CHAPTER 12 – Static Equilibrium; Elasticity and Fracture
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1.	From the force diagram for the sapling we can write 

		?Fx	= F1 – F2 sin 20° – F3 cos a = 0;

			380 N – (255 N) sin 20° – F3 cos a = 0,  or  

			F3 cos a = 293 N.

		?Fy	= F2 cos 20° – F3 sin a = 0;

			F3 sin a = (255 N) cos 20° =  240 N.

	Thus we have

		F3 = [(293 N)2 + (240 N)2]1/2 =        379 N.

		tan a = (240 N)/(293 N) = 0.818,  a = 39.3°.  

	So  q = 180° – a =        141°.





�



2.	From the force diagram for the junction we can write 

		?Fx = F2 – F1 sin 45° = 0.

	This shows that F1 > F2 , so we take F1 to be the maximum.

		?Fy = F1 cos 45° – Mg = 0;

		Mg = (1150 N) sin 45° =       813 N.















�

3.	We choose the coordinate system shown, with positive torques 

	clockwise.  For the torque from the person’s weight about the 

	point B we have

		tB = MgL = (56 kg)(9.80 m/s2)(3.0 m) =        1.6 ´ 103 m · N.







�



4.	We choose the coordinate system shown, with positive torques 

	clockwise.  For the torque from the person’s weight about the 

	point A we have

		tA = Mgx; 

		1000 m · N = (56 kg)(9.80 m/s2)x, which gives x =        1.82 m.
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5.	We choose the coordinate system shown, with 

	positive torques clockwise.  We write ?t = Ia about 

	the point A from the force diagram for the leg:

		?tA = MgD – FTL = 0;

		(15.0 kg)(9.80 m/s2)(0.350 m) – FT(0.805 m), 

	which gives   FT = 63.9 N.

	Because there is no acceleration of the hanging mass, 

	we have 

		FT = mg,  or   m = FT/g = (63.9 N)/(9.80 m/s2) =       6.52 kg.
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6.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the support point A from 

	the force diagram for the board and people:

		?tA = – m1g(L – d) + m2gd = 0;

		– (23.0 kg)(10.0 m – d) + (67.0 kg)d = 0, 

	which gives d =         2.56 m from the adult.
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7.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the support point A from 

	the force diagram for the board and people:

		?tA = – m1g(L – d) – Mg(!L – d) + m2gd = 0;

		– (23.0 kg)(10 m – d) – (12.0 kg)(5.0 m – d) + (67.0 kg)d = 0, 

	which gives d =         2.84 m from the adult.
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8.	(a)	We choose the coordinate system shown, with positive 

		torques clockwise.  For the torques about the point B we have

			?tB = F1d + MgD = 0;

			F1(1.0 m) + (56 kg)(9.80 m/s2)(3.0 m) = 0, 

		which gives        F1 = – 1.6 ´ 103 N (down).

		For the torques about the point A we have

		?tA = – F2d + Mg(D + d)= 0;

		F2(1.0 m) = (56 kg)(9.80 m/s2)(3.0 m + 1.0 m), 

		which gives        F2 = 2.2 ´ 103 N (up).

	(b)	For the torques about the point B we have
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			?tB = F1d + MgD + mg[!(D + d) – d] = 0;

			F1(1.0 m) = – (56 kg)(9.80 m/s2)(3.0 m) – (35 kg)(9.80 m/s2)(1.0 m), 

		which gives        F1 = – 2.0 ´ 103 N (down).

		For the torques about the point A we have

			?tA = – F2d + Mg(D + d) + mg!(D + d) = 0;

			F2(1.0 m) = (56 kg)(9.80 m/s2)(4.0 m) + (35 kg)(9.80 m/s2)(2.0 m),

		which gives        F2 = 2.9 ´ 103 N (up).
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9.	We choose positive torques clockwise.  

	We write ?t = Ia about the point B from the force 

	diagram for the table and person:

		?tB = Mg(d – x) + FAD –  mg(!D) = 0.

	At the point of tipping, FA = 0, so we have

		(20.0 kg)!(1.20 m) – (66.0 kg)(0.50 m – x) = 0, 

	which gives x =       0.32 m.
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10.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the point A from the force 

	diagram for the two beams:

		?tA = mg#L + Mg!L – FN2L = 0, which gives

		FN2 	= #mg + !Mg 

				= #[!(1100 kg)](9.80 m/s2) + !(1100 kg)(9.80 m/s2) 

				=       6.74 ´ 103 N.

	We write ?Fy = may from the force diagram for the two beams:

		FN1 + FN2 – Mg – mg = 0, which gives

		FN1 = Mg + mg – FN2

			= (1100 kg)(9.80 m/s2) + !(1100 kg)(9.80 m/s2) – 6.74 ´ 103 N =       9.43 ´ 103 N.
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11.	From the force diagram for the mass we can write 

		?Fx = FT1 – FT2 cos q = 0,  or  

		FT1 = FT2 cos 30°.

		?Fy = FT2 sin q – mg = 0,  or  

		FT2 sin 30° = mg = (200 kg)(9.80 m/s2),  

	which gives FT2 =         3.9 ´ 103 N.

	Thus we have

		FT1 = FT2 cos 30° = (3.9 ´ 103 N) cos 30° =       3.4 ´ 103 N.
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12.	From the force diagram for the hanging light and junction we can write 

		?Fx = FT1 cos q1 – FT2 cos q2 = 0;

			FT1 cos 37° = FT2 cos 53°;

		?Fy = FT1 sin q1 + FT2 sin q2 – mg = 0;

			FT1 sin 37° + FT2 sin 53° = (30 kg)(9.80 m/s2).

	When we solve these two equations for the two unknowns, FT1 , and FT2 , 

	we get        FT1 = 1.8 ´ 102 N,  and FT2 = 2.3 ´ 102 N.
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13.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the support point A from 

	the force diagram for the cantilever:

		?tA = – F2d + Mg! (d + D) = 0;

		– F2(20.0 m) + (1200 kg)(9.80 m/s2) !(20.0 m + 30.0 m) = 0, 

	which gives F2 =         1.47 ´ 104 N.

	For the forces in the y-direction we have

		?Fy = F1 + F2 – Mg  = 0,  or

		F1 = Mg – F2 = (1200 kg)(9.80 m/s2) – (1.47 ´ 104 N) =       – 2.94 ´ 103 N (down).
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14.	From the force diagram for the sheet we can write 

		?Fx = FT2 cos q – FT1 cos q = 0, which gives

		FT2 = FT1. 

		?Fy = FT1 sin q + FT2 sin q – mg = 0;

		2FT1 sin q = mg;

		2FT1 sin 3.5°= (0.60 kg)(9.80 m/s2), 

	which gives FT1 =       48 N.

	The tension is so much greater than the weight because 

	only the vertical components balance the weight.
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15.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the lower hinge B from the 

	force diagram for the door:

		?tB = FAx(H – 2D) – Mg!w = 0;

		FAx[2.30 m – 2(0.40 m)] – (13.0 kg)(9.80 m/s2)!(1.30 m), 

	which gives FAx = 55.2 N.

	We write ?F = ma from the force diagram for the door:

		?Fx = FAx + FBx = 0;

			55 N + FBx = 0, which gives FBx = – 55.2 N.

	The top hinge pulls away from the door, and the bottom 

	hinge pushes on the door.

		?Fy = FAy + FBy – Mg = 0.

	Because each hinge supports half the weight, we have

		FAy = FBy = !(13.0 kg)(9.80 m/s2) = 63.7 N.

	Thus we have       top hinge: FAx = 55.2 N, FAy = 63.7 N;  bottom hinge: FBx = – 55.2 N, FBy = 63.7 N.
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16.	Because FT = FB , from the symmetry we see that F1 = F2 .

	We choose one handle as the system and write ?t = Ia 

	about the hinge P:

		?tP = FTL1 cos q – F2L2 cos q = 0, which gives

		F2 = FTL1/L2 = (11.0 N)(8.50 cm)/(2.70 cm) =      34.6 N.
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17.												(a)

	(b)	We choose the coordinate system shown, with positive 

		torques clockwise.  We write ?t = Ia about the pin B 

		from the force diagram for the trailer:

			?tB = FNA(a + b) – Mgb = 0;

			FNA = Mgb /(a + b)  

				= (2.2 ´ 103 kg)(9.80 m/s2)(5.5 m)/(2.5 m + 5.5 m) 

				=      1.5 ´ 104 N.

	(c)	For the forces in the y-direction we have

			?Fy = FNA + FNB – Mg  = 0;

			1.48 ´ 104 N + FNB – (2.2 ´ 103 kg)(9.80 m/s2) = 0, which gives FNB =      6.7 ´ 103 N.
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18.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the elbow joint from the force 

	diagram for the lower arm:

		?t = mgD + MgL – FMd = 0;

		(2.8 kg)(9.80 m/s2)(0.12 m) + (7.3 kg)(9.80 m/s2)(0.300 m) –

										           FM(0.025 m) = 0, 

	which gives FM =        9.9 ´ 102 N.
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19.	Because the person is standing on one foot, the normal force on the 

	ball of the foot must support the weight: FN = Mg.  We choose the 

	coordinate system shown, with positive torques clockwise.  We write 

	?t = Ia about the point A from the force diagram for the bone in the foot:

		?tA = FTd – FND = 0;

		FTd – FN(2d) = 0, which gives 

		FT = 2FN = 2(70 kg)(9.80 m/s2) =       1.4 ´ 103 N (up).

	We write ?Fy = may from the force diagram:

		FT + FN – Fbone = 0, which gives 

		Fbone = FT + FN = 3FN = 3(70 kg)(9.80 m/s2) =       2.1 ´ 103 N (down).
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20.	We choose the coordinate system shown, with positive torques 

	clockwise.  

	(a)	We write ?t = Ia about the shoulder joint A from 

		the force diagram for the arm:

			?tA = mgD – (FM sin q)d = 0;

			(3.3 kg)(9.80 m/s2)(0.24 m) – (FM sin 15°)(0.12 m) = 0, 

		which gives FM =        2.5 ´ 102 N.

	(b)	We write ?t = Ia about the point B from 

		the force diagram for the arm:

			?tB = mg(D – d) – (FJ sin a)d = 0;

			(3.3 kg)(9.80 m/s2)(0.24 m – 0.12 m) – (FJ sin a)(0.12 m) = 0, 

		which gives FJ sin a = 32.3 N.

		For the forces in the x-direction we have

			?Fy = FJ cos a – FM cos q = 0, which gives 

			FJ cos a = FM cos q = (2.5 ´ 102 N) cos 15° = 2.41 ´ 102 N.

		The magnitude of the force FJ  is

			FJ = [(32.3 N)2 + (2.41 ´ 102 N)2]1/2 =       2.4 ´ 102 N.
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21.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the shoulder joint A from 

	the force diagram for the arm:

		?tA = mgD + MgL – (FM sin q)d = 0;

		(3.3 kg)(9.80 m/s2)(0.24 m) + (15 kg)(9.80 m/s2)(0.52 m) – 

										(FM sin 15°)(0.12 m) = 0, 

	which gives FM =        2.7 ´ 103 N.

	Note that this is more than 10 times the result for Problem 20.
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22.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the support point A from 

	the force diagram for the seesaw and boys:

		?tA = + m2g!L + m3gx – m1g!L = 0;

		+ (35 kg)!(3.6 m) + (25 kg)x – (50 kg)!(3.6 m) = 0, 

	which gives x = 1.1 m.

	The girl should be       1.1 m from pivot on side of lighter boy.
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23.	We choose the coordinate system shown, with positive torques 

	clockwise.  For the torques about the center of gravity we have

		?tCG = FN1(L – x) – FN2x = 0;

		(35.1 kg)g(170 cm – x) – (31.6 kg)gx = 0, 

	which gives x =       89.5 cm from the feet.
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24.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the point A from the force

	diagram for the beam and piano:

		?tA = Mg#L + mg!L – FN2L = 0, which gives

		FN2 	= #Mg + !mg 

				= #(285 kg)(9.80 m/s2) + !(76.0 kg)(9.80 m/s2) 

				= 1.07 ´ 103 N.

	We write ?Fy = may from the force diagram for the beam and piano:

		FN1 + FN2 – Mg – mg = 0, which gives

		FN1 = Mg + mg – FN2

			= (285 kg)(9.80 m/s2) + (76.0 kg)(9.80 m/s2) – 1.07 ´ 103 N = 2.47 ´ 103 N.

	The forces on the supports are the reactions to these forces:

		2.47 ´ 103 N down,  and  1.07 ´ 103 N down.



�

25.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the support point B from 

	the force diagram for the beam:

		?tB = + F1(d1 + d2 + d3 + d4) – F3(d2 + d3 + d4) – 

						F4(d3 + d4) – F5d4 – Mg!(d1 + d2 + d3 + d4) = 0;

		F1(10.0 m) – (4000 N)(8.0 m) – (3000 N)(4.0 m) – 

					(2000 N)(1.0 m) – (250 kg)(9.80 m/s2)(5.0 m) = 0, 

	which gives         F1 = 5.8 ´ 103 N.

	We write ?t = Ia about the support point A from 

	the force diagram for the beam:

		?tA = – F2(d1 + d2 + d3 + d4) + F3d1 + F4(d1 + d2) + 

						F5(d1 + d2 + d3) + Mg!(d1 + d2 + d3 + d4) = 0;

		– F2(10.0 m) + (4000 N)(2.0 m) + (3000 N)(6.0 m) + 

					(2000 N)(9.0 m) + (250 kg)(9.80 m/s2)(5.0 m) = 0, 

	which gives         F2 = 5.6 ´ 103 N.
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26.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the point A from the 

	force diagram for the beam:

		?tA = – (FT sin a)L + Mg!L = 0;

		– FT sin 40° + (30 kg)(9.80 m/s2)! = 0, 

	which gives      FT = 2.3 ´ 102 N.

	Note that we find the torque produced by the tension by finding 

	the torques produced by the components.

	We write ?F = ma from the force diagram for the beam:

		?Fx = FWx – FT cos a = 0;

			FWx – (2.29 ´ 102 N) cos 40° = 0, which gives FWx = 175 N.

		?Fy = FWy + FT sin a – Mg = 0;

			FWy + (2.29 ´ 102 N) sin 40° – (30 kg)(9.80 m/s2) = 0, which gives FWy = 147 N.

	For the magnitude of FW we have

		FW = (FWx2 + FWy2)1/2 = [(175 N)2 + (147 N)2]1/2 = 2.3 ´ 102 N.

	We find the direction from

		tan q = FWy/FWx = (147 N)/(175 N) = 0.84, which gives q = 40°.

	Thus the force at the wall is       FW = 2.3 ´ 102 N, 40° above the horizontal.
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27.	Because the backpack is at the midpoint of the rope, the 

	angles are equal.  The force exerted by the backpacker is 

	the tension in the rope.  From the force diagram for the 

	backpack and junction we can write 

		?Fx = FT1 cos q – FT2 cos q = 0,  or  FT1 = FT2 = F;

		?Fy = FT1 sin q + FT2 sin q – mg = 0,  or  

			2F sin q = mg.

	(a)	We find the angle from

			tan q = h/!L = (1.5 m)/!(7.6 m) = 0.395,  or  q = 21.5°.

		When we put this in the force equation, we get

			2F sin 21.5° = (16 kg)(9.80 m/s2), which gives F =       2.1 ´ 102 N.

	(b)	We find the angle from

			tan q = h/!L = (0.15 m)/!(7.6 m) = 0.0395,  or  q = 2.26°.

		When we put this in the force equation, we get

			2F sin 2.26° = (16 kg)(9.80 m/s2), which gives F =       2.0 ´ 103 N.
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28.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the point A from the 

	force diagram for the board:

		?tA = mg(!L) cos q – FDoorL sin q = 0, which gives

		FDoor = !mg/tan q = !(80 kg)(9.80 m/s2)/tan 45° = 3.9 ´ 102 N.

	The reaction to this force is the force exerted on the door by 

	the board.  To open the door a person must push with this 

	force at the edge:       3.9 ´ 102 N.
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29.	Because the board will slide up on the door, the friction 

	force will be down.  With the board on the verge of slipping,

	we write ?t = Ia about the point A from the 

	force diagram for the board:

		?tA = mg(!L) cos q – FDoorL sin q + mFDoorL cos q = 0;

		!(80 kg)(9.80 m/s2) cos 45° – FDoor sin 45° + 

						(0.45)FDoor cos 45° = 0, which gives

		FDoor =       7.1 ´ 102 N.
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30.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the point A from the 

	force diagram for the beam and sign:

		?tA = – (FT sin q)D + MgL + mg!L = 0;

		– FT (sin 35.0°)(1.35 m) + (215 N)(1.70 m) + (135 N)!(1.70 m) = 0, 

	which gives       FT = 620 N.

	Note that we find the torque produced by the tension by finding 

	the torques produced by the components.

	We write ?F = ma from the force diagram for the beam and sign:

		?Fx = Fhingex – FT cos q = 0;

			Fhingex – (620 N) cos 35.0° = 0, which gives       Fhingex = 508 N.

		?Fy = Fhingey + FT sin q – Mg – mg = 0;

			Fhingey + (620 N) sin 35.0° – 215 N – 135 N = 0, 

	which gives       Fhingey = – 6 N (down).



31.	We choose the coordinate system shown, with positive torques 
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	clockwise.  We write ?t = Ia about the point A from the 

	force diagram for the pole and light:

		?tA = – FTH + MgL cos q + mg!L cos q = 0;

		– FT (3.80 m) + (12.0 kg)(9.80 m/s2)(7.5 m) cos 37° + 

							(8.0 kg)(9.80 m/s2)!(7.5 m) cos 37° = 0, 

	which gives       FT = 2.5 ´ 102 N.

	We write ?F = ma from the force diagram for the pole and light:

		?Fx = FAH – FT = 0;

			FAH – 2.5 ´ 102 N = 0, which gives       FAH = 2.5 ´ 102 N.

		?Fy = FAV – Mg – mg = 0;

			FAV – (12.0 kg)(9.80 m/s2) – (8.0 kg)(9.80 m/s2) = 0, which gives       FAV = 2.0 ´ 102 N.
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32.	We choose the coordinate system shown, with positive torques 

	counterclockwise.  We write ?t = Ia about the point A from the 

	force diagram for the ladder:

		?tA = mg(!¬) cos q – FN2¬ sin q = 0, which gives

		FN2 = mg/2 tan q.

	We write ?Fx = max from the force diagram for the ladder:

		Ffr – FN2 = 0, which gives Ffr = FN2 = mg/2 tan q.	

	We write ?Fy = may from the force diagram for the ladder:

		FN1 – mg = 0, which gives FN1 = mg.

	For the bottom not to slip, we must have

		Ffr = msFN1 ,   or  mg/2 tan q = msmg, 

	from which we get tan q = 1/2ms.

	The minimum angle is        qmin = tan–1(1/2ms).
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33.	We choose the coordinate system shown, with positive torques clockwise.

	(a)	For the torques about the point B we have

			?tB = FT1(!L + D) – MgD = 0;

			FT1(0.500 m + 0.400 m) – (0.230 kg)(9.80 m/s2)(0.400 m) = 0, 

		which gives FT1 =        1.00 N.

	(b)	For the torques about the point A we have

			?tA = – FT2(!L + D) + Mg!L = 0;

			– FT2(0.500 m + 0.400 m) + (0.230 kg)(9.80 m/s2)(0.500 m), 

		which gives FT2 =        1.25 N.
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34.												(a)

	We choose the coordinate system shown, with positive 

	torques clockwise.  

	(b)	We write ?Fx = max from the force diagram:

			FAH + FT sin f  = 0, which gives 

			FAH 	= (70 N) sin 37° 

					=      – 42 N (– x-direction). 

		We write ?Fy = may from the force diagram:

			FAV + FT cos f – W – Mg = 0, which gives 

			FAV 	= 20 N + (3.0 kg)(9.80 m/s2) – (70 N) cos 37° 

					=      – 6.5 N (– y-direction).

	(c)	For the torques about the point A we have

			?tA = Wx sin q + Mg!L sin q – FT cos f (L sin q) + FT sin f (L cos q) = 0;

			(20 N) x sin 53° + (3.0 kg)(9.80 m/s2)!(5.0 m) sin 53° – 

								(70 N) cos 37° (5.0 m) sin 53° + (70 N) sin 37° (5.0 m) cos 53° = 0,

		which gives x =       2.4 m.

		Note that we find the torque of FT by finding the torques of the components.
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35.	We choose the coordinate system shown, with positive torques 

	clockwise.  We assume the normal force acts a distance x from 

	the edge of the crate.  If the crate does not tip, ?t = 0, which 

	we write about the edge of the crate:

		(mg cos q)!h – (mg sin q)d – FNx = 0

	We write ?Fy = may from the force diagram:

		FN – mg cos q = 0, which gives FN = mg cos q.

	When we use this in the torque equation, we get

		x = !h – d tan q.

	If the crate is not to tip over, x = 0;

		!h = d tan q. ,   or   

		tan qmax = !h/d = !(2.0 m)/(1.2 m) = 0.833,        qmax = 40°.

	If the crate were sliding, the friction force would be kinetic, but in 

	the limiting case would still act at the corner of the base, so the 

	angle would be the       same.





















�

36.	We choose the coordinate system shown, with positive torques 

	clockwise.  We assume the normal force acts a distance x from 

	the center line of the crate.  In the accelerating frame of the 

	truck, we add a pseudoforce – ma at the center of mass.  

	We write ?Fx = max from the force diagram:

		Ffr – ma = 0, which gives Ffr = ma.

	We write ?Fy = may from the force diagram:

		FN – mg = 0, which gives FN = mg.

	If the crate does not tip, ?t = 0, which we write about the 

	center of mass of the crate:

		FNx  – Ffr!h = 0.

	When we combine the equations, we get

		a = 2gx/h.

	Because the maximum value of x is !w, we have

		amax = gw/h = (9.80 m/s2)(1.0 m)/(2.5 m) =      3.9 m/s2.
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37.	We choose the coordinate system shown, with 

	positive torques clockwise.  

	We find the angle from

		cos q = !D/L = !(1.8 m)/(2.5 m) = 0.360, q = 68.9°.

	(a)	For the torques on the left side of the ladder 

		about the top point B we have

			?tB = FN1!D –FT!L sin q – Mg(L – d) cos q = 0.

		For the torques on the right side of the ladder 

		about the top point B we have

			?tB = – FN2!D + FT!L sin q = 0.

		If we subtract the two equations, we get

			(FN1 + FN2)!D = Mg(L – d) cos q  + FTL sin q.

		We write ?Fy = may for the entire ladder:

			FN1 + FN2 – Mg = 0,  or  FN1 + FN2 = Mg.

		When we use this in the previous equation, we get

			FT 	= Mg[!D – (L – d) cos q ]/L sin q 

				= (60 kg)(9.80 m/s2)[0.90 m – (2.5 m – 2.0 m) cos 68.9°]/(2.5 m) sin 68.9° =      182 N.

	(b)	From the second torque equation we get

			FN2 = FTL sin q /D = (182 N)(2.5 m) sin 68.9°/(1.8 m) =      236 N.

		From the force equation we get

			FN1 = Mg – FN2 = (60 kg)(9.80 m/s2) – 235 N =       352 N.

	(c)	We write ?Fx = max for the right side of the ladder:

			FB cos f – FT = 0,  or  FB cos f = FT = 182 N.

		We write ?Fy = may for the right side of the ladder:

			– FB sin f + FN2 = 0,  or  FB sin f = FN2 = 236 N.

		We find the angle from

			tan f = FB sin f/FB cos f = (236 N)/(182 N) = 1.30,  so      f = 52.4°.

		We find the magnitude from

			FB = FB cos f/cos f = (182 N)/cos 52.4° =      298 N.

















�

38.	We choose the coordinate system shown, with positive torques clockwise.

	We write ?Fx = Max from the force diagram for the lamp:

		FP – Ffr = 0, which gives FP = Ffr.

	We write ?Fy = May from the force diagram for the lamp:

		FN – Mg = 0, which gives FN = Mg.

	If the lamp slides without acceleration, we have FP = Ffr = mFN = mMg.

	We write ?t = Ia about the center of the base from the force 

	diagram for the lamp:

		?t = FPy – FNd = mMgy – Mgd = 0,  or  y = d/m.

	The maximum height without tipping will be when d is maximum, 

	which is L:

		ymax = L/m = (0.10 m)/(0.20) = 0.50 m =       50 cm.



�

39.	From the symmetry of the wires, we see that the angle between a 

	horizontal line on the ground parallel to the net and the line from 

	the base of the pole to the anchoring point is q = 30°.  We find the 

	angle between the pole and a wire from

		tan b = d/H = (2.0 m)/(2.6 m) = 0.769, which gives b = 37.6°.

	Thus the horizontal component of each tension is FT sin b.

	We write ?t = Ia about the horizontal axis through the base A 

	perpendicular to the net from the force diagram for the pole:

		?tA = FnetH – 2(FT sin b cos q)H = 0,  or  

		Fnet = 2FT sin b cos q = 2(95 N) sin 37.6° cos 30° =      1.0 ´ 102 N.







40.	We find the increase in length from the elastic modulus:

		E = Stress/Strain = (F/A)/(?L/L0);

		5 ´ 109 N/m2 = [(250 N)/p(0.500 ´ 10–3 m)2]/[?L/(30.0 cm)], which gives ?L =       1.91 cm.



41.	(a)	We find the stress from

			Stress = F/A = (25,000 kg)(9.80 m/s2)/(2.0 m2) =       1.2 ´ 105 N/m2.

	(b)	We find the strain from

			Strain = Stress/E = (1.2 ´ 105 N/m2)/(50 ´ 109 N/m2) =      2.4 ´ 10–6.



42.	We use the strain to find how much the column is shortened:

		Strain = ?L/L0;

		2.4 ´ 10–6 = ?L/(12 m), which gives ?L = 2.9 ´ 10–5 m =       0.029 mm.



43.	(a)	We find the stress from

			Stress = F/A = (2000 kg)(9.80 m/s2)/(0.15 m2) =       1.3 ´ 105 N/m2.

	(b)	We find the strain from

			Strain = Stress/E = (1.3 ´ 105 N/m2)/(200 ´ 109 N/m2) =      6.5 ´ 10–7.

	(c)	We use the strain to find how much the girder is lengthened:

			Strain = ?L/L0;

			6.5 ´ 10–7 = ?L/(9.50 m), which gives ?L = 6.2 ´ 10–6 m =       0.0062 mm.



44.	We find the volume change from

		?P = – B ?V/V0 ; 

		(2.6 ´ 106 N/m2 – 1.0 ´ 105 N/m2) = – (1.0 ´ 109 N/m2)?V/(1000 cm3), 

	which gives ?V = – 2.5 cm3.

	The new volume is V0 + ?V = 1000 cm3 + (– 2.5 cm3) =       998 cm3.





45.	We find the elastic modulus from

		E 	= Stress/Strain = (F/A)/(?L/L0)

			= [(13.4 N)/#p(8.5 ´ 10–3 m)2]/[(0.37 cm)/(15 cm)] =       9.6 ´ 106 N/m2.



46.	The tension in each wire produces the stress.  We find the strain from

		Strain = Stress/E = FT/EA.

	For wire 1 we have

		Strain1 = (1.8 ´ 102 N)/(200 ´ 109 N/m2)p(0.50 ´ 10–3 m)2 = 1.1 ´ 10–3 =       0.11%.

	For wire 2 we have

		Strain2 = (2.4 ´ 102 N)/(200 ´ 109 N/m2)p(0.50 ´ 10–3 m)2 = 1.5 ´ 10–3 =       0.15%.



47.	The pressure needed is determined by the bulk modulus:

		?P = – B ?V/V0 = – (90 ´ 109 N/m2)(– 0.10 ´ 10–2) =       9.0 ´ 107 N/m2.

	This is (9.0 ´ 107 N/m2)/(1.0 ´ 105 N/m2 · atm) =       9.0 ´ 102 atm.



48.	We will take the change in pressure to be 200 atm.  We find the volume change from

		?P = – B ?V/V0 ; 

		(200 atm)(1.0 ´ 105 N/m2 · atm) = – (90 ´ 109 N/m2)?V/V0 , 

	which gives ?V/V0 = – 2.2 ´ 10–4 =       – 0.022%.



49.	We find the shear force applied along one edge of the square plate from

		G = Stress/Strain = (F/A)/(?L/L0);

		80 ´ 109 N/m2 = [F/(0.50 m)(0.011 m)]/(0.050), which gives F =      2.2 ´ 107 N.



50.	If we treat the abductin as an elastic spring, we find the effective spring constant from

		k = F/?L = EA/L0 = (2.0 ´ 106 N/m2)(0.50 ´ 10–4 m2)/(3.0 ´ 10–3 m) = 3.33 ´ 104 N/m.

	We find the elastic potential energy stored in the abductin from

		U = !kx2 = !(3.33 ´ 104 N/m)(1.0 ´ 10–3 m)2 =       0.017 J.



�

51.	(a)	For the torque from the sign’s weight about the 

		point A we have

			tA = Mgd = (5.1 kg)(9.80 m/s2)(2.2 m) =      1.1 ´ 102 m · N.

	(b)	The balancing torque must be exerted by the       wall,       which is 

		the only other contact point.  Because the torque from the sign is 

		clockwise, this torque must be counterclockwise.

	(c)	If we think of the torque from the wall as a pull on the top of the 

		pole and a push on the bottom of the pole, there is tension along 

		the top of the pole and compression along the bottom.  There must 

		also be a vertical force at the wall which, in combination with 

		the weight of the sign, will create a shear stress in the pole.  

		Thus      all three       play a part.



52.	We find the maximum compressive force from the compressive strength of bone:

		Fmax = (Compressive strength)A = (170 ´ 106 N/m2)(3.0 ´ 10–4 m2) =      5.1 ´ 104 N.





















�

53.	We find the maximum tension from the tensile strength of nylon:

		FTmax 	= (Tensile strength)A 

				= (500 ´ 106 N/m2)p(0.50 ´ 10–3 m)2 =      3.9 ´ 102 N.

	We can increase the maximum tension by increasing the area, 

	so we use       thicker strings.

	The impulse on the ball that changes its momentum must be provided by 

	an increased tension,       so that the maximum strength is exceeded.









54.	(a)	We determine if the compressive strength, 1.7 ´ 108 N/m2, is exceeded:

			Stress = F/A = (3.6 ´ 104 N)/(3.6 ´ 10–4 m2) = 1.0 ´ 108 N/m2.

		Because this is less than the compressive strength, the bone will       not break.

	(b)	We find the change in length from

			Strain = ?L/L0 = Stress/E,  or  

			?L = (Stress)L0/E = (1.0 ´ 108 N/m2)(0.20 m)/(15 ´ 109 N/m2) = 1.3 ´ 10–3 m =      1.3 mm.



55.	(a)	We want the maximum stress to be (1/7.0) of the tensile strength:

			Stressmax = F/Amin = (Tensile strength)/7.0;

			(320 kg)(9.80 m/s2)/Amin = (500 ´ 106 N/m2)/7.0, which gives Amin =        4.4 ´ 10–5 m2.

	(b)	We find the change in length from

			Strain = ?L/L0 = Stress/E,  or  

			?L = (Stress)L0/E = [(500 ´ 106 N/m2)/7.0](7.5 m)/(200 ´ 109 N/m2) = 2.7 ´ 10–3 m =      2.7 mm.
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56.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the support point A from 

	the force diagram for the cantilever:

		?tA = – F2d + Mg!L = 0;

		– F2(20.0 m) + (2600 kg)(9.80 m/s2)(25.0 m) = 0, 

	which gives F2 = 3.19 ´ 104 N.

	We assume the force is parallel to the grain.  We want the 

	maximum stress to be (1/8.5) of the compressive strength:

		Stressmax2 = F/Amin2 = (Compressive strength)/8.5;

		(3.19 ´ 104 N)/Amin2 = (35 ´ 106 N/m2)/8.5, which gives       Amin2 = 7.7 ´ 10–3 m2.

	For the forces in the y-direction we have

		?Fy = F1 + F2 – Mg  = 0,  or

		F1 = Mg – F2 = (2600 kg)(9.80 m/s2) – (3.19 ´ 104 N) = – 6.42 ´ 103 N (tension).

	We assume the force is parallel to the grain.  We want the 

	maximum stress to be (1/8.5) of the tensile strength:

		Stressmax1 = F/Amin1 = (Tensile strength)/8.5;

		(6.42 ´ 103 N)/Amin1 = (40 ´ 106 N/m2)/8.5, which gives       Amin1 = 1.4 ´ 10–3 m2.



57.	We want the maximum shear stress to be (1/6.0) of the shear strength:

		Stressmax = F/Amin = (Shear strength)/6.0;

		(3200 N)/#pdmin2 = (170 ´ 106 N/m2)/6.0, which gives dmin = 1.2 ´ 10–2 m =       1.2 cm.
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58.	We find the required tension from ?Fy = may:

		FT – mg = ma,  or  

		FT = m(a + g) = (3100 kg)(1.2 m/s2 + 9.80 m/s2) = 3.41 ´ 104 N.

	We want the maximum stress to be (1/7.0) of the tensile strength:

		Stressmax = F/Amin = (Tensile strength)/7.0;

		(3.41 ´ 104 N)/#pdmin2 = (500 ´ 106 N/m2)/7.0, 

	which gives dmin = 2.5 ´ 10–2 m =       2.5 cm.









59.	We find the acceleration, and then the force, required to stop:

		v2 = v02 + 2as;

		0 = (60 m/s)2 +2a(1.0 m); which gives a = – 1.8 ´ 103 m/s2.

	The required force is 

		F = ma = (75 kg)(– 1.8 ´ 103 m/s2) = – 1.35 ´ 105 N.

	This will produce a stress of

		Stress = F/A = (1.35 ´ 105 N)/(0.30 m2) = 4.5 ´ 105 N/m2.

	Because this is less than the ultimate strength of 5 ´ 105 N/m2, it is possible to escape serious injury.



�

60.	We choose the coordinate system shown.  

	(a)	From the symmetry of the force diagram for the 

		truss, we see that 

			F1 = F2 = !W.

		If we take the pin A as the object, we have the 

		forces shown in the diagram, where the directions 

		have been chosen so the forces can sum to zero.  

		We write ?F = ma from the diagram:

			?Fy = F1 – FAB sin 60° = 0;

			!(1.25 ´ 104 N) = FAB sin 60°, 

		which gives       FAB = 7.22 ´ 103 N.

			?Fx = FAC – FAB cos 60° = 0;

			FAC – (7.22 ´ 103 N) cos 60°  = 0, 

		which gives       FAC = 3.61 ´ 103 N.

		If we take the pin B as the object, we have the 

		forces shown in the diagram, where the directions 

		have been chosen so the forces can sum to zero.  

		We write ?F = ma from the diagram:

			?Fx = FAB cos 60° – FBD cos 60° = 0,

		which gives       FBD = FAB = 7.22 ´ 103 N.

			?Fy = FAB sin 60° + FBD sin 60°  – FBC = 0;

			2(7.22 ´ 103 N) sin 60° – FBC = 0, 

		which gives       FBC = 1.25 ´ 104 N.

		From the symmetry we see that 

			FCD = FAC = 3.61 ´ 103 N.

		This can also be seen from the force diagram for pin C.

	(b)	We see that FAB pushes on pin A, so pin A pushes on AB, a compression.  FAC pulls on pin A, so 

		AC is under tension.  FBC pulls on pin B, so BC is under tension.  Thus we have

			AC, CD, BC under tension;  AB, BD under compression.









61.	(a)	We choose the coordinate system shown, with positive torques counterclockwise. 
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		If we take the truss as the object, we can find the 

		tension in the cable and the force at point A.  

		We write ?t = Ia about the point A from the 

		force diagram for the truss:

			?tA =  W(2d) – FT(d sin 60°) = 0;

		which gives       FT = 2.31W = 2.31(56.0 kN) = 129 kN.

		We write ?F = ma from the diagram:

			?Fx = FT – FA cos b = 0, which gives 

				FA cos b = FT = 129 kN.

			?Fy = FA sin b – W = 0, which gives 

				FA sin b = W =  56.0 kN.

		When we divide these two equations, we get 

			tan b = 0.434,       b = 23.5°;   then       FA = 141 kN.

	(b)	If we take the pin E as the object, we have the forces shown 

		in the force diagram.  We write ?F = ma from the diagram:

			?Fy = FDE sin 60° – W = 0;

				FDE sin 60° – 56.0 kN = 0, which gives 

				FDE = 64.7 kN (tension) .

			?Fx = FDE cos 60° – FCE = 0;

				(64.7 kN) cos 60° – FCE = 0, which gives 

				FCE = 32.3 kN (compression) .

		From the forces shown on pin D as the object, we can see that 

		the only way for three forces that form an equilateral triangle 

		to have a zero resultant is for the forces to be equal, so we have

			FCD = FBD = FDE = 64.7 kN, 

		with CD under compression and BD under tension.

		From the forces shown on pin C as the object, we have 

			?Fy = FBC sin 60° – FCD sin 60°  = 0, which gives 

				FBC = FCD = 64.7 kN (tension).

			?Fx = FBC cos 60° + FCD cos 60° + FCE – FAC = 0;

				(64.7 kN) cos 60° + (64.7 kN) cos 60° + 32.3 kN – FAC = 0, which gives 

				FAC = 97.0 kN (compression).

		From the forces shown on pin B as the object, we have 

			?Fy = FAB sin 60° – FBC sin 60°  = 0, which gives       FAB = FBC = 64.7 kN (compression).

			?Fx = FT – FAB cos 60° – FBC cos 60° – FBD = 0;

				129 kN – (64.7 kN) cos 60° – (64.7 kN) cos 60° – 64.7 kN = 0, 

		which gives  a check on the calculations (within significant figures). 

































62.	We choose the coordinate system shown, for one of the two trusses. 

�

	From the symmetry of the force diagram for the 

	truss, we see that 

		F1 = F2 = Mg/4.

	This could be also be found by using ?t = 0 about 

	one of the supports.

	If we take the pin A as the object, we have the forces 

	shown in the diagram, where the directions have 

	been chosen so the forces can sum to zero.  

	We write ?F = ma from the diagram:

		?Fy = F1 – FAB sin 60° – Mg/8 = 0;

		(Mg/4) – FAB sin 60° – (Mg/8) = 0, 

	which gives FAB = Mg/4v3.

		?Fx = FAC – FAB cos 60° = 0;

		FAC – (Mg/4v3) cos 60°  = 0, 

	which gives FAC = Mg/8v3.

	If we take the pin B as the object, we have the forces 

	shown in the diagram, where the directions have been 

	chosen so the forces can sum to zero.  

	We write ?F = ma from the diagram:

		?Fy = FAB sin 60° + FBC sin 60° = 0;

	which gives FBC = FAB = Mg/4v3.

		?Fx = FAB cos 60° + FBC cos 60°  – FBD = 0,

		2(Mg/4v3) cos 60° – FBD = 0, 

	which gives FBD =  Mg/4v3.

	From the symmetry we see that 

		FCD = FBC = FAB  = FDE = FBD =  Mg/4v3;  FCE = FAC = Mg/8v3.

	We see that each force is # of the force from Example 12-15.







63.	(a)	Because the tensile strength of steel is the same as the compressive strength, we choose a 

		member with the greatest stress, FAB = Mg/v3.  The safety condition is

			Stress = FAB /A = (strength)/6.0,   or

			A = (6.0)FAB /strength = (6.0)(7.0 ´ 105 kg)(9.80 m/s2)/(500 ´ 106 N/m2)v3 =       4.8 ´ 10–2 m2.

	(b)	If we simplify by putting the additional mass at the center of the bridge, and remember that 

		each truss will support half of the load of the trucks, we have

			A 	= (6.0)FAB /strength 

				= (6.0)[(7.0 ´ 105 kg + !(50)(1.2 ´ 104 kg)](9.80 m/s2)/(500 ´ 106 N/m2)v3 =       6.8 ´ 10–2 m2.































64.	We choose the coordinate system shown, with positive torques counterclockwise.  

�

	If we take one of the trusses, which supports half of the 

	weight, as the object, we can find the forces at the supports. 

	We write ?t = Ia about the point A from the force diagram 

	for the truss:

		?tA =  F2L – (Mg/2)(L/4) = 0;

	which gives       F2 	= Mg/8 = (44 ´ 103 kg)(9.80 m/s2)/8 

						= 5.39 ´ 104 N.

	We write ?t = Ia about the point E:

		?tE =  – F1L + (Mg/2)(3L/4) = 0;

	which gives       F1 	= 3Mg/8 = 3(44 ´ 103 kg)(9.80 m/s2)/8 

						= 1.62 ´ 105 N.

	If we take the strut AC as the object, we can find the forces 

	AC exerts on the pins at A and C by finding their reactions 

	acting on the strut.  The weight of the train at the center of 

	the strut requires vertical forces at the pins.  Because the 

	weight of the train is at the midpoint of the strut, we can 

	use symmetry to show the forces in the force diagram.  

	Thus we have 2FACy = Mg/2,  or  

		FACy = Mg/4 = (44 ´ 103 kg)(9.80 m/s2)/4 = 1.04 ´ 105 N.

	If we take the pin A as the object, we have the forces shown 

	in the force diagram.  We write ?F = ma from the diagram:

		?Fy = F1 – FACy  – FAB sin 60° = 0;

			(3Mg/8) – (Mg/4) – FAB sin 60° = 0, which gives 

			FAB = Mg/4v3 = 6.2 ´ 104 N (compression).

		?Fx = FACx – FAB cos 60° = 0;

			FACx – (Mg/4v3) cos 60° = 0, which gives 

			FACx = Mg/8v3 = 3.1 ´ 104 N (tension).

	From the forces shown on pin B as the object, we have

		?Fy = FAB sin 60° – FBC sin 60° = 0, which gives 

			FBC = FAB = Mg/4v3 = 6.2 ´ 104 N (tension).

		?Fx = FAB cos 60° + FBC cos 60° – FBD = 0;

			(Mg/4v3) cos 60° + (Mg/4v3) cos 60° – FBD = 0, which gives 

			FBD = Mg/4v3 = 6.2 ´ 104 N (compression).

	From the forces shown on pin C as the object, we have 

		?Fy = FCD sin 60° + FBC sin 60° – FACy = 0;

			FCD sin 60° + (Mg/4v3) sin 60° – (Mg/4) = 0, which gives       FCD = Mg/4v3 = 6.2 ´ 104 N (tension).

		?Fx = FCD cos 60° – FBC cos 60° + FCE – FACx = 0;

			(Mg/4v3) cos 60° – (Mg/4v3) cos 60° + FCE – (Mg/8v3) = 0, which gives 

			FCE = Mg/8v3 = 3.2 ´ 104 N (tension).

	From the forces shown on pin D as the object, we have 

		?Fy = FDE sin 60° – FCD sin 60° = 0, which gives       FDE = FCD = Mg/4v3 = 6.2 ´ 104 N (compression).

		?Fx = FBD – FDE cos 60° – FCD cos 60° = 0;

			(Mg/4v3) – (Mg/4v3) cos 60° – (Mg/4v3) cos 60° = 0, which gives a check on the calculations. 

	Evaluating the forces at pin E will also confirm the calculations.

	Note that the vertical forces in strut AC create a shear stress.















65.	We choose the coordinate system shown, with positive torques counterclockwise.  

�

	If we take one of the trusses, which supports half of the 

	weight, as the object, we can find the forces at the supports. 

	We write ?t = Ia about the point A from the force diagram 

	for the truss:

		?tA =  F2L – (Mg/2)d = 0, which gives       

		F2 = Mgd/2L = (28 ´ 103 kg)(9.80 m/s2)(22 m)/2(64 m) 

			= 4.72 ´ 104 N.

	We write ?t = Ia about the point E:

		?tE =  – F1L + (Mg/2)(L – d) = 0, which gives       

		F1 = Mg(L – d)/2L 

			= (28 ´ 103 kg)(9.80 m/s2)(64 m – 22 m)/2(64 m)

			= 8.99 ´ 104 N.

	If we take the strut AC as the object, we can find the forces 

	AC exerts on the pins at A and C by finding their reactions 

	acting on the strut.  The weight of the truck on 

	the strut requires vertical forces at the pins.  

	We write ?t = Ia about the point A for the strut:

		?tA =  FCy(L /2) – (Mg/2)d = 0, which gives       

			FCy = Mgd/L = (28 ´ 103 kg)(9.80 m/s2)(22 m)/(64 m) 

				= 9.43 ´ 104 N.

	We write ?t = Ia about the point C:

		?tC =  – FAy(L /2) + (Mg/2)[(L /2) – d] = 0, which gives       

			FAy = Mg[(L /2) – d] /L 

				= (28 ´ 103 kg)(9.80 m/s2)(32 m – 22 m)/(64 m)

				= 4.28 ´ 104 N.

	If we take the pin A as the object, we have the forces shown 

	in the force diagram.  We write ?F = ma from the diagram:

		?Fy = F1 – FAy  – FAB sin 60° = 0;

			(8.99 ´ 104 N) – (4.28 ´ 104 N) – FAB sin 60° = 0, which gives 

			FAB = 5.44 ´ 104 N (compression).

		?Fx = FACx – FAB cos 60° = 0;

			FACx – (5.44 ´ 104 N) cos 60° = 0, which gives 

			FACx = 2.72 ´ 104 N (tension).

	From the forces shown on pin B as the object, we have

		?Fy = FAB sin 60° – FBC sin 60° = 0, which gives 

			FBC = FAB = 5.44 ´ 104 N (tension).

		?Fx = FAB cos 60° + FBC cos 60° – FBD = 0;

			(5.44 ´ 104 N) cos 60° + (5.44 ´ 104 N) cos 60° – FBD = 0, which gives 

			FBD = 5.44 ´ 104 N (compression).

	From the forces shown on pin C as the object, we have 

		?Fy = FCD sin 60° + FBC sin 60° – FCy = 0;

			FCD sin 60° + (5.44 ´ 104 N) sin 60° – (9.43 ´ 104 N) = 0, which gives    FCD = 5.44 ´ 104 N (tension).

		?Fx = FCD cos 60° – FBC cos 60° + FCE – FACx = 0;

			(5.44 ´ 104 N) cos 60° – (5.44 ´ 104 N) cos 60° + FCE – (2.72 ´ 104 N) = 0, which gives 

			FCE = 2.72 ´ 104 N (tension).

	From the forces shown on pin D as the object, we have 

		?Fy = FDE sin 60° – FCD sin 60° = 0, which gives      FDE = FCD = 5.44 ´ 104 N (compression).

		?Fx = FBD – FDE cos 60° – FCD cos 60° = 0;

			5.44 ´ 104 N – (5.44 ´ 104 N) cos 60° – (5.44 ´ 104 N) cos 60° = 0, which gives a check. 

	Evaluating the forces at pin E will also confirm the calculations.



66.	We choose the coordinate system shown.  From the 

�

	symmetry of the force diagram for the truss, we see that 

		F1 = F2 = 5F/2.

	This could be also be found by using ?t = 0 about 

	one of the supports.

	If we take the pin A as the object, we have the forces shown 

	in the force diagram.  We write ?F = ma from the diagram:

		?Fy = F1 – F  – FAB sin 45° = 0;

			(5F/2) – F  – FAB sin 45° = 0, which gives 

			FAB = 3F/v2 (compression).

		?Fx = FAC – FAB cos 45° = 0;

			FAC –  (3F/v2) cos 45° = 0, which gives 

			FAC = 3F/2 (tension).

	From the forces shown on pin C as the object, we have 

		?Fy = FBC – F = 0, which gives       FBC = F (tension).

		?Fx = FCE – FAC = 0, which gives      FCE = FAC  = 3F/2 (tension).

	From the forces shown on pin B as the object, we have

		?Fy = FAB sin 45° – FBE sin 45° – FBC = 0;

			(3F/v2) sin 45° – FBE sin 45° – F = 0, 

		which gives       FBE = F/v2 (tension).

		?Fx = FAB cos 45° + FBE cos 45° – FBD = 0;

			(3F/v2) cos 45° + (F/v2) cos 45° – FBD = 0, 

			which gives       FBD = 2F (compression).

	From the forces shown on pin D as the object, we have 

		?Fy =       FDE = 0.

		?Fx = FBD – FDG = 0, 

		which gives        FDG = FBD = 2F (compression)

	The members in the right half of the truss will mirror those on the left.  This can be confirmed by evaluating forces at the other pins.  Thus we have

		FGJ = FAB = 3F/v2 (compression),  FGH = FBC = F (tension),  FAC = FHJ = FCE = FEH = 3F/2 (tension), 

		FEG = FBE = F/v2 (tension),  FDG = FBD = 2F (compression),  FDE = 0.
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67.	In each arch the horizontal force at the base 

	must equal the horizontal force at the top.  

	Because the two arches support the same load, 

	we see from the force diagrams that the vertical 

	forces will be the same and have the same 

	moment arms.  Thus the torque about the base of 

	the horizontal force at the top must be the same 

	for the two arches:

		t = Froundhround = FroundR = Fpointedhpointed;

		Fround(4.0 m) = @Froundhpointed ,  

	which gives hpointed =         12 m.





�

68.	We find the required tension from ?Fy = may:

		2F sin q – Fload = 0;

		2F sin 5° – 4.3 ´ 105 N = 0, which gives F =        2.5 ´ 106 N.











�

69.	All elements are in equilibrium.  For the C-D pair, 

	we write ?t = Ia about the point c from the force diagram:

		?tc = MCgL6 – MDgL5 = 0;

		MC(5.00 cm) – MD(17.50 cm) = 0,  or  MC = 3.500MD.

	The center of mass of C and D must be under the point c.   

	We write ?t = Ia about the point b from the force diagram:

		?tb = MBgL4 – (MC + MD)gL3 = 0;

		(0.735 kg)(5.00 cm) – (MC + MD)(15.00 cm) = 0,  or

		MC + MD = 0.245 kg.

	When we combine these two results, we get      MC = 0.191 kg,  and  MD = 0.0544 kg.

	The center of mass of B, C, and D must be under the point b.   For the entire mobile, we write 

	?t = Ia about the point a from the force diagram:

		?ta = (MB + MC + MD)gL2 – MAgL1 = 0;

		(0.735 kg + 0.245 kg)(7.50 cm) – MA(30.00 cm) = 0, which gives       MA = 0.245 kg.



�

70.	Because the walker is at the midpoint of the rope, the angles 

	are equal.  We find the angle from

		tan q = h/!L = (3.4 m)/!(46 m) = 0.148,  or  q = 8.41°.

	From the force diagram for the walker we can write 

		?Fx = FT1 cos q – FT2 cos q = 0,  or  FT1 = FT2 = FT;

		?Fy = FT1 sin q + FT2 sin q – mg = 0,  or  

		2FT sin 8.41° = (60 kg)(9.80 m/s2), which gives 

		FT =       2.0 ´ 103 N.

	No.       There must always be an upward component of the tension to balance the weight.



�

71.	(a)	The cylinder will roll about the contact point A.  

		We write St = Ia about the point A:

			Fa(2R – h) + FN1[R2 – (R – h)2]1/2 – Mg[R2 – (R – h)2]1/2 = IAa. 

		When the cylinder does roll over the curb, contact with 

		the ground is lost and FN1 = 0.  Thus we get

			Fa	= {IAa + Mg[R2 – (R – h)2]1/2}/(2R – h) 

				= [IAa/(2R – h)] + [Mg(2Rh – h2)1/2/(2R – h)].

		The minimum force occurs when a = 0:

			Famin = Mg[h(2R – h)]1/2/(2R – h) =       Mg[h/(2R – h)]1/2.

	(b)	The cylinder will roll about the contact point A.  

		We write St = Ia about the point A:

			Fb(R – h) + FN1[R2 – (R – h)2]1/2 – Mg[R2 – (R – h)2]1/2 = IAa. 

		When the cylinder does roll over the curb, contact with 

		the ground is lost and FN1 = 0.  Thus we get

			Fb	= {IAa + Mg[R2 – (R – h)2]1/2}/(R – h) 

				= [IAa/(R – h)] + [Mg(2Rh – h2)1/2/(R – h)].

		The minimum force occurs when a = 0:

			Fbmin =       Mg[h(2R – h)]1/2/(R – h).
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72.	We choose the coordinate system shown, with positive torques clockwise.

	We write ?t about the rear edge from the force diagram:

		?tedge 	= mg!L – FA!H 

				= (1.8 ´ 108 N)!(40 m) – (950 N/m2)(200 m)(70 m)!(200 m) 

				=        + 2.3 ´ 109 m · N.

	Because the result is positive, the torque is clockwise, so the building

	      will not topple.

	An alternative procedure is to find the location of the force FEy = mg.

	We write ?t = 0 about the middle of the base from the force diagram:

		?tC = FEyx – FA!H = 0;

		(1.8 ´ 108 N)x – (950 N/m2)(200 m)(70 m)!(200 m) = 0, 

	which gives x = 7.4 m. 

	Because this is less than 20 m, the building will not topple.
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73.	If the vertical line of the weight falls within the base of the 

	truck, there will be a normal force FN1 required to make the 

	net torque about the center of mass zero, and the truck  will not 

	tip over.  The limiting case will be when the line passes through 

	the corner of the base.  Thus we find the limiting angle from

		tan qmax = !w/d = !(2.4 m)/(2.2 m) = 0.545,  or        qmax = 29°.















74.	(a)	From Example 9–7, the force of the ground on one leg is 

			Fleg = !(2.1 ´ 105 N) = 1.05 ´ 105 N.

		We find the stress in the tibia bone from

			Stress = Fleg/A = (1.05 ´ 105 N)/(3.0 ´ 10–4 m) =       3.5 ´ 108 N/m2.

	(b)	The compressive strength of bone is 1.7 ´ 108 N/m2.  Thus the bone       will break.

	(c)	From Example 9–7, the force of the ground on one leg is 

			Fleg = !(4.9 ´ 103 N) = 2.45 ´ 103 N.

		We find the stress in the tibia bone from

			Stress = Fleg/A = (2.45 ´ 103 N)/(3.0 ´ 10–4 m) =       8.2 ´ 106 N/m2.

		This is less than the compressive strength of bone, so the bone       will not break.



75.	The force is parallel to the grain.  We want the maximum stress to be (1/12) of the compressive strength.  For N studs we have

		Stressmax = (Mg/N)/A = (Compressive strength)/12;

		(12,600 kg)(9.80 m/s2)/N(0.040 m)(0.090 m) = (35 ´ 106 N/m2)/12, which gives   N = 11.8.

	Thus we need       6       studs on each side.

	There are five spaces between the studs, so they will be 

		(10.0 m)/5 =        2.0 m apart.
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76.	From the force diagram for the section we can write 

		?Fx = FT1 cos q1 – FT2 sin q2 = 0,  or  

			FT1 cos 19° – FT2 sin 60° = 0;

		?Fy = – FT1 sin q1 + FT2 cos q2 – mg = 0,  or  

			– FT1 sin 19° + FT2 cos 60° = mg. 

	When we combine these equations, we get

		FT1 = 4.54mg, and FT2 = 4.96mg.

	We write ?t = Ia about the point A from the force diagram:

		?tA = – (FT2 sin q2)h + (FT1 sin q1)d1 + mg!d1 = 0;

		– (4.96mg  sin 60°)h + (4.54mg sin19°)(343 m) + mg!(343 m) = 0,

	which gives       h = 158 m.



�



77.	Because there is no net horizontal force 

	on the tower, from the force diagram for 

	the tower we can write 

		?Fx = FT2 sin q2 – FT3 sin q3 = 0,  or 

			FT3 = FT2 (sin q2)/(sin q3).

	From the force diagram for the north span 

	we can write 

		?Fx = FT1 cos q1 – FT2 sin q2 = 0,  or 

			FT1 = FT2 (sin q2)/(cos q1).

		?Fy = + FT2 cos q2 – FT1 sin q1 – mg = 0,  or

			mg = FT2 cos q2 – FT1 sin q1.

	From the force diagram for one-half of 

	the center span we can write 

		?Fy = + FT3 cos q3 – !Mg = 0,  or

			Mg = 2FT3 cos q3.

	Because the roadway is uniform, the 

	length of each roadway is proportional to the mass:

		d2/d1	= M/m 

				= (2FT3 cos q3)/(FT2 cos q2 – FT1 sin q1)

				= 2[FT2 (sin q2)/(sin q3)](cos q3)/{FT2 cos q2 – [FT2 (sin q2)/(cos q1)](sin q1)}

				= 2(cot q3)/(cot q2 – tan q1)

				= 2(cot 66°)/(cot 60° – tan 19°) =        3.8.



�



78.	The minimum mass is placed symmetrically between 

	two of the legs of the table, so the normal force on the 

	opposite leg becomes zero, as shown in the top view of 

	the table.  We write ?t = Ia about a horizontal axis that 

	passes through the two legs where there is a normal force: 

		?t = – MgR cos q + mgR(1 – cos q) = 0;

		– (36 kg) cos 60° + m(1 – cos 60°) = 0, 

	which gives m =       36 kg.
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79.	From the force diagram for the aircraft we can write 

		?Fx = FT – FD = 0,  or  

			FD = FT =       5.0 ´ 105 N.

		?Fy = FL – W = 0,  or   

			FL = W = (77,000 kg)(9.80 m/s2) = 7.55 ´ 105 N.

	We write ?t = Ia about the center of mass:

		?tCM = FDh – FLd + FTH = 0.

	When we use the previous results, we get

		FT(h + H) = Wd;

		(5.0 ´ 105 N)(h + 1.6 m) = (7.55 ´ 105 N)(3.2 m), which gives h =      3.2 m.
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80.	We select one-half of the cable for our system.  From the 

	force diagram for the section we can write 

		?Fx = FT1 – FT2 cos q = 0; 

			FT1 – FT2 cos 60° = 0.

		?Fy = + FT2 sin q – !mg = 0;

			FT2 sin 60° – !mg  = 0.

	When we combine these equations, we get

	(a)	FT1 = mg/(2 tan 60°) =       0.289mg;

 	(b)	FT2 = mg/(2 sin 60°) =       0.577mg.

	(c)	The direction of the tension in each case is tangent to the cable:

			horizontal at the lowest point, and 60° above the horizontal at the attachment.



81.	We choose the coordinate system shown, with positive torques clockwise.  

�

	(a)	The maximum weight will cause the force FA to be zero.  

		We write ?t = Ia about the support point B from 

		the force diagram for the beam and person:

			?tB = – W(!L – d2) + wd2 + FAD = 0;

			– (600 N)[!(20.0 m) – 5.0 m] + wmax(5.0 m) + 0 = 0, 

		which gives wmax =         600 N.

	(b)	The maximum weight means the force       FA = 0.  

		We write ?t = Ia about the support point A from 

		the force diagram for the beam and person:

			?tA = + W(!L – d1) + w(D + d2) – FBD = 0;

			+ (600 N)[!(20.0 m) – 3.0 m] + (600 N)(17.0 m) – FB(12.0 m) = 0, which gives       FB = 1200 N.

	(c)	We write ?t = Ia about the support point B from the force diagram for the beam and person:

			?tB = – W(!L – d2) + wx + FAD = 0;

			– (600 N)[!(20.0 m) – 5.0 m] + (600 N)(2.0 m) + FA(12.0 m) = 0, which gives       FA = 150 N.

		We write ?t = Ia about the support point A from the force diagram for the beam and person:

			?tA = + W(!L – d1) + w(D + x) – FBD = 0;

			+ (600 N)[!(20.0 m) – 3.0 m] + (600 N)(12.0 m + 2.0 m) – FB(12.0 m) = 0, which gives     FB = 1050 N.

	(d)	We write ?t = Ia about the support point B from the force diagram for the beam and person:

			?tB = – W(!L – d2) + wx + FAD = 0;

			– (600 N)[!(20.0 m) – 5.0 m] + (600 N)(– 10.0 m) + FA(12.0 m) = 0, which gives       FA = 750 N.

		We write ?t = Ia about the support point A from the force diagram for the beam and person:

			?tA = + W(!L – d1) + w(D + x) – FBD = 0;

			+ (600 N)[!(20.0 m) – 3.0 m] + (600 N)(12.0 m – 10.0 m) – FB(12.0 m) = 0, which gives       FB = 450 N.













82.	We choose the coordinate system shown, with positive torques clockwise.  

�

	(a)	We write ?Fx = max from the force diagram:

			FGx – FW = 0,  or  FGx = FW. 

		We write ?Fy = may from the force diagram:

			FGy – mg = 0, which gives 

			FGy = mg = (15.0 kg)(9.80 m/s2) = 147 N.

		We write ?t = Ia about the point A from the force 

		diagram for the ladder:

			?tA = mg(!¬ sin q) – FW¬ cos q = 0;

			(15.0 kg)(9.80 m/s2)!(sin 20.0°) – FW(cos 20.0°) = 0,

		which gives FW = 26.8 N. 

		Thus the components of the force at the ground are 

			FGx = 26.8 N, FGy = 147 N.

	(b)	We write ?Fx = max from the force diagram:

			FGx – FW = 0,  or  FGx = FW. 

		We write ?Fy = may from the force diagram:

			FGy – mg – Mg = 0, which gives FGy = (m + M)g = (15.0 kg + 70 kg)(9.80 m/s2) = 833 N.

		We write ?t = Ia about the point A from the force diagram for the ladder and person:

			?tA = mg(!¬ sin q) + Mg(d sin q) – FW¬ cos q = 0;

			(15.0 kg)(9.80 m/s2)!(7.0 m)(sin 20.0°) + (70 kg)(9.80 m/s2)&(7.0 m)(sin 20.0°) – 

														FW(7.0 m)(cos 20.0°) = 0, 

		which gives FW = 214 N = FGx.

		Because the ladder is on the verge of slipping, we must have

			FGx = mFGy ,   or  m = FGx/FGy = (214  N)/(833 N) =       0.257.
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83.	Because the backpack is at the midpoint of the rope, the 

	angles are equal.  From the force diagram for the 

	backpack and junction we can write 

		?Fx = FT1 cos q – FT2 cos q = 0,  or  FT1 = FT2 = F;

		?Fy = FT1 sin q + FT2 sin q – mg – Fbear = 0,   or

		2 F sin q = mg + Fbear.

	When the bear is not pulling, we have

		2F1 sin q1 = mg;

		2F1 sin 15° = (23.0 kg)(9.80 m/s2), which gives F1 = 435 N.

	When the bear is pulling, we have

		2F2 sin q2 = mg + Fbear;

		2(2)(435 N) sin 30° = (23.0 kg)(9.80 m/s2) + Fbear , 

	which gives Fbear =      6.5 ´ 102 N.



84.	The maximum stress in a column will be at the bottom, caused by the weight of the material.  If the column has density r, height h, and area A, we have

		Stress = F/A = mg/A = rVg/A = rAhg/A = rgh, which is independent of area.

	The column will buckle when this stress exceeds the compressive strength:

		hmax = (Compressive strength)/rg.

	(a)	For steel we have

			hmax = (500 ´ 106 N/m2)/(7.8 ´ 103 kg/m3)(9.80 m/s2) =       6.5 ´ 103 m.

	(b)	For granite we have

			hmax = (170 ´ 106 N/m2)/(2.7 ´ 103 kg/m3)(9.80 m/s2) =       6.4 ´ 103 m.









85.	We assume when the brick strikes the floor there is an average force which produces an average stress in the brick, creating an average strain: 

		?L/L0 = (F/A)/E.

	If we use this average strain for the distance the CM moves while the brick comes to rest, the work done by the average force is – F ?L.  When we use the work-energy principle from the release point to the final resting point, we have

		– F ?L  = ?K + ?U = 0 + (0 – mgh),  or  

		h = F ?L/mg = F(F/A)L0/Emg = A(F/A)2L0/Emg.

	If we assume that the stress varies linearly from zero at the top of the brick to maximum at the bottom, the brick will break when the average stress exceeds one-half the compressive strength, so we have

		hmin = (0.150 m)(0.060 m)[!(35 ´ 106 N/m2)]2(0.040 m)/(14 ´ 109 N/m2)(1.2 kg)(9.80 m/s2) =       0.67 m.

	Note that AL0 is the volume of the brick, so the answer is independent of which face strikes the ground.
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86.	We write ?Fx = max from the force diagram:

		F – Ffr = 0,  or  F = Ffr. 

	We write ?Fy = may from the force diagram:

		FN – Mg = 0,  or  FN = Mg.

	We find the location of the force FN when the static 

	friction force reaches its maximum value: 

		F = Ffr =msFN = msMg.  

	We write ?t = 0 about the edge A of the block from the 

	force diagram:

		?tA = – Mg!¬ + FNx + Fh = 0, which gives

		x = (!Mg¬ – Fh)/FN = (!Mg¬ – msMgh)/Mg = !¬ – msh.

	(a)	For the block to slide, we must have x > 0, or

			!¬ > msh, which gives       ms < ¬/2h.

	(b)	For the block to tip, we must have x < 0, or

			!¬ < msh, which gives       ms > ¬/2h.
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87.	The ropes can only provide a tension, so the scaffold will be stable 

	if FT1 and FT2 are greater than zero.  The tension will be least in 

	the rope farthest from the painter.  To find how far the painter 

	can walk from the right rope toward the right end, we set FT1 = 0.  

	We write ?t = 0 about B from the force diagram:

		?tB = Mgxright + FT1(D + 2d) – mpailg(D + d) – mgD = 0;

		(60 kg)(9.80 m/s2)xright + 0 –  (4.0 kg)(9.80 m/s2)(2.0 m + 1.0 m) – 

									        (25 kg)(9.80 m/s2)(2.0 m) = 0,

	which gives xright = 1.03 m.  

	Because this is greater than the distance to the end of the plank, 1.0 m, 

	walking to the       right end is safe.

	To find how far the painter can walk from the left rope toward the left end, we set FT2 = 0.  

	We write ?t = 0 about A from the force diagram:

		?tA = – Mgxleft – FT2(D + 2d) + mpailgd + mg2d = 0;

		– (60 kg)(9.80 m/s2)xleft – 0 + (4.0 kg)(9.80 m/s2)(1.0 m) + (25 kg)(9.80 m/s2)2(1.0 m) = 0,

	which gives xleft = 0.90 m.  

	Because this is less than the distance to the end of the plank, 1.0 m, walking to the 

	      left end is not safe.

	The painter can safely walk to within       0.10 m        of the left end.  













88.	We choose positive torques clockwise.  

�

	We write ?t = 0 about the point B from the force diagram:

		?tB = – Mg(L – D) – mg!L + F1L = 0, which gives

		F1 	= [Mg(L – D)/L] + !mg = ({M[1 – (vt/L)]} + !m)g 

			= {(95,000 kg)[1 – (80 km/h)t/(3.6 ks/h)(220 m)] + 

									!(23,000 kg)}(9.80 m/s2) 

			=       1.04 ´ 106 N – (9.40 ´ 104 N/s)t.

	We write ?t = 0 about the point A from the force diagram:

		?tA = MgD + mg!L – F2L = 0, which gives

		F2 	= (MgD/L) + !mg = [(Mvt/L) + !m]g 

			= [(95,000 kg)(80 km/h)t/(3.6 ks/h)(220 m) + 

									!(23,000 kg)](9.80 m/s2) 

			=       1.13 ´ 105 N + (9.40 ´ 104 N/s)t.



89.	(a)	We choose positive torques clockwise.  

�

		We write ?t = 0 about the point A from the force diagram:

			?tA = mg!L – FLD = 0, which gives

			FL 	= mgL/2D 

				= (10 kg)(9.80 m/s2)(2.0 m)/2(0.30 m)

				=      3.3 ´ 102 N up.

		We write ?t = 0 about the point B from the force diagram:

			?tB = mg(!L – D) – FRD = 0, which gives

			FR 	= mg(!L – D)/D 

				= (10 kg)(9.80 m/s2)[!(2.0 m) – 0.30 m]/(0.30 m)

				=       2.3 ´ 102 N down.

	(b)	For the force arrangement shown, FL = FR + mg, so FL > FR.  

		We write ?t = 0 about the point A from the force diagram, with FL = 150 N:

			?tA = mg!L – FLD = 0, which gives

			!(10 kg)(9.80 m/s2)(2.0 m) = (150 N)D, which gives D = 0.65 m =      65 cm from right hand.

	(c)	We write ?t = 0 about the point A from the force diagram, with FL = 80 N:

			?tA = mg!L – FLD = 0;

			!(10 kg)(9.80 m/s2)(2.0 m) = (80 N)D, which gives D = 1.23 m =      123 cm from right hand.

		To check on the magnitude of FR , we write ?t = 0 about the new point B:

			?tB = – mg(D – !L) – FRD = 0, 

			(10 kg)(9.80 m/s2)[1.23 m – !(2.0 m)] = – FR(1.23 m), which gives FR = – 18 N (up), 

		which is less than 80 N.
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90.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the point A from the 

	force diagram for the beam and mass:

		?tA = – (FT sin q)¬ + mgx + Mg!¬ = 0, 

	which gives       FT = [(mx/¬) + !M]g/ sin q.

	We write ?F = ma from the force diagram for the beam and mass:

		?Fx = FhingeH – FT cos q = 0;

			FhingeH – {[(mx/¬) + !M]g/ sin q} cos q = 0,

	which gives        FhingeH = [(mx/¬) + !M]g/ tan q.

		?Fy = FhingeV + FT sin q – Mg – mg = 0;

			FhingeV – {[(mx/¬) + !M]g/ sin q} sin q – (m + M)g= 0,

	which gives        FhingeV = [(m(1 – x/¬) + !M]g.
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91.	From the symmetry we see that the force each beam exerts on 

	the other must be horizontal.  We write ?F = ma from the 

	force diagram for the left beam:

		?Fx = Ffr – F = 0,   or   F = Ffr.

		?Fy = FN – Mg = 0,   or   FN = Mg.

	We write ?t = Ia about the point B from the force diagram:

		?tB = FNL cos q – Mg!L cos q – FfrL sin q = 0;

			MgL cos q – Mg!L cos q – FfrL sin q = 0;

	which gives Ffr = Mg/2 tan q.  

	For the friction to remain static, we have

		Ffr = Mg/2 tan q = µsMg, so

		tan q = 1/2µs = 1.2(0.60) = 0.833,      q = 40°.
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92.	We find the angles of the truss from

		tan qA = h/d1 = (6.0 m)/(4.0 m) = 1.50, qA = 56.3°.

		tan qD = h/d2 = (6.0 m)/(6.0 m) = 1.00, qD = 45.0°.

	We write ?t = 0 about the point A from the force diagram:

		?tA = F2(d1 + d2) – Wd1 = 0, which gives

			F2 	= (1.20 ´ 104 N)(4.0 m)/(4.0 m + 6.0 m)

				= 4.8 ´ 103 N.

	Thus F1 = W – F2 = 1.20 ´ 104 N – 4.8 ´ 103 N = 7.2 ´ 103 N.

	If we take the pin A as the object, we have the 

	forces shown in the diagram, where the directions 

	have been chosen so the forces sum to zero.  

	We write ?F = ma from the diagram:

		?Fy = F1 – FAB sin qA = 0;

		7.2 ´ 103 N = FAB sin 56.3°, 

	which gives       FAB = 8.65 ´ 103 N compression.

		?Fx = FAC – FAB cos qA = 0;

		FAC – (8.65 ´ 103 N) cos 56.3°  = 0, 

	which gives       FAC = 4.80 ´ 103 N tension.

	From the forces shown on pin C as the object, we have 

		?Fy = FBC – W = 0, which gives       FBC = 1.20 ´ 104 N tension.

		?Fx = FCD – FAC = 0, which gives      FCD = FAC  = 4.80 ´ 103 N tension.

	If we take the pin B as the object, we have the 

	forces shown in the diagram, where the directions 

	have been chosen so the forces sum to zero: 

		?Fx = FAB cos qA – FBD cos qD = 0;

		(8.65 ´ 103 N) cos 56.3° – FBD cos 45.0° = 0,

	which gives       FBD = 6.79 ´ 103 N compression.

		?Fy = FAB sin qA + FBD sin qD  – FBC = 0;

		(8.65 ´ 103 N) sin 56.3° + (6.79 ´ 103 N) sin 45.0°  – FBC = 0,

	which gives FBC = 1.20 ´ 104 N tension,

	which agrees with our previous result.

	These results can be confirmed by summing the forces on pin D.
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93.	(a)	The maximum distance for the top brick to 

		remain on the next brick will be reached 

		when its center of mass is directly over the 

		edge of the next brick.  Thus the top brick 

		will overhang by x1 = L/2. 

		The maximum distance for the top two bricks to 

		remain on the next brick will be reached when 

		the center of mass of the top two bricks is directly 

		over the edge of the third brick.  If we take the 

		edge of the third brick as the origin, we have

			xCM = [m(x2 – L/2) + mx2]/2m = 0, which gives  x2 = L/4.

		The maximum distance for the top three bricks to remain on the next brick will be reached when 

		the center of mass of the top three bricks is directly over the edge of the fourth brick.  If we take the 

		edge of the fourth brick as the origin, we have

			xCM = [m(x3 – L/2) + 2mx3 ]/3m = 0, which gives  x3 = L/6.

		The maximum distance for the four bricks to remain on the table will be reached when the center of 

		mass of the four bricks is directly over the edge of the table.  If we take the edge of the table as the 

		origin, we have

			xCM = [m(x4 – L/2) + 3mx4 ]/4m = 0, which gives  x4 = L/8.

	(b)	With the origin at the table edge, we find the position of the left edge of the top brick from

			D = x1 + x2 + x3 + x4 – L = (L/2) + (L/4) + (L/6) + (L/8) – L = L/24, which is       beyond the table.

	(c)	We can generalize our results by recognizing that the ith brick is a distance L/2i beyond the edge of 

		the brick below it.  The total distance spanned by n bricks is

			�EMBED Word.Picture.8���

	(d)	Each side of the arch must span 0.50 m.  From our general result, we have

			�

		If we evaluate this numerically, such as by using a spreadsheet, we find that 16 bricks will create a 

		span of 0.507 m, so a minimum of        32 bricks       is necessary, not counting the one on top.  If the 

		bottom brick is flush with the opening, as shown in Fig. 9–32, then two more bricks will be needed.
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94.	If we take the pin A as the object, we have the 

	forces shown in the diagram, where the directions 

	have been chosen so the forces can sum to zero.  

	We write ?F = ma from the diagram:

		?Fx = FAD cos 45° – FAB  = 0;

	which gives       FAD = v2 FAB = v2 F tension.

		?Fy = FAC – FAD sin 45° = 0;

	which gives       FAC = F compression.

	From the symmetry the forces in the diagonal members 

	must be the same, so we have

		FBC = FAD = v2 F tension,  

		FBD = FAC = F compression,  

		FCD = FAB = F compression.
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95.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the point C:

		?tC = mgL sin qA – (FTB sin qB)L cos qA + (FTB cos qB)L sin qA = 0, 

	which gives       

		FTB 	= mg /[(sin qB / tan qA) – cos qB] 

			= (20.0 kg)(9.80 m/s2)/[(sin 50°/tan 20°) – cos 50°] =      134 N.

	Note that we have found the torque produced by FTB  by finding 

	the torques of the components.

	We write ?F = ma from the force diagram:

		?Fx = FTB sin qB  –  FTA sin qA = 0, 

	which gives       

		FTA = FTB sin qB /sin qA = (134 N) sin 50°/sin 20° =      300 N.
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96.	When the engine is raised a distance h, there will be that much 

	more rope on the side that is pulled.  Thus the angle the rope 

	makes with the vertical is found from

		cos q = !¬/(!¬ + !h) = (20.0 m)/(20.0 m + 0.50 m) = 0.976, so q = 12.7°.

	From the forces on the engine, we see that the tension in the rope is

		FT = mg.

	From the symmetry of the force diagram for the point A, the 

	horizontal force that must be exerted is

		F = 2FT sin q = 2(250 kg)(9.80 m/s2) sin 12.7° =       1.08 ´ 103 N.

	Note that the weight of the engine is 2.45 ´ 103 N.
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97.	We choose the coordinate system shown, with positive torques 

	clockwise.  We write ?t = Ia about the point A from the force 

	diagram for the torso:

		?tA = w1(d1 + d2 + d3) cos q + w2(d2 + d3) cos q + 

							w3d3 cos q – (FM sin b)(d2 + d3) = 0;

		0.07w(24 cm + 12 cm + 36 cm) cos 30° + 

					0.12w(12 cm + 36 cm) cos 30° + 

							0.46w(36 cm) cos 30° – 

								FM(sin 12°)(12 cm + 36 cm) = 0, 

	which gives FM = 2.37w.

	We write ?Fx = max from the force diagram:

		FVx – FM cos (q  – b) = 0, which gives 

		FVx = FM cos (q  – b) = (2.37w) cos (30° – 12°) = 2.26w.

	We write ?Fy = may from the force diagram:

		FVy – FM sin (q  – b) – w1 – w2 – w3 = 0, which gives 

		FVy = FM sin (q  – b) + w1 + w2 + w3 = (2.37w) sin (30° – 12°) + 0.07w + 0.12w + 0.46w = 1.38w.

	For the magnitude we have

		FV = (FVx2 + FVy2)1/2 = [(2.26w)2 + (1.38w)2]1/2 =        2.6w.

	We find the direction from

		tan qV = FVy/FVx = (1.38w)/(2.26w) = 0.61, so qV =      31° above horizontal.
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