CHAPTER 11 – General Rotation

�



1.	(a)	For the magnitudes of the vector products we have

			½i ´ i½ = ½i½ ½i½ sin 0° = 0;

			½j ´ j½ = ½j½ ½j½ sin 0° = 0;

			½k ´ k½ = ½k½ ½k½ sin 0° = 0.

	(b)	For the magnitudes of the vector products we have

			½i ´ j½ = ½i½ ½j½ sin 90° = (1)(1)(1) = 1;

			½i ´ k½ = ½i½ ½k½ sin 90° = (1)(1)(1) = 1;

			½j ´ k ½ = ½j½ ½k½ sin 90° = (1)(1)(1) = 1.

		From the right hand rule, if we rotate our fingers from i into j, our thumb points in the direction of k.  

		Thus i ´ j  = k.

		Similarly, when we rotate i into k, our thumb points along – j.  Thus i ´ k  = – j.

		When we rotate j into k, our thumb points along i.  Thus j ´ k  = i.



2.	(a)	We have A = – Ai and B = Bk.  For the direction of A ´ B we have

			– i ´ k  = – (– j) =  j,       the positive y-axis.

	(b)	For the direction of B ´ A we have

			k ´ (– i)  = – (k ´ i) = – (j) = –  j,       the negative y-axis.

	(c)	For the magnitude of A ´ B we have

			½A ´ B½ = ½A½ ½B½ sin 90° =       AB.

		For the magnitude of B ´ A we have

			½B ´ A½ = ½B½ ½A½ sin 90° =       AB.

		This is expected, because B ´ A = – A ´ B.
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3.	The magnitude of the tangential acceleration is atan = ar.  

	From the diagram we see that a, r and atan are all perpendicular, 

	and rotating a into r gives a vector in the direction of atan .  

	Thus we have atan = a ´ r.

	The magnitude of the radial acceleration is aR = w2r = wrw = wv.  

	From the diagram we see that w, v and aR are all perpendicular, 

	and rotating w into v gives a vector in the direction of aR.  

	Thus we have aR = w ´ v.



4.	When we use the component forms for the vectors, we have

		A ´ (B + C)  = [Ay(Bz + Cz) – Az(By + Cy)]i + [Az(Bx + Cx) – Ax(Bz + Cz)]j  + [Ax(By + Cy) – Ay(Bx + Cx)]k 

					= (AyBz – AzBy)i + (AzBx – AxBz)j + (AxBy – AyBx)k + 

									(AyCz – AzCy)i + (AzCx – AxCz)j + (AxCy – AyCx)k

					= A ´ B + A ´ C.



5.	For the limiting process we have 

		�

	The last term is dropped because it is the product of two differentials.

















6.	(a)	When we use the component forms for the vectors, we have

			A ´ B 	= (Axi + Ayj + Azk) ´ (Bxi + Byj + Bzk) = AxBx(i ´ i) + AxBy(i ´ j) + AxBz(i ´ k) + 

							AyBx(j ´ i) + AyBy(j ´ j) + AyBz(j ´ k) + AzBx(k ´ i) + AzBy(k ´ j) + AzBz(k ´ k) 

					= 0 + AxBy(k) + AxBz(– j) + AyBx(– k) + 0 + AyBz(i) + AzBx(j) + AzBy(– i) + 0 

					= (AyBz – AzBy)i + (AzBx – AxBz)j  + (AxBy –  AyBx)k. 

	(b)	When we use the rules for evaluating a determinant, we get

			�



7.	(a)	For the vectors A = 7.0i – 3.5j and B = – 8.5i + 7.0j + 2.0k, we have

			�
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	(b)	The magnitudes of the vectors are

			A = [(7.0)2 + (– 3.5)2]1/2 = 7.83;

			B = [(– 8.5)2 + (7.0)2 + (2.0)2]1/2 = 11.2;

			½A ´ B½ = [(– 7.0)2 + (– 14.0)2 + (19.3)2]1/2 = 24.8.

		We find the angle between A and B from

			½A ´ B½ = ½A½ ½B½ sin q ;

			24.8 = (7.83)(11.2) sin q, which gives  sin q  = 0.283, 

		which gives q  =  16°, 164°.  From the diagram, we see that q  =      164°.







8.	We choose the z-axis as the axis of rotation.  If we choose t = 0 

	when the position vector lies in the xz-plane, we have

		w = wk;

		r = r[(cos wt)i + (sin wt)j] + zk.

	Thus the velocity is

		v = dr/dt = rw[(– sin wt)i + (cos wt)j].

	For the vector product of w and r  we have
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		w ´ r  = wk ´ {r[(cos wt)i + (sin wt)j] + zk} = rw[(cos wt)j – (sin wt)i] = v.

 	We see that O can be anywhere on the rotation axis.  If O is not on the axis, we can write the position vector as r¢ = r – b, where b is the position of O relative to the previous origin.  Thus we have

		v¢ = dr¢/dt = dr/dt = v; but

		w ´ r¢ = w ´ (r – b) = v – (w ´ b) ? v.

	Thus O must be on the axis.



9.	When we use the component forms for the vectors, we have

		A · (B ´ C)  = Ax(ByCz – BzCy) + Ay(BzCx – BxCz) + Az(BxCy – ByCx)

					= AxByCz – AxBzCy + AyBzCx – AyBxCz + AzBxCy – AzByCx.

		B · (C ´ A)  = Bx(CyAz – CzAy) + By(CzAx – CxAz) + Bz(CxAy – CyAx)

					= BxCyAz – BxCzAy + ByCzAx – ByCxAz + BzCxAy – BzCyAx = A · (B ´ C).

		C · (A ´ B)  = Cx(AyBz – AzBy) + Cy(AzBx – AxBz) + Cz(AxBy – AyBx)

					= CxAyBz – CxAzBy + CyAzBx – CyAxBz + CzAxBy – CzAyBx = A · (B ´ C).

	Note that if the three vectors lie in a plane, B ´ C will be perpendicular to the plane and thus to A, so

		A · (B ´ C) = 0.





10.	For the torque we have

		t = r ´ F = [(4.0i + 8.0j + 6.0k) m] ´ [(16.0j – 4.0k) N]

				= {[(8.0)(– 4.0) – (6.0)(16.0)]i + [0 – (4.0)(– 4.0)]j + [(4.0)(16.0) – 0]k} m · N

				=       (– 128i + 16j + 64k) m · N.



11.	We write the force as

		F = F[(cos q )i + (sin q )j] = (188 N)(cos 33.0° i + sin 33.0° j).

	For the torque we have

		t = r ´ F = [(0.220i + 0.335j) m] ´ [(188 N)(cos 33.0° i + sin 33.0° j)]

				= (188 N)[(0.220 m)(sin 33.0°) – (0.335 m)(cos 33.0°)]k 

				=       – (30.3 m · N)k  (in – z-direction).



12.	(a)	For the torque we have

			t = r ´ F = [(0.215 m)i] ´ [(22.8 N)j – (21.6 N)k]

					= [0 – 0]i + [0 – (0.215 m)(– 21.6 N)]j + [(0.215 m)(22.8 N) – 0]k 

					= (4.64 m · N)j  + (4.90 m · N)k.

		For the magnitude we have

			t = [(4.64 m · N)2 + (4.90 m · N)2]1/2 = 6.75 m · N.

		The torque lies in the yz-plane.  We find the angle from the y-axis from

			tan q = tz/ty = (4.90 m · N)/(4.64 m · N) = 1.056, which gives q = 46.6°.

		Thus we have

			t = 6.75 m · N in yz-plane 46.6° from y-axis.

	(b)	The angular acceleration must be along the z-axis: a = ak.  Thus we see that the torque is

		not parallel       to a.

		The net torque must be along the z-axis, so the constraint of the axis means there is an additional 

		torque provided by the bearings.



13.	For the torque we have

		t = r ´ F = [(8.0 m)j + (6.0 m)k] ´ [(± 2.4 kN)i – (3.0 kN) j]

				= [0 – (6.0 m)(– 3.0 kN)]i + [(6.0 m)(± 2.4 kN) – 0]j + [0 – (8.0 m)(± 2.4 kN)]k 

				=       (18 m · kN)i ± (14 m · kN)j — (19 m · kN)k.



14.	For the angular momentum we have

		¬ = r ´ p = (xi + yj + zk) ´ (pxi + pyj + pzk) =       (ypz – zpy)i + (zpx – xpz)j + (xpy –  ypx)k. 



15.	For a particle moving in a circle the magnitude of the angular momentum is ¬ = mvr, and the moment of inertia is I = mr2..

	The kinetic energy is

		K = mv2/2 = m(¬/mr)2/2 =  ¬2/2mr2 =  ¬2/2I.



16.	(a)	About the origin O we have
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			¬ = r ´ p = r ´ mv = r^mv into page =       mvd into page.

	(b)	About the origin O¢ we have

			¬ = r¢ ´ p = r¢ ´ mv = r¢mv sin 180° =        0.







17.	We let d be the displacement of the second particle relative to the first particle.  Thus r1 = r2 + d.  

	For the angular momentum we have

		¬ = r1 ´ p1 + r2 ´ p2 = (r2 + d) ´ p + r2 ´ (– p) = d ´ p,

	which is independent of the choice of origin.









18.	For the angular momentum we have

		¬ 	= r ´ mv = m(r ´ v)  

			= (0.060 kg)[(7.0 m)i + (– 6.0 m)j] ´ [(2.0 m/s)i – (8.0 m/s) k] 

			= (0.060 kg){[(– 6.0 m)(– 8.0 m/s) – 0]i + [0 – (7.0 m)(– 8.0 m/s)]j + [0 – (– 6.0 m)(2.0 m/s)]k}

			=       (2.9i + 3.4j + 0.72k) kg · m2/s.



19.	For the angular momentum we have

		�



20.	(a)	The force on the falling particle is mg.  If we use the other particle as the origin, the magnitude 

		of the torque acting on m is

			t = r^mg =       mgd (constant).

		The direction is horizontal, perpendicular to the table edge.

	(b)	The particle falls with a constant acceleration from rest, so the velocity is v = gt (down).  

		For the magnitude of the angular momentum we have

			¬ = r^mv =       mgtd.

		The direction is horizontal, perpendicular to the table edge.

	(c)	The rate of change of the angular momentum is

			d¬/dt = mgd = t.



21.	(a)	The moment of inertia of the system about one end is

			I = m(¬/3)2 + m(2¬/3)2 + m¬2 + (M¬2/3) = [(14m/9) + (M/3)]¬2.

		The kinetic energy is

			K = Iw2/2 = [(14m/9) + (M/3)]¬2w2/2 =      [(7m/9) + (M/6)]¬2w2.

	(b)	For the angular momentum we have

			L = Iw =      [(14m/9) + (M/3)]¬2w.



















































22.	(a)	We choose the coordinates shown on the force diagrams.  

		Note that we take the positive direction in the direction of the 

		acceleration for each object.  Because the linear acceleration of 

		the masses is the tangential acceleration of the rim of the 

		pulley, we have

			a = atan = aR0. 

		We write SFy = may for m2:

			m2g – FT2 = m2a.

		We write SFy = may for m1:

			FT1 – m1g = m1a.

		We write St = Ia for the pulley about its axle:

			FT2R0 – FT1R0 = Ia = !MR02a/R0 ,  or   FT2 – FT1 =  !Ma.

		If we add the two force equations, we get

			FT1 – FT2 =  (m1 + m2)a + (m1 – m2)g.

		When we add these two equations, we get

			a 	= (m2 – m1)g/(m1 + m2 + !M)

				= (8.8 kg – 7.0 kg)(9.80 m/s2)/[7.0 kg + 8.8 kg + !(0.80 kg)] 
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				=      1.1 m/s2.

	(b)	If the moment of inertia of the pulley is ignored, from the torque 

		equation, we see that the two tensions will be equal.  

		If we add the force equations, we get

			a0 = (m2 – m1)g/(m1 + m2).

		Thus the error is 

			(a0 – a)/a 	= (a0/a) – 1 = [(m1 + m2 + !M)/(m1 + m2)] – 1 = !M/(m1 + m2) 

						= !(0.80 kg)/(7.0 kg + 8.8 kg) = 0.025 =      3%.
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23.	With the positive direction CCW, for the angular momentum about 

	the axis of the pulley we have

		L = R0mv + Iw = R0mv + I(v/R0) = [R0m + (I/R0)]v.

	The net torque is produced by mg and the frictional torque:

		t = dL/dt;

		mgR0 – tfr = [R0m + (I/R0)] dv/dt, which gives

		a 	= (mgR0 – tfr)/[R0m + (I/R0)] 

			= [(1.53 kg)(9.80 m/s2)(0.330 m) – 1.10 m · N]/

					{(0.330 m)(1.53 kg) + [(0.385 kg · m2)/(0.330 m)]} 

			=      2.30 m/s2.
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24.	The linear momentum for each mass will be tangent to its 

	circular motion with magnitude 

		p = mv = mwd = (0.600 kg)(30 rad/s)(0.20 m) = 3.6 kg · m/s.

	(a)	For the component of angular momentum along the axle we have

			Laxle 	= d1p1 + d2p2 = 2d1p1 = 2(0.20 m)(3.6 kg · m/s) 

					=      1.44 kg · m2/s.

	(b)	We choose the point of the axle midway between the particles 

		for the axis.  Each angular momentum will be perpendicular to 

		r and p as shown on the diagram.  We see that the two angular 

		momenta are parallel, so the total angular momentum will also 

		make an angle q with the horizontal.  From the symmetry of the 

		distances, q = 45°, so the angular momentum makes an angle of 

			90 – 45° =       45° with the axle.







25.	(a)	With the positive direction CCW, for the angular 

		momentum about the axis of the pulley we have

			L 	=  R0M1v + R0M2v + Iw 

				=  R0M1v + R0M2v + I(v/R0) =       [R0M1 + R0M2 + (I/R0)]v.

	(b)	Because M1g is balanced by the normal force on the horizontal 

		surface, the net torque is from M2g only:

			t = dL/dt;

			M2gR0 = [R0M1 + R0M2 + (I/R0)] dv/dt, which gives

			a = M2g/[M1 + M2 + (I/R02)].







�
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26.	(a)	With the positive direction CCW, we have the same 

		formula for the angular momentum:

			L = [R0M1 + R0M2 + (I/R0)]v.

	(b)	Because M1g is balanced by the normal force on the horizontal 

		surface, the friction force is Ffr = mkM1g.  If we consider only the 

		block M1 , which does not rotate, the net torque must be zero, 

		which means that the normal force and the weight are separated 

		by a distance d.  The torque of this couple must be balanced by the 

		torque from the tension and friction.  If we take the point A as the axis, we have

			mkM1gR0 – M1gd = 0,  or  – M1gd = – mkM1gR0.

		For the entire system the tension is an internal force.  Because the line of the friction force passes 

		through the center of the pulley, the net torque is produced by M2g and the couple from FN and M1g:

			t = dL/dt;

			M2gR0 – mkM1gR0 = [R0M1 + R0M2 + (I/R0)] dv/dt, which gives

			a = (M2 – mkM1)g/[M1 + M2 + (I/R02)].



�

27.	The impulse changes the linear momentum of the center of mass:

		J = ?p = mvCM;

		8.5 ´ 10–3 N · s = (0.040 kg)vCM , which gives vCM = 0.213 m/s.

	The moment of the impulse about the center of mass changes the 

	angular momentum:

		rJ = ?L = ICMwCM;

		[!(0.070 m) – 0.020 m](8.5 ´ 10–3 N · s) = [(0.040 kg)(0.070 m)2/12]wCM , 

	which gives wCM = 7.8 rad/s.

	The rod rotates at 7.8 rad/s about the center of mass, which moves with constant velocity of 0.21 m/s.
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28.	We select a differential element of the rod a distance r from the 

	center, which has a mass dm = (M/¬)dr.  

	The angular momentum of this element is

		dL = r ´ v dm,

	where v has magnitude (r sin f)w.

	From the diagram, we see that for the lower half of the rod, 

	r and v reverse direction.  Thus the direction of dL will be the 

	same for all the elements, and L will be perpendicular to the rod, 

	making an angle       90° – f with the axis.

	We integrate to find the magnitude of the angular momentum:

	 �







29.	In the inertial reference frame the position of the center of mass is 

		rCM = ?miri/?mi = ?miri/M.

	In the center of mass frame the position of the ith particle is

		ri* = ri – rCM,  so

		vi* = vi – vCM.

	When we combine these, we see that

		?miri* = ?miri  – ?mi(?miri/M) = 0,  and

		?mivi* = ?mivi – ?mi(?mivi/M) = 0,

	which of course defines the center of mass frame.

	When we use the above relations in the definition of the angular momentum, we get

		L 	= ?ri ´ pi = ?ri ´ mivi = ?[(rCM + ri*) ´ (mivCM + mivi*)]

			= ?(rCM ´ mivCM) + ?(ri* ´ mivCM) + ?(rCM ´ mivi*) + ?(ri* ´ mivi*)

			= rCM ´ MvCM + ?(miri*) ´ vCM + rCM ´ (?mivi*) + ?(ri* ´ mivi*)

			= rCM ´ MvCM + 0 + 0 + ?(ri* ´ mivi*) = L* + rCM ´ MvCM .



30.	The net torque to maintain the rotation is supplied by the forces at the bearings.  If the bearings are a distance d from the center, we have

		tnet  = 2Fd = Iw2/tan f = [(m1r12 + m2r22)sin2 f]w2/tan f, which gives 

		F =  (m1r12 + m2r22)w2 sin f cos f /2d.
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31.	If we choose the center of the circle that m1 makes, O¢, 

	as origin the angular momentum will be parallel to w.  

	It will have a magnitude 

		L = (r sin f)m1v1 = m1r2w sin2 f.

	L is constant in both magnitude and direction, so we have

		tnet  = dL/dt;

		F1(d – r cos f) – F2(d + r cos f) = 0,  or

		F2 = [(d – r cos f)/(d + r cos f)]F1.

	The radial acceleration of the mass must be produced by 

	a radial force in the rod:

		Frod = m1v12/(r sin f) = m1rw2 sin f.

	Because the rod has no mass, the net force on the rod is zero.  For the net horizontal force on the axle we have

		F1 + F2 – Frod = 0,   or   F1 + F2 = m1rw2 sin f.

	When we combine this with the result from the torque equation, we have

		F1 + [(d – r cos f)/(d + r cos f)]F1 = m1rw2 sin f, which gives

		F1 = [(d + r cos f)/2d]m1rw2 sin f;

		F2 = [(d – r cos f)/2d]m1rw2 sin f.



32.	We use the result from Problem 30:

		F 	= (m1r12 + m2r22)w2 sin f cos f /2d = 2m1r12w2 sin f cos f /2d 

			= 2(0.60 kg)(0.30 m)2(11.0 rad/s)2 sin 23.0° cos 23.0°/(0.20 m) =      24 N.



33.	We use the result from Problem 31:

		F1 = [(d + r cos f)/2d]m1rw2 sin f

			= [0.10 m + (0.30 m) cos 23.0°](0.60 kg)(0.30 m)(11.0 rad/s)2 sin 23°/(0.20 m) =      16 N;

		F2 = [(d – r cos f)/2d]m1rw2 sin f

			= [0.10 m – (0.30 m) cos 23.0°](0.60 kg)(0.30 m)(11.0 rad/s)2 sin 23°/(0.20 m) =      – 7.5 N.
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34.	(a)	From the symmetry we see that 

			F1 = F2 = F.

		The two forces from the bearings produce the radial 

		acceleration of the center of mass:

			F1 + F2 = 2F = Mrw2;

			F = !(11.8 kg)(0.0100 m)[(11.2 rev/s)(2p rad/rev)]2 = 292 N.

		The reaction to this force will be exerted on each bearing:      292 N.

	(b)	To balance the wheel, we want the center of mass to be 

		at the axle.  The added mass will be on the line joining the 

		axle and the center of mass of the wheel.  Thus we have

			md + Mr = 0;

			(1.00 kg)d + (11.8 kg)(0.0100 m), which gives d = – 0.118 m.

		Thus the mass should be placed       

			11.8 cm from the center of the wheel opposite to the axle.
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35.	In the collision, during which we ignore any motion of the rod, 

	angular momentum about the pivot point will be conserved:

		Li = Lf ;

		mv(!¬) + 0 = Itotalw = [@M¬2 + m(!¬)2]w, which gives

		w = 6mv/(4M + 3m)¬.

	For the rotation about the pivot after the collision, energy will be 

	conserved.  If the center of the rod reaches a height h, the bottom 

	of the rod will swing to a height H = 2h, so we have

		Ki + Ui = Kf + Uf ;

		!Itotalw2 + 0 = 0 + (m + M)gh;

		![@M¬2 + m(!¬)2][6mv/(4M + 3m)¬]2 = (m + M)gH/2,

	which gives       H = 3m2v2/g(3m + 4M)(m + M).





36.	For the system of stick and bullet during the collision, angular momentum about the center of mass is conserved:

		Li = Lf ;

		mvi(#¬) + 0 = mvi(#¬) + Irodw ;

		(3.0 g)(250 m/s)#(1.0 m) = (3.0 g)(160 m/s)#(1.0 m) + [(300 g)(1.0 m)2/12)]w, 

	which gives

		w =       2.7 rad/s.
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37.	The initial angular speed of the Earth is

		wE = (2p rad)/(1 day)(24 h/day)(3600 s/h) = 7.27 ´ 10–5 rad/s.

	We approximate the Earth as a uniform sphere, with IE = ^MErE2.

	For the system of meteor and Earth, angular momentum is conserved

		– mvrE sin q + IEarthwE = (IEarth + Imeteor)w.

	Note that after the collision, Imeteor = mrE2.  This gives

		w 	= (IEarthwE – mvrE sin q)/(IEarth + Imeteor)

			= [(1 – mvrE sin q/^MErE2wE)/(1 + mrE2/^MErE2)]wE 

			= [(1 – 5mv sin q/2MErEwE)/(1 + 5m/2ME)]wE.

	Because the mass of the Earth is much greater than the mass of the meteor, we have 

		w 	˜ [(1 – 5mv sin q/2MErEwE)(1 – 5m/2ME)]wE 

			˜ (1 – 5mv sin q/2MErEwE – 5m/2ME)wE 

			= {1 – [5(7.0 ´ 1010 kg)(1.0 ´ 104 m/s) sin 45°/2(6.0 ´ 1024 kg)(6.4 ´ 106 m)(7.27 ´ 10–5 rad/s)] –  

													[5(7.0 ´ 1010 kg)/2(6.0 ´ 1024 kg)]}wE

			=       (1 – 4.7 ´ 10–13 )wE.



38.	(a)	By walking to the edge, the moment of inertia of the person changes.  Because the system of 

		person and platform is isolated, angular momentum will be conserved:

			L = (Iplatform + Iperson1)w1 = (Iplatform + Iperson2)w2 ;

			[670 kg · m2 + (55 kg)(0)2](2.0 rad/s) = [670 kg · m2 + (55 kg)(2.5 m)2]w2 , which gives

			w2 =       1.3 rad/s.

	(b)	For the kinetic energies, we have

			K1 = !(Iplatform + Iperson1)w12 = !(670 kg · m2 + 0)(2.0 rad/s)2 =        1.34 ´ 103 J;

			K2 = !(Iplatform + Iperson2)w22 = ![670 kg · m2 + (55 kg)(2.5 m)2](1.32 rad/s)2 =        8.8 ´ 102 J.

		Thus there is a        loss of 4.6 ´ 102 J, a decrease of 34%.
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39.	(a)	We find the speed of the center of mass from the conservation of 

		linear momentum:

			Mv + 0 = (M + m)vCM;

			(200 kg)(18 m/s) = (200 kg + 50 kg)vCM , which gives vCM =      14 m/s.

	(b)	During the collision, angular momentum about the center of mass 

		will be conserved.  We find the location of the center of mass relative 

		to the center of the beam:

			d = m(!¬)/(M + m) = (50 kg)!(2.0 m)/(200 kg + 50 kg) = 0.20 m.

		When we use the parallel-axis theorem for the moment of inertia of 

		the beam, angular momentum conservation gives us

			Li = Lf ;

			Mvd  + 0 = Itotalw = [(M¬2/12) + Md2 + m(!¬ – d)2]w;

			(200 kg)(18 m/s)(0.20 m) = ((200 kg){[(2.0 m)2/12] + (0.20 m)2} + (50 kg)(1.0 m – 0.20 m)2)w,

		which gives

			w =       6.8 rad/s.
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40.	We find the speed of the center of mass from the conservation of 

	linear momentum:

		mv + 0 = (M + m)vCM, which gives vCM =  mv/(M + m).

	During the collision, angular momentum about the center of mass will be conserved.

	We find the location of the center of mass relative to the center of the beam:

		d = m(#¬)/(M + m) = m¬/4(M + m).

	When we use the parallel-axis theorem for the moment of inertia of the beam, 

	angular momentum conservation gives us

		Li = Lf ;

		mv(#¬ – d) + 0 = Itotalw = [(M¬2/12) + Md2 + m(#¬ – d)2]w;

		mv{#¬ – [m¬/4(M + m)]} = ((M¬2 /12) + M[(m¬/4(M + m)]2 + m{#¬ – [m¬/4(M + m)]}2)w;

		mv[M/4(M + m)] = {(M/12) + M[(m/4(M + m)]2 + m[M/4(M + m)]2}¬w;

		mv[M/4(M + m)] = ({(M/12)[16(M + m)2] + Mm2 + mM2}/16(M + m)2)¬w;

		mv = ({(1/12)[4(M + m)]2 + m2 + mM}/4(M + m))¬w;

		12mv = [(16M2 + 32Mm + 16m2 + 12m2 + 12mM)/4(M + m)]¬w;

		12mv = 4[(4M2 + 11Mm + 7m2)/4(M + m)]¬w = (4M + 7m)¬w, which gives w = 12mv/¬(4M + 7m).

	Thus the center of mass of the rod and ball moves with a       speed mv/(M + m),       and the system rotates about the center of mass with an       angular speed 12mv/¬(4M + 7m).



41.	We find the moment of inertia from the precession rate:

		W = Mgr/L = Mgr/Iw;

		(1 rev)(2p rad/rev)/(8.0 s) = (0.220 kg)(9.80 m/s2)(0.035 m)/I(15 rev/s)(2p rad/rev), 

	which gives I =      1.02 ´ 10–3  kg · m2.





42.	(a)	We find the precession time from

			W = 2p/T = Mgr/L = Mgr/Iw = Mgr/(!MR2)w  = 2gr/R2w;

			(2p rad/rev)/T = 2(9.80 m/s2)(0.085 m)/(0.055 m)2(70 rev/s)(2p rad/rev), 

		which gives T =      5.0 s.

	(b)	If we form the ratio of the two times, we get

			T2/T1 = (R2/R1)2(r1/r2)

			T2/(5.0 s) = (2)2(!), which gives T2 =      10 s.



43.	We find the rate of precession from

		W 	= Mgr/L = Mgr/Iw = Mgr/(!MR2)w  = 2gr/R2w

			= 2(9.80 m/s2)(0.10 m)/(0.060 m)2(250 rad/s) =       2.2 rad/s  (0.35 rev/s).



44.	Because the mass is placed on the axis of rotation, the moment of inertia will not change.  If the length of the axle is d, the distance from the support to the center of mass will be

		r = [M(!d) + (!M)d]/(M + !M) = %d.

	If we form the ratio of the two precession rates, we get

		W2/W1 = M2r2/ M1r1 ;

		W2/(2.18 rad/s) = (*M/M)(%d/!d), which gives W2 =      4.4 rad/s  (0.69 rev/s).



�

45.	In the rotating frame of the platform, there will be an outward pseudoforce 

	with a magnitude

		Fr = ma = mv2/r = mrw2.

	Thus the effective gravity makes an angle from the vertical given by

		tan q = mrw2/mg = rw2/g.

	The grass grows opposite to gravity, therefore inward at an angle 

		q =       tan–1 (rw2/g).







46.	Newton’s third law is       invalid        for the pseudoforce in the rotating frame because it acts only on one body and thus is not one of a pair of forces.



�

47.	A convenient dimensionless factor is

		g/rEw2 	= (9.80 m/s2)/(6.38 ´ 106 m)[(2p rad)/(86,400 s)]2 

				= 290.4.

	(a)	At the North Pole there is no radial acceleration, 

		so the effective acceleration of gravity is

			g, along a radial line.

	(b)	At a latitude f there will be a pseudoforce mrw2 away 

		from the axis, where r = rE cos f.  We use the coordinate 

		system shown on the diagram, with positive y down 

		along the radial line.  For the components of g¢ we have

			gx¢ = rw2 sin f = rEw2 sin f cos f;

			gy¢ = g – rw2 cos f = g – rEw2 cos2 f.

		We find the angle from

			tan q 	= gx¢/gy¢ = rEw2 sin f cos f/(g – rEw2 cos2 f) 

					= sin f cos f/[(g/rEw2) – cos2 f].

		At a latitude of 45°, we get

			tan q = sin 45° cos 45°/(290.4 – cos2 45°) = 1.725 ´ 10–3,   or   q = 0.0988°.

		We can find the magnitude from

			g¢ = gx¢/sin q = g sin f cos f/(g/rEw2) sin q = g sin 45° cos 45°/(290.4) sin 0.0988° = 0.998g.

		Thus the effective acceleration of gravity is       0.998g, 0.0988° south from a radial line.

	(c)	At the equator f = 0, so we have

			tan q  = 0;

		as expected the effective acceleration is along a radial line.

		We find the magnitude from

			g¢ = gy¢ = g – rEw2 cos2 f = g[1 – 1/(g/rEw2)] = g[1 – 1/(290.4)] =        0.997g, along a radial line.





















48.	(a)	In the inertial frame, the ball has the tangential speed of B, vB = rBw, perpendicular to the 

		radial line.  This is greater than the tangential speed of the woman at A, vA = rAw, so the ball 	

		passes in front of A, to the       right of its motion.

	(b)	In the inertial frame, the ball has a radial velocity v, so the time to reach A is found from

			rB – rA = vt.

		Because the ball has the tangential speed of B, it will travel a distance vBt = rBwt perpendicular 

		to the radial line.  The woman at A will travel vAt = rAwt.  Thus the additional distance traveled 

		by the ball is

			?s = rBwt – rAwt = (rB – rA)wt = wvt2.

		The deflection is

			?s = wvt2.

		If we ascribe this to a constant acceleration, we have

			?s = !acort2 = wvt2,   or        acor = 2wv,        as before.



49.	There is no Coriolis force when the velocity is parallel to the axis of rotation.  Thus at the equator there will be none for velocities in the       north or south direction.        Note that for velocities parallel to the equator, the Coriolis force will be vertical.  A ball thrown parallel to the equator will not deviate to the right; the Coriolis force would effectively change the acceleration of gravity.



�

50.	The deflection of the velocity will be to the right or east.  

	The component of velocity perpendicular to the Earth’s 

	rotation is v sin l.  The Coriolis force is

		Fcor = macor = m2wv sin l 

			= (1200 kg)2(2p/86,400 s)([500 km/h)/(3.6 ks/h)] sin 40° 

			=      15.6 N east. 





















51.	(a)	In the northern hemisphere, the projectile will be deflected to the right, that is,       south.

	(b)	The initial velocity of the projectile is perpendicular to the rotation axis, so the Coriolis 

		acceleration is acor = 2wv0 .  The direction of this acceleration is perpendicular to the axis and v 

		(thus, parallel to the equator), so it has components acor,up = 2wv0 cos l,   and  acor,south = 2wv0 sin l.  

		If we ignore the vertical acceleration, which is an effective g, the distance the projectile travels 

		east in a time t is D = v0t.  In this time, the projectile will have deflected south a distance 

			ssouth = !(2wv0 sin l)t2.

		Thus we have

			ssouth = wv0 sin l(D/v0)2 =       wD2 sin l/v0.

	(c)	For the given data, we have

			ssouth = (2p/86,400 s)(3.0 ´ 103 m)2 sin 45°/(1000 m/s) =      0.46 m.



















�

52.	The vertical forces are mg and the normal force from the spoke.  

	The pseudoforces are the Coriolis force in the negative x-direction, 

	and the radial force away from the center.  Because the ant is 

	moving at constant velocity, these forces must be balanced by a 

	force from the spoke, which we treat as two forces, one 

	perpendicular to the spoke and one, friction, along the spoke.  

	Thus we have

		?F = 0;

		(mrw2 – Ffr)i + (Fspoke – 2mwv)j + (FN – mg)k = 0.













53.	(a)	The angular momentum relative to the origin is

			�

	(b)	The torque is

			�



�

54.	The initial angular speed of the Earth is

		wE = (2p rad)/(1 day)(24 h/day)(3600 s/h) = 7.27 ´ 10–5 rad/s.

	We approximate the Earth as a uniform sphere, with IE = ^MErE2.

	We assume the asteroid attaches to the Earth.

	For the system of asteroid and Earth, angular momentum is conserved:

		mvrE + IEarthwE = (IEarth + Iasteroid)w.

	This gives

		w 	= (IEarthwE + mvrE)/(IEarth + Iasteroid)

			= [(1 + mvrE/^MErE2wE)/(1 + mrE2/^MErE2)]wE 

			= [(1 + 5mv/2MErEwE)/(1 + 5m /2ME)]wE.

	Because the mass of the Earth is much greater than the mass of the asteroid, we have 

		w 	˜ [(1 + 5mv/2MErEwE)(1 – 5m /2ME)]wE.

			˜ (1 + 5mv/2MErEwE – 5m/2ME)wE 

			= {1 + [5(1 ´ 105 kg)(30 ´ 103 m/s)/2(6.0 ´ 1024 kg)(6.4 ´ 106 m)(7.27 ´ 10–5 rad/s)] – 

													[5(1 ´ 105 kg)/2(6.0 ´ 1024 kg)]}wE

			= (1 + 2.6 ´ 10–18)wE.

	Thus the fractional change is

		(w – wE)/wE = [(1 + 2.6 ´ 10–18)wE – wE]/wE =       3 ´ 10–18.
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55.	(a)	The torque produced by the normal force about the center of mass 

		causes a change ?L  in the direction of the tire’s motion.  When 

		this is added to the angular momentum L, we see that the tire 

		will       turn in the direction of the lean.

	(b)	There is no vertical acceleration, so we have FN = mg.  

		The change in the angular momentum about the center of mass is

			?L	= t ?t = mgr sin q ?t

				= (9.0 kg)(9.80 m/s2)(0.32 m) sin 10° (0.20 s) =      0.98 kg · m2/s.

		The original angular momentum is

			L0 = Iw = (0.83 )[(2.1 m/s)/(0.32 m)] = 5.5 kg · m2/s.

		Thus we have

			?L/L0 = (0.98 kg · m2/s)/(5.5 kg · m2/s) = 0.18,  so       ?L = 0.18L0.



56.	Because the electric force provides the necessary radial acceleration of the circular orbit, we have

		ke2/r2 = mv2/r, which gives r = ke2/mv2.

	The angular momentum of the electron is

		¬ = mvr = nh/2p, n = 1, 2, 3, …, which gives v = nh/2pmr.

	When we use this in the first result, we get

		r = ke2(4p2m2r2)/mn2h2, which gives 

		r = n2h2/4p2kme2, n = 1, 2, 3, … .



57.	(a)	The angular momentum delivered to the waterwheel in a time ?t is that lost by the water:

			?L/?t 	= ?m R(vi – vf)/?t = (?m/?t)R(vi – vf) 

					= (150 kg/s)(3.0 m)(7.0 m/s – 3.0 m/s) =      1.8  ´ 103 kg · m2/s2.

	(b)	The torque applied to the waterwheel increases the angular momentum:

			t = ?L/?t =       1.8  ´ 103 m · N.

	(c)	The power delivered is

			P = tw = (1.8  ´ 103 m · N)(2p/5.5 s) =       2.1  ´ 103 W.



�

58.	(a)	If we consider an axis through the center of mass parallel to 

		the velocity vector (that is, parallel to the ground), there is no 

		angular acceleration about this axis.  If d is the distance from 

		the center of mass to the contact point on the ground, we have

			St = Ia ;

			FNd sin q – Ffrd cos q = 0, which gives   tan q = Ffr/FN.

	(b)	The friction force is producing the necessary radial acceleration for the turn:

			Ffr = FN tan q = mg tan q = mv2/r,   or

			tan q = v2/gr = (3.2 m/s)2/(9.80 m/s2)(2.8 m) = 0.373, so       q = 20°.

	(c)	From Ffr = mv2/r, we see that the minimum turning radius requires 

		the maximum static friction force:

			msmg = mv2/rmin ,  or  rmin = v2/msg = (3.2 m/s)2/(0.65)(9.80 m/s2) =       1.6 m.



�

59.	Because there is no friction, the center of mass must fall straight down. 

	The vertical velocity of the right end of the stick must always be zero.  

	If w is the angular velocity of the stick just before it hits the table, the 

	velocity of the right end with respect to the center of mass will be 

	w(¬/2) up.  Thus we have

		w(¬/2) – vCM = 0,  or  w = 2vCM/¬.  

	The kinetic energy will be the translational energy of the center of mass 

	and the rotational energy about the center of mass.  With the reference 

	level for potential energy at the ground, we use energy conservation to 

	find the speed of the center of mass just before the stick hits the ground:

		Ki + Ui = Kf + Uf;

		0 + Mg!¬ =  !MvCM2 + !(M¬2/12)w2 + 0; 

		Mg!¬ =  !MvCM2 + !(M¬2/12)(2vCM/¬)2 = !(4MvCM2/3), which gives       vCM = (3g¬/4)1/2 .



60.	(a)	Because the hoop is rolling down the string, the acceleration of 

		the center of mass is related to the angular acceleration:



�

			a = a R.

		For the linear motion of the center of mass we have

			?F = Ma;

			Mg – FT = Ma = MRa.

		For the angular motion about the center of mass we have

			?t = dL/dt = Ia;

			FTR = MR2a = MRa.

		When we combine these equations, we get

			a = a/R = !g/R.

		Thus we have

			dL/dt = (MR2)(!g/R) = !MRg, so       L = !MRgt.

	(b)	The tension in the string is

			FT = Ma = M(!g) =      !Mg.



61.	We assume the tensions in the other cables immediately go to zero.  

�

	The torque created by the weight changes the angular momentum 

	about the pivot point of the tower:

		t = dL/dt;

		mg(!¬ sin q) = @m¬2 dw/dt.

	This equation contains three variables, q, w, t.  We use the definition of 

	angular velocity to eliminate t:

		mg(!¬ sin q) 	= @m¬2 (dw/dq)(dq/dt) 

						= @m¬2w dw/dq,  or  3(g/¬) sin q dq = 2w dw.

	When we integrate this, we get

		�

	Thus the speed of the top of the tower is

		v 	= ¬w = [3g¬(1 – cos q)]1/2

			= [3(9.80 m/s2)(12 m)(1 – cos q)]1/2 =       (19 m/s)(1 – cos q)1/2.











































62.	We find the location of the center of mass:

		�

�

	Note that the mass of the bat is 1.162 kg.

	













We integrate to find the moment of inertia about the preferred point on the handle:

		�

	If we have pure rotation about the handle, the acceleration of the center of mass is related to the angular acceleration about the handle by

		aCM = (dCM – d0)a.

	For the translational effect of the force we have

		F = maCM = m(dCM – d0)a.

	For the rotational effect about the handle we have

		Fd = Ihandlea.

	When we combine the two equations, we get

		md(dCM – d0)a = Ihandlea;

		(1.162 kg)d(0.545 m – 0.050 m) = 0.343 kg · m2, which gives d =       0.60 m (0.65 m from end).



63.	(a)	If the thrown-off mass carries off no angular momentum, from conservation of angular momentum 

		for the star  we have

			Iiwi = Ifwf ;

			^Mrs2w1 = ^(#M)rn2w2 , which gives

			w2 = 4(rs/rn)2w1 = 4(7.0  ´ 105 km/10 km)2(1 rev/10 days)/(86,400 s/day) =      2.3  ´ 104 rev/s.

	(b)	If the thrown-off mass carries off & of the initial angular momentum, from conservation of 

		angular momentum for the star  we have

			#Iiwi = Ifwf ;

			#(^Mrs2)w1 = ^(#M)rn2w2 , which gives

			w2 = (rs/rn)2w1 = (7.0  ´ 105 km/10 km)2(1 rev/10 days)/(86,400 s/day) =      5.7  ´ 103 rev/s.
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