CHAPTER 7 - Work and Energy



1.	The displacement is in the direction of the gravitational force, thus

		W = Fh  cos 0° = mgh = (250 kg)(9.80 m/s2)(2.80 m) =      6.86 ´ 103 J.



2.	The displacement is opposite to the direction of the retarding force, thus

		W = Fx cos 180° = (535 N)(1.25 ´ 103 m)(– 1) =      – 6.69 ´ 105 J.

	

3.	Because there is no acceleration, the contact force must have the same magnitude as the weight.  

	The displacement in the direction of this force is the vertical displacement.  Thus, 

		W = F ?y = (mg) ?y = (65.0 kg)(9.80 m/s2)(20.0 m) =      1.27 ´ 104 J.



4.	(a)	Because there is no acceleration, the horizontal applied force must have the same magnitude as 

		the friction force.  Thus, 

			W = F ?x = (230 N)(4.0 m) =      9.2 ´ 102 J.

	(b)	Because there is no acceleration, the vertical applied force must have the same magnitude as 

		the weight.  Thus, 

			W = F Dy = mg Dy = (1200 N)(4.0 m) =       4.8 ´ 103 J.



�

5.	Because there is no acceleration, from the force diagram we see that

		FN = mg,   and   F = Ffr = mkmg.

	Thus, 

		W 	= F x cos 0° = mkmg x cos 0° 

			= (0.50)(160 kg)(9.80 m/s2)(10.3 m)(1) =      8.1 ´ 103 J.









6.	Because the speed is zero before the throw and when the rock reaches the highest point, the positive work of the throw and the (negative) work done by the (downward) weight must add to zero.  Thus, 

		Wnet = Wthrow + mgh cos 180° = 0,   or   

		h = – Wthrow/mg cos 180° = – (80.0 J)/(1.85 kg)(9.80 m/s2)(–1) =      4.41 m.



7.	1 J = (1 kg · m/s2)(1 m)(1000 g/kg)(100 cm/m)2 = 1 ´ 107 g · cm/s2 =       1 ´ 107 erg.

	1 J = (1 N · m)(0.225 lb/N)(3.28 ft/m) =        0.738 ft · lb.



8.	The maximum amount of work that the hammer can do is the work that was done by the weight as the hammer fell:

		Wmax = mgh cos 0° = (2.0 kg)(9.80 m/s2)(0.50 m)(1) =      9.8 J.

	People add their own force to the hammer as it falls in order that additional work is done before the hammer hits the nail, and thus more work can be done on the nail.



9.	If we assume the width of a cut is 0.30 m, and we cut the lawn parallel to the long side, the number of cuts required is

		N = (10.0 m)/(0.30m/cut) = 33 cuts, each 20 m long.

	Thus the total work (ignoring turn-arounds) is

		W = Fx = (15 N)(33)(20 m) =      1.0 ´ 104 J.

















�

10.	The minimum work is needed when there is no acceleration.  

	(a)	From the force diagram, we write SF = ma:

			y-component: FN – mg cos q = 0;

			x-component: Fmin – mg sin q = 0.

		For a distance d along the incline, we have

			Wmin	= Fmind cos 0° = mgd sin q (1) 

					= (950 kg)(9.80 m/s2)(310 m) sin 9.0° 

					=       4.5 ´ 105 J.

	(b)	When there is friction, we have

			x-component: Fmin – mg sin q – mkFN = 0,  or

			Fmin = mg sin q + mkmg cos q,  

		For a distance d along the incline, we have

			Wmin	= Fmind cos 0° = mgd (sin q + mk cos q)(1) 

					= (950 kg)(9.80 m/s2)(310 m)(sin 9.0° + 0.25 cos 9.0°) =      1.2 ´ 106 J.
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11.	We assume that the input force is exerted perpendicular 

	to the lever.  When the lever rotates through a small 

	angle q, the distance through which the input force acts 

	is ¬Iq, and the distance the output force acts is ¬Oq.  If the 

	output work is equal to the input work, we have

		WI = FI¬Iq = WO = FO¬Oq,   or   FO/FI = ¬I/¬O .













12.	Because the net work must be zero, the work to stack the books will have the same magnitude as the work done by gravity.  For each book the work is mg times the distance the center is raised (zero for the first book, one book-height for the second book, etc.).

		W1 = 0, W2 = mgh, W3 = mg2h; … .

	Thus for eight books, we have

		W = W1 + W2 + W3 + … + W8 = mgh(0 + 1 + 2 + … + 7) = (1.7 kg)(9.80 m/s2)(0.043 m)(28) =       20 J.
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13.	(a)	From the force diagram, we write SF = ma:

			y-component: FN – mg cos q = 0;

			x-component: – F – mkFN + mg sin q = 0.

		Thus we have

			F	= – mkFN + mg sin q = – mkmg cos q + mg sin q 

				= mg (sin q – mk cos q) 

				= (380 kg)(9.80 m/s2)(sin 27° – 0.40 cos 27°) =       3.6 ´ 102 N.

	(b)	Because the piano is sliding down the incline, we have

			WF = F d cos 180° = (3.6 ´ 102 J)(3.5 m)(– 1) =       – 1.3 ´ 103 J.

	(c)	For the friction force, we have

			Wfr = mkmg cos q d cos 180° 

				= (0.40)(380 kg)(9.80 m/s2)(cos 27°)(3.5 m)(– 1) =       – 4.6 ´ 103 J.

	(d)	For the force of gravity, we have

			Wgrav	= mg d cos 63° 

					= (380 kg)(9.80 m/s2)(3.5 m)(cos 63°) =       5.9 ´ 103 J.

	(e)	Because the normal force does no work, we have 

			Wnet	= Wgrav + WF + Wfr + WN 

					= 5.9 ´ 103 J – 1.3  ´ 103 J – 4.6 ´ 103 J + 0 =        0.
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14.	(a)	From the plot of the force exerted by the catapult, we see that 

		the takeoff distance is 90 m.  The displacement is in the 

		direction of the force from the engine, thus

			Wengine = Fengineh  cos 0° = (130 ´ 103 N)(90 m) =      1.2 ´ 107 J.

	(b)	The work done by the catapult is the area under 

		the F vs. x graph:  

			W 	= !(F1 + F2)(x2 – x1) 

				= !(1100 ´ 103 N + 65 ´ 103 N)(90 m) =        5.2 ´ 107 J.
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15.	Because the motion is in the x-direction, we see that the 

	weight and normal forces do no work:

		WFN = Wmg = 0.

	From the force diagram, we write SF = ma:

		x-component: FP cos q – Ffr = 0,  or  Ffr = FP cos q.

	For the work by these two forces, we have 

		WFP = FP ?x  cos q = (14 N)(15 m) cos 20° = 2.0 ´ 102 J.

		Wfr = FP cos q  ?x  cos 180°= (14 N) cos 20° (15 m)(– 1) = – 2.0 ´ 102 J.

	As expected, the total work is zero:        WFP = – Wfr = 2.0 ´ 102 J.
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16.	(a)	To find the required force, we use the force diagram 

		to write SFy = may:

			F – Mg = Ma, so we have

			F = M(a + g) = M(0.10g + g) =      1.10Mg.

	(b)	For the work, we have

			WF = Fh cos 0° =          1.10Mgh.











17.	We take the scalar product of each unit vector with the vector:

		i · V = Vx i · i + Vy i · j + Vz i · k = Vx(1) + Vy(0) + Vz(0) = Vx ; 

		j · V = Vx j · i + Vy j · j + Vz j · k = Vx(0) + Vy(1) + Vz(0) = Vy ; 

		k · V = Vx k · i + Vy k · j + Vz k · k = Vx(0) + Vy(0) + Vz(1) = Vz .



18.	The magnitudes of the vectors are

		A = (Ax2 + Ay2 + Az2)1/2 = [(6.8)2 + (4.6)2 + (6.2)2]1/2 = 10.3.

		B = (Bx2 + By2 + Bz2)1/2 = [(8.2)2 + (2.3)2 + (– 7.0)2]1/2 = 11.0.

	We find the angle from the scalar product:

		A · B = AxBx + AyBy + AzBz = AB cos q;

		(6.8)(8.2) + (4.6)(2.3) + (6.2)(– 7.0) = (10.3)(11.0) cos q, which gives cos q = 0.203,     q = 78°.



19.	A · (– B) = Ax(– Bx)+ Ay(– By) + Az(– Bz) = – (AxBx + AyBy + AzBz) = – A · B.



20.	We write the two vectors using unit vectors:

		V1 = V1 k;     V2 = V2 cos q i + V2 sin q k.

	For the scalar product we have

		V1 · V2 	= V1xV2x + V1yV2y + V1zV2z 

				= 0 + 0 + (V1)(V2 sin q) = (75)(50)[sin(–48°)] =     – 2.8 ´ 103.



21.	(a)	A · (B + C) 	= (7.0 i – 8.5 j) · [(– 8.0 + 6.8) i + (8.1 – 7.2) j + 4.2 k] 

						= (7.0)(– 1.2) + (– 8.5)(0.9) =      – 16.1.

	(b)	(A + C) · B 	= [(7.0 + 6.8) i + (– 8.5 – 7.2) j + 0 k] · (– 8.0 i + 8.1 j + 4.2 k) 

						= (13.8)(– 8.0) + (– 15.7)(8.1) + 0 =      – 238.

	(c)	(B + A) · C 	= [(– 8.0 + 7.0) i + (8.1 – 8.5) j + (4.2 + 0) k] · (6.8 i – 7.2 j) 

						= (– 1.0)(6.8) + (– 0.4)(– 7.2) + (4.2)(0) =      – 3.9.



22.	The scalar product is

		A · B = A · (Bx i + By j + Bz k).

	If we use the distributive law, we get

		A · B 	= (A · i)Bx + (A · j)By + (A · k)Bz 

				= [(Ax i + Ay j + Az k) · i]Bx + [(Ax i + Ay j + Az k) · j]By + [(Ax i + Ay j + Az k) · k]Bz 

	If we use the distributive law again, we get

		A · B 	= (Ax i · i + Ay j · i + Az k · i)Bx + (Ax i · j + Ay j · j + Az k · j)By + (Ax i · k + Ay j · k + Az k · k)Bz 

				= AxBx + AyBy + AzBz.



23.	Because C lies in the xy-plane and is perpendicular to B, we have

		B · C = BxCx + ByCy = 9.6Cx + 6.7Cy = 0.

	For the scalar product of A and C we have

		A · C = AxCx + AyCy = – 4.8Cx + 7.8Cy = 20.0.

	When we solve these two equations for the two unknowns, we get

		Cx = –1.25,  and Cy = 1.79.

	Thus       C = – 1.3i + 1.8j.



24.	For the sum and difference vectors, we have

		Csum = A + B,  Cdiff = A – B.

	If we form the scalar product, we get

		Csum · Cdiff = (A + B) · (A – B) = A · A  + B · A – A · B – B · B = A2 – B2 = 0,

	because A and B have the same magnitude.  Because the scalar product is zero, the sum and difference vectors are perpendicular.



25.	The magnitude of the vector is

		V = (Vx2 + Vy2 + Vz2)1/2 = [(20.0)2 + (12.0)2 + (– 14.0)2]1/2 = 27.2.

	We find the angle this vector makes with an axis by taking the appropriate scalar product with the unit vector:

		V · i = Vx = V cos qx ,  or  cos qx = Vx/V = 20.0/27.2 = 0.732,       qx = 42.7°;

		V · j = Vy = V cos qy ,  or  cos qy = Vy/V = 12.0/27.2 = 0.441,       qy = 63.8°;

		V · k = Vz = V cos qz ,  or  cos qz = Vz/V = – 14.0/27.2 = – 0.515,       qz = 121°.
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26.	From the triangle we see that 

		a + c = b,   or   c = b – a.

	If we take the scalar product of c with itself, we have

		c · c = (b – a) · (b – a);

		c2 = b2 – a · b  – b · a + a2 = a2 + b2 – 2ab cos q.





�

27.	We find the angle between A and B by taking the scalar product:

		A · B = AxBx + AyBy = AB cos q;

		20.0 = (12.0)(4.0) cos q, which gives cos q = 0.417, so q = 65.4°, – 65.4°.

	Thus the two angles that B may make with the x-axis are      

		95°, – 35° from x-axis.
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28.	We use the two expressions for the scalar product:

		A · B = AB cos q = AxBx + AyBy ;

		AB cos (a – b) =  (A cos a)(B cos b) + (A sin a)(B sin b);

		cos (a – b) =  cos a cos b + sin a sin b.
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29.	We have shown the vector sum of B and C on the diagram.

	The scalar product can be considered as the magnitude of one 

	vector times the component of the other vector parallel to the 

	first.  If we let B|| be the component of B parallel to A, etc., 

	then we want to show that 

		A · (B + C) = A · B + A · C ,  or

		A(B + C)|| = A B||| + A C||  = A(B|| + C||).

	We see from the diagram that (B + C)|| = B|| + C|| , 

	so the scalar product is distributive.











30.	Although the pedal travels around the circumference of the circle that the pedal makes, we can find the work done by taking the component of the displacement parallel to the force, which is the diameter:

		W = Fd||  = (470 N)(0.36 m) =      1.7 ´ 102 J.
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31.	We obtain the forces at the beginning and end of the motion:

		at x1 = 0.030 m, F1 = kx1 = (84 N/m)(0.030 m) = 2.52 N;

		at x2 = 0.055 m, F2 = kx2 = (84 N/m)(0.055 m) = 4.62 N.

	From the graph the work done in stretching the object is the 

	area under the F vs. x graph:  

		W 	= !(F1 + F2)(x2 – x1) 

			= !(2.52 N + 4.62 N)(0.055 m – 0.030 m) =        0.089 J.
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32.	For an irregular path, we find the work by considering the path 

	to be an infinite number of differential steps.  We find the 

	(differential) work for each step and add (integrate):

		�

	From the diagram we see that cos q ds = dy, so we have

		�

	which is the result of Example 7–2.
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33.	The work done in moving the object is the area 

	under the Fx vs. x graph.  For the motion from 

	0.0 m to 11.0 m, we find the area of two triangles 

	and one rectangle:

		W 	= !(300 N)(3.0 m – 0.0 m) + 

					(300 N)(7.0 m – 3.0 m) + 

						!(300 N)(11.0 m – 7.0 m) 

			=        2.3 ´ 103 J.
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34.	The work done in moving the object is the area 

	under the Fx vs. x graph.  

	(a)	For the motion from 0.0 m to 10.0 m, we find 

		the area of two triangles and one rectangle:

			W 	= !(400 N)(3.0 m – 0.0 m) 

					+ (400 N)(7.0 m – 3.0 m) + 

						!(400 N)(10.0 m – 7.0 m) 

				=        2.8 ´ 103 J.

	(b)	For the motion from 0.0 m to 15.0 m, we add 

		the negative area of two triangles and one rectangle:

			W = 2.8 ´ 103 J – !(200 N)(11.7 m – 10.0 m) – 

					(200 N)(13.7 m – 11.7 m) – !(200 N)(15.0 m – 13.7 m) =        2.1 ´ 103 J.



35.	We consider the area under the curve to be seven rectangles, each with a length on the distance axis of 

		?x = (30.0 m – 10.0 m)/7 = (20.0 m)/7.

	We estimate the height of each segment from the graph to get

		W 	= ? Fi ?x = (?Fi) ?x

			= (185 N + 175 N + 150 N + 120 N + 110 N + 100 N + 100 N)(20.0 m)/7 =       2.7 ´ 103 J.



36.	The resisting force opposes the penetration.  If we assume no acceleration, the applied force must be equal to this in the direction of the penetration.  For a variable force, we find the work by integration:

		�EMBED Word.Picture.8���



37.	For a variable force, we find the work by integration:

		�EMBED Word.Picture.8���
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38.	If we let y be the length of chain hanging over the edge and use 

	m for linear weight density, the weight hanging is w = my.  As the 

	next differential length dy comes over the edge, the weight w 

	will fall a distance dy, during which the force of gravity will do 

	work dW = w dy.  If L1 is the initial hanging length and L is the 

	total length of the chain, we integrate this from L1 to L:

		�EMBED Word.Picture.8���
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39.	(a)	If we use r as the displacement, the force of gravity is 

		negative and ?r is negative.  Thus we can plot the force 

		as positive with a positive change in r, as shown.  

		If we approximate the area as two rectangles, the 

		average forces for the two are

		at rE + #h = 6.38 ´ 106 m + #(3.0 ´ 106 m) = 7.13 ´ 106 m, 

			F1 	= GMEm/r2 

				= (6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg) ´ 

						(2500 kg)/(7.13 ´ 106 m)2 = 1.96 ´ 104 N.

		at rE + &h = 6.38 ´ 106 m + &(3.0 ´ 106 m) = 8.63 ´ 106 m, 

			F2 	= GMEm/rE2 

				= (6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)(2500 kg)/

								(8.63 ´ 106 m)2 = 1.34 ´ 104 N.

		From the graph the work done is the area under the F vs. r graph:  

			W 	= (F1 + F2)!h 

				= !(1.96 ´ 104 N + 1.34 ´ 104 N)(3.0 ´ 106 m) = 4.95 ´ 1010 J =        5.0 ´ 1010 J .

	(b)	To find the work by integration, we have

			�

		Thus we see that our approximation in (a) is within 3%.



40.	We find the speed from 

		K = !mv2;

		6.21 ´ 10–21 J = !(5.31 ´ 10–26 kg)v2, which gives v =       484 m/s.



41.	(a)	K2 = !mv22 = 3K1 = 3(!mv12), which gives v2 = v1v3, so the speed increases by a factor of       v3.

	(b)	K2 = !mv22 = !m(!v1)2 = #(!mv12) = #K1 , so the kinetic energy changes by a factor of       #.



42.	The work done on the electron decreases its kinetic energy:

		W = ?K = !mv2 – !mv02 = 0 – !(9.11 ´ 10–31 kg)(1.70 ´ 106 m/s)2 =       – 1.32 ´ 10–18 J.



43.	The work done on the car decreases its kinetic energy:

		W = ?K = !mv2 – !mv02 = 0 – !(1300 kg)[(100 km/h)/(3.6 ks/h)]2 =       – 5.02 ´ 105 J.



44.	The work done on the arrow increases its kinetic energy:

		W = Fd = ?K = !mv2 – !mv02;

		(105 N)(0.80 m) = !(0.085 kg)v2 –  0, which gives v =       44 m/s.



45.	The work done by the force of the glove decreases the kinetic energy of the ball:

		W = Fd = ?K = !mv2 – !mv02;

		F(0.25 m) = 0 – !(0.145 kg)(32 m/s)2 , which gives F = – 3.0 ´ 102 N.

	The force by the ball on the glove is the reaction to this force:

		3.0 ´ 102 N in the direction of the motion of the ball.



46.	The work done by the braking force decreases the kinetic energy of the car:

		W = ?K;

		– Fd = !mv2 – !mv02 = 0 – !mv02.

	Assuming the same braking force, we form the ratio:

		d2/d1 = (v02/v01)2 = (1.50)2 =        2.25.



47.	On a level road, the normal force is mg, so the kinetic friction force is mkmg.  Because it is the (negative) work of the friction force that stops the car, we have

		W = ?K;

		– mkmg d = !mv2 – !mv02;

		– (0.38)m(9.80 m/s2)(78 m) = – !mv02, which gives v0 =        24 m/s (87 km/h or 54 mi/h).

	Because every term contains the mass,      it cancels.



48.	With m1 = 2m2 , for the initial condition we have

		K1 = !K2 ;

		!m1v12 = !(!m2v22),  or  2m2 v12 = !m2v22, which gives  v1 = !v2.

	After a speed increase of ?v, we have 

		K1¢ = K2¢;

		!m1(v1 + ?v)2 = !m2(v2 + ?v)2;

		2m2(!v2 + 7.0 m/s)2 = m2(v2 + 7.0 m/s)2.

	When we take the square root of both sides, we get

		v2(!v2 + 7.0 m/s) = ± (v2 + 7.0 m/s), which gives a positive result of v2 =        9.9 m/s.

	For the other speed we have  v1 = !v2 =       4.9 m/s.



49.	On the horizontal FN = mg, so the friction force is Ffr = mmg.

	(a)	The work by the applied force is

			WF = Fd = (6.0 N)(12 m) =      72 J.

	(b)	The work by friction is

			Wfr = – FNd = – mkmgd = – (0.30)(1.0 kg)(9.80 m/s2)(12 m) =      – 35 J.

	(c)	The normal force and the weight do no work.  The net work increases the kinetic energy of the mass:

			WF + Wfr = ?K;

			72 J – 35 J = Kf – 0, which gives Kf  =      37 J.



50.	The force from the spring is opposite to the displacement, so the work it does is negative.  The work changes the kinetic energy of the car:

		Wspring = ?K;

		– !kx2 = 0 – !mv2;

		– !k(2.2 m)2 = – !(1200 kg)[(60 km/h)/(3.6 ks/h)]2 , which gives k =      6.9 ´ 104 N/m.



51.	On the level the normal force is FN = mg, so the friction force is Ffr = mkmg.

	The normal force and the weight do no work.  The net work increases the kinetic energy of the mass:

		Wnet = ?K = !mvf2 – !mvi2;

		F(L1 + L2) –  mkmgL2 = !mvf2 – 0;

		(225 N)(11.0 m + 10.0 m) – (0.20)(66.0 kg)(9.80 m/s2)(10.0 m) = !(66.0 kg)vf2,

	which gives vf =         10.2 m/s.



52.	Because the force F holds the spring a distance x, the spring constant is k = F/x.  The work done by the spring changes the kinetic energy of the mass:

		Wspring = ?K;

		– (!kxf2 – !kxi2) = !mvf2 – !mvi2.

	(a)	When the spring returns to xf = 0, we have

			– (0 – !kx2) = !mvf2 – 0,    or    vf = (k/m)1/2x =       (Fx/m)1/2.

	(b)	When the spring returns to xf = !x, we have

			– [!k(!x)2 – !kx2] = !mvf2 – 0,    or    vf = (3k/4m)1/2x =       (3Fx/4m)1/2.



53.	There will be an additional (negative) work done by the friction force.  The net work increases the kinetic energy of the mass:

		– (!kxf2 – !kxi2) – mkmg ?x = !mvf2 – !mvi2;

		– (0 – !kx2) – mkmgx = 0 – 0, which gives       mk = kx/2mg = F/2mg.
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54.	(a)	From the force diagram we write SFy = may:

			FT – mg = ma;

			FT – (355 kg)(9.80 m/s2) = (355 kg)(0.15)(9.80 m/s2),

		which gives FT =        4.00 ´ 103 N.

	(b)	The net work is done by the net force:

			Wnet 	= Fneth = (FT – mg)h 

					= [4.00 ´ 103 N – (355 kg)(9.80 m/s2)](33.0 m) =        1.72 ´ 104 J.

	(c)	The work done by the cable is

			Wcable	= FTh 

					= (4.00 ´ 103 N)(33.0 m) =        1.32 ´ 105 J.

	(d)	The work done by gravity is

			Wgrav	= – mgh 

					= – (355 kg)(9.80 m/s2)(33.0 m) =        – 1.15 ´ 105 J.

		Note that Wnet = Wcable + Wgrav.

	(e)	The net work done on the load increases its kinetic energy:

			Wnet = ?K = !mv2 – !mv02 ;

			1.72 ´ 104 J = !(355 kg)v2 –  0, which gives v =       9.84 m/s.
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55.	(a)	For the work done by the applied force we have

			WP = FP d cos q = (150 N) cos 30° (5.0 m) =       6.5 ´ 102 J.

	(b)	For the force of gravity, we have

			Wgrav	= (– mg sin q )d 

					= – (20 kg)(9.80 m/s2)(5.0 m) sin 30° =       – 4.9 ´ 102 J.

	(c)	Because the normal force is perpendicular to the displacement, 

		it does no work:        WN = 0.

	(d)	The net work done on the block increases its kinetic energy:

			Wnet = WP + Wgrav + WN = !mv2 – !mv02 ;

			6.5 ´ 102 J – 4.9 ´ 102 J + 0 = !(20 kg)v2 –  0, which gives v =       4.0 m/s.



56.	(a)	The work done by the applied force is the same:      

�

			WP = 6.5 ´ 102 J.

	(b)	The work done by gravity is the same:      Wgrav = – 4.9 ´ 102 J.

	(c)	The work done by the normal force is the same:      WN = 0.

	(d)	From the force diagram, we write SF = ma:

			y-component: FN – mg cos q – FP sin q  = 0,  or

			FN	= mg cos q + FP sin q  

				= (20 kg)(9.80 m/s2) cos 30° + (150 N) sin 30° = 245 N.

		The friction force is Ffr = mkFN , so the work done by friction is 

			Wfr 	= – mkFNd 

					= – (0.10)(245 N)(5.0 m) = – 1.2 ´ 102 J.

		The net work done on the block increases its kinetic energy:

			Wnet = WP + Wgrav + WN + Wfr = !mv2 – !mv02 ;

			6.5 ´ 102 J – 4.9 ´ 102 J + 0 – 1.2 ´ 102 J = !(20 kg)v2 –  0, which gives v =       1.9 m/s.
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57.	(a)	The work done by gravity is the decrease in the 

		potential energy:

			Wgrav 	= – mg(hf – hi) = – (755 kg)(9.80 m/s2)(0 – 22.5 m) 

					=        1.66 ´ 105 J.

	(b)	The work done by gravity increases the kinetic energy: 

			Wgrav = ?K;

			1.66 ´ 105 J = !(755 kg)v2 – 0, which gives       v = 21.0 m/s. 

	(c)	For the motion from the break point to the maximum 

		compression of the spring, we have

			Wspring + Wgrav = ?K;

			– (!kxf2 – !kxi2) – mg(hf – hi) = !mvf2 – !mvi2;

			– [!(8.00 ´ 104 N/m)x2 – 0] – 

					(755 kg)(9.80 m/s2)(– x – 22.5 m) = 0 – 0.

		This is a quadratic equation for x, which has the 

		solutions x = – 1.95 m, 2.13 m.  

		Because x must be positive, the spring compresses       2.13 m.
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58.	We consider an instance when the spring has a stretched length 

	D and the mass has a velocity v, as shown in the diagram.  

	If we take a differential segment of the spring at position x with 

	a length dx, the mass of the segment is dM = (MS/D) dx and the 

	velocity of the segment is vx = (x/D)v.  When we add the kinetic 

	energies of the segments of the spring by integrating, we get

		�

	When we add the kinetic energy of the mass m, we have

		K = !mv2 + !(@MS)v2 = !(m + @MS)v2, so the effective mass is M = m + @MS.



59.	For the proton we have

		�

	which gives vp/c = 0.0651,  or      vp = 2.0 ´ 107 m/s.

	Using the classical formula, we get

		Wp = !mpvpc2;

		3.2 ´ 10–13 J = !(1.67 ´ 10–27 kg)vpc2, which gives vpc = 2.0 ´ 107 m/s, 

	the same as the relativistic formula.

	For the electron we have

		�

	which gives ve/c = 0.98,  or      ve = 2.9 ´ 108 m/s.

	Using the classical formula, we get

		We = !mevec2;

		3.2 ´ 10–13 J = !(9.1 ´ 10–31 kg)vec2, which gives vec = 8.4 ´ 108 m/s, 

	not only much greater than the relativistic formula, but greater than c, which is impossible.





60.	(a)	For the relativistic calculation we have
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		Using the classical formula, we get

			Ka	= !mvac2 

				= !m(3.00 ´ 104 m/s)2 = (4.50 ´ 108 J/kg)m,  the same.



	(b)	For the relativistic calculation we have

			�EMBED Word.Picture.8���

		Using the classical formula, we get

			Kb	= !mvbc2 

				= !m(3.00 ´ 106 m/s)2 = (4.50 ´ 1012 J/kg)m,  the same.

	(c)	For the relativistic calculation we have

			�EMBED Word.Picture.8���

		Using the classical formula, we get

			Kc	= !mvcc2 

				= !m(3.00 ´ 107 m/s)2 = (4.50 ´ 1014 J/kg)m,  slightly less.
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61.	We let N represent the number of books of mass m that can be placed 

	on a shelf.  Because the initial and final kinetic energies are zero, 

	for each book the net work is zero:

		W – mg(vertical distance center of mass of book is raised) = 0.

	From the diagram we see that the work required to fill the nth shelf is 

		Wn = Nmg[D + !h + (n – 1)H].

	Thus for the five shelves, we have

		W 	= W1 + W2 + W3 + W4 + W5 

			= Nmg[5(D + !h) + H + 2H + 3H + 4H] 

			= Nmg[5(D + !h) + 10H]  

			= (25)(1.60 kg)(9.80 m/s2){5[0.120 m + !(0.220 m)] + 10(0.330 m)} =       1.74 ´ 103 J.



62.	(a)	The kinetic energy of the locust is

			K = !mv2 = !(3.0 ´ 10–3 kg)(3.0 m/s)2 =      1.4 ´ 10–2 J.

	(b)	If 40% of the energy is turned into kinetic energy, we have

			E = K/0.40 = (1.4 ´ 10–2 J)/0.40 =        3.4 ´ 10–2 J.
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63.	(a)	The initial kinetic energy of the block is

			Ki = !mvi2 = !(6.0 kg)(2.2 m/s)2 = 14.5 J =     15 J.

	(b)	The work done by the applied force is

			WP = FP cos q d = (75 N) cos 37° (7.0 m) =       4.2 ´ 102 J.

	(c)	The work done by friction is 

			Wfr 	= – Ffrd 

					= – (25 N)(7.0 m) = – 1.75 ´ 102 J =       – 1.8 ´ 102 J.

	(d)	The work done by gravity is

			Wgrav	= (– mg sin q )d 

					= – (6.0 kg)(9.80 m/s2) sin 37° (7.0 m) =      – 2.5 ´ 102 J.

	(e)	Because the normal force is perpendicular to the displacement, 

		it does no work:        WN = 0.

	(f)	The net work done on the block changes its kinetic energy:

			Wnet = WP + Wgrav + WN + Wfr = Kf – Ki ;

			4.2 ´ 102 J – 2.5 ´ 102 J + 0 – 1.75 ´ 102 J = Kf –  14.5 J, which gives Kf  =       10 J.



64.	(a)	On a horizontal surface, FN = mg, and both forces do no work.  The tension in the cord is always 

		perpendicular to the displacement, so it does no work.  Thus work is done only by the friction force.  

		From the work-energy principle, for one revolution we have

			Wnet = Wgrav + WN + WT + Wfr1 = !mvf2 – !mvi2 ;

			0 + 0 + 0 + Wfr1 = !m(0.75v0)2 –  !mv02, which gives Wfr1 =       – 0.22mv02.

	(b)	Because Ffr = mkmg, the work done in one revolution is

			Wfr1 = – 0.22mv02 = – mkmg(2pR), which gives       mk = 0.035v02/gR.

	(c)	Because the friction force has a constant magnitude, the work done in N revolutions is N times the 

		work done in one revolution.  From the work-energy principle we have

			Wfr = NWfr1 = !mvf2 – !mvi2;

			N(– 0.22mv02) = 0 –  !mv02, which gives N =      2.3 rev.



65.	(a)	The work done by the two forces is

			W 	= W1 + W2 = F1 · d + F2 · d = (F1 + F2) · d 

				= (1.50 N – 0.70 N)(8.0 m) + (– 0.80 N + 1.20 N)(6.0 m) + (0.70 N)(5.0 m) =      12 J.

	(b)	The work done by the friction force is

			Wfr = Ffr · d = – 0.20[(1.50 N)(8.0 m) + (– 0.80 N)(6.0 m) + (0.70 N)(5.0 m)] = – 2.1 J.

		Thus the net work is

			Wnet = W + Wfr = 12.3 J – 2.1 J =      10 J.

	(c)	As found in part (b),       Wfr = – 2.1 J.



66.	For an assumed constant force acting the length of the barrel, from the work-energy principle we have

		W = Fd = !mvf2 – !mvi2;

		F(15 m) = !(1250 kg)(750 m/s)2, which gives F =      2.3 ´ 107 N (5.2 ´ 106 lb).



67.	The work done by the force is

		W 	= F · d = Fxdx + Fydy + Fzdz = (10.0 kN)(5.0 m) + (9.0 kN)(4.0 m) + (12.0 kN)(0) =      86 kJ.

	If we use the other expression for the scalar product, we have

		W 	= F · d = Fd cos q;

		86 kJ = [(10.0 kN)2 + (9.0 kN)2 + (12.0 kN)2]1/2[(5.0 m)2 + (4.0 m)2]1/2 cos q. which gives 

		cos q = 0.746,        q = 42°.
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68.	The two vectors are shown in the diagram.  Their lengths are

		A = [(0.230 nm)2 + (0.133 nm)2]1/2 = 0.266 nm;

		B = [(0.077 nm)2 + (0.133 nm)2 + (0.247 nm)2]1/2 = 0.291 nm.

	We find the angle between the vectors from the scalar product:

		A · B = AxBx + AyBy + AzBz = AB cos q;

		(0.230 nm)(0.077 nm) + (0.133 nm)(0.133 nm) + (0)(0.247 nm) = 

										(0.266 nm)(0.291 nm) cos q, 

	which gives cos q = 0.457,     q = 62.8°.













69.	For a variable force, we find the work by integration:
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70.	We find the work required to compress the spring by integration:

		�

	When the spring is released, it will do this work on the ball.  From the work-energy principle we have

		W = !mvf2 – !mvi2;

		348 J = !(3.0 kg)vf2 – 0, which gives vf =      15 m/s.



71.	The work done by the air resistance decreases the kinetic energy of the ball:

		W = – Faird = ?K = !mv2 – !mv02 = !m(0.90v0)2 – !mv02 = !mv02[(0.90)2 – 1];

		– Fair(15 m) = !(0.25 kg)[(110 km/h)/(3.6 ks/h)]2[(0.90)2 – 1], which gives Fair =       1.5 N.



72.	For the motion during the impact until the car comes momentarily to rest, we use the work-energy principle: 

		Wspring = ?K;

		– (!kxf2 – !kxi2) = !mvf2 – !mvi2;

		– [!k(0.015 m)2 – 0] = 0 – !(1150 kg)[(8 km/h)/(3.6 ks/h)]2, which gives k =        2.5 ´ 107 N/m.



73.	The maximum acceleration will occur at the maximum compression of the spring:

		kxmax = mamax = m(5.0g), which gives xmax = 5.0mg/k.

	For the motion from reaching the spring to the maximum compression of the spring, 

	we use the work-energy principle:  

		Wspring = ?K;

		– (!kxf2 – !kxi2) = !mvf2 – !mvi2;

		– (!kxmax2 – 0) = 0 – !mv2.

	When we use the previous result, we get

		! mv2 = !k(5.0mg/k)2, which gives       

		k = 25mg2/v2 = 25(1300 kg)(9.80 m/s2)2/[(90 km/h)/(3.6 ks/h)]2 =        5.0 ´ 103 N/m.

















74.	(a)	The net work decreases the kinetic energy:

			Wsnow + Wgrav = Wsnow + mgd  = ?K = !mvf2 – !mvi2;

			Wsnow + (80 kg)(9.80 m/s2)(1.1 m) = !(80 kg)[0 – (50 m/s)2] =        – 1.0 ´ 105 J.

	(b)	We find the average force from

			F = W/d = (– 1.0 ´ 105 J)/(1.1 m) =      – 9.1 ´ 104 N.

	(c)	With air resistance during the fall we have

			Wair + Wgrav = Wair + mgh = ?K= (!mvf2 – !mvi2) 

			Wair + (80 kg)(9.80 m/s2)(370 m) = !(80 kg)[(50 m/s)2 – 0], which gives Wair =        – 1.9 ´ 105 J.



75.	(a)	Because the rider exerts a force on each side of the pedals, when the front sprocket has turned 

		through Nfront revolutions, the work done will be

			Wrider = Nfront 2FDfront = 2Nfront (0.90mg)Dfront = 1.80mgNfrontDfront .

		The number of points that the chain passes over must be the same for the front and back sprockets:

			Nfront(42 points/rev) = Nback(19 points/rev), 

		so the number of revolutions of the rear wheel is

			Nback = (42/19)Nfront .

		After Nback revolutions, the bike travels a distance 

			d = Nback2pRwheel = (42/19)Nfront2pRwheel .  

		For the work-energy principle we have

			Wrider + Wgrav = ?K = 0,  or  1.80mgNfrontDfront –  (m + mbike)gd sin q = 0,  or  

			1.80mgNfrontDfront = (m + mbike)g(42/19)Nfront2pRwheel sin q;

			(1.80)(60 kg)gNfront(0.36 m) = (60 kg + 12 kg)g(42/19)Nfront2p(0.34 m) sin q, 

		which gives sin q = 0.114, q =      6.6°.

	(b)	If the force is applied tangential to the pedal motion, the work done is

			Wrider = Nfront F2pRfront = Nfront (0.90mg)2pRfront = 1.80pmgNfrontRfront .

		For the work-energy principle we have

			Wrider + Wgrav = ?K = 0,  or  1.80pmgNfrontRfront –  (m + mbike)gd sin q = 0,  or  

			1.80pmgNfrontRfront = (m + mbike)g(42/19)Nfront2pRwheel sin q;

			(1.80)p(60 kg)gNfront(0.18 m) = (60 kg + 12 kg)g(42/19)Nfront2p(0.34 m) sin q, 

		which gives sin q = 0.180, q =      10.3°.
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76.	(a)	Because the acceleration is essentially zero, we have

			FT cos q = mg;

			FT sin q = F, which gives F = mg tan q.

		Because the force is variable, we find the work done by integration.

		The displacement for a differential change in angle, ds = L dq, is 

		tangent to the path of the pendulum, so we have
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	(b)	Because the angle between the force of gravity and the displacement is changing, we find the 

		work done by integration:
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		Note that this is – mgh, where h is the height the pendulum has risen.

		Because the tension in the cord is always perpendicular to the displacement, no work is done:

			WT = 0.

		Note that the net force of all three forces is zero, as it must be since there is no change in kinetic 

		energy.
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