CHAPTER 8 - Conservation of Energy



1.	The potential energy of the spring is zero when the spring is not compressed (x= 0).  For the stored potential energy, we have

		U = ½kxf2 – 0;

		35.0 J = ½(82.0 N/m)xf2 – 0, which gives xf  =        0.924 m.



2.	For the potential energy change we have

		?U = mg ?y = (5.0 kg)(9.80 m/s2)(1.5 m) =        74 J.

	

3.	For the potential energy change we have

		?U = mg ?y = (58 kg)(9.80 m/s2)(3.8 m) =        2.2 ´ 103 J.



4.	(a)	With the reference level at the ground, for the potential energy change we have

			?U = mg ?y = (66.5 kg)(9.80 m/s2)(2660 m – 1500 m) =        7.56 ´ 105 J.

	(b)	The minimum work would be equal to the change in potential energy:

			Wmin = ?U =         7.56 ´ 105 J.

	(c)	       Yes,      the actual work will be more than this.  There will be additional work required for any 

		kinetic energy change, and to overcome retarding forces, such as air resistance and ground 

		deformation.



5.	(a)	With the reference level at the ground, for the potential energy we have

			Ua = mgya = (2.20 kg)(9.80 m/s2)(2.40 m) =        51.7 J.

	(b)	With the reference level at the top of the head, for the potential energy we have

			Ub = mg(yb – h)= (2.20 kg)(9.80 m/s2)(2.40 m – 1.70 m) =        15.1 J.

	(c)	Because the person lifted the book from the reference level in part (a), the potential energy is equal 

		to the work done:      51.7 J.       In part (b) the initial potential energy was negative, so the final 

		potential energy is not the work done, which was still 51.7 J.



6.	For the potential energy U = 3x2 + 2xy + 4y2z, we find the components of the force from

		Fx = – ?U/?x = – 6x – 2y – 0 = – (6x + 2y);

		Fy = – ?U/?y = – 0 – 2x – 8yz = – (2x + 8yz);

		Fz = – ?U/?z = – 0 – 0 – 4y2 = – (4y2).

	Thus the force is

		F = – (6x + 2y)i – (2x + 8yz)j – (4y2)k.



7.	(a)	Because the force F = (– kx + ax3 + bx4)i is a function only of position, it is       conservative.

	(b)	We find the form of the potential energy function from

			U 	= – ? F · dr = – ? (– kx + ax3 + bx4)i · (dxi + dyj + dzk) 

				= – ? (– kx + ax3 + bx4)dx =       ½kx2 – ¼ax4 – $bx5 + constant.



8.	This force is       not conservative.       If the object moves along a path that returns to the starting point, the direction of the motion (the direction of the velocity) changes.  Because the direction of the force changes with the change in direction of the motion, the net work done by the force is not zero.



9.	The potential energy of the spring is zero when the spring is not stretched or compressed (x= 0).  

	(a)	For the change in potential energy, we have

			?U = ½kx2 – ½kx02 =        ½k(x2 – x02).

	(b)	If we call compressing positive, we have

			?Ucompression = ½k(+ x0)2 – 0 = ½kx02;

			?Ustretching = ½k(– x0)2 – 0 = ½kx02.

		The change in potential energy is the        same.
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10.	We choose the potential energy to be zero at the ground (y = 0).  

	Because the tension in the vine does no work, energy is conserved, 

	so we have

		E = K0 + U0 = Kf + Uf ;     

		½mv02 + mgy0 = ½mvf2 + mgyf ;

		½m(5.0 m/s)2 + m(9.80 m/s2)(0) = ½m(0)2 + m(9.80 m/s2)h, 

	which gives       h = 1.3 m.

	No,        the length of the vine does not affect the height; it affects the angle.







11.	We choose the potential energy to be zero at the bottom (y = 0).  Because there is no friction and the normal force does no work, energy is conserved, so we have

		E = K1 + U1 = K2 + U2 ;     

		½mv12 + mgy1 = ½mv22 + mgy2 ;

		½m(0)2 + m(9.80 m/s2)(105 m) = ½mv22 + m(9.80 m/s2)(0), which gives v2 =        45.4 m/s.

	This is 160 km/h½  It is a good thing there is friction on the ski slopes.



12.	We choose the potential energy to be zero at the bottom (y = 0).  Because there is no friction and the normal force does no work, energy is conserved, so we have

		E = K1 + U1 = K2 + U2 ;     

		½mv12 + mgy1 = ½mv22 + mgy2 ;

		½mv12 + m(9.80 m/s2)(0) = ½m(0)2 + m(9.80 m/s2)(1.22 m), which gives v1 =        4.89 m/s.



13.	We choose the potential energy to be zero at the level of the center of mass before the jump (y = 0).  We find the minimum speed by ignoring any frictional forces.  Energy is conserved, so we have

		E = K1 + U1 = K2 + U2 ;     

		½mv12 + mgy1 = ½mv22 + mgy2 ;

		½mv12 + m(9.80 m/s2)(0) = ½m(0.70 m/s)2 + m(9.80 m/s2)(2.10 m), which gives v1 =        6.5 m/s.

	Note that the initial velocity will not be horizontal, but will have a horizontal component of 0.70 m/s.
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14.	We choose y = 0 at the level of the trampoline.

	(a)	We apply conservation of energy for the jump from the top of 

		the platform to the trampoline: 

			E = K1 + U1 = K2 + U2 ;    

			½mv12 + mgH = ½mv22 + 0;

			½m(5.0 m/s)2 + m(9.80 m/s2)(2.0 m) = ½mv22, 

		which gives v2 =        8.0 m/s.

	(b)	We apply conservation of energy from the landing on the trampoline 

		to the maximum depression of the trampoline.  If we ignore the small 

		change in gravitational potential energy, we have 

			E = K2 + U2 = K3 + U3 ;     

			½mv22 + 0 = 0 + ½kx2;

			½(75 kg)(8.0 m/s)2 = ½(5.2 ´ 104 N/m)x2, 

		which gives x =        0.30 m.

		This will increase slightly if the gravitational potential energy is taken into account.
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15.	(a)	For the motion from the bridge to the lowest point, we use

		energy conservation: 

			Ki + Ugravi  + Ucordi  = Kf + Ugravf + Ucordf  ;

			0 + 0 + 0 = 0 + mg(– h) + ½k(h – L0)2 ;

			0 = – (60 kg)(9.80 m/s2)(31 m) + ½k(31 m – 12 m)2,

		which gives k =       1.0 ´ 102 N/m.

	(b)	The maximum acceleration will occur at the lowest point, 

		where the upward restoring force in the 

		cord is maximum:

			kxmax – mg = mamax ;

			(1.0 ´ 102 N/m)(31 m – 12 m) – (60 kg)(9.80 m/s2)  = (60 kg)amax ,

		which gives amax =       22 m/s2.







16.	We choose y = 0 at point B.  With no friction, energy is conserved.
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	The initial (and constant) energy is 

		E 	= EA = mghA + ½mvA2 

			= m(9.8 m/s2)(30 m) + 0 = (294 J/kg)m .

	At point B we have

		E = mghB + ½mvB2;

		(294 J/kg)m = m(9.8 m/s2)(0) + ½mvB2, 

	which gives       vB = 24 m/s.

	At point C we have

		E = mghC + ½mvC2;

		(294 J/kg)m = m(9.8 m/s2)(25 m) + ½mvC2, 

	which gives       vC = 9.9 m/s.

	At point D we have

		E = mghD + ½mvD2;

		(294 J/kg)m = m(9.8 m/s2)(12 m) + ½mvD2, 

	which gives       vD = 19 m/s.
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17.	We choose the potential energy to be zero at the compressed 

	position (y = 0).  

	(a)	For the motion from the release point to where the 

		ball leaves the spring, we use energy conservation: 

			Ki + Ugravi  + Uspringi  = Kf + Ugravf + Uspringf ;

			0 + 0 + ½kx2 = ½mv2 + mgx + 0;

			½(900 N/m)(0.150 m)2 = 

				½(0.300 kg)v2 + (0.300 kg)(9.80 m/s2)(0.150 m), 

		which gives v =       8.03 m/s.

	(b)	For the motion from the release point to the highest 

		point, we use energy conservation: 

			Ki + Ugravi  + Uspringi  = Kf + Ugravf + Uspringf ;

			0 + 0 + ½kx2 = 0 + mgh + 0;

			0 + 0 + ½(900 N/m)(0.150 m)2 = (0.300 kg)(9.80 m/s2)h, 

		which gives h =       3.44 m.



18.	(a)	Because the horizontal speed of the ball does not change, the speed at the highest point is

			v2 = v1 cos q = (10 m/s) cos 30° =      8.7 m/s.

	(b)	We choose the potential energy to be zero at the ground (y = 0).  For the motion from the release 

		point to the highest point, we use energy conservation: 

			K1 + U1 = K2 + U2 ;

			½mv12 + 0 = ½mv22 + mgh;

			½(10 m/s)2 = ½(8.67 m/s)2 + (9.80 m/s2)h, which gives h =       1.3 m.



19.	The potential energy is zero at x = 0.  

	(a)	Because energy is conserved, the maximum speed occurs at the minimum potential energy: 

			Ki + Ui  = Kf + Uf  ;

			½mv02 + ½kx02 = ½mvmax2 + 0, which gives       vmax = [v02 + (kx02/m)]1/2. 

	(b)	The maximum stretch occurs at the maximum potential energy or the minimum kinetic energy: 

			Ki + Ui  = Kf + Uf  ;

			½mv02 + ½kx02 = 0 + ½kxmax2, which gives       xmax = [x02 + (mv02/k)]1/2. 



20.	(a)	The work done against gravity is the increase in the potential energy:

			W = mgh = (75.0 kg)(9.80 m/s2)(92.0 m) =        6.76 ´ 104 J.

	(b)	If this work is done by the force on the pedals, we need to find the distance that the force acts 

		over one revolution of the pedals and the number of revolutions to climb the hill.  We find the 

		number of revolutions from the distance along the incline:

			N 	= (h/ sin q)/(5.10 m/revolution) 

				= [(92.0 m)/ sin 9.50°]/(5.10 m/revolution) = 109 revolutions.

		Because the force is always tangent to the circular path, in each revolution the force acts over a 

		distance equal to the circumference of the path: pD.  Thus we have

			W = NFpD;

			6.76 ´ 104 J = (109 revolutions)Fp(0.360 m), which gives F =       547 N.
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21.	We choose y = 0 at the lowest point of the swing.

	(a)	We apply conservation of energy from the release point to 

		the lowest point: 

			E = K1 + U1 = K2 + U2 ;    

			0 + mgL(1 – cos q0) = ½mva2 + 0;

			0 + (9.80 m/s2)(2.00 m)(1 – cos 30.0°) = ½va2, 

		which gives va =        2.29 m/s.

	(b)	We apply conservation of energy from the release point to 

		the given point: 

			E = K1 + U1 = K3 + U3 ;    

			0 + mgL(1 – cos q0) = ½mvb2 + mgL(1 – cos qb);

			0 + (9.80 m/s2)(2.00 m)(1 – cos 30.0°) = ½vb2 + (9.80 m/s2)(2.00 m)(1 – cos 15.0°), 

		which gives vb =        1.98 m/s.

	(c)	We apply conservation of energy from the release point to the given point: 

			E = K1 + U1 = K4 + U4 ;    

			0 + mgL(1 – cos q0) = ½mvc2 + mgL(1 – cos qc);

			0 + (9.80 m/s2)(2.00 m)(1 – cos 30.0°) = ½vc2 + (9.80 m/s2)(2.00 m)[1 – cos (– 15.0°)], 

		which gives vc =        1.98 m/s.

		Because this is the same elevation as in part (b), the answer is the same.

	(d)	The net force along the cord must provide the radial acceleration: 

			FT – mg cos q = mv2/L,  or   FT = m[(v2/L) + g cos q].

		Thus we have

			FTa = m[(va2/L) + g cos qa] = (0.070 kg){[(2.29 m/s)2/(2.00 m)] + (9.80 m/s2) cos 0°} =      0.87 N.

			FTb = m[(vb2/L) + g cos qb] = (0.070 kg){(1.98 m/s)2/(2.00 m)] + (9.80 m/s2) cos 15.0°} =      0.80 N.

			FTc = m[(vc2/L) + g cos qc] = (0.070 kg){[(1.98 m/s)2/(2.00 m)] + (9.80 m/s2) cos (– 15.0°) } =      0.80 N.

	(e)	With an initial kinetic energy, conservation of energy from the release point to 

		the given point becomes 

			E = K1 + U1 = K4 + U4 ;    

			½mv02 + mgL(1 – cos q0) = ½mv2 + mgL(1 – cos q).

		Thus we have

			½(1.20 m/s)2 + (9.80 m/s2)(2.00 m)(1 – cos 30.0°) = ½va2 + (9.80 m/s2)(2.00 m)(1 – cos 0°), 

		which gives va =        2.59 m/s;

			½(1.20 m/s)2 + (9.80 m/s2)(2.00 m)(1 – cos 30.0°) = ½vb2 + (9.80 m/s2)(2.00 m)(1 – cos 15.0°), 

		which gives vb =        2.31 m/s;

			½(1.20 m/s)2 + (9.80 m/s2)(2.00 m)(1 – cos 30.0°) = ½vc2 + (9.80 m/s2)(2.00 m)[1 – cos (– 15.0°)], 

		which gives vc =        2.31 m/s.



22.	The maximum acceleration will occur at the maximum compression of the spring:

		kxmax = Mamax = M(5.0g), which gives xmax = 5.0Mg/k.

	For the motion from reaching the spring to the maximum compression of the spring, 

	we use energy conservation: 

		Ki + Uspringi  = Kf + Uspringf ;

		½Mv2 + 0 = 0 + ½kxmax2.

	When we use the previous result, we get

		½Mv2 = ½k(5.0Mg/k)2, which gives       

		k = 25Mg2/v2 = 25(1200 kg)(9.80 m/s2)2/[(100 km/h)/(3.6 ks/h)]2 =        3.7 ´ 103 N/m.
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23.	The maximum acceleration will occur at the lowest point, 

	where the upward restoring force in the spring is maximum:

		kxmax – Mg = Mamax = M(5.0g), which gives xmax = 6.0Mg/k.

	With y = 0 at the initial position of the top of the spring, for 

	the motion from the break point to the maximum compression 

	of the spring, we use energy conservation: 

		Ki + Ugravi  + Uspringi  = Kf + Ugravf + Uspringf  ;

		0 + Mgh + 0 = 0 + Mg(– xmax) + ½kxmax2.

	When we use the previous result, we get

		Mgh = – [6.0(Mg)2/k] + ½k(6.0Mg/k)2, which gives       k = 12Mg/h.
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24.	(a)	The net force toward the center of the sphere provides 

		the radial acceleration:

			mg cos q – FN = mv2/r.

		The skier will leave the sphere when the normal force 

		becomes zero, or

			va2 = gr cos qa.

		With the reference level at the center of the sphere, 

		we apply conservation of energy from the top to 

		the point where the skier leaves: 

			E = K1 + U1 = K2 + U2 ;    

			0 + mgr = ½mva2 + mgr cos qa;

			gr = ½gr cos qa + gr cos qa , which gives cos qa = %,      qa = 48.2° . 

	(b)	The condition for the normal force to become zero is

			vb2 = gr cos qb.

		There will be negative work done by the friction force, so we have

			Wf = ?K + ?U = (½mvb2 – 0) + mgr(cos qb – 1) = ½mgr cos qb + mgr cos qb – mgr, which we write

			cos qb = %[1 + (Wf/mgr)].

		Because Wf  is negative, this means that 

			cos qb < cos qa ,  or       qb > qa .



25.	The thermal energy is equal to the loss in kinetic energy:

		Ethermal = – ?K = ½mvi2 – ½mvf2 = ½(2)(6500 kg)[(95 km/h)/(3.6 ks/h)]2 – 0 =       4.5 ´ 106 J.



26.	We choose the bottom of the slide for the gravitational potential energy reference level.  The thermal energy is the negative of the change in kinetic and potential energy:

		Ethermal 	= – (?K + ?U) = ½mvi2 – ½mvf2 + mg(hi – hf) 

				= 0 – ½(16.0 kg)(2.25 m/s)2 + (16.0 kg)(9.80 m/s2)(2.50 m – 0) =       352 J.

















27.	(a)	We find the normal force from the force diagram for the ski:
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			y-component:	FN1 = mg cos q;

		which gives the friction force: Ffr1 = mkmg cos q.

		For the work-energy principle, we have

			WNC = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi);

			–  mkmg cos q L = (½mvf2 – 0) + mg(0 – L sin q);

			 – (0.090)(9.80 m/s2) cos 20° (100 m) = 

						½vf2 – (9.80 m/s2)(100 m) sin 20°, 

		which gives vf =         22 m/s.

	(b)	On the level the normal force is FN2 = mg, so the

		friction force is Ffr2 = mkmg.

		For the work-energy principle, we have

			WNC = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi);

			–  mkmg D = (0 – ½mvi2) + mg(0 – 0);

			 – (0.090)(9.80 m/s2)D = – ½(22.5 m/s)2 , 

		which gives D =         2.9 ´ 102 m.



28.	We choose the reference level for the gravitational potential energy at the ground.

	(a)	With no air resistance during the fall we have

			0 = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi),  or

			½(vf2 – 0) = – (9.80 m/s2)(0 – 12.0 m), which gives vf =        15.3 m/s.

	(b)	With air resistance during the fall we have

			WNC  = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi);

			Fair(12.0 m) = ½(0.145 kg)[(8.00 m/s)2 – 0] + (0.145 kg)(9.80 m/s2)(0 – 12.0 m),

		which gives Fair =        – 1.03 N.



29.	On the level the normal force is FN = mg, so the friction force is Ffr = mkmg.

	For the work-energy principle, we have

		WNC = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi);

		F(L1 + L2) –  mkmg L2 = (½mvf2 – 0) + mg(0 – 0);

		(350 N)(15 m + 15 m) – (0.25)(90 kg)(9.80 m/s2)(15 m) = ½(90 kg)vf2,

	which gives vf =         13 m/s.
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30.	We choose y = 0 at point B.  For the work-energy principle 

	applied to the motion from A to B, we have

			WNC = ?K + ?U = (½mvB2 – ½mvA2) + mg(hB – hA);

			– 0.20mgL = (½mvB2 – ½mvA2) + mg(0 – hA);

			 – 0.20(9.80 m/s2)(45.0 m) = ½vB2 – ½(1.70 m/s)2 – (9.80 m/s2)(30 m), 

		which gives vB =         20 m/s.
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31.	We find the normal force from the force diagram for the skier:

		y-component:	FN = mg cos q;

	which gives the friction force: Ffr = mkmg cos q.

	For the work-energy principle for the motion up the incline, 

	we have

		WNC = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi);

		–  mkmg cos q L = (0 – ½mvi2) + mg(L sin q – 0);

		 – mk(9.80 m/s2) cos 17° (12 m) = 

					– ½(11 m/s)2 + (9.80 m/s2)(12 m) sin 17°,

	which gives mk =         0.23.
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32.	(a)	For the motion from A to B, there is no 

		friction and the normal force does no work.  

		For the work-energy principle, we have

			WNC = (½mvB2 – ½mvA2) + mg(hB – hA);

			0 = ½mvB2 – 0 + 0 – mgr;

			0 = ½vB2 – (9.80 m/s2)(2.0 m), 

		which gives vB =      6.3 m/s.

	(b)	On the level the normal force is FN = mg, 

		so the friction force is Ffr = mkmg.  

		The work done by this force from B to C is

			WNC 	= – mkmgL 

					= – (0.25)(1.0 kg)(9.80 m/s2)(3.0 m) =        – 7.4 J.

	(c)	For the motion from B to C, the normal force does no work.  For the work-energy principle, we have

			WNC = (½mvC2 – ½mvB2) + mg(hC – hB);

			– 7.4 J = ½(1.0 kg)vC2 – ½(1.0 kg)(6.3 m/s)2 + 0 – 0,

		which gives vC =      4.9 m/s.

	(d)	For the motion from C to the point where the block momentarily comes to rest, there is no friction.  

		For the work-energy principle, we have

			WNC = (½mv2 – ½mvC2) + mg(h – hC) + (½kx2 – ½kxC2);

			0 = 0 – ½(1.0 kg)(4.9 m/s)2 + 0 – 0 + ½k(0.20 m)2 – 0,

		which gives k =      6.1 ´ 102 N/m.



33.	On the level the normal force is FN = mg, so the friction force is Ffr = mkmg.  

	The block is at rest at the release point and where it momentarily stops before turning back.  

	For the work-energy principle, we have

		WNC = ?K + ?U = (½mvf2 – ½mvi2) + (½kxf2 – ½kxi2);

		–  mkmg L = (0 – 0) + ½k(xf2 – xi2);

		 – mk(0.620 kg)(9.80 m/s2)(0.050 m + 0.023 m) = ½(180 N/m)[(0.023 m)2 – (– 0.050 m)2],

	which gives mk =         0.40.



34.	We find the spring constant from the force required to compress the spring:

		k = F/xi = ( – 22 N)/(– 0.18 m) = 122 N/m.

	On the level the normal force is FN = mg, so the friction force is Ffr = mkmg.  

	The block is at rest at the release point and where it momentarily stops before turning back.  

	For the work-energy principle, we have

		WNC = ?K + ?U = (½mvf2 – ½mvi2) + (½kxf2 – ½kxi2);

		–  mkmg L = (0 – 0) + ½k(xf2 – xi2);

		 – (0.30)(0.180 kg)(9.80 m/s2)(0.18 m + xf) = ½(122 N/m)[xf2 – (– 0.18 m)2].

	This reduces to the quadratic equation

		61xf2 + 0.529xf – 1.88 = 0, which has the solutions xf = 0.17 m, – 0.18 m.

	The negative solution corresponds to no motion, so the physical result is xf =        0.17 m.



























35.	(a)	On the level the normal force is FN = mg, so the 

		friction force is Ffr = mkmg.  For the motion from the 

		impact point to where the block stops, for the 

		work-energy principle we have

		WNC = ?K + ?U = (½mvf2 – ½mvi2) + (½kxf2 – ½kxi2);

		–  mkmgx = (0 – ½mv12) + ½k(x2 – 0);
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		 – (0.30)(2.0 kg)(9.80 m/s2)x = – ½(2.0 kg)(1.3 m/s)2 + ½(120 N/m)x2.

		This reduces to the quadratic equation

			60x2 + 5.88x – 1.69 = 0, which has the solutions x = 0.126 m, – 0.22 m.

	The negative solution corresponds to positive friction work, so the physical result is x =        0.13 m.

	(b)	For the block to remain at rest at the maximum compressed position, the magnitude of the 

		restoring force in the spring must equal the magnitude of the static friction force:

			kx = Fs = msmg,  or

			ms = kx/mg = (120 N/m)(0.126 m)/(2.0 kg)(9.80 m/s2) =       0.77.

	(c)	Before the spring reaches its natural length, it is pushing on the block.  At the natural length, the 

		force goes to zero.  Beyond the natural length the spring would want to pull on the block, but it is not 

		attached; therefore the block leaves the spring.  If we consider the motion from the initial impact 

		to the point where the block leaves the spring, for the work-energy principle, we have

			WNC = ?K + ?U = (½mvf2 – ½mvi2) + (½kxf2 – ½kxi2);

			–  mkmg2x = (½mvf2 – ½mv12) + (0 – 0);

			 – (0.30)(9.80 m/s2)2(0.126 m) = ½vf2 – ½(1.3 m/s)2, which gives vf =      0.46 m/s.



36.	We choose the potential energy to be zero at the ground (y = 0).  

	We convert the speeds: (500 km/h)/(3.6 ks/h) = 139 m/s;  (200 km/h)/(3.6 ks/h) = 55.6 m/s.

	(a)	If there were no air resistance, energy would be conserved:

			0 = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi);

			0 = ½(1000 kg)[vf2 – (139 m/s)2] + (1000 kg)(9.80 m/s2)(0 – 3500 m),

		which gives vf = 297 m/s =      1.07 ´ 103 km/h.

	(b)	With air resistance we have

			WNC = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi);

			– F(hi/ sin q) = ½m(vf2 – vi2) + mg(0 – hi);

			– F(3500 m)/sin 10° = ½(1000 kg)[(55.6 m/s)2 – (139 m/s)2] + (1000 kg)(9.80 m/s2)(– 3500 m)

		which gives F =         2.1 ´ 103 N.



37.	(a)	The gravitational force provides the radial acceleration:

			FG = GMEmS//rS2 = mSv2//rS ,  or  v2 = GME/rS.

		Thus the kinetic energy is

			K = ½mSv2 =       GMEmS/2rS.

	(b)	With U = 0 at infinity, the potential energy is 

			U = – GMEmS/rS.

	(c)	For the ratio we have

			K/U = (GMEmS/2rS)/(– GMEmS/rS) =       – ½.



38.	Because energy is conserved, we have

		K1 + U1 = K2 + U2 ; 

		½mv12 – GMEm/rE = 0 – GMEm/r,  or v12/2GME = (1/rE) – (1/r);

		(850 m/s)2/2(6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg) = (1/6.38 ´ 106 m) – (1/r), 

	which gives r = 6.42 ´ 106 m.

	Thus the height above the surface of the Earth is

		h = r – rE = 6.42 ´ 106 m – 6.38 ´ 106 m =       4 ´ 104 m.









39.	The escape velocity from a mass M, as determined by energy conservation, is found from

		vesc2 = 2GM/r.

	(a)	To escape from the Sun’s surface, we have

			vesc2 	= 2GMS/rS 

					= 2(6.67 ´ 10–11 N · m2/kg2)(2.0 ´ 1030 kg)/(7.0 ´ 108 m), 

		which gives vesc =      6.2 ´ 105 m/s.

	(b)	To escape from the Sun when at the Earth’s location, we have

			vesc2 	= 2GMS/r 

					= 2(6.67 ´ 10–11 N · m2/kg2)(2.0 ´ 1030 kg)/(1.50 ´ 1011 m), 

		which gives vesc =      4.2 ´ 104 m/s.

		Because the gravitational attraction provides the radial acceleration of the Earth, we have

			GMSME/r2 = MEvorbit2/r,  or  vorbit2 = GMS/r.

		For the ratio we get

			vesc2/vorbit2 = (2GMS/r )/(GMS/r),   or        vesc/vorbit = v2.



40.	The change in gravitational potential energy is

		?U = – (GmME)[(1/r2) – (1/r1)].

	In terms of the height above the surface of the Earth, y, which is small compared to rE , we have

		1/r1 = 1/(rE + y1) = 1/{rE[1 + (y1/rE)]} ˜ (1/rE)[1 – (y1/rE)];

		1/r2 = 1/(rE + y2) = 1/{rE[1 + (y2/rE)]} ˜ (1/rE)[1 – (y2/rE)];

	where we have used 1/(1 + x) ˜ 1 – x, when x « 1.

	When we use these in the expression for ?U, we get

		?U ˜ – (GmME)(1/rE){[1 – (y2 /rE)] – [1 – (y1 /rE)]} = (GmME/rE2)(y2  – y1) = mg(y2  – y1).



41.	The change in gravitational potential energy is

		?U = – (GmME)[(1/r2) – (1/r1)].

	In terms of the height above the surface of the Earth, h, we have

		�



42.	(a)	Because the gravitational attraction provides the radial acceleration of the satellite, we have

			GmME/r2 = mv2/r,  or  v2 = GME/r. 

		The total energy of the satellite is

			E = K + U = ½mv2 – GMEm/r = ½mGME/r – GMEm/r = – ½GmME/r.

	(b)	From the expression for the total energy, we see that a decrease in E (E becomes more negative) 

		means a decrease in r.  Because the kinetic energy is positive, a decrease in r means an increase in 

		kinetic energy.



43.	The escape velocity for a mass m is the speed required so the mass can get infinitely far away with essentially zero velocity.  From energy conservation we have

		K1 + U1 = K2 + U2 ; 

		½mvesc2 – GMEm/r = 0 – GMEm/8,  or  vesc2 = 2GME/r.

	Because the gravitational attraction provides the radial acceleration of the satellite, we have

		GmME/r2 = mvorbit2/r,  or  vorbit2 = GME/r.

	For the ratio we get

		vesc2/vorbit2 = (2GME/r )/(GME/r),   or    vesc/vorbit = v2.









44.	(a)	The change in gravitational potential energy is

			?U = – (GMSME)[(1/r2) – (1/r1)] 

				= – (6.67 ´ 10–11 N · m2/kg2)(2.0 ´ 1030 kg)(5.98 ´ 1024 kg)[(1/1.521 ´ 1011 m) – (1/1.471 ´ 1011 m)] 

				=       1.8 ´ 1032 J.

	(b)	Because the total energy is constant, the change in kinetic energy is

			?K = –  ?U =       – 1.8 ´ 1032 J.

		Note that the orbit is not circular so the gravitational attraction is not always perpendicular to the 

		velocity.  Consequently it does not just provide the radial acceleration.

	(c)	Because energy is conserved for the Earth–Sun system, the change in the total energy is       zero.



45.	The velocity of a point on the surface of the Earth is

		vsurface = rEw = (6.38 ´ 106 m)(2p rad/day)/(86,400 s/day) = 464 m/s to the East.

	The required escape speed is found from

		vesc2 = 2GME/rE = 2(6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)/(6.38 ´ 106 m), 

	which gives vesc = 1.12 ´ 104 m/s.

	(a)	If the speed with respect to the Earth is v0 , when the rocket is fired eastward, we have

			vesc = v0 + vsurface;

			1.12 ´ 104 m/s = v0 + 464 m/s, which gives v0 =       1.07 ´ 104 m/s.

	(b)	If the speed with respect to the Earth is v0 , when the rocket is fired westward, we have

			vesc = v0 – vsurface;

			1.12 ´ 104 m/s = v0 – 464 m/s, which gives v0 =       1.17 ´ 104 m/s.

	(c)	If the speed with respect to the Earth is v0 , when the rocket is fired vertically upward, we have

			vesc2 = v02 + vsurface2;

			(1.12 ´ 104 m/s)2 = v02 + (464 m/s)2, which gives v0 =       1.12 ´ 104 m/s.



46.	(a)	Because the speed is zero at the maximum height, from energy conservation we have

			K1 + U1 = K2 + U2 ; 

			½mv02 – GMEm/rE = 0 – GMEm/(rE + h),  or  

			½v02 = GME{(1/rE) – [1/(rE + h)]}= GME[h/rE(rE + h)].

		When we solve this for h we get

			h = v02rE2/(2GME – v02rE) = rE/[(2GME/v02rE) – 1].

	(b)	For the given speed we have

			h 	= (6.38 ´ 106 m)/{[2(6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)/(8.2 ´ 103 m/s)2(6.38 ´ 106 m)] – 1} 

				= 7.4 ´ 106 m =      7.4 ´ 103 km.



47.	(a)	The escape velocity at a distance r from the center of the Earth is 

			vesc = (2GME/r)1/2.

		We find the rate at which vesc changes with a change in r by differentiating:

			dvesc/dr = – ½(2GME/r3)1/2 = – vesc/2r.

	(b)	The escape speed from the surface of the Earth is found from

			vesc02 = 2GME/rE = 2(6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)/(6.38 ´ 106 m), 

		which gives vesc0 = 1.12 ´ 104 m/s.

		The approximate change at a height of 300 km is

			?vesc ˜ (– vesc0/2rE) ?r = [– (1.12 ´ 104 m/s)/2(6.38 ´ 106 m)](300 ´ 103 m) = – 263 m/s.

		The new escape velocity is

			vesc = vesc0 + ?vesc = 1.12 ´ 104 m/s – 263 m/s =      1.09 ´ 104 m/s.















48.	(a)	For energy conservation for the motion until just before the meteor strikes the sand, we have

			K1 + U1 = K2 + U2 ; 

			½mv12 – GMEm/(rE + h) = ½mv22 –  GMEm/rE ,  or  

			v22 = v12 + 2GME{(1/rE) – [1/(rE + h)]};

			v22 = (90.0 m/s)2 + 2(6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg) ´

							{(1/6.38 ´ 106 m) – [1/(6.38 ´ 106 m + 0.800 ´ 106 m)]} 

		which gives v2 =      3.73 ´ 103 m/s.

	(b)	Because the change in potential energy is very small, the work changes the kinetic energy:

			WNC = ?K = 0 – ½mv12

				= – ½(575 kg)(3.73 ´ 103 m/s)2 =      – 4.00 ´ 109 J.

	(c)	We find the average force from

			WNC = – Favd;

			– 4.01 ´ 109 J = – Fav(3.25 m), which gives Fav =      1.23 ´ 109 N.

	(d)	The work done by the sand produces the thermal energy:

			Ethermal = – WNC =      4.00 ´ 109 J.



49.	The total energy of the satellite in an orbit of radius r is

		E = K + U = ½mv2 – GMEm/r = ½mGME/r – GMEm/r = – ½mGME/r.

	Thus the work required is

		W = ?E = – ½mGME[(1/r2) – (1/r1)]

			= – ½mGME[(1/3rE) – (1/2rE)] =      GmME/12rE.



50.	(a)	We can find the total work needed by adding the works required to bring the masses in one at a 

		time.  Each work is found from the change in potential energy.  The initial potential energy of each 

		mass is zero.  Because the first mass is still infinitely far from the others, we have

			W1 = 0.

		When we bring in the second mass, we have

			W2 = – Gm1m2/r12 – 0 = – Gm1m2/r12.

		When we bring in the third mass, we have

			W3 = (– Gm3m1/r13 – Gm3m2/r23) –  0 = – G[(m3m1/r13) + (m3m2/r23)].

		For the total work, we get

			W 	= W1 + W2 + W3 

				= 0 – (Gm1m2/r12)  – G[(m3m1/r13) + (m3m2/r23)] = – G[(m1m2/r12) + (m1m3/r13) + (m2m3/r23)].

		Note that the negative sign is an indication that the masses attract each other, so the energy is less 

		than the value at infinity, which is zero.

	(b)	This is the energy stored in the system, and thus is the      potential energy of the system.  

		It is not the potential energy of one or two of the bodies.  A change in any one of the bodies will 

		change the potential energy.

	(c)	       The negative of W can be considered the binding energy of the system.        

		This positive work would have to be done to separate the masses.



51.	If we neglect friction, we can apply conservation of energy:

		K1 + U1 = K2 + U2 ; 

		½mv12 – GMEm/r1 = ½mv22 –  GMEm/r2 ,  or  

		v22 = v12 + 2GME[(1/r2) – (1/r1)];

		v22 = (600 m/s)2 + 2(6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)[(1/6.38 ´ 106 m) – (1/5.0 ´ 109 m)] 

	which gives v2 =      1.1 ´ 104 m/s.
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52.	We can consider the uniform spherical shell to be a solid sphere 

	of radius r1 of the same density and a smaller sphere of radius r2 

	with a negative density of the same magnitude.  If the 

	additional mass in the smaller sphere is M¢, the mass with 

	negative density is – M¢.  With our reference level of zero 

	potential energy at infinity, the gravitational potential 

	energy of the mass m is the sum of the two contributions:

		U = – G(M + M¢)m/r – G(– M¢)m/r = – GmM/r .











53.	The escape speed from the surface of the Earth, ignoring the Sun, is found from

		vE2 = 2GME/rE = 2(6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)/(6.38 ´ 106 m), 

	which gives vE = 1.12 ´ 104 m/s = 11.2 km/s.

	The escape speed from the Sun when at the Earth’s orbit, ignoring the Earth, is found from

		vS2 	= 2GMS/rSE

				= 2(6.67 ´ 10–11 N · m2/kg2)(2.0 ´ 1030 kg)/(1.50 ´ 1011 m), 

	which gives vS = 4.22 ´ 104 m/s = 42.2 km/s.

	The orbital speed of the Earth is

		vO = rSEw = (1.50 ´ 1011 m)(2p rad/yr)/(3.17 ´ 107 s/yr) = 2.98 ´ 104 m/s = 29.8 km/s.

	(a)	In the reference frame of the Earth, if the spacecraft leaves the surface of the Earth with speed v, 

		we find the speed v¢ at a distance where the gravitational attraction is negligible from energy 

		conservation:

			K1 + U1 = K2 + U2 ; 

			½mv2 – GMEm/rE = ½mv¢2 –  0,  or  

			v2 = v¢2 + 2GME/rE = v¢2 + vE2.

		The reference frame of the Earth is orbiting the Sun with speed vO .  In the reference frame of the Sun, 

		the speed far from the Earth is

			vS = v¢ + vO .

		When we use this in the previous result, we get

			v2 = (vS – vO)2 + vE2,  or  

			v = [vE2 + (vS – vO)2]1/2 = [(11.2 km/s)2 + (42.2 km/s – 29.8 km/s)2]1/2 = 16.7 km/s.

	(b)	The required kinetic energy is 

			K = ½mv2, so we have

			K/m = ½v2 = ½(1.67 ´ 104 m/s)2 = 1.40 ´ 108 J/kg.



54.	The amount of work required is the increase in potential energy: W = mg Dy.

	We find the time from

		P = W/t = mg Dy/t;

		1750 W = (285 kg)(9.80 m/s2)(16.0 m)/t, which gives t =        25.5 s.



55.	We find the equivalent force exerted by the engine from

		P = Fv;

		(18 hp)(746 W/hp) = F(90 km/h)/(3.6 ks/h), which gives F = 5.4 ´ 102 N.

	At constant speed, this force is balanced by the average retarding force, which must be       5.4 ´ 102 N.



56.	(a)	1 hp = (550 ft·lb/s)(4.45 N/lb)/(3.281 ft/m) = 746 W.

	(b)	P = (100 W)/(746 W/hp) =        0.134 hp.



57.	(a)	The original kinetic energy is

			K = ½mv2 = ½(80 kg)(5.0 m/s)2 =      1.0 ´ 103 J.

	(b)	Work equal to the change in kinetic energy must be done.  Thus the average power is

			Pav = ?K/t = (1.0 ´ 103 J)/(1.0 s) =        1.0 ´ 103 W.



58.	On the level the normal force is FN = mg, so the friction force is Ffr = mkmg.  

	To keep the box moving at constant speed, the applied force must balance the friction force.  Thus the minimum horsepower required is

		P = Fv = Ffrv  = mkmgv  = (0.45)(300 kg)(9.80 m/s2)(1.20 m/s)/(746 W/hp) =      2.1 hp.



59.	We find the average resistance force from the acceleration:

		FR = ma = m ?v/?t = (1000 kg)(70 km/h – 90 km/h)/(3.6 ks/h)(6.0 s) = – 926 N.

	If we assume that this is the resistance force at 80 km/h, the engine must provide an equal and opposite force to maintain a constant speed.  We find the power required from

		P = Fv = (926 N)(80 km/h)/(3.6 ks/h) =        2.1 ´ 104 W        = (2.1 ´ 104 W)/(746 W/hp) =       28 hp.



60.	We find the work from

		W = Pt = (3.0 hp)(746 W/hp)(1 h)(3600 s/h) =        8.1 ´ 106 J.



61.	The work done by the shot-putter increases the kinetic energy of the shot.  We find the power from

		P 	= W/t = ?K/t = (½mvf2 – ½mvi2)/t 

			= ½(7.3 kg)[(14 m/s)2 – 0]/(1.5 s) =        4.8 ´ 102 W        (about 0.6 hp).



62.	The work done by the pump increases the potential energy of the water.  We find the power from

		P 	= W/t = ?U/t = mg(hf – hi)/t = (m/t)g(hf – hi)

			= [(18.0 kg/min)/(60 s/min)](9.80 m/s2)(3.50 m – 0) =        10.3 W.



63.	The work done increases the potential energy of the player.  We find the power from

		P 	= W/t = ?U/t = mg(hf – hi)/t 

			= (105 kg)(9.80 m/s2)[(140 m) sin 30° – 0]/(61 s) =        1.2 ´ 103 W        (about 1.6 hp).
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64.	From the force diagram for the car, at constant speed we have:

		x-component:	F – Ffr = mg sin q.

	Because the power output is P = Fv, we have

		(P/v) – Ffr = mg sin q.

	The maximum power determines the maximum angle:

		(Pmax/v) – Ffr = mg sin qmax ;

		(120 hp)(746 W/hp)/[(70 km/h)/(3.6 ks/h)] – 600 N = 

									(1000 kg)(9.80 m/s2) sin qmax , 

	which gives sin qmax = 0.409,  or        qmax = 24°.



65.	The work done by the lifts increases the potential energy of the people.  We assume an average mass of 

	70 kg and find the power from

		P 	= W/t = ?U/t = mg(hf – hi)/t = (m/t)g(hf – hi)

			= [(47,000 people/h)(70 kg/person)/(3600 s/h)](9.80 m/s2)(200 m – 0) 

			=        1.8 ´ 106 W        (about 2.4 ´ 103 hp).



66.	For the work-energy principle applied to coasting down the hill a distance L, we have

		WNC = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi);

		–  FfrL = (½mv2 – ½mv2) + mg(0 – L sin q), which gives Ffr = mg sin q.

	Because the climb is at the same speed, we assume the resisting force is the same.  

	For the work-energy principle applied to climbing the hill a distance L, we have

		WNC = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi);

		FL –  FfrL = (½mv2 – ½mv2) + mg(L sin q – 0);

		(P/v) – mg sin q = mg sin q, which gives 

		P = 2mgv sin q = 2(75 kg)(9.80 m/s2)(5.0 m/s) sin 7.0° =        9.0 ´ 102 W        (about 1.2 hp).







67.	Because the rate of work is P = Fv and the applied force produces the acceleration, we find the velocity and acceleration as a function of time:

		x = (5.0 m/s3)t3 – (8.0 m/s2)t2 – (30 m/s)t;

		v = dx/dt = (15.0 m/s3)t2 – (16.0 m/s2)t – (30 m/s);

		a = dv/dt = (30.0 m/s3)t – (16.0 m/s2).

	Thus the rate of work is

		P = Fv = mav = m[(30.0 m/s3)t – (16.0 m/s2)][(15.0 m/s3)t2 – (16.0 m/s2)t – (30 m/s)].

	(a)	At t = 2.0 s, we have

			P 	= (0.280 kg)[(30.0 m/s3)(2.0 s) – (16.0 m/s2)][(15.0 m/s3)(2.0 s)2 – (16.0 m/s2)(2.0 s) – (30 m/s)]

				=       – 25 W.

		Note that the negative sign means there are times when the applied force is opposite to the 

		motion.

	(b)	At t = 4.0 s, we have

			P 	= (0.280 kg)[(30.0 m/s3)(4.0 s) – (16.0 m/s2)][(15.0 m/s3)(4.0 s)2 – (16.0 m/s2)(4.0 s) – (30 m/s)]

				=       + 4.3 ´ 103 W.

	(c)	Over a time interval, the average net power produces the change in kinetic energy:

			P = W/?t = ?K/?t = (½mvf2 – ½mvi2)/?t = ½m(vf2 – vi2)/?t.

		We find the velocities at the three times:

			v0 = (15.0 m/s3)(0)2 – (16.0 m/s2)(0) – (30 m/s) = – 30 m/s;

			v2 = (15.0 m/s3)(2.0 s)2 – (16.0 m/s2)(2.0 s) – (30 m/s) = – 2.0 m/s;

			v4 = (15.0 m/s3)(4.0 s)2 – (16.0 m/s2)(4.0 s) – (30 m/s) = 146 m/s.

		From t = 0 to t = 2.0 s, we have

			P 	= ½(0.280 kg)[(– 2.0 m/s)2 – (– 30 m/s)2]/(2.0 s – 0) =      – 63 W.

		From t = 2.0 s to t = 4.0 s, we have

			P 	= ½(0.280 kg)[(146 m/s)2 – (– 2.0 m/s)2]/(4.0 s – 2.0 s) =      + 1.5 ´ 103 W.
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68.	The potential energy of the mass is ½kx2.  At the release point the 

	kinetic energy is zero, so the total energy is E = ½kx02.  The mass 

	will move toward x = 0.  From the diagram, we see that its kinetic 

	energy will be the difference between E and U and will be maximum 

	at x = 0.  As the mass moves past x = 0, its kinetic energy will 

	decrease until the mass reaches x = – x0 , where the motion will reverse.









69.	(a)	Because the mass has no initial kinetic energy, the total energy is the initial potential energy:

			E = U0 = ½kx02 = ½(160 N/m)(1.0 m)2 =      80 J.

	(b)	Because energy is conserved, we have

			E = K + U = K + ½kx2;

			80 J = K + ½(160 N/m)[½(1.0 m)]2, which gives K =      60 J.

	(c)	The maximum kinetic energy occurs when the potential energy is zero at the equilibrium position:

			E = Kmax =       80 J.

	(d)	We find the maximum speed from

			E = Kmax = ½mvmax2;

			80 J = ½(5.0 kg)vmax2, which gives vmax =      5.7 m/s at x = 0.

	(e)	The magnitude of the acceleration is maximum at the endpoints of the motion:

			Fmax = kx0 = mamax ;

			(160 N/m)(1.0 m) = (5.0 kg)amax , which gives amax =       32 m/s2 at x = ± x0.
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70.	(a)	To find where U is a minimum, we set the 		(c)

		first derivative equal to zero:

			U(r) = (– a/r6) + (b/r12);

			dU/dr = (+ 6a/r7) – (12b/r13) = 0, 

		which gives       rmin = (2b/a)1/6.

		That this is a minimum can be seen from the plot.  

		It can be confirmed by finding the sign of the 

		second derivative at this value of r:

			d2U/dr2 	= (– 42a/r8) + (156b/r14) 

						= (6/r2)[(– 7a/r6) + (36b/r12)].

		At rmin the value of the bracket is

			[(– 7a/rmin6) + (36b/rmin12)] = [(– 7a2/2b) + (18a2/2b)] > 0,

		so U(rmin) is a minimum.

		The value of U goes to 8 as r goes to zero, so the maximum is 

		at       rmax = 0.

	(b)	When we set U(r) = 0, we get

			U(r) = (– a/r6) + (b/r12) = 0, which gives r =       (b/a)1/6, and 8.

	(d)	The kinetic energy of the system is K = E – U, and it must be positive, that is, E > U.  

		From the plot we see that, if E < 0, the system is bound and the atom must       oscillate       between 

		the turning points where E = U.

		From the plot we see that, if E > 0, the system is unbound and the atoms can reach an 

			infinite separation.

	(e)	From the plot we see that F > 0 (away from the other atom) when the slope is negative:

			F > 0,      0 < r < (2b/a)1/6.

		From the plot we see that F < 0 (toward the other atom) when the slope is positive:

			F < 0,      (2b/a)1/6 < r < 8.

		From the plot we see that F = 0  when the slope is zero:

			F = 0,      r = (2b/a)1/6.

	(f)	We find F from

			F(r) = – dU/dr = (– 6a/r7) + (12b/r13).



71.	For the binding energy, we have

		Ebinding	= U(8) – U(rmin) 

				= 0 – [(– a/rmin6) + (b/rmin12)] = [a/(2b/a)] – [b/(2b/a)2] =      a2/4b.



72.	We choose the potential energy to be zero at the ground (y = 0).  Energy is conserved, so we have

		E = Ki + Ui  = Kf + Uf ;     

		½mvi2 + mgyi = ½mvf2 + mgyf ;

		½m(180 m/s)2 + m(9.80 m/s2)(165 m) = ½mvf2 + m(9.80 m/s2)(0), which gives vf =        189 m/s.

	Note that we have not found the direction of the velocity.



73.	We choose the potential energy to be zero at the initial level of the center of mass (y = 0).  We find the minimum speed by ignoring any frictional forces.  Energy is conserved, so we have

		E = Ki + Ui  = Kf + Uf ;     

		½mvi2 + mgyi = ½mvf2 + mgyf ;

		½mvi2 + m(9.80 m/s2)(0) = ½m(6.5 m/s)2 + m(9.80 m/s2)(1.1 m), which gives vi =        8.0 m/s.

	Note that the initial velocity will not be horizontal, but will have a horizontal component of 6.5 m/s.



74.	The work done increases the potential energy of the cyclist.  We find the speed from

		P = W/t = ?U/t = mg(hf – hi)/t = mg(L sin q – 0)/t = mgv sin q 

		(0.20 hp)(746 W/hp) = (85 kg)(9.80 m/s2)v sin 12°, which gives v =        0.86 m/s.









75.	The work done increases the potential energy of the elevator.  We find the power output from

		P = W/t = ?U/t = mg(hf – hi)/t = (850 kg)(9.80 m/s2)(32.0 m)/(11.0 s)(746 W/hp) =      32.5 hp.



76.	We choose the reference level for the gravitational potential energy at the ground.

	(a)	With no air resistance during the fall we have

			0 = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi),  or

			½(vf2 – 0) = – (9.80 m/s2)(0 – 18 m), which gives vf =        19 m/s.

	(b)	With air resistance during the fall we have

			WNC = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi);

			Fair(18 m) = ½(0.20 kg)[(10.0 m/s)2 – 0] + (0.20 kg)(9.80 m/s2)(0 – 18 m),

		which gives Fair =        – 1.4 N.



�

77.	We choose the reference level for the gravitational 

	potential energy indicated on the diagram.

	(a)	Because there is no friction, we apply 

		conservation of energy from the top A to the 

		point where the skier leaves the ramp B: 

			E = KA + UA = KB + UB ;    

			0 + mgH = ½mvB2 + mgh; 

			(9.80 m/s2)(45 m) = ½vB2 + (9.80 m/s2)(4.4 m), 

		which gives vB =      28 m/s.

	(b)	For the motion from B to C, the horizontal 

		velocity is constant, so we have

			x = s cos q = vBt,  or   t = (s cos q)/vB .

		For the vertical motion, we have

			y = yB + 0 + ½(– g)t2;

			– s sin q = h – ½g[(s cos q)/vB ]2;

			– s sin 30° = 4.4 m – ½(9.80 m/s2)[(s cos 30°)/(28 m/s)]2.

		This reduces to a quadratic equation for s:

			s2 – (108 m)s – 952 m2 = 0, which has a positive solution of s =       1.2 ´ 102 m.



78.	Because the jump occurs at the end of the ramp, the horizontal velocity at B will be the same as before.  Thus we still have

		t = (s cos q)/vB .

	For the vertical motion, we have

		y = yB + vyt + ½(– g)t2;

		– s sin q = h + (3.0 m/s)[(s cos q)/vB] – ½g[(s cos q)/vB ]2;

		– s sin 30° = 4.4 m + (3.0 m/s)[(s cos 30°)/(28 m/s)] – ½(9.80 m/s2)[(s cos 30°)/(28 m/s)]2.

	This reduces to a quadratic equation for s:

		s2 – (128 m)s – 952 m2 = 0, which has a positive solution of s =       1.4 ´ 102 m.



�

79.	We choose the reference level for the gravitational potential 

	energy at the lowest point.  The tension in the cord is always 

	perpendicular to the displacement and thus does no work.

	(a)	With no air resistance during the fall, we have

			0 = ?K + ?U = (½mv12 – ½mv02) + mg(h1 – h0),  or

			½(v12 – 0) = – g(0 – L), which gives v1 =        (2gL)1/2.

	(b)	For the motion from release to the rise around the peg,  we have

			0 = ?K + ?U = (½mv22 – ½mv02) + mg(h2 – h0),  or

			½(v22 – 0) = – g[2(L – h) – L] = g(2h – L) = 0.60gL, 

		which gives v2 =        (1.2gL)1/2.







80.	From Problem 79, at the top of the circular motion about the peg, we have

		v22 = 2g(2h – L).

	The tension in the cord and the weight provide the radial acceleration:

		FT + mg = mv22/r = m(2g)(2h – L)/(L – h).

	Because the cord cannot push, for the ball to make a complete circle, FT = 0, or

		m(2g)(2h – L)/(L – h) = mg;

		4h – 2L  = L – h,   or  h = 0.60L.



81.	(a)	The work done against gravity is the increase in the potential energy:

			W = ?U = mg(hf – hi) = (65 kg)(9.80 m/s2)(3900 m – 2200 m) =        1.1 ´ 106 J.

	(b)	We find the power from

			P = W/t = (1.1 ´ 106 J)/(5.0 h)(3600 s/h) =        60 W = 0.081 hp.

	(c)	We find the power input from

			Pinput = P/efficiency = (60 W)/(0.15) =        4.0 ´ 102 W = 0.54 hp.



�

82.	(a)	With y = 0 at the bottom of the circle, we call the start 

		point A, the bottom of the circle B, and the top of the 

		circle C.  At the top of the circle we have the forces mg 

		and FNtop , both downward, that provide the centripetal 

		acceleration:

			mg + FNtop = mvC2/r.

		The minimum value of FNtop is zero, so the minimum 

		speed at C  is found from 

			vCmin2 = gr.

		From energy conservation for the motion from A to C we have 

			KA + UA = KC + UC ;	

			0 + mgh = ½mvC2 + mg(2r), 

		thus the minimum height is found from

			ghmin = ½vCmin2 + 2gr = ½gr + 2gr, which gives        hmin = 2.5r.

	(b)	From energy conservation for the motion from A to B we have 

			KA + UA = KB + UB ;	

			0 + mg2h = 5mgr = ½mvB2 + 0, which gives vB2 = 10gr.

		At the bottom of the circle we have the forces mg down and FNbottom up that provide the 

		centripetal acceleration:

			– mg + FNbottom = mvB2/r.

		If we use the previous result, we get 

			FNbottom = mvB2/r + mg =        11mg.

	(c)	From energy conservation for the motion from A to C we have 

			KA + UA = KC + UC ;	

			0 + mg2h = 5mgr = ½mvC2 + mg(2r), which gives vC2 = 6gr.

		At the top of the circle we have the forces mg and FNtop , both down, that provide the 

		centripetal acceleration:

			mg + FNtop = mvC2/r.

		If we use the previous result, we get 

			FNtop = mvC2/r – mg =        5mg.

	(d)	On the horizontal section we have FN =         mg.

















83.	We choose the reference level for the gravitational potential energy at the lowest point.  

	(a)	With no air resistance during the fall, we have

			0 = ?K + ?U = (½mv2 – ½mv02) + mg(h – h0),  or

			½(v2 – 0) = – g(0 – H), which gives 

			v = (2gH)1/2 = [2(9.80 m/s2)(80 m)] =        40 m/s.

	(b)	If 60% of the kinetic energy of the water is transferred, we have

			P 	= (0.60)½mv2/t = (0.60)½(m/t)v2

				= (0.60)½(550 kg/s)(40 m/s)2 =        2.6 ´ 105 W        (about 350 hp).



84.	We convert the speeds: (10 km/h)/(3.6 ks/h) = 2.78 m/s; (30 km/h)/(3.6 ks/h) = 8.33 m/s.

	We use the work-energy principle applied to coasting down the hill a distance L to find b:

		WNC = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi);

		–  bv12L = (½mv12 – ½mv12) + mg(0 – L sin q), 

	which gives b = (mg/ v12) sin q = [(75 kg)(9.80 m/s2)/(2.78 m/s)2] sin 4.0° = 6.63 kg/m.

	For the work-energy principle applied to speeding down the hill a distance L, the cyclist must provide a force so we have

		WNC = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi);

		F2L –  bv22L = (½mv22 – ½mv22) + mg(0 – L sin q), which gives F2 = bv22 – mg sin q. 

	The power supplied by the cyclist is

		P = F2v2 = [(6.63 kg/m)(8.33 m/s)2 – (75 kg)(9.80 m/s2) sin 4.0°](8.33 m/s) = 3.41 ´ 103 W.

	For the work-energy principle applied to climbing the hill a distance L, the cyclist will provide a force 

	F3 = P/v3 , so we have

		WNC = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi);

		(P/v3)L –  bv32L = (½mv32 – ½mv32) + mg(L sin q – 0), 

	which gives [(3.41 ´ 103 W)/v3] – (6.63 kg/m)v32 = (75 kg)(9.80 m/s2) sin 4.0°. 

	This is a cubic equation for v3 , which has one real solution: v3 =  7.69 m/s.  

	The speed is (7.69 m/s)(3.6 ks/h) =        28 km/h.
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85.	We choose the reference level for the gravitational potential 

	energy at the bottom.  From energy conservation for the motion 

	from top to bottom, we have 

		Ktop + Utop = Kbottom + Ubottom ;	

		½mvtop2 + mg2R = ½mvbottom2 + 0, which gives 

		vbottom2 = vtop2 + 4gR.

	At the bottom of the circle we have the forces mg down and 

	FNbottom up that provide the centripetal acceleration:

		– mg + FNbottom = mvbottom2/R, which gives 

		FNbottom = (mvbottom2/R) + mg.

	At the top of the circle we have the forces mg and FNtop , both 

	down, that provide the centripetal acceleration:

		mg + FNtop = mvtop2/R, which gives 

		FNtop = (mvtop2/R) – mg.

	If we subtract the two equations, we get

		FNbottom – FNtop	= (mvbottom2/R) + mg – [(mvtop2/R) – mg]

						= (m/R)(vbottom2 – vtop2) + 2mg = 4mg + 2mg = 6mg.

	The speed must be above the minimum at the top so the roller coaster does not leave the track.  From Problem 82, we know that we must have h > 2.5R.  

	The result we found does not depend on the radius or speed. 













86.	We choose y = 0 at the scale.  We find the spring constant from the force (your weight) required to compress the spring:

		k = F1/x1 = ( – 700 N)/(– 0.50 ´ 10–3 m) = 1.4 ´ 106 N/m.

	We apply conservation of energy for the jump to the scale.  Both the initial and final kinetic energy are zero.  If we ignore the small change in gravitational potential energy when the scale compresses, we have

		Ki + Ui  = Kf + Uf ;     

		0 + mgH = 0 + ½kx22;

		(700 N)(1.0 m) = ½(1.4 ´ 106 N/m)x22, which gives x2 = 0.032 m.

	The reading of the scale is

		F2 = kx2 = (1.40 ´ 106 N/m)(0.032 m) =       4.4 ´ 104 N.
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87.	We choose the potential energy to be zero at the lowest point (y = 0). 

	(a)	Because the tension in the rope does no work, energy is conserved, 

		so we have

			Ki + Ui  = Kf + Uf ;     

			½mv02 + 0 = 0 + mgh = mg(L – L cos q) = mgL(1 – cos q);

			½m(5.0 m/s)2 = m(9.80 m/s2)(10.0 m)(1 – cos q)

		which gives cos q = 0.872,  or  q =        29°.

	(b)	The velocity is zero just before he releases, so there is no centripetal 

		acceleration.  There is a tangential acceleration which has been 

		decreasing his tangential velocity.  For the radial direction we have

			FT – mg cos q = 0;   or

			FT = mg cos q = (75 kg)(9.80 m/s2)(0.872) =        6.4 ´ 102 N.

	(c)	The velocity and thus the centripetal acceleration is maximum at the bottom, so the tension will be 

		maximum there.  For the radial direction we have

			FT – mg = mv02/L,   or

			FT = mg + mv02/L = (75 kg)[(9.80 m/s2) + (5.0 m/s)2/(10.0 m)] =        9.2 ´ 102 N.



88.	We choose the potential energy to be zero at the floor.  The work done increases the potential energy of the athlete.  We find the power from

		P 	= W/t = ?U/t = mg(hf – hi)/t 

			= (70 kg)(9.80 m/s2)(5.0 m – 0)/(9.0 s) =        3.8 ´ 102 W        (about 0.5 hp).



89.	(a)	For the Yukawa potential �, we find F(r) from

			�EMBED Word.Picture.8���

	(b)	For the ratio of the two forces, we have

			�EMBED Word.Picture.8���

	(c)	From the potential of the charged particles �, we find F(r) from

			�

		For the ratio of the two forces, we have

			�EMBED Word.Picture.8���

		We see that the force decreases more rapidly for the Yukawa potential.  The exponential factor 

		makes the Yukawa force drop off more rapidly with distance, so it is a “short-range” force.
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90.	We choose the potential energy to be zero at the bottom of the 

	incline (y = 0). 

	(a)	Because there is no acceleration perpendicular to the 

		incline, we have

			FN = mg cos q,

		so the friction force is Ffr = mkmg cos q.  For the motion from 

		the bottom of the incline to where the sled stops a distance 

		s up the incline, for the work-energy principle we have

			WNC = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi);

			–  mkmg cos q s = (0 – ½mv12) + mg(s sin q);

			 – (0.25)(9.80 m/s2)s cos 30° = – ½(2.4 m/s)2 + (9.80 m/s2)(s sin 30°), which gives s =       0.41 m.

	(b)	When the sled stops, the friction becomes static.  For the sled to not get stuck, we have

			mg sin q > msmg cos q,  or       ms < tan 30° = 0.58.

	(c)	On the way down the friction force changes direction to always oppose the motion.  For the motion 

		from the bottom of the incline up and then back down to the bottom, for the work-energy principle 

		we have

			WNC = ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi);

			–  mkmg cos q (2s) = (½mv22 – ½mv12) + 0;

			 – (0.25)(9.80 m/s2) cos 30° [2(0.41 m)] = ½v22 – ½(2.4 m/s)2 , which gives v2 =       1.5 m/s.



91.	If we consider a small length L of the circular stream with radius R that leaves the hose, the mass of this much water is m = rpR2L.  If the water leaves the hose with speed v, the time to leave the hose is t = L/v.  If we neglect air resistance and apply conservation of energy from leaving the hose to the highest point, we have

		K1 + U1 = K2 + U2 ; 

		½mv2 + 0 = 0 + mgh,  or  v = (2gh)1/2 = [2(9.80 m/s2)(30 m)]1/2 = 24.2 m/s.

	The minimal supplied power produces the kinetic energy of the water as it leaves the hose:

		P 	= W/t = ?K/t = ½mv2/t = ½rpR2Lv2/t = ½rpR2v3 

			= ½(1.00 ´ 103 kg/m3)p(1.5 ´ 10–2 m)2(24.2 m/s)3/(746 W/hp) =       6.7 hp.



92.	We can find the required non-conservative work that is required, and thus the thermal energy dissipated, by using the work-energy principle:

		WNC  	= ?K + ?U = (½mvf2 – ½mvi2) + mg(hf – hi) = m[(½vf2 – ½vi2) + g(hf – hi)]

				= (1500 kg){½[(30 km/h)/(3.6 ks/h)]2 – ½[(90 km/h)/(3.6 ks/h)]2 + (9.80 m/s2)(– 0.30 ´ 103 m) sin 20°} 

				= – 1.9 ´ 106 J.

	Thus the thermal energy dissipated is       1.9 ´ 106 J.



93.	We choose the surface of the moon as our reference level.  We can apply conservation of energy from the moment of engine shut off to the landing:

		K1 + U1 = K2 + U2 ; 

		½mv12 + mgh1 = ½mv22 + mgh2 ;

		½mv12 + mgh1 = ½mv22 + 0,  or  h1max = ½(v2max2 – v12)/g.

	(a)	If the initial velocity is zero, we have

			hamax = ½(v2max2 – v12)/g = ½[(3.0 m/s)2 – 0]/(1.62 m/s2) =       2.8 m.

	(b)	If the initial velocity is downward, we have

			hbmax = ½(v2max2 – v12)/g = ½[(3.0 m/s)2 – (– 2.0 m/s)2]/(1.62 m/s2) =       1.5 m.

	(c)	If the initial velocity is upward, we have

			hcmax = ½(v2max2 – v12)/g = ½[(3.0 m/s)2 – (2.0 m/s)2]/(1.62 m/s2) =       1.5 m.

		Note that this must be the same as in part (b), because when the lander goes up and returns to the 

		initial elevation, it will have the same speed.









94.	The output comes from the decrease of the potential energy of the water.  Thus we have

		P = ?U/t = mg(hf – hi)/t = rVg(hf – hi)/t;

		100 ´ 106 W = (1.00 ´ 103 kg/m3)V(9.80 m/s2)(500 m)/(3600 s), which gives V =      7.3 ´ 104 m3.

	This assumes 100% efficiency.



95.	If 80% of the electrical power is used to increase the potential energy of the water, we have

		0.80P = mg(hf – hi)/t;

		0.80P = (1.00 ´ 106 kg/day)(9.80 m/s2)(400 m)/(24 h/day)(3600 s/h), 

	which gives P = 5.7 ´ 104 W =       76 hp.



96.	(a)	We find the energy required to place the satellite into orbit by finding the change in total energy of 

		the satellite.  Before the satellite is launched, it has kinetic energy because it has the surface speed of 

		a point on the equator:

			v1 = 2prE/t = 2p(6.38 ´ 106 m)/(24 h)(3600 s/h) = 464 m/s;

			K1 = ½mv12 = ½(12,000 kg)(464 m/s)2 = 1.29 ´ 109 J.

		With the reference level at infinity, the initial potential energy is

			U1 	= – GmME/rE 

				= – (6.67 ´ 10–11 N · m2/kg2)(12,000 kg)(5.98 ´ 1024 kg)/(6.38 ´ 106 m) = – 7.50 ´ 1011 J.

		Thus the initial total energy is

			E1 = K1 + U1 = 1.29 ´ 109 J – 7.50 ´ 1011 J = – 7.49 ´ 1011 J.

		We find the speed of the satellite in orbit from the required radial acceleration:

			GmME/r22 = mv22/r2 , which gives  v22 = GME/r2.

		The total energy in orbit is

			E2 	= K2 + U2 = ½mv22 – GmME/r2 = ½GmME/r2 – GmME/r2 = – ½GmME/r2 

				= – ½(6.67 ´ 10–11 N · m2/kg2)(12,000 kg)(5.98 ´ 1024 kg)/(6.38 ´ 106 m + 1.00 ´ 106 m) 

				= – 3.24 ´ 1011 J.

		Thus the energy required is

			W = E2 – E1 = – 3.24 ´ 1011 J – (– 7.49 ´ 1011 J) =      4.25 ´ 1011 J.

	(b)	If the satellite is launched from the north pole, its initial kinetic energy is zero, so we have

			W = E2 – U1 = – 3.24 ´ 1011 J – (– 7.50 ´ 1011 J) =      4.26 ´ 1011 J.

�



97.	(a)	At point B the distance of the satellite from 

		the center of the Earth is

			rB 	= [(½a)2 + b2]1/2 

				= [(8,000 km)2 + (13,900 km)2]1/2 

				= 16,000 km.

		For energy conservation for the motion from A to B, 

		we have

			KA + UA = KB + UB ; 

			½mvA2 – GMEm/rA = ½mvB2 –  GMEm/rB ,  or  

			vB2 = vA2 + 2GME(1/rB – 1/rA);

			vB2 = (8650 m/s)2 + 2(6.67 ´ 10–11 N · m2/kg2) ´

					(5.98 ´ 1024 kg)[(1/16.0 ´ 106 m) – (1/8.0 ´ 106 m)] 

		which gives vB =      5.00 ´ 103 m/s.

	(b)	For energy conservation for the motion from A to C, we have

			KA + UA = KC + UC ; 

			½mvA2 – GMEm/rA = ½mvC2 –  GMEm/rC ,  or  

			vC2 = vA2 + 2GME[1/(*a) – 1/(½a)];

			vC2 = (8650 m/s)2 + 2(6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)[(1/24.0 ´ 106 m) – (1/8.0 ´ 106 m)] 

		which gives vC =      2.89 ´ 103 m/s.







98.	(a)	

�

			































		When we set U(r) = 0, we get

			U(r) = U0[(2/r2) – (1/r)] = 0, which gives r =       2.

		To find where U is a minimum, we set the

		first derivative equal to zero:

			U(r) = U0[(2/r2) – (1/r)];

			dU/dr = U0[(– 4/r3) + (1/r2) = 0, which gives       rmin = 4.

	(b)	The minimum potential energy at rmin is

			U(rmin)	= U0[(2/rmin2) – (1/rmin)] 

					= U0[(2/42) – (1/4)] = – U0/8.

		When we plot the constant energy of – 0.050U0 ,

		we see that the turning points are   ˜ 2.5 and 18.

		The kinetic energy of the system is K = E – U, so the maximum K occurs at minimum U:

			Kmax = E – Umin = – 0.050U0 – (– 0.125U0) =       0.075U0 at r = 4.
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