CHAPTER 13 – Fluids



1.	When we use the density of granite, we have

		m = rV = (2.7 ´ 103 kg/m3)(1 ´ 108 m3) =       3 ´ 1011 kg.



2.	When we use the density of air, we have

		m = rV = rLWH = (1.29 kg/m3)(4.8 m)(3.8 m)(2.8 m) =       66 kg.



3.	When we use the density of gold, we have

		m = rV = rLWH = (19.3 ´ 103 kg/m3)(0.60 m)(0.25 m)(0.15 m) =       4.3 ´ 102 kg       (˜ 950 lb!).



4.	If we assume a mass of 65 kg with the density of water, we have

		m = rV;

		65 kg = (1.0 ´ 103 kg/m3)V, which gives V =       6.5 ´ 10–2 m3        (˜ 65 L).



5.	From the masses we have

		mwater = 98.44 g – 35.00 g = 63.44 g;

		mfluid = 88.78 g – 35.00 g = 53.78 g.

	Because the water and the fluid occupy the same volume, we have

		SGfluid = rfluid/rwater = mfluid/mwater = (53.78 g)/(63.44 g) =       0.8477.



6.	The definition of the specific gravity of the mixture is

		SGmixture = rmixture/rwater.

	The density of the mixture is 

		rmixture = mmixture/V = (SGantifreezerwaterVantifreeze + SGwaterrwaterVwater)/V, so we get

		SGmixture 	= (SGantifreezeVantifreeze + SGwaterVwater)/V

					= [(0.80)(5.0 L) + (1.0)(4.0 L)]/(9.0 L) =       0.89.



7.	(a)	The normal force on the four legs must equal the weight.  The pressure of the reaction to the normal 

		force, which is exerted on the floor, is

			P = FN/A = mg/A = (60 kg)(9.80 m/s2)/4(0.05 ´ 10–4 m2) =       3 ´ 107 N/m2.

	(b)	For the elephant standing on one foot, we have

			P = FN/A = mg/A = (1500 kg)(9.80 m/s2)/(800 ´ 10–4 m2) =       2 ´ 105 N/m2.

		Note that this is a factor of ˜ 100´ less than that of the loudspeaker!



8.	(a)	The force of the air on the table top is

			F = PA = (1.013 ´ 105 N/m2)(1.6 m)(2.9 m) =       4.7 ´ 105 N (down).

	(b)	Because the pressure is the same on the underside of the table, the upward force has the same 

		magnitude:       4.7 ´ 105 N.        This is why the table does not move!



9.	The pressure difference on the lungs is the pressure change from the depth of water: 

		?P = rg ?h;

		(80 mm-Hg)(133 N/m2 · mm-Hg) = (1.00 ´ 103 kg/m3)(9.80 m/s2)?h, which gives ?h =       1.1 m.



10.	There is atmospheric pressure outside the tire, so we find the net force from the gauge pressure.  Because the reaction to the force from the pressure on the four footprints of the tires supports the automobile, we have 

		4PA = mg;

		4(240 ´ 103 N/m2 )(200 ´ 10–4 m2) = m(9.80 m/s2), which gives m =      2.0 ´ 103 kg.



11.	Because the force from the pressure on the cylinder supports the automobile, we have 

		PA = mg;

		(17.0 atm)(1.013 ´ 105 N/m2 · atm)#p(24.5 ´ 10–2 m)2 = m(9.80 m/s2), which gives m =      8.28 ´ 103 kg.

	Note that we use gauge pressure because there is atmospheric pressure on the outside of the cylinder.



12.	The pressure from the height of alcohol must balance the atmospheric pressure:

		P = rgh;

		1.013 ´ 105 N/m2 = (0.79 ´ 103 kg/m3)(9.80 m/s2)h, which gives h =       13 m.



13.	The pressure at a depth h is 

		P = P0 + rgh = 1.013 ´ 105 N/m2 + (1.00 ´ 103 kg/m3)(9.80 m/s2)(2.0 m) =      1.2 ´ 105 N/m2.

	The force on the bottom is 

		F = PA = (1.2 ´ 105 N/m2)(22.0 m)(8.5 m) =       2.3 ´ 107 N (down).

	The pressure depends only on depth, so it will be the same:        1.2 ´ 105 N/m2.



14.	The pressure is produced by a column of air:

		P = rgh;

		1.013 ´ 105 N/m2 = (1.29 kg/m3)(9.80 m/s2)h, which gives h = 8.0 ´ 103 m =        8.0 km.
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15.	Because points a and b are at the same elevation of water, the 

	pressures must be the same.  Each pressure is due to the 

	atmospheric pressure at the top of the column and the height of 

	the liquid, so we have

		Pa = Pb ,  or  P0 + roilghoil = P0 + rwaterghwater;

		roilg(27.2 cm) = (1.00 ´ 103 kg/m3)g(27.2 cm – 9.41 cm), 

	which gives roil =       6.54 ´ 102 kg/m3. 









16.	We find the gauge pressure from the water height:

		P = rwaterghwater = (1.00 ´ 103 kg/m3)(9.80 m/s2)[5.0 m + (100 m) sin 60°] =       9.0 ´ 105 N/m2 (gauge).

	If we neglect turbulence and frictional effects, we know from energy considerations that the water would rise to the elevation at which it started:

		h = 5.0 m + (100 m) sin 60° =      92 m.



17.	When we take into account the change in density with pressure, we use the result from Example 13–4:

		�EMBED Word.Picture.8���



18.	The minimum gauge pressure would cause the water to come out of the faucet with very little speed.  This means the gauge pressure must be enough to hold the water at this elevation:

		Pgauge 	= rgh;

				= (1.00 ´ 103 kg/m3)(9.80 m/s2)(36.5 m) =        3.58 ´ 105 N/m2.



19.	(a)	When the height of the mercury in the open tube is greater than the height of the mercury on the 

		tank side of the manometer, the pressure in the tank is

			Ptank 	= Patm + rHggh 

					= (1040 mbar)(100 Pa/mbar) + (28.0 cm Hg)(1330 Pa/cm Hg) =      1.41 ´ 105 Pa.

	(b)	When the height of the mercury in the open tube is less than the height of the mercury on the 

		tank side of the manometer, we use a negative value for h:

			Ptank 	= Patm + rHggh 

					= (1040 mbar)(100 Pa/mbar) + (– 4.2 cm Hg)(1330 Pa/cm Hg) =      9.8 ´ 104 Pa.
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20.	When we apply ?t = Ia to the lever about 

	the pivot point B, we have

		F2L – F1L = 0,   or   F1 = 2F.

	Because the pressure in the hydraulic fluid 

	is constant, we have

		F2/A2 = F1/A1 ,   or   

		F2 = F1(A2/A1) = 2F(D2/D1)2.

	From the forces on the large cylinder we have

		Fsample  = F2.

	Thus the pressure on the sample is 

		Psample 	= Fsample /Asample  

				= 2F(D2/D1)2/Asample 

				= 2(300 N)[(10.0 cm)/(2.0 cm)]2/

								     (4.0 ´ 10–4 m2) 

				=       3.8 ´ 107 N/m2.
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21.	(a)	For the mass of water in the tube we have

			m 	= rV = rpr2H = (1.00 ´ 103 kg/m3)p(0.0030 m)2(12 m) 

				=       0.34 kg.

	(b)	The net force on the lid of the barrel is due to the gauge 

		pressure of the water at the top of the barrel.  Because this gauge 

		pressure is from the mass of water in the tube, we have

			F 	= PAB = (mg/A)AB = mg(R/r)2 

				= (0.34 kg)(9.80 m/s2)[(20 cm)/(0.30 cm)]2 =      1.5 ´ 104 N (up).
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22.	(a)	In the accelerated frame of the beaker, there is a pseudoforce 

		opposite to the direction of the acceleration.  There is an 

		effective g¢ at an angle from the vertical given by 

			tan q = a/g.

		The surface of the water will be perpendicular to this 

		effective g¢, and thus will make an angle

			q = tan–1 a/g   with the horizontal.

	(b)	The     left edge      of the water surface, opposite to the direction 

		of the acceleration, will be higher.

	(c)	The magnitude of the effective acceleration of gravity is

			g¢ = (a2 + g2)1/2.

		A point at a vertical distance h below the surface will be a distance h¢ along the direction of g¢ from 

		the surface, where h¢ = h cos q.  The pressure at this point is

			P = P0 + rg¢h¢ = P0 + r(a2 + g2)1/2h[g/(a2 + g2)1/2] =       P0 + rgh.

















23.	(a)	Because the pressure is a function of the depth, the force on the 

		wall will also be a function of the depth.  We choose a coordinate 

		system with y = 0 at the bottom of the dam and the water level 

		at height h.  We find the force on a differential slice dy of 

		width b at height y and then integrate to get the total force:

�

			�

	(b)	To find the height H of the effective point of action, the torque produced by this force must equal 

		the sum (integral) of the torques produced by all of the differential elements:

			�

		When we use the result for the force, we have

			�which gives     H = @h.

	(c)	To prevent overturning, the torque about the base of the dam from the weight of concrete must be 

		greater than the torque from the water pressure:

			mconcretegt/2 = rwater gbh3/6;

			rconcrete(hbt)gt/2 = rwater gbh3/6,   or   

			t2 = (rwater/rconcrete)h2/3 = [(1.00 ´ 103 kg/m3)/(2.3 ´ 103 kg/m3)]h2/3, which gives      t = 0.38h.

		It is not necessary to add in atmospheric pressure, because it acts on both sides of the dam.



24.	We consider a mass of water m that occupies a volume V0 at the surface.  The pressure increase at a depth h will decrease the volume to V, where m = r0V0 = rV.  We use the bulk modulus to find the volume change:

		?V/V0 = – ?P/B = – r0gh/B = – (1.025 ´ 103 kg/m3)(9.80 m/s2)(6.0 ´ 103 m)/(2.0 ´ 109 N/m2) = – 0.030.

	The fact that this is small justifies using the surface density for the pressure calculation.  

	The volume at the depth h is

		V = V0 + ?V = (1 – 0.030)V0 = 0.970V0,

	so the density is 

		r = r0(V0/V) = (1.025 ´ 103 kg/m3)(1/0.970) =        1.057 ´ 103 kg/m3. 

	For the fractional change in density, we have

		?r/r0 = (V0/V) – 1 = (1/0.970) – 1 = 1.030 – 1 =        + 0.030 (3%).
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25.	In the rotating frame of the bucket, there will be a 

	pseudoforce rw2 dm acting on a differential mass of the 

	water.  We choose a ring of height ?z, radius r and 

	thickness dr, with mass dm = r(2pr ?z dr), so the 

	magnitude of the pseudoforce is constant.  The force from 

	the differential pressure difference across the ring must 

	balance the pseudoforce:

		2pr ?z dP = rw2r(2pr ?z dr),  or  dP = rw2r dr.

	We integrate to find the pressure at a radius r:

		�











26.	Because the mass of the displaced liquid is the mass of the hydrometer, we have

		m = rwaterhwaterA = rliquidhliquidA;

		(1000 kg/m3)(22.5 cm) = rliquid (22.9), which gives rliquid =         983 kg/m3.



27.	Because the mass of the displaced water is the apparent change in mass of the rock, we have

		?m = rwaterV.

	For the density of the rock we have

		rrock 	= mrock/V = (mrock/?m)rwater 

				= [(7.85 kg)/(7.85 kg – 6.18 kg)](1.00 ´ 103 kg/m3) =       4.70 ´ 103 kg/m3.
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28.	When the aluminum floats, the net force is zero.  If the fraction 

	of the aluminum that is submerged is f, we have

		Fnet = 0 = Fbuoy – mAlg = rHgg f V – rAlgV;   

		(13.6 ´ 103 kg/m3)g f V = (2.70 ´ 103 kg/m3)gV, 

	which gives  f  =        0.199.
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29.	When the balloon and cargo float, the net force is zero, so we have

		Fnet = 0 = Fbuoy – mHeg – mballoong – mcargog;

		0 = rairgVballoon – rHegVballoon – mballoong – mcargog;

		0 = (1.29 kg/m3 – 0.179 kg/m3))p(7.35 m)3 – (1000 kg + mcargo), 

	which gives mcargo =       8.5 ´ 102 kg.

















30.	Because the mass of the displaced water is the apparent change in mass of the person, we have

		?m = rwaterVlegs.

	For the mass of one leg we have

		mleg 	= SGbodyrwater!Vlegs = SGbodyrwater! ?m/rwater = SGbody! ?m 

				= (1.00)!(78 kg – 54 kg) =        12 kg.



31.	Because the mass of the displaced water is the apparent change in mass of the sample, we have

		?m = rwaterV.

	For the density of the sample we have

		r 	= m/V = (m/?m)rwater 

			= [(63.5 g)/(63.5 g – 56.4 g)](1.00 ´ 103 kg/m3) = 8.94 ´ 103 kg/m3.

	From the table of densities, the most likely metal is      copper.



32.	Because the mass of the displaced air is the apparent change in mass of the aluminum, we have

		?m = m – m¢ = rairV = rair(m/rAl),    or   

		[1 – (rair/rAl)]m = m¢;

		{1 – [(1.29 kg/m3)/(2.70 ´ 103 kg/m3)]}m = 2.0000 kg, which gives m =       2.0010 kg.
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33.	(a)	The buoyant force on the chamber is

			Fbuoy 	= rwatergV 

					= (1.025 ´ 103 kg/m3)(9.80 m/s2))p(3.0 m)3 

					=      1.14 ´ 106 N. 

	(b)	Because the net force is zero, we have

			Fnet = 0 = Fbuoy – mg – FT ;

			1.14 ´ 106 N – (75,000 kg)(9.80 m/s2) = FT =      4.0 ´ 105 N.











34.	(a)	The buoyant force on the completely submerged diver is

			Fbuoy 	= rwatergV 

					= (1.025 ´ 103 kg/m3)(9.80 m/s2)(65.0 ´ 10–3 m3) =      653 N. 

	(b)	With the positive direction upward, the net force is

			Fnet = Fbuoy – mg = 653 N – (63.0 kg)(9.80 m/s2) = + 36 N.

		The net force is up, so the diver will      float.



35.	(a)	The buoyant force is a measure of the net force on the partially submerged object due to the pressure 

		in the fluid.  In order to remove the object and have no effect on the fluid, we would have to fill the 

		submerged volume with an equal volume of fluid.  As expected, the buoyant force on this fluid is the 

		weight of the fluid.  To have no net torque on the fluid, the buoyant force and the weight of the fluid 

�

		would have to act at the same point, the center of gravity.

	(b)	From the diagram we see that, if the center of buoyancy 

		is above the center of gravity, when the ship tilts, the net 

		torque will tend to restore the ship’s position.  From the 

		diagram we see that, if the center of buoyancy is below the 

		center of gravity, when the ship tilts, the net torque will tend 

		to continue the tilt.  If the center of buoyancy is at the center of 

		gravity, there will be no net torque from these forces, so other 

		torques (from the wind and waves) would determine the motion 

		of the ship.  Thus stability is achieved when the      

		center of buoyancy is above the center of gravity.



36.	(a)	Because the mass of the displaced liquid is the apparent change in mass of the ball, we have

			?m = rliquidV,  or  

			rliquid 	= ?m/V = (?m/m)rball ;

					= [(3.40 kg – 2.10 kg)/(3.40 kg)](2.70 ´ 103 kg/m3) =       1.03 ´ 103 kg/m3.

	(b)	For a submerged object, from part (a) we have

			rliquid = [(m – mapparent)/m]robject.



37.	Because the mass of the displaced alcohol is the apparent change in mass of the wood, we have

		?m = ralcoholV.

	We find the specific gravity of the wood from

		SGwoodrwater = mwood/V = (mwood/?m)ralcohol ; 

		SGwood(1.00 ´ 103 kg/m3) = [(0.48 kg)/(0.48 kg – 0.047 kg)](0.79 ´ 103 kg/m3), which gives

		SGwood =       0.88.

	As expected, the specific gravity is less than 1, so the wood floats in water.



38.	When the ice floats, the net force is zero.  If the fraction of the ice that is above water is f, 

	we have

		Fnet = 0 = Fbuoy – miceg = rswg(1 – f )V – ricegV,  or   

		(1.025)rwg(1 – f )V = (0.917)rwgV, which gives  f  =        0.105 (10.5%).
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39.	From Problem 38, we know that the initial volume out of the water, 

	without the bear on the ice, is

		V1 = 0.105V0 = 0.105(10 m3) = 1.05 m3.

	Thus we find the submerged volume of ice with the bear on the ice from

		V2 = V0 – !V1 = 10 m3 – !(1.05 m3) = 9.48 m3.

	Because the net force is zero, we have

		Fnet = 0 = Fbear + Fice – mbearg – miceg,  or

		rsea waterg(0.30)Vbear + rsea watergV2 = mbearg + ricegV0 ;

		rsea waterg(0.30)(mbear/rbear) + rsea watergV2 = mbearg + ricegV0 ;

		(1.025)rw(0.30)[mbear/(1.00)rw] + (1.025 ´ 103 kg/m3)(9.48 m3) = 

								mbear + (0.917)(1.00 ´ 103 kg/m3)(10 m3), which gives mbear =        7.9 ´ 102 kg.
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40.	The minimum mass of lead will suspend the wood under water.  

	Because the net force is zero, we have

		Fnet = 0 = Flead + Fwood – mleadg – mwoodg,  or

		rwatergVlead + rwatergVwood = mleadg + mwoodg;

		rwaterg(mlead/rlead) + rwaterg(mwood/rwood) = mleadg + mwoodg.

	We can rearrange this:

		mlead[1 – (1/SGlead)] = mwood[(1/SGwood) – 1];

		mlead[1 – (1/11.3)] = (3.15 kg)[(1/0.50) – 1], which gives

		mlead =       3.46 kg.
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41.	The apparent weight is the force required to hold the system, so 

	the net force is zero.  When only the sinker is submerged, we have

		Fnet = 0 = w1 + Fbuoy1 – w – mg,  or

		w1 + rwatergVsinker = w + mg.

	When the sinker and object are submerged, we have

		Fnet = 0 = w2 + Fbuoy1 + Fbuoy2 – w – mg,  or

		w2 + rwatergVsinker + rwatergVobject = w + mg.

	If we subtract the two results, we get

		w1 – w2 – rwatergVobject = 0,  or

		rwaterg(mobject/robject) = w/SGobject = w1 – w2 ,   

	so  SGobject = w/(w1 – w2).







42.	The flow rate in the major arteries must be the flow rate in the aorta:

		rv1A1 = rv2A2;

		(30 cm/s)p(1.0 cm)2 = v2(2.0 cm2), which gives v2 =       47 cm/s.



43.	From the equation of continuity we have

		Flow rate = Av;

		(9.2 m)(5.0 m)(4.5 m)/(12 min)(60 s/min) = p(0.15 m)2v, which gives v =       4.1 m/s.



44.	If we use the condition of no flow, v1 = v2 = 0, in Bernoulli’s equation we have

		P1 + !rv12 + rgy1 = P2 + !rv22 + rgy2;

		P1 + 0 + rgy1 = P2 + 0 + rgy2 ,   or   

		P2 = P1 + rg(y1 – y2) = P1 + rgh.



45.	If we ignore viscosity, we can use Bernoulli’s equation.  We choose the initial point at the top of the water, where the velocity is essentially zero, and the final point at the hole.  Thus we have

		P1 + !rv12 + rgy1 = P2 + !rv22 + rgy2;

		Patm + 0 + rgh = Patm + !rv22 + 0, which gives

		v2 = (2gh)1/2 = [2(9.80 m/s2)(4.6 m)]1/2 =      9.5 m/s.



46.	From the equation of continuity we have

		Flow rate = Apoolh/t = Ahosev;

		#p(6.1 m)2(1.2 m)/t = #p[(0.625 in)(0.0254 m/in)]2(0.33 m/s), which gives t = 5.37 ´ 105 s =     6.2 days.



47.	If we choose the initial point at the water main where the water is not moving and the final point at the top of the spray, where the water also is not moving, from Bernoulli’s equation we have

		P1 + !rv12 + rgy1 = P2 + !rv22 + rgy2;

		P1 + 0 + 0 = Patm + 0 + (1.00 ´ 103 kg/m3)(9.80 m/s2)(15 m), which gives

		P1 – Patm = Pgauge =        1.5 ´ 105 N/m2 = 1.5 atm.





48.	From the equation of continuity we have

		Flow rate = A1v1 = A2v2 ,   or   v2 = (A1/A2)v1 = (D1/D2)2v1.

	From Bernoulli’s equation for the horizontal pipe we have

		P1 + !rv12 + rgy1 = P2 + !rv22 + rgy2;

		P1 + !rv12 + 0 = P2 + !r(D1/D2)4v12 + 0, which gives

		v12 	= 2(P1 – P2)/r[(D1/D2)4 – 1];

			= 2[(32 ´ 103 Pa) – (24 ´ 103 Pa)]/(1.00 ´ 103 kg/m3)[(6.0 cm/4.0 cm)4 – 1], which gives v1 = 1.98 m/s.

	Thus the volume rate of flow is

		?V/?t = A1v1 = #pD12v1 = #p(6.0 ´ 10–2 m)2(1.98 m/s) =      5.6 ´ 10–3 m3/s.



49.	If we choose the initial point at the pressure head where the water is not moving and the final point at the faucet, from Bernoulli’s equation we have

		P1 + !rv12 + rgh1 = P2 + !rv22 + rgh2;

		Patm + 0 + (1.00 ´ 103 kg/m3)(9.80 m/s2)(12.0 m) = Patm + !(1.00 ´ 103 kg/m3)v22, which gives

		v2 = 15.3 m/s.

	For the flow rate we have

		Flow rate = Av = #p(0.0185 m)2 (15.3 m/s) =       4.11 ´ 10–3 m3/s.



50.	The pressure under the roof will be atmospheric.  If we choose the initial point where the air is not moving and the final point above the roof, from Bernoulli’s equation we have

		P1 + !rv12 + rgh1 = P2 + !rv22 + rgh2;

		Patm + 0 + 0 = P + !(1.29 kg/m3)(25 m/s)2, which gives Patm – P =  4.0 ´ 102 N/m2.

	The net upward force on the roof is

		F = (Patm – P)A = (4.0 ´ 102 N/m2)(240 m2) =      9.7 ´ 104 N.



51.	If we consider the points at the top and bottom surfaces of the wing compared to the air flow in front of the wing, from Bernoulli’s equation we have

		P0 + !rv02 + rgh0 = P1 + !rv12 + rgh1 = P2 + !rv22 + rgh2;

		P1 + !(1.29 kg/m3)(340 m/s)2 + 0 = P2 + !(1.29 kg/m3)(290 m/s)2 + 0,

	which gives P2 – P1 = 2.03 ´ 104 N/m2.

	The net upward force on the wing is

		F = (P2 – P1)A = (2.03 ´ 104 N/m2)(86 m2) =      1.7 ´ 106 N.









52.	If we consider the points far away from the center of the hurricane and at the center of the hurricane, from Bernoulli’s equation we have

		P1 + !rv12 + rgh1 = P2 + !rv22 + rgh2;

		1.013 ´ 105 N/m2 + 0 + 0 = P2 + !(1.29 kg/m3)[(300 km/h)/(3.6 ks/h)]2 + 0, 

	which gives P2 =       9.7 ´ 104 N/m2.



53.	If we consider the volume of fluid in the pipe, at each end of the pipe there is a force toward the fluid 

	of PA.  If the area of the pipe is constant, the net force on the fluid is

		Fnet = (P1 – P2)A.

	The required power is

		Power = Fnetv = (P1 – P2)Av = (P1 – P2)Q.



54.	The flow rate in the pipe at street level must be the flow rate at the top floor:

		v1A1 = v2A2;

		(0.60 m/s)#p(5.0 cm)2 = v2 #p(2.6 cm)2, which gives v2 =  2.22 m/s =        2.2 m/s.

	If we use Bernoulli’s equation between the street level and the top floor, we have

		P1 + Patm + !rv12 + rgh1 = P2 + Patm + !rv22 + rgh2;

		3.8 atm + Patm + !(1.00 ´ 103 kg/m3)(0.60 m/s)2/(1.013 ´ 105 N/m2 · atm) + 0 = 

			P2 + Patm + [!(1.00 ´ 103 kg/m3)(2.22 m/s)2 + (1.00 ´ 103 kg/m3)(9.80 m/s2)(20 m)]/ 

														(1.013 ´ 105 N/m2 · atm), 

	which gives P2 =       1.8 atm (gauge).



55.	From the equation of continuity we have

		Flow rate = A1v1 = A2v2 ,   or   v2 = (A1/A2)v1 .

	From Bernoulli’s equation we have

		P1 + !rv12 + rgy1 = P2 + !rv22 + rgy2;

		Patm + !rv12 + 0 = Patm + !r(A1/A2)2v12 + rgh, which gives

		v1 = {2gh/[1 – (A1/A2)2]}1/2.
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56.	(a)	From Bernoulli’s equation we have

			PA + !rv12 + rgy1 = P2 + PA + 0 + rgy2 , which gives

			v1 = {2[(P2/r) + g(y2 – y1)]}1/2.

	(b)	For the given data we have

			v1 	= (2{[(0.85 atm)(1.013 ´ 105 N/m2 · atm)/(1.00 ´ 103 kg/m3)] + 

										(9.80 m/s2)(2.1 m)})1/2 

				=       15 m/s.







57.	(a)	From the equation of continuity we have

			Flow rate = A0v = Avinside ,   or   vinside = (A0/A)v .

		Because A0 « A, we can assume that vinside ˜ 0.

		From Bernoulli’s equation for the assumed steady flow we have

			P + !rvinside2 + rgy = P0 + !rv2 + rgy;

			P + 0 + 0 = P0 + !rv2 + 0, which gives

			v = [2(P – P0)/r]1/2.

	(b)	The thrust force on the rocket from the emitted gases is

			F = v dm/dt = vr dV/dt = vrA0v = rA0v2 = 2A0(P – P0).
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58.	(a)	The flow rate through the venturi meter is constant:

			v1A1 = v2A2.

		If we use Bernoulli’s equation between the segments of 

		the meter, we have

			P1 + !rv12 + rgh1 = P2 + !rv22 + rgh2;

			P1 + !rv12 + 0 = P2 + !rv22 + 0,  or  P1 – P2 =  !r(v22 – v12).

		When we substitute for v2 from the flow rate, we get

			P1 – P2 =  !r[(v1A1/A2)2 – v12] = !rv12[(A12 – A22)/A22], 

		which gives

			v1 = A2[2(P1 – P2)/r(A12 – A22)]1/2.

	(b)	With the given data, we have

			v1 	= A2[2(P1 – P2)/r(A12 – A22)]1/2 = D22[2(P1 – P2)/r(D14 – D24)]1/2 

				= (1.0 cm)2{2(18 mm-Hg)(133 N/m2 · mm-Hg)/(1.00 ´ 103 kg/m3)[(3.0 cm)4 – (1.0 cm)4]}1/2 			=       0.24 m/s.
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59.	(a)	We assume v2 = 0.  From Bernoulli’s equation we have

			P1 + !rv12 + rgy1 = P2 + !rv22 + rgy2;

			Patm + !rv12 + rgh1 = Patm + 0 + rgh2 , which gives

			v1 = [2g(h2 – h1)]1/2.

		After the fluid leaves the tank, its horizontal velocity is 

		constant.  We find the time to reach the ground from

			y = y0 + !(– g)t2;

			0 = h1 – !gt2, which gives t = (2h1/g)1/2.

		In this time the water will have traveled a horizontal distance given by

			x = v1t = [2g(h2 – h1)]1/2(2h1/g)1/2 =       2[h1(h2 – h1)]1/2.

	(b)	To have the same range for a height h1¢, we must have

			h1¢(h2 – h1¢) = h1(h2 – h1).

		We could solve this quadratic, but we can see by inspection that

			h1¢ = h2 – h1.



60.	(a)	From the equation of continuity we have

			Flow rate = A1v1 = A2v2 ,   or   v1 = (A2/A1)v2 .

		From Bernoulli’s equation we have

			P1 + !rv12 + rgy1 = P2 + !rv22 + rgy2;

			Patm + !r(A2/A1)2v22 + 0 = Patm + !rv22 + rgh, which gives

			v2 = {2gh/[(A2/A1)2 – 1]}1/2.

		We know that the height of the liquid decreases, so

			dh/dt = – v2 = – [2ghA12/(A22 – A12)]1/2.

	(b)	We integrate to find the height as a function of time:
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	(c)	The two areas are

			A1 = #pD12 = #p(0.50 ´ 10–2 m)2 = 1.96 ´ 10–5 m2;

			A2 = V/h0 = (1.0 ´ 10–3 m3)/(9.4 ´ 10–2 m) = 1.06 ´ 10–2 m2.

		We find the time to empty from

			h1/2 = h01/2 – [gA12/2(A22 – A12)]1/2t;

			0 = (9.4 ´ 10–2 m)1/2 – {(9.80 m/s2)(1.96 ´ 10–5 m2)2/2[(1.06 ´ 10–2 m2)2 – (1.96 ´ 10–5 m2)2]}1/2t, 

		which gives t =       75 s.



61.	The torque corresponds to a tangential force on the inner cylinder:

		F = t/R1.

	The layer of fluid has a thickness R2 – R1 , the fluid next to the outer cylinder is at rest, and the fluid next to the inner cylinder has a speed v = R1w, where 

		w = (62 rev/min)(2p rad/rev)/(60 s/min) = 6.49 rad/s.

	If we use the average radius for the area over which the torque acts in the definition of viscosity, we have

		h 	= FL/Av = t(R2 – R1)/R1[2p!(R1 + R2)H]R1w = t(R2 – R1)/pR12(R1 + R2)Hw 

			= (0.024 m · N)(0.0530 m – 0.0510 m)/p(0.0510 m)2(0.0510 m + 0.0530 m)(0.120 m)(6.49 rad/s) 

			=       0.072 Pa · s.



62.	The same volume of water is used, so the time is inversely proportional to the flow rate.  Taking into account the viscosity of the water, with the only change the diameter of the hose, we have

		t µ 1/Q µ 1/r4 µ 1/d4.

	For the two hoses we have.

		t2/t1 = (d1/d2)4 = (3/5)4 =        1/7.7 = 0.13.



63.	From Poiseuille’s equation we have

		Q = pr4(P1 – P2)/8hL;

		(5.6 ´ 10–6 m3/min)/(60 s/min) = p(0.90 ´ 10–3 m)4(P1 – P2)/8(200 ´ 10–3 Pa · s)(5.5 ´ 10–2 m), 

		which gives P1 – P2 =          4.0 ´ 103 Pa.



64.	From Poiseuille’s equation we have

		Q = pr4(P1 – P2)/8hL;

		450 ´ 10–6 m3/s = p(0.145 m)4(P1 – P2)/8(0.20 Pa · s)(1.9 ´ 103 m), 

		which gives P1 – P2 =          9.9 ´ 102 N/m2.



65.	From Poiseuille’s equation we have

		Q = V/t = pr4(P1 – P2)/8hL;

		(9.0 m)(12.0 m)(4.0 m)/(10 min)(60 s/min) = 

			pr4(0.71 ´ 10–3 atm)(1.013 ´ 105 N/m2 · atm)/8(0.018 ´ 10–3 Pa · s)(17.5 m), 

		which gives r = 0.053 m.

	Thus the diameter needed is 0.106 m =        11 cm.



66.	For the viscous flow of the blood, we have

		Q µ r4.

	For the two flows we have.

		Q2/Q1 = (r2/r1)4;

		0.25 = (r2/r1)4, which gives r2/r1 =        0.71 (reduced by 29%) .



67.	(a)	We find the Reynolds number for the blood flow:

			Re = 2ærr/h = 2(0.30 m/s)(0.010 m)(1.05 ´ 103 kg/m3)/(4.0 ´ 10–3 Pa · s) = 1600.

		Thus the flow is       laminar       but close to turbulent.

	(b)	If the only change is in the average speed, we have

			Re2/Re1 = æ2/æ1 ;

			Re2/1600 = 2,  or  Re2 =      3200,      so the flow is       turbulent.



68.	Normally there would be two contributions to the necessary pressure: the elevation change and the viscosity:

		?P = rgh + 8QhL/pr4.

	To determine the pressure for a small flow, Q ˜ 0, we ignore the viscosity term to have

		?P = rgh = (1.00 ´ 103 kg/m3)(9.80 m/s2)(20 m) =       2.0 ´ 105 N/m2.







69.	We find the pressure difference required across the needle from Poiseuille’s equation:

		Q = pr4(P1 – P2)/8hL;

		(4.0 ´ 10–6 m3/min)/(60 s/min) = p(0.20 ´ 10–3 m)4(P1 – P2)/8(4.0 ´ 10–3 Pa · s)(0.040 m), 

		which gives P1 – P2 = 1.70 ´ 104 N/m2.

	The pressure P2 is the pressure in the vein.  The pressure P1 is produced from the elevation of the bottle: 

		P1 = Patm + rgh.

	Thus we have

		Patm + rgh – P2 = 1.70 ´ 104 N/m2,  or  

		rgh = P2 – Patm + 1.70 ´ 104 N/m2;

		(1.05 ´ 103 kg/m3)(9.80 m/s2)h = (18 torr)(133 N/m2 · torr) + 1.70 ´ 104 N/m2, which gives h =        1.9 m.



70.	For the two surfaces, top and bottom, we have

		g = F/2¬ = (5.1 ´ 10–3 N)/2(0.070 m) =       0.036 N/m.





71.	For the two surfaces, top and bottom, we have

		F  = g 2¬ = (0.025 N/m)2(0.182 m) =       9.1 ´ 10–3 N.



72.	From Example 13–15, the six upward surface tension forces must balance the weight.  We find the required angle from

		6(2prg cos q) ˜ w;

		6(2)p(3.0 ´ 10–5 m)(0.072 N/m) cos q ˜ (0.016 ´ 10–3 kg)(9.80 m/s2), which gives cos q ˜ 1.9.

	Because the maximum possible value of cos q is 1, the insect       would not remain on the surface.



73.	(a)	We assume that the net force from the weight and the buoyant force is much smaller than the 

		surface tension.  For the two surfaces, inner and outer circumferences, we have

			F = g 2L = g 2(2pr),  or        g = F/4pr.

	(b)	For the given data we have

			g = F/4pr = (8.40 ´ 10–3 N)/4p(0.028 m) =      0.024 N/m.
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74.	We consider half of the soap bubble.  The forces on the hemisphere will be 

	the surface tensions on the two circles and the net force from the excess 

	pressure between the inside and the outside of the bubble.  This net force is 

	the sum of all of the forces perpendicular to the surface of the hemisphere, 

	but must be parallel to the surface tension.  Therefore we can find it by 

	finding the force on the circle that is the base of the hemisphere.  The total 

	force must be zero, so we have

		2(2pr)g = (pr2) ?P, which gives   ?P = 4g/r.















75.	The liquid pressure is produced from the elevation of the bottle: 

		?P = rgh.

	(a)	(65 mm-Hg)(133 N/m2 · mm-Hg) = (1.00 ´ 103 kg/m3)(9.80 m/s2)h, which gives h =        0.88 m.

	(b)	(550 mm-H2O)(9.81 N/m2 · mm-H2O) = (1.00 ´ 103 kg/m3)(9.80 m/s2)h, which gives h =        0.55 m.

	(c)	If we neglect viscous effects, we must produce a pressure to balance the blood pressure:

			(18 mm-Hg)(133 N/m2 · mm-Hg) = (1.00 ´ 10–3 kg/m3)(9.80 m/s2)h, which gives h =        0.24 m.







76.	(a)	If the fluid is incompressible, the pressure must be constant, so we have

			P = Fneedle/Aneedle = Fplunger/Aplunger;

			Fneedle/#p(0.020 cm)2 = (2.4 N)/#p(1.3 cm)2, which gives Fneedle =       5.7 ´ 10–4 N. 

	(b)	Just before the fluid starts to move, the pressure must be the gauge pressure in the vein:

			P = Fplunger/Aplunger;

			(18 mm-Hg)(133 N/m2 · mm-Hg) = Fplunger/#p(1.3 ´ 10–2 m)2, which gives Fplunger =       0.32 N.



77.	If the motion is such that we can consider the air to be in equilibrium, we find the applied force from

		F = PA;

		Fi = PiA = (210 ´ 103 N/m2)#p(0.030 m)2 = 1.5 ´ 102 N;

		Ff = PfA = (310 ´ 103 N/m2)#p(0.030 m)2 = 2.2 ´ 102 N.

	Thus the range of the applied force is       1.5 ´ 102 N = F = 2.2 ´ 102 N.



78.	The pressure is 

		P	= Patm + rgh

			= 1 atm + (917 kg/m3)(9.80 m/s2)(4 ´ 103 m)/(1.013 ´ 105 N/m2 · atm) ˜        4 ´ 102 atm.



79.	The pressure difference is produced from the elevation: 

		?P	= rgh

			= (1.29 kg/m3)(9.80 m/s2)(410 m)/(1.013 ´ 105 N/m2 · atm) =        0.051 atm.



80.	The pressure difference in the blood is produced by the elevation change: 

		?P	= rg ?h

			= (1.05 ´ 103 kg/m3)(9.80 m/s2)(6 m)/(1.013 ´ 105 N/m2 · atm) =        0.6 atm.



81.	The pressure difference on the ear drum is the change produced by the elevation change: 

		?P	= rg ?h.

	The net force is

		F 	= A ?P = Arg ?h.

			= (0.50 ´ 10–4 m2)(1.29 kg/m3)(9.80 m/s2)(1000 m) =        0.63 N.
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82.	The pressure at the bottom of the U  must be the same on each side 

	of the boundary.  Each pressure is due to the atmospheric pressure 

	at the top of the column and the height of 

	the liquid, so we have

		Pa = Pb ,  or  P0 + ralcoholghalcohol = P0 + rwaterghwater;

		(0.79 ´ 103 kg/m3)g(18.0 cm) = (1.00 ´ 103 kg/m3)ghwater, 

	which gives hwater =      14 cm.











83.	The net force on the floating continent is zero:

		Fnet = 0 = Fbuoy – mcontg = rrockg Ahrock – rcontgAhcont;   

		(3300 kg/m3)gAhrock = (2800 kg/m3)gA(35 km), 

	which gives  hrock = 30 km.

	Thus the height of the continent above the surrounding rock is hcont – hrock =      5 km.



84.	The sum of the magnitudes of the forces on the ventricle wall is

		F 	= A ?P;

			= (82 ´ 10–4 m2)(120 mm-Hg)(133 N/m2 · mm-Hg) =        1.3 ´ 102 N.

	Note that the forces on the wall are not all parallel, so this is not the vector sum.



85.	We assume that g is constant.  The pressure on a small area of the Earth’s surface is produced by the weight of the air above it:

		P = mg/A = mtotalg/Atotal = mtotalg/4pREarth2;

		1.013 ´ 105 N/m2 = mtotal(9.80 m/s2)/4p(6.37 ´ 106 m)2, which gives mtotal =        5.3 ´ 1018 kg.



86.	The pressure difference on the water in the straw produces the elevation change: 

		?P = rgh

		(80 mm-Hg)(133 N/m2 · mm-Hg) = (1.00 ´ 103 kg/m3)(9.80 m/s2)h, which gives h =        1.1 m.



87.	If we choose the initial point at the pressure head, where the water is not moving, and the final point at the faucet, from Bernoulli’s equation we have

		P1 + !rv12 + rgh1 = P2 + !rv22 + rgh2;

		Patm + 0 + (1.00 ´ 103 kg/m3)(9.80 m/s2)h1 = Patm + !(1.00 ´ 103 kg/m3)(7.2 m/s)2 + 0, which gives

		h1 =        2.6 m.



88.	The mass of the unloaded water must equal the mass of the displaced sea water:

		m = rsea waterAh = (1.025 ´ 103 kg/m3)(2650 m2)(8.50 m) =       2.31  ´ 107 kg.

	Note that this is a volume of

		V = m/rwater = (2.31  ´ 107 kg)/(1.00 ´ 103 kg/m3) =  2.31 ´ 104 m3,

	which is greater than the volume change of the sea water, which is (2650 m2)(8.50 m) = 2.25 ´ 104 m3.



89.	We assume that for the maximum number of people, the logs are completely in the water and the people are not.  Because the net force is zero, we have

		Fbuoy = mpeopleg + mlogsg;

		rwaterg(pr2)NlogsL = Npeoplemg + Nlogsrlogsg(pr2)L.

	Because the specific gravity is the ratio of the density to the density of water, this can be written

		(1 – SGlogs)Nlogsrwaterpr2L = Npeoplem;

		(1 – 0.60)(10)(1.00 ´ 103 kg/m3)p(0.19 m)2(6.1 m) = Npeople(70 kg), which gives Npeople = 39.5.

	Thus the raft can hold a maximum of       39 people.



90.	The work done in each heartbeat is 

		W = Fd = PAd = PV.

	If n is the heart rate, the power output is

		Power 	= nW = nPV 

				= [(70 beats/min)/(60 s/min)](105 mm-Hg)(133 N/m2 · mm-Hg)(70 ´ 10–6 m3) =      1.1 W.
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91.	We find the effective g by considering a volume of the water.  

	The net force must produce the acceleration:

		Fbuoy1 – mg = ma;

		rwaterg¢Vwater – rwaterVwaterg = rwaterVwatera;

		g¢ = g + a = g + 2.4g = 3.4g.

	Note that this agrees with adding a pseudoforce – ma in the 

	accelerating frame of the bucket.

	The buoyant force on the rock is

		Fbuoy2 	= rwaterg¢Vrock = rwaterg¢(mrock/rrock) = g¢mrock/SGrock

				= (3.4)(9.80 m/s2)(3.0 kg)/(2.7) 

				=       37 N.

	To see if the rock will float, we find the net force acting on the rock in the accelerated frame:

		Fnet = Fbuoy2 – mrockg¢ = 37 N – (3.0 kg)(3.4)(9.80 m/s2) = – 63 N.

	Because the result is negative, the rock will       not float.









92.	We choose the reference level at the nozzle.  If we apply Bernoulli’s equation from the exit of the nozzle to the top of the spray, we have

		P1 + !rv12 + rgh1 = P2 + !rv22 + rgh2;

		Patm + !rv12 + 0 = Patm + 0 + rgh2 , which gives v12 = 2gh2.

	If we use the equation of continuity from the pump to the nozzle, we have

		Flow rate = A3v3 = A1v1 ,  or  v3 = (A1/A3)v1 = (D1/D3)2v1.

	If we apply Bernoulli’s equation from the pump to the exit of the nozzle,  we have

		P3 + !rv32 + rgh3 = P1 + !rv12 + rgh1;

		Ppump + !r[(D1/D3)2v1]2 + rgh3 = Patm + !rv12 + 0, or 

		Ppump – Patm	= !rv12[1 – (D1/D3)4] – rgh3 = rg{h2[1 – (D1/D3)4] – h3} 

					= (1.00 ´ 103 kg/m3)(9.80 m/s2){(0.16 m)[1 – (0.60 cm/1.2 cm)4] – (– 1.1 m)} 

					=       1.2 ´ 104 N/m2.



93.	We let d represent the diameter of the stream a distance y below the faucet.  If we use the equation of continuity, we have

		Flow rate = A0v0 = A1v1 ,  or  v1 = (A0/A1)v0 = (D/d)2v0.

	We choose the reference level at the faucet.  If we apply Bernoulli’s equation to the stream, we have

		P0 + !rv02 + rgh0 = P1 + !rv12 + rgh1;

		Patm + !rv02 + 0 = Patm + !rv12 + rg(– y);

		v12 = v02 + 2gy = (D/d)4v02, which gives        d = D[v02/(v02 + 2gy)]1/4.



94.	(a)	Because we assume zero air resistance, we can find the speed of the water from the nozzle from the 

		horizontal  range equation for projectile motion:

			R = (v02/g) sin 2q;

			8.0 m = (v02/9.80 m/s2) sin 2(30°), which gives v0 =      9.5 m/s.

	(b)	The flow rate of the four nozzles is

			Q = 4A0v0 = 4[#p(3.0 ´ 10–3 m)2](9.5 m/s)(1.00 ´ 103 L/m3) =      0.27 L/s.

	(c)	From the equation of continuity, we have

			4A0v0 = A1v1 ;

			4[#pD02]v0 = [#pD12]v1;

			4(3.0 ´ 10–3 m)2(9.5 m/s) = (1.9 ´ 10–2 m)2v1, which gives v1 =       0.95 m/s.



95.	(a)	We choose the reference level at the bottom of the sink.  If we apply Bernoulli’s equation to the 

		flow from the average depth of water in the sink to the pail, we have

			P0 + !rv02 + rgh0 = P1 + !rv12 + rgh1;

			Patm + 0 + rgh0 = Patm + !rv12 + rgh1 ,  or  

			v1 = [2g(h0 – h1)]1/2 = {2(9.80 m/s2)[0.020 m – (– 0.50 m)]}1/2 =        3.2 m/s.

	(b)	We use the flow rate to find the time:

			Q = Av = V/t;

			p(0.010 m)2(3.19 m/s) = (0.48 m2)(0.040 m)/t, which gives t =       19 s.



96.	We choose the reference level at the bottom of the lower vessel.  We assume the higher vessel is large enough that the water velocity in it can be neglected and the flow is turbulent.  If we apply Bernoulli’s equation to the flow, we have

		P0 + !rv02 + rgh0 = P1 + !rv12 + rgh1;

		Patm + 0 + rgh0 = Patm + !rv12 + rgh1 ,  or  

		v1 = [2g(h0 – h1)]1/2.

	The flow rate is

		Q = A1v1 = A1[2g(h0 – h1)]1/2 = #p(1.2 ´ 10–2 m)2[2(9.80 m/s2)(0.64 m)]1/2 =      4.0 ´ 10–4 m3/s.









97.	If we consider only the Bernoulli effect, the force from the difference in pressure on the wing must balance the weight of the airplane:

		(P2 – P1)A = mg,  so  P2 – P1 = mg/A.

	If we consider the points at the top and bottom surfaces of the wing compared to the air flow in front of the wing, from Bernoulli’s equation we have

		P0 + !rv02 + rgh0 = P1 + !rv12 + rgh1 = P2 + !rv22 + rgh2;

		P1 + !rv12 + 0 = P2 + !rv22 + 0,  or

		P2 – P1 = !r(v12 – v22) = mg/A;

		!(1.29 kg/m3)[v12 – (100 m/s)2] = (2.0 ´ 106 kg)(9.80 m/s2)/(1200 m2), which gives v1 =      1.9 ´ 102 m/s.



98.	(a)	We let 1 refer to the input piston and 2 refer to the output piston.  Because the pressure in the 

		hydraulic fluid is constant, we have

			F2/A2 = F1/A1 ,   or   

			F2 = F1(A2/A1) = F1(D2/D1)2.

		The force of the output piston must balance the weight of the car, so we have

			F2 = F1(A2/A1)  = mg;

			(250 N)#p(15 ´ 10–2 m)2/A1 = (1000 kg)(9.80 m/s2), which gives A1 =      4.5 ´ 10–4 m2.

		The diameter of the piston is [4(4.5 ´ 10–4 m2)/p]1/2 = 0.024 m = 2.4 cm.

	(b)	The work done by F2 is

			W = F2h = mgh = (1000 kg)(9.80 m/s2)(0.10 m) =      9.8 ´ 102 J.

	(c)	Because the fluid is assumed to be incompressible, the volume is constant, so we have

			A1h1 = A2h2 ,   or

			h2 = h1(A1/A2) = h1(D1/D2)2 = (12 cm)[(2.4 cm)/(15 cm)]2 = 0.306 cm =       0.31 cm.

	(d)	We find the number of strokes from

			N = h/h2 = (10 cm)/(0.306 cm) = 32.7 =          33 strokes.

	(e)	The work done by F1 during the 33 strokes is

			W = F1Nh1 = (250 N)(32.7)(0.12 m) = 9.8 ´ 102 J.

		This is the same as the work required to lift the car.





Chapter 13	
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