CHAPTER 5 - Further Applications of Newton’s Laws



�

1.	The friction is kinetic, so Ffr = mkFN.  With constant velocity, 

	the acceleration is zero.  

	Using the force diagram for the crate, we can write ?F = ma:

		x-component:  F – mkFN = 0; 

		y-component:  FN – Mg = 0.

	Thus FN = Mg, and  

		F = mkFN = mkMg  = (0.30)(12.0 kg)(9.80 m/s2) =      35 N.

	If mk = 0, there is       no force       required to maintain constant speed.
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2.	(a)	In general, static friction is given by Ffr = msFN.  Immediately 

		before the box starts to move, the static friction force reaches 

		its maximum value: Ffr,max = msFN.  For the instant before the box 

		starts to move, the acceleration is zero.

		Using the force diagram for the box, we can write ?F = ma:

			x-component:  F – msFN = 0; 

			y-component:  FN – Mg = 0.

		Thus FN = Mg, and  

			F = msFN = msMg ;

			25.0 N = ms(6.0 kg)(9.80 m/s2), which gives      ms = 0.43.

	(b)	When the box accelerates and the friction changes to kinetic, we have

			F – mkFN = Ma;

			25.0 N – mk(6.0 kg)(9.80 m/s2) = (6.0 kg)(0.50 m/s2), which gives      mk = 0.37.
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3.	(a)								(b)					(c)

	

	In (a) the friction is static and opposes the impending motion down the plane.

	In (b) the friction is kinetic and opposes the motion down the plane.

	In (c) the friction is kinetic and opposes the motion up the plane.
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4.	If we simplify the forces so that there is one normal force, 

	we have the diagram shown.  We can write ?F = ma:

		x-component:  – Ffr + mg sin q = 0; 

		y-component:  FN – mg cos q = 0.

	When we combine the two equations, we have

		tan q = Ffr/FN = ms. 

	Thus we have

		tan qmax = ms = 0.8,        qmax = 39°.
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5.	If we simplify the forces so that there is one normal force, we have the 

	diagram shown.  The friction force provides the acceleration.  

	We can write ?F = ma:

		x-component:  Ffr = Ma; 

		y-component:  FN – Mg = 0.

	Thus we have

		a =  Ffr/M = msFN/M = msg.

	The minimum value of ms is 

		ms,min = a/g =       0.20.
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6.	If we simplify the forces so that there is one normal force, we have the 

	diagram shown.  The friction force provides the acceleration.  

	We can write ?F = ma:

		x-component:  Ffr = Ma; 

		y-component:  FN – Mg = 0.

	Thus we have

		a =  Ffr/M = msFN/M = msg.

	The maximum value of a is 

		amax = msg = (0.80)(9.80 m/s2) =       7.8 m/s2.
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7.	While the box is sliding down, friction will be up the 

	plane, opposing the motion.  From the force diagram for 

	the box, we have ?F = ma:

		x-component:	mg sin q – Ffr = ma;

		y-component:	FN – mg cos q = 0.

	From the x-equation, we have

		Ffr	= mg sin q – ma = m(g sin q – a ) 

			= (15.0 kg)[(9.80 m/s2) sin 30° – (0.30 m/s2)] 

			=       69 N.

	Because the friction is kinetic, we have

		Ffr =  mkFN = mkmg cos q;

		69 N = mk(15.0 kg)(9.80 m/s2) cos 30°, which gives        mk = 0.54.
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8.	On the horizontal the only force is the friction force, which 

	provides the acceleration:

		– Ffr = ma1.   

	On the hill, we have

		x-component:	– mg sin q – Ffr = ma2 ,  or

		a2 	= – g sin q  + a1 

			= – (9.80 m/s2) sin 13°  + (– 4.80 m/s2) =      – 7.00 m/s2.
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9.	For the hanging box we can write ?F = ma:

		y-component:  mIIg – FT = 0.

	For the box on the table we can write ?F = ma:

		x-component: FT – Ffr = 0; 

		y-component:  FN – mIg = 0.

	When we combine the equations, we have

		Ffr = FT = msFN = msmIg.

	Thus we have

		mI = mII/ms = (2.0 kg)/(0.25) =      8.0 kg.
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10.	From the force diagram for the soap, we have ?F = ma:

		x-component:	mg sin q – Ffr = ma;

		y-component:	FN – mg cos q = 0,  or FN = mg cos q.

	The friction is kinetic, so Ffr = mkFN = mkmg cos q.  

	From the x-equation we find the acceleration:

		a 	= g sin q –  mkg cos q = g(sin q –  mk cos q )

			= (9.80 m/s2)[sin 8.0° – (0.060) cos 8.0°] = 0.78 m/s2.

	For the motion of the soap, we find the time from

		x = x0 + v0t + !at2;

		9.0 m = 0 + 0 + !(0.78 m/s2)t2, which gives      t = 4.8 s.
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11.	The friction is kinetic, so Ffr = mkFN.  Because the push is no longer there, 

	the only horizontal force is the friction force.  Using the force diagram 

	for the box, we can write ?F = ma:

		x-component:  – mkFN = Ma;

		y-component:  FN – Mg = 0.

	Thus we have

		a = – mkg.

	For the motion with constant acceleration, we have

		v2 = v02 + 2ax = v02 + 2(– mkg)x;

		0 = (2.5 m/s)2 + 2(– 0.25)(9.80 m/s2)x, which gives x =      1.3 m.



�

12.	The boxes and the cord have the same acceleration with 

	the directions indicated on the diagram.  The length of 

	the horizontal piece of the cord is ¬1, so the vertical piece 

	has length ¬2 = ¬ – ¬1.  Because the cord has mass, the 

	tension will vary along the cord.  We call the magnitude 

	of the tension at the pulley FT3.  

	With the upper box and the horizontal piece of the cord 

	as the system, the tension at the pulley will be to the right.  

	We write ?F = ma:

		x-component:   FT3 – mkFN = [mI + mC(¬1/¬)]a;

		y-component:  FN – mIg = 0,  so

		FT3 – mkmIg = [mI + mC(¬1/¬)]a.

	With the lower block and the vertical piece of the cord 

	as the system, the tension at the pulley will be up.  

	We write ?F = ma:

		y-component:   [mII + mC(¬2/¬)]g – FT3 = [mII + mC(¬2/¬)]a.

	When we add the two equations, we get

		a = [mII + mC(¬2/¬) – mkmI]g/(mI + mII + mC).

	Note that as the cord moves over the pulley, the acceleration will not be constant.
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13.	From the force diagram for the car we have 

		x-component:   F – FT = mcara;

		y-component :   FN,car – mcarg = 0.

	From the force diagram for the trailer we have 

		x-component:   FT – mkFN,trailer = mtrailera;

		y-component:   FN,trailer – mtrailerg = 0,  

			or  FN,trailer = mtrailerg.

	If we add the two x-equations, we get

		F – mkmtrailerg = mcara + mtrailera;

		3.5 ´ 103 N – (0.15)(350 kg)(9.80 m/s2) = (1000 kg + 350 kg)a, which gives a = 2.21 m/s2.

	We can find the force on the trailer from the x-equation for the trailer:

		FT – mkmtrailerg = mtrailera;

		FT – (0.15)(350 kg)(9.80 m/s2) = (350 kg)(2.21 m/s2), which gives FT =        1.3 ´ 103 N.



14.	(a)	If the automobile does not skid, the friction is static, with Ffr = msFN.  On a level road, the 

		normal force is FN = mg.  The static friction force is the only force slowing the automobile and will 

		be maximum in order to produce the minimum stopping distance.  

		We find the acceleration from ?Fx = max:

			– msmg  = ma, which gives a = – msg .

		For the motion until the automobile stops, we have

			vfinal2 = v02 + 2a(x – x0);

			0 = v2 + 2(– msg)(xmin), which gives  xmin = v2/2msg .

	(b)	For the given data we have

			xmin = [(95 km/h)/(3.6 ks/h)]2/2(0.75)(9.80 m/s2) =       47 m.

	(c)	The only change is in the value of g:

			xmin = [(95 km/h)/(3.6 ks/h)]2/2(0.75)(1.63 m/s2) =       2.8 ´ 102 m.



15.	(a)	We write ?F = ma from the force diagram for the snow while it is stationary on the roof:
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			x-component:  mg sin q – Ffr = 0;

			y-component:  FN – mg cos q = 0. 

		When we combine the equations, we get

			Ffr = mg sin q = msFN = msmg cos q.

		Thus we have 

			ms = tan q = tan 30° =       0.58.

	(b)	We write ?F = ma from the force diagram for the 

		snow while it is sliding on the roof:

			x-component:  mg sin q – mkFN = ma;

			y-component:  FN – mg cos q = 0. 

		Thus a 	= g(sin q – mk cos q)

				= (9.80 m/s2)[sin 30° – (0.20) cos 30°] = 3.20 m/s2.

		For the motion on the roof, we have	

			v12 = v02 + 2a(x1 – x0) = 0 + 2(3.20 m/s2)(5.0 m), 

		which gives

			v1 =       5.7 m/s.

	(c)	The motion when the snow leaves the roof is projectile motion, 

		with an initial velocity of v1 =  5.7 m/s at 30° below the horizontal.

		If we use the new coordinate system shown, we have

			vx = v1 cos q = (5.7 m/s) cos 30° = 4.9 m/s;

			vy2 = (– v1 sin q )2 + 2gh = [– (5.7 m/s) sin 30°]2 + 2(– 9.80 m/s2)(– 10.0 m), 

		which gives vy = – 14.3 m/s.

		The speed of the snow is

			v = (vx2 + vy2)1/2 = [(4.9 m/s)2 + (– 14.3 m/s)2]1/2 =      15 m/s.





16.	On a level road, the normal force is FN = mg.  The kinetic friction force is the only force slowing the automobile.  We find the acceleration from the horizontal component of ?F = ma:

		– mkmg = ma, which gives 

		a = – mkg = – (0.80)(9.80 m/s2) = – 7.84 m/s2.

	For the motion until the automobile stops, we have

		v2 = v02 + 2a(x – x0);

		0 = v02 + 2(– 7.84 m/s2)(80 m), which gives v0 =        35 m/s (130 km/h).
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17.	(a)	The two crates must have the same acceleration.

		From the force diagram for crate 1 we have 

			x-component:   F – F12 –  mkFN1 = m1a;

			y-component:   FN1 – m1g = 0,  or  FN1 = m1g.

		From the force diagram for crate 2 we have 

			x-component:   F12 – mkFN2 = m2a;

			y-component:   FN2 – m2g = 0,  or  FN2 = m2g.

		If we add the two x-equations, we get

			F – mkm1g –  mkm2g = m1a + m2a;

			F – mk(m1 + m2)g  = (m1 + m2)a;

			750 N – (0.12)(80 kg + 210 kg)(9.80 m/s2) = 

					     (80 kg + 210 kg)a, which gives a =       1.4 m/s2.

	(b)	We can find the force between the crates from the 

		x-equation for crate 2:

			F12 – mkm2g = m2a;

			F12 – (0.12)(210 kg)(9.80 m/s2) = (210 kg)(1.41 m/s2), which gives

			F12 =        5.4 ´ 102 N.

	(c)	If the crates are reversed, the acceleration will be the same: a =       1.4 m/s2.

		For the force between the crates, we have

			F12 – mkm1g = m1a;

			F12 – (0.12)(80 kg)(9.80 m/s2) = (80 kg)(1.41 m/s2), which gives

			F12 =        2.1 ´ 102 N.
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18.	(a)	While the block is sliding down, friction will be up the 

		plane, opposing the motion.  From the force diagram for 

		the block, we have ?F = ma:

			x-component:	mg sin q – mkFN = ma.

			y-component:	FN – mg cos q = 0.

		When we combine these, we have

			a 	= g(sin q – mk cos q)

				= (9.80 m/s2)[sin 22.0° – (0.17) cos 22.0°] =       2.1 m/s2.

	(b)	For the motion of the block, we have	

			v2 = v02 + 2a(x – x0) = 0 + 2(2.13 m/s2)(9.3 m), 

		which gives

			v =       6.3 m/s.
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19.	We choose the origin for x at the bottom of the plane.  

	Note that down the plane (the direction of the acceleration) is positive. 

	(a)	From the force diagram for the block, we have ?F = ma:

			x-component:	mg sin q + mkFN = ma.

			y-component:	FN – mg cos q = 0.

		When we combine these, we have

			a 	= g(sin q + mk cos q)

				= (9.80 m/s2)[sin 22.0° + (0.17) cos 22.0°] = 5.22 m/s2.

		For the motion on the block until it stops, we have	

			v2 = v02 + 2a(x – x0);

			0 = (– 3.0 m/s)2 + 2(5.22 m/s2)(x – 0), which gives x =  – 0.86 m.

		Thus the block travels       86 cm up the plane.

	(b)	We find the time to reach the highest point from

			v = v0 + auptup ;

			0 = (– 3.0 m/s) + (5.22 m/s2)tup , which gives tup = 0.575 s.

		When the block slides down the plane, the friction force will reverse, so the acceleration is

			adown = g(sin q – mk cos q)

				= (9.80 m/s2)[sin 22.0° – (0.17) cos 22.0°] = 2.13 m/s2.

		We find the time to slide down from

			x = x0 + vt + !adowntdown2;

			0 = – 0.862 m + 0 + !(2.13 m/s2)tdown2, which gives tdown = 0.900 s.

		Thus the total time is

			t = tup + tdown = 0.575 s + 0.900 s =      1.5 s.
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20.	We find the angle each cable makes with the ground from

		sin q = (18 m)/(30 m) = 0.600,  q = 36.9°.

	From the force diagram for the concrete block, we have ?F = ma:

			x-component:	FT cos q – Ffr = 0

			y-component:	FN – mg + FT sin q = 0.

		When we combine these, we have

			FT cos q = Ffr = msFN = ms(mg – FT sin q),  or  

			FT 	= msmg/(cos q + ms sin q) 

				= (0.80)(1600 N)/[cos 36.8° + (0.80) sin 36.8°].  

		so      FT = 1.0 ´ 103 N.



21.	We choose the coordinate system shown in the force diagram and 
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	assume the cord is taut.

	(a)	From the force diagram for each block, we have ?F = ma:

			y-component (1)	FN1 – m1g cos q = 0,  or  

				FN1 = m1g cos q;

			x-component (1):	m1g sin q – m1FN1 – FT = m1a;

				(m1 sin q – m1m1 cos q)g – FT = m1a;

			y-component (2)	FN2 – m2g cos q = 0,  or  

				FN2 = m2g cos q;

			x-component (2):	m2g sin q – m2FN2 + FT = m2a;

				(m2 sin q – m2m2 cos q)g + FT = m2a.

		When we add the two x-equations, we have

			(m1 + m2)a = [(m1 + m2) sin q – (m1m1 + m2m2) cos q]g;

			(5.0 kg + 5.0 kg)a = {[(5.0 kg + 5.0 kg) sin 30° – [(0.20)(5.0 kg) + (0.30)(5.0 kg)] cos 30°}(9.80 m/s2) 

		which gives a =       2.8 m/s2.

	(b)	We find the tension from

			FT 	= m1[(sin q – m1 cos q)g – a] 

				= (5.0 kg){[sin 30° – (0.20) cos 30°](9.80 m/s2) – (2.78 m/s2)} =      2.1 N.

		Note that the positive result justifies our assumption that the cord is taut.
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22.	We choose the coordinate system shown in the force diagram.

	From the force diagram for each block, we have ?F = ma:

		y-component (1):	FN1 – m1g cos q = 0,  or  

			FN1 = m1g cos q;

		x-component (1):	m1g sin q – m1FN1 – FT = m1a1;

			(m1 sin q – m1m1 cos q)g – FT = m1a1;

		y-component (2):	FN2 – m2g cos q = 0,  or  

			FN2 = m2g cos q;

		x-component (2):	m2g sin q – m2FN2 + FT = m2a2;

			(m2 sin q – m2m2 cos q)g + FT = m2a2.

	The motion will depend on whether there is a tension in 

	the cord.  If there is no tension, the blocks will have 

	different accelerations:

		a1 = (sin q – m1 cos q)g;   a2 = (sin q – m2 cos q)g.

	(a)	If there is no tension and m1 < m2 , we see that a1 > a2 .  The lower block would move away from 

		the upper block, creating a tension in the cord.  Thus the two blocks must slide with the same 

		acceleration.

	(b)	If there is no tension and m1 > m2 , we see that a1 < a2 .  The upper block would move toward from 

		the lower block, and the tension would remain zero.  Thus each block will slide with its own 

		acceleration until the upper block contacts the lower block.

	(c)	In part (a) the two blocks have the same acceleration.  When we add the two x-equations, we have

			(m1 + m2)a = [(m1 + m2) sin q – (m1m1 + m2m2) cos q]g,   or  

			a = {sin q – [(m1m1 + m2m2)/(m1 + m2)] cos q}g.

		We find the tension from

			FT = m1[(sin q – m1 cos q)g – a] = m1g{sin q – m1 cos q – sin q + [(m1m1 + m2m2)/(m1 + m2)] cos q};

			FT = [m1m2(m2 – m1)/(m1 + m2)]g cos q.

		Note that if m1 > m2 , we would get a negative tension, which the cord cannot provide.

		In part (b),      FT = 0;       the two blocks have different accelerations:

			a1 = (sin q – m1 cos q)g;   a2 = (sin q – m2 cos q)g.
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23.	We choose the coordinate system shown in the force diagram.

	If the blocks are connected by a rod, which can support a 

	tension or a compression, they must have the same acceleration.

	From the force diagram for each block, we have ?F = ma:

		y-component (1):	FN1 – m1g cos q = 0,  or  

			FN1 = m1g cos q;

		x-component (1):	m1g sin q – m1FN1 – FT = m1a;

			(m1 sin q – m1m1 cos q)g – FT = m1a;

		y-component (2):	FN2 – m2g cos q = 0,  or  

			FN2 = m2g cos q;

		x-component (2):	m2g sin q – m2FN2 + FT = m2a;

			(m2 sin q – m2m2 cos q)g + FT = m2a.

	When we add the two x-equations, we have

		(m1 + m2)a = [(m1 + m2) sin q – (m1m1 + m2m2) cos q]g,   or  

		a = {sin q – [(m1m1 + m2m2)/(m1 + m2)] cos q}g.

	We find the tension from

		FT = m1[(sin q – m1 cos q)g – a] = m1g{sin q – m1 cos q – sin q + [(m1m1 + m2m2)/(m1 + m2)] cos q};

		FT = [m1m2(m2 – m1)/(m1 + m2)]g cos q.

	If m1 < m2 , there will be tension in the rod; if m1 > m2 , there will be compression in the rod.







�

24.	(a)	For the hanging box we can write ?F = ma:

			y-component:  m2g – FT = 0.

		For the box on the table we can write ?F = ma:

			x-component: FT – Ffr = 0; 

			y-component:  FN – m1g = 0.

		When we combine the equations, we have

			Ffr = FT = m2g = msFN = msm1g.

		Thus we have

			m1 = m2/ms = (2.0 kg)/(0.40) =      5.0 kg.

	(b)	The acceleration is zero, so the only change is that 

		the friction is kinetic:

			m1 = m2/mk = (2.0 kg)/(0.30) =      6.7 kg.
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25.	(a)	We select the origin at the bottom of the ramp, with 

		up positive.  We find the acceleration from the motion up 

		the ramp:

			v2 = v02 + 2a(x – x0);

			0 = v02 + 2a(d – 0), which gives a = – v02/2d. 

		When the block slides up the ramp, kinetic friction will 

		be down, opposing the motion.  From the force diagram 

		for the block, we have ?F = ma:

			x-component:	– mg sin q – mkFN = ma;

			y-component:	FN – mg cos q = 0.

		When we eliminate FN from the two equations and use the result for a, we get

			– mg sin q – mkmg cos q = m(– v02/2d), which gives

			mk = (v02/2gd cos q) – tan q.

	(b)	Once the block stops, the friction becomes static and will be up the plane, to oppose the impending 

		motion down.  If the block remains at rest, the acceleration is zero.  The static friction force must be 

		= msFN and we have

			x-component:	– mg sin q + Ffr = 0,   or   Ffr = mg sin q = msmg cos q.

		Thus we know that        ms = tan q.
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26.	We simplify the forces to the three shown in the diagram.  

	If the car does not skid, the friction is static, with Ffr = msFN.  

	The static friction force will be maximum just before the car slips.

	We write ?F = ma from the force diagram:

		x-component:   mg sin qmax – msFN = 0;

		y-component:   FN – mg cos qmax = 0.

	When we combine these, we get

		tan qmax = ms = 0.15,   or    qmax = 8.5°.

	Thus a car will slip on any driveway with an incline greater than 8.5°.  

	The only driveway safe to park in is       Bonnie’s.
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27.	The direction of the kinetic friction force is determined by 

	the direction of the velocity, not the direction of the 

	acceleration.  We assume the block on the plane is moving up, 

	so the friction force is down.  The forces and coordinate systems 

	are shown in the diagram.  From the force diagram, with 

	the block m2 as the system, we can write ?F = ma:

		y-component: 	m2g – FT = m2a.

	From the force diagram, with the block m1 as the system, 

	we can write ?F = ma:

		x-component: 	FT – Ffr – m1g sin q  = m1a;

		y-component:	FN – m1g cos q = 0; with  Ffr =  mkFN.

	When we eliminate FT between these two equations, we get

		a  	= (m2 – m1 sin q – mkm1 cos q)g/(m1 + m2).

	(a)	For a mass m1 = 5.0 kg, we have

		a  	= [5.0 kg – (5.0 kg) sin 30° – (0.10)(5.0 kg) cos 30°](9.80 m/s2)/(5.0 kg + 5.0 kg) 

			=         2.0 m/s2 up the plane.

		The acceleration is up the plane because the answer is positive.  This agrees with our assumption 

		for the direction of motion.

	(b)	For a mass m1 = 2.0 kg, we have

		a  	= [5.0 kg – (2.0 kg) sin 30° – (0.10)(2.0 kg) cos 30°](9.80 m/s2)/(2.0 kg + 5.0 kg) 

			=         5.4 m/s2 up the plane.

		The acceleration is up the plane because the answer is positive.  This agrees with our assumption 

		for the direction of motion.



28.	If we assume the block is moving up the plane, we find the mass required for zero acceleration from

		a  = (m2 – m1up sin q – mkm1up cos q)g/(m1up + m2);

		0 = [5.0 kg – m1up sin 30° – (0.50)m1up cos 30°](9.80 m/s2)/(m1up + 5.0 kg).

	which gives m1up = 5.4 kg.

	If we assume the block is moving down the plane, the direction of the friction force reverses.  We find the mass required for zero acceleration from

		a  = (m2 – m1down sin q + mkm1down cos q)g/(m1down + m2);

		0 = [5.0 kg – m1down sin 30° + (0.50)m1down cos 30°](9.80 m/s2)/(m1down + 5.0 kg).

	which gives m1down = 75 kg.

	Because ms = mk , if the blocks are at rest, they will remain at rest if      5.4 kg = m1 = 75 kg.
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29.	The kinetic friction force will be up the slide to oppose the motion.

	We choose the positive direction in the direction of the acceleration.  

	From the force diagram for the child, we have ?F = ma:

		x-component:	mg sin q – Ffr = ma;

		y-component:	FN – mg cos q = 0.

	When we combine these, we get

		a = g sin q – mkg cos q  = g(sin q – mk cos q).

	We can use this for the frictionless slide if we set mk = 0.

	For the motion of the child, we have

		v2 = v02 + 2a(x – x0) = 0 + 2ad, where d is the distance along the slide.

	If we form the ratio for the two slides, we get

		(vfriction/vnone)2 = afriction/anone = (sin q – mk cos q)/sin q;

		(!)2 = (sin 28° – mk cos 28°)/sin 28°, which gives      mk = 0.40.
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30.	On a level belt, the normal force is FN = mg.  The static 

	friction force provides the acceleration and reverses 

	direction for the second half of the trip.  We find the 

	acceleration from the horizontal component of ?F = ma:

		Ffr = ma,   or  a = Ffr/m = msg.

	From the symmetry of the motion, for the first half of 

	the distance we have

		x = v0t + !at2;

		!D = 0 + !a(!t)2,   or   t2 = 4D/a.

	We see that the minimum time will be achieved with the maximum acceleration: amax = msg:

		tmin2 = 4(10 m)/(0.60)(9.80 m/s2),  which gives tmin =        2.6 s.



31.	The velocity is constant, so the acceleration is zero.
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	(a)	From the force diagram for the bicycle, we can write ?F = ma:

			x-component:   mg sin q – FD = 0,  or   

			mg sin q = cv2;

			(80.0 kg)(9.80 m/s2) sin 7.0° = c[(9.5 km/h)/(3.6 ks/h)]2, which gives 

			c = 14 kg/m.

	(b)	We have an additional force in ?F = ma:

			x-component:   F + mg sin q – FD = 0,  so

			   F	= cv2 – mg sin q 

				= (13.7 kg/m)[(25 km/h)/(3.6 ks/h)]2 – (80 kg)(9.80 m/s2) sin 7.0° =       5.7 ´ 102 N.



�

32.	(a)	The two blocks must have the same acceleration.

		From the force diagram for the top block we have 

			x-component:   Ffr1 = M1a;

			y-component:   FN1 – M1g = 0,  or  FN1 = M1g.

		For the static friction force we have

			Ffr1 = M1a = msFN1 = mM1g.

		Thus we have

			m = a/g = (5.2 m/s2)/(9.80 m/s2) =      0.53.

	(b)	If the coefficient of friction is less, the top block will slide.  

		Because the friction force is one-half the force in part (a), 

		the acceleration is also reduced by half:

			a1 = !a = !(5.2 m/s2) =      2.6 m/s2.

	(c)	For the relative acceleration we have

			a12 = a1 – a = 2.6 m/s2 – 5.2 m/s2 =      – 2.6 m/s2.

	(d)	From the force diagram for the bottom block we have 

			x-component:   F – Ffr1 = M2a;

			y-component:   FN2 – FN1 – M2g = 0,  or  FN2 = M1g + M2g.

		For part (a), if we add the two x-equations, we get

			Fa 	= M1a + M2a

				= (4.0 kg + 12.0 kg)(5.2 m/s2) =      83 N.

		For part (b), if we add the two x-equations, we get

			Fb 	= M1a1 + M2a

				= (4.0 kg)(2.6 m/s2) + (12.0 kg)(5.2 m/s2) =      73 N.



















33.	If the triangular block is pushed so that the small block 

	tends to move up the incline, the static friction force on 

	the small block will be down the incline, as shown.  

	We choose a coordinate system with the x-axis in the 

	direction of the acceleration a of the triangular block.  

	From the force diagram for the small block we have 

		x-component:	FN sin q + Ffr cos q = max;

		y-component:	FN cos q – mg – Ffr sin q = may.

	The top block will not slide until Ffr > mFN.  As long as 

	this is not true, ax = a, and ay = 0.  Thus we find the 

	limiting acceleration by using these conditions:

		FN cos q – mg – mFN sin q = 0,  or  FN = mg/(cos q – m sin q);

�

		FN sin q + mFN cos q = mamax ,  or  

		amax = FN(sin q + m cos q)/m = g(sin q + m cos q)/(cos q – m sin q).

	From the force diagram for the triangular block we have 

		x-component:	F – FN sin q – Ffr cos q = Ma.

	Thus the maximum force F for the small block to not slide, and thus the minimum force to make the small block slide, is

		Fmin = FN sin q + Ffr cos q + Mamax = (m + M)amax =       (m + M)g(sin q + m cos q)/(cos q – ms sin q).



34.	The centripetal acceleration of the Earth is

		 aR	= v2/r = (2pr/T)2/r = 4p2r/T2 

			= 4p2(1.50 ´ 1011 m)/(3.16 ´ 107 s)2 =        5.93 ´ 10–3 m/s2 toward the Sun.

	The net force that produces this acceleration is

		Fnet = mEaR = (5.98 ´ 1024 kg)(5.93 ´ 10–3 m/s2) =       3.55 ´ 1022 N toward the Sun.

	This force is the gravitational attraction from the       Sun.



�

35.	If the car does not skid, the friction is static, with Ffr = msFN.

	This friction force provides the centripetal acceleration.  We take a 

	coordinate system with the x-axis in the direction of the 

	centripetal acceleration.

	We write ?F = ma from the force diagram for the auto:

		x-component:  Ffr = maR = mv2/R;

		y-component:  FN – mg = 0.

	The speed is maximum when Ffr = Ffr,max = msFN.

	When we combine the equations, the mass cancels, and we get

		msg = vmax2/R; 

		(0.55)(9.80 m/s2) = vmax2/(80.0 m), which gives       vmax = 21 m/s.

	The mass canceled, so the result is      independent of the mass.



36.	The force on the discus produces the centripetal acceleration:

		F = maR = mv2/r; 

		60.0 N = (2.00 kg)v2/(1.00 m), which gives v =       5.48 m/s.



37.	(a)	The centripetal acceleration is

			aR = v2/r = (1.50 m/s)2/(9.0 m) =        0.25 m/s2 toward the center.

	(b)	The net horizontal force that produces this acceleration is

			Fnet = maR = (25.0 kg)(0.25 m/s2) =       6.3 N toward the center.



38.	The centripetal acceleration is

		aR = v2/r = w2r = (2pf)2r;

		(100,000)(9.80 m/s2) = (2pf)2(0.090 m), which gives f = 525 rev/s =       3.2 ´ 104 rpm.





�

39.	Yes.       If the bucket is traveling fast enough at the top of the 

	circle, in addition to the weight of the water a force from the 

	bucket, similar to a normal force, is required to provide the 

	necessary centripetal acceleration to make the water go in the 

	circle.  From the force diagram, we write

		FN + mg = ma = mvtop2/R.

	The minimum speed is that for which the normal force is zero:

		0 + mg = mvtop,min2/R,   or          vtop,min = (gR)1/2.

















�



40.	At the top of the trip, both the normal force and the weight 

	are downward, which we take for the positive direction.

	We write ?F = ma from the force diagram for the passenger:

		y-component:  FN + mg = mv2/R.

	The speed v will be minimum when the normal

	force is minimum.  The normal force can only push

	away from the seat, that is, with our coordinate 

	system it must be positive, so  FNmin = 0.

	Thus we have vmin2 = gR,   or  

		vmin = (gR)1/2 

			 = [(9.80 m/s2)(8.0 m)]1/2 =        8.9 m/s.











�

41.	The static friction force provides the centripetal acceleration.

	We write ?F = ma from the force diagram for the coin:

		x-component:  Ffr = mv2/R; 

		y-component:  FN – mg = 0.

	The highest speed without sliding requires  Ffr,max = msFN.

	The maximum speed before sliding is

		vmax = 2pR/Tmin = 2pRfmax 

			   = 2p(0.120 m)(50 /min)/(60 s/min) = 0.628 m/s.

	Thus we have

		msmg = mvmax2/R 

		ms(9.80 m/s2) = (0.628 m/s)2/(0.120 m), which gives ms =       0.34.



�

42.	The car will leave the road if the normal force becomes zero.

	For the radial direction the net force provides the radial 

	acceleration:

		mg cos q – FN = mv2/R,   or  FN = mg cos q – mv2/R.

	For the car to stay on the road, FN > 0, so we have

		mg cos q > mv2/R,  or  R > v2/g cos q.

	We see that we must use this restriction at the largest angle:

		Rmin 	= v2/g cos qmax 

				= [(90 km/h)/(3.6 ks/h)]2/(9.80 m/s2) cos 22° =       69 m.



43.	We find the speed of the skaters from the period of rotation:

		v = 2pr/T = 2p(0.80 m)/(3.0 s) = 1.68 m/s.

	The pull or tension in their arms provides the centripetal acceleration:

		FT 	= mv2/R;

			= (60.0 kg)(1.68 m/s)2/(0.80 m) =       2.1 ´ 102 N.



�

44.	The net force on Tarzan will provide his centripetal acceleration, 

	which we take as the positive direction.  

	We write ?F = ma from the force diagram for Tarzan:

		FT – mg = ma = mv2/R.

	The maximum speed will require the maximum tension that Tarzan can create:

		1400 N – (80 kg)(9.80 m/s2) = (80 kg)v2/(4.8 m), which gives v =      6.1 m/s.











45.	The mass moves in a circle of radius r and has a centripetal acceleration.

�

	We write ?F = ma from the force diagram for the mass:

		x-component:  FT cos q = mv2/r;

		y-component:  FT sin q – mg = 0.

	Combining these, we get

		rg = v2 tan q; 

		(0.600 m)(9.80 m/s2) = (7.54 m/s)2 tan q, which gives

		tan q = 0.103,    or         q = 5.91°.

	We find the tension from

		FT = mg/sin q = (0.150 kg)(9.80 m/s2)/ sin 5.91° =        14.3 N.



46.	For the rotating ball, the tension provides the centripetal acceleration, ?FR = MaR:

		FT = Mv2/R.

	We see that the tension increases if the speed increases, so the maximum tension determines the maximum speed:

		FTmax = Mvmax2/R;

		80 N = (0.35 kg)vmax2/(1.0 m), which gives       vmax = 15 m/s.

	If there were friction, it would be kinetic opposing the motion of the ball around the circle.  Because this is perpendicular to the radius and the tension, it would have       no effect      on the maximum speed.



�

47.	At the top of the hill, the normal force is upward and the 

	weight is downward, which we select as the positive direction.

	(a)	We write ?F = ma from the force diagram for the car:

			mcarg – FNcar = mv2/R;

			(1000 kg)(9.80 m/s2) – FNcar = (1000 kg)(20 m/s)2/(100 m), 

		which gives        FNcar = 5.8 ´ 103 N.

	(b)	When we apply a similar analysis to the driver, we have

			(70 kg)(9.80 m/s2) – FNdriver = (70 kg)(20 m/s)2/(100 m), 

		which gives        FNdriver = 4.1 ´ 102 N.

	(c)	For the normal force to be equal to zero, we have

			(1000 kg)(9.80 m/s2) – 0 = (1000 kg)v2/(100 m), 

		which gives         v = 31 m/s       (110 km/h or 70 mi/h).













�

48.	The masses will have different velocities:

		v1 = 2pr1/T = 2pr1 f;     v2 = 2pr2/T = 2pr2 f.

	We choose the positive direction toward the center of the circle.  

	For each mass we write ?Fr = mar:  

		m1:	FT1 – FT2 =   m1v12/r1 = 4p2m1r1 f  2;

		m2:	FT2 =   m2v22/r2 = 4p2m2r2 f  2.

	When we use this in the first equation, we get

		FT1 = FT2 + 4p2m1r1 f  2;  thus

		FT1 =  4p2f  2(m1r1 + m2r2);     FT2 = 4p2f  2m2r2.



�

49.	We consider a small segment of the hoop which subtends 

	an angle dq, so it has a mass dm = (m/2pR)R dq = (m/2p) dq.  

	The speed of the segment is v = 2pRf.

	The net radial force from the two tensions provides the 

	centripetal acceleration:

		2FT sin !(dq) = dm v2/R.

	Because the angle is small, we have sin !(dq) ˜ !(dq), and get

		2FT !(dq) = (m /2p) dq (2pRf )2/R, which gives       

		FT = 2pmRf 2.











50.	We convert the speeds:

�

		(70 km/h)/(3.6 ks/h) = 19.4 m/s;

		(100 km/h)/(3.6 ks/h) = 27.8 m/s.

	At the speed for which the curve is banked perfectly, 

	there is no need for a friction force.  We take the x-axis 

	in the direction of the centripetal acceleration.

	We write ?F = ma from the force diagram for the car:

		x-component: 	FN1 sin q = ma1 = mv12/R;

		y-component: 	FN1 cos q – mg = 0.

	Combining these, we get v12 = gR tan q. 

		(19.4 m/s)2 = (9.80 m/s2) (65 m) tan q, which gives

		tan q = 0.591,    or      q = 30.6°.

	At a higher speed, there is need for a friction force, which will be down the incline.  If the automobile does not skid, the friction is static, with Ffr = msFN.

	We write ?F = ma from the force diagram for the car:

		x-component: 	FN2 sin q + Ffr cos q = ma2 = mv22/R;

		y-component: 	FN2 cos q – Ffr sin q – mg = 0.

	We eliminate Ffr by multiplying the x-equation by sin q, the y-equation by cos q, and adding:

		FN2 = m{[(v22/R) sin q] + g cos q}.

	By reversing the trig multipliers and subtracting, we eliminate FN2 to get

		Ffr = m{[(v22/R) cos q] – g sin q}.

	If the automobile does not skid, the friction is static, with Ffr = msFN:	

		m{[(v22/R) cos q] – g sin q} = msm{[(v22/R) sin q] + g cos q}, or

		ms = {[(v22/R) cos q] – g sin q}/{[(v22/R) sin q] + g cos q} = [(v22/gR)] –  tan q]/{[(v22/gR) tan q] + 1}.

	When we express tan q in terms of the design speed, we get

		 ms 	= [(v22/gR) –  (v12/gR)]/{[(v22/gR)(v12/gR)] + 1} = (1/gR)(v22 –  v12)/[(v1v2/gR)2 + 1]

			= [1/(9.80 m/s2)(65 m)][(27.8 m/s)2 – (19.4 m/s)2]/{[(19.4 m/s)(27.8 m/s)/(9.80 m/s2)(65 m)]2 + 1} 

			=       0.36.



�

51.	We convert the speed: (90 km/h)/(3.6 ks/h) = 25.0 m/s.

	At the speed for which the curve is banked perfectly, 

	there is no need for a friction force.  We take the x-axis 

	in the direction of the centripetal acceleration.

	We write ?F = ma from the force diagram for the car:

		x-component: 	FN1 sin q = ma1 = mv12/R;

		y-component: 	FN1 cos q – mg = 0.

	Combining these, we get 

		tan q 	= v12/gR 

				= (25.0 m/s)2/(9.80 m/s2)(60 m) = 1.062,    or    q = 46.7°.

	At a higher speed, there is need for a friction force, which 

	will be down the incline to help provide the greater centripetal acceleration.  If the automobile does not skid, the friction is static, with Ffr = msFN.

	At the maximum speed, Ffr = msFN.  We write ?F = ma from the force diagram for the car:

		x-component: 	FN2 sin q + msFN2 cos q = ma2 = mvmax2/R;

		y-component: 	FN2 cos q – msFN2 sin q – mg = 0,  or  FN2(cos q – ms sin q) = mg.

	When we eliminate FN2 by dividing the equations, we get

		vmax2	= gR(sin q + ms cos q)/(cos q – ms sin q) = gR(tan q + ms)/(1 – ms tan q ) 

				= gR(v12 + msgR)/(gR – msv12)] 

				= (9.80 m/s2)(60 m)[(25.0 m/s)2 + 0.30(9.80 m/s2)(60 m)]/[(9.80 m/s2)(60 m) – 0.30(25.0 m/s)2], 

	which gives vmax = 34.3 m/s = 123 km/h.

	At a lower speed, there is need for a friction force, which will be up the incline to prevent the car from sliding down the incline.  If the automobile does not skid, the friction is static, with Ffr = msFN.

	At the minimum speed, Ffr = msFN.  The reversal of the direction of Ffr can be incorporated in the above equations by changing the sign of ms , so we have

		vmin2	= gR[(sin q – ms cos q)/(cos q + ms sin q)]

				= gR(v12 – msgR)/(gR + msv12)] 

				= (9.80 m/s2)(60 m)[(25.0 m/s)2 – 0.30(9.80 m/s2)(60 m)]/[(9.80 m/s2)(60 m) + 0.30(25.0 m/s)2], 

	which gives vmin = 18.4 m/s = 66 km/h.	

	Thus the range of permissible speeds is      66 km/h < v < 123 km/h.

		

52.	(a)	Because the tangential acceleration has a constant magnitude, 

�

		we have

			ætan = !(v0 + v2) = #(2pr)/t;

			!(0 + v2) = p(2.0 m)/2(2.0 s), 

		which gives v2 =       3.1 m/s.

	(b)	The average velocity during the interval is

			vav 	= ?r/?t = [(2.0 m)i – (2.0 m)j]/(2.0 s) 

				= (1.0 m/s)i – (1.0 m/s)j 

				=       1.4 m/s, 45° below x-axis. 

	(c)	The average acceleration during the interval is

			aav 	= ?v/?t 

				= [(3.14 m/s)(– j) – 0]/(2.0 s) = – (1.6 m/s2)j 

				=       1.6 m/s2, down. 























�

53.	The constant magnitude of the tangential acceleration is

		atan = ?v/?t = (3.14 m/s – 0)/(2.0 s) = 1.6 m/s2.

	The magnitude of the radial acceleration is

		aR = v2/r.

	(a)	At t = 0.0 s,  we have

			atan0 = (1.6 m/s2)i;

			aR0 = 0.

		Thus the acceleration is      a0 = (1.6 m/s2)i.

	(b)	We find the distance traveled along the circle from

			d1 = v0t1 + !atant12 = 0 + !(1.57 m/s2)(1.0 s)2 = 0.785 m.

		The angle traveled in this time is

			q1 = d1/r = (0.785 m)/(2.0 m) = 0.393 rad = 22.5°.

		The speed at this time is

			v1 = v0 + atant1 = 0 + (1.57 m/s2)(1.0 s) = 1.57 m/s.

		Thus we have

			atan1 = 1.6 m/s2, 22.5° below x-axis;

			aR1 = (1.57 m/s)2/(2.0 m) = 1.2 m/s2, 112.5° below x-axis.

		Thus the acceleration is 

			a1 	= [(1.57 m/s2) cos 22.5°i – (1.57 m/s2) sin 22.5°j] + 

										[– (1.23 m/s2) sin 22.5°i – (1.23 m/s2) cos 22.5°j] 

				=        (0.98 m/s2)i – (1.7 m/s2)j.

	(c)	At t = 2.0 s, the particle is on the x-axis.  We have

			v2 = v0 + atant2 = 0 + (1.57 m/s2)(2.0 s) = 3.14 m/s.

			atan2 = 1.6 m/s2, in – y-direction;

			aR2 = (3.14 m/s)2/(2.0 m) = 4.93 m/s2, in – x-direction.

		Thus the acceleration is      a2 = – (4.9 m/s2)i – (1.6 m/s2)j.

�



54.	(a)	We find the speed from the radial component of the acceleration:

			aR = a sin q = v12/R ;

			(0.210)(9.80 m/s2) sin 28.0° = v12/(3.60 m), which gives v1 =        1.86 m/s.

	(b)	Assuming constant tangential acceleration, we find the speed from

			v2 	= v1 + atant 

				= (1.86 m/s) + (0.210)(9.80 m/s2)(cos 28.0°)(2.00 s) =       5.50 m/s.













55.	(a)	We find the tangential acceleration from

			atan = dv/dt = d[3.6 m/s + (1.5 m/s3)t2]/dt = (3.0 m/s3)t = (3.0 m/s3)(3.0 s) =      9.0 m/s2.

	(b)	We find the radial acceleration from

			aR = v2/r = [3.6 m/s + (1.5 m/s3)(3.0 s)2]2/(20 m) =      15 m/s2.



56.	The tangential component of the force produces the tangential acceleration:

		Ftan = matan = m(b + ct2).

	We find the tangential speed by integrating:

		�

		v – v0 = bt + @ct3,   or   v = v0 + bt + @ct3.

	Thus the radial component of the force is

		FR = maR = mv2/r;

		FR = m(v0 + bt + @ct3)2/r.



57.	We want to find the powers of m and b, so we assume they are a and b, respectively, and put in their dimensions, where b has the dimensions of F/v:

		t = mabb;

		[T] = [M]a [MLT–2/LT–1]b = [M]a + b [T]– b.

	Equating exponents of each dimension, we get

		b = – 1; a + b = 0, so a = – b = + 1.

	Thus we have

		t = m/b.



58.	(a)	With a drag force proportional to v, the terminal velocity is

			vT = mg/b;

			9 m/s = (3 ´ 10–5 kg)(9.80 m/s2)/b, which gives b =      3.3 ´ 10–5 kg/s.

	(b)	   The time to reach 63% of the terminal velocity is

			t = m/b = (3 ´ 10–5 kg)/(3.3 ´ 10–5 kg/s) =      0.92 s.



59.	(a)	For an initial velocity downward, we take the positive direction downward.  

		The drag force will be upward, so we have

			mg – bv = m dv/dt,  or  dv/[v – (mg/b)] = – (b/m) dt.

		When we integrate, we get

			�

			ln{[v – (mg/b)]/[v0 – (mg/b]} = – bt/m,  or 

			v = (mg/b) + [v0 – (mg/b)] e – bt/m.

	(b)	For an initial velocity upward, we take the positive direction upward.  

		The drag force and gravity will be downward, so we have

			– mg – bv = m dv/dt,  or  dv/[v + (mg/b)] = – (b/m) dt.

		This is the same as in part (a), with g replaced by – g.  Thus we have

			v = – (mg/b) + [v0 + (mg/b)] e –bt/m, v = 0.

		For the motion after the object comes momentarily to rest, we use the result from 

		part (a) with v0 = 0.



�

60.	(a)	For a falling object, we have

			mg – bv2 = m dv/dt. 

		When it reaches its terminal velocity, we get

			mg – bvT2 = m dv/dt = 0;   or          vT = (mg/b)1/2.

	(b)	We find the value of b from

			vT = (mg/b)1/2;

			60 m/s = [(75 kg)(9.80 m/s2)/b]1/2, which gives b =      0.20 kg/m.

	(c)	For the same terminal velocity, the curve for FD µ v2 lies

		       above      the curve for FD µ v.  Terminal velocity is 

		reached sooner because the resisting force increases more 

		rapidly.  Note that to have the same terminal velocity, 

		the coefficient b will be different.



61.	(a)	We find the coefficient for the velocity-dependent drag force from

			FD2 = bv2;

			1.0 N = b(2.2 m/s)2, which gives b = 0.21 kg/m.

		The total drag force is

			FD = FD1 + FD2 = 4.0 N + (0.21 kg/m)v2.

	(b)	To coast down the slope, the net force along the slope must be zero:

			mg sin q – FD = ma = 0;

			(80 kg)(9.80 m/s2) sin q = 4.0 N + (0.21 kg/m)(10 m/s)2, which gives       q = 1.8°.







62.	From Example 5–15, we have

		mg – bv = ma, or a = g – (b/m)v,   and   v = (mg/b)(1 – e –bt/m).

	When we use the expression for v in that for a, we get

		a = g – g(1 – e –bt/m) = ge –bt/m.

	From the definition of v = dy/dt, we have

		dy/dt = (mg/b)(1 – e –bt/m),   or  (b/mg) dy = (1 – e –bt/m) dt.

	When we integrate, we get

		�

		(b/mg)y = t + (m/b)(e –bt/m – 1), which gives      y = (mg/b)[t – (m/b)(1 – e –bt/m)].





63.	When the engine is shut off, the only force on the boat is the drag force of the water, so we have

		FD = – bv = m dv/dt,   or   dv/v = – b dt/m.

	When we integrate, we get

		�

		ln (v/v0) = – bt/m,   or   v = v0 e –bt/m.

	We find the value of b/m from the change in velocity in 3.0 s:

		ln (!) = – (b/m)(3.0 s), which gives b/m = 0.231 /s.

	From the definition of v = dx/dt, we have

		dx/dt = v0 e –bt/m,   or   dx = v0 e –bt/m dt.

	When we integrate, we get

		�

		x 	= (– mv0/b)(e –bt/m – 1) = (mv0/b)(1 – e –bt/m)

			= [(2.4 m/s)/(0.231 /s)][1 – e –(0.231 /s)(8)] =      10 m.



64.	The drag force produces the acceleration, so we have

		FD = – bv1/2 = m dv/dt,   or   dv/v1/2 = – b dt/m.

	When we integrate, we get

		�

		2(v1/2 – v01/2) = – bt/m,   or          v = v0 – (bv01/2/m)t + (b2/4m2)t2.

	From the definition of v = dx/dt, we have

		dx/dt = v0 –(bv01/2/m)t + (b2/4m2)t2,   or   dx = [v0 –(bv01/2/m)t + (b2/4m2)t2] dt.

	When we integrate, we get

		�

		x = v0t – (bv01/2/2m)t2 + (b2/12m2)t3.



65.	The drawer will suddenly open when the resisting static friction force reaches its maximum value: Ffr,max = msFN.  Frequently drawers are stuck from pressure on the sides and top of the drawer.  Here 

	we assume that the friction force is produced only by the normal force on the bottom of the drawer.  

	For ?F = ma we have

		x-component:  F – msFN = 0; 

		y-component:  FN – Mg = 0.

	Thus FN = Mg, and  

		F = msFN = msMg;

		8.0 N = ms(2.0 kg)(9.80 m/s2), which gives      ms = 0.41.







�

66.	If an object with one of the surfaces is placed on an inclined 

	plane of the other surface, and the object remains stationary, 

	for ?F = ma we have

		x-component:  mg sin q – Ffr = 0; 

		y-component:  FN – mg cos q = 0.

	Thus we have

		tan q = Ffr/FN.

	If we increase the angle until the object just begins to move, we know that the static friction force is maximum, so we have

		tan q = msFN/FN = ms .

	Thus we can determine the coefficient of static friction by measuring the angle at which the object starts to slide.



67.	We can find the required acceleration, assumed constant, from

		x = v0t + !at2; 

		(0.250 mi)(1610 m/mi) = 0 + !a (6.0 s)2, which gives a = 22.4 m/s2.

	If we assume that the tires are just on the verge of slipping, Ffr,max = msFN , so we have

		x-component:  msFN = ma; 

		y-component:  FN – mg = 0.

	Thus we have ms = ma/mg = a/g = (22.4 m/s2)/(9.80 m/s2) =        2.3.



68.	We find the maximum permissible deceleration from the motion until the automobile stops:

		v = v0 + at;

		0 = [(45 km/h)/(3.6 ks/h)] + amax(3.5 s), which gives  amax = – 3.57 m/s2.  

	The minimum time for deceleration without the cup sliding means that the static friction force, 

	which is the force producing the deceleration of the cup, is maximum.  On a level road, the normal 

	force is FN = mg.  The maximum static friction force is Ffr,max = msFN.  

	For the horizontal component of ?F = ma, we have

		– msmg  = mamax , which gives 

		ms = – amax/g = – (– 3.57 m/s2)/(9.80 m/s2) =       0.36.



�

69.	While the box is sliding down, friction will be up the 

	plane, opposing the motion.  From the force diagram for 

	the box, we have ?F = ma:

		x-component:	mg sin q – Ffr = ma.

		y-component:	FN – mg cos q = 0.

	From the x-equation, we have

		Ffr	= mg sin q – ma = m(g sin q – a ) 

			= (18.0 kg)[(9.80 m/s2) sin 37.0° – (0.270 m/s2)] 

			=       101 N.

	Because the friction is kinetic, we have

		Ffr =  mkFN = mkmg cos q;

		101.3 N = mk(18.0 kg)(9.80 m/s2) cos 37.0°, which gives        mk = 0.719.



70.	If the crate does not slide, it must have the same acceleration as the truck.  The friction is static, with Ffr = msFN.  On a level road, the normal force is FN = mg.  If we consider the crate as the system, the static friction force will be opposite to the direction of motion (to oppose the impending motion of the crate toward the front of the truck), is the only force providing the acceleration, and will be maximum in order to produce the maximum acceleration.  We find the acceleration from the horizontal component of ?F = ma:

		msmg = ma, which gives 

		a = msg = – (0.75)(9.80 m/s2) =       – 7.4 m/s2.







71.	(a)	For the object to move with the ground, the static friction force must provide the same 

		acceleration.  With the usual coordinate system, for ?F = ma we have

			x-component:  Ffr = ma; 

			y-component:  FN – mg = 0.

		For static friction, Ffr = msFN ,  or   ma = msmg ; thus ms = a/g.

		In order not to slide when the acceleration is maximum, the minimum required coefficient of static 

		friction is ms = amax/g.

	(b)	For the greatest acceleration, the minimum required coefficient is

			ms = amax/g =(4.0 m/s2)/(9.80 m/s2) = 0.41.

		Because this is greater than 0.25, the chair       will slide.



�

72.	While the roller coaster is sliding down, friction will be up 

	the hill, opposing the motion.  From the force diagram for 

	the roller coaster, we have ?F = ma:

		x-component:	mg sin q – Ffr = mg sin q – mkFN = ma.

		y-component:	FN – mg cos q = 0.

	We combine these equations to find the acceleration:

		  a	= g sin q – mkg cos q  = g(sin q – mk cos q) 

			= (9.80 m/s2)[sin 45° – (0.12) cos 45°] = 6.10 m/s2.

	For the motion of the roller coaster, we find the speed from

		v2 = v02 + 2a(x – x0);

		v2 = [(6.0 km/h)/(3.6 ks/h)]2 + 2(6.10 m/s2)(45.0 m – 0), which gives v =       23 m/s (85 km/h).



73.	On a level road, the normal force is FN = mg.  The kinetic friction force is the only force slowing the motorcycle.  We find the acceleration from the horizontal component of ?F = ma:

		– mkmg  = ma, which gives 

		a = – mkg  = – (0.80)(9.80 m/s2) = – 7.84 m/s2.

	For the motion through the sandy stretch, we have

		v2 = v02 + 2a(x – x0);

		v2 = (20.0 m/s)2 + 2(– 7.84 m/s2)(15 m), which gives v = ± 12.8 m/s.

	The negative sign corresponds to the motorcycle going beyond the sandy stretch and returning, assuming the same negative acceleration after the motorcycle comes to rest.  This will not occur, so the motorcycle emerges with a speed of 13 m/s.

	If the motorcycle did not emerge, we would get a negative value for v2, indicating that there is no real value for v.



�

74.	We write ?F = ma from the force diagram for the stationary 

	hanging mass, with down positive:

		mg – FT = ma = 0;   which gives 

		FT = mg.

	For the rotating puck, the tension provides the centripetal 

	acceleration, ?FR = MaR:

		FT = Mv2/R.

	 When we combine the two equations, we have

		Mv2/R = mg, which gives  v = (mgR/M)1/2.





75.	The horizontal force on the astronaut produces the centripetal acceleration:

		F = maR = mv2/r; 

		(7.75) m (9.80 m/s2) = mv2/(10.0 m), which gives v =       27.6 m/s.

	The rotation rate is

		Rate = v/2pr = (27.6 m/s)/2p(10.0 m) =      0.439 rev/s.

	Note that the results are independent of mass, and thus are the same for all astronauts.





�

76.	The velocity of the people is

		v = 2pR/T = 2pRf = 2p(5.0 m)(0.50 /s) = 15.7 m/s.

	The force that prevents slipping is an upward friction force.  

	The normal force provides the centripetal acceleration.

	We write ?F = ma from the force diagram for the person:

		x-component:  FN = mv2/R; 

		y-component:  Ffr – mg = 0.

	Because the friction is static, we have

		 Ffr = msFN ,   or   mg = msmv2/R.

	Thus we have	

		ms = gR/v2 = (9.80 m/s2)(5.0 m)/(15.7 m/s)2 =       0.20.

	There is no force pressing the people against the wall.  They feel the normal force and thus are applying the reaction to this, which is an outward force on the wall.  There is no horizontal force on the people except the normal force.



77.	The assumed constant magnitude of the tangential acceleration is

		atan = ?v/?t = (30 m/s – 0)/(9.0 s) = 3.33 m/s2.

	For the components of the net force we have

		?Ftan = matan = (1000 kg)(3.33 m/s2) =        3.3 ´ 103 N;

		?FR = maR = mv2/r = (1000 kg)(30 m/s)2/(450 m) =        2.0 ´ 103 N.



�

78.	We convert the speed: (80 km/h)/(3.6 ks/h) = 22.2 m/s.

	We take the x-axis in the direction of the centripetal 

	acceleration.  We find the speed when there is no need 

	for a friction force.  

	We write ?F = ma from the force diagram for the car:

		x-component: 	FN1 sin q = ma1 = mv12/R;

		y-component: 	FN1 cos q – mg = 0.

	Combining these, we get 

		v12 = gR tan q = (9.80 m/s2)(80 m) tan 14°, 

	which gives v1 = 14.0 m/s.  Because the speed is greater 

	than this, a friction force is required.  Because the car will 

	tend to slide up the slope, the friction force will be down the 

	slope.  We write ?F = ma from the force diagram for the car:

		x-component: 	FN2 sin q + Ffr cos q = ma2 = mv22/R;

		y-component: 	FN2 cos q – Ffr sin q – mg = 0.

	We eliminate FN2 by multiplying the x-equation by cos q, the y-equation by sin q, and subtracting:

		Ffr	= m{[(v22/R ) cos q ] – g sin q}

			= (1000 kg)({[(22.2 m/s)2/(80 m)] cos 14°} – (9.80 m/s2) sin 14°) =       3.6 ´ 103 N down the slope.

































�

79.	(a)	There will be two forces in the vertical direction.  We write ?F = ma from the 

		force diagram.  At point A the radial acceleration will be down, so we take 

		that as the positive direction:

			mg – FNA = maA = mv2/R,  so  FNA = m(g – v2/R).

		At point B the radial acceleration is zero, so we have

			mg – FNB = maB = 0,  so  FNB = mg.

		At point C the radial acceleration will be up, so we take that as the positive direction:

			FNC – mg = maC = mv2/R,  so  FNC = m(g + v2/R).

		Thus we see that

			FNC > FNB > FNA.

	(b)	The force diagram for the driver would look the same and there will be similar normal forces on the 

		driver to provide the radial accelerations, so the drive will feel 

			heaviest at C, and lightest at A.

	(c)	Because the normal force cannot be negative, the car will lose contact at A when

			mg = mv2/R.

		Thus the maximum speed at A without losing contact is

			vAmax = (gR)1/2.



80.	We find the constant tangential acceleration from the motion around the turn:

		vtan2  = v02 + 2atan(xtan – x0)

		[(320 km/h)/(3.6 ks/h)]2 = 0 + 2atan[p(200 m) – 0], which gives        atan = 6.29 m/s2.

	The centripetal acceleration depends on the speed, so it will increase around the turn.  We find the speed at the halfway point from

		v12  = v02 + 2atan(x1 – x0)

			= 0 + 2(6.29 m/s2)[p(100 m) – 0], which gives v1 = 62.8 m/s.

	The radial acceleration is

		aR = v12/R = (62.8 m/s)2/(200 m) =        19.7 m/s2.

	The magnitude of the acceleration is

		a = (atan2 + aR2)1/2 = [(6.29 m/s2)2 + (19.7 m/s2)2]1/2 = 20.7 m/s2.

	On a flat surface, FN = Mg; and the friction force must provide the acceleration: Ffr = Ma.  

 	With no slipping the friction is static, so we have

		 Ffr = msFN ,   or   Ma = msMg.

	Thus we have	

		ms = a/g = (20.7 m/s2)/(9.80 m/s2) =         2.11.
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81.	(a)	We find the speed from the radial component of the acceleration:

			aR = a sin q = v12/R ;

			(1.05 m/s2) sin 32.0° = v12/(2.70 m), which gives v1 =        1.23 m/s.

	(b)	Assuming constant tangential acceleration, we find the speed from

			v2 = v1 + atant = (1.23 m/s) + (1.05 m/s2)(cos 32.0°)(2.00 s) =       3.01 m/s.































82.	For each object we take the direction of the acceleration as 

	the positive direction.  The kinetic friction from the table 

	will oppose the motion of the bowl.  

	(a)	From the force diagrams, we have ?F = ma:

			x-component(bowl):	FT – Ffr = mbowla;

			y-component(bowl):	FN – mbowlg = 0;

			y-component(cat):		mcatg – FT = mcata.

		With Ffr =  mkFN , we have

			FT =  mbowla + mkmbowlg.

		When we eliminate FT , we get

�

			(mcat – mkmbowl)g = (mcat + mbowl)a;

			[(5.0 kg) – (0.44)(11 kg)](9.80 m/s2) = (5.0 kg + 11 kg)a, which gives       a = 0.098 m/s2.

	(b)	We find the time for the bowl to reach the edge of the table from

			x = x0 + v0t + !at2;

			0.90 m = 0 + 0 + !(0.098 m/s2)t2, which gives        t = 4.3 s.



�

83.	Before the mass slides, the friction is static, with Ffr = msFN.  

	The static friction force will be maximum just before the mass 

	slides.  We write ?F = ma from the force diagram:

		x-component:   mg sin f – msFN = 0;

		y-component:   FN – mg cos f = 0.

	When we combine these, we get

		tan f = ms = 0.60,   or        f = 31°.
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84.	We assume there is no tension in the rope and simplify the 

	forces to those shown.  From the force diagram, we have ?F = ma:

		x-component:	FNshoes – FNwall = 0, 

	so the two normal forces are equal: FNshoes = FNwall = FN;

		y-component:	Ffrshoes + Ffrwall –  mg = 0.

	For a static friction force, we know that Fsfr = msFN.  

	The minimum normal force will be exerted when the static 

	friction forces are at the limit:

		msshoesFNshoes + mswallFNwall = mg;

		(0.80 + 0.60)FN = (70 kg)(9.80 m/s2), which gives      FN = 4.9 ´ 102 N.
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85.	(a)	We can define the radius of curvature as the radius at any 

		instant of the circle such that the acceleration perpendicular 

		to the path corresponds to the radial acceleration:

			mg cos q = mv2/r,   or        r = v2/g cos q,

		where q is the angle of the baseball’s motion below the horizontal.

	(b)	At the initial release point, q = 0°, so we have

			r0 = v02/g = (30 m/s)2/(9.80 m/s2) =      92 m.
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86.	(a)	If motion is just about to begin, the static friction 

		force on the block will be maximum: Ffr,max = msFN , 

		and the acceleration will be zero.  We write 

		?F = ma from the force diagram for each object:

			x-component (block):   FT – msFN = 0;

			y-component (block):   FN – m1g = 0;

			y-component (bucket):  (m2 + msand)g – FT = 0.

		When we combine these equations, we get

			(m2 + msand)g = msm1g, which gives

			msand 	= msm1 – m2 = (0.450)(28.0 kg) – 1.00 kg 

					=      11.6 kg.

	(b)	When the system starts moving, the friction becomes kinetic,

		and the tension changes.  The force equations become

			x-component (block):   FT2 – mkFN = m1a;

			y-component (block):   FN – m1g = 0;

			y-component (bucket):  (m2 + msand)g – FT2 = (m2 + msand)a.

		When we combine these equations, we get

			(m2 + msand – mkm1)g = (m1 + m2 + msand)a, which gives

			a = [1.00 kg + 11.6 kg – (0.320)(28.0 kg)](9.80 m/s2)/(28.0 kg + 1.00 kg + 11.6 kg) =       0.879 m/s2.



�

87.	(a)	We can find the radius of the halfcircle from the radial acceleration.  

		We choose the x-direction in the radial direction.  

		We write ?F = ma from the force diagram:

			Flift cos q – mg = 0;

			Flift sin q = mv2/r.

		When we combine these, we get

			tan q = v2/gr;

			tan 38° = [(520 km/h)/(3.6 ks/h)]2/(9.80 m/s2)r, 

		which gives r = 2.7 ´ 103 m.

		We find the time to complete the halfcircle from

			t = pr/v = p(2.7 ´ 103 m)/[(520 km/h)/(3.6 ks/h)] =      59 s.

	(b)	The passengers will feel a       greater normal force       from the seat.
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88.	At the speed for which the curve is banked perfectly, 

	there is no need for a friction force.  We take the x-axis 

	in the direction of the centripetal acceleration.

	We write ?F = ma from the force diagram for the car:

		x-component: 	FN0 sin q = ma0 = mv02/R;

		y-component: 	FN0 cos q – mg = 0.

	Combining these, we get 

		tan q = v02/gR.

	At a higher speed, there is need for a friction force, which 

	will be down the incline to help provide the greater centripetal acceleration.  If the automobile does not skid, the friction is static, with Ffr = msFN.

	At the maximum speed, Ffr = msFN.  We write ?F = ma from the force diagram for the car:

		x-component: 	FN sin q + msFN cos q = ma2 = mvmax2/R;

		y-component: 	FN cos q – msFN sin q – mg = 0,  or  FN(cos q – ms sin q) = mg.

	When we eliminate FN by dividing the equations, we get

		vmax2	= gR(sin q + ms cos q)/(cos q – ms sin q) = gR(tan q + ms)/(1 – mstan q) 

				= gR(v02 + msgR)/(gR – msv02)].

	At a lower speed, there is need for a friction force, which will be up the incline to prevent the car from sliding down the incline.  If the automobile does not skid, the friction is static, with Ffr = msFN.

	At the minimum speed, Ffr = msFN.  The reversal of the direction of Ffr can be incorporated in the above equations by changing the sign of ms , so we have

		vmin2 = gR[(sin q – ms cos q)/(cos q + ms sin q)]= gR(v02 – msgR)/(gR + msv02)].

	Thus the range of permissible speeds is 

		{gR(v02 – msgR)/(gR + msv02)]}1/2 < v < {gR(v02 + msgR)/(gR – msv02)]}1/2.



�

89.	The pendulum swings out until the tension in the suspension provides 

	the centripetal acceleration, which is the centripetal acceleration of 

	the train.  The forces are shown in the diagram.  

	We write ?F = ma from the force diagram for the pendulum:

		x-component:  FT sin q = mv2/r; 

		y-component:  FT cos q – mg = 0.

	When these equations are combined, we get

		tan q = v2/rg;

		tan 17.5° = v2/(275 m)(9.80 m/s2), which gives v =        29.2 m/s.











































90.	For the falling object we have

		mg – kv2 = m dv/dt,   or  dv/[(mg/k) – v2] = (k/m) dt.

	When we integrate, we get

		�

	When we rearrange this for v, we get

		�

	We integrate again to get x:

		�

	For the given data of m = 75 kg, and k = 0.22 kg/m, we get

			t, s		v, m/s		x, m

			0.0	0.0	0

			2.0	18.9	19

			4.0	34.1	73

			6.0	44.4	152

			8.0	50.6	248

			10.0	54.0	353

			12.0	55.9	463

			14.0	56.8	576

			16.0	57.3	690

			18.0	57.5	805

			20.0	57.7	920

	We see from the expression for v, or from the original equation of motion when we set dv/dt = 0, that the terminal speed is 

		vT = (mg/k)1/2 = [(75 kg)(9.80 m/s2)/(0.22 kg/m)]1/2 = 57.8 m/s.

	The initial acceleration is g.  The terminal speed is reached because the force of air resistance increases until it balances the force of gravity.



91.	For the rising rocket we have

		– mg – kv2 = m dv/dt.

	We can use the chain rule to replace the variable t with the variable y:

		– mg – kv2 = m dv/dt = m (dv/dy)(dy/dt) = mv dv/dy,   or  v dv/[v2 + (mg/k)] = – (k/m) dy.

	When we integrate from the initial speed up to the highest point, we get

		�

	If there were no air resistance, a = – g, and we find the maximum height from

		v2 = v02 + 2ay;

		0 = (120 m/s)2 + 2(– 9.80 m/s2)h¢, which gives       h¢ = 735 m, almost 2.5´.
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92.	(a)	If the bead does not move along the hoop, it must have only 

		the radial acceleration moving in a circle of radius R = r sin q.  

		We write ?F = ma from the force diagram:

			x-component: 	FN sin q = maR = mv2/R;

							FN sin q = mR(2pf )2 = 4p2f 2mr sin q;

			y-component: 	FN cos q – mg = 0,  or  FN = mg /cos q.

		Combining these, we get 

			cos q = g/4p2f 2r. 

	(b)	For the given data we get

			cos q = (9.80 m/s2)/4p2(4.0 rev/s)2(0.20 m) = 0.0776, 

			q =     86°.

	(c)	Because there is no friction, the bead      cannot      ride as high 

		as the center.  There would be no force to balance the downward 

		force of gravity.
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93.	The speed of the mass is v = r2pf.  If the mass does not move along the 

	cone, it must have only the radial acceleration moving in a circle of 

	radius r.  The static friction force could be either way along the cone.

	We write ?F = ma from the force diagram:

		x-component: 	FN cos f ± Ffr sin f = mv2/r = 4p2f 2mr;

		y-component: 	FN sin f — Ffr cos f – mg = 0.

	For static friction we have Ffr = msFN.  The extreme positions occur 

	when Ffr = msFN, so we have

		FN (cos f ± ms sin f) = 4p2f 2mr;

		FN (sin f — ms cos f ) = mg, 

	which gives r = g(cos f ± ms sin f)/4p2f2(sin f — ms cos f ).

	We can write this as

		g(1 – ms tan f)/4p2f 2(tan f + ms) < r < g(1 + ms tan f)/4p2f 2(tan f – ms).



�

94.	We write ?F = ma from the force diagram:

		tangential: 	mg cos q = matan;

		radial: 		FT – mg sin q = maR.

	From the tangential equation we get

		atan = g cos q = (9.80 m/s2) cos 30° =      8.5 m/s2.

	The radial acceleration is

		aR = v2/r = (6.0 m/s)2/(0.80 m) =      45 m/s2.

	From the radial equation we get

		FT 	= m(aR + g sin q) 

			= (1.0 kg)[45 m/s2  + (9.80 m/s2) sin 30°] =      50 N.
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