Using the Pythagorean theorem, 

 
2

2 2 2 2
( ) .

33

a
h a AC a a′= − = − =  

 

Now we include coordinates: imagine atom B is on the +y axis at y h a
b

= = 2 3/ , and 

atom A is on the +x axis at / 3
a

x AC a′= = . Then point C' is the origin. The tetrahedron 

center point C is on the y axis at some value yc which we find as follows: C must be 

equidistant from A and B, so 

 

y y x y

a y
a

y

b c a c

c c

− = +

− = FHG
I
KJ +

2 2

2

22

3 3

 

 

which yields y a
c

= / 2 6 . 

 

(a) In unit vector notation, using the information found above, we express the vector 

starting at C and going to A as 

 

r x y
a

ac a c
= − −)i + ( j =

a

3
i j .

2 6
 

 

Similarly, the vector starting at C and going to B is  

 

r y y
bc b c

a= − =( ) /j j
2

3 2 . 

 

Therefore, using Eq. 3-20, 

 



 

θ = ⋅F
HG

I
KJ = −FHG

I
KJ

− −cos cos1 1 1

3

r r

r r

ac bc

ac bc

 

 

which yields θ = 109.5° for the angle between adjacent bonds. 

 

(b) The length of vector r
bc

 (which is, of course, the same as the length of r
ac

) is 

 

3 388pm 3
| | 237.6 pm 238 pm.

2 2 2 2
bc

a
r = = = ≈  

 

We note that in the solid geometry literature, the distance a

2
3
2

 is known as the 

circumradius of the regular tetrahedron. 



 

 

 

44. According to Eq. 41-6, 
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where x E kT= ∆ / . Also, 
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Thus, 
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A special case of this general result can be found in problem 13, where ∆E = 63 meV and  

 

P(EF + 63 meV) + P(EF –  63 meV) = 0.090 + 0.91 = 1.0. 



 

 

 

45. (a) The derivative of P(E) is 

 
−

+
F
HG

I
KJ

= −
+

F
HG

I
KJ−

−

−

−1

1

1

1

1
2 2

e

d

dE
e

e kT
e

E E kT

E E kT

E E kT

E E kT

F

F

F

F

( )/

( )/

( )/

( )/
.

c h c h
 

 

Evaluating this at E = EF we readily obtain the desired result. 

 

(b) The equation of a line may be written y = m(x –  xo) where m is the slope (here: equal 

to – 1/kT, from part (a)) and xo is the x-intercept (which is what we are asked to solve for). 

It is clear that P(EF) = 2, so our equation of the line, evaluated at x = EF, becomes  

 

2 = (– 1/kT)(EF –  xo), 

 

which leads to xo = EF + 2kT. 



 

 

 

46. (a) For copper, Eq. 41-10 leads to 

 

d

dT

ρ ρα= = × ⋅ × = × ⋅− − − −[ ] ( )( ) /Cu

1m K m K .2 10 4 10 8 108 3 11Ω Ω  

 

(b) For silicon, 

 

d

dT

ρ ρα= = × ⋅ − × = − × ⋅− −[ ] ( )( ) . /Si

1m K m K .3 10 70 10 2 1 103 3 2Ω Ω  



 

 

 

47. We use the ideal gas law in the form of Eq. 20-9: 

 
28 3 23 8 3(8.43 10 m )(1.38 10 J/K)(300 K) 3.49 10 Pa 3.49 10 atm .p nkT

− −= = × × = × = ×  



 

 

 

48. We equate EF with 1
2

2
m v

e F
 and write our expressions in such a way that we can make 

use of the electron mc
2
 value found in Table 37-3: 

 

v
E

m
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= ×2 2
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49. We compute 3

16 2

2 3

0121
πe j

/

. .≈  
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