CHAPTER 9 - Linear Momentum and Collisions



1.	We find the force on the expelled gases from

		F = ?p/?t = (?m/?t)v = (1200 kg/s)(50,000 m/s) = 6.0 ´ 107 N.

	An equal, but opposite, force will be exerted on the rocket:       6.0 ´ 107 N, up.



2.	For the momentum p = 4.8t2i – 8.0j – 8.9tk, we find the force from

		F = dp/dt =       9.6ti – 8.9k, in SI units.

	

3.	(a)	p = mv = (0.030 kg)(12 m/s) =        0.36 kg · m/s.

	(b)	The force, opposite the direction of the velocity, changes the momentum:

			F = ?p/?t;

			– 2.0 ´ 10–2 N = (p2 – 0.36 kg · m/s)/(12 s), which gives p2 =       0.12 kg · m/s.



4.	The change in momentum is

		?p  = p2 – p1 = mvj – mvi 

			= (0.145 kg)(30 m/s)j – (0.145 kg)(30 m/s)i =      – (4.35 kg · m/s)i + (4.35 kg · m/s)j.



5.	The force changes the momentum:

			F = (26 N)i – (12 N/s2)t2j = dp/dt.

	Because F is a variable force, we integrate to find the momentum change:

		�



�

6.	If M is the initial mass of the rocket and m2 is the mass of the 

	expelled gases, the final mass of the rocket is m1 = M – m2.  

	Because the gas is expelled perpendicular to the rocket in the 

	rocket’s frame, it will still have the initial forward velocity, 

	so the velocity of the rocket in the original direction will not 

	change.  We find the y-component of the rocket’s velocity after 

	firing from

		v1^ = v0 tan q = (120 m/s) tan 23.0° = 50.9 m/s.

	Using the coordinate system shown, for momentum 

	conservation in the y-direction we have

		0 + 0 = m1v1^ – m2v2^ ,   or

		(M – m2)v1^ = m2v2^ ;

		(4200 kg – m2)(50.9 m/s) = m2(2200 m/s), which gives m2 =       95 kg.

























7.	(a)	We choose downward as positive.  For the fall we have

			y = y0 + v0t1 + !at12;

			h = 0 + 0 + !gt12, which gives t1 = (2h/g)1/2.

		To reach the same height on the rebound, the upward motion must be a reversal of the downward 

		motion.  Thus the time to rise will be the same, so the total time is

			ttotal = 2t1 = 2(2h/g)1/2 =       (8h/g)1/2.

	(b)	We find the speed from

			v = v0 + at1 = 0 + g(2h/g)1/2 =       (2gh)1/2.

	(c)	To reach the same height on the rebound, the upward speed at the floor must be the same as the 

		speed striking the floor.  Thus the change in momentum is

			?p = m(– v) – mv = – 2m(2gh)1/2 =  =         – (8m2gh)1/2 (up).

	(d)	For the average force on the ball we have

			F = ?p/?t = – (8m2gh)1/2/(8h/g)1/2 = – mg (up).

		Thus the average force on the floor is       mg (down), a surprising result.



8.	We convert the speed:  (100 km/h)/(3.6 ks/h) = 27.8 m/s.

	In a time ?t all of the air within a distance v ?t will strike the building; so the mass being brought to rest is ?m = rAv ?t.  Thus the average force on the air is

		F 	= ?p/?t = (?m/?t) ?v = rAv(0 – v) = – rAv2

			= – (1.3 kg/m3)(40 m)(60 m)(27.8 m/s)2 = – 2.4 ´ 106 N.

	The average force on the building is the reaction to this:      2.4 ´ 106 N.



9.	For the one-dimensional motion, we take the direction of the first car for the positive direction.

	For this perfectly inelastic collision, we use momentum conservation:

		M1v1 + M2v2 = (M1 + M2)V;

		(9700 kg)(18 m/s) + 0 = (9700 kg + M2)(4.0 m/s), which gives       M2 = 3.4 ´ 104 kg.



10.	For this one-dimensional motion, we take the direction of the halfback for the positive direction.

	For this perfectly inelastic collision, we use momentum conservation:

		M1v1 + M2v2 = (M1 + M2)V;

		(90 kg)(5.0 m/s) + (130 kg)(– 2.5 m/s) = (90 kg + 130 kg)V, 

	which gives        V= 0.57 m/s (direction of halfback).



11.	The new nucleus and the alpha particle will recoil in opposite directions.  

	Momentum conservation gives us

		0 = MV – mava ,

		0 = (57ma)V – ma(2.5 ´ 105 m/s),  which gives  V =       4.4 ´ 103 m/s.



12.	For the horizontal motion, we take the direction of the car for the positive direction.

	The load initially has no horizontal velocity.  For this perfectly inelastic collision, 

	we use momentum conservation:

		M1v1 + M2v2 = (M1 + M2)V;

		(10,500 kg)(15.0 m/s) + 0 = (10,500 kg + 6350 kg)V, which gives       V= 9.35 m/s.



13.	During the throwing we use momentum conservation for the one-dimensional motion:

		0 = (mboat + mchild)vboat + mpackagevpackage ;

		0 = (55.0 kg + 26.0 kg)vboat + (5.40 kg)(10.0 m/s), which gives       

		vboat =       – 0.667 m/s (opposite to the direction of the package).



�

14.	Momentum conservation gives us

		mv1 + Mv2 = mv1¢ + Mv2¢,

		(0.012 kg)(190 m/s) + 0 = (0.012 kg)(150 m/s) + (2.0 kg)v2¢,

	which gives v2¢ =       0.24 m/s.





15.	Momentum conservation gives 

		0 = m1v1¢ + m2v2¢,  or  v2¢/v1¢ = – m1/m2 .

	The ratio of kinetic energies is

		K2/K1 = !m2v2¢2/!m1v1¢2 = (m2/m1)(v2¢/v1¢)2 = 2.

	When we use the result from momentum, we get

		(m2/m1)(– m1/m2)2 = 2, which gives m1/m2 =         2.

	The fragment with the      lesser kinetic energy      has the greater mass.



�

16.	For the collision we use momentum conservation:

		x-direction:  m1v1 + 0 = m1v1¢ cos q1 + m2v2¢ cos q2 ;

			m(17 m/s) = mv1¢ cos 45° + mv2¢ cos 30°;

		y-direction:  0 + 0 = – m1v1¢ sin q1 + m2v2¢ sin q2 ;

			0 = – mv1¢ sin 45° + mv2¢ sin 30°.

	The mass cancels, so we solve these two equations for 

	the two unknowns:

		v1¢ = 8.8 m/s;  v2¢ = 12.4 m/s.





17.	For momentum conservation we have

		mv0i = %m  v¢ + @m(2v0)j, which gives         v¢ = *v0 i – v0 j.

	The rocket’s forward speed increases because the fuel is shot backward relative to the rocket.



18.	For momentum conservation of the decay of a stationary neutron into the three particles, we have

		0 = m1v1 + m2v2 + m3v3 ,  or  v3  = – [(m1/m3)v1 + (m2/m3)v2].

	Because (m1/m3)v1 + (m2/m3)v2 defines a plane containing v1 and v2, the third velocity must lie in the same plane.



�

19.	Because the initial momentum is zero, the momenta of the three 

	products of the decay must add to zero.  If we draw the vector 

	diagram, we see that

		pnucleus	= (pelectron2 + pneutrino2)1/2

				= [(8.6 ´ 10–23 kg · m/s)2 + (6.2 ´ 10–23 kg · m/s)2]1/2 

				=         1.1 ´ 10–22 kg · m/s.

	We find the angle from

		tan q 	= pneutrino/pelectron 

				= (6.2 ´ 10–23 kg · m/s)/(8.6 ´ 10–23 kg · m/s) 

				= 0.721, so the angle is      36° from the direction opposite to the electron’s.



20.	(a)	With respect to the Earth after the explosion, one section will have a speed v1¢ and the other 

		will have a speed v2¢ = v1¢ + vrelative.  Momentum conservation gives us

			mv = !mv1¢ + !mv2¢,  or

			v = !v1¢ + !(v1¢ + vrelative) = v1¢ + !vrelative;

			6.50 ´ 103 m/s =  v1¢ + !(2.80 ´ 103 m/s), which gives v1¢ =       5.10 ´ 103 m/s.

		The other section will have

			v2¢ = v1¢ + vrelative = 5.10 ´ 103 m/s + 2.80 ´ 103 m/s =       7.90 ´ 103 m/s.

	(b)	The energy supplied by the explosion increases the kinetic energy:

			E	= ?K = [!(!m)v1¢2 + !(!m)v2¢2] – !mv2  

				= ![!(900 kg)(5.10 ´ 103 m/s)2] + ![!(900 kg)(7.90 ´ 103 m/s)2] – !(900 kg)(6.50 ´ 103 m/s)2 

				=      8.82 ´ 108 J.











21.	(a)	For the initial projectile motion, the horizontal velocity is constant, so the velocity at the 

		highest point, before the breakup, is

			v = vhi  = v0 cos 60° i = (100 m/s) cos 60° i = (50 m/s)i.

		During the explosion, momentum is conserved:

			mv = m1v1 + m2v2 + m3v3 ; 

			mvh i = – @mvh j + @mvh i + @mv3 ; 

		which gives

			v3 = 2vh i + vh j  = 2(50 m/s)i + (50 m/s)j =        (100 m/s)i + (50 m/s)j .

	(b)	The energy supplied by the explosion increases the kinetic energy:

			E	= ?K = !(@m)vh2 + !(@m)vh2 + !(@m)[(2vh)2 + vh2)] – !mvh2  

				= %mvh2 = %(200 kg)(50 m/s)2 =      3.3 ´ 105 J.



22.	We find the average force on the ball from

		F = ?p/?t = m ?v/?t =(0.145 kg)[(56.0 m/s) – (– 35.0 m/s)]/(5.00 ´ 10–3 s) =      2.64 ´ 103 N.



23.	We find the average force on the ball from

		F = ?p/?t = m ?v/?t = (0.0600 kg)[(65.0 m/s) – 0]/(0.0300 s) =      130 N.

	Because the weight of a 60-kg person is ˜ 600 N, this force is       not large enough.



�

24.	The momentum parallel to the wall does not change, therefore the 

	impulse will be perpendicular to the wall.  With the positive 

	direction toward the wall, we find the impulse on the ball from

		Impulse = ?p^ = m ?v^ = m[(– v sin q) – (v sin q)]

					= – 2mv sin q = – 2(0.060 kg)(28 m/s) sin 45° = – 2.4 N · s.

	The impulse on the wall is in the opposite direction:      2.4 N · s.









25.	We find the average force on the water from

		F 	= ?p/?t = (?m/?t) ?v 

			= (60 kg/s)(10 m/s)[(– 0.75) – 1] = – 1.1 ´ 103 N.

	The average force on the turbine blades is the reaction to this:      1.1 ´ 103 N.



26.	In the reference frame of the capsule before the push, we take the positive direction in the direction the capsule will move.  

	(a)	Momentum conservation gives us

			mvastronaut + Mvsatellite = mv¢astronaut + Mv¢satellite ,

			0 + 0 = (140 kg)(– 2.50 m/s) + (1800 kg) v¢satellite , which gives v¢satellite  =        0.194 m/s.

	(b)	We find the force on the satellite from

			Fsatellite = ?psatellite/?t = msatellite ?vsatellite/?t

					= (1800 kg)(0.194 m/s – 0)/(0.500 s) =       700 N.

		There will be an equal but opposite force on the astronaut.

	(c)	The kinetic energies are

			Kastronaut = !m v¢astronaut2 = !(140 kg)(2.50 m/s)2 =       438 J.

			Ksatellite = !M v¢satellite2 = !(1800 kg)(0.194 m/s)2 =       33.9 J.



27.	(a)	We find the average force on the molecule from

			F 	= ?p/?t = m ?v/?t

				= m[(– v) – (+ v)]/?t = – 2mv/?t.

		The average force on the wall is the reaction to this:      2mv/?t.

	(b)	If t is the average time between collisions, the number of collisions in time T is N = T/t.  Thus in the 

		time T the total momentum change is N(2mv), so the average force on the wall is

			Fwall = N(2mv)/T =       2mv/t.



�

28.	(a)	The impulse is the area under the F vs. t curve.  

		The value of each block on the graph is

			1 block = (50 N)(0.01 s) = 0.50 N · s. 

		We estimate there are 10 blocks under the curve, 

		so the impulse is

			Impulse = (10 blocks)(0.50 N · s/block)        ˜ 5.0 N · s.

	(b)	We find the final velocity of the ball from

			Impulse = ?p = m ?v;

			5.0 N · s = (0.060 kg)(v – 0), which gives v =        83 m/s.





�



29.												(a)

	(b)	The force would become zero at 

			t = 780/(2.6 ´ 105) = 3.0 ´ 10–3 s.

		The impulse is the area under the F vs. t curve, 

		which is a triangle:

			J = !(780 N)(3.0 ´ 10–3 s) =        1.2 N · s.

	(c)	We integrate the variable force to find the impulse:

			�

	(d)	We find the mass of the bullet from

			Impulse = ?p = m ?v;

			1.17 N · s = m(300 m/s – 0), which gives m = 3.9 ´ 10–3 kg =        3.9 g.



30.	The maximum force that each leg can exert without breaking is

		(170 ´ 106 N/m2)(2.5 ´ 10–4 m2) = 4.25 ´ 104 N,

	so, if there is an even landing with both feet, the maximum force allowed on the  body is 8.50 ´ 104 N.

	We use the work-energy principle for the fall to find the landing speed:

		0 = ?K + ?U;

		0 = !mvland2 – 0 + (0 – mghmax),  or  vland2 = 2ghmax .

	The impulse from the maximum force changes the momentum on landing.  If we take down as the positive direction and assume the landing lasts for a time t, we have

		– Fmaxt = m ?v = m(0 – vland),  or  t = mvland/Fmax .

	We have assumed a constant force, so the acceleration will be constant.  For the landing we have

		y = vlandt +  !at2 = vland(mvland/Fmax) + !(– Fmax/m)(mvland/Fmax)2 = !mvland2/Fmax = mghmax/Fmax ;

		0.60 m = (75 kg)(9.80 m/s2)hmax/(8.50 ´ 104 N), which gives hmax =      69 m.





























31.	We choose the upward direction as positive.

	(a)	If we consider a mass ?m of water falling to the pan, we can find the speed just before hitting 

		the pan from energy conservation:

			0 = ?K + ?U;

			0 = !(?m)v2 – 0 + [0 – (?m)gh],  or  v2 = 2gh.

		We find the average force required to stop the water from

			F = ?p/?t = (?m/?t) ?v = (?m/?t)[0 – (– v)] = (?m/?t)(2gh)1/2.

		The average force on the pan is the reaction to this: – (?m/?t)(2gh)1/2 (down).

		The scale reading is the increased normal force.  After a time t, the water in the pan has a mass 

		m = (?m/?t)t.  If the acceleration of the water in the pan is negligible, we have

			FN – (?m/?t)(2gh)1/2 – mg = 0,   or

			FN	= (?m/?t)(2gh)1/2 + (?m/?t)gt = (?m/?t)[(2gh)1/2 + gt]

				= (0.12 kg/s){[2(9.80 m/s2)(2.5 m)]1/2 + (9.80 m/s2)t} =       (0.84 N) + (1.2 N/s)t.

	(b)	After 15 s we have

			FN = (0.84 N) + (1.18 N/s)(15 s) =       18.5 N.

	(c)	After a time t, the water in the pan has a mass m = (?m/?t)t.  The height of this water in the 

		cylinder will be 

			h¢ 	= m/rA = (?m/?t)t/rA 

				= (0.12 kg/s)t/(1.0 ´ 103 kg/m3)(20 ´ 10–4 m2) = (6.0 ´ 10–2 m/s)t.

		The water falling into the cylinder at time t will have fallen a distance h – h¢.  Thus the speed of 

		the water will be given by v2 = 2g(h – h¢), and the impact force on the pan will be  

			F = – (?m/?t)[2g(h – h¢)]1/2  (down). 

		If the acceleration of the water in the pan is negligible, we have

			FN – (?m/?t)[2g(h – h¢)]1/2 – mg = 0,   or

			FN	= (?m/?t)[2g(h – h¢)]1/2 + (?m/?t)gt = (?m/?t){[2g(h – h¢)]1/2+ gt}

				= (0.12 kg/s)({2(9.80 m/s2)[(2.5 m) – (6.0 ´ 10–2 m/s)t]}1/2 + (9.80 m/s2)t) 

				=       (0.12 kg/s){[(49 m2/s2) – (1.18 m2/s3)t]1/2 + (9.80 m/s2)t}.

		After 15 s we have

			FN	= (0.12 kg/s){(49 m2/s2) – (1.18 m2/s3)t]}1/2 + (9.80 m/s2)t} 

				= (0.12 kg/s){[(49 m2/s2) – (1.18 m2/s3)(15 s)]1/2 + (9.80 m/s2)(15 s)} =       18.3 N.



32.	For the elastic collision of the two balls, we use momentum conservation for this one-dimensional motion:

		m1v1 + m2v2 = m1v1¢ + m2v2¢;

		(0.540 kg)(3.90 m/s) + (0.320 kg)(0) = (0.540 kg)v1¢ + (0.320 kg)v2¢.

	Because the collision is elastic, the relative speed does not change:

		v1 – v2 = – (v1¢ – v2¢),    or    3.90 m/s – 0 = v2¢ – v1¢.

	Combining these two equations, we get 

		v1¢ = 0.998 m/s,       and      v2¢ = 4.89 m/s.



33.	For the elastic collision of the two pucks, we use momentum conservation for this one-dimensional motion:

		m1v1 + m2v2 = m1v1¢ + m2v2¢;

		(0.450 kg)(4.20 m/s) + (0.900 kg)(0) = (0.450 kg)v1¢ + (0.900 kg)v2¢.

	Because the collision is elastic, the relative speed does not change:

		v1 – v2 = – (v1¢ – v2¢),    or    4.20 m/s – 0 = v2¢ – v1¢.

	Combining these two equations, we get 

		v1¢ = – 1.40 m/s (rebound),       and      v2¢ = 2.80 m/s.













34.	For the elastic collision of the two balls, we use momentum conservation for this one-dimensional motion:

		m1v1 + m2v2 = m1v1¢ + m2v2¢;

		(0.060 kg)(7.50 m/s) + (0.090 kg)(3.00 m/s) = (0.060 kg)v1¢ + (0.090 kg)v2¢.

	Because the collision is elastic, the relative speed does not change:

		v1 – v2 = – (v1¢ – v2¢),    or    7.50 m/s – 3.00 m/s = v2¢ – v1¢.

	Combining these two equations, we get 

		v1¢ = 2.10 m/s,       and      v2¢ = 6.60 m/s.



35.	(a)	For the elastic collision of the two balls, we use momentum conservation for this 

		one-dimensional motion:

			m1v1 + m2v2 = m1v1¢ + m2v2¢;

			(0.220 kg)(6.5 m/s) + m2(0) = (0.220 kg)(– 3.8 m/s) + m2v2¢.

		Because the collision is elastic, the relative speed does not change:

			v1 – v2 = – (v1¢ – v2¢),    or    6.5 m/s – 0 = v2¢ – (– 3.8 m/s), which gives       v2¢ = 2.7 m/s.

	(b)	Using the result for v2¢ in the momentum equation, we get        m2 = 0.84 kg.



36.	(a)	For the elastic collision of the two balls, we use momentum conservation:

			m1v1 + m2v2 = m1v1¢ + m2v2¢;

			(0.280 kg)v1 + m2(0) = (0.280 kg)v1¢ + m2(!v1).

		Because the collision is elastic, the relative speed does not change:

			v1 – v2 = – (v1¢ – v2¢),    or    v1 – 0 = !v1 – v1¢, which gives       v1¢ = – !v1.

		Using this result in the momentum equation, we get        m2 = 0.840 kg.

	(b)	The fraction transferred is 

			fraction = ?K2/K1 = !m2(v2¢2 – v22)/!m1v12  

					= !m2[(!v1)2 – 0]/!m1v12 = #m2/m1 = #(0.840 kg)/(0.280 kg) =        0.750.



37.	Because mass is conserved, the mass of the new nucleus is M2 = 222 u – 4.0 u = 218 u.

	Momentum conservation gives us

		M1V1 = M2V2 + mava ,

		(222 u)(500 m/s) = (218 u)(450 m/s) + (4.0 u)va ,  which gives va =       3.2 ´ 103 m/s.





38.	For the elastic collision of the two balls, we use momentum conservation:

		m1v1 + m2v2 = m1v1¢ + m2v2¢;

		mv1 + 0 = m(– v1/4) + m2v2¢,  or  m2v2¢ = 5mv1/4.

	Because the collision is elastic, the relative speed does not change:

		v1 – 0 = – (v1¢ – v2¢);   v1 = v2¢ – (– v1/4),  or  v2¢ = 3v1/4.

	Combining these two equations, we get 

		m2 = 5m/3.  































39.	For the elastic collision, we use momentum conservation:

		m1v1 + m2v2 = m1v1¢ + m2v2¢;

		m1v1 + 0 = m1v1¢ + m2v2¢.

	Because the collision is elastic, the relative speed does not change:

		v1 – v2 = – (v1¢ – v2¢),    or    v1 – 0 = v2¢ – v1¢.

	When we combine the two equations, we get

		v1¢ = (m1 – m2)v1/(m1 + m2).

	The fraction of kinetic energy lost by the neutron is

		?K1/K1 = (!m1v12 – !m1v1¢2)/!m1v12 = 1 – [(m1 – m2)/(m1 + m2)]2 = 4m1m2/(m1 + m2)2.

	(a)	For m2 = 1.01 u, we get

			?K1/K1 = 4m1m2/(m1 + m2)2 = 4(1.01 u)(1.01 u)/(1.01 u + 1.01 u)2 =       1.00.

	(b)	For m2 = 2.01 u, we get

			?K1/K1 = 4m1m2/(m1 + m2)2 = 4(1.01 u)(2.01 u)/(1.01 u + 2.01 u)2 =       0.89.

	(c)	For m2 = 12.00 u, we get

			?K1/K1 = 4m1m2/(m1 + m2)2 = 4(1.01 u)(12.00 u)/(1.01 u + 12.00 u)2 =       0.29.

	(d)	For m2 = 208 u, we get

			?K1/K1 = 4m1m2/(m1 + m2)2 = 4(1.01 u)(208 u)/(1.01 u + 208 u)2 =       0.019.



40.	For the elastic collision, we use momentum conservation for this one-dimensional motion:

		m1v1 + m2v2 = m1v1¢ + m2v2¢.

	Because the collision is elastic, the relative speed does not change:

		v1 – v2 = – (v1¢ – v2¢),    or    v1¢ = v2 – v1 + v2¢.

	If we put this in the momentum equation, we get

		m1v1 + m2v2 = m1v2 – m1v1 + m1v2¢ + m2v2¢,  or

		v2¢ = [2m1/(m1 + m2)]v1 + [(m2 – m1)/(m1 + m2)]v2 .

	When we use this in the relative speed equation, we get

		v1¢	= v2 – v1 + v2¢ = v2 – v1 + [2m1/(m1 + m2)]v1 + [(m2 – m1)/(m1 + m2)]v2 

			= [(m1 – m2)/(m1 + m2)]v1 + [2m2/(m1 + m2)]v2.

	Note that this is just an interchange of 1 and 2 in the previous result.



41.	(a)	At the maximum compression of the spring, there will be no relative motion of the two blocks.  

		Because there is no friction, we can use momentum conservation:

			m1v1 + m2v2 = m1v1¢ + m2v2¢;

			m1v1 + 0 = (m1 + m2)V,   or   V = m1v1/(m1 + m2).

		Energy is also conserved, so we have

			!m1v12 + 0 = !(m1 + m2)V2 + !kx2;

			!m1v12 = !(m1 + m2)[m1v1/(m1 + m2)]2 + !kx2,  or

			x2 = m1m2v12/k(m1 + m2) = (2.0 kg)(4.5 kg)(8.0 m/s)2/(850 N/m)(2.0 kg + 4.5 kg), 

		which gives x =      0.32 m.

	(b)	From the initial motion of the first block to the final separation, all horizontal forces are internal 

		to the system of the two blocks and are conservative.  For momentum conservation we have

			m1v1 + m2v2 = m1v1² + m2v2²;

			m1v1 + 0 = m1v1² + m2v2².

		Because the collision is elastic, the relative speed does not change:

			v1 – v2 = – (v1² – v2²),    or    v2² = v1 – 0 + v1².

		When we combine the equations, we get

			v1² = (m1 – m2)v1/(m1 + m1) = (2.0 kg – 4.5 kg)(8.0 m/s)/(2.0 kg + 4.5 kg) =      – 3.1 m/s (rebound).

		For v2² we get

			v2² = v1 + v1² = 8.0 m/s + (– 3.1 m/s) =       4.9 m/s.

	(c)	    Yes,      because the force by the spring is conservative, the collision is elastic.
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42.	We let V be the speed of the block and bullet immediately 

	after the collision and before the pendulum swings.  For this 

	perfectly inelastic collision, we use momentum conservation:

		mv + 0 = (M + m)V;

		(0.018 kg)(180 m/s) = (0.018 kg + 3.6 kg)V, 

	which gives V = 0.896 m/s.

	Because the tension does no work, we can use energy conservation 

	for the swing:

		!(M + m)V2 = (M + m)gh,  or  V2 = 2gh;

		(0.896 m/s)2 = 2(9.80 m/s2)h, which gives h = 0.0409 m.

	We find the horizontal displacement from the triangle:

		L2 = (L – h)2 + x2;

		(2.8 m)2 = (2.8 m – 0.0409 m)2 + x2, which gives x =        0.48 m.



43.	(a)	The velocity of the block and projectile after the collision is

			v¢ = mv1/(m + M).

		The fraction of kinetic energy lost is 

			fraction lost	= – ?K/K = – [!(m + M)v¢2 – !mv12]/!mv12  

						= – {(m + M)[mv1/(m + M)]2 – mv12}/mv12 

						= – [m/(m + M)] + 1 =       + M/(m + M).

	(b)	For the data given we have

			fraction lost = M/(m + M) = (380 g)/(14.0 g + 380 g) =       0.964.



44.	Momentum conservation gives 

		0 = m1v1¢ + m2v2¢;

		0 = m1v1¢ + 1.5m1v2¢,   or  v1¢ = – 1.5v2¢.

	The kinetic energy of each piece is

		K2 = !m2v2¢2;

		K1 = !m1v1¢2 = !(m2/1.5)(– 1.5v2¢)2 = (1.5)!m2v2¢2 = 1.5K2 .

	The energy supplied by the explosion produces the kinetic energy:

		E = K1 + K2 = 2.5K2;

		17,500 J = 2.5K2 , which gives K2 = 7000 J.

	For the other piece we have

		K1 = E – K2  = 17,500 J – 7000 J = 10,500 J.

	Thus 

		K(heavier) = 7000 J;  K(lighter) = 10,500 J.



45.	Using the coordinate system shown, for momentum 

	conservation we have

�

		y-momentum:  	– mv sin q1 + mv sin q2 = 0,  or  q1 = q2 .

		x-momentum:  	mv cos q1 + mv cos q2 = 2mv2¢;

						2mv cos q1 = 2mv/3;

						cos q1 = @,  or  q1 = 70.5° = q2 .

	The angle between their initial directions is

		f = q1 + q2 = 2(70.5°) =        141°.





















46.	On the horizontal surface after the collision, the normal force on the joined cars is FN = (m + M)g.  

	We find the common speed of the joined cars immediately after the collision by using the 

	work-energy principle for the sliding motion:

		Wfr = ?K;

		– µk(m + M)gd = 0 – !(M + m)V2;

		(0.40)(9.80 m/s2)(4.8 m) = !V2, which gives V = 6.13 m/s.

	For the collision, we use momentum conservation:

		mv + 0 = (m + M)V;

		(0.95 ´ 103 kg)v = (0.95 ´ 103 kg + 2.2 ´ 103 kg)(6.13 m/s), which gives        v = 20 m/s        (73 km/h).



47.	(a)	For a perfectly elastic collision, we use momentum conservation: 

				m1v1 + m2v2 = m1v1¢ + m2v2¢,   or   m1(v1 – v1¢) = m2(v2¢ – v2).

			Kinetic energy is conserved, so we have

				!m1v12 + !m2v22 = !m1v1¢2 + !m2v2¢2,   or   m1(v12 – v1¢2) = m2(v2¢2 – v22),

			which can be written as

				m1(v1 – v1¢)(v1 + v1¢) = m2(v2¢ – v2)(v2¢ + v2).

			When we divide this by the momentum result, we get

				v1 + v1¢ = v2¢ + v2 ,   or   v1¢ – v2¢ = v2 – v1 .

			If we use this in the definition of the coefficient of restitution, we get

				e = (v1¢ – v2¢)/(v2 – v1) = (v2 – v1)/(v2 – v1) = 1.

		For a completely inelastic collision, the two objects move together, so we have

			v1¢ = v2¢, which gives e = 0.

	(b)	We find the speed after falling a height h from energy conservation:

			!mv12 = mgh,  or  v1 = (2gh)1/2.

		The same expression holds for the height reached by an object moving upward:

			v1¢ = (2gh¢)1/2.

		Because the steel plate does not move, when we take into account the directions we have

			e = (v1¢ – v2¢)/(v2 – v1 ) = [(2gh¢)1/2 – 0]/{0 – [– (2gh)1/2]}, so       e = (h¢/h)1/2.



48.	We assume the explosion creates equal and opposite forces on the two pieces.

	Momentum conservation for the explosion gives us

		0 = m1v1¢ + m2v2¢;

		0 = m1v1¢ + 3m1v2¢,   or  v1¢ = – 3v2¢.

	On the horizontal surface after the collision, the normal force on a block is FN = mg.  

	We relate the speed of a block immediately after the collision to the distance it slides from the 

	work-energy principle for the sliding motion:

		Wfr = ?K;

		– µkmgd = 0 – !mv¢2,  or  d = !v¢2/µkg.

	The coefficient of friction is the same for each piece.  If we form the ratio of the distances, we get

		d1/d2 = (v1¢/v2¢)2 = (– 3)2 =         9,        with the lighter block traveling farther.































49.	For the  momentum conservation of this one-dimensional collision, we have

		m1v1 + m2v2 = m1v1¢ + m2v2¢.

	(a)	If the bodies stick together, v1¢ = v2¢ = V:

			(5.0 kg)(5.5 m/s) + (3.0 kg)(– 4.0 m/s) = (5.0 kg + 3.0 kg)V, which gives V =      v1¢ = v2¢ = 1.9 m/s.

	(b)	If the collision is elastic, the relative speed does not change:

			v1 – v2 = – (v1¢ – v2¢),   or   5.5 m/s – (– 4.0 m/s) = 9.5 m/s = v2¢ – v1¢.

		The momentum equation is

			(5.0 kg)(5.5 m/s) + (3.0 kg)(– 4.0 m/s) = (5.0 kg)v1¢ + (3.0 kg)v2¢,  or

			(5.0 kg)v1¢ + (3.0 kg)v2¢ = 15.5 kg · m/s.

		When we combine these two equations, we get       v1¢ = – 1.6 m/s, v2¢ = 7.9 m/s.

	(c)	If m1 comes to rest, v1¢ = 0.

			(5.0 kg)(5.5 m/s) + (3.0 kg)(– 4.0 m/s) = 0 + (3.0 kg)v2¢, which gives       v1¢ = 0, v2¢ = 5.2 m/s.

	(d)	If m2 comes to rest, v2¢ = 0.

			(5.0 kg)(5.5 m/s) + (3.0 kg)(– 4.0 m/s) = (5.0 kg)v1¢ + 0, which gives       v1¢ = 3.1 m/s, v2¢ = 0.

	(e)	The momentum equation is

			(5.0 kg)(5.5 m/s) + (3.0 kg)(– 4.0 m/s) = (5.0 kg)(– 4.0 m/s) + (3.0 kg)v2¢, 

		which gives       v1¢ = – 4.0 m/s, v2¢ = 12 m/s.

	The result for (c) is reasonable.       The 3.0-kg body rebounds.

	The result for (d) is not reasonable.       The 5.0-kg body would have to pass through the 3.0-kg body.

	To check the result for (e) we find the change in kinetic energy:

		?K 	= (!m1v1¢2 + !m2v2¢2) – (!m1v12 + !m2v22)

				= ![(5.0 kg)(– 4.0 m/s)2 + (3.0 kg)(12 m/s)2] – ![(5.0 kg)(5.5 m/s)2 + (3.0 kg)(– 4.0 m/s)2]

				= + 156 J.

	Because the kinetic energy cannot increase in a simple collision,      the result for (e) is not reasonable.































































50.	(a)	We let dM be the distance the block moves during 

�

		the collision.  We estimate the average velocity of each 

		object as if the acceleration were constant, vav = (vi + vf)/2.  

		Because the velocity of the bullet relative to the block 

		after the collision is zero, if d is the distance the bullet 

		moves relative to the block, we have

			?t = d/[(v1 + 0)/2] =       2d/v1 ,

		where we have used v1 for the initial velocity of the bullet.

		The distance the block has moved is

			dM = [(0 + v¢)/2] ?t = v¢d/v1 .

	(b)	During the collision, the block will swing a small angle q ¢:

			q ¢ ˜ sin q ¢ = dM/L = v¢d/Lv1 ,  which means

			cos q ¢ ˜ 1 – q ¢2/2.

		We estimate the magnitude of the tension during the collision:

			FT cos q ¢ = (m + M)g,  or  FT ˜ (m + M)g.

		The horizontal impulse during the collision is created by the tension:

			– FT (sin q ¢)av ?t = (m + M)v¢  – mv1 ;

			– FT (q ¢/2) ?t = (m + M)v¢  – mv1 ;

			– (m + M)g(v¢d/2Lv1)(2d/v1) = (m + M)v¢  – mv1 , which gives

			v¢ = [mv1/(m + M)]/[1 + (gd2/Lv12)].

		If (gd2/Lv12) « 1, we have v¢ ˜ [1 – (gd2/Lv12)]mv1/(m + M).

		We find ?p from the impulse:

			?p 	= – (m + M)g(v¢d2/Lv12) 

				= – (m + M)(gd2/Lv12)[1 – (gd2/Lv12)]mv1/(m + M) 

				= – (mgd2/Lv1)[1 – (gd2/Lv12)] ˜       – mgd2/Lv1.

	(c)	During the collision, the block will rise a height 

			h¢ = L(1 – cos q ¢) ˜ L[1 – (1 – q ¢2/2)] = L(v¢d/Lv1)2/2.

		When we use the previous result for v¢, we get

			h¢ = [1 – (gd2/Lv12)]2[m/(m + M)]2d2/2L ˜ [m/(m + M)]2d2/2L.

		After the collision, the block will rise an additional height h – h¢.  

		From energy conservation, 

		we have

			v¢ 	= [2g(h – h¢)]1/2 = (2gh)1/2[1 – (h¢/h)]1/2 

				˜ (2gh)1/2[1 – (h¢/2h)] ˜ (2gh)1/2{1 – [m/(m + M)]2d2/4hL}.

		When we use the result for v¢  from part (b), we have

			[mv1/(m + M)]/[1 + (gd2/Lv12)] = (2gh)1/2{1 – [m/(m + M)]2d2/4hL},   or

			v1 	= [(m + M)/m](2gh)1/2{1 – [m/(m + M)]2d2/4hL}[1 + (gd2/Lv12)].

		If we assume that we can use the result from Example 9–11, v = [(m + M)/m](2gh)1/2, for the first 

		factor and for v1 in the last term and we keep only terms in d2 when we multiply the factors, we get

			v1 ˜ v{1 – [m/(m + M)]2d2/4hL + (gd2/Lv2)}.

		Thus the fractional error is

			(v1 – v)/v 	= gd2/Lv2 – [m/(m + M)]2d2/4hL  

						= (d2/L){[m2/(m + M)22h] – [m/(m + M)]2/4h} =       d2m2/2(m + M)2hL.
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51.	For the collision we use momentum conservation:

		x-direction:  m1v1 + 0 = (m1 + m2)v¢ cos q;

			(3.3 kg)(7.8 m/s) = (3.3 kg + 4.6 kg)v¢ cos q, which gives

			v¢ cos q = 3.26 m/s.

		y-direction:  0 + m2v2 = (m1 + m2)v¢ sin q;

			(4.6 kg)(10.2 m/s) = (3.3 kg + 4.6 kg)v¢ sin q, which gives

			v¢ sin q = 5.94 m/s.

	We find the direction by dividing the equations:

		tan q = (5.94 m/s)/(3.26 m/s) = 1.82, 

	so q =       61° from first eagles’s direction.

	We find the magnitude by squaring and adding the equations:

		v¢ = [(5.94 m/s)2 + (3.26 m/s)2]1/2 =       6.8 m/s.
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52.	(a)	Using the coordinate system shown, for momentum 

		conservation we have

			x-momentum:  mAvA + 0 = mAvA¢ cos qA¢ + mBvB¢ cos qB¢;

			y-momentum:  0 + 0 = mAvA¢ sin qA¢ – mBvB¢ sin qB¢.

	(b)	With the given data, we have

			x: (0.400 kg)(1.80 m/s) = 

				(0.400 kg)(1.10 m/s) cos 30° + (0.500 kg)vB¢ cos qB¢, 

		which gives vB¢ cos qB¢ = 0.678 m/s;

			y: 0 = (0.400 kg)(1.10 m/s) sin 30° – (0.500 kg)vB¢ sin qB ¢, 

		which gives vB¢ sin qB ¢= 0.440 m/s.

		We find the magnitude by squaring and adding the equations:

			vB¢ = [(0.440 m/s)2 + (0.678 m/s)2]1/2 =       0.808 m/s.

		We find the direction by dividing the equations:

			tan qB¢ = (0.440 m/s)/(0.678 m/s) = 0.649, so qB¢ =       33.0°.
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53.	(a)	Using the coordinate system shown, for momentum 

		conservation we have

			x-momentum:  	mv + 0 = 0 + 2mv2¢ cos q,  or

							2v2¢ cos q = v;

			y-momentum:  	0 + 0 = – mv1¢ + 2mv2¢ sin q,  or

							2v2¢ sin q = v1¢.

		If we square and add these two equations, we get

			v2 + v1¢2 = 4v2¢2.

		For the conservation of kinetic energy, we have

			!mv2 + 0 = !mv1¢2 + !(2m)v2¢2,   or   v2 – v1¢2 = 2v2¢2.

		When we add this to the previous result, we get

			v2 = 3v2¢2.

		Using this in the x-momentum equation, we get

			cos q = v3/2,  or   q =        30°.

	(b)	From part (a) we have

			v2¢ = v/v3.

		Using the energy result, we get

			v1¢2 = v2 – 2v2¢2 = v2 – 2v2/3 = @v2,  or        v1¢ = v/v3.

	(c)	The fraction of the kinetic energy transferred is 

			fraction 	= ?K1/K1 = K2/K1 = !(2m)v2¢2/!mv2  

						= m(v2/3)/!mv2 =         %.
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54.	Using the coordinate system shown, for momentum conservation we have

		x:	0 + mv2 = mv1¢ cos a + 0;

			3.7 m/s = v1¢ cos a;

		y:	mv1 + 0 = mv1¢ sin a + mv2¢;

			2.0 m/s = v1¢ sin a + v2¢,  or

			v1¢ sin a = 2.0 m/s – v2¢.

	For the conservation of kinetic energy, we have

		!mv12 + !mv22 = !mv1¢2 + !mv2¢2;

		(2.0 m/s)2 + (3.7 m/s)2 = v1¢2 + v2¢2.

	We have three equations in three unknowns: a , v1¢, v2¢.  

	We eliminate a  by squaring and adding the two momentum 

	results, and then combine this with the energy equation, 

	with the results:

		a  = 0°, v1¢ = 3.7 m/s, v2¢ = 2.0 m/s.

	The two billiard balls exchange velocities.





55.	Using the coordinate system shown, for momentum 

�

	conservation we have

		x:  	mnvn + 0 = mnvn¢ cos q1¢ + mHevHe¢ cos q2¢;

			mn(6.2 ´ 105 m/s) = mnvn¢ cos q1¢ + 4mnvHe¢ cos 45°,  or  

			vn¢ cos q1¢ = (6.2 ´ 105 m/s) – 4vHe¢ cos 45°.

		y:	0 + 0 = + mnvn¢ sin q1¢ – mHevHe¢ sin q2¢; 

			0 = + mnvn¢ sin q1¢ – 4mnvHe¢ sin 45°,  or

			vn¢ sin q1¢ = 4vHe¢ sin 45°.

	For the conservation of kinetic energy, we have

		!mnvn2 + 0 = !mnvn¢2 + !mHevHe¢2;

		mn(6.2 ´ 105 m/s)2 =  mnvn¢2 + 4mnvHe¢2,  or

		vn¢2 + 4vHe¢2 = 3.84 ´ 1011 m2/s2.

	We have three equations in three unknowns: q1¢, vn¢, vHe¢.  We eliminate q1¢ by squaring and adding the two momentum results, and then combine this with the energy equation, with the results:

		q1¢ = 76°, vn¢ = 5.1 ´ 105 m/s, vHe¢ = 1.8 ´ 105 m/s.
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56.	Using the coordinate system shown, for momentum 

	conservation we have

		x-momentum:  	mNevNe + 0 = mNevNe¢ cos qNe + mxvx¢ cos qx ;

		y-momentum:  	0 + 0 = mNevNe¢ sin qNe – mxvx¢ sin qx .

	From the second equation we get

		mxvx¢ = mNevNe¢ (sin qNe)/sin qx .

	When we use this in the first equation, we get

		mNevNe = mNevNe¢ cos qNe + [mNevNe¢ (sin qNe)/sin qx ] cos qx 

				= mNevNe¢ [cos qNe + (sin qNe)/tan qx ]. 

	For the perfectly elastic collision, kinetic energy is conserved:

		!mNevNe2 + 0 = !mNevNe¢2 + !mxvx¢2;

		!mNevNe¢2[cos qNe + (sin qNe)/tan qx]2 = !mNevNe¢2 + !mNevNe¢2 (mNe/mx)(sin2 qNe)/sin2 qx ;

		[cos qNe + (sin qNe)/tan qx]2 = 1 + (mNe/mx)(sin2 qNe)/sin2 qx ;

		[cos 55.6° + (sin 55.6°)/tan 50.0°]2 = 1 + (mNe/mx)(sin2 55.6°)/sin2 50.0°, 

	which gives

		mNe/mx = 0.501, so mx = (20 u)/(0.501) =      40 u.
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57.	Using the coordinate system shown, for momentum conservation we have

		x:	mv1 + 0 = mv1¢ cos q1 + mv2¢ cos q2 ,  or

			v1 = v1¢ cos q1 + v2¢ cos q2 ;

		y:	0 + 0 = mv1¢ sin q1 – mv2¢ sin q2 ,  or

			0 = v1¢ sin q1 – v2¢ sin q2 .

	For the conservation of kinetic energy, we have

		!mv12 + 0 = !mv1¢2 + !mv2¢2;

		v12 = v1¢2 + v2¢2.

	We square each of the momentum equations:

		v12 = v1¢2 cos2 q1 + 2v1¢v2¢ cos q1 cos q2 + v2¢2 cos2 q2 ;

		0 = v1¢2 sin2 q1 – 2v1¢v2¢ sin q1 sin q2 + v2¢2 sin2 q2 .

	If we add these two equations and use sin2 q + cos2 q = 1, we get

		v12 = v1¢2 + 2v1¢v2¢(cos q1 cos q2 – sin q1 sin q2) + v2¢2 .

	If we subtract the energy equation, we get

		0 = 2v1¢v2¢(cos q1 cos q2 – sin q1 sin q2),  or  cos q1 cos q2 – sin q1 sin q2 = 0.

	We reduce this with a trigonometric identity:

		cos q1 cos q2 – sin q1 sin q2 = cos(q1 + q2) = 0, which means that q1 + q2 = 90°.



58.	Using the coordinate system shown, for momentum conservation we have
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		x:  	m1v1 + 0 = m1v1¢ cos q1¢ + m2v2¢ cos q2¢;

		y:	0 + 0 = m1v1¢ sin q1¢ – m2v2¢ sin q2¢. 

	We eliminate q2¢ by using sin2 q2¢ + cos2 q2¢ = 1, to get

		(m2v2¢)2 = (m1v1)2 – 2m12v1v1¢ cos q1¢ + (m1v1¢)2.

	For the conservation of kinetic energy, we have

		!m1v12 + 0 = !m1v1¢2 + !m2v2¢2.   or

		(m2v2¢)2 = m1m2(v12 – v1¢2).

	We see from this, as expected, that v1¢ = v1 .  

	When we combine the energy and momentum results, we get

		2m1v1v1¢ cos q1¢ = (m1 + m2)v1¢2 + (m1 – m2)v12,  or

		cos q1¢ = ![(1 + m2/m1)(v1¢/v1) + (1 – m2/m1)(v1/v1¢)], with 0 =  v1¢ = v1 .

	(a)	For m1 < m2 , we consider the extreme values for v1¢.  If v1¢ = v1, we get

			cos q1¢ = ![(1 + m2/m1) + (1 – m2/m1)] = 1, so q1¢ = 0°.

		If v1¢ = 0, we get

			cos q1¢ = ![0 + (1 – m2/m1)(v1/0)] = – 8.

		Of course the value of the cosine cannot have a value of – 8, but this means that its value can start 

		at + 1 and become negative, so there is a value of v1¢ > 0 where the cosine is – 1.  Thus we have

			0° = q1¢ = 180°.

	(b)	For m1 > m2 , we consider the extreme values for v1¢.  If v1¢ = v1, we get

			cos q1¢ = ![(1 + m2/m1) + (1 – m2/m1)] = 1, so q1¢ = 0°.

		If v1¢ = 0, we get

			cos q1¢ = ![0 + (1 – m2/m1)(v1/0)] = + 8.

		Of course the value of the cosine cannot have a value of + 8, but this means that its value remains 

		positive.  This implies that there is some angle for which the cosine has a minimum positive 

		value.  To find this angle we set the first derivative of the cosine function equal to zero:

			d(cos q1¢)/dv1¢ = ![(1 + m2/m1)(1/v1) – (1 – m2/m1)(v1/v1¢2)] = 0, which gives

			v1¢ = v1[(1 – m2/m1)/(1 + m2/m1)]1/2.

		Thus the minimum value of cos q1¢ is

		   (cos q1¢)min 	= !{(1 + m2/m1)[(1 – m2/m1)/(1 + m2/m1)]1/2 + (1 – m2/m1)[(1 + m2/m1)/(1 – m2/m1)]1/2}

					= [1 – (m2/m1)2]1/2, 

		which determines the maximum angle f.  Thus we have

			0° = q1¢ = f, where cos2 f = 1 – (m2/m1)2.

	Note that we could not use the derivative in part (a) because the cosine does not have a mathematical minimum before cos q1¢ reaches – 8.



59.	We choose the origin at the carbon atom.  The center of mass will lie along the line joining the atoms:

		xCM	= (mCxC + mOxO)/(mC + mO) 

				= [0 + (16 u)(1.13 ´ 10–10 m)]/(12 u + 16 u) =      6.5 ´ 10–11 m        from the carbon atom.



60.	We choose the origin at the front of the car:

		xCM	= (mcarxcar + mfrontxfront + mbackxback)/(mcar + mfront + mback) 

				= [(1150 kg)(2.50 m) + (140 kg)(2.80 m) + (210 kg)(3.90 m)]/(1150 kg + 140 kg + 210 kg) 

				=      2.72 m        from the front of the car.
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61.	From the symmetry of the hydrogen triangle, we know that the center 

	of mass will be perpendicular to the plane of the hydrogen atoms along 

	a line from the center of the triangle.  We find the height above the 

	triangle from

		zCM	= [3mH(0) + mNzN]/(3mH + mN) 

				= [0+ (14 u)(0.037 nm)]/[(3(1 u) + 14 u] 

				=      0.030 nm above center of H triangle. 







�

62.	Because the cubes are made of the same material, their 

	masses will be proportional to the volumes:

		m1 , m2 = 23m1 = 8m1 , m3 = 33m1 = 27m1 .

	From symmetry we see that yCM = 0.

	We choose the x-origin at the outside edge of the small cube:

		xCM	= (m1x1 + m2x2 + m3x3)/(m1 + m2 + m3) 

				= {m1(!¬0) + 8m1[¬0 + !(2¬0)] + 

						27m1[¬0 + 2¬0 + !(3¬0)]}/(m1 + 8m1 + 27m1) 

				= 138¬0/36 

				=       3.83¬0 from the outer edge of the small cube.
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63.	We choose the origin at the center of the raft, which is 

	the center of mass of the raft:

		xCM	= (Mxraft + m1x1 + m2x2 + m3x3)/(M + m1 + m2 + m3) 

				= [0 + (1200 kg)(9.0 m) + (1200 kg)(9.0 m) + 

							(1200 kg)(– 9.0 m)]/[6200 kg + 3(1200 kg)] 

				=        1.10 m (East).

		yCM	= (Myraft + m1y1 + m2y2 + m3y3)/(M + m1 + m2 + m3) 

				= [0 + (1200 kg)(9.0 m) + (1200 kg)(– 9.0 m) + 

							(1200 kg)(– 9.0 m)]/[6200 kg + 3(1200 kg)] 

				=        – 1.10 m (South).
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64.	We know from the symmetry that the center of mass lies 

	on a line containing the center of the plate and the center 

	of the hole.  We choose the center of the plate as origin 

	and x along the line joining the centers.  Then yCM = 0.

	A uniform circle has its center of mass at its center.  

	We can treat the system as two circles:

		a circle of radius 2R, density r and 

					mass rp(2R)2 with x1 = 0;	

		a circle of radius R, density – r and 

					mass – rpR2 with x2 = 0.80R.

	We find the center of mass from

		xCM	= (m1x1 + m2x2)/(m1 + m2) 

				= [4rpR2 (0) – rpR2 (0.80R)]/(4rpR2  – rpR2) 

				= – 0.27R .

	The center of mass is       along the line joining the centers 0.07R outside the hole.
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65.	We know from the symmetry that the center of mass 

	lies on the y-axis:      xCM = 0.

	We choose a differential length of the wire r dq, 

	shown in the diagram, which has a mass dm = (m/pr)r dq.

	We integrate over the wire to find yCM:

		�

	Thus the center of mass is at       xCM = 0, yCM = 2r/p.





�





66.	We know from the symmetry that the center of mass 

	lies on the y-axis:      xCM = 0.

	We treat the plate as an infinite number of semicircular 

	wires.  For the wire with radius r and thickness dr, we 

	choose a differential length r dq, shown in the diagram, 

	which has a mass dm = (2m/pR2)r dq dr.

	We integrate over the plate to find yCM:

		�

	Thus the center of mass is at       xCM = 0, yCM = 4R/3p.

















67.	We know from the symmetry that the center of mass 

	lies on the z-axis:      xCM = 0, yCM = 0.

	For a differential element we use a circle at a 

	height z, thickness dz, and radius r = (R/h)z.  

	If r is the mass density of the cone, the mass of 

	this element is dm = rpr2 dz.

	We integrate over the cone to find zCM:

�

		�

	Thus the center of mass is at       xCM = 0, yCM = 0, zCM = 3h/4 above the point.





�

68.	We know from the symmetry that the center of mass 

	lies on the z-axis:      xCM = 0, yCM = 0.

	For a differential element we use a square at a 

	height z, thickness dz, and side L = (s/h)(h – z).  

	If r is the mass density of the pyramid, the mass of 

	this element is dm = rL2 dz.

	We relate h to s by representing the edge of the 

	pyramid in terms of its components:

		s2 = h2 + (s/2)2 + (s/2)2, which gives h = s/v2.

	We integrate over the plate to find zCM:

		�

	Thus the center of mass is at       xCM = 0, yCM = 0, zCM = s/4v2 above the base.



69.	(a)	If we choose the origin at the center of the Earth, we have

			xCM	= (mEarthxEarth + mMoonxMoon)/(mEarth + mMoon) 

					= [0 + (7.35 ´ 1022 kg)(3.84 ´ 108 m)]/(5.98 ´ 1024 kg + 7.35 ´ 1022 kg) 

					=        4.66 ´ 106 m.

		Note that this is less than the radius of the Earth and thus is inside the Earth.

	(b)	The CM found in part (a) will move around the Sun on an elliptical path.  The Earth and Moon will 

		revolve about the CM.  Because this is near the center of the Earth, the Earth will essentially be on 

		the elliptical path around the Sun.  The motion of the Moon about the Sun is more complicated.



70.	We find the velocity of the center of mass from

		vCM	= (m1v1 + m2v2)/(m1 + m2) 

				= {(35 kg)[(12 m/s)i – (16 m/s)j] + (35 kg)[(– 20 m/s)i + (14 m/s)j]}/(35 kg + 35 kg) 

				=        (– 4 m/s)i + (– 1 m/s)j.











71.	We choose the origin of our coordinate system at the man.

	(a)	For their center of mass we have 

			xCM	= (mwomanxwoman + mmanxman)/(mwoman + mman) 

					= [(50 kg)(11.0 m) + 0]/(50 kg + 70 kg) 

					=        4.6 m.

	(b)	Because the center of mass will not move, we find the location of the woman from

			xCM = (mwomanx¢woman + mmanx¢man)/(mwoman + mman) 

			4.6 m = [(50 kg)x¢woman + (70 kg)(2.8 m)]/(50 kg + 70 kg), which gives 

			x¢woman = 7.1 m.

		The separation of the two will be 7.1 m – 2.8 m =        4.3 m.

	(c)	The two will meet at the center of mass, so he will have moved         4.6 m.



72.	The center of mass will land at the same point, 2d from the launch site.  If part I is still stopped by the explosion, it will fall straight down, as before.  

	(a)	We find the location of part II from the center of mass:

			xCM 	= (mIxI + mIIxII)/(mI + mII) 

			2d 	= [mId + 3mIxII]/(mI + 3mI), which gives 

			xII	=       7d/3,  or  2d/3 closer to the launch site.

	(b)	For the new mass distribution, we have

			xCM	= (mIxI + mIIxII)/(mI + mII) 

			2d		= [3mIId + mIIxII]/(3mII + mII), which gives 

			xII	=       5d,  or  2d farther from the launch site.



73.	The forces on the balloon, gondola, and passenger are balanced, so the center of mass does not move relative to the Earth.  As the passenger moves down at a speed v relative to the balloon, the balloon will move up.  If the speed of the balloon is v¢ relative to the Earth, the passenger will move down at a speed v – v¢ relative to the Earth.  We choose the location of the center of mass as the origin and determine the positions after a time t:

		xCM = (mballoonxballoon + mpassengerxpassenger)/(mballoon + mpassenger) 

		0 = [Mv¢t – m(v – v¢)t]/(M + m), which gives 

		v¢ =       mv/(M + m) up.

	If the passenger stops, the gondola and      the balloon will also stop.         There will be equal and opposite impulses acting when the passenger grabs the rope to stop.



�

74.	We choose the origin of our coordinate system at the 

	initial position of the 75-kg person.  For the location of 

	the center of mass of the system we have 

		xCM	= (m1x1 + m2x2 + mboatxboat)/(m1 + m2 + mboat) 

				= [(75 kg)(0) + (55 kg)(3.0 m) + (80 kg)(1.5 m)]/

								      (75 kg + 55 kg + 80 kg) = 1.36 m.

	Thus the center of mass will be 3.0 m – 1.36 m = 1.64 m from 

	the 55-kg person.  When the two people exchange seats, 

	the center of mass will not move.  The end where the 75-kg 

	person started, which was 1.36 m from the center of mass, 

	is now 1.64 m from the center of mass, that is, the boat 

	must have moved 1.64 m – 1.36 m =        

			0.28 m toward the initial position of the 75-kg person.



















75.	We find the time for the man to reach the other end from

		t = L/vrel = (25 m)/(2.0 m/s) = 12.5 s.

	If we let v2 be the speed of the flatcar while the man is walking, the speed of the man is v1 = v2 + vrel.

	Because the velocity of the center of mass of the system of flatcar and man does not change, we have

		vCM = (m1v1 + m2v2)/(m1 + m2) 

		5.0 m/s = [(90 kg)(v2 + 2.0 m/s) + (200 kg)v2]/(90 kg + 200 kg), which gives v2 = 4.38 m/s.

	The flatcar will have moved

		x = v2t = (4.38 m/s)(12.5 s) =      55 m.



76.	The external gravitational force and the thrust produce the acceleration of the rocket:

		Fext + vrel dM/dt = Ma;

		– Mg + vrel dM/dt = M(3.0 g),   or

		vrel(– 30 kg/s) = 4.0(2500 kg)(9.80 m/s2), which gives vrel = – 3.3 ´ 103 m/s (down).

	Thus the exhaust speed is       3.3 ´ 103 m/s.



77.	We can consider the gravel dropping on the belt as a collision.  The velocity of the gravel relative to the belt is the negative of the velocity of the belt.  External forces on the belt are from the motor and friction, so we have

		Fext + vrel  dM/dt = Ma;

		Fmotor – Ffr + vrel  dM/dt = 0;

		Fmotor – 140 N + (– 2.20 m/s)(75.0 kg/s) = 0, which gives Fmotor = 305 N.

	The required output power of the motor is

		Pmotor = Fmotorv = (305 N)(2.20 m/s)/(746 W/hp) =      0.899 hp.

	When the gravel drops from the conveyor belt, it does not stop but still has the same horizontal velocity.  Thus there is no additional interaction with the belt.  The gravel dropping on the belt must still be accelerated, so the power required does not change.



78.	The value of g at the altitude is

		g = GME/r2 = (6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)/[(6.40 + 6.38) ´ 106 m]2 = 2.44 m/s2.

	The external gravitational force and the thrust produce the acceleration of the rocket:

		Fext + vrel  dM/dt = Ma;

		– Mg + vrel  dM/dt = Ma,   or

		vrel  dM/dt = M(a + g)

		(– 1200 m/s)(dM/dt) = (25,000 kg)(1.7 m/s2 + 2.44  m/s2), which gives dM/dt =      – 86 kg/s.



79.	(a)	Because chemical changes do not change the mass, the thrust from the ejected fuel is

			Ffuel = vrel  dMfuel/dt = (– 550 m/s)(– 4.2 kg/s) =       2.3 ´ 103 N.

	(b)	The air is collected by the airplane at the speed of the airplane and ejected with the speed of the 

		fuel, so the net thrust is

			Fair	= vrel1 dMair/dt + vrel2 dMair/dt 

				= (– 270 m/s)(100 kg/s) + (– 550 m/s)(– 100 kg/s) =       2.8 ´ 104 N.

	(c)	The power delivered by the two thrusts is

			P = (Ffuel + Fair)v = (2.3 ´ 103 N + 2.8 ´ 104 N)(270 m/s)/(746 W/hp) =      1.1 ´ 104 hp.



�

80.	Because the sand is leaking from the hole, there will be no 

	relative velocity of the leaking sand with respect to the sled.  

	Thus there is no thrust imparted to the sled.  If we take the 

	sled and remaining sand at a time when its mass is m, we have 

	the forces indicated in the diagram.  The acceleration will be 

	g sin q down the slope, independent of the mass.  

	We find the time from

		x = !at2;

		120 m = !(9.80 m/s2) sin 30° t2, which gives t =      7.0 s.



�

81.	From the result of Problem 57, the angle between the 

	two final directions will be 90° for an elastic collision.

	We take the initial direction of the cue ball to be 

	parallel to the side of the table.  The angle for the 

	struck ball to hit the pocket after the collision is

		tan q1 = 1.0/v3.0, which gives  q1 = 30°.

	Thus the angle for the cue ball will be 90° – 30° = 60°.

	From the diagram we see that 

		tan q2 = (4.0 – 1.0)/v3.0, which gives  q2 = 60°.

	Because this is the angle the cue ball will have,       

		this will be a “scratch shot.”





82.	We find the force on the person from the magnitude of the force required to change the momentum 

	of the air:

		F 	= ?p/?t = (?m/?t)v 

			= (40 kg/s · m2)(1.50 m)(0.50 m)(100 km/h)/(3.6 ks/h) =       8.3 ´ 102 N.

	The maximum friction force will be

		Ffr = µmg ˜ (1.0)(70 kg)(9.80 m/s2) = 6.9 ´ 102 N, so the forces are       about the same.



83.	We find the speed after being hit from the height h using energy 

	conservation:

		!mv¢2 = mgh,  or  v¢ = (2gh)1/2 = [2(9.80 m/s2)(55.6 m)]1/2 = 33.0 m/s.



�

	We see from the diagram that the magnitude of the change in momentum is

		?p	= m(v2 + v¢2)1/2 

			= (0.145 kg)[(35.0 m/s)2 + (33.0 m/s)2]1/2 = 6.98 kg · m/s.

	We find the force from

		F ?t = ?p;

		F(0.50 ´ 10–3 s) = 6.98 kg · m/s, which gives F =        1.4  ´ 104 N.

	We find the direction of the force from

		tan q = v¢/v = (33.0 m/s)/(35.0 m/s) = 0.943,  q =       43.3°.



84.	Using the coordinate system shown, for momentum conservation we have

�

		y-momentum:  	mv1 + 0 = mv1¢ cos q + Mv2¢ cos q2 ;

						5M(12.0 m/s) = 5Mv1¢ cos q + Mv2¢ cos 80°,  or 

						5v1¢ cos q = – v2¢ cos 80° + 60.0 m/s.

		x-momentum:  	0 = – mv1¢ sin q + Mv2¢ sin q2 ;

						0 = – 5Mv1¢ sin q + Mv2¢ sin 80°,  or

						5v1¢ sin q = v2¢ sin 80°.

	For the conservation of kinetic energy, we have

		!mv12 + 0 = !mv1¢2 + !Mv2¢2;

		5M(12.0 m/s)2 = 5Mv1¢2 + Mv2¢2,  or 

		5v1¢2 + v2¢2 = 720 m2/s2.

	We have three equations in three unknowns: q, v1¢, v2¢.  We eliminate q  

	by squaring and adding the two momentum results, and then combine 

	this with the energy equation, with the results:

	(a)	v2¢ =        3.47 m/s.

	(b)	v1¢ =        11.9 m/s.

	(c)	q  =          3.29°.













�

85.	On the horizontal surface after the collision, the normal 

	force is FN = (m + M)g.  We find the common speed of the 

	block and bullet immediately after the embedding by 

	using the work-energy principle for the sliding motion:

		Wfr = ?K;

		– µk(m + M)gd = 0 – !(M + m)V2;

		0.25(9.80 m/s2)(9.5 m) = !V2, which gives V = 6.82 m/s.

	For the collision, we use momentum conservation:

		mv + 0 = (M + m)V;

		(0.015 kg)v = (0.015 kg + 1.10 kg)(6.82 m/s), which gives        v = 5.1 ´ 102 m/s.



�

86.	We let V be the speed of the block and bullet immediately after the 

	embedding and before the two start to rise.  

	For this perfectly inelastic collision, we use momentum conservation:

		mv + 0 = (M + m)V;

		(0.021 kg)(310 m/s) = (0.021 kg + 1.40 kg)V, which gives V = 4.58 m/s.

	For the rising motion we use energy conservation, with the potential 

	energy reference level at the sheet:

		Ki + Ui = Kf + Uf ;

		!(M + m)V 2 + 0 = 0 + (m + M)gh,   or   

		h = V 2/2g = (4.58 m/s)2/2(9.80 m/s2) =       1.07 m.



87.	For the elastic collision of the two balls, we use momentum conservation:

		mv1 + m2v2 = mv1¢ + m2v2¢;

		mv1 + 0 = m(– 0.600v1) + m2v2¢,  or  m2v2¢ = 1.600mv1 .

	Because the collision is elastic, the relative speed does not change:

		v1 – 0 = – (v1¢ – v2¢);   v1 = v2¢ – (– 0.600v1),  or  v2¢ = 0.400v1 .

	Combining these two equations, we get 

		m2 = 4.00m.  



88.	On the horizontal surface, the normal force on a car is FN = mg.  We find the speed of a car immediately after the collision by using the work-energy principle for the succeeding sliding motion:

		Wfr = ?K;

		– µkmgd = 0 – !mv2.

	We use this to find the speeds of the cars after the collision:

		0.60(9.80 m/s2)(15 m) = !vA¢2, which gives vA¢ = 13.3 m/s;

		0.60(9.80 m/s2)(30 m) = !vB¢2, which gives vB¢ = 18.8 m/s.

	For the collision, we use momentum conservation:

		mAvA + mBvB = mAvA¢ + mBvB¢ ;

		(2000 kg)vA + 0 = (2000 kg)(13.3 m/s) + (1000 kg)(18.8 m/s), which gives vA = 22.7 m/s.

	We find the speed of car A before the brakes were applied by using the work-energy principle for the preceding sliding motion:

		Wfr = ?K;

		– µkmAgd = !mAvA2 – !mAvA02;

		– 0.60(9.80 m/s2)(15 m) = ![(22.7 m/s)2 – vA02],  which gives vA0 = 26.3 m/s = 94.7 km/h =       59 mi/h.



89.	The energy transformed to thermal or other forms of energy is the loss in kinetic energy of the cars:

		– ?K/K1 	= – [!(m1 + m2)v¢2 – !m1v12]/!m1v12  

					= 1 – [(m1 + m2)/m1](v¢/v1)2 

					= 1 – [(10,000 kg + 10,000 kg)/(10,000kg)](1/2)2 = 0.50 =       50%.











�

90.	Because mass is conserved, the mass of the third piece must be m.

	The initial momentum is zero.  For momentum conservation we have

		x-direction:  0 = (2m)(2v) – mv3 cos a,  or   v3 cos a = 4v;

		y-direction:  0 = mv – mv3 sin a,  or   v3 sin a = v.

	When we divide the two equations, we get

		tan a = 0.25,         a = 14°.

	From the first equation, we get

		v3 = 4v/cos 14° =       4.1v,  104° from the direction of the first piece.











91.	(a)	     No.  The spring exerts equal but opposite forces on the blocks.  For the system these forces are 

		internal forces.

	(b)	Because there are no external forces on the system of the two blocks, momentum is conserved:

			0 = m1v1 + m2v2 , which gives        v1/v2 = – m2/m1.

	(c)	For the ratio of kinetic energies, we have

			K1/K2 = !m1v12/!m2v22 = (m1/m2)(v1/v2)2 = (m1/m2)(– m2/m1)2 =       m2/m1.

	(d)	The center of mass is initially at rest.  Because there are no external forces on the system of the 

		two blocks, the center of mass       does not move.

	(e)	The two friction forces will be in opposite directions, but they need not be equal.  Thus there will be 

		a net external force on the system.  Momentum is not conserved, and the center of mass will move.



�

92.	We choose the coordinate system shown.  There are 10 cases.

		xCM	= (5mx1 + 3mx2 + 2mx3)/(10m) 

				= [5(!¬) + 3(¬ + !¬) + 2(2¬ + !¬)]/(10) 

				= 1.2¬.

		yCM	= (7my1 + 2my2 + my3)/(10m) 

				= [7(!¬) + 2(¬ + !¬) + (2¬ + !¬)]/(10) 

				= 0.9¬.

	The center of mass is	1.2¬ from the left, and 

							0.9¬ from the back            of the pallet.











93.	For the system of railroad car and snow, the horizontal momentum will be constant.  For the horizontal motion, we take the direction of the car for the positive direction.  The snow initially has no horizontal velocity.  For this perfectly inelastic collision, we use momentum conservation:

		M1v1 + M2v2 = (M1 + M2)V;

		(5800 kg)(8.60 m/s) + 0 = [5800 kg + (3.50 kg/min)(60.0 min)]V, which gives       V= 8.29 m/s.

	Note that there is a vertical impulse, so the vertical momentum is not constant.

























94.	(a)	There are no horizontal external forces acting on the car and snow.  If v is the velocity of the 

		car, the relative velocity of the snow is – v.  Thus we have

			Fext + vrel  dM/dt = M dv/dt;

			0 – v dM/dt = M dv/dt,  or  dv/v = – dM/M.

		We integrate this, with the initial velocity v0 and the initial mass M0:

			�

		Thus we see that 

			v = v0(M0/M).

		The mass is increasing at a uniform rate dM/dt, so the mass after a time t is M = M0 + (dM/dt)t.  

		Thus we have

			v = v0{M0/[M0 + (dM/dt)t]}.

	(b)	After a time of 60.0 min, we have

			v = (8.60 m/s){(5800 kg)/[5800 kg + (3.50 kg/min)(60.0 min)]} =       8.29 m/s, in agreement.



95.	(a)	We take the direction of the meteor for the positive direction.

		For this perfectly inelastic collision, we use momentum conservation:

			Mmeteorvmeteor + MEarthvEarth = (Mmeteor + MEarth)V;

			(108 kg)(15 ´ 103 m/s) + 0 = (108 kg + 6.0 ´ 1024 kg)V, which gives       V= 2.5 ´ 10–13 m/s.

	(b)	The fraction transformed was 

			fraction = ?KEarth/Kmeteor = !mEarthV 2/!mmeteorvmeteor2  

					= (6.0 ´ 1024 kg)(2.5 ´ 10–13 m/s)2/(108 kg)(15 ´ 103 m/s)2 =        1.7 ´ 10–17.

	(c)	The change in the Earth’s kinetic energy was 

			?KEarth = !mEarthV 2  

					= !(6.0 ´ 1024 kg)(2.5 ´ 10–13 m/s)2  =        0.19 J.



96.	We find the speed for falling or rising through a height h from energy conservation:

�

		!mv2 = mgh,  or  v2 = 2gh. 

	(a)	The speed of the first block after sliding down the incline 

		and just before the collision is

			v1 = [2(9.80 m/s2)(3.60 m)]1/2  = 8.40 m/s.

		For the elastic collision of the two blocks, we use momentum 

		conservation:

			mv1 + Mv2 = mv1¢ + Mv2¢;

			(2.20 kg)(8.40 m/s) + (7.00 kg)(0) = (2.20 kg)v1¢ + (7.00 kg)v2¢.

		Because the collision is elastic, the relative speed does not change:

			v1 – v2 = – (v1¢ – v2¢),    or    8.40 m/s – 0 = v2¢ – v1¢.

		Combining these two equations, we get 

			v1¢ = – 4.38 m/s,  v2¢ = 4.02 m/s.

	(b)	We find the height of the rebound from

			v1¢2 = 2gh¢;

			(– 4.38 m/s)2 = 2(9.80 m/s2)h¢, which gives h¢ = 0.979 m.

		The distance along the incline is

			d = h¢/sin q = (0.979 m)/sin 30° =       1.96 m.

















97.	Because energy is conserved for the motion up and down the incline, mass m will return to the level with the speed – v1¢.  For a second collision to occur, mass m must be moving faster than mass M:  – v1¢ = v2¢.

	In the first collision, the relative speed does not change:

		v1 – 0 = – (v1¢ – v2¢),    or    – v1¢ = v1 – v2¢, 

	so the condition becomes v1 – v2¢ = v2¢,  or v1  = 2v2¢.

	For the first collision, we use momentum conservation:

		mv1 + 0 = mv1¢ + Mv2¢,  or  v1 – v1¢ = (M/m)v2¢.

	When we use the two versions of the condition, we get v1 – v1¢ = 3v2¢, so we need

		(M/m) = 3,  or        m = M/3.



�

98.	(a)	If the skeet were not hit by the pellet, the horizontal 

		distance it would travel can be found from the range 

		expression for projectile motion:

			R 	= (v02/g) sin 2q 

				= [(30 m/s)2/(9.80 m/s2)] sin 2(30°) = 79.5 m.

		At the collision the skeet will have the x-component 

		of the initial velocity:

			v1 = v0 cos q = (30 m/s) cos 30° = 26.0 m/s.

		We use energy conservation to find the height 

		attained by the skeet when the collision occurs:

			!Mv02 = !Mv12 + Mgh;

			!(30 m/s)2 = !(26.0 m/s)2 + (9.80 m/s2)h, which gives h = 11.5 m.

		Using the coordinate system shown, for momentum conservation of the collision we have

			x:	Mv1 + 0 = (M + m)Vx ; 

				(250 g)(26.0 m/s) = (250 g + 15 g)Vx , which gives Vx = 24.5 m/s;

			y:	0 + mv2 = (M + m)Vy ; 

				(15 g)(200 m/s) = (250 g + 15 g)Vy , which gives Vy = 11.3 m/s.

		We use energy conservation to find the additional height attained by the skeet after the collision:

			!(M + m)(Vx2 + Vy2)= !(M + m)Vx2 + (M + m)gh¢;

			![(24.5 m/s)2 + (11.3 m/s)2]= !(24.5 m/s)2 + (9.80 m/s2)h¢, which gives       h¢ = 6.54 m.

	(b)	We find the time after the collision for the skeet to reach the ground from the vertical motion:

			y = y0 + Vy t + !(– g)t2;

			– 11.5 m = 0 + (11.3 m/s)t – !(9.80 m/s2)t2.

		The positive solution to this quadratic equation is t = 3.07 s.

		The horizontal distance from the collision is

			x = Vx t = (24.5 m/s)(3.07 s) = 75 m.

		The total horizontal distance covered is

			xtotal  = !R + x = !(79.5 m) + 75 m = 115 m.

		Because of the collision, the skeet will have traveled an additional distance of

			?x = xtotal – R = 115 m – 79.5 m =       35 m.



99.	Obviously the spacecraft will have negligible effect on the motion of Saturn.  In the reference frame of Saturn, we can treat this as the equivalent of a small mass “bouncing off” a massive object.  The relative velocity of the spacecraft in this reference frame will be reversed.

	The initial relative velocity of the spacecraft is

		vSpS = vSp – vS = 10.4 km/s – (– 9.6 km/s) = 20.0 km/s.

	so the final relative velocity is vSpS¢ = – 20.0 km/s.  Therefore, we find the final velocity of the spacecraft from

		vSpS¢ = vSp¢ – vS ;

		– 20.0 km/s = vSp¢ – (– 9.6 km/s), which gives vSp¢ =  – 29.6 km/s,

	so the final speed of the spacecraft is       29.6 km/s.









100.	Because the two segments of the mallet are uniform, we know that the 

	center of mass of each segment is at its midpoint.  

	We choose the origin at the bottom of the handle.  The mallet will spin 

	about the CM, which is the point that will follow a parabolic trajectory: 

�

		xCM	= (md + ML)/(m + M) 

				= [(0.500 kg)(12.0 cm) + (2.00 kg)(24.0 cm + 4.00 cm)]/(0.500 kg + 2.00 kg)

				=        24.8 cm.



101.	(a)	We find the impulse on the ball from

			J = ?p = m ?v =(0.045 kg)(50 m/s – 0) = 2.25 N · s =      2.3 N · s.

	(b)	The average force is 

			F = J/?t = (2.25 N · s)/(5.0 ´ 10–3 s) =      4.5 ´ 102 N.





102.	(a)	The given velocity is relative to the shuttle.  If the shuttle gets a final speed in the 

		– z-direction of vf , the final speed of the satellite will be v – vf .  Momentum conservation gives 

			0 = msatellite(v – vf) – mshuttlevf ,  or  

			vf  = msatellitev/(msatellite + mshuttle) = (800 kg)(0.30 m/s)/(800 kg + 90,000 kg) =      2.6 ´ 10–3 m/s.

	(b)	We find the average force on the satellite from

			F 	= ?p/?t = [msatellite(v – vf) – 0]/?t 

				= (800 kg)[0.30 m/s  – 2.6 ´ 10–3 m/s]/(4.0 s) =       59 N.



103.	(a)	There is an obvious loss of kinetic energy, so this is an       inelastic collision.

	(b)	If we assume a constant acceleration, we can find the time from

			x = !(v0 + v)t;

			0.70 m = !{[(50 km/h)/(3.6 ks/h) + 0}t, which gives t =      0.10 s.

	(c)	We find the average impulsive force from

			F 	= ?p/?t = [m(v – v0)]/?t 

				= (1000 kg)[0 – (50 km/h)/(3.6 ks/h)]/(0.10 s) =       – 1.4 ´ 105 N.



104.	For the system of the two blocks, the spring force is internal.  Because there is no friction, we can use momentum conservation:

		m1v1 + m2v2 = m1v1¢ – m2v2¢;

		0 + 0 = mv1¢ – 3mv2¢, which gives   v1¢ =  3v2¢.

	Kinetic energy is also conserved, so we have

		0 + 0 + !kD2 = !m1v1¢2 + !m2v2¢2;

		kD2 = m(3v2¢)2 + 3mv2¢2,

	which gives      v2¢ = (k/12m)1/2D, and v1¢ = (3k/4m)1/2D.



































105.	We find the speed after falling a height h from energy 

�

	conservation:

		!Mv2 = Mgh,  or  v = (2gh)1/2.

	The speed of the first cube after sliding down the incline 

	and just before the collision is

		v1 = [2(9.80 m/s2)(0.20 m)]1/2 = 1.98 m/s.

	For the elastic collision of the two cubes, we use momentum 

	conservation:

		Mv1 + mv2 = Mv1¢ + mv2¢;

		M(1.98 m/s) + !M(0) = Mv1¢ + !Mv2¢.

	Because the collision is elastic, the relative speed does not change:

		v1 – v2 = – (v1¢ – v2¢),    or    1.98 m/s – 0 = v2¢ – v1¢.

	Combining these two equations, we get 

		v1¢ = 0.660 m/s,  and  v2¢ = 2.64 m/s.

	Because both cubes leave the table with a horizontal velocity, they will fall to the floor in the same time, which we find from

		H = !gt2;

		0.90 m = !(9.80 m/s2)t2, which gives  t = 0.429 s.

	Because the horizontal motion has constant velocity, we have

		x1 = v1¢t = (0.660 m/s)(0.429 s) =       0.28 m;

		x2 = v2¢t = (2.64 m/s)(0.429 s) =       1.1 m.
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