CHAPTER 3 - Kinematics in Two Dimensions; Vectors



�

1.	We choose the west and south coordinate system shown.  

	For the components of the resultant we have

		RW	= D1 + D2 cos 45°  

			= (200 km) + (80 km) cos 45°  =  257 km;

		RS	= 0 + D2 

			= 0 + (80 km) sin 45°  =  57 km.

	We find the resultant displacement from

		R = (RW2 + RS2)1/2 = [(257 km)2 + (57 km)2]1/2 =         263 km;

		tan q = RS/RW = (57 km)/(257 km) = 0.222, which gives         q = 13° S of W.



�

2.	We choose the north and east coordinate system shown.  

	For the components of the resultant we have

		RE	= D2  = 10 blocks;

		RN	= D1 – D3 = 18 blocks – 16 blocks =  2 blocks.

	We find the resultant displacement from

		R 	= (RE2 + RN2)1/2 = [(10 blocks)2 + (2 blocks)2]1/2 

			=         10 blocks;

		tan q = RN/RE = (2 blocks)/(10 blocks) = 0.20, which gives         

		q = 11° N of E. 







3.	From Fig. 3–6c, if we write the equivalent vector addition, we have

		V1 + Vwrong = V2 ,  or       Vwrong = V2 – V1.
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4.	We find the vector from

		V = (Vx2 + Vy2)1/2 = [(8.80)2 + (– 6.40)2]1/2 =         10.9;

		tan q = Vy/Vx = (– 6.40)/(8.80) = – 0.727, which gives         

		q = 36.0°  below the x-axis.















5.	The resultant is        13.6 m, 18° N of E.
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6.	(a)	V1x = – 6.0,     V1y = 0;   

		V2x = V2 cos 45° = 4.5 cos 45° = 3.18 =      3.2, 

		V2y = V2 sin 45° = 4.5 sin 45° = 3.18 =      3.2.

	(b)	For the components of the sum we have

		 	Rx	= V1x + V2x = – 6.0 + 3.18 = – 2.82;

		 	Ry	=  V1y + V2y = 0 + 3.18 = 3.18.

		We find the resultant from

			R 	= (Rx2 + Ry2)1/2 = [(– 2.82)2 + (3.18)2]1/2 

				=         4.3;

			tan q = Ry/Rx = (3.18)/(2.82) = 1.13, which gives  

			q = 48° above – x-axis. 

		Note that we have used the magnitude of Rx for the angle indicated on the diagram.
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7.												(a)

	(b)	For the components of the vector we have

			Vx	= – V cos q = – 14.3 cos 34.8° =        – 11.7;

			Vy	= V sin q =  14.3 sin 34.8° =        8.16.

	(c)	We find the vector from

			V	= (Vx2 + Vy2)1/2 = [(– 11.7)2 + (8.16)2]1/2 

				=         14.3;

			tan q = Vy/Vx = (8.16)/(11.7) = 1.42, which gives  

			q = 34.9° above – x-axis. 

		This is within significant figures.  Note that we have used the magnitude of Vx for the angle 

		indicated on the diagram.
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8.	Because the vectors are parallel, the direction can 

	be indicated by the sign.

	(a)	C = A + B = 6.8 + (– 5.5) 

		     =      1.3 in the  + x-direction.





	(b)	C = A – B = 6.8 – (– 5.5) 

		     =      12.3 in the  + x-direction.





	(c)	C = B – A = – 5.5 – (6.8) 

		     = – 12.3 in the  + x-direction   or       12.3 in the  – x-direction.













9.	(a)	Using the given angle, we find the components from

			VN = V cos 38.5° = (635 km/h) cos 41.5° =      476 km/h;

			VW = V sin 38.5° = (635 km/h) sin 41.5° =      421 km/h.

	(b)	We use the velocity components to find the displacement components:

			dN = VN t = (476 km/h)(3.00 h) =      1.43 ´ 103 km;

			dW = VW t = (421 km/h)(3.00 h) =      1.26 ´ 103 km.













10.	The vectors are V1 = – 6.0i + 8.0j, V2 = 4.5i – 5.0j.

	(a)	For the magnitude of V1 we have

			½ V1½ = (V1x2 + V1y2)1/2 = [(– 6.0)2 + (8.0)2]1/2  =         10.0.

		We find the direction from

			tan q1 = V1y/V1x = (8.0)/(– 6.0) = – 1.33.

		From the signs of the components, we have      q1 = 53° above – x-axis.

	(b)	For the magnitude of V2 we have

			½ V2½ = (V2x2 + V2y2)1/2 = [(4.5)2 + (– 5.0)2]1/2  =         6.7.

		We find the direction from

			tan q2 = V2y/V2x = (– 5.0)/(4.5) = – 1.11.

		From the signs of the components, we have      q2 = 48° below + x-axis.

	(c)	For the sum V1 + V2 we have

			V1 + V2 = – 1.5i + 3.0j.

		For the magnitude of V1 + V2 we have

			½ V1 + V2½ = [(– 1.5)2 + (3.0 )2]1/2  =         3.4.

		We find the direction from

			tan q1+2 = (3.0 )/(– 1.5) = – 2.0.

		From the signs of the components, we have      q1+2 = 63° above – x-axis.

	(d)	For the difference V2 – V1 we have

			V2 – V1 = 10.5i – 13.0j.

		For the magnitude of V1 + V2 we have

			½ V2 – V1½ = [(10.5)2 + (– 13.0 )2]1/2  =        16.7.

		We find the direction from

			tan q2–1 = (– 13.0 )/(10.5) = – 1.24.

		From the signs of the components, we have      q2–1 = 51° below + x-axis.



11.	The vectors are V1 = 4i – 8j, V2 = i +  j, V3 = – 2i + 4j.

	(a)	For the sum V1 + V2 + V3 we have

			V1 + V2 + V3 = 3i – 3j.

		For the magnitude of V1 + V2 + V3 we have

			½ V1 + V2 + V3½ = [(3)2 + (– 3 )2]1/2  =         4.2.

		We find the direction from

			tan qa = (– 3)/(3) = – 1.0.

		From the signs of the components, we have      qa = 45° below + x-axis.

	(b)	For  V1 – V2 + V3 we have

			V1 – V2 + V3 = i – 5j.

		For the magnitude of V1 – V2 + V3 we have

			½ V1 – V2 + V3½ = [(1)2 + (– 5 )2]1/2  =         5.1.

		We find the direction from

			tan qb = (– 5)/(1) = – 5.0.

		From the signs of the components, we have      qb = 79° below + x-axis.
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12.	(a)	For the components we have	

			Rx	= Ax + Bx + Cx 

				= 44.0 cos 28.0° – 26.5 cos 56.0° + 0 =        24.0;

			Ry	= Ay + By + Cy

				= 44.0 sin 28.0° + 26.5 sin 56.0° – 31.0 =        11.6.

	(b)	We find the resultant from

			R = (Rx2 + Ry2)1/2 = [(24.0)2 + (11.6)2]1/2  =         26.7;

			tan q = Ry/Rx = (11.6)/(24.0) = 0.483, which gives         

			q = 25.8° above + x-axis. 
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13.	(a)	For the components we have

			Rx	= Bx – Ax 

				= – 26.5 cos 56.0° – 44.0 cos 28.0° = – 53.7;

			Ry	= By – Ay

				= 26.5 sin 56.0° – 44.0 sin 28.0° = 1.3.

		We find the resultant from

			R = (Rx2 + Ry2)1/2 = [(– 53.7)2 + (1.3)2]1/2  =         53.7;

			tan q = Ry/Rx = (1.3)/(53.7) = 0.0245, which gives 

			q = 1.40° above – x-axis.

�

		Note that we have used the magnitude of Rx for the angle indicated on the diagram.

	(b)	For the components we have

			Rx	= Ax – Bx 

				= 44.0 cos 28.0° – (– 26.5 cos 56.0°) = 53.7;

			Ry	= Ay – By

				= 44.0 sin 28.0° – 26.5 sin 56.0° = – 1.3.

		We find the resultant from

			R = (Rx2 + Ry2)1/2 = [(53.7)2 + (– 1.3)2]1/2  =         53.7;

			tan q = Ry/Rx = (1.3)/(53.7) = 0.0245, which gives  

			q = 1.40° below + x-axis,        which is opposite to the result from (a).
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14.	(a)	For the components we have

			Rx	= Ax – Bx + Cx 

				= 44.0 cos 28.0° – (– 26.5 cos 56.0°) + 0 

				= 53.7;

			Ry	= Ay – By + Cy

				= 44.0 sin 28.0° – 26.5 sin 56.0° – 31.0 

				= – 32.3.

		We find the resultant from

			R 	= (Rx2 + Ry2)1/2 = [(53.7)2 + (– 32.3)2]1/2  

				=         62.7;

			tan q = Ry/Rx = (32.3)/(53.7) = 0.602, which gives 

			q = 31.0° below + x-axis.

		Note that we have used the magnitude of Ry for 

		the angle indicated on the diagram.

	(b)	For the components we have

			Rx	= Ax + Bx – Cx 

				= 44.0 cos 28.0° + (– 26.5 cos 56.0°) – 0 

				= 24.0;

			Ry	= Ay + By – Cy

				= 44.0 sin 28.0° + 26.5 sin 56.0° – (– 31.0) 

				= 73.6.

		We find the resultant from

			R 	= (Rx2 + Ry2)1/2 = [(24.0)2 + (73.6)2]1/2  

				=         77.4;

			tan q = Ry/Rx = (73.6)/(24.0) = 3.07, which gives 

			q = 71.9° above + x-axis.

	(c)	For the components we have

			Rx	= Cx – Ax – Bx 

				= 0 – 44.0 cos 28.0° – (– 26.5 cos 56.0°) 

				= – 24.0;

			Ry	= Cy – Ay – By

				= – 31.0 – 44.0 sin 28.0° – 26.5 sin 56.0°  

				= – 73.6.

		We find the resultant from

			R 	= (Rx2 + Ry2)1/2 = [(– 24.0)2 + (– 73.6)2]1/2  

				=         77.4;

			tan q = Ry/Rx = (73.6)/(24.0) = 3.07, 

		which gives         

			q = 71.9° below – x-axis.

































15.	(a)	For the components we have

			Rx	= Bx – 2Ax 

				= – 26.5 cos 56.0° – 2(44.0 cos 28.0° ) 

				= – 92.5;

			Ry	= By – 2Ay 

				= 26.5 sin 56.0° – 2(44.0 sin 28.0°) 

				= – 19.3.

		We find the resultant from

			R 	= (Rx2 + Ry2)1/2 = [(– 92.5)2 + (– 19.3)2]1/2 

				=         94.5;

			tan q = Ry/Rx = (19.3)/(92.5) = 0.209, which gives         

			q = 11.8° below – x-axis.

	(b)	For the components we have

			Rx	= 2Ax – 3Bx + 2Cx 

				= 2(44.0 cos 28.0°) – 3(– 26.5 cos 56.0°) + 2(0) 

				= 122.2;

			Ry	= 2Ay – 3By + 2Cy

				= 2(44.0 sin 28.0° ) – 3(26.5 sin 56.0°) + 2(– 31.0) 

				= – 86.6.

		We find the resultant from

			R 	= (Rx2 + Ry2)1/2 = [(122.2)2 + (– 86.6)2]1/2 

				=         150;

			tan q = Ry/Rx = (86.6)/(122.2) = 0.709, which gives         

			q = 35.3° below + x-axis.

�
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16.	For the components we have

		Dx	= Hx = – 4580 sin 32.4° =        – 2454 m;  

		Dy	= Hy = + 4580 cos 32.4° =        + 3867 m; 

		Dz	= V =                                                 + 2450 m.

	By extending the Pythagorean theorem, 

	we find the magnitude from

		D	= (Dx2 + Dy2 + Dz2)1/2 

			= [(– 2454 m)2 + (3867 m)2 + (2450 m)2]1/2  

			=         5194 m.







17.	(a)	We find the x-component from

�

			A2 = Ax2 + Ay2;

			(90.0)2 = Ax2 + (– 35.0)2; which gives        Ax = ± 82.9.

	(b)	If we call the new vector B, we have

			Rx	= Ax + Bx ;

			– 80.0 = + 82.9 + Bx , which gives Bx = – 162.9;

			Ry	= Ay + By ;

			0 = – 35.0 + By , which gives  By = + 35.0.

		We find the resultant from

			B = (Bx2 + By2)1/2 = [(– 162.9)2 + (+ 35.0)2]1/2 =         166.6;

			tan q = By/Bx = (35.0)/(162.9) = 0.215, which gives         q = 12.1° above – x-axis.





18.	We find the velocity and acceleration by differentiating:

		r = (7.60 m/s)ti + (8.85 m)j – (1.00 m/s2)t2k;

		v = dr/dt = (7.60 m/s)i – (2.00 m/s2)tk;

		a = dv/dt = – (2.00 m/s2)k.



19.	The positions of the particle at the two times are

		r1 = (7.60 m/s)(1.00 s)i + (8.85 m)j – (1.00 m/s2)(1.00 s)2k = (7.60 m)i + (8.85 m)j – (1.00 m)k;

		r3 = (7.60 m/s)(3.00 s)i + (8.85 m)j – (1.00 m/s2)(3.00 s)2k = (22.8 m)i + (8.85 m)j – (9.00 m)k.

	The average velocity is

		vav = ?r/?t = [(15.2 m)i – (8.00 m)k]/(3.00 s – 1.00 s) =      (7.60 m/s)i – (4.00 m/s)k.

	The instantaneous velocity at the midpoint of the interval is

		v2 = (7.60 m/s)i – (2.00 m/s2)(2.00 s)k = (7.60 m/s)i – (4.00 m/s)k.

	Note that this is the same as the average velocity because the acceleration is constant.

	The magnitude is 

		v2 = [(7.60 m/s)2 + (4.00 m/s)2]1/2 =       8.59 m/s.



20.	The y-position is constant.  The x- and z-components are

		x = (7.60 m/s)t, and z = – (1.00 m/s2)t2.

	If we eliminate t, we get z = – (1.00 m)x2/(7.60 m)2, which is a parabola.  Thus the path is

		parabola centered on the – z-axis at y = 8.85 m.



21.	(a)	Because we do not know the displacement over the given time interval, the average velocity is  

			     unknown.

	(b)	The average acceleration is 

			aav = ?v/?t = [(27.5 m/s)i – (– 18.0 m/s)j]/(8.00 s) = (3.44 m/s2)i + (2.25 m/s2)k.

		The magnitude is 

			½ aav½ = [(3.44 m/s2)2 + (2.25 m/s2)2]1/2 =         4.11 m/s2.

		We find the direction from

			tan q = (2.25 m/s2)/(3.44 m/s2) = 0.654, which gives         q = 33.2° north of east.

	(c)	Because we do not know the distance traveled, the average speed is  

			     unknown.



22.	(a)	For the vertical component we have

			aV = (3.80 m/s2) sin 30.0° =        1.90 m/s2 down.

	(b)	Because the elevation change is the vertical displacement, we find the time from the 

		vertical motion, taking down as the positive direction:

			y = v0yt + !aVt2;

			250 m = 0 + !(1.90 m/s2)t2, which gives          t = 16.2 s.













































23.	The acceleration is a = (4.0 m/s2)i + (3.0 m/s2)j.

	(a)	We find the velocity by integrating:

			�

	(b)	The speed of the particle is 

			½ v½ = {[(4.0 m/s2)t]2 + [(3.0 m/s2)t]2}1/2 =         (5.0 m/s2)t.

	(c)	We find the position by integrating:

			�

	(d)	For the given time we have 

			v = (4.0 m/s2)ti + (3.0 m/s2)tj = (4.0 m/s2)(2.0 s)i + (3.0 m/s2)(2.0 s)j =      (8.0 m/s)i + (6.0 m/s)j.

			½ v½ = (5.0 m/s2)t = (5.0 m/s2)(2.0 s) =      10.0 m/s.

			r = (2.0 m/s2)t2i + (1.5 m/s2)t2j = (2.0 m/s2)(2.0 s)2i + (1.5 m/s2)(2.0 s)2j =      (8.0 m)i + (6.0 m)j.



24.	The acceleration is a = (– 3.0 m/s2)i + (4.5 m/s2)j.

	We find the velocity by integrating:

		�

		v = [(– 3.0 m/s2)t + 5.0 m/s]i + (4.5 m/s2)tj.

	We find the position by integrating:

		�

		�

	To find the time at which the particle reaches its maximum x-coordinate, we set dx/dt = 0:

		dx/dt = (– 3.0 m/s2)t + 5.0 m/s = 0, which gives t = 1.67 s.

	The velocity is

		v = [(– 3.0 m/s2)t + 5.0 m/s]i + (4.5 m/s2)tj = 0i + (4.5 m/s2)(1.67 s)j =       (7.5 m/s)j.

	The position is

		r 	= [(– 1.5 m/s2)t2 + (5.0 m/s)t]i + (2.25 m/s2)t2j 

			= [(– 1.5 m/s2)(1.67 s)2 + (5.0 m/s)(1.67 s)]i + (2.25 m/s2)(1.67 s)2j =       (4.2 m)i + (6.3 m)j.























25.	The position is r = (6.0 m) cos (3.0 s–1)ti + (6.0 m) sin (3.0 s–1)tj.

	(a)	We find the velocity by differentiating:

			v 	= dr/dt = – (6.0 m)(3.0 s–1) sin (3.0 s–1)ti + (6.0 m)(3.0 s–1) cos (3.0 s–1)tj

				=       – (18.0 m/s) sin (3.0 s–1)ti + (18.0 m/s) cos (3.0 s–1)tj.

	(b)	We find the acceleration  by differentiating:

			a 	= dv/dt = – (18.0 m/s)(3.0 s–1) cos (3.0 s–1)ti – (18.0 m/s)(3.0 s–1) sin (3.0 s–1)tj

				=       – (54.0 m/s2) cos (3.0 s–1)ti – (54.0 m/s2) sin (3.0 s–1)tj.

	(c)	The magnitude of r is

			½ r½= {(6.0 m) cos (3.0 s–1)t]2 + [(6.0 m) sin (3.0 s–1)t]2]}1/2 = 6.0 m.

		Thus the particle is always 6.0 m from the origin, so it is traveling in a       circle.

	(d)	We see that

			a = – (9.0 s–2)r, so we have

			a = (9.0 s–2)r,     

		with the angle between the vectors being       180°,      that is, in opposite directions.

	(e)	We see that

			½ v½ = {[(18.0 m/s) sin (3.0 s–1)t]2 + [(18.0 m/s) cos (3.0 s–1)t]2}1/2 = 18.0 m/s, so

			v = (3.0 s–1)r, and

			a = (9.0 s–2)r = v2/r. 
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26.	We choose a coordinate system with the origin at the takeoff point, 

	with x horizontal and y vertical, with the positive direction down.

	We find the time for the tiger to reach the ground from its 

	vertical motion:

		y = y0 + v0yt + !ayt2;  

		6.5 m = 0 + 0 + !(9.80 m/s2)t2, which gives t = 1.15 s.

	The horizontal motion will have constant velocity.  

	We find the distance from the base of the rock from

		x = x0 + v0xt; 

		x = 0 + (4.0 m/s)(1.15 s) =         4.6 m.







27.	We choose a coordinate system with the origin at the takeoff point, with x horizontal and y vertical, with the positive direction down.  We find the height of the cliff from the vertical displacement: 

		y = y0 + v0yt + !ayt2;  

		y = 0 + 0 + !(9.80 m/s2)(3.0 s)2 =        44 m.

	The horizontal motion will have constant velocity.  

	We find the distance from the base of the cliff from

		x = x0 + v0xt; 

		x = 0 + (2.1 m/s)(3.0 s) =        6.3 m.



28.	Because the initial and final locations are at the same level, we can use the expression for the horizontal range.  The horizontal range on Earth is given by 

		R = v02 sin(2q0)/g, whereas on the Moon it is 

		RMoon = v02 sin(2q0)/gMoon.  

	Because we have the same v0 and q0 , when we divide the two equations, we get 

		RMoon/R = g/gMoon ,  or    

		RMoon = (g/gMoon)R = [g/(g/6)]R = 6R, so a person could jump         six times as far.
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29.	Because the water returns to the same level, we can use the 

	expression for the horizontal range:

		R = v02 sin(2q)/g;

		3.0 m = (5.5 m/s)2 sin(2q)/(9.80 m/s2), which gives 

		sin(2q) = 0.971,   or   2q = 76° and 104°, 

	so the angles are        38° and 52°.

	At the larger angle the water has a smaller horizontal velocity but spends more time in the air, because of the larger initial vertical velocity.  Thus the horizontal displacement is the same for the two angles.
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30.	We choose a coordinate system with the origin at the release point, 

	with x horizontal and y vertical, with the positive direction down. 

	We find the time of fall from the vertical displacement: 

		y = y0 + v0yt + !ayt2;  

		9.0 m  = 0 + 0 + !(9.80 m/s2)t2, which gives t =  1.35 s.

	The horizontal motion will have constant velocity.  

	We find the initial speed from

		x = x0 + v0xt; 

		8.5 m = 0 + v0(1.35 s), which gives         v0 = 6.3 m/s.









31.	We find the time of flight from the vertical displacement: 

		y = y0 + v0yt + !ayt2;  

		0 = 0 + (18.0 m/s)(sin 32.0°)t + !(– 9.80 m/s2)t2, which gives t =  0, 1.95 s.

	The ball is kicked at t = 0, so the football hits the ground         1.95 s        later. 





32.	We choose a coordinate system with the origin at the release point, with x horizontal and y vertical, with the positive direction down. 

	The horizontal motion will have constant velocity.  We find the time required for the fall from

		x = x0 + v0xt; 

		36.0 m = 0 + (22.2 m/s)t, which gives t = 1.62 s.

	We find the height from the vertical motion:

		y = y0 + v0yt + !ayt2;  

		h = 0 + 0 + !(9.80 m/s2)(1.62 s)2 =              12.9 m.
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33.	We choose a coordinate system with the origin at the release point, 

	with x horizontal and y vertical, with the positive direction up. 

	We find the time required for the fall from the vertical motion:

		y = y0 + v0yt + !ayt2;  

		– 2.2 m = 0 + (14 m/s)(sin 40°)t + !(– 9.80 m/s2)t2.

	The solutions of this quadratic equation are  t = – 0.22 s,  2.06 s.  

	Because the shot is released at t = 0, the physical answer is 2.06 s.

	We find the horizontal distance from

		x = x0 + v0xt; 

		x = 0 + (14 m/s)(cos 40°)(2.06 s) =         22 m.  















34.	We choose a coordinate system with the origin at the release point, with y vertical and the positive direction up.  At the highest point the vertical velocity will be zero, so we find the time to reach the highest point from

		vy = v0y + aytup;

		0 =  v0y + (– g)tup , which gives tup = v0y/g. 

	We find the elevation h at the highest point from

		vy2 = v0y2 + 2ay(y– y0);

		0 = v0y2 + 2(– g)h, which gives h = v0y2/2g. 

	We find the time to fall from the highest point from

		y = y0 + v0yt + !aytdown2;  

		0 = h + 0 + !(– g)tdown2 , which gives 

		tdown = (2h/g)1/2  =  [2(v0y2/2g)/g]1/2  = v0y/g, which is the same as tup.	
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35.	To plot the trajectory, we need a 

	relationship between x and y, which can be obtained by eliminating t from the equations for the two components of the motion:

		x = v0xt = v0 (cos q)t;

		y = y0 + v0yt + !ayt2 

		    = 0 + v0 (sin q)t + !(– g)t2.

	The relationship is	

		y = (tan q)x – !g(x/v0 cos q)2.













36.	The arrow will hit the apple at the same elevation, so we can use the expression for the horizontal range: 

		R = v02 sin(2q0)/g;

		25.0 m = (22.5 m/s)2 sin(2q0)/(9.80 m/s2), which gives 

		sin(2q0) = 0.484,   or   2q0 = 28.9° ,          q0 = 14.5°.

	Note that the other angle, 75.5°, is not realistic because the arrow will strike the apple at this angle.



37.	We choose a coordinate system with the origin at the release point, with x horizontal and y vertical, with the positive direction down. 

	Because the horizontal velocity of the package is constant at the horizontal velocity of the airplane, the package is always directly under the airplane.  The time interval is the time required for the fall, which we find from the vertical motion:

		y = y0 + v0yt + !ayt2;  

		160 m = 0 + 0 + !(9.80 m/s2)t2, which gives         t = 5.71 s.



38.	(a)	Because the athlete lands at the same level, we can use the expression for the horizontal range:

			R = v02 sin(2q0)/g;

			7.80 m = v02 sin[2(33.0°)]/(9.80 m/s2), which gives          v0 = 9.15 m/s.

	(b)	For an increase of 5%, the initial speed becomes v0¢ = (1 + 0.05)v0 = (1.05)v0 , and the new range is 

			R¢ = v0¢2 sin(2q0)/g = (1.05)2v02 sin(2q0)/g = 1.10R.

		Thus the increase in the length of the jump is

			R¢ – R  = (1.10 – 1)R = 0.10(7.80 m) =        0.78 m.







39.	(a)	At the highest point, the vertical velocity vy = 0.  We find the maximum height h from

			vy2 = v0y2 + 2ay(y – y0);

			0 = [(51.2 m/s) sin 44.5°]2 + 2(– 9.80 m/s2)(h – 0), which gives        h = 65.7 m.

	(b)	Because the projectile returns to the same elevation, we have

			y = y0 + v0yt + !ayt2;

			 0 = 0 + (51.2 m/s)(sin 44.5°)t + !(– 9.80 m/s2)t2, which gives t = 0,  and  7.32 s.

		Because t = 0 was the launch time, the total time in the air was          7.32 s.     

	(c)	We find the horizontal distance from

			x = v0xt = (51.2 m/s)(cos 44.5°)(7.32 s) =        267 m.

	(d)	The horizontal velocity will be constant: vx = v0x = (51.2 m/s) cos 44.5° = 36.5 m/s.

		We find the vertical velocity from

			vy = v0y + ayt = (51.2 m/s) sin 44.5° + (– 9.80 m/s2)(1.50 s) = 21.2 m/s.

		The magnitude of the velocity is

			v = (vx2 + vy2)1/2 = [(36.5 m/s)2 + (21.2 m/s)2]1/2 =         42.2 m/s.

		We find the angle from

			tan q = vy/vx = (21.2 m/s)/(36.5 m/s) = 0.581, which gives        q = 30.1° above the horizontal.

�



40.	(a)	We choose a coordinate system with the origin at the 

		base of the cliff, with x horizontal and y vertical, with 

		the positive direction up.   We find the time required for 

		the fall from the vertical motion:

			y = y0 + v0yt + !ayt2;  

			0 = 125 m + (65.0 m/s)(sin 37.0°)t + !(– 9.80 m/s2)t2, 

		which gives t = – 2.45, 10.4 s.

		Because the projectile starts at t = 0, we have           t = 10.4 s.

	(b)	We find the range from the horizontal motion:

			X 	= v0xt = (65.0  m/s)(cos 37.0°)(10.4 s) 

				=        540 m .

	(c)	For the velocity components, we have

			vx = v0x = (65.0  m/s) cos 37.0° =         51.9 m/s.

			vy = v0y + ayt = (65.0  m/s) sin 37.0° + (– 9.80 m/s2)(10.4 s) =         – 62.8 m/s.

	(d)	When we combine these components, we get

			v = (vx2 + vy2)1/2 = [(51.9 m/s)2 + (– 62.8 m/s)2]1/2 =         81.5 m/s.

	(e)	We find the angle from

			tan q = vy/vx = (62.8 m/s)/(51.9 m/s) = 1.21, which gives        q = 50.4° below the horizontal.
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41.	We use the coordinate system shown in the diagram.

	To see if the water balloon hits the boy, we will find the 

	location of the water balloon and the boy when the water 

	balloon passes the vertical line that the boy follows.  

	We find the time at which this occurs from the 

	horizontal motion of the water balloon:

		d = v0xt = (v0 cos q0)t , which gives t =d/(v0 cos q0). 

	At this time the location of the boy is

		yboy	= y0boy + v0yboyt + !ayt2  

				= h + 0 + !(– g)[d/(v0 cos q0)]2 = h – !g[d/(v0 cos q0)]2.

	The vertical position of the water balloon will be

		yballoon	= y0balloon + v0yballoont + !ayt2  

				= 0 + (v0 sin q0)[d/(v0 cos q0)] + !(– g)[d/(v0 cos q0)]2 

				= d sin q0/cos q0 – !g[d/(v0 cos q0)]2  = d tan q0 – !g[d/(v0 cos q0)]2 .

	Because h = d tan q0 , we have yballoon = yboy.









42.	The horizontal range is

		R = v02 sin(2q0)/g = 2v02 sin q0 cos q0/g.

	At the maximum height the vertical velocity will be zero.  We find the maximum height from

		vy2 = v0y2 + 2ay;

		0 = (v02 sin q0)2 + 2(– g)hmax , which gives hmax = v02 sin2 q0/2g.

	When we equate this to the range, we get

		v02 sin2 q0/2g = 2v02 sin q0 cos q0/g, which gives tan q0 = 4,       q0 = 76.0°.



43.	The ball passes the goal posts when it has traveled the horizontal distance of 36.0 m.  From this we can find the time when it passes the goal posts:

		x = v0xt;    36.0 m = (20.0 m/s) cos 37.0° t, which gives  t = 2.25 s.

	To see if the kick is successful, we must find the height of the ball at this time: 

		y = y0 + v0yt + !ayt2 = 0 + (20.0 m/s) sin 37.0° (2.25 s) + !(– 9.80 m/s2)(2.25 s)2 = 2.24 m.  

	Thus the kick is       unsuccessful      because it passes 0.76 m below the bar.

	To have a successful kick, the ball must pass the goal posts with an elevation of at least 3.00 m.  We find the time when the ball has this height from

		y = y0 + v0yt + !ayt2;  

		3.00 m = 0 + (20.0 m/s) sin 37.0° t  + !(– 9.80 m/s2)t2.

	The two solutions of this quadratic equation are  t = 0.28 s, 2.17 s.

	The horizontal distance traveled by the ball is found from

		x = v0xt = (20.0 m/s) cos 37.0° t.  

	For the two times, we get  x = 4.5 m, 34.7 m.

	Thus the kick must be made no farther than      34.7 m      from the goal posts (and no nearer than 4.5 m).

	If the vertical velocity is found at these two times from 

		vy = v0y + ayt  = (20.0 m/s) sin 37.0° + (– 9.80 m/s2)t  = + 9.3 m/s,  – 9.3 m/s, 

	we see that the ball is falling at the goal posts for a kick from 34.7 m and rising at the goal posts for a kick from 4.5 m.



44.	(a)	For the velocity of the projectile motion we have

			v 	= v0 cos q0 i + (v0 sin q0 – gt) j 

				= v0 cos q0 i + [v0 sin q0 – (9.80 m/s2)(3.0 s)] j = (7.6 m/s) i + (4.8 m/s) j.

		This gives us two equations for the two unknowns, v0 and q0:

			v0 cos q0 = 7.6 m/s;

			v0 sin q0 – 29.4 m/s = 4.8 m/s.

		When we solve them we get

			v0 = 35 m/s, q0 = 77°.

		The horizontal range is

			R 	= v02 sin(2q0)/g 

				= (35 m/s)2 sin[2(77°)]/(9.80 m/s2) =       53 m.

	(b)	At the maximum height the vertical velocity will be zero.  We find the maximum height from

			vy2 = v0y2 + 2ay;

			0 = (v0 sin q0)2 + 2(– g)hmax ; 

			hmax = v02 sin2 q0/2g = (35 m/s)2 sin2 (77°)/2(9.80 m/s2) =      60 m.

	(c)	From the symmetry of the motion, for the velocity components we have

			vx = v0x = 7.6 m/s;

			vy = – v0y = – (35 m/s) sin 77° = – 34  m/s.

		The speed is

			v = (vx2 + vy2)1/2 = [(7.6 m/s)2 + (– 34  m/s)2]1/2 =         35 m/s.

		We find the angle from

			tan q = vy/vx = (– 34  m/s)/(7.6 m/s) = – 4.47, which gives        q = 77° below the horizontal.
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45.	(a)	We choose a coordinate system with the origin at the jump point, 

		with x horizontal and y vertical, with the positive direction up. 

		The horizontal motion will have constant velocity:

			x = x0 + v0xt; 

			L = 0 + v0 cos q0t;

			3.0 m =  (v0 cos q0)(1.3 s), which gives v0 cos q0 = 2.31 m/s.

		For the vertical motion we have

			y = y0 + v0yt + !ayt2;  

			– h = 0 + (v0 sin q0)t + !(– g)t2;

			– 5.0 m = (v0 sin q0)(1.3 s) – !(9.80 m/s2)(1.3 s)2, which gives v0 sin q0 = 2.52 m/s.

		When we divide the two equations, we get

			tan q0 = 1.093,  q0 = 47.5°.

		Thus we find the magnitude of v0 from

			v0 sin 47.5° = 2.52 m/s, which gives v0 = 3.42 m/s, so

			v0 =  3.42 m/s, 47.5° above the horizontal.

	(b)	At the maximum height the vertical velocity will be zero.  We find the maximum height from

			vy2 = v0y2 + 2ay;

			0 = (v0 sin q0)2 + 2(– g)hmax ; 

			hmax = v02 sin2 q0/2g = (3.42 m/s)2 sin2 (47.5°)/2(9.80 m/s2) = 0.32 m,  or     5.32 m above the water.

	(c)	The horizontal velocity is constant.  We find the vertical velocity from

			vfy2 = v0y2 + 2ay;

			vfy2 = (3.42 m/s)2 sin2 (47.5°) – 2(9.80 m/s2)(– 5.0 m), which gives vfy = – 10.2 m/s.

		We find the direction from

			tan q = vfy/vfx = (– 10.2 m/s)/(2.31 m/s) = – 4.42, which gives        q = 77° below the horizontal.

		We find the magnitude of v from

			vf sin 77° = 10.2 m/s, which gives vf = 10.5 m/s, so

			vf =  10.5 m/s, 77° below the horizontal.



46.	(a)	We choose a coordinate system with the origin at the jump point, �

		with x horizontal and y vertical, with the positive direction up. 

		The horizontal motion will have constant velocity.  

		We find the time required for the fall from

			x = x0 + v0xt; 

			L = 0 + v0t, which gives t = L/v0.

		For the vertical motion we have

			y = y0 + v0yt + !ayt2;  

			– h = 0 + 0 + !(– g)t2, so

			h = !g(L/v0)2;

			1.5 m = !(9.80 m/s2)(20 m)2/v02, which gives v0 =      36 m/s (130 km/h).

	(b)	If the ramp makes an angle q0 with the horizontal, we have

			x = x0 + v0xt; 

			L = 0 + (v0 cos q0)t, which gives t = L/v0 cos q0 .

		For the vertical motion we have

			y = y0 + v0yt + !ayt2;  

			– h = 0 + (v0 sin q0)t + !(– g)t2, so

			h = – (v0 sin q0)(L/v0 cos q0) + !g(L/v0 cos q0)2;

			1.5 m = – (20 m) tan 10° + !(9.80 m/s2)(20 m)2/v02 cos2 10°, which gives v0 =      20 m/s (72 km/h).



47.	We will take down as the positive direction.  The direction of motion is the direction of the velocity.  For the velocity components, we have

		vx = v0x = v0 .

		vy = v0y + ayt = 0 + gt  = gt.

	We find the angle that the velocity vector makes with the horizontal from

		tan q = vy/vx = gt/v0 ,     or          q = tan–1(gt/v0) below the horizontal.

�



48.	We use the coordinate system shown in the diagram.

	For the horizontal motion we have

		x = v0xt; 

		R = (v0 cos q0)t; which gives t = R/(v0 cos q0). 

	For the vertical motion we have  

		y = y0 + v0yt + !ayt2 ;

		h = 0 + (v0 sin q0)t + !(– g)t2 = (v0 sin q0)[R/(v0 cos q0)] – !g[R/(v0 cos q0)]2. 

	This is a quadratic equation for R:

		R2 – (2v02 sin q0 cos q0/g)R + 2hv02 cos2 q0/g = 0, 

	with solutions

		R = (v02 sin q0 cos q0/g){1 ± [1 – (2gh/v02 sin2 q0)]1/2} = !R0{1 ± [1 – (2gh/v02 sin2 q0)]1/2},

	where R0 is the horizontal range.

	We use the + sign for h < 0, and h > 0 if the projectile has passed the highest point.
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49.	We choose a coordinate system with the origin at the base of the hill, 

	with x horizontal and y vertical, with the positive direction up. 

	When the object lands on the hill, y = x tan f.  

	The distance up the hill is given by

		d2 = x2 + y2 = x2(1 + tan2 f).  

	Thus to maximize d, we can maximize x.

	For the horizontal and vertical motions we have

		x = x0 + v0xt = 0 + (v0 cos q)t  = (v0 cos q)t;

		y = y0 + v0yt + !ayt2 =  0 + (v0 sin q)t + !(– g)t2 = (v0 sin q)t – !gt2. 

	We combine these equations to get x a function of q:

		y = x tan f = (v0 sin q)(x/v0 cos q) – !g(x/v0 cos q)2, which gives 

		x = (2v02 cos q/g)(sin q – cos q tan f).

	We can simplify this by using trigonometric identities to get functions of 2q:

		x = (v02/g)[sin 2q – (1 + cos 2q) tan f].

	To find the value of q for maximum x, we set dx/dq = 0:

		dx/dq = (v02/g)[2 cos 2q – (– 2 sin 2q) tan f] = 0, which gives

		tan 2q = – cot f,   or           q = ! tan–1 (– cot f).

	Note that the negative sign means using the angle greater than 90° for the inverse tangent.
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50.	We find the time of flight from the vertical motion:

		y = y0 + v0yt + !ayt2;  

		0 = 0 + (v0 sin q0)t + !(– g)t2, 

	which gives 

		t = 2v0 sin q0/g = 2(32 m/s) sin 55°/(9.80 m/s2) = 5.35 s.

	The horizontal distance the ball travels is

		x 	= x0 + v0xt = 0 + (v0 cos q)t  = (v0 cos q)t 

			= (32 m/s) cos 55° (5.35 s) = 98.2 m.

	From the top view of the positions as the outfielder runs 

	from A to B, we see that

		d1 = x sin f = (98.2 m) sin 22° = 36.8 m;

		d2 = L – x cos f = 85 m – (98.2 m) cos 22° = – 6.0 m.

	Thus the angle from the line to the plate that the 

	outfielder must run is given by

		tan a = d1/d2 = (36.8 m)/(– 6.0 m) = – 6.13, a = 99.3°.

	The distance is 

		d = (d12 + d22)1/2 = [(36.8 m)2 + (– 6.0 m)2]1/2 = 37.3 m, so his speed is

		v = d/t = (37.3 m)/(5.35 s) = 7.0 m/s.

	Thus the outfielder must run      7.0  m/s , 99° from the line to home plate.





51.	The centripetal acceleration is

		aR = v2/r = (500 m/s)2/(3.50 ´ 103 m)(9.80 m/s2/g) =        7.29g up.



52.	The centripetal acceleration is

		aR = v2/r = (0.85 m/s)2/(3.6 m) =        0.20 m/s2 toward the center.



53.	The centripetal acceleration of the Earth is

		aR	= v2/r = (2pr/T)2/r = 4p2r/T2 

			= 4p2(1.5 ´ 1011 m)/(3.16 ´ 107 s)2 =        5.9 ´ 10–3 m/s2 toward the Sun.



54.	The speed of the speck is

		v= 2pr/T = 2prf.

	Thus the centripetal acceleration is 

		aR 	= v2/r = (2prf)2/r = 4p2rf2 

			= 4p2(0.15 m)[(45 min–1)/(60 s/min)]2 =        3.3 m/s2.



55.	To complete an orbit in time T, the speed of the shuttle must be

		v= 2pr/T.

	Thus the centripetal acceleration in terms of g is 

		aR/g = v2/rg = (2pr/T)2/rg = 4p2r/gT2 

			= 4p2(6.38 ´ 106 m + 0.40 ´ 106 m)/(9.80 m/s2)[(90 min)(60 s/min)]2, which gives      aR = 0.94g.



56.	An object at the equator is moving with the rotational speed of the surface of the Earth:

		v = 2prE/T = 2p(6.38 ´ 106 m)/(86,400 s) = 464 m/s.

	The acceleration of gravity is reduced by the radial acceleration:

	Thus ?g = – v2/rE =  – (464 m/s)2/(6.38 ´ 106 m) =        – 0.0337 m/s2 (0.343% of g).



57.	We check the form of aR = v2/r by using the dimensions of each variable:

		[aR] = [v/t] = [d/t2] = [L/T2];

		[v2] = [(d/t)2] = [(L/T)2] = [L2/T2];

		[r] = [d] = [L].

	Thus we have [v2/r] = [L2/T2]/[L] = [L/T2], which are the dimensions of aR.



58.	The position is r = (2.0 m) cos (3.0 s–1)ti + (2.0 m) sin (3.0 s–1)tj.

	(a)	The magnitude of r is

			½ r½ = {[(2.0 m) cos (3.0 s–1)t]2 + [(2.0 m) sin (3.0 s–1)t]2}1/2 = 2.0 m.

		Thus the particle is always 2.0 m from the origin, so it is traveling in a circle.

	(b)	We find the velocity by differentiating:

			v 	= dr/dt = – (2.0 m)(3.0 s–1) sin (3.0 s–1)ti + (2.0 m)(3.0 s–1) cos (3.0 s–1)tj

				=       – (6.0 m/s) sin (3.0 s–1)ti + (6.0 m/s) cos (3.0 s–1)tj.

		We find the acceleration  by differentiating:

			a 	= dv/dt = – (6.0 m)(3.0 s–1) cos (3.0 s–1)ti – (6.0 m)(3.0 s–1) sin (3.0 s–1)tj

				=       – (18.0 m/s2) cos (3.0 s–1)ti – (18.0 m/s2) sin (3.0 s–1)tj.

	(c)	The magnitude of v is

			½ v½ = {[(6.0 m/s) cos (3.0 s–1)t]2 + [(6.0 m/s) sin (3.0 s–1)t]2}1/2 =       6.0 m/s,

		The magnitude of a is

			½ a½ = {[(18.0 m/s2) cos (3.0 s–1)t]2 + [(18.0 m/s2) sin (3.0 s–1)t]2}1/2 =       18.0 m/s2,

	(d)	We see that

			v2/r = [(6.0 m/s)2/(2.0 m)] = 18.0 m/s2 = a. 

	(e)	If we compare r and a we see that

			a = – (9.0 s–2)r, 

		so the acceleration vector is always opposite to the direction of r and thus points toward the center 

		of the circle.
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59.	If 	vHR is the velocity of Huck with respect to the raft, 

		vHB the velocity of Huck with respect to the bank, and 

		vRB the velocity of the raft with respect to the bank, then 

		vHB = vHR + vRB , as shown in the diagram.

	From the diagram we get 

		vHB = (vHR2 + vRB2)1/2 = [(1.0 m/s)2 + (2.5 m/s)2]1/2 =         2.7 m/s.

	We find the angle from

		tan q = vHR/vRB = (1.0 m/s)/(2.5 m/s) = 0.40, which gives        q = 22° from the river bank.
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60.	(a)	If 	vBS is the velocity of the boat with respect to the shore, 

			vBW the velocity of the boat with respect to the water, and 

			vWS the velocity of the water with respect to the shore, then 

			vBS = vBW + vWS , as shown in the diagram.

		From the diagram we get 

			vBS = (vBW2 + vWS2)1/2 = [(2.20 m/s)2 + (1.20 m/s)2]1/2 =       2.51 m/s.

		We find the angle from

			tan q = vBW/vWS = (2.20 m/s)/(1.20 m/s) = 1.83, which gives 

			q = 61.4° from the shore.

	(b)	Because the boat will move with constant velocity, the displacement will be

			d = vBSt = (2.51 m/s)(3.00 s) =        7.52 m at 61.4° to the shore.



61.	Because the planes are approaching along the same line, for the relative velocity we have

		v = v1 – v2 = 780 km/h – (– 780 km/h) = 1560 km/h.

	We find the time before they would meet from

		t = d/v = (10.0 km)/(1560 km/h) =        0.00641 h = 23.1 s.
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62.	If 	vPA is the velocity of the airplane with respect to the air, 

		vPG the velocity of the airplane with respect to the ground, and 

		vAG the velocity of the air(wind) with respect to the ground, then 

		vPG = vPA + vAG , as shown in the diagram. 

	(a)	From the diagram we find the two components of vPG:

			vPGE = vAG cos 45° = (90.0 km/h) cos 45° = 63.6 km/h;

			vPGS = vPA – vAG sin 45° = 550 km/h – (90.0 km/h) sin 45° = 486 km/h.

		For the magnitude we have

			vPG = (vPGE2 + vPGS2)1/2 = [(63.6 km/h)2 + (486 km/h)2]1/2 =        490 km/h.

		We find the angle from

			tan q = vPGE/vPGS = (63.6 km/h)/(486 km/h) = 0.131, which gives        

			q = 7.45° east of south.

	(b)	Because the pilot is expecting to move south, we find the easterly distance 

		from this line from

			d =  vPGEt = (63.6 km/h)(12.0 min)/(60 min/h) =         12.7 km.

		Of course the airplane will also not be as far south as it would be without the wind.



63.	From the vector diagram of Example 3–13, we have

		vBW2 = vBS2 + vWS2 ;

		(1.85 m/s)2 =  vBS2 + (1.20 m/s)2 , which gives         vBS = 1.41 m/s.
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64.	If 	vPW is the velocity of the passenger with respect to the water, 

		vPB the velocity of the passenger with respect to the boat, and 

		vBW the velocity of the boat with respect to the water, then 

		vPW = vPB + vBW , as shown in the diagram. 

	From the diagram we find the two components of vPW:

		vPWx	= vPB cos 45° + vBW 

				= (0.60 m/s) cos 45° + 1.80 m/s = 2.22 m/s.

		vPWy	= vPB sin 45° = (0.60 m/s) sin 45° = 0.424 m/s.

	For the magnitude we have

		vPW = (vPWx2 + vPWy2)1/2 = [(2.22 m/s)2 + (0.424 m/s)2]1/2 =        2.26 m/s.

	We find the angle from

		tan q = vPWy/vPWx = (0.424 m/s)/(2.22 m/s) = 0.191, which gives        

		q = 11° above the water.

�



65.	If 	vBS is the velocity of the boat with respect to the shore, 

		vBW the velocity of the boat with respect to the water, and 

		vWS the velocity of the water with respect to the shore, then 

		vBS = vBW + vWS , as shown in the diagram. 

	(a)	From the diagram we have

			vWS = vBW sin q  = (3.70 m/s) sin 29.5°  =        1.82 m/s.

	(b)	vBS = vBW cos q  = (3.70 m/s) cos 29.5°  =         3.22 m/s.
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66.	If 	vBS is the velocity of the boat with respect to the shore, 

		vBW the velocity of the boat with respect to the water, and 

		vWS the velocity of the water with respect to the shore, then 

		vBS = vBW + vWS , as shown in the diagram. 

	We find the angle of the boat’s motion with respect to the shore 

	from the distances:

		tan q = dshore/driver = (120 m)/(280 m) = 0.429, which gives q = 23.2°.

	The y-component of vBS is also the y-component of vBW:

		vBSy = vBWy  = (2.40 m/s) sin 45° = 1.70 m/s.

	We find the x-component from

		vBSx = vBSy tan q  = (1.70 m/s) tan 23.2° = 0.727 m/s.

	For the x-component of the relative velocity, we use the diagram to get

		½ vWS½= vBWx – vBSx = (2.40 m/s) cos 45° – 0.727 m/s =        0.97 m/s.
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67.	If 	vSB is the velocity of the swimmer with respect to the bank, 

		vSW the velocity of the swimmer with respect to the water, and 

		vWB the velocity of the water with respect to the bank, then 

		vSB = vSW + vWB , as shown in the diagram. 

	(a)	We find the angle from

			tan q = vWB/vSW = (0.80 m/s)/(1.00 m/s) = 0.80, which gives q = 38.7°.

		Because the swimmer travels in a straight line, we have

			tan q = dshore/driver ;  0.80 = dshore/(75 m), which gives dshore =        60 m.

	(b)	We can find how long it takes by using the components across the river:

			t = driver/vSW = (75 m)/(1.00 m/s) =        75 s.
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68.	We have a new diagram, as shown.  From the diagram, we have

		sin q = vWB/vSW = (0.80 m/s)/(1.00 m/s) = 0.80, 

	which gives         q = 53°.
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69.	The velocities are shown in the diagram.

	For the relative velocity of car 1 with respect to car 2, we have

		v12 = v1g – v2g .

	For the magnitude we have

		v12	= (v1g2 + v2g2)1/2 

			= [(30 km/h)2 + (50 km/h)2]1/2 =        58 km/h.

	We find the angle from

		tan q = v1g/v2g = (30 km/h)/(50 km/h) = 0.60, which gives      q = 31°.

	For the relative velocity of car 2 with respect to car 1, we have

		v21 = v2g – v1g = – (v1g – v2g) = – v12 =      58 km/h opposite to v12.
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70.	If 	vPW is the velocity of the airplane with respect to the wind, 

		vPG the velocity of the airplane with respect to the ground, and 

		vWG the velocity of the wind with respect to the ground, then 

		vPG = vPW + vWG , as shown in the diagram. 

	We have two unknowns: vPG and q  (or a).  

	If we use the law of sines for the vector triangle, we have

		vPW/sin (90° + b ) = vWG/sin a ,   or  

		  sin a 	= (vWG/vPW)sin (90° + b )  

				= [(120 km/h)/(680 km/h)] sin (90.0° + 35.0°)  = 0.145,   or   a = 8.31°.

	Thus we have q = a + b = 8.31° + 35.0° =        43.3° N of E.



71.	If 	vCG is the velocity of the car with respect to the ground, 

		vMG the velocity of the motorcycle with respect to the ground, and 

		vMC the velocity of the motorcycle with respect to the car, then 

		vMC = vMG – vCG .

	Because the motion is in one dimension, for the initial relative velocity we have  

		vMC = vMG – vCG = (95.0 km/h – 75.0 km/h)/(3.6 ks/h) = 5.56 m/s.

	For the linear motion, in the reference frame of the car we have

		x = x0 + v0t + !at2; 

		60.0 m = 0 + (5.56 m/s)(10.0 s) + !a(10.0 s)2, which gives       a = 0.0889 m/s2.

	Note that this is also the acceleration in the reference frame of the ground.



72.	(a)	For the magnitude of the resultant to be equal to the sum of the magnitudes, the two vectors 

		must be        parallel.

	(b)	The expression is the one we use when we find the magnitude of a vector from its rectangular 

		components.  Thus the two vectors must be       perpendicular.

	(c)	The only way to have the sum and difference of two magnitudes be equal is for V2 = – V2, or V2 = 0.

		Only a zero vector has zero magnitude:       V2 = 0.
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73.	The displacement is shown in the diagram.  

	For the components, we have

		Dx = 60 m, Dy = – 35 m, Dz = – 12 m.

	To find the magnitude we extend the process for two dimensions:

		 D 	= (Dx2 + Dy2 + Dz2)1/2 

			= [(60 m)2 + (– 35 m)2 + (– 12 m)2]1/2 =        70 m.

	The direction is specified by the two angles shown, 

	which we find from

		 tan qh 	= Dy/Dx = (35 m)/(60 m) = 0.583, 

	which gives      qh = 30° from the x-axis toward the – y-axis;

		 tan qv 	= Dz/(Dx2 + Dy2)1/2 

				= (12 m)/[(60 m)2 + (– 35 m)2]1/2 = 0.173, which gives      qv = 9.8° below the horizontal.



74.	If we assume constant acceleration along the slope, we have

		v = v0 + at;

		0 = [(120 km/h)/(3.6 ks/h)] + a(12 s), which gives a =  – 2.78 m/s2 along the slope. 

	For the components we have

		ahorizontal = a cos 30° = (– 2.78 m/s2) cos 30° =         – 2.4 m/s2 (opposite to the truck’s motion).

		avertical = a sin 30° = (– 2.78 m/s2) sin 30° =         – 1.4 m/s2 (down).
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75.	The horizontal velocity is constant, and the vertical velocity will 

	be zero when the pebbles hit the window.  Using the coordinate 

	system shown, we find the vertical component of the initial 

	velocity from

		vy2 = v0y2 + 2ay(h – y0) ;

		0  = v0y2 + 2(– 9.80 m/s2)(8.0 m – 0),  which gives v0y = 12.5 m/s.  

	(We choose the positive square root because we know that the pebbles are thrown upward.)

	We find the time for the pebbles to hit the window from the vertical motion:

		vy = v0y + ayt;  

		0 = 12.5 m/s + (– 9.80 m/s2)t, which gives t = 1.28 s.

	For the horizontal motion we have

		x = x0 + v0xt;  

		9.0 m = 0 + v0x(1.28 s), which gives      v0x = 7.0 m/s.

	Because the pebbles are traveling horizontally when they hit the window, this is their speed.



76.	(a)	We choose a coordinate system with the origin at the release point, with x horizontal and y 

		vertical, with the positive direction down.  We find the time of flight from the horizontal motion: 

			x = x0 + v0xt; 

			65.0 m = 0 + (145 m/s)t, which gives t  = 0.448 s.

		We find the distance the bullet falls from

			y = y0 + v0yt + !ayt2;  

			y = 0 + 0 + !(9.80 m/s2)(0.448 s)2 =         0.985 m.  

	(b)	The bullet will hit the target at the same elevation, so we can use the expression for the 

		horizontal range: 

			R = v02 sin(2q0)/g;

			65.0 m = (145 m/s)2 sin(2q0)/(9.80 m/s2), which gives 

			sin(2q0) = 0.0303,   or   2q0 = 1.74° ,          q0 = 0.87°.

		The larger angle of 89.1° is unrealistic.
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77.	We see from the diagram that

		cos q = Ax/A = (46.4)/(52.8) = 0.879,   or         q = ± 28.5°.

	For the y-component, we have

		Ay = A sin q = (52.8) sin (± 28.5°) =       ± 25.2.

	The second vector (below the x-axis) is not shown in the diagram.
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78.	The velocity of the rain with respect to the train is vRT = vR – vT , where 

		vR is the velocity of the rain with respect to the ground  and 

		vT  is the velocity of the train with respect to the ground.  

	From the diagram we have

		tan q = vT/vR ,    or         vR = vT/tan q.
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79.	If 	vPW is the velocity of the airplane with respect to the wind, 

		vPG the velocity of the airplane with respect to the ground, and 

		vWG the velocity of the wind with respect to the ground, then 

		vPG = vPW + vWG , as shown in the diagram. 

	Because the plane has covered 180 km in 1.00 hour, vPG = 180 km/h.

	We use the diagram to write the component equations:

		vWGE = vPGE = vPG sin 45° = (180 km/h) sin 45° = 127 km/h;

		vWGN 	= vPGN – vPWN =  – vPG cos 45° – vPW 

				= – (180 km/h) cos 45° – (– 240 km/h) = 113 km/h.

	For the magnitude we have

		vWG = (vWGE2 + vWGN2)1/2 = [(127 km/h)2 + (113 km/h)2]1/2 =        170 km/h.

	We find the angle from

		tan q = vWGN/vWGE = (113 km/h)/(127 km/h) = 0.886, which gives      q = 41.5° N of E.



80.	We can find the time for the jump from the horizontal motion:

		x = vxt;     t = x/vx = (8.0 m)/(9.2 m/s) =        0.87 s.

	It takes half this time for the jumper to reach the maximum height or to fall from the maximum height.  If we consider the latter, we have

		y = y0 + v0yt + !ayt2,   or   0 = hmax + 0 + !(– 9.80 m/s2)(0.435 s)2, which gives         hmax  = 0.93 m.



81.	Because the golf ball returns to the same elevation, we can use the expression for the horizontal range.  The horizontal range on Earth is given by R = v02 sin(2q0)/g, whereas on the Moon it is 

		RMoon = v02 sin(2q0)/gMoon.  

	Because we assume the same v0 and q0 , when we divide the two equations, we get 

		RMoon/R = g/gMoon ,  or    

		gMoon = (R/RMoon)g  = [(30 m)/(180 m)](9.80 m/s2) =        1.6 m/s2. 
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82.	We choose a coordinate system with the origin at home plate, 

	x horizontal and y up, as shown in the diagram. 

	The minimum speed of the ball is that which will have the 

	ball just clear the fence.  The horizontal motion is 

		x = v0xt;    

		92 m = v0 cos 40° t, which gives  v0t = 120 m.  

	The vertical motion is 

		y = y0 + v0yt + !ayt2;    

		12 m = 1.0 m + v0 sin 40° t + !(– 9.80 m/s2)t2.

	We can use the first equation to eliminate v0t  from the second and 

	solve for t, which gives t = 3.67 s.  

	When this value is used in the first equation, we get v0 =       33 m/s.



83.	We choose a coordinate system with the origin at the takeoff point, with x horizontal and y vertical, with the positive direction down.  

	We find the time for the diver to reach the water from the vertical motion:

		y = y0 + v0yt + !ayt2;  

		35 m = 0 + 0 + !(9.80 m/s2)t2, which gives       t = 2.7 s.

	The horizontal motion will have constant velocity.  

	We find the minimum horizontal initial velocity needed to land beyond the rocky outcrop from

		x = x0 + v0xt; 

		5.0 m = 0 + v0(2.7 s), which gives      v0 = 1.9 m/s.
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84.	We use the coordinate system shown in the diagram.

	We find the time for the ball to reach the net from the 

	vertical motion:

		y = y0 + v0yt + !ayt2;    

		0.90 m = 2.50 m + 0 + !(– 9.80 m/s2)t2, which gives t = 0.571 s.

	We find the initial velocity from the horizontal motion:

		x = v0xt;    

		15.0 m = v0 (0.571 s), which gives  v0 = 26.3 m/s.  

	We find the time for the ball to reach the ground from the 

	vertical motion:

		y = y0 + v0yt2 + !ayt22;    

		0 = 2.50 m + 0 + !(– 9.80 m/s2)t22, which gives         t2 = 0.714 s.

	We find where it lands from the horizontal motion:

		x2 = v0t2 = (26.3 m/s)(0.714 s) = 18.8 m.  

	Because this is 18.8 m – 15.0 m =       3.8 m beyond the net,       which is less than 7.0 m, the serve is       good.





85.	(a)	When the boat moves upstream the speed with respect to the bank is v – u.  When the boat 

		moves downstream the speed with respect to the bank is v + u.  For each leg the distance traveled 

		is !D, so the total time is

			t = [!D/(v – u)] + [!D/(v + u)] = !D(v + u + v – u)/(v – u)(v + u) =         Dv/(v2 – u2).
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	(b)	To move directly across the river the boat must head at an 

		angle q, as shown in the diagram.  From the diagram we see 

		that the speed with respect to the shore is

			vBS = (v2 – u2)1/2,

		during both legs of the trip.  Thus the total time is

			t = [!D/(v2 – u2)1/2] + [!D/(v2 – u2)1/2] =          D/(v2 – u2)1/2.

	We must assume that u < v, otherwise the boat will be swept 

	downstream and never make it across the river.  This appears in 

	our answers as a negative time in (a) and the square root of a negative number in (b).
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86.	If 	vPA is the velocity of the airplane with respect to the air, 

		vPG the velocity of the airplane with respect to the ground, and 

		vAG the velocity of the air(wind) with respect to the ground, then 

		vPG = vPA + vAG , as shown in the diagram. 

	From the diagram we find the two components of vPG:

		vPGW = vAG sin 45° = (100 km/h) sin 45° = 70.7 km/h;

		vPGN = vPA – vAG cos 45° = 200 km/h – (100 km/h) cos 45° = 129.3 km/h.

	For the magnitude we have

		vPG = (vPGW2 + vPGN2)1/2 = [(70.7 km/h)2 + (129.3 km/h)2]1/2 =      147 km/h.

	We find the angle from

		tan q = vPGW/vPGN = (70.7 km/h)/(129.3 km/h) = 0.547, which gives        

		q = 28.7° west of north.







87.	If 	vAG is the velocity of the automobile with respect to the ground, 

		vHG the velocity of the helicopter with respect to the ground, and 

		vHA the velocity of the helicopter with respect to the automobile, then 

		vHA = vHG – vAG .

	For the horizontal relative velocity we have  

		vHA = vHG – vAG = (200 km/h – 150 km/h)/(3.6 ks/h) = 13.9 m/s.

	This is the initial (horizontal) velocity of the parcel, so we can find the time of fall from

		y = y0 + v0yt + !ayt2;    

		78.0 m = 0 + 0 + !(+ 9.80 m/s2)t2, which gives t = 3.99 s.

	During this time, we find the horizontal distance the parcel travels with respect to the car from

		x = vHAt = (13.9 m/s)(3.99 s) = 55.4 m.

	Because the helicopter is always directly above the parcel, this is how far behind the automobile the helicopter must be when the parcel is dropped.  Thus we find the angle from

		tan q = y/x = (78.0 m)/(55.4 m) = 1.41, which gives       q = 54.6° below the horizontal.
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88.	We use the coordinate system shown in the diagram, 

	with up positive.  

	For the horizontal and vertical motions we have

		x = x0 + v0xt, L = 0 + (v0 cos q)t  = (v0 cos q)t;

		y = y0 + v0yt + !ayt2;

		h = 0 + (v0 sin q)t + !(– g)t2 = (v0 sin q)t – !gt2. 

	We combine these equations to get

		h = (v0 sin q)(L/v0 cos q) – !g(L/v0 cos q)2, which gives 

		v02 = gL2/2(L tan q – h) cos2 q.

	From this we can find the speed required to hit the center of the basket:

		v02 = (9.80 m/s2)(11.00 m)2/2[(11.00 m) tan 38.0° – (2.60 m – 2.10 m)] cos2 38.0°, 

	which gives v0 = 10.86 m/s.

	If we treat the small change in L as a differential, we find the small change in v0 by differentiating:

		2v0 dv0 = (g/2 cos2 q){[2L/(L tan q – h)] + L2(– tan q)/(L tan q – h)2} dL 

				= [gL2/2(L tan q – h) cos2 q]{[tan q – (2h/L)] /(L tan q – h)} dL 

				= v02{[tan q – (2h/L)] /(L tan q – h)} dL, so

		dv0 = !v0{[tan q – (2h/L)] /(L tan q – h)} dL 

			= !(10.86 m/s){[(tan 38.0° – 2(0.50 m)/(11.00 m)]/[(11.00 m) tan 38.0° – 0.50 m]} (± 0.22 m) 

			= ± 0.10 m/s.

	Thus the range of initial speeds is       10.76 m/s < v0 < 10.96 m/s.





89.	(a)	The rotational speed at the equator is

			v0 = 2prE/T = 2p(6.38 ´ 106 m)/(86,400 s) =       464 m/s.

	(b)	At a latitude q, the radius of rotation (distance to the axis of rotation) is rE cos q.  The rotational 

		speed is

			v = 2prE cos q/T = v0 cos q = (464 m/s) cos 40° =       355 m/s.
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90.	We use the coordinate system shown in the diagram, 

	with up positive.  For the horizontal motion, we have

		x = v0xt;    

		L = (v0 cos q)t;

		195 m = (v0 cos q)(7.6 s), which gives v0 cos q = 25.7 m/s.

	For the vertical motion, we have

		y = y0 + v0yt + !ayt2; 

		H = 0 + (v0 sin q)t + !(– g)t2;

		155 m = (v0 sin q)(7.6 s) + !(– 9.80 m/s2)(7.6 s)2, which gives v0 sin q = 57.6 m/s.

	We can find the initial angle q by dividing the two results:

		tan q = (v0 sin q )/(v0 cos q ) = (57.6 m/s)/(25.7 m/s) = 2.24, which gives  q = 66.0°.

	Now we can use one of the previous results to find the initial velocity:

		v0 = (25.7 m/s)/cos q  = (25.7 m/s)/cos 66.0° = 63 m/s.

	Thus the initial velocity is        63 m/s, 66° above the horizontal.



91.	We use the coordinate system shown in the diagram.  

�

	If Agent Logan heads downstream at speed vB at an 

	angle q, the time required to cross the river is

		t1 = D/vB cos q.

	The distance he will travel in the y-direction in this time is

		y = (vB sin q + vW)t1 = (D/vB)[(vB sin q + vW)/cos q].

	Because he will be below the point directly across the river, 

	he must run this distance, which, at speed vL , will take a time

		t2 = y/vL = (D/vBvL)[(vB sin q + vW)/cos q].

	Thus the total time is

		t = t1 + t2 = (D/vBvL)[(vL + vB sin q + vW)/cos q].

	To find the angle that produces the minimum time, we set dt/dq = 0:

		dt/dq 	=  (D/vBvL){vB – [(vL + vB sin q + vW)(– sin q)/cos2 q]} 

				= (D/vBvL){[vB cos2 q + (vL + vW) sin q  + vB sin2 q]/cos2 q} 

				= (D/vBvL cos2 q)[vB + (vL + vW) sin q] = 0, which gives

		sin q = – vB/(vL + vW) = – (1.50 m/s)/( 3.00 m/s + 0.80 m/s) = – 0.395, q = – 23°.

	The time to reach the shore is

		t1 = D/vB cos q = (1600 m)/(1.50 m/s) cos (– 23°) = 1160 s.

	The distance he must run is

		y = (vB sin q + vW)t1 = [(1.50 m/s) sin (– 23°) + 0.80 m/s](1160 s) = 243 m.

	The running time is

		t2 = y/vL = (243 m)/(3.00 m/s) = 81 s,

	so the total time is

		t = t1 + t2 = 1160 s + 81 s = 1240 s = 20.7 min.

	Thus Agent Logan must      row at an angle of 23° upstream and run 243 m in a total time of 20.7 min.

	Note that if the initial angle is chosen upstream, it is very difficult to keep the signs straight, because the landing point could be above or below the point directly across the river, that is, positive or negative.  This is also a good problem for a numerical solution on a spreadsheet, where absolute values can be used.







92.	If 	vSW is the velocity of the ship with respect to the water, 

		vJS the velocity of the jogger with respect to the ship, and 

		vJW the velocity of the jogger with respect to the water, then 

		vJW = vJS + vSW .

	We choose the direction of the ship as the positive direction.  Because all vectors are parallel, in each case the motion is one-dimensional.

	When the jogger is moving toward the bow, we have

		vJW = vJS + vSW = 2.0 m/s + 8.5 m/s =         10.5 m/s in the direction of the ship's motion.

	When the jogger is moving toward the stern, we have

		vJW = – vJS + vSW = – 2.0 m/s + 8.5 m/s =         6.5 m/s in the direction of the ship's motion.



93.	The centripetal acceleration must equal g:

		g = v2/R = (2pR/T)2/R = 4p2R/T2;

		9.80 m/s2 = 4p2(0.55 ´ 103 m)/T2, which gives T = 47.1 s.

	For the rotation speed we have

		revolutions/day = (86,400 s/day)/(47.1 s/rev) =      1.8 ´ 103 rev/day. 



94.	The centripetal acceleration is

		aR = v2/r,   or   r = v2/aR .

	Thus r is minimal when aR is maximal:

		rmin = [(700 km/h)/(3.6 ks/h)]2/(6.0)(9.80 m/s2) = 6.4 ´ 102 m =       0.64 km.
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