CHAPTER 14 – Oscillations



1.	In one period the particle will travel from one extreme position to the other (a distance of 2A) and back again.  The total distance traveled is

		d = 4A = 4(0.15 m) =        0.60 m.



2.	(a)	We find the spring constant from the elongation caused by the weight:

			k = mg/?x = (3.7 kg)(9.80 m/s2)/(0.028 m) =       1.30 ´ 103 N/m.

	(b)	Because the fish will oscillate about the equilibrium position, the amplitude will be the distance 

		the fish was pulled down from equilibrium:

			A = 2.5 cm.

		The frequency of vibration will be

			f = (k/m)1/2/2p = [(1.30 ´ 103 N/m)/(3.7 kg)]1/2/2p =       3.0 Hz.



3.	We find the spring constant from the compression caused by the increased weight:

		k = mg/x = (80 kg)(9.80 m/s2)/(0.0140 m) = 5.60 ´ 104 N/m.

	The frequency of vibration will be

		f = (k/m)1/2/2p = [(5.60 ´ 104 N/m)/(1080 kg)]1/2/2p =       1.15 Hz.



4.	(a)	Because the motion starts at the maximum extension, we have

			x = A cos (wt) = A cos (2pt/T) =        (8.8 cm) cos [2pt/(0.75 s)].

	(b)	At t = 1.8 s we get

			x = (8.8 cm) cos [2p(1.8 s)/(0.75 s)] =       – 7.1 cm.



5.	(a)	We find the effective spring constant from the frequency:

			f1 = (k/m1)1/2/2p;

			10 Hz = [k/(0.60 ´ 10–3 kg)]1/2/2p, which gives k =       2.4 N/m.

	(b)	The new frequency of vibration will be

			f2 = (k/m2)1/2/2p = [(2.37 N/m)/(0.40 ´ 10–3 kg)]1/2/2p =       12 Hz.



6.	The general expression for the displacement is x = A cos (wt + f), so 

		x(t = 0) = A cos f.

	(a)	– A = A cos f, which gives cos f = – 1, so        f = p (or –p).

	(b)	0 = A cos f, which gives cos f = 0, so        f = p/2 (or 3p/2).

	(c)	A = A cos f, which gives cos f = + 1, so        f = 0.

	(d)	!A = A cos f, which gives cos f = !, so        f = p/3 (or –p/3).

	(e)	– A /2 = A cos f, which gives cos f = – !, so        f = 2p/3 (or 4p/3).

	(f)	A /v2 = A cos f, which gives cos f = 1/v2, so        f = p/4 (or –p/4).

	

7.	Because the mass is released at the maximum displacement, we have

		x = xmax cos (wt);    v = – vmax sin (wt);    a = – amax cos (wt).

	(a)	We find wt from

			v = – !vmax = – vmax sin (wt), which gives wt = 30°.

		Thus the distance is

			x = xmax cos (wt) = xmax cos 30° =      0.866 xmax .

	(b)	We find wt from

			a = – !amax = – amax cos (wt), which gives wt = 60°.

		Thus the distance is

			x = xmax cos (wt) = xmax cos 60° =      0.500 xmax .













8.	(a)	We find the effective spring constant from the frequency:

			f1 = (k/m1)1/2/2p;

			2.5 Hz = [k/(0.050 kg)]1/2/2p, which gives k =       12 N/m.

	(b)	Because the size and shape are the same, the spring constant, which is determined by the 

		buoyant force, will be the same.  The new frequency of vibration will be

			f2 = (k/m2)1/2/2p = [(12 N/m)/(0.25 kg)]1/2/2p =       1.1 Hz.



9.	For a general displacement, we have

		x = A cos (wt + f);    v = – Aw sin (wt + f).

	We find wt + f from

		v = – !Aw = – Aw sin (wt + f), which gives wt + f = 30°.

		Thus the displacement is

			x = A cos (wt + f) = A cos (30°) =      0.866 A.



10.	The dependence of the frequency on the mass is 

		f = (k/m)1/2/2p.

	Because the spring constant does not change, we have

		f2/f = (m/m2)1/2;

		(0.48 Hz)/(0.88 Hz) = [m/(m + 1.25 kg)]1/2, which gives m =       0.53 kg.



�

11.	In the equilibrium position, the net force is zero.  When the mass is pulled 

	down a distance x, the net restoring force is the sum of the additional forces 

	from the springs, so we have

		Fnet = ?F2 + ?F1 = – k2x – k1x = – (k1 + k2)x, 

	which gives an effective force constant of k1 + k2 .

	We find the frequency of vibration from

		f = (keff/m)1/2/2p =       [(k1 + k2)/m]1/2/2p.







�

12.	(a)	From the graph we see that the period is 

		0.69 s and the amplitude is 0.82 cm.  We find 

		the spring constant from the period:

			T = 2p(m/k)1/2;

			0.69 s = 2p[(14.3 ´ 10–3 kg)/k]1/2, 

		which gives k =      1.19 N/m.

	(b)	For a general displacement, we have

			x = A cos (wt + f).  

		We find the  phase constant from the condition 

		at t = 0:

			0.43 cm = (0.82 cm) cos f, 

		which gives cos f = 0.524, f = – 58° = – 1.02 rad. 

		We choose the negative angle to have a positive slope at t = 0.

		Thus the equation is

			x 	= A cos [2p(t /T) + f]

				= (0.82 cm) cos {2p[t/(0.69 s)] – 1.02} =       (0.82 cm) cos [(9.1 s–1)t  – 1.02]. 



















13.	(a)	When we compare x = (3.8 m) cos [(7p/4 s–1)t + p/6] to a general displacement, x = A cos (wt + f), 

		we see that

			w = 7p/4 s–1, so the period is

			T = 2p/w = 2p/(7p/4 s–1) =       8/7 s.

		The frequency is f = 1/T = 7/8 Hz =      0.875 Hz.

	(b)	The velocity is

			v = dx/dt = – (3.8 m)(7p/4 s–1) sin [(7p/4 s–1)t + p/6] = – (20.9 m/s) sin [(7p/4 s–1)t + p/6].

		At t = 0 , we have

			x0 = (3.8 m) cos(p/6) =      3.3 m;

			v0 = – (20.9 m/s) sin (p/6) =       – 10.4 m/s.

	(c)	The acceleration is

			a = dv/dt = – (3.8 m)(7p/4 s–1)2 cos [(7p/4 s–1)t + p/6] = – (115 m/s2) cos [(7p/4 s–1)t + p/6].

		At t = 2.0 s , we have

			v = dx/dt = – (20.9 m/s) sin [(7p/4 s–1)(2.0 s) + p/6] =      + 18 m/s;

			a = – (115 m/s2) cos [(7p/4 s–1)(2.0 s) + p/6] =       – 57 m/s2.



14.	The angular frequency of the motion is

		w = 2pf = 2p(264 Hz) = 1.66 ´ 103 s–1.

	(a)	The maximum speed is

			vmax = wA = (1.66 ´ 103 s–1)(1.5 ´ 10–3 m) =      2.5 m/s.

	(b)	The maximum acceleration is

			amax = w2A = (1.66 ´ 103 s–1)2(1.5 ´ 10–3 m) =      4.1 ´ 103 m/s2.



15.	The dependence of the frequency on the mass is 

		f = (k/m)1/2/2p.

	Because the spring constant does not change, we have

		f2/f1 = (m1/m2)1/2;

		f2/(3.0 Hz) = [(0.50 kg)/(0.35 kg)]1/2, which gives f2 =       3.6 Hz.



16.	(a)	We find the derivatives of the given expression:

			x = a sin wt + b cos wt;

			dx/dt = wa cos wt – wb sin wt;

			d2x/dt2 = – w2a sin wt – w2b cos wt = – w2x.

		Thus Eq. 14–3 is satisfied if w2 = k/m.

	(b)	We use a trigonometric identity to expand Eq. 14–4:

			x = A cos (wt + f) = A(cos wt cos f – sin wt sin f).

		If we compare this to the given solution, we see that

			a = – A sin f,   and    b = A cos f.



�

17.	We use a coordinate system with down positive.  With x0 positive, 

	at the equilibrium position we have 

		?F = –kx0 + mg = 0. 

	If the spring is compressed a distance x (so x is negative) from the 

	equilibrium position, we have

		?F = – k(x + x0) + mg. 

	When we use the equilibrium condition, we get

		?F = F = – kx.

	Note that x is negative, so the restoring force is positive (down).

	If we stretch the spring a distance x (so x is positive), we still have

		?F = – k(x + x0) + mg. 

	When we use the equilibrium condition, we get

		?F = F = – kx.

	Note that x is positive, so the restoring force is negative (up).





18.	We find the spring constant from the elongation caused by the mass:

		k = ?mg/?x = (1.62 kg)(9.80 m/s2)/(0.315 m) = 50.4 N/m.

	The period of the motion is independent of amplitude:

		T = 2p(m/k)1/2 = 2p[(1.62 kg)/(50.4 N/m)]1/2 = 1.13 s.

	The time to return to the equilibrium position is one-quarter of a period:

		t = #T = #(1.13 s) =       0.282 s.



19.	(a)	We find the frequency from 

			f = (k/m)1/2/2p = [(345 N/m)/(0.250 kg)]1/2/2p = 5.91 Hz, so

			w = 2pf = 2p(5.91 Hz) = 37.1 s–1.

		Because the mass starts at the equilibrium position moving in the negative (downward) direction, 

		we have a sine function:

			y = – A sin (wt) = – (0.220 m) sin [(37.1 s–1)t].

	(b)	The period of the motion is

			T = 1/f = 1/(5.91 Hz) = 0.169 s.

		It will take one-quarter period to reach the maximum extension, so the spring will have 

		maximum extensions at        0.0423 s, 0.211 s, 0.381 s, ¼ .

		It will take three-quarters period to reach the minimum extension, so the spring will have 

		minimum extensions at        0.127 s, 0.296 s, 0.465 s, ¼ .



20.	(a)	We find the frequency from the period:

			f = 1/T = 1/(0.55 s) = 1.82 Hz, so

			w = 2pf = 2p(1.82 Hz) = 11.4 s–1.

		The amplitude is the compression: 0.10 m.  Because the mass is released at the maximum 

		displacement, we have a cosine function:

			y = A cos (wt) = (0.10 m) cos [(11.4 s–1)t].

	(b)	The time to return to the equilibrium position is one-quarter of a period:

			t = #T = #(0.55 s) =       0.14 s.

	(c)	The maximum speed is

			v0 = wA = (11.4 s–1)(0.10 m) =       1.1 m/s.

	(d)	The maximum acceleration is

			amax = w2A = (11.4 s–1)2(0.10 m) =       13 m/s2.

		The maximum magnitude of the acceleration occurs at the endpoints of the motion, so it will be 

		attained first at       the release point.



�

21.	If the spring is stretched x0 when the stick is held in 

	equilibrium in a horizontal position, for the torques 

	about the point A, with clockwise positive,  we have

		?tA = Mg(!¬) – kx0¬ = 0.

	If the stick is displaced through a small angle q, the end 

	will be displaced an additional distance x, so we have

		?tA = Mg(!¬) – k(x + x0)¬ = Ia = @M¬2 d2q/dt2.

	When we use the result for equilibrium, we get

		– kx¬ = @M¬2 d2q/dt2.

	For a small angle, x = Lq, so we have

		– k¬2q = @M¬2 d2q/dt2,   or   d2q/dt2 = – (3k/M)q.

	The motion will be simple harmonic, with 

		w2 = 3k/M, so the frequency is       f = (3k/M)1/2/2p.















22.	The impulse, which acts for a very short time, will change the momentum of the mass, giving it an initial velocity.  Because this occurs at the equilibrium position, the velocity will be the maximum velocity v0.  Thus we have

		J = ?p = m ?v = mv0.

	The angular frequency is 

		w = (k/m)1/2, so v0 = Aw = A(k/m)1/2.

	The SHM starts at the equilibrium position, x = 0 at t = 0, so we use a sine function:

		x 	= A sin wt = v0(m/k)1/2 sin (k/m)1/2t 

			= (J/m)(m/k)1/2 sin (k/m)1/2t =       [J/(mk)1/2] sin (k/m)1/2t.



�

23.	(a)	If we apply a force F to stretch the springs, the total 

		displacement ?x is the sum of the displacements of the two 

		springs: ?x = ?x1 + ?x2.

		The effective spring constant is defined from F = – keff ?x.

		Because they are in series, the force must be the same in 

		each spring: 

			F1 = F2 = F = – k1 ?x1 = – k2 ?x2. 	

		Then ?x = ?x1 + ?x2 becomes 

		– F/keff = – (F/k1) – (F/k2),    or     1/keff = (1/k1) + (1/k2).

		For the period we have

			T = 2p(m/keff)1/2 = 2p{m[(1/k1) + (1/k2)]}1/2.

	(b)	In the equilibrium position, we have

			Fnet = F20 – F10 = 0,   or   F10 = F20.

		When the object is moved to the right a distance x, we have

			Fnet = F20 – k2x – (F10 + k1x) = – (k1 + k2)x.

		The effective spring constant is keff = k1 + k2 , so the period is 

			T = 2p(m/keff)1/2 = 2p[m/(k1 + k2)]1/2.



�

24.	(a)	At the equilibrium positions the net force on each mass is zero.  

		If we displace each mass to the right and assume that x2 > x1, 

		the magnitudes of the additional forces are

			F1 = kx1, F12 = k(x2 – x1), F2 = kx2.

		The spring on the left and the middle spring will 

		have an additional tension, while the spring on 

		the right will have an additional compression.  

		The directions of the forces are indicated on the diagram, so for the two masses we have

			?F = – kx1 + k(x2 – x1) = m1a1 = m1 d2x1/dt2;

			?F = – k(x2 – x1) – kx2 = m2a2 = m2 d2x2/dt2.

		Because the masses are equal, we let 

			k/m1 = w12 = k/m2 = w22 = w02 = k/m, and get

			d2x1/dt2 = – w02(2x1 – x2) ;   and   d2x2/dt2 = – w02(2x2 – x1) .

	(b)	For the assumed solutions we have

			x1 = A1 cos wt;   d2x1/dt2 = – A1w2 cos wt;

			x2 = A2 cos wt;   d2x2/dt2 = – A2w2 cos wt.

		When we substitute these in the previous equations, we get

			– w02(2A1 – A2) cos wt = – A1w2 cos wt,   or   A2w02 = A1(2w02 – w2);  

			– w02(2A2 – A1) cos wt = – A2w2 cos wt,   or   A2(2w02 – w2) = A1w02.

		If we divide these equations, we get

			(2w02 – w2)2 = w04,   or   2w02 – w2 = ± w02, 

		which gives 

			w2 = w02, 3w02,   or      w = (k/m)1/2, v3(k/m)1/2.

		Note that when w = w0 , A1 = A2 , a symmetric motion; 

		and when w = v3w0 , A1 = – A2 , an antisymmetric motion.



25.	The angular frequency is 

		w = 2pf = (k/m)1/2 = [(250 N/m)/(0.380 kg)]1/2 = 25.6 s–1.

	The period is 

		T = 2p/w= 2p/(25.6 s–1) = 0.245 s.

	(a)	For a general displacement, we have

			x = A cos (wt + f);    v = – Aw sin (wt + f).

		Because v = vmax = Aw, when t0 = 0.110 s, we have 

			sin [(25.6 s–1)(0.110 s) + f] = – 1, or 2.82 + f = 3p/2, which gives f = 1.89 rad = 108°.

		Note that this also gives x = 0.

		Thus the equation for the motion is

			x = (12.0 cm) cos [(25.6 s–1)t + 1.89 rad].

	(b)	Because the mass passes through the equilibrium position toward positive x at t0 , it will reach the 

		maximum length, x = – 12.0 cm, &T later:

			tmax1 = t0  + &T = 0.110 s + &(0.245 s) = 0.294 s.

		It will be at this position at intervals of T:

			tmax = 0.294 s, 0.539 s, 0.784 s, … .

		The mass will reach the minimum length, x = + 12.0 cm, #T after t0:

			tmin1 = t0  + #T = 0.110 s + #(0.245 s) = 0.171s.

		It will be at this position at intervals of T:

			tmin = 0.171 s, 0.416 s, 0.661 s, … .

	(c)	The displacement at t = 0 is

			x = (12.0 cm) cos (0 + 1.89 rad) =      – 3.77 cm.

	(d)	Because the net force produces the SHM, the force in the spring at t = 0 is

			F = – kx + mg = – (250 N/m)(– 0.0377 cm) + (0.380 kg)(9.80 m/s2) =      + 13.1 N (up).

	(e)	The maximum speed is

			vmax = Aw = (0.120 m)( 25.6 s–1) =      3.07 m/s.

		Because the initial phase is less than 180°, the maximum speed is reached at t = t0 =      0.110 s.



26.	(a)	The total energy is the maximum potential energy, so we have

			U = !E = !Umax;

			!kx2 = !(!kA2), which gives x =       ± 0.707A.

	(b)	For the potential energy we have

			U/E = !kx2/!kA2 = (!A)2/A2 = #.

		Then we have

			K/E = 1 – U/E = &.



27.	(a)	The amplitude is the maximum value of x:        0.650 m.

	(b)	We find the frequency from the coefficient of t:

			2pf = 8.40 s–1, which gives f =        1.34 Hz.

	(c)	The maximum speed is

			v0 = wA = (8.40 s–1)(0.650 m) = 5.46 m/s.

		We find the total energy from the maximum kinetic energy:

			E = Kmax = !mv02 = !(2.00 kg)(5.46 m/s)2 =       29.8 J.

	(d)	We find the velocity at the position from

			v 	= v0[1 – (x2/A2)]1/2

				= (5.46 m/s){1 – [(0.260 m)2/(0.650 m)2]}1/2 = 5.00 m/s.

		The kinetic energy is

			K = !mv2 = !(2.00 kg)(5.00 m/s)2 =       25.0 J.

		The potential energy is

			U = E – K = 29.8 J– 25.0 J =       4.8 J.









28.	The angular frequency is 

		w = 2pf = 2p(3.0 Hz) = 6.0 p s–1.

	(a)	The velocity at the equilibrium point is maximum:

			vmax = wA = (6.0 p s–1)(0.15 m) =       2.8 m/s.

	(b)	We find the velocity at the given position from

			v 	= v0[1 – (x2/A2)]1/2

				= (2.8 m/s){1 – [(0.10 m)2/(0.15 m)2]}1/2 =       2.1 m/s.

	(c)	We find the total energy from the maximum kinetic energy:

			E = Kmax = !mvmax2 = !(0.35 kg)(2.8 m/s)2 =       1.4 J.

	(d)	Because the mass starts at the maximum position, we use a cosine function:

			x = A cos wt = (0.15 m) cos (6.0 p s–1)t.



29.	We find the spring constant from the compression:

		k = F/x = (95.0 N)/(0.185 m) = 514 N/m.

	The kinetic energy will be maximum when the ball leaves the gun, and thus equal to the initial potential energy:

		!mv2 = !kx2;

		(0.200 kg)v2 = (514 N/m)(0.185 m)2, which gives v =       9.37 m/s.



30.	Immediately after the collision, the block-bullet system will have its maximum velocity at the equilibrium position.  We find this velocity from energy conservation:

		Ki + Ui = Kf + Uf ;

		!(M + m)v02 + 0 = 0 + !kA2;

		!(0.300 kg + 0.0125 kg)v02 = !(2.25 ´ 103 N/m)(0.124 m)2, which gives v0 = 10.5 m/s.

	We find the initial speed of the bullet from momentum conservation for the impact:

		mv + 0 = (M + m)v0;

		(0.0125 kg)v = (0.300 kg + 0.0125 kg)(10.5 m/s), which gives v =        263 m/s.



31.	We can compare the two maximum potential energies:

		U1/U2 = !k1A12/!k2A22 = (k1/k2)(A1/A2)2;

		10 = 2(A1/A2)2,   or         A1 = 2.24A2.



32.	(a)	We find the spring constant from

			2pf = (k/m)1/2;

			2p(3.5 Hz) = [k/(0.240 kg)]1/2, which gives k =       1.2 ´ 102 N/m.

	(b)	We find the total energy from the maximum potential energy:

			E = Umax = !kA2 = !(1.16 ´ 102 N/m)(0.045 m)2 =       0.12 J.



33.	(a)	The work done in compressing the spring is stored as the maximum potential energy, so we have

			E = Umax = !kA2;

			3.0 J = !k(0.12 m)2, which gives k = 4.17 ´ 102 N/m =      4.2 ´ 102 N/m.

	(b)	We find the mass from

			Fmax = kA = mamax ;

			(4.17 ´ 102 N/m)(0.12 m) = m(15 m/s2), which gives m =      3.3 kg.



34.	(a)	The total energy is the maximum potential energy:

			!mv2 + !kx2 = !kA2;

			(2.1 kg)(0.55 m/s)2 + (280 N/m)(0.020 m)2 = (280 N/m)A2, which gives A = 0.052 m =       5.2 cm.

	(b)	We find the maximum velocity from the maximum kinetic energy:

			!mvmax2 = !kA2;

			(2.1 kg)vmax2 = (280 N/m)(0.052 m)2, which gives vmax =      0.60 m/s.







35.	For the collision of the bullet and block momentum is conserved:

		mv = (m + M)V,  so  V = mv/(m + M).

	The kinetic energy of the bullet and block immediately after the collision is stored in the potential energy of the spring when the spring is fully compressed:

		!(m + M)V2 = !kA2;

		(m + M)[mv/(m + M)]2 = kA2;

		[(0.007870 kg)v]2/(0.007870 kg + 6.023 kg) = (142.7 N/m)(0.09460 m)2, which gives v =      352.6 m/s.



36.	(a)	The period of the motion is independent of amplitude:

			T = 2p(m/k)1/2 = 2p[(0.650 kg)/(184 N/m)]1/2 =       0.373 s.

		The frequency is

			f = 1/T = 1/(0.373 s) =       2.68 Hz.

	(b)	Because the mass is struck at the equilibrium position, the initial speed is the maximum speed.

		We find the amplitude from

			v0 = Aw = 2pfA;

			2.26 m/s = 2p(2.68 Hz)A, which gives A =       0.134 m.

	(c)	The maximum acceleration is

			amax = w2A = (2pf )2A = [2p(2.68 Hz)]2(0.134 m) =        38.0 m/s2.

	(d)	Because the mass starts at the equilibrium position, we have a sine function.  If we take the 

		positive x-direction in the direction of the initial velocity, we have

			x = A sin (wt) = A sin (2pft) = (0.134 m) sin [2p(2.68 Hz)t] =        (0.134 m) sin [(16.8 s–1)t].

	(e)	We find the total energy from the maximum kinetic energy:

			E = Kmax = !mv02 = !(0.650 kg)(2.26 m/s)2 =       1.66 J.

	(f)	We find the kinetic energy from the total energy:

			E = K + !kx2;

			1.66 J = K + !(184 N/m)[(0.40)(0.134 m)]2; which gives K =       1.40 J.



37.	The total energy of the oscillator is:

		E  = !kA2 = !mv2 + !kx2;

	which becomes

		v = dx/dt = ± [(k/m)(A2 – x2)]1/2.

	We separate the variables:

		dx/(A2 – x2)1/2 = ± (k/m)1/2 dt, and integrate, with x = x0 at t = 0:

		�

	If we let sin–1 (x0/A) = f, we have

		�

	Of course we could have a cosine function by a change in phase.  The choice of sign is made from the sign of the velocity at t = 0.	



38.	(a)	We find the period from the time for N oscillations:

			T = t/N = (50 s)/42 =       1.2 s.

	(b)	The frequency is

			f = 1/T = 1/(1.19 s) =       0.84 Hz.



39.	We find the length from

		T = 2p(L/g)1/2;

		2.000 s = 2p[L/(9.80 m/s2)]1/2, which gives L =      0.9929 m.









40.	The period of a simple pendulum is given by

		T = 2p(L/g)1/2.

	If we form the ratio for the two values of g, we get

		TMars/TEarth = (gEarth/gMars)1/2;

		TMars/(0.80 s) = (1/0.37)1/2, which gives TMars =      1.3 s.



41.	(a)	We find the length from

			T = 2p(L/g)1/2;

			1.00 s = 2p[L/(9.80 m/s2)]1/2, which gives L =      0.248 m.

	(b)	We find the period from

			T = 2p(L/g)1/2 = 2p[(1.00 m)/(9.80 m/s2)]1/2 =      2.01 s.



42.	(a)	For the period on Earth we have

			T = 2p(L/g)1/2 = 2p[(0.73 m)/(9.80 m/s2)]1/2 =       1.7 s.

	(b)	In a freely falling elevator, the effective g is zero, so the period would be       infinite (no swing).



43.	We assume that 14° is small enough that we can consider this a simple pendulum, with a period

		T = 2p(L/g)1/2 = 2p[(0.30 m)/(9.80 m/s2)]1/2 = 1.10 s, and w = 2p/T = 2p/(1.10 s) = 5.71 s–1.

	Because the pendulum is released at the maximum angle, the angle will oscillate as a cosine function:

		q = q0 cos (wt) = (14°) cos [(5.71 s–1)t].

	(a)	q = (14°) cos [(5.71 s–1)(0.65 s)] =        – 12°.

		This is reasonable, because the time is slightly over half a period.

	(b)	q = (14°) cos [(5.71 s–1)(1.95 s)] =        + 1.9°.

	(c)	q = (14°) cos [(5.71 s–1)(5.00 s)] =        – 13°.

		This is reasonable; the time is 4 periods and 0.60 s, so it should be close to the answer for part (a).



�

44.	We use energy conservation between the release point and the 

	lowest point:

		Ki + Ui = Kf + Uf ;

		0 + mgh = !mv02 + 0,   or   v02 = 2gh = 2gL(1 – cos q).

	When we use a trigonometric identity, we get

		v02 = 2gL(2 sin2 !q).

	For a simple pendulum q is small, so we have sin !q ˜ !q.  

	Thus we get

		v02 = 2gL2 (!q)2,   or        v0 = q(gL)1/2.













�

45.	This is most easily found from the associated circular 

	motion for SHM.  We see from the diagram that, out 

	of the 2p radians for a complete circular motion, the 

	total angle corresponding to the pendulum  being 

	between + !A and – !A is 4q.

	We find q from 

		sin q = !A/A = !, so q = p/6.

	Thus the fraction of time spent between + !A and – !A is

		fraction = 4(p/6)/2p =       @.













�



46.	(a)	For the frequency we have

			f = (g/L)1/2/2p = [(9.80 m/s2)/(0.68 m)]1/2/2p =       0.60 Hz.

	(b)	We use energy conservation between the release point and the 

		lowest point:

			Ki + Ui = Kf + Uf ;

			0 + mgh = !mv02 + 0;

			(9.80 m/s2)(0.68 m)(1 – cos 12°) = !v02, 

		which gives v0 =       0.54 m/s.















�

47.	We use the parallel-axis theorem to find the moment of 

	inertia about the pin A:

		IA = ICM + Mh2 = !MR2 + Mh2 = M(!R2 + h2).

	The period for small oscillations is

		T 	= 2p(IA/Mgh)1/2 = 2p[(!R2 + h2)/gh]1/2

			= 2p{[!(0.200 m)2 + (0.180 m)2] /(9.80 m/s2)(0.180 m)}1/2 

			=      1.08 s.



















�



48.	(a)	For the moment of inertia of the system about the 

		suspension point we have

			I = ML2 + @mL2 = (M + @m)L2.

		The distance of the center of mass of the system from 

		the suspension point is

			h = [ML + m(!L)]/(M + m) = (M + !m)L/(M + m).

		The period for small oscillations is

			T 	= 2p[I/(M + m)gh]1/2 = 2p[(M + @m)L2/(M + !m)Lg]1/2 

				=       2p[(M + @m)L/(M + !m)g]1/2. 

	(b)	If we were to use the expression for a simple pendulum, 

		the fractional error would be

			error 	= (T – Tsimple)/T 

					= {2p[(M + @m)L/(M + !m)g]1/2 – 2p(L/g)1/2}/2p[(M + @m)L/(M + !m)g]1/2 

					= {[(M + @m)/(M + !m)]1/2 – 1}/[(M + @m)/(M + !m)]1/2 

					= 1 – [(M + !m)/(M + @m)]1/2 =        1 – [(1 + m/2M)/(1 + m/3M)]1/2.



49.	We can find the effective torsional constant from

		t = Kq;

		1.1 ´ 10–5 m · N = K(60°)(p/180°), which gives K = 1.05 ´ 10–5 m · N/rad.

	We use the expression for the period from Problem 50:

		T = 1/f = 2p(I/K)1/2 = 2p(mR2/K)1/2;

		1/3.10 Hz = 2p[m(0.0095 m)2/(1.05 ´ 10–5 m · N/rad)]1/2, which gives m = 3.1 ´ 10–4 kg =      0.31 g.



50.	(a)	When we apply ?t = Ia to the twisting motion of the torsional pendulum, we have

			– Kq = Ia = I d2q/dt2.

		When we write this as

			d2q/dt2 = – (K/I)q = – w2q,

		we see that the angular acceleration is proportional to the displacement, so we have SHM.  

		We can write the equation for the motion as

			q = q0 sin (wt + f), where w = (K/I)1/2.

	(b)	The period of the motion is

			T = 2p/w = 2p(I/K)1/2.

�



51.	(a)	We use the parallel-axis theorem for the lower mass to find the 

		moment of inertia of the leg about the hip:

			I 	= m1L12/3 + m2L22/12 + m2(L1 + !L2)2 

				= (m1/3 + m2/12 + 9m2/4)L2 

				= [(7.0 kg)/3 + (4.0 kg)/12 + 9(4.0 kg)/4](0.50 m)2 = 2.92 kg · m2.

		The distance of the center of mass of the leg from the hip is

			h 	= [m1!L1 + m2(L1 + !L2)]/(m1 + m2) = (!m1 + *m2)L/(m1 + m2)

				= [!(7.0 kg) + *(4.0 kg)](0.50 m)/(7.0 kg + 4.0 kg) = 0.432 m.

		The natural period is

			T 	= 2p[I/(m1 + m2)gh]1/2 

				= 2p[(2.92 kg · m2)/(7.0 kg + 4.0 kg)(9.80 m/s2)(0.432 m)]1/2 

				=       1.6 s. 
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52.	We use the parallel-axis theorem to find the moment of inertia about the pin:

		I = mL2/12 + mh2 = m(h2 + L2/12).

	The period is

		T = 2p(I/mgh)1/2 = 2p[(h2 + L2/12)/gh]1/2.

	To find the minimum we set dT/dh = 0.  Because T ? 0, this is simpler if we 

	differentiate T2:

		dT2/dh 	= 2T dT/dh = 4p2{(2h/gh) – [(h2 + L2/12)/gh2]} 

				= 4p2[(2h2 – h2 – L2/12)/gh2] = 0,

	which gives h = L/v12 = 0.289L.

	Thus the hole should be !L – h =      0.211 m from the end.

	The period of the motion is

		T 	= 2p[(h2 + L2/12)/gh]1/2 = 2p[(L2/12 + L2/12)/g(L/v12)]1/2 

			= 2p(L/gv3)1/2 = 2p[(1.00 m)/(9.80 m/s2)v3]1/2 =      1.53 s.



53.	From Problem 50 the period of the motion is

		T = 2p(I/K)1/2.

	Because the torsional constant does not change, the ratio of the two periods is

		T2/T1 = (I2/I1)1/2 = [(m2L22/12)/m1L12/12]1/2 

		T2/(6.0 s) = [(0.70 m1)(0.70L1)2/m1L12]1/2, which gives T2 =      3.5 s.



54.	We find the torsional constant with the result from Problem 50:

		T = 1/f = 2p(I/K)1/2;

		1/(0.331 Hz) = 2p[!(0.500 kg)(0.0625 m)2/K]1/2, which gives K =      4.22 ´ 10–3 m · N/rad.



55.	(a)	The angular frequency for the damped motion is

			w¢ 	= [(k/m) – (b2/4m2)]1/2 

				= {[(56.0 N/m)/(0.750 kg)] – [(0.162 N · s/m)2/4(0.750 kg)2]}1/2 = 8.64 s–1.

		The period is

			T = 2p/w¢ = 2p/(8.64 s–1) =      0.727 s.

	(b)	We evaluate the factor 

			b/2m = (0.162 N · s/m)/2(0.750 kg) = 0.108 /s.

		The amplitude is proportional to e –bt/2m.  The fractional decrease over one period is

			fractional decrease 	= [e  –bt/2m – e  –b(t + T)/2m]/e  –bt/2m = 1 – e  –bT/2m  

								= 1 – e – (0.108 /s)(0.727 s) =       0.0755.

	(c)	The general expression for the displacement is

			x = Ae  –bt/2m  cos (w¢t + f).

		We use the given data to evaluate the constants:

			0 = Ae –0 cos f, which gives f = – p/2, or we can change to a sine function.

			0.120 m = Ae – (0.108 /s)(1.00 s) sin [(8.64 s–1)(1.00 s)], which gives A = 0.189 m.

		Thus the displacement is

			x = (0.189 m)e – (0.108 /s)t  sin [(8.64 s–1)t]. 



56.	(a)	From the assumed expression for the angular displacement,

			q = Ae –a  t cos w¢t,

		we see that the q is maximum at t = 0, so A = 15°.

		After a time t, the amplitude of the cosine function is A e –a t, so at t = 8.0 s we have

			(15°) e –a(8.0 s) = 5.5°, which gives        a = 0.125 s–1.

	(b)	The angular frequency of the undamped motion is

			w0 = (mgh/I)1/2 = [mg(L/2)/(mL2/3)]1/2 = (3g/2L)1/2 = [3(9.80 m/s2)/2(0.80 m)]1/2 = 4.29 s–1.

		For the damped motion we have

			w¢ = [w02 – a2]1/2 = [(4.29 s–1)2 – (0.125 s–1)2]1/2 ˜ 4.29 s–1.

		Thus the approximate period is

			T = 2p/w¢ = 2p/(4.29 s–1) =      1.47 s.

	(c)	To reduce the amplitude to !, we have

			e –a t = !,   or   (0.125 s–1)t = ln 2 = 0.693, which gives t =      5.5 s.



57.	(a)	The energy of the oscillator is all potential energy when the cosine factor is 1:

			E = !kxmax2 = !kA2 e –bt/m.

		If we compare the energies for t = 0 and t = T, we have

			E/E0 = e –bT/m = 1 – 0.050, which gives bT/m = 0.0513.

		We assume light damping, so T ˜ 2p/w0 , to get

			2pb/w0m = 0.0513,   or   b/2m = 0.00408w0 .

		The angular frequency is

			w¢ = [(k/m) – (b2/4m2)]1/2 = [w02 – (0.00408w0)2]1/2 = (1 – 1.67 ´ 10–5)1/2w0 ˜ (1 - 8.3 ´ 10–6)w0 .

		This justifies our assumption of light damping.  The fractional difference is

			(w¢ – w0)/w0 = 8.3 ´ 10–6 =      8.3 ´ 10–4 %.

	(b)	After n periods, the ratio of amplitudes is

			e –bnT/2m = e–1,  or 

			bnT/2m = 2pnb/2mw0 = 1;

			2pn(0.00408) = 1, which gives n =      39 periods. 



















58.	(a)	If we assume the oscillator starts at maximum displacement, we have

			x = A e –bt/2m cos w¢t.

		The velocity is 

			v = dx/dt = A(–b/2m)e –bt/2m  cos w¢t – A e –bt/2m  w¢ sin w¢t.

		For a lightly damped oscillator, w¢ » b/2m, so we ignore the cosine term and get

			v ˜ – A e –bt/2m w¢ sin w¢t.

		For the total energy we have

			E = !mv2 + !kx2 = !mA2 e –bt/m w¢2 sin2 w¢t + !kA2 e –bt/m cos2 w¢t.

		For a lightly damped oscillator, w¢2 ˜ w02 = k/m, so we get

			E 	= !mA2 e –bt/m (k/m) sin2 w¢t + !kA2 e –bt/m cos2 w¢t 

				= !kA2 e –bt/m (sin2 w¢t + cos2 w¢t ) = !kA2 e –bt/m  = E0e –bt/m .

	(b)	The fractional energy lost in one period is

			– ?E/E = [E0e –bt/m  – E0e –b(t + T)/m ]/E0e –bt/m  = 1 –  e –bT/m .

		For a lightly damped oscillator, w¢ ˜ w0 , so the period is T = 2p/w0.  The exponent will be small, 

		so we use the expansion ex ˜ 1 + x for the exponential:

			– ?E/E = 1 – e –bT/m  ˜ 1 – (1 – 2pb/mw0) = 2pb/mw0 = 2p/Q, where Q = mw0/b. 



59.	(a)	In the equilibrium position, we have

�

			Fnet = F20 – F10 = 0,   or   F10 = F20.

		When the object is moved to the right a distance x, 

		we have

			Fnet = F20 – kx – (F10 + kx) = – 2kx.

		The effective spring constant is keff = 2k, so the frequency is 

			f 	= (keff/m)1/2/2p = (2k/m)1/2/2p 

				= [2(100 N/m)/(0.200 kg)]1/2/2p =      5.03 Hz.

	(b)	From the expression for the displacement,

			x = A e –a t cos w¢t,

		we see that the amplitude of the cosine function is A e –a t, so to reduce the amplitude to ! 

		in n periods, we have

			e –anT = !,   or   a nT = a n/f = ln 2;

			a (55)/(5.03 Hz) = 0.693, which gives a =      0.0634 s–1.

	(c)	To reduce the amplitude to # of the initial value, we have

			e –anT = #,   or   a nT = a n/f = ln 4 = 2 ln 2;

			(0.0634 s–1)n/(5.03 Hz) = 2(0.693), which gives n =      110 oscillations.

		This is expected, because the exponential function has the property that the same time is required 

		to reduce the value by !, no matter what the initial value is.  Thus to reduce by #, we reduce by ! 

		(55 oscillations) and then ! again (55 oscillations).



60.	(a)	At resonance, w = w0 , so we have

			f0 = tan–1 (w02 – w2)/(wb/m) = tan–1 0 =       0°.

	(b)	The driving force, Fext = F0 cos wt, is maximum at t = 0.  Thus the displacement is

			x = A0 sin (wt + f0) = A0 sin (0 + 0) =      0.

		The driving force, Fext = F0 cos wt, is zero at wt = ± p/2.  Thus the displacement is

			x = A0 sin (wt + f0) = A0 sin (± p/2 + 0) =      ± A0.

	(c)	We see that the phase difference between the force and the displacement is       90°.



















61.												
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62.	At resonance, w = w0 , so the amplitude is

		A0 = (F0/m)/[(w2 – w02) + (b2w2/m2)]1/2 = (F0/m)m/bw0 = (Q/w02)(F0/m);

		28.6(F0/m) = {Q/[2p(382 Hz)]2}(F0/m), which gives Q =       1.65 ´ 108.



63.	We find the derivatives of the assumed solution:

		x = A0 sin (wt + f0);

		dx/dt = wA0 cos (wt + f0);

		d2x/dt2 = – w2A0 sin (wt + f0).

	We use these in the equation of motion:

		m d2x/dt2 + b dx/dt + kx = F0 cos wt;

		m[– w2A0 sin (wt + f0)] + b[wA0 cos (wt + f0)] + k[A0 sin (wt + f0)] = F0 cos wt.

	We expand the trigonometric functions:

		A0(k – mw2)(sin wt cos f0 + cos wt sin f0) + A0bw(cos wt cos f0 – sin wt sin f0) = F0 cos wt;

		[A0(k – mw2) cos f0 – A0bw sin f0] sin wt + [A0(k – mw2) sin f0 + A0bw cos f0 – F0] cos wt = 0.

�

	For this to be true for any t, the coefficient of each variable function must equal zero.  From the coefficient of sin wt, we get

		A0(k – mw2) cos f0 – A0bw sin f0 = 0;

		 tan f0 	= sin f0/cos f0 = (k – mw2)/bw 

				= [(k/m) – w2]/(wb/m) 

				= (w02 – w2)/(wb/m).

	We can represent this in a triangle, as shown.

	From the coefficient of cos wt, we get

		A0(k – mw2) sin f0 + A0bw cos f0 – F0 = 0;

		{A0(k – mw2)(w02 – w2)/[(w02 – w2)2 + (wb/m)2]1/2} + 

										{A0bw (wb/m)/[(w02 – w2)2 + (wb/m)2]1/2} = F0;

		A0m[(w02 – w2)2 + (wb/m)2]/[(w02 – w2)2 + (wb/m)2]1/2 = F0 ,   or   

		A0 = (F0/m)/[(w2 – w02)2 + (wb/m)2]1/2.







64.	To find the maximum for A0 , we set the first derivative equal to zero:

		A0 = (F0/m)/[(w2 – w02)2 + (wb/m)2]1/2;

		dA0/dw 	= – !(F0/m)[2(w2 – w02)(2w) + 2b2w/m2]/[(w2 – w02)2 + (wb/m)2]3/2 

					= – (F0w/m)[2(w2 – w02) + b2/m2]/[(w2 – w02)2 + (wb/m)2]3/2  = 0;

		2(w2 – w02) + b2/m2 = 0,   or   w2 = w02 – b2/2m2.



65.	(a)	For a lightly damped oscillator, 

			w ˜ w0 = 2p/T = (g/L)1/2 = [(9.80 m/s2)/(0.50 m)]1/2 = 4.43 s–1.

		The amplitude of the cosine function is A e –a t = A e –bt/2m , so to reduce the amplitude by %, we have

			e –bt/2m  = @,   or   bt/2m = w0t/2Q = ln 3;

			(4.43 s–1)t/2(400) = 1.098, which gives t =      198 s.

	(b)	From Problem 58, the energy is E = E0e –bt/m .

		For the rate of change we differentiate and express as a loss:

			– dE/dt = (b/m)E0e –bt/m  = (b/m)!kA02 = !bw02A02 = !mw03A02/Q 

					= (0.20 kg)(4.43 s–1)3(0.020 m)2/2(400) =       8.7 ´ 10–6 W.

	(c)	We find the width of the peak at half-maximum from

			?w/w0 = 1/Q;

			?w/(4.43 s–1) = 1/400, which gives ?w = 1.1 ´ 10–2 s–1.

		The frequency difference from the natural frequency is

			?f = !?w/2p = !(1.1 ´ 10–2 s–1)/2p =      8.8 ´ 10–4 Hz on either side of f0.







































































66.	(a)	For the motion of a driven oscillator we have

			x = A0 sin (wt + f0);  v = wA0 cos (wt + f0).

		Thus the power input is

			P = Fextv = F0 cos wt [wA0 cos (wt + f0)] = F0wA0 cos wt (cos wt cos f0 – sin wt sin f0). 

		When we use the result for A0 we get

			�

	(b)	The average power input is 

			�

		Over a cycle, cos2 wt is always positive with an average of !; sin 2wt is positive and negative with 

		an average of 0.  Thus we have

			�

	(c)	

�

		



67.	The amplitude of the forced oscillator is

		A0 = (F0/m)/[(w2 – w02)2 + (wb/m)2]1/2 = (F0/m)/[(w2 – w02)2 + w2w02/Q2]1/2. 

	At resonance, w = w0 , so A0,res = F0/(mw02/Q);  and at the half-width we have

		A02/A0,res2 = (w04/Q2)/[(w2 – w02)2 + w2w02/Q2] = !,   or  

		2w04/Q2 = w4 –  2w02w2 + w04 +  w2w02/Q2.

	We can simplify the algebra if we let x = w/w0.  After rearranging we have

		x4 – (2 – 1/Q2)x2 + (1 – 2/Q2) = 0.

	This is a quadratic equation for x2 with the solutions

		x2 = !{(2 – 1/Q2) ± [(2 – 1/Q2)2 – 4(1 – 2/Q2)]1/2} = 1 – 1/2Q2 ± !(4/Q2 + 1/Q4)1/2.

	We know that Q > 1 and assume that Q2 » 1, which gives

		x2 ˜ 1 – 1/2Q2 ± (1/Q2)1/2 ˜ 1 ± 1/Q,   or   x = (1 ± 1/Q)1/2 ˜ 1 ± 1/2Q.

	The width of the curve is

		?w/w0 = ?x = x+ – x– = (1 + 1/2Q) – (1 – 1/2Q) = 1/Q.





68.	We choose h = 0 at the unstretched position of the net and let the stretch of the net be x.  We use energy conservation between the release point and the lowest point to find the spring constant:

		Ki + Ui = Kf + Uf ;

		0 + mghi = 0 + mg(– x1) + !kx12,   or   mg(hi + x1) = !kx12;

		(52 kg)(9.80 m/s2)(20.0 m + 1.1 m) = !k(1.1 m)2, which gives k = 1.78 ´ 104 N/m.

	When the person lies on the net, the weight causes the deflection:

		mg = kx2;

		(52 kg)(9.80 m/s2) = (1.78 ´ 104 N/m)x2 , which gives x2  = 0.0287 m =       2.9 cm.

	We use energy conservation between the release point and the lowest point to find the stretch:

		Ki + Ui = Kf + Uf ;

		0 + mghi = 0 + mg(– x3) + !kx32,   or   mg(hi + x3) = !kx32;

		(52 kg)(9.80 m/s2)(35 m + x3) = !(1.78 ´ 104 N/m)x32.

	This is a quadratic equation for x3 , for which the positive result is       1.4 m.



�

69.	(a)	For the frequency we have

			f = (g/L)1/2(1/2p) = [(9.80 m/s2)/(0.63 m)]1/2(1/2p) =       0.63 Hz.

	(b)	We use energy conservation between the release point and the 

		lowest point:

			Ki + Ui = Kf + Uf ;

			0 + mgh = !mv02 + 0;

			(9.80 m/s2)(0.63 m)(1 – cos 15°) = !v02, 

		which gives v0 =       0.65 m/s.

	(c)	The energy stored in the oscillation is the initial potential energy:

			Ui = mgh = (0.365 kg)(9.80 m/s2)(0.63 m)(1 – cos 15°) =       0.077 J.

		Note that this is also the maximum kinetic energy, !mv02.







70.	(a)	The amplitude is the maximum value of x:        0.25 m.

	(b)	We find the frequency from the coefficient of t:

			2pf = 5.50 s–1, which gives f =        0.875 Hz.

	(c)	The period is

			T = 1/f = 1/(0.875 Hz) =      1.14 s.

	(d)	We find the total energy from the maximum kinetic energy:

			E = Kmax = !mv02 = !mA2w2 = !(0.650 kg)(0.25 m)2(5.50 s–1)2 =       0.61 J.

	(e)	The potential energy is

			U = !kx2 = !mw2x2 = !(0.650 kg)(5.50 s–1)2(0.10 m)2 =       0.098 J. 

		The kinetic energy is

			K = E – U = 0.61 J– 0.098 J =       0.51 J.



71.	We find the period from the time for N oscillations:

		T = t/N = (34.7 s)/8 = 4.34 s.

	From this we can get the spring constant:

		T = 2p(m/k)1/2;

		4.34 s = 2p[(72.0 kg)/k]1/2, which gives k =       151 N/m.

	At the equilibrium position, we have

		mg = kx0;

		(72.0 kg)(9.80 m/s2) = (151 N/m)x0 , which gives x0 = 4.68 m.

	Because this is how much the cord has stretched, we have

		L = D – x0 = 25.0 m – 4.68 m =       20.3 m.









72.	(a)	The stress from the tension in the cable causes the strain.  We find the effective spring constant from

			E = stress/strain = (FT/A)/(?L/L0),  or  

			k = FT/?L = EA/L0 = (200 ´ 109 N/m2)p(3.2 ´ 10–3 m)2/(20.0 m) = 3.22 ´ 105 N/m.

		We find the period from

			T = 2p(m/k)1/2 = 2p[(1200 kg)/(3.22 ´ 105 N/m)]1/2 =       0.38 s.

	(b)	The elongation at the equilibrium position is produced by the stress from the weight of the car:

			E = (F1/A)/(?L1/L0);

			200 ´ 109 N/m2 = [(1200 kg)(9.80 m/s2)/p(3.2 ´ 10–3 m)2]/(?L1/20.0 m), 

		which gives ?L1 = 3.66 ´ 10–2 m.

		The elongation that will break the cable is produced by a stress equal to the strength of the cable:

			E = (F2/A)/(?L2/L0);

			200 ´ 109 N/m2 = (500 ´ 106 N/m2)/(?L2/20.0 m), 

		which gives ?L2 = 5.00 ´ 10–2 m.

		Thus the amplitude to reach the breaking point is

			A = ?L2 – ?L1 = 5.00 ´ 10–2 m – 3.66 ´ 10–2 m = 1.34 ´ 10–2 m =       1.34 cm.



73.	If we ignore losses due to friction, the initial kinetic energy becomes potential energy:

		!mv02 = !kx2;

		(1500 kg)(2.0 m/s)2 = (500 ´ 103 N/m)x2, which gives x =      0.11 m.



74.	We find the length from

		T = 2p(L/g)1/2.

	In Austin, Texas, we have

		2.000 s = 2p[LAustin/(9.793 m/s2)]1/2, which gives      LAustin = 0.9922 m.

	In Paris we have

		2.000 s = 2p[LParis/(9.809 m/s2)]1/2, which gives LParis = 0.9939 m.

	Thus the additional length is LParis – LAustin = 0.9939 m – 0.9922 m = 0.0017 m =      1.7 mm.

	On the Moon we have

		2.000 s = 2p[LMoon/(1.62 m/s2)]1/2, which gives      LMoon = 0.164 m.



�

75.	The shear stress and shear strain are related by the shear modulus:

		G = (F/A)/(?x/h),   or  F = (GA/h) ?x, 

	where A is the area of the top of the block.  

	Because the center of mass oscillates with half the displacement of 

	the top, the effective force constant is

		keff = F/(?x/2) = 2GA/h.

	The frequency is

		f 	= (keff/m)1/2/2p 

			= [(2GA/h)/rAh]1/2/2p = [2(520 N/m2)/(1300 kg/m3)(0.040 m)2]1/2/2p =      3.6 Hz.



76.	The effective value of g is increased when the acceleration is upward and decreased when the acceleration is downward.  Because the length does not change, for the ratio of frequencies we have

		f ¢/f = (g¢/g)1/2.

	(a)	For the upward acceleration we get

			f ¢/f = (g¢/g)1/2 = [(g + !g)/g]1/2, which gives f ¢ =       1.22f.

	(b)	For the downward acceleration we get

			f ¢/f = (g¢/g)1/2 = [(g – !g)/g]1/2, which gives f ¢ =       0.71f.















77.	(a)	We find the effective spring constant from the displacement caused by the additional weight:

			k ?y = mg,   or   k = mg/?y = (75 kg)(9.80 m/s2)/(0.035 m) = 2.10 ´ 104 N/m.

		We find the frequency of vibration from

			f = (k/m)1/2(1/2p) = [(2.10 ´ 104 N/m)/(420 kg)]1/2(1/2p) =       1.1 Hz.

	(b)	The total energy is the maximum potential energy, so we have

			E = Umax = !kA2 = !(2.10 ´ 104 N/m)(0.035 m)2 =       13 J.

		Note that this is similar to the weight hanging on a spring.  If we measure from the equilibrium 

		position, we ignore changes in mgh.



78.	(a)	We find the speed from energy conservation:

			Ki + Ui = Kf + Uf ;

			!Mv02 + 0 = 0 + !kA2;

			!(5.0 kg)v02 = !(310 N/m)(0.24 m)2, which gives v0 =       1.9 m/s.

	(b)	We find the period of the oscillation from

			T = 2p(m/k)1/2 = 2p[(5.0 kg)/(310 N/m)]1/2 = 0.798 s.

		The car will be in contact with the spring for half a cycle, so the time is

			t = !T = !(0.798 s) =      0.40 s.



79.	(a)	We find the effective spring constant from the displacement caused by the additional weight:

			k ?y = mg,   or   

			k = mg/?y = (0.55 kg)(9.80 m/s2)/(0.060 m) =       90 N/m.

	(b)	We assume the collision takes place before the springs start to compress.  We use momentum 

		conservation to find the speed of the table and clay at the beginning of the oscillation:

			mv + 0 = (m + M)V;

			(0.55 kg)(1.65 m/s) = (0.55 kg + 1.60 kg)V, which gives V = 0.422 m/s.

		The table and clay are 6.0 cm above the equilibrium position when they have this speed.  

		At the maximum amplitude, the speed is zero.  From energy conservation, we have

			Ki + Ui = Kf + Uf ;

			!(m + M)V2 + !kx2 = 0 + !kA2;

			!(0.55 kg + 1.60 kg)(0.422 m/s)2 + !(89.8 N/m)(0.060 m)2 = !(89.8 N/m)A2, 

		which gives A = 8.87 ´ 10–2 m =       8.9 cm.



80.	The object will leave the surface when the maximum acceleration of the SHM becomes greater than g, so the normal force becomes zero.  For the pebble to remain on the board, we have

		amax = w2A = (2pf)2A < g;

		[2p(5.0 Hz)]2A < 9.80 m/s2, which gives A < 9.93 ´ 10–3 m =      0.99 cm.



81.	In the equilibrium position, the net force is zero, so we have

�

		Fbuoy = mg.

	When the block is pushed into the water, there will be an additional 

	buoyant force, equal to the weight of the additional water displaced, 

	to bring the block back to the equilibrium position.  When the block is 

	pushed down a distance ?x, this net upward force is

		Fnet = – rwatergA ?x.

	Because the net restoring force is proportional to the displacement, the 

	block will oscillate with SHM.  We find the effective force constant from 

	the coefficient of ?x:

		k = rwatergA.















82.	The distance the mass falls is the distance the spring is stretched.  We use energy conservation between the initial point, where the spring is unstretched, and the lowest point, our reference level for the gravitational potential energy, to find the spring constant:

		Ki + Ui = Kf + Uf ;

		0 + mgh = 0 + !kh2, which gives k = 2mg/h.

	We find the frequency from

		f  = (k/m)1/2/2p = (2mg/hm)1/2/2p = (2g/h)1/2/2p = [2(9.80 m/s2)/(0.220 m)]1/2/2p =       1.50 Hz.



�

83.	When the water is displaced a distance ?x from equilibrium, the net 

	restoring force is the unbalanced weight of water in the height 2 ?x:

		Fnet = – 2rgA ?x.

	We see that the net restoring force is proportional to the displacement, 

	so       the water will oscillate with SHM.

	We find the effective spring constant from the coefficient of ?x:

		k = 2rgA.

	From the formula for k, we see that the effective spring constant 

	depends on       the density and the cross section.













�

84.											(a)

	(b)	At equilibrium the force is zero, so we have

			F = – (C/r02) + (D/r03) = 0, 

		which gives r0 = D/C.

	(c)	For a small displacement from equilibrium, 

		?r = r – r0 , the net force is

			F 	= – [C/(r0 + ?r)2] + [D/(r0 + ?r)3] 

				= [1/(r0 + ?r)3][– C(r0 + ?r) + D] 

				= [1/(r0 + ?r)3][– Cr0 + D – C ?r].

		When we use the equilibrium condition for r0, 

		we get

			F = – C ?r/(r0 + ?r)3 ˜ – (C/r03) ?r.

		Thus the net force is a restoring force 

		proportional to the small displacement, 

		so the motion will be simple harmonic.

	(d)	We see that the effective force constant is

			keff = C/r03 = C4/D3.

	(e)	We find the period of the motion from

			T = 2p(m/keff)1/2 = 2p(mr03/C)1/2 =        2p(mD3/C4)1/2.
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85.	In the equilibrium position, each spring is stretched ?a, 

	so the unstretched length of a spring is a – ?a.  When the 

	mass is pulled aside a distance x, the length of each 

	spring will be (a2 + x2)1/2.  From the symmetry we see 

	that the net force will be toward the equilibrium position:

		Fnet = – 2k[(a2 + x2)1/2 – (a – ?a)] sin q 

			= – 2k[(a2 + x2)1/2 – (a – ?a)] [x/(a2 + x2)1/2] 

			= – 2kx[1 – (a – ?a)/(a2 + x2)1/2] 

			= – 2kx{1 – (1 – ?a/a)/[1 + (x/a)2]1/2} 

			˜ – 2kx{1 – (1 – ?a/a)[1 – !(x/a)2]} ˜ – 2kx[(?a/a) + !(x/a)2] ˜  – 2k(?a/a)x,

	where we have used the fact that x « a.  Because the restoring force is proportional to the small displacement, the motion will be simple harmonic, with keff = 2k(?a/a).

	The period is

		T = 2p(m/keff)1/2 = 2p[m/2k(?a/a)]1/2 =       2p(ma/2k ?a)1/2.



86.	We find the spring constant of each bond from

		f  = (k/m)1/2/2p;

		2.83 ´ 1013 Hz = [k/16(1.67 ´ 10–27 kg)]1/2/2p, which gives k =      845 N/m.



87.	(a)	The period is

			T 	= 2p(I/mgh)1/2 = 2p[(m¬2/3)/mg(¬/2)]1/2 

				= 2p(2¬/3g)1/2 = 2p[2(1.00 m)/3(9.80 m/s2)]1/2 =      1.64 s.

	(b)	For the simple pendulum to have the same period, we have

			T = 2p(2¬/3g)1/2 = 2p(¬0/g)1/2,  or   ¬0 = %¬ = %(1.00 m) =       0.67 m.



�

88.	When a mass m is a distance x from the center of the Earth, 

	there will be a gravitational force only from the mass 

	within a sphere of radius x.  This mass is

		M¢ = (ME/)prE3))px3 = MEx3/rE3.

	The force will be toward the center, opposite to x:

		F = – GM¢m/x2 = – G(MEx3/rE3)m/x2 = – (GMEm/rE3)x.

	Thus we see that the restoring force is proportional to the 

	displacement, so the motion will be simple harmonic, with 

		keff = GMEm/rE3.

	The apple will take one period to return to the initial location:

		T 	= 2p(m/keff)1/2 = 2p[m/(GMEm/rE3)]1/2 = 2p(rE3/GME)1/2 

			= 2p[(6.38 ´ 106 m)3/(6.67 ´ 10–11 N · m2/kg2)(5.98 ´ 1024 kg)]1/2 

			= 5.07 ´ 103 s =      84.5 min.
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