CHAPTER 10 - Rotational Motion About a Fixed Axis



1.	(a)	30° = (30°)(p rad/180°) =       p/6 rad = 0.524 rad;

	(b)	57° = (57°)(p rad/180°) =       19p/60 = 0.995 rad;

	(c)	90° = (90°)(p rad/180°) =       p/2 = 1.571 rad;

	(d)	360° = (360°)(p rad/180°) =       2p = 6.283 rad;

	(e)	420° = (420°)(p rad/180°) =       7p/3 = 7.330 rad.



2.	The subtended angle in radians is the size of the object divided by the distance to the object:

		q  = 2rSun/r;

		(0.5°)(p rad/180°) = 2rSun/(150 ´ 106 km), which gives       rSun ˜ 6.5 ´ 105 km.



3.	We find the distance from

		q  = h/r;

		(7.5°)(p rad/180°) = (300 m)/r; which gives r =        2.3 ´ 103 m.



4.	From the definition of angular acceleration, we have

		a = ?w/?t = [(20,000 rev/min)(2p rad/rev)/(60 s/min) – 0]/(5.0 min)(60 s/min)  =      7.0 rad/s2.



5.	From the definition of angular velocity, we have 

		w = Dq/Dt , and we use the time for each hand to turn through a complete circle, 2p rad.

	(a)	wsecond	= Dq/Dt 

				= (2p rad)/(60 s) =      0.105 rad/s.

	(b)	wminute	= Dq/Dt 

				= (2p rad)/(60 min)(60 s/min) =      1.75 ´ 10–3 rad/s.

	(c)	whour	= Dq/Dt 

				= (2p rad)/(12 h)(60 min/h)(60 s/min) =      1.45 ´ 10–4 rad/s.

	(d)	For each case, the angular velocity is constant, so the angular acceleration is       zero.



6.	(a)	The Earth moves one revolution around the Sun in one year, so we have

			worbit	= Dq/Dt 

					= (2p rad)/(1 yr)(3.16 ´ 107 s/yr) =      1.99 ´ 10–7 rad/s.

	(b)	The Earth rotates one revolution in one day, so we have

			wrotation	= Dq/Dt 

					= (2p rad)/(1 day)(24 h/day)(3600 s/h) =      7.27 ´ 10–5 rad/s.



7.	All points will have the angular speed of the Earth:

		w = Dq/Dt  = (2p rad)/(1 day)(24 h/day)(3600 s/h) = 7.27 ´ 10–5 rad/s.

	Their linear speed will depend on the distance from the rotation axis.

	(a)	On the equator we have

			v = rEarthw = (6.38 ´ 106 m)(7.27 ´ 10–5 rad/s) =         464 m/s.

	(b)	At a latitude of 66.5° the distance is rEarth cos 66.5°, so we have

			v = rEarth cos 66.5° w = (6.38 ´ 106 m)(cos 66.5°)(7.27 ´ 10–5 rad/s) =         185 m/s.

	(c)	At a latitude of 40.0° the distance is rEarth cos 40.0°, so we have

			v = rEarth cos 40.0° w = (6.38 ´ 106 m)(cos 40.0°)(7.27 ´ 10–5 rad/s) =         355 m/s.



















8.	The subtended angle in radians is the size of the object divided by the distance to the object.  A pencil with a diameter of 6 mm will block out the Moon if it is held about 60 cm from the eye.  For the angle subtended we have	

		qMoon = Dpencil/rpencil ˜ (0.6 cm)/(60 cm)        ˜ 0.01 rad.

	We estimate the diameter of the Moon from

		qMoon = DMoon/rMoon; 

		0.01 rad = DMoon/(3.8 ´ 105 km), which gives       DMoon ˜ 4 ´ 103 km.



9.	(a)	w = (2500 rev/min)(2p rad/rev)/(60 s/min) =       262 rad/s.

	(b)	The linear speed of the point on the edge is the tangential speed:

			v = rw = (0.175 m)(262 rad/s) =         46 m/s.

		Because the speed is constant, the tangential acceleration is zero.  There will be a radial 

		acceleration:

			aR = w2R = (262 rad/s)2(0.175 m) =       1.2 ´ 104 m/s2 radial.



10.	(a)	The angular speed of the merry-go-round is

			w = (1 rev)(2p rad/rev)/(4.0 s) = 1.57 rad/s.

		The linear speed of the child is the tangential speed:

			v = rw = (1.2 m)(1.57 rad/s) =         1.9 m/s.

	(b)	The child will have a radial acceleration:

			aR = w2R = (1.57 rad/s)2(1.2 m) =       3.0 m/s2 radial.



11.	In each revolution the ball rolls a distance equal to its circumference, so we have

		L = N(pD);

		3.5 m = (15.0)pD, which gives D = 0.074 m =       7.4 cm.



12.	For a constant acceleration, we find the total angle the wheel turns from 

		q 	= !(w0 + w)t  

			= ![(210 rev/min + 380 rev/min)][(2p rad/rev)/(60 s/min)](6.5 s) = 201 rad = 32.0 rev.

	For each revolution the point on the edge will travel one circumference, so the total distance traveled is

		d = qpD = (32.0 rev)p(0.60 m) =       60 m. 



13.	The final angular speed is

		w = (1 rpm)(2p rad/rev)/(60 s/min) = 0.105 rad/s.

	(a)	We find the angular acceleration from

			a 	= ?w/?t 

				= (0.105 rad/s – 0)/(10.0 min)(60 s/min) =       1.75 ´ 10–4 rad/s2.

	(b)	We find the angular speed after 5.0 min:

			w = w0 + at = 0 + (1.75 ´ 10–4 rad/s2)(5.0 min)(60 s/min) = 5.25 ´ 10–2 rad/s.

		At this time the radial acceleration of a point on the skin is

			aR = w2r = (5.25 ´ 10–2 rad/s)2(4.25 m) =       1.17 ´ 10–2 m/s2.

		The tangential acceleration is

			atan = a r = (1.75 ´ 10–4 rad/s2)(4.25 m) =       7.44 ´ 10–4 m/s2.

























14.	We use the initial conditions of t = 0, q0 = 0, and w0.  If we write the definition of angular acceleration as dw = a dt, we integrate to find w:

		�

		w – w0 = at,  or  w = w0 + at;      Eq. (10–9a).

	If we write the definition of angular velocity as dq = w dt, we integrate to find q:

		�

		q – 0 = w0t + !at2 – 0,  or  q  = w0t + !at2;       Eq. (10–9b).



15.	(a)	If there is no slipping, the linear tangential acceleration of the pottery wheel and the rubber 

		wheel at the contact point must be the same:

			atan = R1a1 = R2a2 ;

			(2.0 cm)(7.2 rad/s2) = (25.0 cm)a2 , which gives a2 =       0.58 rad/s2. 

	(b)	We find the time from

			w = w0 + at;

			(65 rev/min)(2p rad/rev)/(60 s/min) = 0 + (0.58 rad/s2)t,  which gives t =        12 s.



16.	(a)	We find the instantaneous angular velocity by differentiating:

			w 	= dq/dt = d[(6.0 rad/s)t – (8.0 rad/s2)t2 + (4.5 rad/s4)t4]/dt 

				=       (6.0 rad/s) – (16.0 rad/s2)t + (18.0 rad/s4)t3.

	(b)	We find the instantaneous angular acceleration by differentiating:

			a 	= dw/dt = d[(6.0 rad/s) – (16.0 rad/s2)t + (18.0 rad/s4)t3]/dt 

				=       – (16.0 rad/s2) + (54.0 rad/s4)t2.

	(c)	At t = 3.0 s, we have

			w = (6.0 rad/s) – (16.0 rad/s2)(3.0 s) + (18.0 rad/s4)(3.0 s)3 = 444 rad/s =      4.4 ´ 102 rad/s;

			a = – (16.0 rad/s2) + (54.0 rad/s4)(3.0 s)2 = 470 rad/s2 =      4.7´ 102 rad/s2.

	(d)	The angular positions at the two times are

			q2 = (6.0 rad/s)(2.0 s) – (8.0 rad/s2)(2.0 s)2 + (4.5 rad/s4)(2.0 s)4 = 52 rad;

			q3 = (6.0 rad/s)(3.0 s) – (8.0 rad/s2)(3.0 s)2 + (4.5 rad/s4)(3.0 s)4 = 311 rad.

		We find the average angular velocity from

			wav = Dq/Dt  = (311 rad – 52 rad)/(3.0 s – 2.0 s) =      2.6 ´ 102 rad/s.

	(e)	The angular velocities at the two times are

			w2 = (6.0 rad/s) – (16.0 rad/s2)(2.0 s) + (18.0 rad/s4)(2.0 s)3 = 118 rad/s;

			w3 = 444 rad/s from part (c).

		We find the average angular acceleration from

			aav = Dw/Dt  = (444 rad/s – 118 rad/s)/(3.0 s – 2.0 s) =      3.3 ´ 102 rad/s2.

	Note that the average angular velocity in part (d) is not !(w2 + w3).  The angular acceleration is not constant!





























17.	(a)	If we write the definition of angular acceleration as dw = a dt, we integrate to find w:

			�

			w = @(5.0 rad/s4)t3 – !(3.5 rad/s3)t2 =      (1.67 rad/s4)t3 – (1.75 rad/s3)t2.

	(b)	If we write the definition of angular velocity as dq = w dt, we integrate to find q:

			�

			q = #(1.67 rad/s4)t4 – @(1.75 rad/s3)t3 =      (0.418 rad/s4)t4 – (0.583 rad/s3)t3.

	(c)	At t = 2.0 s, we have

			w = (1.67 rad/s4)(2.0 s)3 – (1.75 rad/s3)(2.0 s)2 =      6.4 rad/s;

			q = (0.418 rad/s4)(2.0 s)4 – (0.583 rad/s3)(2.0 s)3 =      2.0 rad.



18.	We find the initial and final angular velocities of the wheel from the rolling condition:

		w0 = v0/r = [(90.0 km/h)/(3.6 ks/h)]/(0.45 m) = 55.6 rad/s;

		w = v/r = [(60.0 km/h)/(3.6 ks/h)]/(0.45 m) = 37.0 rad/s.

	(a)	We find the angular acceleration from

			w2 = w02 + 2aq;

			(37.0 rad/s)2 = (55.6 rad/s)2 + 2a (85 rev)(2p rad/rev), which gives a =      – 1.6 rad/s2. 

	(b)	We find the additional time from

			wfinal = w + at;

			0 = 37.0 rad/s + (– 1.6 rad/s2)t,  which gives t =        23 s.



�

19.	(a)	The direction of w1 is along the axle.  At the instant shown,       

			w1 is in the – x-direction.

		The direction of w2 is up.  At any time       w2 is in the + z-direction.

	(b)	At the instant shown, we have the vector diagram shown.

		We find the magnitude from

			w2 = w12 + w22 = (50.0 rad/s)2 + (35.0 rad/s)2, 

		which gives w = 61.0 rad/s.

		We find the angle from

			tan q = w2/w1 = (35.0 rad/s)/(50.0 rad/s) = 0.700, so q = 35.0°.

		Thus the resultant angular velocity is

			w = 61.0 rad/s, 35.0° above – x-axis.

	(c)	Because w2 is constant, only w1 will be changing.  It will rotate at w2 in the xy-plane.  If we let t = 0 

		at the instant shown,  we have

			w1 = w1[– cos (w2t)i – sin(w2t)j].

		From the definition of the angular acceleration we have

			a = dw/dt = d(w1 + w2)/dt = dw1/dt = w1w2[+ sin (w2t)i – cos(w2t)j].

		At t= 0, we get

			a = – w1w2 j = – (50.0 rad/s)(35.0 rad/s)j =      – (1.75 ´ 103 rad/s2)j.



�

20.	If q is the angle between the force and the surface of the door, we have

	(a)	t = LF sin q = (0.96 m)(38 N) sin 90° =       36 m · N.

	(b)	t = LF sin q = (0.96 m)(38 N) sin 60.0° =       32 m · N.





















�

21.	We use the force diagram shown.  For the torques, we have

	(a)	t = Fd sin q = (700 N)(0.050 m) sin 90° =       35 m · N.

	(b)	t = Fd sin q = (700 N)(0.050 m) sin 60° =       30 m · N.





















�

22.	Because the force and the moment arm are in the xy-plane, 

	the torque will be along the z-axis.  

	From the diagram, we see that the torque is

		t = F^R = FyR = (+ 38.6 N)!(0.270 m) = 5.21  m · N CCW.

	If we curl our fingers counterclockwise, we see that our thumb 

	points in the z-direction.  Thus the torque is

		t = (5.21  m · N)k.













�

23.	We assume clockwise motion, so the frictional torque is counterclockwise.  

	If we take the clockwise direction as positive, we have

		tnet 	= rF1 – RF2 + RF3 – tfr 

			= (0.10 m)(35 N) – (0.20 m)(30 N) + (0.20 m)(20 N) – 0.30 m · N 

			=       1.2 m · N (clockwise).

















�

24.	(a)	We let L be the length of the beam and take clockwise as the 

		positive direction.  For the net torque about point C, we have

			tC 	= !L(F1 sin q1) – !L(F3 sin q3) 

				= !(2.0 m)(50 N) sin 30° – !(2.0 m)(50 N) sin 60° 

				=      – 18 m · N  (CCW).

	(b)	For the net torque about point P, we have

			tP 	= L(F1 sin q1) – !L(F2 sin q2) 

				= (2.0 m)(50 N) sin 30° – !(2.0 m)(60 N) sin 45° 

				=      7.6 m · N  (CW).

















25.	The force to produce the required torque is

		Fwrench = t/L = (90 m · N)/(0.26 m) =       3.5 ´ 102 N.

	Because this torque is balanced by the torque produced by the bolt on the wrench, an equal torque is produced on the bolt.  Because there are six points where a force is applied to the bolt, we have

		Fbolt = (t/r)/6 = (90 m · N)/6(0.0075 m) =       2.0 ´ 103 N.



26.	The moment of inertia of a sphere about an axis through its center is

		I = (2/5)MR2 = (2/5)(12.0 kg)(0.80 m)2 =        3.1 kg · m2.



27.	The torque produces the angular acceleration of the grindstone:

		tmotor 	= Ia = !MR2 ?w/?t 

				= !(1.4 kg)(0.20 m)2[(1800 rev/s)(2p rad/rev) – 0]/(6.0 s) =      53 m · N. 



28.	If M is the total mass and D is the effective separation, each atom has a mass !M and is !D from the axis.  We find the distance D from

		I = 2(!M)(!D)2 = #MD2;

		1.9 ´ 10–46 kg · m2 = #(5.3 ´ 10–26 kg)D2, which gives D =       1.2 ´ 10–10 m.



29.	(a)	Because we can ignore the mass of the rod, for the moment of inertia we have

			I	= mballR2 

				= (2.4 kg)(1.2 m)2 =       3.5 kg · m2. 

	(b)	To produce constant angular velocity, the net torque must be zero:  

			tnet  = tapplied – tfriction = 0,  or 

			tapplied = FfrR = (0.020 N)(1.2 m) =        0.024 m · N.



�

30.	(a)	For the moment of inertia about the y-axis, we have

			Ia 	=  ?miRi2 = md12 + Md12 + m(d2 – d1)2 + M(d2 – d1)2 

				= (1.8 kg)(0.50 m)2  + (3.1 kg)(0.50 m)2 + 

					(1.8 kg)(1.00 m)2 + (3.1 kg)(1.00 m)2 =      6.1 kg · m2. 

	(b)	For the moment of inertia about the x-axis, all the masses 

		are the same distance from the axis, so we have

			Ib 	=  ?miRi2 = (2m + 2M)(!h)2  

				= [2(1.8 kg) + 2(3.1 kg)](0.25 m)2  =      0.61 kg · m2. 

	It will be harder to accelerate the array around the y-axis, because the moment of inertia is greater.



31.	For the moment of inertia of the rotor blades we have

		I  = 3(@mbladeL2) = mbladeL2 = (160 kg)(3.75 m)2 =         2.25 ´ 103 kg · m2.

	We find the required torque from

		t 	= Ia = I(w – w0)/t 

			= (2.25 ´ 10–3 kg · m2)[(5.0 rev/s)(2p rad/rev) – 0]/(8.0 s) =        8.8 ´ 103 m · N.



32.	We find the angular acceleration for the motion:

		q  = w0t + !at2; 

		(180 rev)(2p rad/rev) = 0 + !a(15.0 s)2, which gives a = 10.1 rad/s2.

	This acceleration is produced by the torque:

		t = Ia = ^MR2a ;

		10.8 m · N = ^M(0.42 m)2(10.1 rad/s2), which gives M =       15 kg.



33.	The torque produces the angular acceleration of the merry-go-round:

		tnet 	= Ia = !MR2 ?w/?t 

				= !(31,000 kg)(7.0 m)2(3.0 rad/s – 0)/(24 s) =      9.5 ´ 104 m · N. 





34.	(a)	For the moment of inertia about the axis, we have

			Ia =  ?miRi2 = M(0) + M¬2 + M(2¬)2 + M(3¬)2 = 14M¬2 

	(b)	The force will be minimum when the moment arm is maximum, which is when the force is 

		perpendicular to the rod.  Thus we have

			t = Ia;

			F(3¬) = (14M¬2)a, which gives F =      14M¬a/3.

	(c)	This minimum force will be     perpendicular to the rod and to the axis.



35.	Because the force varies with time, the angular acceleration will vary with time:

		t = FTR0 – tfr = Ia;

		[(3.00 N/s)t – (0.20 N/s2)t2](0.330 m) – 1.10 m · N = (0.385 kg · m2)a, which gives 

		a = – (2.86 rad/s2) + (2.57 rad/s3)t – (0.171 rad/s4)t2.

	We integrate this variable acceleration to find the angular velocity:

		�

		w 	= – (2.86 rad/s2)t + (1.29 rad/s3)t2 – (0.057 rad/s4)t3 

			= – (2.86 rad/s2)(8.0 s) + (1.29 rad/s3)(8.0 s)2 – (0.057 rad/s4)(8.0 s)3 = 30.2 rad.

	The linear speed of a point on the rim is the tangential speed:

		v = R0w = (0.330 m)(30.2 rad) =      10 m/s.



36.	We find the acceleration from

		tfriction = Ia = !MR2a;

		– 1.00 m · N = !(4.70 kg)(0.0780 m)2a, which gives a = – 69.9 rad/s2.

	We find the angle turned through from

		w2 = w02 + 2aq;

		0 = [(10,000 rpm)(2p rad/rev)/(60 s/min)]2 + 2(– 69.9 rad/s2)q, which gives 

		q = 7.84 ´ 103 rad =       1.25 ´ 103 rev.

	We can find the time from

		w = w0 + at;

		0 = (10,000 rev/min)(2p rad/rev)/(60 s/min) + (– 69.9 rad/s2)t; which gives t =        15.0 s.



�

37.										(a)

	(b)	We take the positive direction 

		as the direction of the acceleration 

		for each block and clockwise for 

		the pulley.  We apply ?F = ma to 

		each block to find the tensions:

			FT1 – m1g sin q1 = m1a;

			FT1 – (8.0 kg)(9.80 m/s2) sin 30° = 

							(8.0 kg)(1.00 m/s2),

		which gives      FT1 = 47 N.

			m2g sin q2 – FT2 = m2a;

			 (10.0 kg)(9.80 m/s2) sin 60° – FT2 = 

							(10.0 kg)(1.00 m/s2),

		which gives      FT2 = 75 N.

	(c)	The net torque acting on the pulley is

			tnet =  FT2R –  FT1R = (75 N)(0.25 m) – (47 N)(0.25 m) =      7.0 m · N.

		We apply ?t = Ia to find the moment of inertia:

			tnet = Ia = I(a/R)

			 7.0 m · N = I(1.00 m/s2)/(0.25 m), which gives I =       1.7 kg · m2.









�

38.	(a)	We take the positive directions indicated on the diagram. 

		The linear acceleration of the blocks and the angular 

		acceleration of the pulley are related:

			a = R0a.

		We apply ?F = ma to each block:

			m1g – FT1 = m1a;

			FT2 – m2g = m2a.

		If we add the equations, we get

			FT2 – FT1 = (m1 + m2)a – (m1 – m2)g.

		We apply ?t = Ia to the pulley:

			tnet = Ia ;

			FT1R0 – FT2R0 = !MR02a = !MR0a.

		When we use the result from the force equations, we get

			– (m1 + m2)a + (m1 – m2)g = !Ma;

			– (3.80 kg + 3.40 kg)a + (3.80 kg – 3.40 kg)(9.80 m/s2) = !(0.80 kg)a, 

		which gives a =       0.52 m/s2.

	(b)	We find the acceleration from the motion of the block:

			v = v0 + at;

			0 = (0.20 m/s) + a(6.2 s), which gives a = – 0.0323 m/s2.

		We have an additional (negative) torque on the pulley from friction:

			FT1R0 – FT2R0 – tfr = !MR02a = !MR0a.

			– (m1 + m2)a + (m1 – m2)g – (tfr/R0) = !Ma;

			– (3.80 kg + 3.40 kg)(– 0.0323 m/s2) + (3.80 kg – 3.40 kg)(9.80 m/s2) – [tfr/(0.030 m)] = 

													!(0.80 kg)(– 0.0323 m/s2), 

		which gives tf =       0.12 m · N.



39.	Thin hoop (through center): Mk2 = MR02, which gives      k = R0;

	Thin hoop (through diameter): Mk2 = (MR02/2) + (Mw2)/12,

										which gives      k = [(R02/2) + (w2)/12]1/2;

	Solid cylinder (through center): Mk2 = MR2/2, which gives      k = R/v2;

	Hollow cylinder (through center): Mk2 = M(R12 + R22)/2, which gives      k = [(R12 + R22)/2]1/2;

	Uniform sphere (through center):  Mk2 = 2Mr02/5, which gives      k = (2r02/5]1/2;

	Rod (through center): Mk2 = M¬2/12, which gives      k = ¬/v12;

	Rod (through end): Mk2 = M¬2/3, which gives      k = ¬/v3;

	Plate (through center): Mk2 = M(¬2 + w2)/12, which gives      k = [(¬2 + w2)/12]1/2.







































�

40.	(a)	Although there are forces at the point A at the tabletop, they 

		create no torque about point A.  For the angular motion we have

			tA = IAa;

			mg!¬ cos f = @m¬2a = @m¬2(dw/dt),  or

			dw/dt = (3g/2¬) cos f.

		This equation contains three variables, but we can eliminate one 

		from the definition of angular velocity: w = dq/dt = – df/dt.

		If we use each side as a multiplier of the previous equation, we get

			w dw/dt  = (3g/2¬)(– df/dt) cos f,  or  w dw = – (3g/2¬) cos f df.

		We integrate to get w(f):

			�

		which gives

			w2 = (3g/¬)(1 – sin f).

	(b)	At the tabletop, f = 0,  so we have

			w2 = (3g/¬)(1 – 0),   or    w = (3g/¬)1/2.

		The speed of the tip is

			v = ¬w = ¬(3g/¬)1/2 =       (3g¬)1/2.



�

41.	(a)	The final angular velocity of the hammer is

			w = v/r = (29.0 m/s)/(2.00 m) = 14.5 rad/s.

		We find the angular acceleration from

			w2 = w02 + 2aq;

			(14.5 rad/s)2 = 0 + 2a (4 rev)(2p rad/rev), 

		which gives a =       4.18 rad/s2. 

	(b)	For the tangential acceleration we have

			atan = a r = (4.18 rad/s2)(2.00 m) =        8.37 m/s2.

	(c)	For the radial acceleration at release we have

			aR = w2r = (14.5 rad/s)2(2.00 m) =       421 m/s2.

	(d)	The magnitude of the resultant acceleration of the hammer is

			a = (atan2 + aR2)1/2 = [(8.37 m/s2)2 + (421 m/s2)2]1/2 = 421 m/s2.

		This acceleration is provided by the net force exerted on the hammer, so we have

			Fnet = ma = (7.30 kg)(421 m/s2) =       3.07 ´ 103 N.

	(e)	We find the angle from

			tan f = atan/aR = (8.37 m/s2)/(421 m/s2) = 0.0199, which gives f =        1.14° .



42.	From the parallel-axis theorem, we have

		I = ICM + Mh2 = M¬2/12 + M(¬/2)2 = M¬2/3.



�

43.	(a)	Because the two diagonals are equivalent and perpendicular, 

		we can relate the moment of inertia about an axis through the 

		center perpendicular to the plate to the moments of inertia 

		about the diagonals:

			Ic = Ia + Ia ;

			M(s2 + s2)/12 = 2Ia ,   or    Ia  = Ms2/12.

	(b)	Because the two axes parallel to the sides are equivalent 

		and perpendicular, we can relate the moment of inertia about 

		an axis through the center perpendicular to the plate to the 

		moments of inertia about the b axes:

			Ic = Ib + Ib ;

			M(s2 + s2)/12 = 2Ib ,   or      Ib  = Ms2/12.



44.	We can consider the door to be made of a large number of horizontal rods.  Because each rod is rotating about an axis perpendicular to its end, the moment of inertia of the door is

		I  = @Mw2 = @(25 kg)(1.0 m)2 =         8.3 kg · m2.



45.	(a)	We use the parallel-axis theorem:

			I = 2(ICM + Mh2) = 2[(2MR02/5) + M(3R0/2)2] =       5.30MR02.

	(b)	If we treat the spheres as point masses, we get

			I¢ = 2[M(3R0/2)2] = 4.50MR02.

		The error is 

�

			error = (I¢ – I)/I = (4.50 – 5.30)/(5.30) = – 0.15 =      – 15%.



46.	(a)	If we treat the sphere as a point mass, we get

			Ia = MR02.

	(b)	We use the parallel-axis theorem:

			Ib  = ICM + Mh2 =       (2MR12/5) + MR02.

	(c)	The error is 

�

			error 	= (Ia – Ib)/Ib  

					= [MR02 – (2MR12/5) – MR02]/[(2MR12/5) + MR02] 

					= [– (2R12/5)]/[(2R12/5) + R02]  

					= – (0.40)(0.10 m)2/[(0.40)(0.10 m)2 + (1.0 m)2] = – 0.0040 =      – 0.40%.



47.	(a)	We use the parallel-axis theorem:

			Ia = ICM + Mh2 = (MR02/2) + M(R0/4)2 =      9MR02/16.

	(b)	If we consider two horizontal axes, they must have the same moment of inertia.  

		We use the perpendicular-axis theorem:

			ICM = Ib + Ib ;

			MR02/2 = 2Ib ,   or        Ib  = MR02/4.

	(c)	We can use the result from part (b) and the parallel-axis theorem:

			Ic = Ib  + Mh2 = (MR02/4) + MR02 =      5MR02/4.



�

48.	(a)	The center of mass will be along the line from the center of 

		the wheel to the weight:

			xCM = md/(M + m) 

				= (1.50 kg)(0.22 m)/(7.0 kg + 1.50 kg) 

				= 0.0388 m =      3.9 cm from the center.

	(b)	The moment of inertia is

			I 	= (MR02/2) + MxCM2 + m(d – xCM)2  

				= [(7.0 kg)(0.32 m)2/2] + (7.0 kg)(0.0388 m)2  + (1.50 kg)(0.22 m – 0.0388 m)2 =      0.42 kg · m2.



































49.	The density of the sphere is 

		r = M/(4pR03/3) = 3M/4pR03.

	We consider a disk of thickness dx a distance x from the center 

	perpendicular to the x-axis.  The radius of this disk is y, where 

	x2 + y2 = R02.  The mass of the disk is

		dm = r py2 dx,

	so the moment of inertia of the disk is

�

		dI = (dm)y2/2.

	We integrate from x = – R0 to x = R0 to find the moment of inertia of the sphere:

		�



50.	We select a differential element of the rod of length dx a 

	distance x from the center of the rod.  The element is equivalent 

	to a point mass  with a mass of dm = (M/¬) dx.  

	We integrate from x = – ¬/2 to x = ¬/2 to find the moment of 

	inertia of the rod:

�

		�



�

51.	(a)	We select a differential element of the plate with 

		sides dx and dy at the location x, y.  The element is 

		equivalent to a point mass with a mass of 

		dm = (M/¬w) dx dy.  

		We integrate from x = – ¬/2 to x = ¬/2 and y = – w/2 to 

		y = w/2 to find the moment of inertia of the plate:

			�

	(b)	For an axis along the edge parallel to the y-axis, we can consider the plate to be an infinite 

		number of rods of length ¬ and width dy with a mass (M/w) dy.  

		The moment of inertia of each rod is

			dI = (¬2/12) dm = (M/w)(¬2/12) dx.

		When we add (integrate), we get 

			I = (M/w)(¬2/12)w =       M¬2/12.

		Similarly, for the other edge we get       I = Mw2/12.



52.	(a)	The angular momentum is

			L = Iw = !MR02w = ! (2.8 kg)(0.18 m)2(1500 rev/min)(2p rad/rev)/(60 s/min) =      7.1 kg · m2/s.

	(b)	We find the required torque from

			t = ?L/?t = (0 – 7.1 kg · m2/s)/(7.0 s) =      – 1.0 m · N.





53.	Because the diver in the air is an isolated system, for the conservation of angular momentum we have

		L = I1w1 = I2w2 ,  or  I2/I1 = w1/w2 ;

		1/3.5 = w1/(2 rev/1.5 s), which gives w1 =        0.38 rev/s.



54.	Because the skater is an isolated system, for the conservation of angular momentum we have

		L = I1w1 = I2w2 ;

		(4.6 kg · m2)(1.0 rev/2.0 s) = I2(3.0 rev/s), which gives I2 =        0.77 kg · m2.

	She accomplishes this by       pulling her arms closer to her body.



55.	(a)	As the arms are raised some of the person’s mass is farther from the axis of rotation, so the 

		moment of inertia has increased.  For the isolated system of platform and person, the       

		angular momentum is conserved.       

		As the moment of inertia increases, the angular velocity must decrease.

	(b)	If the mass and thus the moment of inertia of the platform can be neglected, for the conservation 

		of angular momentum, we have

			L = I1w1 = I2w2 ,  or 

			I2/I1 = w1/w2 = (1.30 rad/s)/(0.80 rad/s) =       1.6.



56.	(a)	We approximate the mass distribution as a solid cylinder.  The angular momentum is

			L = Iw = !mR2w  = !(55 kg)(0.15 m)2[(3.5 rev/s)(2p rad/rev)] =       14 kg · m2/s.	

	(b)	If the arms do not move, the moment of inertia will not change.  We find the torque from the 

		change in angular momentum:		

			t =  DL/?t = (0 – 14 kg · m2/s)/(5.0 s) =        – 2.7 m · N.



57.	(a)	The Earth rotates one revolution in one day, so we have

			wrotation	= Dq/Dt 

					= (2p rad)/(1 day)(24 h/day)(3600 s/h) = 7.27 ´ 10–5 rad/s.

		If we assume the Earth is a uniform sphere, the angular momentum is

			Lrotation	= Irotationwrotation = (^Mr2)wrotation

					= (^)(6.0 ´ 1024 kg)(6.4 ´ 106 m)2(7.27 ´ 10–5 rad/s) =       7.1 ´ 1033 kg · m2/s.

	(b)	The Earth moves one revolution around the Sun in one year, so we have

			worbit	= Dq/Dt 

					= (2p rad)/(1 yr)(3.16 ´ 107 s/yr) = 1.99 ´ 10–7 rad/s.

		The angular momentum is

			Lrevolution	= Irevolutionwrevolution = (MR2)wrevolution

						= (6.0 ´ 1024 kg)(1.5 ´ 1011 m)2(1.99 ´ 10–7 rad/s) =       2.7 ´ 1040 kg · m2/s.



58.	The angular momentum is

			L = Iw = [(M¬2/12) + 2m(¬/2)2]w =       [(M/12) + (m/2)]¬2w .



59.	When the people step onto the merry-go-round, they have no initial angular momentum.  For the system of merry-go-round and people, angular momentum is conserved:

		Imerry-go-roundw0 + Ipeoplewi = (Imerry-go-round + Ipeople)w ;

		Imerry-go-roundw0 + 4mR2(0) = (Imerry-go-round + 4mR2)w ; 

		(1950 kg · m2)(0.80 rad/s) = [(1950 kg · m2) + 4(65 kg)(2.4 m)2]w, which gives w =      0.45 rad/s.  

	If the people jump off in a radial direction with respect to the merry-go-round, they have the tangential velocity of the merry-go-round: v = Rw0.  For the system of merry-go-round and people, angular momentum is conserved:

		(Imerry-go-round + Ipeople)w0 = Imerry-go-roundw + Ipeoplew0 , which gives 

		w  = w0 = 0.80 rad/s.       The angular speed of the merry-go-round does not change.

	Note that the angular momentum of the people will change when contact is made with the ground.







60.	(a)	Because the woman is walking toward the center of the platform, her position is given by

			r = R – vt,

		and she will have the same angular velocity as the platform.  Because friction of rotation is 

		negligible, angular momentum will be conserved:

			L = (Iplatform + Iperson1)w0 = (Iplatform + Iperson2)w ;

			(!MR2 + mR2)w0 = [!MR2 + m(R – vt)2]w, which gives

			w = (!M + m)R2w0/[(!M + m)R2 – 2mRvt + mv2t2].

	(b)	When the woman gets to the center, conservation of angular momentum gives us

			L = (Iplatform + Iperson1)w0 = (Iplatform + Iperson2)wf ;

			(!MR2 + mR2)w0 = [!MR2 + 0]wf , which gives 

			wf = (!MR2 + mR2)w0/!MR2 =       (M + 2m)w0/M.

		Note that this is the result we obtain if we put the time to reach the center, tf = R/v, in the result 

		from part (a).



61.	The work done increases the kinetic energy of the rotor:

		W	= ?K = !Iw2 – 0

			= !(4.25 ´ 10–2 kg · m2)[(10,000 rev/min)(2p rad/rev)/(60 s/min)]2 =      2.33 ´ 104 J.



62.	We find the power of the engine from

		P = tw = (280 m · N)(4000 rev/min)(2p rad/rev)/(60 s/min)(746 W/hp) =      157 hp.



63.	Conservation of angular momentum gives us

		Iiwi = Ifwf ,   or   wf/wi = Ii/If .

	The ratio of kinetic energies is

		Kf/Ki 	= !Ifwf2/!Iiwi2 = (If/Ii)(wf/wi)2 = (If/Ii)(Ii/If)2 = Ii/If = (Ri/Rf)2 

				= [(7 ´ 105 km)/(10 km)]2 =     5 ´ 109.

	The increased kinetic energy came from the       loss of gravitational potential energy.



64.	We can use the slowing motion to find the frictional torque acting on the platform:

		tfr 	= Ia = I ?w/?t = !MR2(0 – w0)/t 

			= – !(280 kg)(5.5 m)2(3.8 rev/s)(2p rad/rev)/(18 s) = – 5.62 ´ 103 m · N.

	To maintain a constant angular speed, the motor must supply an equal and opposite torque.  The power required is

		P = tw = (5.62 ´ 103 m · N)(3.8 rev/s)(2p rad/rev)/(746 W/hp) =      180 hp.



�

65.	For the system of the two blocks and pulley, no work will be 

	done by nonconservative forces.  The rope ensures that each 

	block has the same speed v and the angular speed of the 

	pulley is w = v/R0.  We choose the reference level for 

	gravitational potential energy at the floor.  

	The rotational inertia of the pulley is I = !MR02.

	For the work-energy principle we have

		Wnet = ?K + ?U;

		0 = [(!m1v2 + !m2v2 + !Iw2) – 0] + m1g(h – 0) + m2g(0 – h);

		!m1v2 + !m2v2 + !(!MR02)(v/R0)2 = (m2 – m1)gh;

		![m1 + m2 + !M]v2 = (m2 – m1)gh;

		![35.0 kg + 38.0 kg + !(4.8 kg)]v2 = 

			(38.0 kg – 35.0 kg)(9.80 m/s2)(2.5 m), which gives

		v =        1.4 m/s.











�

66.	Because friction can be ignored, the energy of the rod is conserved:

		Ki + Ui = Kf + Uf;

		0 + Mghi = !Iw2 + Mghi ;

		0 + (– Mg!¬ cos q) = !(@M¬2)w2 + (– Mg!¬), which gives

		w = [(3g/¬)(1 – cos q)]1/2.

	The speed of the free end is

		v = ¬w = [(3g¬)(1 – cos q)]1/2.







�

67.	(a)	When we use the parallel-axis theorem for 

		the arms, we get

			Ia 	= (MR2/2) + 2[(m¬2/12)  + m(R + ¬/2)2] 

				= [(60 kg)(0.12 m)2/2] + 

					2(5.0 kg)[(0.60)2/12 + (0.12 m + 0.30 m)2] 

				=      2.5 kg · m2.

	(b)	When the arms are at the sides, all of their mass 

		is the same distance from the axis, so we get

			Ib 	= (MR2/2) + 2mR2 = [(M/2) + 2m]R2  

				= [(60 kg)/2 + 2(5.0 kg)](0.12 m)2 

				=      0.58 kg · m2.

	(c)	From the conservation of angular momentum about the vertical axis, we have 

			Iawa = Ibwb ;

			(2.5 kg · m2)(1 rev/1.5 s) = (0.58 kg · m2)(1 rev/tb),  which gives tb =      0.35 s.

	(d)	The change in kinetic energy is 

			?K =  !Iawa2 – !Ibwb2 

				=  !(2.5 kg · m2)(2p rad/1.5 s)2 – !(0.58 kg · m2)(2p rad/0.35 s)2 =       – 72 J.

	(e)	Because the kinetic energy decreases, it will be easier to lift your arms when      rotating.

		In the rotating system, the arms tend to move away from the center of rotation.



�

68.	(a)	The kinetic energy of the system is 

			K 	= !Iw2 = !(m1r12 + m2r22)w2 

				= ![(4.00 kg)(0.250 m)2 + (3.00 kg)(0.250 m)2](8.00 rad/s)2 

				=       14.0 J.

	(b)	The net horizontal forces produce the radial acceleration:

			F1 = m1r1w2 = (4.00 kg)(0.250 m)(8.00 rad/s)2 =      64.0 N;

			F2 = m2r2w2 = (3.00 kg)(0.250 m)(8.00 rad/s)2 =      48.0 N.

		Note that because these forces are not equal, there will be a horizontal force on the axle.

		The force of gravity on each mass is balanced by a vertical force from the rod.

	(c)	With the origin at m1 , the position of the center of mass is

			xCM = m2(r1 + r2)/(m1 + m2) = (3.00 kg)(0.500 m)/(4.00 kg + 3.00 kg) = 0.214 m.

		The kinetic energy is now

			K 	= !Iw2 = !(m1r1¢2 + m2r2¢2)w2 

				=  ![(4.00 kg)(0.214 m)2 + (3.00 kg)(0.500 m – 0.214 m)2](8.00 rad/s)2 =       13.7 J.

		The net horizontal forces are

			F1 = m1r1¢w2 = (4.00 kg)(0.214 m)(8.00 rad/s)2 =      54.9 N;

			F2 = m2r2¢w2 = (3.00 kg)(0.500 m – 0.214 m)(8.00 rad/s)2 =      54.9 N.

		Note that there will not be a horizontal force on the axle.



69.	If the cylinder rolls without slipping, the speed of the center of mass is v = Rw.  

	Because energy is conserved, from the top to the bottom of the incline we have

		0 = ?K + ?U;

		0 = [(!mv2 + !Iw2) – 0] + (0 – mgh),  or 

		!mv2 + !(!mR2)(v/R)2 = mgh, which gives

		v = ()gh)1/2 = [)(9.80 m/s2)(11.8 m)]1/2 =       12.4 m/s.

70.	(a)	The Earth rotates one revolution in one day, so we have

			wrotation	= Dq/Dt 

					= (2p rad)/(1 day)(24 h/day)(3600 s/h) = 7.27 ´ 10–5 rad/s.

		The kinetic energy of rotation is

			Krotation	= !Irotationwrotation2 = !(^Mr2)wrotation2

						= !(^)(6.0 ´ 1024 kg)(6.4 ´ 106 m)2(7.27 ´ 10–5 rad/s)2 =      2.6 ´ 1029 J.

	(b)	The Earth moves one revolution around the Sun in one year, so we have

			worbit	= Dq/Dt 

					= (2p rad)/(1 yr)(3.16 ´ 107 s/yr) = 1.99 ´ 10–7 rad/s.

		The kinetic energy of revolution is

			Krevolution	= !Irevolutionwrevolution2 = !(MR2)wrevolution2

						= !(6.0 ´ 1024 kg)(1.5 ´ 1011 m)2(1.99 ´ 10–7 rad/s)2 =      2.7 ´ 1033 J.

	We see that the kinetic energy of revolution is much greater than that of rotation, so the total energy is 

		Ktotal = 2.7 ´ 1033 J.



71.	The angular speed of the rolling ball is w = v/R.  The total kinetic energy will have a translational term for the center of mass and a term for the rotational energy about the center of mass: 

		Ktotal 	= Ktrans + Krot = !Mv2 + !Iw2 = !Mv2 + !(^MR2)(v/R)2 = 7Mv2/10 

				= 7(7.3 kg)(5.3 m/s)2/10 =      1.4 ´ 102 J.







72.	(a)	Because there is no acceleration of the center of mass, the net 

		force must be zero, so we have

			FT = Mg.

	(b)	You do work because the tension force you apply moves a distance.  

		This work increases the kinetic energy of the spool:

			W = ?K + ?U;

			W = (!Iw2 – 0) + 0 = !(!mR2)w2 =       #mR2w2.











�
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73.	(a)	If the pipe rolls without slipping, the speed of the 

		center of mass is v = Rw.  Because energy is conserved, 

		from the top to the bottom of the incline we have

			0 = ?K + ?U;

			0 = [(!mv2 + !Iw2) – 0] + (0 – mgD sin q),  or 

			!mv2 + !(mR2)(v/R)2 = mv2 = mgD sin q, which gives

			v 	= (gD sin q)1/2 = [(9.80 m/s2)(5.60 m) sin 21.5°]1/2 

				=       4.48 m/s.

	(b)	The kinetic energy is

			K 	= !mv2 + !Iw2 = !mv2 + !(mR2)(v/R)2 

				= mv2 = (0.0600 kg)(4.48 m/s)2 =      1.21 J.

	(c)	For the rolling pipe, the acceleration of the center of mass and the angular acceleration are related:

		 a = Ra.  From the force diagram we have

			FN = mg cos q,    and    mg sin q – Ffr = ma.

		For the angular acceleration around the center of mass, we have

			FfrR = Ia = (mR2)(a/R),   or   Ffr = ma.

		When we use this in the force equation, we get

			Ffr = !mg sin q.

		If the pipe is not to slip, the friction force must be less than the maximum static friction:

			Ffr = msFN;

			!mg sin q = msmg cos q;

			! tan 21.5° =  ms, which gives        ms = 0.197.



�

74.	(a)	We use the accelerating reference frame of the car.  The ball is 

		rolling, so aball = ra.  In the accelerating frame, we must add a 

		fictitious force – ma to the center of mass of the ball.  

		Thus for forces and torques, we have

			Ffr – ma = maball ;

			– Ffrr =  (2mr2/5)a = 2mraball/5.

		When we combine these, we get

			– 2maball/5 – ma = maball , which gives aball =      – 5a/7 (backward).

	(b)	Relative to the ground we have

			a¢ball = aball + a = (– 5a/7) + a =       2a/7 (forward).







�

75.	If the ball rolls without slipping, the speed of the center of 

	mass is v = r0w.  Because energy is conserved, for the motion 

	from  A to B  we have

		0 = ?K + ?U;

		0 = [(!mv2 + !Iw2) – 0] + (mgr0 – mgR0),  or 

		!mv2 + !(^mr02)(v/r0)2 = mg(R0 – r0), which gives

		v = [10g(R0 – r0)/7]1/2.
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76.	(a)	If the ball rolls without slipping, the 

		speed of the center of mass is v = r0w.  

		Because energy is conserved, for the 

		motion from A to C  we have

			0 = ?K + ?U;

			0 = (!mvC2 + !IwC2) – 0 + 

					mg[R0 – (R0 – r0) cos q] – mgR0 ,  or 

			!mvC2 + !(^mr02)(vC/r0)2 = mg(R0 – r0) cos q, 

		which gives

			vC 	= [10g(R0 – r0)(cos q)/7]1/2 

				= [10(9.80 m/s2)(0.260 m – 0.015 m)(cos 45°)/7]1/2 =       1.56 m/s.

	(b)	The initial location of the ball when it leaves the track is

			x0 = (R0 – r0) sin q = (0.260 m – 0.015 m) sin 45° = 0.173 m;

			y0 = R0 – (R0 – r0) cos q = 0.260 m – (0.260 m – 0.015 m) cos 45° = 0.0868 m;

		The ball hits the ground when its center is r0 above the ground.   For the projectile motion , we have

			y = y0 + (vC cos q)t + !(–g)t2;

			0.015 m = 0.0868 m + (1.56 m/s)(cos 45°)t – !(9.80 m/s2)t2,  or  

			(4.90 m/s2)t2 – (1.10 m/s)t – 0.0718 m = 0.

		This quadratic equation has the positive solution t = 0.278 s.  For the horizontal motion, we have

			D = x0 + (vC sin q)t = 0.173 m + (1.56 m/s)(sin 45°)(0.278 s) =       0.48 m.



77.	We let M be the mass of the car without the wheels and m the mass of a wheel of radius r.

	(a)	We assume the wheels are rolling, so v = rw.  The total kinetic energy is the sum of the 

		translational energy of the car and the rotational energy of the wheels:

			K 	= !Mv2 + 4(!mv2 + !Iw2) 

				= ![(M + 4m)v2 + 4(!mr2)(v/r)2] = !(M + 4m + 2m)v2

				= ![(1100 kg) + 2(35 kg)][(100 km/h)/(3.6 ks/h)]2 =      4.5 ´ 105 J.

	(b)	The fraction of the kinetic energy in the wheels is

			fraction 	= 4(!mv2 + !Iw2)/K = [2mv2 + 4(!mr2)(v/r)2]/K = 3mv2/K 

						= 3(35 kg)[(100 km/h)/(3.6 ks/h)]2/(4.5 ´ 105 J) =      0.18 (18%).

	(c)	When the car is towed, while the car is accelerating, there will be a friction force opposing the 

		linear motion of a wheel, causing the angular acceleration that starts the wheel turning.  Assuming 

		no slipping, for the angular motion of a wheel, we have

			t =  Ia = !mr2(a/r);

			Ffrr = !mra,  or  Ffr = !ma.

		For the linear motion of the car, we have

			Ftow – 4Ffr = (M + 4m)a;

			Ftow – 4(!ma) = (M + 4m)a;

			2000 N – 4(!)(35 kg)a = (1100 kg)a, which gives a =      1.71 m/s2.

	(d)	If we ignore the rotation of the tires (set I = 0), for the linear motion of the car we have

			Ftow = (M + 4m)a;

			2000 N = (1100 kg)a, which gives a = 1.82 m/s2.

		Thus the error is

			error = (1.82 m/s2 – 1.71 m/s2)(100)/(1.71 m/s2) =      6.4%.





78.	From Example 10–23, we see that the acceleration of the center of mass is %g and is constant.  Thus we can find the speed from

		v2 = v02 + 2ah;

		v2 = 0 + 2(%g)h, which gives v =      ()gh)1/2.









79.	(a)	From Example 10–24, we see that while the ball is slipping, the acceleration of the center of mass 

		is – mkg and is constant.  The ball slips for a time T = 2v0/7mkg, so we find the distance from

			xslip = v0t + !at2 

				= v0(2v0/7mkg) + !(– mkg)(2v0/7mkg)2 =      12v02/49mkg.

	(b)	Once the ball starts rolling at time T, the linear speed is constant

			v = v0 + at = v0 + (– mkg)(2v0/7mkg) =       5v0/7.

		We can find the angular speed from

			w = w0 + at,  or from

			w = v/R = (5v0/7)/R =       5v0/7R.



80.	(a)	Because the surface of the wheel that initially touches the ground is moving backward, the 

		friction force on the wheel is       forward        to oppose the slipping.

	(b)	For the linear motion of the center of mass, we have

			?F = ma;

			mkMg = Ma, which gives a = mkg.

		Thus the speed is

			v = v0 + at = 0 + (mkg)t = mkgt.

		For the angular motion about the center of mass, we have

			?t = ICMaCM;

			– mkMgR = MR2a, which gives a = – 2mkg/R.

		Thus the angular speed is

			w = w0 + at = w0 + (– 2mkg/R)t.

		We see that v increases and w decreases.  The wheel will start rolling when

			v = wR;

			mkgT = [w0 + (– 2mkg/R)T]R, which gives T =      Rw0/3mkg.

	(c)	Once the ball starts rolling at time T, the linear speed is constant

			v = v0 + at = 0 + (mkg)(Rw0/3mkg) =        Rw0/3.
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81.	(a)	For the linear motion of the center of mass, we have

			?F = ma;

			Mg sin q – mkMg cos q = Ma, which gives 

			a 	= (sin q – mkcos q)g 

				= [sin 33.0° – (0.10) cos 33.0°](9.80 m/s2) 

				= 4.52 m/s2=      4.5 m/s2.

		For the angular motion about the center of mass, we have

			?t = ICMaCM;

			(mkMg cos q)R0 = ^MR02a, which gives 

			a 	= 5(mkg cos q)/2R0 

				= 5(0.10)(9.80 m/s2)(cos 33.0°)/2(0.110 m) 

				= 18.7 rad/s2 =      19 rad/s2.

	(b)	The acceleration of the center of mass is constant.  Thus we can find the speed from

			v2 = v02 + 2ax;

			v2 = 0 + 2(4.52 m/s2)(2.0 m)/sin 33.0°,  which gives v = 5.76 m/s =       5.8 m/s.

	(c)	We find the time to reach the bottom of the incline from

			v = v0 + at;

			5.76 m/s = 0 + (4.52 m/s2)t, which gives t = 1.28 s.

		At this time the angular speed is

			w = w0 + at = 0 + (18.7 rad/s2)(1.28 s) = 23.9 rad/s.

		The total kinetic energy at the bottom is

			K 	= !Mv2 + !ICMw2 = !(0.850 kg)(5.76 m/s)2 + ![^(0.850 kg)(0.110 m)2](23.9 rad/s)2 

				=       15.3 J.

	(d)	The loss in mechanical energy is

			– ?E 	= – ?K – ?U = Ki – Kf + Ui – Uf  

					= (0 – 15.3 J) + (0.850 kg)(9.80 m/s2)(2.0 m) – 0 =       1.4 J. 

	(e)	When there is no slipping, we use the results from Example 10-21:

			a = 5g(sin q)/7 = 5(9.80 m/s2)(sin 33.0°)/7 = 3.81 m/s2 =       3.8 m/s2.

			v = (10gH/7)1/2 = [10(9.80 m/s2)(2.0 m)/7]1/2 = 5.29 m/s =       5.3 m/s.

			w = v/R0 = (5.29 m/s)/(0.110 m) = 48.1 rad/s.

			K 	= !Mv2 + !ICMw2 = !(0.850 kg)(5.29 m/s)2 + ![^(0.850 kg)(0.110 m)2](48.1 rad/s)2 

				=       16.7 J.

			– ?E 	= – ?K – ?U = Ki – Kf + Ui – Uf  

					= (0 – 16.7 J) + (0.850 kg)(9.80 m/s2)(2.0 m) – 0 =       0. 

		As expected, there is no loss in mechanical energy when rolling.

	(f)	For a box sliding down the incline, the linear equations will be the same as for the slipping sphere.  

		Thus the acceleration and speed will be the same:

			a = 4.5 m/s2; v = 5.8 m/s.

		There will be no rotational kinetic energy, so the kinetic energy will be less:

			K = !Mv2 = !(0.850 kg)(5.76 m/s)2 =       14.1 J.
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82.	We take the positive direction in the direction of motion.  

	For the linear motion of the center of mass, we have

		?F = ma;

		– Ffr = Ma. 

	For the angular motion about the center of mass, we have

		?t = ICMaCM;

		– ¬FN + Ffrr0 = ^Mr02a.

	When we use the rolling condition, a = r0a, and the result 

	from the linear motion, we get

		– ¬FN + Ffrr0 = ^Mr02a = ^Mr0a = – ^Ffrr0, which gives 

		¬FN = 7Ffrr0/5,   or   tN = 7tfr/5.





83.	The subtended angle in radians is the size of the object divided by the distance to the object:

		qSun = 2RSun/rSun = 2(6.96 ´ 105 km)/(149.6 ´ 106 km) =        9.30 ´ 10–3 rad  (0.53°);

		qMoon = 2RMoon/rMoon = 2(1.74 ´ 103 km)/(384 ´ 103 km) =        9.06 ´ 10–3 rad  (0.52°).

	These are almost equal, so eclipses can occur.



84.	(a)	We choose the reference level for gravitational potential energy at 

		the initial position at the bottom of the incline.  The kinetic energy 

		will be the translational energy of the center of mass and the 

		rotational energy about the center of mass.  Because there is no work 

		done by friction while the cylinder is rolling, for the work-energy 

		principle we have

			Wnet = ?K + ?U;

�

			0 = [0 – (!Mv2 + !Iw2)] + Mg(d sin q – 0).

		Because the cylinder is rolling, v = Rw.  For a hoop the moment of 

		inertia is MR2.  Thus we get

			!Mv2 + !(MR2)(v2/R2) = Mv2 = Mgd sin q;

			(2.10 m/s)2 = (9.80 m/s2)d sin 21.5°,  which gives d =         1.23 m.

	(b)	We find the time to go up the incline from the linear motion (which has constant acceleration):

			d = !(v + 0)t;

			1.23 m = !(2.10 m/s)t, which gives t = 1.17 s.

		Because there are no losses to friction, the time to go up the incline will be the same as the time to 

		return.  The total time will be

			T = 2t =        2.34 s.



85.	If there is no slipping, the tangential speed of the outer edge of the wheel is the tangential speed of the outer edge of the roller:

		v = R1w1 = R2w2 , which gives      w1/w2 = R2/R1. 



86.	For the same side of the Moon to always face the Earth, the angular velocity of the orbital motion and the angular velocity of the spinning motion must be the same.  We use r for the radius of the Moon and R for the distance from the Earth to the Moon.  For the ratio of angular momenta, we have

		Lspin/Lorbital 	= ^Mr2w/MR2w 

					= ^(r/R)2 = ^[(1.74 ´ 106 m)/(3.84 ´ 108 m)]2 =         8.21 ´ 10–6.
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87.	Because the spool is rolling, vCM = Rw.  The velocity of the rope at the 

	top of the spool, which is also the velocity of the person, is

		v = Rw + vCM = 2Rw = 2vCM.

	Thus in the time it takes for the person to walk a distance ¬, the center 

	of mass will move a distance ¬/2.  Therefore, the length of rope that 

	unwinds is

		¬rope = ¬ – (¬/2) =       ¬/2.

	The center of mass will move a distance      ¬/2.
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88.	After 3.0 s the velocity of the CM will be

		vCM = 0 + aCMt = (1.00 m/s2)(3.0 s) = 3.0 m/s.

	Because the wheel is rolling, vCM = Rw.  

	The velocity at the top of the wheel is

		v = Rw + vCM = 2Rw = 2vCM = 2(3.0 m/s) =       6.0 m/s.













89.	Initially there is no angular momentum about the vertical axis.  Because there are no torques about this vertical axis for the system of platform and wheel, the angular momentum about the vertical axis is zero and conserved.  We choose up for the positive direction.

	(a)	From the conservation of angular momentum about the vertical axis, we have 

			L = 0 = IPwP + IWwW , which gives       wP = – (IW/IP)wW (down).

	(b)	From the conservation of angular momentum about the vertical axis, we have 

			L = 0 = IPwP + IWwW cos 60°, which gives       wP = – (IW/2IP)wW (down).

	(c)	From the conservation of angular momentum about the vertical axis, we have 

			L = 0 = IPwP + IW(– wW) , which gives       wP = (IW/IP)wW (up).

	(d)	Because the total angular momentum is zero, when the wheel stops, the platform and person 

		must also stop.  

		Thus       wP = 0.
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90.	We select a differential element of the rod of length dx a 

	distance x from the center of the rod.  Because the mass per 

	unit length changes uniformly from l0 to 2l0 over the 

	length of the rod, its rate of change is l0/¬.  At x = 0 the 

	mass per unit length is *l0 , so the mass per unit length 

	as a function of x is

		l = (l0/¬)x + *l0 ,

	and the mass of the element is  dm = l dx.  

	The total mass of the rod is

		�

		

	We integrate from x = – ¬/2 to x = ¬/2 to find the moment of 

	inertia of the rod:

		�



91.	(a)	If we let d represent the spacing of the teeth, which is the same on both sprockets, we can relate 

		the number of teeth to the radius for each wheel:

			NFd = 2pRF ,   and  NRd = 2pRR , which gives NF/NR = RF/RR.

		The linear speed of the chain is the tangential speed for each socket:

			v = RFwF = RRwR.

		Thus we have

			wR/wF = RF/RR = NF/NR.

	(b)	For the given data we have

			wR/wF = 52/13 =       4.0.

	(c)	For the given data we have

			wR/wF = 42/28 =       1.5.



















92.	(a)	The angular acceleration of the ball-arm system is
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			a = atan/d1 = (7.0 m/s2)/(0.30 m) = 23.3 rad/s2. 

		Because we ignore the mass of the arm, for the moment of 

		inertia we have

			I = mballd12 = (1.00 kg)(0.30 m)2 = 0.090 kg · m2.

		Thus we find the required torque from

			t 	= Ia 

				= (0.090 kg · m2)(23.3 rad/s2) =        2.1 m · N.

	(b)	Because the force from the triceps muscle is perpendicular 

		to the line from the axis, we find the force from

			F = t/d2 = (2.1 m · N)/(0.025 m) =       84 N.
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93.	(a)	The final angular velocity of the arm and ball is

			w = v/d1 = (10.0 m/s)/(0.30 m) = 33.3 rad/s.

		We find the angular acceleration from

			w = w0 + at;

			33.3 rad/s = 0 + a(0.22 s), which gives a =       1.5 ´ 102 rad/s2.

	(b)	For the moment of inertia of the ball and arm we have

			I 	= mballd12 + @marmd12 

				= (1.00 kg)(0.30 m)2 + @(3.4 kg)(0.30 m)2  = 0.192 kg · m2.

		Because the force from the triceps muscle is perpendicular 

		to the line from the axis, we find the force from

			F = t/d2 = Ia /d2 = (0.192 kg · m2)(1.52 ´ 102 rad/s2)/(0.025 m) =       1.2  ´ 103 N.



94.	For the accelerating motion, we have

		tapplied 	= Ia = I(w – w0)/t = @mL2(w – w0)/t 

				= @(2.2 kg)(0.95 m)2[(3.0 rev/s)(2p rad/rev) – 0]/(0.20 s) =       62 m · N.



95.	(a)	We find the angular acceleration from 

			q  = w0t + !at2; 

			(20 rev)(2p rad/rev) = 0 +  !a[(1 min)(60 s/min)]2, which gives        a = 0.070 rad/s2.

	(b)	We find the final angular speed from

			w  = w0 + at = 0 + (0.070 rad/s2)(60 s) = 4.2 rad/s =        40 rpm.

 

96.	If there are no external torques, angular momentum will be conserved:

		L = Idiskw1 + Irod(0) = (Idisk + Irod)w2 ;

		(Mr2/2)w1 = [(Mr2/2) + (ML2/12)]w2 = {(Mr2/2) + [M(2r)2/12]}w2 , which gives

		w2 = (3/5)w1 = (3/5)(7.0 rev/s) =        4.2 rev/s.



97.	We find the required constant angular acceleration from

		w = w0 + at;

		(30 rev/min)(2p rad/rev)(1 min/60 s) = 0 + a (5.0 min)(60 s/min), which gives a = 0.0105 rad/s2.

	The moment of inertia of the solid cylinder is !MR2.  Because we have four forces creating the torque that produces the required acceleration, we have

		t = Ia ;

		4FR = !MR2a,  or 

		F = MRa/8 = (2000 kg)(3.0 m)(0.0105 rad/s2)/8 =         7.9 N.
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98.	We choose the reference level for gravitational potential energy at 

	the bottom.  The kinetic energy will be the translational energy of 

	the center of mass and the rotational energy about the center of mass.  

	(a)	Because there is no work done by friction while the sphere 

		is rolling, for the work-energy principle we have

			Wnet = ?K + ?U;

			0 = (!Mv2 + !Iw2 – 0) + Mg(0 – d sin q).

		Because the sphere is rolling, v = Rw.  The rotational inertia is 

		^MR2.  Thus we get

			!Mv2 + !(^MR2)(v/R)2 = Mgd sin q, which gives 

			v = (10gd sin q/7)1/2,     and     w = (10gd sin q/7)1/2/R.

		When we use the given data, we get

			v = [10(9.80 m/s2)(10.0 m) sin 30°/7]1/2 =       8.37 m/s,          and 

			w = v/R = (8.37 m/s)/(0.200 m) =       41.8 rad/s.

	(b)	For the ratio of kinetic energies we have

			Ktrans/Krot	= !Mv2/!Iw2  

						= Mv2/(^MR2)(v/R2)2  =        2.50.

	(c)	None of the answers depends on the mass; the rotational speed depends on the radius.



99.	We convert the speed: (90 km/h)/(3.6 ks/h) = 25 m/s.

	(a)	We assume that the linear kinetic energy that the automobile acquires during each acceleration 

		is not regained when the automobile slows down.   For the work-energy principle applied to the 

		300-km trip we have

			Wnet = ?K + ?U;

			– FfrD = [20(!Mv2) – Kflywheel] + 0,  or  

			Kflywheel = (20)!(1400 kg)(25 m/s)2 + (500 N)(300 ´ 103 m) = 1.6 ´ 108 J.

	(b)	We find the angular velocity of the flywheel from

			Kflywheel = !Iw2 = !(!mR2)w2;

			1.6 ´ 108 J = #(240 kg)(0.75 m)2w2,  which gives w =        2.2 ´ 103 rad/s.  

	(c)	We find the time from

			t = Kflywheel /P = (1.6 ´ 108 J)/(150 hp)(746 W/hp) = 1.43 ´ 103 s =       24 min. 
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100.	Each wheel supports one-quarter of the weight.  For the wheels to spin, the 

	applied torque must be greater than the maximum frictional torque produced 

	by the static friction from the pavement:

		tapplied 	= Ffrr = msFNr = (0.75)#(1250 kg)(9.80 m/s2)(0.33 m) 

				=      7.6 ´ 102 m · N.
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101.	We choose the clockwise direction as positive.  

	(a)	With the force acting, we write St  = Ia about the axis 

		from the force diagram for the roll:

			Fr – tfr = Ia1 ;

			(3.2 N)(0.076 m) – 0.11 m · N = (2.9 ´ 10–3 kg · m2)a1 , 

		which gives a1 = 45.9 rad/s2.

		We find the angle turned while the force is acting from 

		  	q1  	= w0t + !a1t12 

				= 0 +  !(45.9 rad/s2)(1.3 s)2 = 38.8 rad.

		The length of paper that unrolls during this time is

			s1 = rq1 = (0.076 m)(38.8 rad) =       2.9 m.	

	(b)	With no force acting, we write St  = Ia about the axis 

		from the force diagram for the roll:

			– tfr = Ia2 ;

			– 0.11 m · N = (2.9 ´ 10–3 kg · m2)a2 , 

		which gives a2 = – 37.9 rad/s2.

		The initial velocity for this motion is the final velocity from part (a):

			w1 = w0 + a1t1 = 0 + (45.9 rad/s2)(1.3 s) = 59.7 rad/s.

		We find the angle turned after the force is removed from 

		  	w22 = w12 + 2a2q2 ;

			0 = (59.7 rad/s)2 + 2(– 37.9 rad/s2)q2 , which gives q2 = 47.0 rad.

		The length of paper that unrolls during this time is

			s2 = rq2 = (0.076 m)(47.0 rad) =       3.6 m.
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102.	We assume that m2 > m1 and choose the coordinates shown on 

	the force diagrams.  Note that we take the positive direction 

	in the direction of the acceleration for each object.  Because the

	linear acceleration of the masses is the tangential acceleration 

	of the rim of the pulley, we have

		a = atan = aR0. 

	We write SFy = may for m2:

		m2g – FT2 = m2a.

	We write SFy = may for m1:

		FT1 – m1g = m1a.

	We write St = Ia for the pulley about its axle:

		FT2R0 – FT1R0 = Ia = Ia/R0 ,  or   FT2 – FT1 =  Ia/R02.

	If we add the two force equations, we get

		FT1 – FT2 =  (m1 + m2)a + (m1 – m2)g.

	When we add these two equations, we get

		a = (m2 – m1)g/(m1 + m2 + I/R02).

	If the moment of inertia of the pulley is ignored, from the torque 

	equation, we see that the two tensions will be equal.  

	For the acceleration, we set I = 0 and get

		a0 = (m2 – m1)g/(m1 + m2).

	Thus we see that         a0 > a.



















103.	(a)	By walking to the edge, the moment of inertia of the person changes.  Because the system of 

		person and platform is isolated, angular momentum will be conserved:

			L = (Iplatform + Iperson1)w1 = (Iplatform + Iperson2)w2 ;

			[1000 kg · m2 + (75 kg)(0)2](2.0 rad/s) = [1000 kg · m2 + (75 kg)(3.0 m)2]w2 , which gives

			w2 =       1.2 rad/s.

	(b)	For the kinetic energies, we have

			K1 = !(Iplatform + Iperson1)w12 = !(1000 kg · m2 + 0)(2.0 rad/s)2 =        2.0 ´ 103 J;

			K2 = !(Iplatform + Iperson2)w22 = ![1000 kg · m2 + (75 kg)(3.0 m)2](1.2 rad/s)2 =        1.2 ´ 103 J.

		Thus there is a        loss of 8.0 ´ 102 J, a decrease of 40%.
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104.	The wheel will roll about the contact point A.  

	We write St = Ia about the point A:

		F(R – h) + FN1[R2 – (R – h)2]1/2 – Mg[R2 – (R – h)2]1/2 = IAa. 

	When the cylinder does roll over the curb, contact with 

	the ground is lost and FN1 = 0.  Thus we get

		F 	= {IAa + Mg[R2 – (R – h)2]1/2}/(R – h) 

			= [IAa/(R – h)] + [Mg(2Rh – h2)1/2/(R – h)].

	The minimum force occurs when a = 0:

		Fmin = Mg[h(2R – h)]1/2/(R – h).
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105.	(a)	The speed of the block is the tangential speed 

		of the cylinder, so v = Rw.  For the system of 

		block and cylinder, if there is no friction, energy 

		is conserved.  After the block has moved a 

		distance D, we have

			0 = ?K + ?U;

			0 = [(!mv2 + !I1w2) – 0] + (0 – mgD sin q); 

			!mv2 + !(!MR2)(v/R)2 = mgD sin q; 

			!mv2 + #Mv2 = mgD sin q;

			[!(3.0 kg) + #(30 kg)]v2 = 

					(3.0 kg)(9.80 m/s2)(1.80 m) sin 30°,

		which gives

			v =       1.7 m/s.

	(b)	From the force diagram for the block we see that

			Ffr2 = mFN2 = mmg cos q.

		For the cylinder, we assume a single vertical normal force.  Because there is no linear acceleration 

		of the center of mass, we have

			FN1 = Mg + FT sin q.

		Because the block accelerates down the plane, FT < mg sin q, and m = 0.1M.  Thus we ignore the 

		contribution of FT sin q (and we are justified in ignoring the horizontal component of FN1) to get

			FN1 ˜ Mg, and Ffr1 = mFN1 = mMg.

		When the block moves a distance D, the surface of the rotating cylinder will move a distance D 

		through the depression.  For the work-energy theorem we have

			Wfr = ?K + ?U;

			– Ffr1D – Ffr2D = [(!mv2 + !I1w2) – 0] + (0 – mgD sin q); 

			– m(M + m cos q)gD = !mv2 + #Mv2 – mgD sin q;

			– (0.035)[30 kg + (3.0 kg) cos 30°](9.80 m/s2)(1.80 m) = 

									[!(3.0 kg) + #(30 kg)]v2 – (3.0 kg)(9.80 m/s2)(1.80 m) sin 30°,

		which gives

			v =       0.84 m/s.
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106.	The mass removed from the hole is

		mhole = (M/pR02)pR12 = (R1/R0)2M.

	When we subtract the moment of inertia of the hole about 

	the center (found using the parallel-axis theorem), the 

	moment of inertia about the center is

		I 	= Isolid – Ihole = !MR02 – (!mholeR12 + mholeh2)

			= !MR02 – M(R1/R0)2(!R12 + h2) 

			=      !M[R02 – (R14/R02) – (2R12h2/R02)].









107.	(a)	At the top of the loop, if the marble stays on the track, the 

		normal force and the weight provide the radial acceleration:

			FN + mg = mv2/R0.

		The minimum value of the normal force is zero, so we find the 
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		minimum speed at the top from

			mg = mvmin2/R0 ,  or  vmin2 = gR0.

		Because the marble is rolling, the corresponding angular velocity at 

		the top is wmin = vmin/r0 , so the minimum kinetic energy at the top is

			Kmin 	= !mvmin2 + !Iwmin2 

					= !mvmin2 + !(^mr02)(vmin/r0)2 = 7mvmin2/10 = 7mgR0/10.

		If there are no frictional losses, we use energy conservation from the 

		release point to the highest point of the loop:

			Ki + Ui = Kf + Uf;

			0 + mghmin =  Kmin + mg2R0 = 7mgR0/10 + 2mgR0 , which gives       hmin = 2.7R0.

	(b)	At the top of the loop, if the marble stays on the track, the 

		normal force and the weight provide the radial acceleration:

			FN + mg = mv2/(R0 – r0).

		The minimum value of the normal force is zero, so we find the minimum speed at the top from

			mg = mvmin2/(R0 – r0),  or  vmin2 = g(R0 – r0).

		Because the marble is rolling, the corresponding angular velocity at the top is wmin = vmin/r0 , 

		so the minimum kinetic energy at the top is

			Kmin 	= !mvmin2 + !Iwmin2 

					= !mvmin2 + !(^mr02)(vmin/r0)2 = 7mvmin2/10 = 7mg(R0 – r0)/10.

		If there are no frictional losses, we use energy conservation from the release point to the highest 

		point of the loop:

			Ki + Ui = Kf + Uf;

			0 + mghmin =  Kmin + mg(2R0 – r0) = 7mg(R0 – r0)/10 + mg(2R0 – r0), 

		which gives       hmin = 2.7R0 – 1.7r0 .
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108.	(a)	The disk will move in the       direction of the force.

	(b)	For the linear motion of the center of mass, we have

			?F = ma;

			F = Ma, which gives 

			a = F/M = (30 N)/(21.0 kg) = 1.43 m/s2.

		The acceleration of the center of mass is constant.  

		Thus we can find the speed from

			v2 = v02 + 2ax;

			v2 = 0 + 2(1.43 m/s2)(9.0 m),  which gives v =       5.1 m/s.

	(c)	For the angular motion about the center of mass, we have

			?t = ICMaCM;

			FR =  !MR2a, which gives 

			a = 2F/MR = 2(30 N)/(21.0 kg)(0.850 m) = 3.36 rad/s2.

		We can find the time for the motion from

			x = v0t + !at2;

			9.0 m = 0 + !(1.43 m/s2)t2, which gives t = 3.55 s.

		At this time the angular speed is

			w = w0 + at = 0 + (3.36 rad/s2)(3.55 s) = 11.9 rad/s =       12 rad/s.

		(Note that v ? Rw, because the disk is not rolling.)

	(d)	The angle that the disk has turned through in this time is

			q = w0t + !at2 = 0 + !(3.36 rad/s2)(3.55 s)2 =  21.2 rad.

		The length of string that has unwrapped is the distance the rim of the disk has rotated:

			s = Rq = (0.850 m)(21.2 rad) =        18 m.
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109.	(a)	The yo-yo is considered as three cylinders, with a total mass of

			M = 2Mdisk + Mhub = 2(0.050 kg) + 0.0050 kg = 0.105 kg,

		and a moment of inertia of the yo-yo about its axis of

			I 	= 2(!MdiskRdisk2) + !MhubRhub2 

				= (0.050 kg)[!(0.075 m)]2 + !(0.0050 kg)[!(0.010 m)]2 

				= 7.04 ´ 10–5 kg · m2.

		Because the yo-yo is rolling about a point on the rim of the hub,  

			vCM = Rhubw.  

		The kinetic energy of the yo-yo is the translational kinetic energy 

		of the CM and the rotational kinetic energy about the CM.  Because 

		the top of the string does not move, the tension in the string does no 

		work.  Thus energy is conserved:

			Ki + Ui = Kf + Uf ;

			0 + 0 =  !MvCM2 + !Iw2 + Mg(– L);

			!MvCM2 + !I(vCM/Rhub)2 = MgL; 

			!{0.105 kg + [(7.04 ´ 10–5 kg · m2)/(0.0050 m)2]}vCM2  = (0.105 kg)(9.80 m/s2)(1.0 m), 

		which gives vCM =        0.84 m/s.

	(b)	For the fraction of the kinetic energy that is rotational, we have

			Krot/(Ktrans + Krot)	= !Iw2 /(!MvCM2 + !Iw2 ) 

								= Iw2/[M(Rhubw)2 + Iw2] = 1/[(MRhub2/I) + 1] 

								= 1/{[(0.105 kg)(0.0050 m)2/(7.04 ´ 10–5 kg · m2)] + 1} =          0.96.
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