CHAPTER 6 - Gravitation and Newton’s Synthesis



1.	Because the spacecraft is 2 Earth radii above the surface, it is 3 Earth radii from the center.  The gravitational force on the spacecraft is

		F 	= GMEM/r2

			= (6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)(1400 kg)/[3(6.38 ´ 106 m)]2 =      1.52 ´ 103 N.



2.	The acceleration due to gravity on the surface of a planet is

		g = F/M = GMplanet/r2.

	For the Moon we have

		gMoon = (6.67 ´ 10–11 N · m2/kg2)(7.35 ´ 1022 kg)/(1.74 ´ 106 m)2 =      1.62 m/s2.



3.	The acceleration due to gravity on the surface of a planet is

		g = F/M = GMplanet/r2.

	If we form the ratio of the two accelerations, we have

		gplanet/gEarth = (Mplanet/MEarth)/(rplanet/rEarth)2,   or

		gplanet = gEarth(Mplanet/MEarth)/(rplanet/rEarth)2 = (9.80 m/s2)(1)/(2.5)2 =       1.6 m/s2.



4.	The acceleration due to gravity on the surface of a planet is

		g = F/M = GMplanet/r2.

	If we form the ratio of the two accelerations, we have

		gplanet/gEarth = (Mplanet/MEarth)/(rplanet/rEarth)2,   or

		gplanet = gEarth(Mplanet/MEarth)/(rplanet/rEarth)2 = (9.80 m/s2)(3.0)/(1)2 =       29 m/s2.



5.	The acceleration due to gravity at a distance r from the center of the Earth is

		g = F/M = GmEarth/r2.

	If we form the ratio of the two accelerations for the different distances, we have

		gh/gsurface = [(rEarth)/(rEarth + h)]2 = [(6400 km)/(6400 km + 300 km)]2 

	which gives       gh = 0.91gsurface.



6.	The acceleration due to gravity at a distance r from the center of the Earth is

		g = F/M = GmEarth/r2.

	If we form the ratio of the two accelerations for the different distances, we have

		g/gsurface = [(rEarth)/(rEarth + h)]2 ;

	(a)	g = (9.80 m/s2)[(6400 km)/(6400 km + 3.20 km)]2 =        9.80 m/s2.

	(b)	g = (9.80 m/s2)[(6400 km)/(6400 km + 3200 km)]2 =        4.36 m/s2.
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7.	We choose the coordinate system shown in the figure and 

	find the force on the mass in the lower left corner.  

	Because the masses are equal, for the magnitudes of the 

	forces from the other corners we have

		F1 = F3	= Gmm/r12

				= (6.67 ´ 10–11 N · m2/kg2)(8.5 kg)(8.5 kg)/(0.70 m)2 

				= 9.83 ´ 10–9 N;

		F2 	= Gmm/r22

			= (6.67 ´ 10–11 N · m2/kg2)(8.5 kg)(8.5 kg)/[(0.70 m)/cos 45°]2 

			= 4.92 ´ 10–9 N.

	From the symmetry of the forces we see that the resultant will be 

	along the diagonal.  The resultant force is

		F 	= 2F1 cos 45° + F2

			= 2(9.83 ´ 10–9 N) cos 45° + 4.92 ´ 10–9 N =        1.9 ´ 10–8 N toward center of the square.









8.	For the magnitude of each attractive 

	gravitational force, we have
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		FV 	= GmEmV/rV2 = GfVmE2/rV2

			= (6.67 ´ 10–11 N · m2/kg2)(0.815)(5.98 ´ 1024 kg)2/[(108 – 150) ´ 109 m]2 

			= 1.10 ´ 1018 N;

		FJ	= GmEmJ/rJ2 = GfJmE2/rJ2

			= (6.67 ´ 10–11 N · m2/kg2)(318)(5.98 ´ 1024 kg)2/[(778 – 150) ´ 109 m]2 

			= 1.92 ´ 1018 N;

		FSa 	= GmEmSa/rSa2 = GfSamE2/rSa2

			= (6.67 ´ 10–11 N · m2/kg2)(95.1)(5.98 ´ 1024 kg)2/[(1430 – 150) ´ 109 m]2 

			= 1.38 ´ 1017 N.

	The force from Venus is toward the Sun; the forces from Jupiter and Saturn are away from the Sun.  For the net force we have

		Fnet = FJ + FSa – FV = 1.92 ´ 1018 N + 1.38 ´ 1017 N – 1.10 ´ 1018 N =        9.6 ´ 1017 N away from the Sun.
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9.	For the magnitudes of the forces on the mass m from the other 

	masses we have

		F2 = Gm(2m)/x02 = 2Gm2/x02;

		F3 = Gm(3m)/(x02 + y02) = 3Gm2/(x02 + y02);

		F4 = Gm(4m)/y02 = 4Gm2/y02.

	The force F3 is at an angle q above the x-axis, with 

		sin q = y0/(x02 + y02)1/2, and cos q = x0/(x02 + y02)1/2.

	Thus the resultant force is

		F 	= (F2 + F3 cos q)i + (F3 sin q + F4)j 

			= Gm2{(2/x02) +[3/(x02 + y02)][x0/(x02 + y02)1/2]}i + 

						Gm2{[3/(x02 + y02)][y0/(x02 + y02)1/2] + (4/y02)}j  

			=        Gm2{(2/x02) +[3x0/(x02 + y02)3/2]}i + Gm2{[3y0/(x02 + y02)3/2] + (4/y02)}j.
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10.	At each planet the gravitational force from the 

	other will be negligible, so we have

		WEarth = MgEarth = (70 kg)(9.80 m/s2) = 690 N;

		WMars = MgMars = (70 kg)(3.7 m/s2) = 260 N.

	We assume the planets are at their closest, so 

	their separation is 

		D = 228 ´ 109 m – 150 ´ 109 m = 78 ´ 109 m.

	If we let d represent the distance from the Earth’s center, the net gravitational force (toward the Earth) is

		Fnet = M{[GmEarth/d2] – [GmMars/(D – d)2]}.

	If we let d = xD, so x varies from a small number to almost 1, and use g = Gm/r2, we can write this as

		Fnet = M{[GmEarth/r2] – [GmMars/(D – r)2]}.

			= (M/D2){gEarth(rEarth/x)2 – gMars[rMars/(1 – x)2]} 

			= (MrEarth2/D2){(gEarth/x2) – [gMars(rMars/rEarth)2/(1 – x)2]}.

	The net force will be zero when

		(gEarth/x2) = [gMars(rMars/rEarth)2/(1 – x)2],  or  

		x(rMars/rEarth)(gMars/gEarth)1/2 = 1 – x; 

		x[(3400 km)/6380 km)][(3.7 m/s2)/(9.8 m/s2)]1/2 = 1 – x,

	which gives x = 0.75, (about 75% of the total distance).

	The net force will be very small except when near a planet’s surface, so we have the graph shown.

	Note that the negative value is an indication of the direction change.







11.	The weight of objects is determined by g, which depends on the mass and radius of the Earth:

		g = GmE/rE2.

	If the density remains constant, the mass will be proportional to the radius cubed:

		mE¢/mE = (rE¢/rE)3.

	If we form the ration of g’s, we have

		g¢/g = (mE¢/mE)/(rE¢/rE)2 = (mE¢/mE)/(mE¢/mE)2/3 = (mE¢/mE)1/3 = 21/3 =      1.26.



12.	The acceleration due to gravity on the surface of Mars is

		gMars = GmMars/rMars2;

		3.7 m/s2 = (6.67 ´ 10–11 N · m2/kg2)mMars/(3.4 ´ 106 m)2, which gives mMars =      6.4 ´ 1023 kg.



13.	Because the gravitational force is always attractive, the two forces will be in opposite directions.  If we call the distance from the Earth to the Moon D and let x be the distance from the Earth where the magnitudes of the forces are equal, we have

		GmMM/(D – x)2 = GmEM/x2, which becomes mMx2 = mE(D – x)2.

		(7.35 ´ 1022 kg)x2 = (5.98 ´ 1024 kg)[(3.84 ´ 108 m) – x]2, which gives

		x =        3.46 ´ 108 m from Earth’s center.



14.	We relate the speed of the Earth to the period of its orbit from

		v = 2pR/T.

	The gravitational attraction from the Sun must provide the centripetal acceleration for the circular orbit:

		GmEmS/R2 = mEv2/R = mE(2pR/T)2/R = mE4p2R/T2, so we have

		GmS = 4p2R3/T2;

		(6.67 ´ 10–11 N · m2/kg2)mS = 4p2(1.50 ´ 1011 m)3/(3.16 ´ 107 s)2, which gives  mS =        2.0 ´ 1030 kg.

	This is the same as found in Example 6–9.



15.	(a)	The acceleration due to gravity at a distance r = rE + ?r from the center is

			g¢ = Gm/r2 = Gm/(rE + ?r)2.

		If we use the binomial expansion and keep only the first two terms, we get

			g¢ = (Gm/rE2)[1 + (?r/rE)]–2 = g[1 – 2(?r/rE) + 3(?r/rE)2 + ¼] ˜ g – 2g(?r/rE).

		Thus we have

			g¢ – g = ?g ˜ – 2g(?r/rE).

		Note that this could also be obtained by treating the changes as differentials:

			dg = – 2(Gm/r3) dr = – 2g dr/r.

	(b)	The negative sign means that       g decreases with an increase in height.

	(c)	At a height of 100 km we get

			?g = – 2g(?r/rE) = – 2(9.80 m/s2)(100 km)/(6.38 ´ 103 km) = – 0.307 m/s2.

		Thus we have

			g¢ = g + ?g = 9.800  m/s2 – 0.307 m/s2 =       9.493 m/s2.

		If we use Eq. 6–1, we get

			g¢ 	= GmE/(rE + ?r)2 

				= (6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)/(6.38 ´ 106 m + 100 ´ 103 m)2 = 9.499 m/s2.
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16.	At a latitude angle f, the radius of the circular motion 

	is R = rE cos f  and the speed of a point on the surface is 

	v = Rw, so the centripetal acceleration is

		a = v2/R = Rw2 = rEw2 cos f.

	If we think of the effective g measured by a spring, we have 

	the forces indicated on the diagram.  With the coordinate 

	system shown, for ?F = ma we have

		x-component:  mgeff cos a – mg cos f = – mrEw2 cos f,  or  

						geff cos a = g cos f –  rEw2 cos f;

		y-component:  mgeff sin a – mg sin f = 0,  or  

						geff sin a = g sin f.

	When we divide the two equations, we get

		tan a = (g sin f)/(g cos f –  rEw2 cos f)

				= (9.800 m/s2)(sin 45°)/{(9.800 m/s2)(cos 45°) – 

						(6.38 ´ 106 m)[(2p/(24 h)(3600 s/h)]2 cos 45}

				= 1.0035,   so   a = 45.10°.

	Thus for geff we have

		geff = (g sin f)/sin a = (9.80 m/s2)(sin 45°)/sin 45.10° =      9.78 m/s2, 0.10° from the “vertical.”



17.	For a stationary object at the equator, we know that the effective weight is 

		w0 = mg – mve2/rE , where ve = 2prE f is the speed of a point on the equator.

	When the ship moves with respect to the surface at speed v, the effective speed will be ve ± v, depending on the direction.  The positive sign is used for a ship traveling eastward; the negative sign for a ship traveling westward.  Thus the apparent weight is

		w = mg – m(ve ± v)2/rE = mg – (mve2/rE)[1 ± (v/ve)]2 = mg – (mve2/rE)[1 ± 2(v/ve) + (v/ve)2].

	Because v « ve , we can drop the last term to get 

		w = mg – (mve2/rE) — 2(mvev/rE).

	If we divide this by the effective weight for a stationary object, we have

		w/w0 	= [mg – (mve2/rE) — 2(mvev/rE)]/(mg – mve2/rE) = 1 — 2(mvev/rE)/(mg – mve2/rE) 

				= 1 — 2(vev/grE)/(1 – ve2/grE).

	Because ve2/grE « 1, we get 

		w/w0 	˜ 1 — 2(vev/grE) ˜ 1 ± 2(vev/grE) = 1 ± 4pfv/g, 

	if we reverse the meaning of the sign for the direction of the ship: positive sign is used for a ship traveling westward; the negative sign for a ship traveling eastward.

	

18.	The gravitational attraction must provide the centripetal acceleration for the circular orbit:

		GmEM/r2 = Mv2/r,   or   

		v2	= GmE/(rE + h) 

			= (6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)/(6.38 ´ 106 m + 5.20 ´ 106 m), 

	which gives v =        5.89 ´ 103 m/s.



19.	The required centripetal acceleration of the circular orbit is provided by the gravitational attraction:

		GmEM/r2 = Mv2/r, so we have

		v2 	= GmE/(rE + h) 

			= (6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)/(6.38 ´ 106 m + 0.60 ´ 106 m), 

	which gives v =      7.56 ´ 103 m/s.
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20.	The greater tension will occur when the elevator is accelerating upward, 

	which we take as the positive direction.  We write ?F = ma from the force 

	diagram for the monkey:

		FT – mg = ma;

		200 N – (16.0 kg)(9.80 m/s2) = (16.0 kg)a, which gives 

		a =      2.70 m/s2 upward.

	Because the rope broke, the tension was greater than 200 N, so this was the 

	minimum acceleration.



21.	We relate the speed to the period of revolution from

		v = 2pr/T.

	The required centripetal acceleration is provided by the gravitational attraction:

		GmMM/r2 = Mv2/r = M(2pr/T)2/r = M4p2r/T2, so we have

		GmM = 4p2(rM + h)3/T2;

		(6.67 ´ 10–11 N · m2/kg2)(7.4 ´ 1022 kg) = 4p2(1.74 ´ 106 m + 1.00 ´ 105 m)3/T2, 

	which gives  T = 7.06 ´ 103 s =         2.0 h.



22.	We relate the speed to the period of revolution from

		v = 2pr/T.

	For the required centripetal acceleration, provided by gravity, we have

		aR = v2/r = (2pr/T)2/r = 4p2r/T2; 

		9.80 m/s2 = 4p2(6.38 ´ 106 m)/T2, which gives T =       5.07 ´ 103 s (1.41 h).

	The result is       independent of the mass       of the satellite.
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23.	We take the positive direction upward.  The spring scale reads the normal force expressed as an effective mass: FN/g. 

	We write ?F = ma from the force diagram:

		FN – mg = ma,   or   meffective = FN/g = m(1 + a/g).

	(a)	For a constant speed, there is no acceleration, so we have

			meffective = m(1 + a/g) = m =         56 kg.

	(b)	For a constant speed, there is no acceleration, so we have

			meffective = m(1 + a/g) = m =         56 kg.

	(c)	For the upward (positive) acceleration, we have

			meffective = m(1 + a/g) = m(1 + 0.33g/g) = 1.33(56 kg) =        75 kg.	

	(d)	For the downward (negative) acceleration, we have

			meffective = m(1 + a/g) = m(1 – 0.33g/g) = 0.67(56 kg) =        38 kg.

	(e)	In free fall the acceleration is – g, so we have

			meffective = m(1 + a/g) = m(1 – g/g) =         0.
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24.	The centripetal acceleration has a magnitude of 

		aR 	= v2/R = (2pR/T)2/R = 4p2R/T2  

			= 4p2[!(27.5 m)]/(10.5 s)2 = 4.92 m/s2.

	At each position we take the positive direction in the 

	direction of the acceleration.  Because the seat swings, the 

	normal force from the seat is upward and the weight is downward.  

	The apparent weight is measured by the normal force.

	(a)	At the top, we write ?F = ma from the force diagram:

			– FNtop + mg = maR ,  or   FNtop = mg(1 – aR/g).

		For the fractional change we have

			Fractional change = (FNtop – mg)/mg = – aR/g 

				= – (4.92 m/s2)/(9.80 m/s2) =       – 0.502 (– 50.2%).

	(b)	At the bottom, we write ?F = ma from the force diagram:

			FNbottom – mg = maR ,  or   FNbottom = mg(1 + aR/g).

		For the fractional change we have

			Fractional change = (FNbottom – mg)/mg = + aR/g 

				= + (4.92 m/s2)/(9.80 m/s2) =       + 0.502 (+ 50.2%).



25.	The acceleration due to gravity is

		g 	= Fgrav/M = Gm/r2 

			= (6.67 ´ 10–11 N · m2/kg2)(7.4 ´ 1022 kg)/(4.1 ´ 106 m)2 = 0.29 m/s2.

	We take the positive direction toward the Moon.  The apparent weight 

	is measured by the normal force.  We write ?F = Ma from the force diagram:

			– FN + Mg = Ma,

	(a)	For a constant velocity, there is no acceleration, so we have

			– FN + Mg = 0,  or   

			FN = Mg = (75 kg)(0.29 m/s2) =      22 N (toward the Moon).

	(b)	For an acceleration toward the Moon, we have

			– FN + Mg = Ma,  or   

			FN = M(g – a) = (75 kg)(0.29 m/s2 – 2.6 m/s2) =      – 1.7 ´ 102 N (away from the Moon).



26.	We relate the speed to the period from

		v = 2prE/T.

	To be apparently weightless, the acceleration of gravity must be the required centripetal acceleration, so we have

		aR = g = v2/rE = (2prE/T)2/rE = 4p2rE/T2; 

		9.80 m/s2 = 4p2(6.38 ´ 106 m)/T2, which gives T =       5.07 ´ 103 s (1.41 h).



27.	(a)	The attractive gravitational force between the stars is providing the required centripetal 

		acceleration for the circular motion.

	(b)	 We relate the orbital speed to the period of revolution from

			v = 2pr/T, where r is the distance to the midpoint.

		The gravitational attraction provides the centripetal acceleration:

			Gmm/(2r)2 = mv2/r = m(2pr/T)2/r = m4p2r/T2, so we have

		 	m 	= 16p2r3/GT2

				= 16p2(4.0 ´ 1010 m)3/(6.67 ´ 10–11 N · m2/kg2)[(12.6 yr)(3.16 ´ 107 s/yr)]2 =      9.6 ´ 1026 kg.

















28.	(a)	We relate the speed to the period of revolution from

			v = 2pr/T.

		We know that the gravitational attraction of a mass M provides the centripetal acceleration:

			GmplanetM/r2 = Mv2/r = M(2pr/T)2/r = M4p2r/T2, so we have

			mplanet = 4p2r3/GT2.

		Thus the density is

			r = mplanet/V = [4p2r3/GT2]/)pr3 = 3p/GT2.

	(b)	For the Earth we have

			r = 3p/GT2 = 3p/(6.67 ´ 10–11 N · m2/kg2)[(90 min)(60 s/min)]2 =       4.8 ´ 103 kg/m3.

		Note that the density of iron is 7.8 ´ 103 kg/m3.



29.	The gravitational attraction must provide the centripetal acceleration for the circular orbit:

		GmEM/r2 = Mv2/r,   or   

		v2	= GmE/(rE + h) 

			= (6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)/(6.38 ´ 106 m + 8.8 ´ 103 m), 

	which gives v =        7.9 ´ 103 m/s.



30.	(a)	The gravitational attraction must provide the centripetal acceleration for the circular orbit:

			GmEM/r2 = Mv2/r,   or   v = (GmE/r)1/2.

		Because the change in radius is small compared to r, we can approximate the changes as 

		differentials, so we differentiate the expression for v:

			dv = – !(GmE/r3)1/2 dr.

		We assume that the height of the orbit is small compared to the Earth’s radius, which we use for r:

			dv = – ![(6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)/(6.38 ´ 106 m)3]1/2(– 1.0 ´ 103 m) = + 0.62 m/s.

		Thus the time required to catch up is

			?t = ?x/dv = (30 ´ 103 m)/(0.62 m/s) = 4.8 ´ 104 s =      13 h.

	(b)	To catch up in 8.0 hours, the increase in speed must be

			dv = ?x/?t = (30 ´ 103 m)/(8.0 h)(3600 s/h) = 1.05 m/s.

		We find the decrease in radius from

			dv = – !(GmE/r3)1/2 dr;

			1.05 m/s = – ![(6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)/(6.38 ´ 106 m)3]1/2 dr, 

		which gives dr = – 1.7 ´ 103 m =      – 1.7 km.
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31.	Each body will attract one of the other bodies with a force given by

		F = Gmm/L2.

	From the symmetry we see that the net force on a body will be 

	toward the center of the triangle and will provide the centripetal 

	acceleration required for the circular orbit:

		Fnet = 2(Gmm/L2) cos 30° = mv2/r = mv2/(L/2 cos 30°), which gives

		v = (Gm/L)1/2.































32.	If we take the upward acceleration of the elevator as positive, the effective value of gravity in the elevator is

		geff = g + aelev.

�

	The acceleration of the mass relative to the plane must be along the surface of the plane.  From the diagram we see that 

		mgeff sin q = marel , so arel  = (g + aelev) sin q.

	(a)	For an upward acceleration of the elevator, we get

			arel 	= (g + aelev) sin q = (g + 0.50g) sin 30° 

				=       0.75g (down the plane).

	(b)	For a downward acceleration of the elevator, we get

			arel 	= (g + aelev) sin q = (g – 0.50g) sin 30° 

				=       0.25g (down the plane).

	(c)	For free fall aelev = – g, so we have geff = 0, and we get

			arel = (g + aelev) sin q =        0.

	(d)	For constant speed aelev = 0, so we have geff = g, and we get

			arel = (g + aelev) sin q = g sin 30° =       0.50g (down the plane).



33.	From Kepler’s third law, T2 = 4p2r3/GmE , we can relate the periods of the satellite and the Moon: 

		(T/TMoon)2 =  (r/rMoon)3;

		(T/27.4 d)2 = [(6.38 ´ 106 m)/(3.84 ´ 108 m)]3, which gives T =        0.0587 days (1.41 h).



34.	From Kepler’s third law, T2 = 4p2r3/GmS , we can relate the periods of Icarus and the Earth: 

		(TIcarus/TEarth)2 =  (rIcarus/rEarth)3;

		(410 d/365 d)2 = [rIcarus/(1.50 ´ 1011 m)]3, which gives        rIcarus = 1.62 ´ 1011 m.



35.	From Kepler’s third law, T2 = 4p2r3/GmS , we can relate the periods of the Earth and Neptune: 

		(TNeptune/TEarth)2 =  (rNeptune/rEarth)3;

		(TNeptune/1 yr)2 = [(4.5 ´ 1012 m)/(1.50 ´ 1011 m)]3, which gives TNeptune =        1.6 ´ 102 yr.



36.	We use Kepler’s third law, T2 = 4p2r3/GmE , for the motion of the Moon around the Earth:

		T2 = 4p2r3/GmE ;

		[(27.4 d)(86,400 s/d)]2 = 4p2(3.84 ´ 108 m)3/(6.67 ´ 10–11 N · m2/kg2)mE , 

	which gives  mE =       5.98 ´ 1024 kg.



37.	We use Kepler’s third law, T2 = 4p2r3/GmE , for the motion of the Sun:

		T2	= 4p2r3/GmGalaxy;

			= 4p2[(3 ´ 104 ly)(3 ´ 108 m/s)(3.16 ´ 107 s/yr)]3/(6.67 ´ 10–11 N · m2/kg2)(4 ´ 1041 kg),

	which gives

		T = 6 ´ 1015 s =      2 ´ 108 yr.



38.	From Kepler’s third law, T2 = 4p2r3/GmJupiter ,  we have

		mJupiter = 4p2r3/GT2.

	(a)	mJupiter 	= 4p2rIo3/GTIo2

				= 4p2(422 ´ 106 m)3/(6.67 ´ 10–11 N · m2/kg2)[(1.77 d)(86,400 s/d)]2 =      1.90 ´ 1027 kg.

	(b)	mJupiter 	= 4p2rEuropa3/GTEuropa2

				= 4p2(671 ´ 106 m)3/(6.67 ´ 10–11 N · m2/kg2)[(3.55 d)(86,400 s/d)]2 =      1.90 ´ 1027 kg;

		mJupiter 	= 4p2rGanymede3/GTGanymede2

				= 4p2(1070 ´ 106 m)3/(6.67 ´ 10–11 N · m2/kg2)[(7.16 d)(86,400 s/d)]2 =      1.89 ´ 1027 kg;

		mJupiter 	= 4p2rCallisto3/GTCallisto2

				= 4p2(1883 ´ 106 m)3/(6.67 ´ 10–11 N · m2/kg2)[(16.7 d)(86,400 s/d)]2 =      1.90 ´ 1027 kg.

		The results are consistent.





39.	From Kepler’s third law, T2 = 4p2r3/GmJupiter ,  we can relate the distances of the moons: 

		(r/rIo)3 = (T/TIo)2.

	Thus we have

		(rEuropa/422 ´ 103 km)3 = (3.55 d/1.77 d)2, which gives       rEuropa = 6.71 ´ 105 km.

		(rGanymede/422 ´ 103 km)3 = (7.16 d/1.77 d)2, which gives       rGanymede = 1.07 ´ 106 km.	

		(rCallisto/422 ´ 103 km)3 = (16.7 d/1.77 d)2, which gives       rCallisto = 1.88 ´ 106 km.

	All values agree with the table.



40.	(a)	From Kepler’s third law, T2 = 4p2r3/GmS ,  we can relate the periods of the assumed planet 

		and the Earth: 

			(Tplanet/TEarth)2 =  (rplanet/rEarth)3;

			(Tplanet/1 yr)2 = (3)3, which gives        Tplanet = 5.2 yr.

	(b)	   No,      the radius and period are independent of the mass of the orbiting body.



�

41.	An apparent gravity of one g means that the normal force from the band 

	is mg, where

		g = GmE/rE2. 

	The normal force and the gravitational attraction from the Sun provide 

	the centripetal acceleration:

		GmSm/rSE2 + mGmE/rE2  = mv2/rSE , or

		v2 	=  G[(mS/rSE) + (mErSE/rE2)] 

			= (6.67 ´ 10–11 N · m2/kg2)[(1.99 ´ 1030 kg)/(1.50 ´ 1011 m) + 

							(5.98 ´ 1024 kg)(1.50 ´ 1011 m)/(6.38 ´ 106 m)2], which gives v = 1.2 ´ 106 m/s.

	For the period of revolution we have

		T = 2prSE/v = [2p(1.50 ´ 1011 m)/(1.2 ´ 106 m/s)]/(86,400 s/day) =        9.0 Earth-days.



�

42.	(a)	In a short time interval ?t, the planet will travel a 

		distance v ?t along its orbit.  This distance has 

		been exaggerated on the diagram.  Kepler’s second 

		law states that the area swept out by a line from 

		the Sun to the planet in time ?t is the same 

		anywhere on the orbit.  If we take the areas swept 

		out at thenearest and farthest points, as shown on 

		the diagram, and approximate the areas as 

		triangles (which is a good approximation for very small ?t), we have

			!dN(vN ?t) = !dF(vF ?t), which gives  vN/vF = dF/dN.

	(b)	For the average velocity we have

			æ = 2p[!(dN + dF)]/T = p(1.47 ´ 1011 m + 1.52 ´ 1011 m)/(3.16 ´ 107 s) = 2.97 ´ 104 m/s.

		From the result for part (a), we have

			vN/vF = dF/dN = 1.52/1.47 = 1.034,   or   vN is 3.4% greater than vF . 

		For this small change, we can take each of the extreme velocities to be ± 1.7% from the average. 

		Thus we have

			vN = 1.017(2.97 ´ 104 m/s) =       3.02 ´ 104 m/s;

			vF = 0.983(2.97 ´ 104 m/s) =        2.92 ´ 104 m/s.



43.	(a)	From Kepler’s third law, T2 = 4p2r3/GmS ,  we can relate the periods of Hale-Bopp 

		and the Earth: 

			(THB/TE)2 =  (rHB/rE)3;

			[(3000 y)/(1 yr)]2 = (rHB/(1 A.U.)]3, which gives rHB =      2.1 ´ 102 A.U. (3.1 ´ 1013 m).

	(b)	We find the farthest distance from

			rHB = !(dN + dF);

			2.1 ´ 102 A.U.  = !(1.0 A.U. + dF), which gives dF =       4.2 ´ 102 A.U.

	(c)	From Problem 42 we have

			vN/vF = dF/dN = (4.2 ´ 102 A.U.)/(1.0 A.U.) =       4.2 ´ 102.



44.	We call D the separation of the Earth and Moon and take the positive direction toward the Earth.  Because the gravitational fields are in opposite directions, we have

		g 	= gE – gM = [GmE/(D/2)2] – [GmM/(D/2)2] = (4G/D2)(mE – mM)

			= 4[(6.67 ´ 10–11 N · m2/kg2)/(3.84 ´ 108 m)2](5.98 ´ 1024 kg – 7.4 ´ 1022 kg) 

			=      1.07 ´ 10–2 N/kg toward Earth.



45.	(a)	The gravitational field is

			g = GmS/DSE2

			= (6.67 ´ 10–11 N · m2/kg2)(2.0 ´ 1030 kg)/(1.50 ´ 1011 m)2 =     5.9 ´ 10–3 N/kg.

	(b)	Because the field due to the Sun is about 1000 times smaller than the field from the Earth, 

		the effect is       not significant.

�



46.	(a)	From the symmetry, the magnitudes of the gravitational 

		field from each particle on the y-axis are equal:

			g1 = g2 = Gm/r2 = Gm/(x02 + y2).

		The symmetry means that the total field will be toward – y 

		and is given by

			g  = 2(Gm/r2) cos q (– j) = – 2(Gmy/r3) j =      – [2Gmy/(x02 + y2)3/2] j.

	(b)	We find the locations of the maximum magnitude by setting the 

		first derivative equal to zero:

			�

		Thus we have

			2y2 = x02,   or       y = ± x0/v2.

		Note that these are maximum points, because the field is zero at the origin and very far away.

		The maximum values are

			gmax 	= – 2{Gm(± x0/v2)/[x02 + (± x0/v2)2]3/2} j 

					= — (4Gm/33/2x02) j  =       — (0.77 Gm/x02) j.



47.	The acceleration due to gravity at a distance r from the center of the Earth is

		g = F/M = GmEarth/r2.

	If we form the ratio of the two accelerations for the different distances, we have

		g/gsurface = [rEarth/(rEarth + h)]2;

		1/2 = [(6400 km)/(6400 km + h)]2 , which gives h =        2.7 ´ 103 km.   



48.	(a)	The mass does not depend on the gravitational force, so it is         3.0 kg on both.

	(b)	For the weights we have

			wEarth = mgEarth = (3.0 kg)(9.80 m/s2) =        29 N;

			wplanet = mgplanet = (3.0 kg)(12.0 m/s2) =        36 N.



49.	The acceleration due to gravity on the surface of the neutron star is

		g = F/M = Gm/r2 = (6.67 ´ 10–11 N · m2/kg2)(5)(2.0 ´ 1030 kg)/(10 ´ 103 m)2 =      6.7 ´ 1012 m/s2.



50.	The acceleration due to gravity at a distance r from the center of the Earth is

		g = F/M = GmEarth/r2.

	If we form the ratio of the two accelerations for the different distances, we have

		g/gsurface = (rEarth/r)2;

		1/10 = [(6400 km)/r]2 , which gives r =        2.0 ´ 104 km.   



51.	The acceleration due to gravity on the surface of the white dwarf star is

		g = F/M = Gm/r2 = (6.67 ´ 10–11 N · m2/kg2)(2.0 ´ 1030 kg)/(1.74 ´ 106 m)2 =      4.4 ´ 107 m/s2.





52.	The time for one revolution about the Moon is

		T = 2pR/v.

	The required centripetal acceleration is provided by the gravitational attraction:

		GmMm/R2 = mv2/R = m(2pR/T)2/R = m4p2R/T2, so we have

		GmM = 4p2(rM + h)3/T2;

		(6.67 ´ 10–11 N · m2/kg2)(7.4 ´ 1022 kg) = 4p2(1.74 ´ 106 m + 1.00 ´ 105 m)3/T2, 

	which gives  T = 7.06 ´ 103 s =         2.0 h.



53.	We assume a separation of 1 m between two persons of mass 60 kg.  If we assume we can sense a force of 

	0.5 N, we have 

		F = Gmm/r2 ;

		0.5 N = G¢(60 kg)(60 kg)/(1 m)2, which gives       G¢ = 1 ´ 10–4 N · m2/kg2 ˜ 106 G.



54.	(a)	The two forces are

			FS 	= GmSmE/rSE2 

				= (6.67 ´ 10–11 N · m2/kg2)(2.0 ´ 1030 kg)(5.98 ´ 1024 kg)/(1.5 ´ 1011 m)2 =      3.5 ´ 1022 N;

			FM	= GmMmE/rME2

				= (6.67 ´ 10–11 N · m2/kg2)(7.4 ´ 1022 kg)(5.98 ´ 1024 kg)/(3.84 ´ 108 m)2 =      2.0 ´ 1020 N.

		If we form the ratio, we get

			FS/FM 	= 3.5 ´ 1022 N/2.0 ´ 1020 N = 1.8 ´ 102.

	(b)	The direction of the Moon’s gravitational field changes more frequently, with a period slightly 

		less than 28 days; and the relative change in the gravitational field from one side of the Earth 

		to the other is greater for the Moon.



55.	We relate the orbital speed to the period of revolution from

		v = 2pR/T.

	 The required centripetal acceleration is provided by the gravitational attraction:

		GmSm/R2 = mv2/R = m(2pR/T)2/R = m4p2R/T2, so we have

		GmS = 4p2R3/T2.

	For the two extreme orbits we have

		(6.67 ´ 10–11 N · m2/kg2)(5.69 ´ 1026 kg) = 4p2(7.3 ´ 107 m)3/Tinner2, 

	which gives  Tinner = 2.0 ´ 104 s =         5 h 35 min;

		(6.67 ´ 10–11 N · m2/kg2)(5.69 ´ 1026 kg) = 4p2(17 ´ 107 m)3/Touter2, 

	which gives  Touter = 7.1 ´ 104 s =         19 h 50 min.

	Because the mean rotation period of Saturn is between the two results, with respect to a point on the surface of Saturn, the edges of the rings are moving in opposite directions.



56.	(a)	The gravitational attraction must provide the centripetal acceleration for the circular orbit:

			GmEm/r2 = mv2/r,   or   

			v2	= GmE/(rE + h) 

				= (6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)/[6.38 ´ 106 m + (11,000)(1.852 ´ 103 m)], 

		which gives v =        3.9 ´ 103 m/s.

	(b)	For the period of revolution we have

			T 	= 2pr/v = 2p[6.38 ´ 106 m + (11,000)(1.852 ´ 103 m)]/(3.9 ´ 103 m/s.) 

				= 4.3 ´ 104 s =      12 h.



















57.	(a)	If we assume Eros is a cylinder, its mass is

			mEros = rpr2h = (2.3 ´ 103 kg/m3)p(3 ´ 103 m)2(40 ´ 103 m) = 2.6 ´ 1015 kg. 

		We assume NEAR orbits around the narrow waist of Eros and use Kepler’s third law:

			T2 	= 4p2r3/GmEros

				= 4p2[(15 ´ 103 m) + (3 ´ 103 m)]3/(6.67 ´ 10–11 N · m2/kg2)(2.6 ´ 1015 kg),

		which gives

			T = 3.6 ´ 104 s =      10 h.

	(b)	With the same mass and density, the sphere must have the same volume:

			)pr03 = (40 km)p(3 km)2, which gives r0 =        6.5 km.

	(c)	The acceleration due to gravity on the surface of a spherical Eros is

			g 	= GmEros/r02

				= (6.67 ´ 10–11 N · m2/kg2)(2.6 ´ 1015 kg)/(6.5 ´ 103 m)2 =      4.2 ´ 10–3 m/s2.



58.	We relate the speed to the period of revolution about the midpoint from

		v = 2p(r/2)/T, where r is the separation.

	The gravitational attraction provides the centripetal acceleration:

		Gmm/r2 = mv2/(r/2) = 2m[2p(r/2)/T]2/r = 2mp2r/T2, so we have

		m 	= 2p2r3/GT2

			= 2p2(360 ´ 109 m)3/(6.67 ´ 10–11 N · m2/kg2)[(5.0 yr)(3.16 ´ 107 s/yr)]2 =      5.5 ´ 1029 kg.



59.	From Kepler’s third law, T2 = 4p2R3/GmS , we can relate the periods of Halley’s comet and the Earth to find the mean distance of the comet from the Sun: 

		(THalley/TEarth)2 =  (RHalley/REarth)3;

		(76 yr/1 yr)2 = [RHalley/(1.50 ´ 1011 m)]3, which gives  RHalley = 2.68 ´ 1012 m.

	This mean distance is half the sum of the nearest and farthest distances.  If we take the nearest distance to the Sun as zero, the farthest distance is

		d = 2RHalley = 2(2.68 ´ 1012 m) =       5.4 ´ 1012 m.       

	It is still orbiting the Sun and thus is        in the Solar System.        The planet nearest it is       Pluto.



60.	We relate the speed to the period of revolution from

		v = 2pr/T, where r is the distance to the center of the Milky Way.

	The gravitational attraction provides the centripetal acceleration:

		GmgalaxymS/r2 = mSv2/r = mS(2pr/T)2/r = mS4p2r/T2, so we have

		mgalaxy	= 4p2r3/GT2

				= 4p2[(30,000 ly)(9.5 ´ 1015 m/ly)]3/

						(6.67 ´ 10–11 N · m2/kg2)[(200 ´ 106 yr)(3.16 ´ 107 s/yr)]2 =      3.4 ´ 1041 kg.

	The number of stars (“Suns”) is

		(3.4 ´ 1041 kg)/(2.0 ´ 1030 kg) =        1.7 ´ 1011.  



61.	The acceleration due to gravity on the surface of a planet is

		gP = Fgrav/M = GmP/R2.

	If we form the ratio of the expressions for Jupiter and the Earth, we have

		gJupiter/gEarth = (mJupiter/mEarth)(REarth/RJupiter)2;

		gJupiter/gEarth = [(1.9 ´ 1027 kg)/(6.0 ´ 1024 kg)][(6.38 ´ 106 m)/(7.1 ´ 107 m)]2, 

	which gives  gJupiter = 2.56gEarth .

	This has not taken into account the centripetal acceleration.  We ignore the small contribution on Earth.  The centripetal acceleration on the equator of Jupiter is 

		aR	= v2/R = (2pR/T)2/R = 4p2R/T2 

			= 4p2(7.1 ´ 107 m)/[(595 min)(60 s/min)]2 = 2.2 m/s2 =  0.22gEarth .

	The centripetal acceleration reduces the effective value of g:

		g¢Jupiter = gJupiter – aR = 2.56gEarth – 0.22gEarth =       2.3gEarth.







62.	The gravitational attraction from the core must provide the centripetal acceleration for the orbiting stars:

		Gmstarmcore/R2 = mstarv2/R, so we have

		mcore 	= v2R/G

				= (780 ´ 103 m/s)2(5.7 ´ 1017 m)/(6.67 ´ 10–11 N · m2/kg2) =       5.2 ´ 1039 kg.

	If we compare this to our Sun, we get

		mcore/mSun = (5.2 ´ 1039 kg)/(2.0 ´ 1030 kg) =       2.6 ´ 109 ´.



63.	The acceleration due to gravity on the surface of a planet is

		gP  = F/M = GmP/r2, so we have

		mP = gPr2/G.

�



64.	(a)	The attractive gravitational force on the plumb bob is

			FM = GmmM/DM2.

		Because ?F = 0, we see from the force diagram:

			tan q = FM/mg = (GmmM/DM2)/(mGmE/RE2), 

		where we have used GME/RE2 for g.

		Thus we have

			q = tan–1 (mMRE2/mEDM2).

	(b)	For the mass of a cone with apex half-angle a, we have

			mM 	= rV = r@ph3 tan2 a

					= (3 ´ 103 kg/m3)@p(4 ´ 103 m)3 tan2 30° =        7 ´ 1013 kg.

	(c)	Using the result from part (a) for the angle, we have

			  tan q 	= mMRE2/mEDM2

			 		= (7 ´ 1013 kg)(6.4 ´ 106 m)2/(6.0 ´ 1024 kg)(5 ´ 103 m)2 = 2 ´ 10–5, 

		which gives      q ˜ (1 ´ 10–3)°.



65.	Your weight at a distance r from the center of the Earth is

		w = GmmE/r2.

	The rate of change of r is dr/dt = v, so the rate of change of your weight is

		dw/dt = GmmE(– 2/r3)(dr/dt) = – 2GmmEv/r3.



66.	The contribution to g of the oil deposit (with density roil) is 

		g  = Gmoil/D2 = GroilV/D2, 

	where V is the volume of oil and D is the distance of the oil from the measurement site.  We assume the change in g from average is caused by the substitution of oil for rock, that is, the difference between the contribution of the oil and what would be contributed by the same volume of rock.  Thus we have

		?g = G ?m/D2 = G(?r)V/D2 = G(roil – rrock)V/D2;

		(– 2 ´ 10–7)(9.80 m/s2) = (6.67 ´ 10–11 N · m2/kg2)(1000 kg/m3 – 3000 kg/m3)V/(2000 m)2, 

	which gives       V = 5.8 ´ 107 m3.

	The mass of the oil is

		moil = roilV = (1000 kg/m3 )(5.8 ´ 107 m3) =      5.8 ´ 1010 kg.



67.	The particle falls along a radial line.  We take the positive direction upward.  During the fall the gravitational attraction provides the acceleration: 

		– GmEm/r2 = ma = m dv/dt = m (dv/dr)(dr/dt) = mv (dv/dr),  which we can write

		– (GmE/r2) dr = v dv.

	We find the velocity by integration:

		�

		vf2 	= 2GmE[(1/rE) – (1/2rE)] = GmE/rE 

				= (6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)/(6.38 ´ 106 m), which gives vf =     7.9 ´ 103 m/s.
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